51
|
Abstract
Severely burned patients suffer from a hypermetabolic syndrome that can last for years after the injury has resolved. The underlying cause of these metabolic alterations most likely involves the persistent elevated catecholamine levels that follow the surge induced by thermal injury. At the cellular level, endoplasmic reticulum (ER) stress in metabolic tissues is a hallmark observed in patients following burn injury and is associated with several detrimental effects. Therefore, ER stress could be the underlying cellular mechanism of persistent hypermetabolism in burned patients. Here, we show that catecholamines induce ER stress and that adreno-receptor blockers reduce stress responses in the HepG2 hepatocyte cell line. Our results also indicate that norepinephrine (NE) significantly induces ER stress in HepG2 cells and 3T3L1 mouse adipocytes. Furthermore, we demonstrate that the alpha-1 blocker, prazosin, and beta blocker, propranolol, block ER stress induced by NE. We also show that the effects of catecholamines in inducing ER stress are cell type-specific, as NE treatment failed to evoke ER stress in human fibroblasts. Thus, these findings reveal the mechanisms used by catecholamines to alter metabolism and suggest inhibition of the receptors utilized by these agents should be further explored as a potential target for the treatment of ER stress-mediated disease.
Collapse
|
52
|
Kaur S, Auger C, Barayan D, Shah P, Matveev A, Knuth CM, Harris TE, Jeschke MG. Adipose-specific ATGL ablation reduces burn injury-induced metabolic derangements in mice. Clin Transl Med 2021; 11:e417. [PMID: 34185433 PMCID: PMC8181198 DOI: 10.1002/ctm2.417] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/19/2021] [Accepted: 04/25/2021] [Indexed: 12/25/2022] Open
Abstract
Hypermetabolism following severe burn injuries is associated with adipocyte dysfunction, elevated beige adipocyte formation, and increased energy expenditure. The resulting catabolism of adipose leads to detrimental sequelae such as fatty liver, increased risk of infections, sepsis, and even death. While the phenomenon of pathological white adipose tissue (WAT) browning is well-documented in cachexia and burn models, the molecular mechanisms are essentially unknown. Here, we report that adipose triglyceride lipase (ATGL) plays a central role in burn-induced WAT dysfunction and systemic outcomes. Targeting adipose-specific ATGL in a murine (AKO) model resulted in diminished browning, decreased circulating fatty acids, and mitigation of burn-induced hepatomegaly. To assess the clinical applicability of targeting ATGL, we demonstrate that the selective ATGL inhibitor atglistatin mimics the AKO results, suggesting a path forward for improving patient outcomes.
Collapse
Affiliation(s)
- Supreet Kaur
- Ross Tilley Burn CentreSunnybrook Health Sciences CentreTorontoOntarioCanada
| | - Christopher Auger
- Ross Tilley Burn CentreSunnybrook Health Sciences CentreTorontoOntarioCanada
| | - Dalia Barayan
- Ross Tilley Burn CentreSunnybrook Health Sciences CentreTorontoOntarioCanada
- Institute of Medical SciencesUniversity of TorontoTorontoOntarioCanada
| | - Priyal Shah
- Institute of Medical SciencesUniversity of TorontoTorontoOntarioCanada
| | - Anna Matveev
- Ross Tilley Burn CentreSunnybrook Health Sciences CentreTorontoOntarioCanada
| | - Carly M. Knuth
- Ross Tilley Burn CentreSunnybrook Health Sciences CentreTorontoOntarioCanada
- Institute of Medical SciencesUniversity of TorontoTorontoOntarioCanada
| | - Thurl E. Harris
- Department of PharmacologyUniversity of Virginia School of MedicineCharlottesville VAUSA
| | - Marc G. Jeschke
- Ross Tilley Burn CentreSunnybrook Health Sciences CentreTorontoOntarioCanada
- Institute of Medical SciencesUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
53
|
Altered Genes and Biological Functions in Response to Severe Burns. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8836243. [PMID: 34124262 PMCID: PMC8168476 DOI: 10.1155/2021/8836243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 05/04/2021] [Indexed: 11/29/2022]
Abstract
Severe burns are acute wounds caused by local heat exposure, resulting in life-threatening systemic effects and poor survival. However, the specific molecular mechanisms remain unclear. First, we downloaded gene expression data related to severe burns from the GEO database (GSE19743, GSE37069, and GSE77791). Then, a gene expression analysis was performed to identify differentially expressed genes (DEGs) and construct protein-protein interaction (PPI) network. The molecular mechanism was identified by enrichment analysis and Gene Set Enrichment Analysis. In addition, STEM software was used to screen for genes persistently expressed during response to severe burns, and receiver operating characteristic (ROC) curve was used to identify key DEGs. A total of 2631 upregulated and 3451 downregulated DEGs were identified. PPI network analysis clustered these DEGs into 13 modules. Importantly, module genes mostly related with immune responses and metabolism. In addition, we identified genes persistently altered during the response to severe burns corresponding to survival and death status. Among the genes with high area under the ROC curve in the PPI network gene, CCL5 and LCK were identified as key DEGs, which may affect the prognosis of burn patients. Gene set variation analysis showed that the immune response was inhibited and several types of immune cells were decreased, while the metabolic response was enhanced. The results showed that persistent gene expression changes occur in response to severe burns, which may underlie chronic alterations in physiological pathways. Identifying the key altered genes may reveal potential therapeutic targets for mitigating the effects of severe burns.
Collapse
|
54
|
Burmeister DM, Chu GCY, Chao T, Heard TC, Gómez BI, Sousse LE, Natesan S, Christy RJ. ASCs derived from burn patients are more prone to increased oxidative metabolism and reactive oxygen species upon passaging. Stem Cell Res Ther 2021; 12:270. [PMID: 33957963 PMCID: PMC8100366 DOI: 10.1186/s13287-021-02327-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Background Patients with severe burn injury (over 20% of the total body surface area) experience profound hypermetabolism which significantly prolongs wound healing. Adipose-derived stem cells (ASCs) have been proposed as an attractive solution for treating burn wounds, including the potential for autologous ASC expansion. While subcutaneous adipocytes display an altered metabolic profile post-burn, it is not known if this is the case with the stem cells associated with the adipose tissue. Methods ASCs were isolated from discarded burn skin of severely injured human subjects (BH, n = 6) and unburned subcutaneous adipose tissue of patients undergoing elective abdominoplasty (UH, n = 6) and were analyzed at passages 2, 4, and 6. Flow cytometry was used to quantify ASC cell surface markers CD90, CD105, and CD73. Mitochondrial abundance and reactive oxygen species (ROS) production were determined with MitoTracker Green and MitoSOX Red, respectively, while JC-10 Mitochondrial Membrane Potential Assays were also performed. Mitochondrial respiration and glycolysis were analyzed with a high-resolution respirometer (Seahorse XFe24 Analyzer). Results There was no difference in age between BH and UH (34 ± 6 and 41 ± 4 years, respectively, P = 0.49). While passage 2 ASCs had lower ASC marker expression than subsequent passages, there were no significant differences in the expression between BH and UH ASCs. Similarly, no differences in mitochondrial abundance or membrane potential were found amongst passages or groups. Two-way ANOVA showed a significant effect (P < 0.01) of passaging on mitochondrial ROS production, with increased ROS in BH ASCs at later passages. Oxidative phosphorylation capacities (leak and maximal respiration) increased significantly in BH ASCs (P = 0.035) but not UH ASCs. On the contrary, basal glycolysis significantly decreased in BH ASCs (P = 0.011) with subsequent passaging, but not UH ASCs. Conclusions In conclusion, ASCs from burned individuals become increasingly oxidative and less glycolytic upon passaging when compared to ASCs from unburned patients. This increase in oxidative capacities was associated with ROS production in later passages. While the autologous expansion of ASCs holds great promise for treating burned patients with limited donor sites, the potential negative consequences of using them require further investigation.
Collapse
Affiliation(s)
- David M Burmeister
- Department of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA. .,United States Army Institute of Surgical Research, JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX, USA.
| | - Grace Chu-Yuan Chu
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX, USA
| | - Tony Chao
- University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA
| | - Tiffany C Heard
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX, USA
| | - Belinda I Gómez
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX, USA
| | - Linda E Sousse
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX, USA
| | - Shanmugasundaram Natesan
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX, USA
| | - Robert J Christy
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, 3698 Chambers Pass, San Antonio, TX, USA
| |
Collapse
|
55
|
Henriques F, Bedard AH, Guilherme A, Kelly M, Chi J, Zhang P, Lifshitz LM, Bellvé K, Rowland LA, Yenilmez B, Kumar S, Wang Y, Luban J, Weinstein LS, Lin JD, Cohen P, Czech MP. Single-Cell RNA Profiling Reveals Adipocyte to Macrophage Signaling Sufficient to Enhance Thermogenesis. Cell Rep 2021; 32:107998. [PMID: 32755590 PMCID: PMC7433376 DOI: 10.1016/j.celrep.2020.107998] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/22/2020] [Accepted: 07/15/2020] [Indexed: 12/29/2022] Open
Abstract
Adipocytes deficient in fatty acid synthase (iAdFASNKO) emit signals that mimic cold exposure to enhance the appearance of thermogenic beige adipocytes in mouse inguinal white adipose tissues (iWATs). Both cold exposure and iAdFASNKO upregulate the sympathetic nerve fiber (SNF) modulator Neuregulin 4 (Nrg4), activate SNFs, and require adipocyte cyclic AMP/protein kinase A (cAMP/PKA) signaling for beige adipocyte appearance, as it is blocked by adipocyte Gsα deficiency. Surprisingly, however, in contrast to cold-exposed mice, neither iWAT denervation nor Nrg4 loss attenuated adipocyte browning in iAdFASNKO mice. Single-cell transcriptomic analysis of iWAT stromal cells revealed increased macrophages displaying gene expression signatures of the alternately activated type in iAdFASNKO mice, and their depletion abrogated iWAT beiging. Altogether, these findings reveal that divergent cellular pathways are sufficient to cause adipocyte browning. Importantly, adipocyte signaling to enhance alternatively activated macrophages in iAdFASNKO mice is associated with enhanced adipose thermogenesis independent of the sympathetic neuron involvement this process requires in the cold. Henriques et al. show an alternative pathway to enhance thermogenesis through an adipocyte cAMP/PKA axis in denervated iWAT. Signals emanating from this pathway generate M2-type macrophages associated with iWAT browning.
Collapse
Affiliation(s)
- Felipe Henriques
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Alexander H Bedard
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Adilson Guilherme
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Mark Kelly
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jingyi Chi
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Peng Zhang
- Life Sciences Institute, University of Michigan Medical Center, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Lawrence M Lifshitz
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Karl Bellvé
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Leslie A Rowland
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Batuhan Yenilmez
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Shreya Kumar
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Yetao Wang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jiandie D Lin
- Life Sciences Institute, University of Michigan Medical Center, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
56
|
Knuth CM, Auger C, Jeschke MG. Burn-induced hypermetabolism and skeletal muscle dysfunction. Am J Physiol Cell Physiol 2021; 321:C58-C71. [PMID: 33909503 DOI: 10.1152/ajpcell.00106.2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Critical illnesses, including sepsis, cancer cachexia, and burn injury, invoke a milieu of systemic metabolic and inflammatory derangements that ultimately results in increased energy expenditure leading to fat and lean mass catabolism. Burn injuries present a unique clinical challenge given the magnitude and duration of the hypermetabolic response compared with other forms of critical illness, which drastically increase the risk of morbidity and mortality. Skeletal muscle metabolism is particularly altered as a consequence of burn-induced hypermetabolism, as it primarily provides a main source of fuel in support of wound healing. Interestingly, muscle catabolism is sustained long after the wound has healed, indicating that additional mechanisms beyond wound healing are involved. In this review, we discuss the distinctive pathophysiological response to burn injury with a focus on skeletal muscle function and metabolism. We first examine the diverse consequences on skeletal muscle dysfunction between thermal, electrical, and chemical burns. We then provide a comprehensive overview of the known mechanisms underlying skeletal muscle dysfunction that may be attributed to hypermetabolism. Finally, we review the most promising current treatment options to mitigate muscle catabolism, and by extension improve morbidity and mortality, and end with future directions that have the potential to significantly improve patient care.
Collapse
Affiliation(s)
- Carly M Knuth
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Christopher Auger
- Department of Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Marc G Jeschke
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|
57
|
Muoio F, Panella S, Jossen V, Lindner M, Harder Y, Müller M, Eibl R, Tallone T. Human Adipose Stem Cells (hASCs) Grown on Biodegradable Microcarriers in Serum- and Xeno-Free Medium Preserve Their Undifferentiated Status. J Funct Biomater 2021; 12:jfb12020025. [PMID: 33923488 PMCID: PMC8167760 DOI: 10.3390/jfb12020025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/25/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Human adipose stem cells (hASCs) are promising candidates for cell-based therapies, but they need to be efficiently expanded in vitro as they cannot be harvested in sufficient quantities. Recently, dynamic bioreactor systems operated with microcarriers achieved considerable high cell densities. Thus, they are a viable alternative to static planar cultivation systems to obtain high numbers of clinical-grade hASCs. Nevertheless, the production of considerable biomass in a short time must not be achieved to the detriment of the cells' quality. To facilitate the scalable expansion of hASC, we have developed a new serum- and xeno-free medium (UrSuppe) and a biodegradable microcarrier (BR44). In this study, we investigated whether the culture of hASCs in defined serum-free conditions on microcarriers (3D) or on planar (2D) cell culture vessels may influence the expression of some marker genes linked with the immature degree or the differentiated status of the cells. Furthermore, we investigated whether the biomaterials, which form our biodegradable MCs, may affect cell behavior and differentiation. The results confirmed that the quality and the undifferentiated status of the hASCs are very well preserved when they grow on BR44 MCs in defined serum-free conditions. Indeed, the ASCs showed a gene expression profile more compatible with an undifferentiated status than the same cells grown under standard planar conditions.
Collapse
Affiliation(s)
- Francesco Muoio
- Foundation for Cardiological Research and Education (FCRE), Cardiocentro Ticino Foundation, 6807 Taverne, Switzerland; (F.M.); (S.P.)
| | - Stefano Panella
- Foundation for Cardiological Research and Education (FCRE), Cardiocentro Ticino Foundation, 6807 Taverne, Switzerland; (F.M.); (S.P.)
| | - Valentin Jossen
- Institute of Chemistry & Biotechnology, Competence Center of Biochemical Engineering & Cell Cultivation Technique Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland; (V.J.); (R.E.)
| | | | - Yves Harder
- Department of Plastic, Reconstructive and Aesthetic Surgery, EOC, 6900 Lugano, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | | | - Regine Eibl
- Institute of Chemistry & Biotechnology, Competence Center of Biochemical Engineering & Cell Cultivation Technique Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland; (V.J.); (R.E.)
| | - Tiziano Tallone
- Foundation for Cardiological Research and Education (FCRE), Cardiocentro Ticino Foundation, 6807 Taverne, Switzerland; (F.M.); (S.P.)
- Correspondence: ; Tel.: +41-91-805-38-85
| |
Collapse
|
58
|
Chigerwe M, Depenbrock SM, Heller MC, King A, Clergue SA, Morris CM, Peyton JL, Angelos JA. Clinical management and outcomes for goats, sheep, and pigs hospitalized for treatment of burn injuries sustained in wildfires: 28 cases (2006, 2015, and 2018). J Am Vet Med Assoc 2021; 257:1165-1170. [PMID: 33226291 DOI: 10.2460/javma.2020.257.11.1165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To characterize injuries and describe medical management and clinical outcomes of goats, sheep, and pigs treated at a veterinary medical teaching hospital for burn injuries sustained during wildfires. ANIMALS Goats (n = 9), sheep (12), and pigs (7) that sustained burn injuries from wildfires. PROCEDURES Medical records were searched to identify goats, sheep, and pigs that had burn injuries associated with California wildfires in 2006, 2015, and 2018. Data regarding signalment, physical examination findings, treatments, clinical outcomes, time to discharge from the hospital, and reasons for death or euthanasia were recorded. RESULTS The eyes, ears, nose, mouth, hooves, perineum, and ventral aspect of the abdomen were most commonly affected in both goats and sheep. In pigs, the ventral aspect of the abdomen, distal limb extremities, ears, and tail were most commonly affected. The median (range) time to discharge from the hospital for goats and pigs was 11 (3 to 90) and 85.5 (54 to 117) days, respectively. One of 9 goats, 12 of 12 sheep, and 5 of 7 pigs died or were euthanized. Laminitis and devitalization of distal limb extremities were common complications (13/28 animals) and a common reason for considering euthanasia in sheep and pigs. CONCLUSIONS AND CLINICAL RELEVANCE Burn injuries in small ruminants and pigs required prolonged treatment in some cases. Results suggested prognosis for survival may be more guarded for sheep and pigs with burn injuries than for goats; however, further research is needed to confirm these findings.
Collapse
|
59
|
Blears E, Ross E, Ogunbileje JO, Porter C, Murton AJ. The impact of catecholamines on skeletal muscle following massive burns: Friend or foe? Burns 2021; 47:756-764. [PMID: 33568281 DOI: 10.1016/j.burns.2021.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
Profound skeletal muscle wasting in the setting of total body hypermetabolism is a defining characteristic of massive burns, compromising the patient's recovery and necessitating a protracted period of rehabilitation. In recent years, the prolonged use of the non-selective beta-blocker, propranolol, has gained prominence as an effective tool to assist with suppressing epinephrine-dependent burn-induced hypermetabolism and by extension, blunting muscle catabolism. However, synthetic β-adrenergic agonists, such as clenbuterol, are widely associated with the promotion of muscle growth in both animals and humans. Moreover, experimental adrenodemedullation is known to result in muscle catabolism. Therefore, the blunting of muscle β-adrenergic signaling via the use of propranolol would be expected to negatively impair muscle protein homeostasis. This review explores these paradoxical observations and identifies the manner by which propranolol is thought to exert its anti-catabolic effects in burn patients. Moreover, we identify potential avenues by which the use of beta-blocker therapy in the treatment of massive burns could potentially be further refined to promote the recovery of muscle mass in these critically ill patients while continuing to ameliorate total body hypermetabolism.
Collapse
Affiliation(s)
- Elizabeth Blears
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA; Department of Surgery, Allegheny Health Network, Pittsburgh, PA, USA
| | - Evan Ross
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - John O Ogunbileje
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Craig Porter
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Andrew J Murton
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center of Aging, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
60
|
Pham HG, Mukherjee S, Choi MJ, Yun JW. BMP11 regulates thermogenesis in white and brown adipocytes. Cell Biochem Funct 2021; 39:496-510. [PMID: 33527439 DOI: 10.1002/cbf.3615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/11/2020] [Accepted: 10/24/2020] [Indexed: 12/29/2022]
Abstract
Bone morphogenetic protein-11 (BMP11), also known as growth differentiation factor-11 (GDF11), is implicated in skeletal development and joint morphogenesis in mammals. However, its functions in adipogenesis and energy homeostasis are mostly unknown. The present study investigates crucial roles of BMP11 in cultured 3T3-L1 white and HIB1B brown adipocytes, using Bmp11 gene depletion and pharmacological inhibition of BMP11. The silencing of Bmp11 markedly decreases the expression levels of brown-fat signature proteins and beige-specific genes in white adipocytes and significantly down-regulates the expression levels of brown fat-specific genes in brown adipocytes. The deficiency of Bmp11 reduces the expressions of lipolytic protein markers in white and brown adipocytes. Moreover, BMP11 induces browning of 3T3-L1 adipocytes via coordination of multiple signalling pathways, including mTORC1-COX2 and p38MAPK-PGC-1α as non-canonical pathways, as well as Smad1/5/8 as a canonical pathway. We believe this study is the first to provide evidence of the potential roles of BMP11 for improvement of lipid catabolism in both cultured white and brown adipocytes, as well as the effect on browning of white adipocytes. Taken together, these results demonstrate the therapeutic potential for the treatment of obesity.
Collapse
Affiliation(s)
- Huong Giang Pham
- Department of Biotechnology, Daegu University, Gyeongsan, South Korea
| | - Sulagna Mukherjee
- Department of Biotechnology, Daegu University, Gyeongsan, South Korea
| | - Min Ji Choi
- Department of Biotechnology, Daegu University, Gyeongsan, South Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, South Korea
| |
Collapse
|
61
|
Maurer SF, Dieckmann S, Lund J, Fromme T, Hess AL, Colson C, Kjølbaek L, Astrup A, Gillum MP, Larsen LH, Liebisch G, Amri EZ, Klingenspor M. No Effect of Dietary Fish Oil Supplementation on the Recruitment of Brown and Brite Adipocytes in Mice or Humans under Thermoneutral Conditions. Mol Nutr Food Res 2021; 65:e2000681. [PMID: 33274552 DOI: 10.1002/mnfr.202000681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/09/2020] [Indexed: 01/06/2023]
Abstract
SCOPE Brown and brite adipocytes within the mammalian adipose organ provide non-shivering thermogenesis and thus, have an exceptional capacity to dissipate chemical energy as heat. Polyunsaturated fatty acids (PUFA) of the n3-series, abundant in fish oil, have been repeatedly demonstrated to enhance the recruitment of thermogenic capacity in these cells, consequently affecting body adiposity and glucose tolerance. These effects are scrutinized in mice housed in a thermoneutral environment and in a human dietary intervention trial. METHODS AND RESULTS Mice are housed in a thermoneutral environment eliminating the superimposing effect of mild cold-exposure on thermogenic adipocyte recruitment. Dietary fish oil supplementation in two different inbred mouse strains neither affects body mass trajectory nor enhances the recruitment of brown and brite adipocytes, both in the presence and absence of a β3-adrenoreceptor agonist imitating the effect of cold-exposure on adipocytes. In line with these findings, dietary fish oil supplementation of persons with overweight or obesity fails to recruit thermogenic adipocytes in subcutaneous adipose tissue. CONCLUSION Thus, the authors' data question the hypothesized potential of n3-PUFA as modulators of adipocyte-based thermogenesis and energy balance regulation.
Collapse
Affiliation(s)
- Stefanie F Maurer
- Chair for Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences, Freising, 85354, Germany
- EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, 85354, Germany
| | - Sebastian Dieckmann
- Chair for Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences, Freising, 85354, Germany
- EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, 85354, Germany
- ZIEL - Institute for Food and Health, Technical University of Munich, Freising, 85354, Germany
| | - Jens Lund
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Frederiksberg, DK-1958, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Tobias Fromme
- Chair for Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences, Freising, 85354, Germany
- EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, 85354, Germany
- ZIEL - Institute for Food and Health, Technical University of Munich, Freising, 85354, Germany
| | - Anne Lundby Hess
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Frederiksberg, DK-1958, Denmark
| | - Cécilia Colson
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, 06107, France
| | - Louise Kjølbaek
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Frederiksberg, DK-1958, Denmark
| | - Arne Astrup
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Frederiksberg, DK-1958, Denmark
| | - Matthew Paul Gillum
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Lesli Hingstrup Larsen
- Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Frederiksberg, DK-1958, Denmark
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, 93053, Germany
| | - Ez-Zoubir Amri
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, 06107, France
| | - Martin Klingenspor
- Chair for Molecular Nutritional Medicine, Technical University of Munich, TUM School of Life Sciences, Freising, 85354, Germany
- EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, 85354, Germany
- ZIEL - Institute for Food and Health, Technical University of Munich, Freising, 85354, Germany
| |
Collapse
|
62
|
Epidermal Acyl-CoA-binding protein is indispensable for systemic energy homeostasis. Mol Metab 2020; 44:101144. [PMID: 33346070 PMCID: PMC7797911 DOI: 10.1016/j.molmet.2020.101144] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES The skin is the largest sensory organ of the human body and plays a fundamental role in regulating body temperature. However, adaptive alterations in skin functions and morphology have only vaguely been associated with physiological responses to cold stress or sensation of ambient temperatures. We previously found that loss of acyl-CoA-binding protein (ACBP) in keratinocytes upregulates lipolysis in white adipose tissue and alters hepatic lipid metabolism, suggesting a link between epidermal barrier functions and systemic energy metabolism. METHODS To assess the physiological responses to loss of ACBP in keratinocytes in detail, we used full-body ACBP-/- and skin-specific ACBP-/- knockout mice to clarify how loss of ACBP affects 1) energy expenditure by indirect calorimetry, 2) response to high-fat feeding and a high oral glucose load, and 3) expression of brown-selective gene programs by quantitative PCR in inguinal WAT (iWAT). To further elucidate the role of the epidermal barrier in systemic energy metabolism, we included mice with defects in skin structural proteins (ma/ma Flgft/ft) in these studies. RESULTS We show that the ACBP-/- mice and skin-specific ACBP-/- knockout mice exhibited increased energy expenditure, increased food intake, browning of the iWAT, and resistance to diet-induced obesity. The metabolic phenotype, including browning of the iWAT, was reversed by housing the mice at thermoneutrality (30 °C) or pharmacological β-adrenergic blocking. Interestingly, these findings were phenocopied in flaky tail mice (ma/ma Flgft/ft). Taken together, we demonstrate that a compromised epidermal barrier induces a β-adrenergic response that increases energy expenditure and browning of the white adipose tissue to maintain a normal body temperature. CONCLUSIONS Our findings show that the epidermal barrier plays a key role in maintaining systemic metabolic homeostasis. Thus, regulation of epidermal barrier functions warrants further attention to understand the regulation of systemic metabolism in further detail.
Collapse
|
63
|
Thermogenic adipocytes: lineage, function and therapeutic potential. Biochem J 2020; 477:2071-2093. [PMID: 32539124 PMCID: PMC7293110 DOI: 10.1042/bcj20200298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022]
Abstract
Metabolic inflexibility, defined as the inability to respond or adapt to metabolic demand, is now recognised as a driving factor behind many pathologies associated with obesity and the metabolic syndrome. Adipose tissue plays a pivotal role in the ability of an organism to sense, adapt to and counteract environmental changes. It provides a buffer in times of nutrient excess, a fuel reserve during starvation and the ability to resist cold-stress through non-shivering thermogenesis. Recent advances in single-cell RNA sequencing combined with lineage tracing, transcriptomic and proteomic analyses have identified novel adipocyte progenitors that give rise to specialised adipocytes with diverse functions, some of which have the potential to be exploited therapeutically. This review will highlight the common and distinct functions of well-known adipocyte populations with respect to their lineage and plasticity, as well as introducing the most recent members of the adipocyte family and their roles in whole organism energy homeostasis. Finally, this article will outline some of the more preliminary findings from large data sets generated by single-cell transcriptomics of mouse and human adipose tissue and their implications for the field, both for discovery and for therapy.
Collapse
|
64
|
Tapking C, Houschyar KS, Rontoyanni VG, Hundeshagen G, Kowalewski KF, Hirche C, Popp D, Wolf SE, Herndon DN, Branski LK. The Influence of Obesity on Treatment and Outcome of Severely Burned Patients. J Burn Care Res 2020; 40:996-1008. [PMID: 31294797 DOI: 10.1093/jbcr/irz115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Obesity and the related medical, social, and economic impacts are relevant multifactorial and chronic conditions that also have a meaningful impact on outcomes following a severe injury, including burns. In addition to burn-specific difficulties, such as adequate hypermetabolic response, fluid resuscitation, and early wound coverage, obese patients also present with common comorbidities, such as arterial hypertension, diabetes mellitus, or nonalcoholic fatty liver disease. In addition, the pathophysiologic response to severe burns can be enhanced. Besides the increased morbidity and mortality compared to burn patients with normal weight, obese patients present a challenge in fluid resuscitation, perioperative management, and difficulties in wound healing. The present work is an in-depth review of the current understanding of the influence of obesity on the management and outcome of severe burns.
Collapse
Affiliation(s)
- Christian Tapking
- Department of Surgery, University of Texas Medical Branch, Galveston.,Shriners Hospitals for Children, Galveston, Texas.,Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Germany
| | - Khosrow S Houschyar
- Department of Plastic Surgery, Hand Surgery, Sarcoma Center, BG University Hospital, Ruhr University, Bochum, Germany
| | - Victoria G Rontoyanni
- Department of Surgery, University of Texas Medical Branch, Galveston.,Metabolism Unit, Shriners Hospitals for Children, Galveston, Texas
| | - Gabriel Hundeshagen
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Germany
| | | | - Christoph Hirche
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Germany
| | - Daniel Popp
- Department of Surgery, University of Texas Medical Branch, Galveston.,Shriners Hospitals for Children, Galveston, Texas.,Department of Urology, University Medical Center Mannheim, University of Heidelberg, Germany
| | - Steven E Wolf
- Department of Surgery, University of Texas Medical Branch, Galveston.,Shriners Hospitals for Children, Galveston, Texas
| | - David N Herndon
- Department of Surgery, University of Texas Medical Branch, Galveston
| | - Ludwik K Branski
- Department of Surgery, University of Texas Medical Branch, Galveston.,Shriners Hospitals for Children, Galveston, Texas.,Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Austria
| |
Collapse
|
65
|
Alipoor E, Hosseinzadeh-Attar MJ, Rezaei M, Jazayeri S, Chapman M. White adipose tissue browning in critical illness: A review of the evidence, mechanisms and future perspectives. Obes Rev 2020; 21:e13085. [PMID: 32608573 DOI: 10.1111/obr.13085] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/15/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022]
Abstract
Observational studies suggest better clinical outcomes following critical illness in patients with overweight and obesity (obesity paradox). An understanding of the morphologic, physiologic and metabolic changes in adipose tissue in critical illness may provide an explanation. Recent studies have demonstrated the transformation of white to brown-like adipocytes due to the "browning process," which has been of interest as a potential novel therapy in obesity during the last decade. The characteristics of the browning of white adipose tissue (WAT) include the appearance of smaller, multilocular adipocytes, increased UCP1 mRNA expression, mitochondrial density and respiratory capacity. These changes have been identified in some critical illnesses, which specifically refers to burns, sepsis and cancer cachexia in this study. The pathophysiological nature of WAT browning, underlying mechanisms, main regulators and potential benefits and harms of this process are interesting new areas that warrants further investigations. In this review, we discuss emerging scientific discipline of adipose tissue physiology in metabolic stress, available data, gaps of knowledge and future perspectives. Future investigations in this field may provide insights into the underlying mechanisms and clinical aspects of browning that may further our understanding of the proposed obesity paradox following critical illness, which may in turn open up opportunities for novel therapies to save lives and improve recovery.
Collapse
Affiliation(s)
- Elham Alipoor
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Hosseinzadeh-Attar
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.,Cardiac Primary Prevention Research Center (CPPRC), Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Rezaei
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Jazayeri
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Marianne Chapman
- Discipline of Acute Care Medicine, School of Medicine, University of Adelaide, Adelaide, Australia.,Intensive Care Research Unit, Royal Adelaide Hospital, Adelaide, Australia.,National Health and Medical Research Council of Australia Centre for Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| |
Collapse
|
66
|
Żwierełło W, Styburski D, Maruszewska A, Piorun K, Skórka-Majewicz M, Czerwińska M, Maciejewska D, Baranowska-Bosiacka I, Krajewski A, Gutowska I. Bioelements in the treatment of burn injuries - The complex review of metabolism and supplementation (copper, selenium, zinc, iron, manganese, chromium and magnesium). J Trace Elem Med Biol 2020; 62:126616. [PMID: 32739827 DOI: 10.1016/j.jtemb.2020.126616] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/20/2022]
Abstract
Appropriate nutrition is a key component of burn treatment and should be regarded as an integral part of the therapeutic process in burn patients. A nutritional intervention plan should not only allow for adequate quantities of energy and protein but also carefully consider the supply of macro- and micronutrients. As a result of the severe inflammatory response, oxidative stress, and hypermetabolic state, accompanied by often extensive exudation in burn patients, there is a considerable loss of macro- and micronutrients, including essential trace elements. This leads to certain complications, involving e.g. more frequent infections and impaired wound healing. Our current body of knowledge is still insufficient, and the studies carried out to date focus for the most part on the imbalances in trace elements, such as copper (Cu), selenium (Se), and zinc (Zn). Nevertheless, there are many other trace elements involved in immune functions, regulating gene expression or antioxidant defense, and many of those have not been properly investigated in a clinical setting. Due to the insufficient amount of unambiguous literature data and relatively few, often dated, studies carried out with small patient groups, further evaluation of macro- and microelements in burn patients seems indispensable, e.g. to bring up to date local nutritional protocols.
Collapse
Affiliation(s)
- Wojciech Żwierełło
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp 72street, 70-111 Szczecin, Poland
| | - Daniel Styburski
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp 72street, 70-111 Szczecin, Poland
| | - Agnieszka Maruszewska
- Institute of Biology, University of Szczecin, Felczaka 3c St, 71-412, Szczecin, Poland
| | - Krzysztof Piorun
- West Pomeranian Center of Treating Severe Burns and Plastic Sugery, Niechorska 27 Street, 72-300, Gryfice, Poland
| | - Marta Skórka-Majewicz
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp 72street, 70-111 Szczecin, Poland
| | - Maja Czerwińska
- Department of Human Nutrition and Metabolomic, Pomeranian Medical University in Szczecin, Powstancow Wlkp 72street, 70-111, Szczecin, Poland
| | - Dominika Maciejewska
- Department of Human Nutrition and Metabolomic, Pomeranian Medical University in Szczecin, Powstancow Wlkp 72street, 70-111, Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp 72street, 70-111, Szczecin, Poland
| | - Andrzej Krajewski
- West Pomeranian Center of Treating Severe Burns and Plastic Sugery, Niechorska 27 Street, 72-300, Gryfice, Poland
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp 72street, 70-111 Szczecin, Poland.
| |
Collapse
|
67
|
Colson C, Batrow PL, Gautier N, Rochet N, Ailhaud G, Peiretti F, Amri EZ. The Rosmarinus Bioactive Compound Carnosic Acid Is a Novel PPAR Antagonist That Inhibits the Browning of White Adipocytes. Cells 2020; 9:cells9112433. [PMID: 33171828 PMCID: PMC7695189 DOI: 10.3390/cells9112433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
Thermogenic brown and brite adipocytes convert chemical energy from nutrients into heat. Therapeutics that regulate brown adipocyte recruitment and activity represent interesting strategies to control fat mass such as in obesity or cachexia. The peroxisome proliferator-activated receptor (PPAR) family plays key roles in the maintenance of adipose tissue and in the regulation of thermogenic activity. Activation of these receptors induce browning of white adipocyte. The purpose of this work was to characterize the role of carnosic acid (CA), a compound used in traditional medicine, in the control of brown/brite adipocyte formation and function. We used human multipotent adipose-derived stem (hMADS) cells differentiated into white or brite adipocytes. The expression of key marker genes was determined using RT-qPCR and western blotting. We show here that CA inhibits the browning of white adipocytes and favors decreased gene expression of thermogenic markers. CA treatment does not affect β-adrenergic response. Importantly, the effects of CA are fully reversible. We used transactivation assays to show that CA has a PPARα/γ antagonistic action. Our data pinpoint CA as a drug able to control PPAR activity through an antagonistic effect. These observations shed some light on the development of natural PPAR antagonists and their potential effects on thermogenic response.
Collapse
Affiliation(s)
- Cécilia Colson
- Université Côte d’Azur, CNRS, Inserm, iBV, 06103 Nice, France; (C.C.); (P.-L.B.); (N.G.); (N.R.); (G.A.)
| | - Pierre-Louis Batrow
- Université Côte d’Azur, CNRS, Inserm, iBV, 06103 Nice, France; (C.C.); (P.-L.B.); (N.G.); (N.R.); (G.A.)
| | - Nadine Gautier
- Université Côte d’Azur, CNRS, Inserm, iBV, 06103 Nice, France; (C.C.); (P.-L.B.); (N.G.); (N.R.); (G.A.)
| | - Nathalie Rochet
- Université Côte d’Azur, CNRS, Inserm, iBV, 06103 Nice, France; (C.C.); (P.-L.B.); (N.G.); (N.R.); (G.A.)
| | - Gérard Ailhaud
- Université Côte d’Azur, CNRS, Inserm, iBV, 06103 Nice, France; (C.C.); (P.-L.B.); (N.G.); (N.R.); (G.A.)
| | - Franck Peiretti
- Aix Marseille Université, INSERM, INRAE, C2VN, 13007 Marseille, France;
| | - Ez-Zoubir Amri
- Université Côte d’Azur, CNRS, Inserm, iBV, 06103 Nice, France; (C.C.); (P.-L.B.); (N.G.); (N.R.); (G.A.)
- Correspondence: ; Tel.: +33-493-37-70-82; Fax: +33-493-81-70-58
| |
Collapse
|
68
|
Shifts of Immune Cell Populations Differ in Response to Different Effectors of Beige Remodeling of Adipose Tissue. iScience 2020; 23:101765. [PMID: 33294778 PMCID: PMC7683338 DOI: 10.1016/j.isci.2020.101765] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/09/2020] [Accepted: 10/30/2020] [Indexed: 11/21/2022] Open
Abstract
White adipose tissue (WAT) is a dynamic tissue, which responds to environmental stimuli and dietary cues by changing its morphology and metabolic capacity. The ability of WAT to undergo a beige remodeling has become an appealing strategy to combat obesity and its comorbidities. Here, by using single-cell RNA sequencing, we provide a comprehensive atlas of the cellular dynamics during beige remodeling. We reveal drastic changes both in the overall cellular composition and transcriptional states of individual cell subtypes between Adrb3- and cold-induced beiging. Moreover, we demonstrate that cold induces a myeloid to lymphoid shift of the immune compartment compared to Adrb3 activation. Further analysis showed that, Adrb3 stimulation leads to activation of the interferon/Stat1 pathways favoring infiltration of myeloid immune cells, while repression of this pathway by cold promotes lymphoid immune cell recruitment. These findings highlight that pharmacological mimetics may not provide the same beneficial effects as physiological stimuli.
Collapse
|
69
|
Kaur S, Auger C, Jeschke MG. Adipose Tissue Metabolic Function and Dysfunction: Impact of Burn Injury. Front Cell Dev Biol 2020; 8:599576. [PMID: 33251224 PMCID: PMC7676399 DOI: 10.3389/fcell.2020.599576] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
For decades, adipose tissue had been considered as merely a storage depot and cushion to protect organs against trauma and injury. However, in recent years, a number of impactful studies have pinpointed the adipose tissue as an endocrine organ mediating systemic dysfunction in not only metabolic disorders such as obesity, but also in the stages following traumatic events such as severe burns. For instance, thermal injury induces a chronic β-adrenergic response associated with drastic increases in adipose lipolysis, macrophage infiltration and IL-6 mediated browning of white adipose tissue (WAT). The downstream consequences of these physiological changes to adipose, such as hepatomegaly and muscle wasting, are only now coming to light and suggest that WAT is both a culprit in and initiator of metabolic disorders after burn injury. To that effect, the aim of this review is to chronicle and critically analyze the scientific advances made in the study of adipose tissue with regards to its role in orchestrating the hypermetabolic response and detrimental effects of burn injury. The topics covered include the magnitude of the lipolytic response following thermal trauma and how WAT browning and inflammation perpetuate this cycle as well as how WAT physiology impacts insulin resistance and hyperglycemia post-burn. To conclude, we discuss how these findings can be translated from bench to bedside in the form of therapeutic interventions which target physiological changes to WAT to restore systemic homeostasis following a severe burn.
Collapse
Affiliation(s)
- Supreet Kaur
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Departments of Surgery and Immunology, University of Toronto, Toronto, ON, Canada
| | - Christopher Auger
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Departments of Surgery and Immunology, University of Toronto, Toronto, ON, Canada
| | - Marc G Jeschke
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Departments of Surgery and Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
70
|
Ruan HB. Developmental and functional heterogeneity of thermogenic adipose tissue. J Mol Cell Biol 2020; 12:775-784. [PMID: 32569352 PMCID: PMC7816678 DOI: 10.1093/jmcb/mjaa029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/11/2020] [Accepted: 06/12/2020] [Indexed: 12/18/2022] Open
Abstract
The obesity epidemic continues to rise as a global health challenge. Thermogenic brown and beige adipocytes dissipate chemical energy as heat, providing an opportunity for developing new therapeutics for obesity and related metabolic diseases. Anatomically, brown adipose tissue is distributed as discrete depots, while beige adipocytes exist within certain depots of white adipose tissue. Developmentally, brown and beige adipocytes arise from multiple embryonic progenitor populations that are distinct and overlapping. Functionally, they respond to a plethora of stimuli to engage uncoupling protein 1-dependent and independent thermogenic programs, thus improving systemic glucose homeostasis, lipid metabolism, and the clearance of branched-chain amino acids. In this review, we highlight recent advances in our understanding of the molecular and cellular mechanisms that contribute to the developmental and functional heterogeneity of thermogenic adipose tissue.
Collapse
Affiliation(s)
- Hai-Bin Ruan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
71
|
Knights AJ, Wu J, Tseng YH. The Heating Microenvironment: Intercellular Cross Talk Within Thermogenic Adipose Tissue. Diabetes 2020; 69:1599-1604. [PMID: 32690661 PMCID: PMC7372068 DOI: 10.2337/db20-0303] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/03/2020] [Indexed: 12/18/2022]
Abstract
Adipose tissue serves as the body's primary energy storage site; however, findings in recent decades have transformed our understanding of the multifaceted roles of this adaptable organ. The ability of adipose tissue to undergo energy expenditure through heat generation is termed adaptive thermogenesis, a process carried out by thermogenic adipocytes. Adipocytes are the primary parenchymal cell type in adipose tissue, yet these cells are sustained within a rich stromal vascular microenvironment comprised of adipose stem cells and progenitors, immune cells, neuronal cells, fibroblasts, and endothelial cells. Intricate cross talk between these diverse cell types is essential in regulating the activation of thermogenic fat, and the past decade has shed significant light on how this intercellular communication functions. This review will draw upon recent findings and current perspectives on the sophisticated repertoire of cellular and molecular features that comprise the adipose thermogenic milieu.
Collapse
Affiliation(s)
| | - Jun Wu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA
| |
Collapse
|
72
|
Birkbeck R, Donaldson R, Chan DL. Nutritional management of a kitten with thermal burns and septicaemia. JFMS Open Rep 2020; 6:2055116920930486. [PMID: 32655876 PMCID: PMC7328498 DOI: 10.1177/2055116920930486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Case summary A 3-month-old entire female British Shorthair cat presented for further management of thermal burns after falling into a bath of scalding water. On presentation to the primary care clinician the kitten was obtunded, markedly painful and relatively bradycardic, consistent with a state of shock. The haircoat was wet, with erythematous skin and sloughing from the digital pads and anal mucosa. The primary care clinician administered opioid analgesia, sedation, antibiotics and started intravenous (IV) fluid therapy prior to referral. On arrival to the referral hospital the kitten was obtunded with respiratory and cardiovascular stability but was overtly painful and resistant to handling. The kitten required intensive management with IV and regional analgesia, IV broad-spectrum antibiosis, IV fluid therapy, enteral nutrition and wound management, including surgical debridement and topical antibiotic therapy. Septicaemia developed during the hospitalisation. Multidrug-resistant Escherichia coli and Pseudomonas aeruginosa were cultured, and antibiosis was escalated to IV imipenem. Acute respiratory distress syndrome was suspected following the development of dyspnoea. Early enteral nutrition within 24 h of admission was initiated using an oesophageal feeding tube and a veterinary therapeutic liquid diet. Over the ensuing 72 h the kitten started voluntary intake of food alongside oesophageal tube feeds. The kitten experienced continued weight loss despite the provision of nutritional support to meet, and then later exceed, the estimated resting energy requirements. Caloric intake was gradually increased to a total of 438% of the calculated resting energy requirement using the most recent daily body weight, eventually resulting in stabilisation of weight loss and weight gain. Relevance and novel information There is limited published information on the nutritional management of veterinary patients with thermal burn injury. Hypermetabolic states related to burn injuries are induced and maintained by complex interactions of catecholamines, stress hormones and inflammatory cytokines on proteolysis, lipolysis and glycogenolysis. Secondary infections are common following burn injury and the subsequent proinflammatory state perpetuates hypermetabolism and catabolism. These states present a challenge in both predicting and providing adequate nutrition, particularly in a paediatric septic patient. This subset of patients should be monitored closely during hospitalisation to ensure body weight and condition are maintained (while taking into consideration hydration status), and caloric intake is adjusted accordingly to meet nutritional support goals. Extensive research exists regarding the nutritional requirements and metabolic derangements of people with thermal burns. However, the importance of maintaining body weight and body condition in veterinary burn patients, and the association between nutritional support and reduced morbidity and mortality, has not been investigated and remains to be elucidated.
Collapse
Affiliation(s)
- Rachael Birkbeck
- Rachael Birkbeck DVM, MRCVS, Department of
Clinical Science and Services, The Royal Veterinary College, North Mymms,
Hatfield, Hertfordshire AL9 7TA, UK
| | | | | |
Collapse
|
73
|
Tran KV, Brown EL, DeSouza T, Jespersen NZ, Nandrup-Bus C, Yang Q, Yang Z, Desai A, Min SY, Rojas-Rodriguez R, Lundh M, Feizi A, Willenbrock H, Larsen TJ, Severinsen MCK, Malka K, Mozzicato AM, Deshmukh AS, Emanuelli B, Pedersen BK, Fitzgibbons T, Scheele C, Corvera S, Nielsen S. Human thermogenic adipocyte regulation by the long noncoding RNA LINC00473. Nat Metab 2020; 2:397-412. [PMID: 32440655 PMCID: PMC7241442 DOI: 10.1038/s42255-020-0205-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
Human thermogenic adipose tissue mitigates metabolic disease, raising much interest in understanding its development and function. Here, we show that human thermogenic adipocytes specifically express a primate-specific long non-coding RNA, LINC00473 which is highly correlated with UCP1 expression and decreased in obesity and type-2 diabetes. LINC00473 is detected in progenitor cells, and increases upon differentiation and in response to cAMP. In contrast to other known adipocyte LincRNAs, LINC00473 shuttles out of the nucleus, colocalizes and can be crosslinked to mitochondrial and lipid droplet proteins. Up- or down- regulation of LINC00473 results in reciprocal alterations in lipolysis, respiration and transcription of genes associated with mitochondrial oxidative metabolism. Depletion of PLIN1 results in impaired cAMP-responsive LINC00473 expression and lipolysis, indicating bidirectional interactions between PLIN1, LINC00473 and mitochondrial oxidative functions. Thus, we suggest that LINC00473 is a key regulator of human thermogenic adipocyte function, and reveals a role for a LincRNA in inter-organelle communication and human energy metabolism.
Collapse
Affiliation(s)
- Khanh-Van Tran
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Medicine, Division of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Erin L Brown
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Tiffany DeSouza
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Naja Zenius Jespersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie Nandrup-Bus
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Qin Yang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Zinger Yang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Anand Desai
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - So Yun Min
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Raziel Rojas-Rodriguez
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Morten Lundh
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Amir Feizi
- Novo Nordisk Research Centre Oxford, University of Oxford, Oxford, UK
| | - Hanni Willenbrock
- Novo Nordisk A/S, Discovery Biology & Technology Boinformatics, Maaloev, Denmark
| | - Therese Juhlin Larsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Mai Charlotte Krogh Severinsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kimberly Malka
- Department of Surgery, Division of Vascular and Endovascular Surgery, University of Massachusetts Medical School, Worcester, MA, USA
| | - Anthony M Mozzicato
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Atul S Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Brice Emanuelli
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Bente Klarlund Pedersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Timothy Fitzgibbons
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Medicine, Division of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Camilla Scheele
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Silvia Corvera
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Søren Nielsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
74
|
Potential role of adipose tissue and its hormones in burns and critically III patients. Burns 2020; 46:259-266. [DOI: 10.1016/j.burns.2019.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 12/17/2018] [Accepted: 01/30/2019] [Indexed: 12/26/2022]
|
75
|
Clayton RP, Herndon DN, Abate N, Porter C. The Effect of Burn Trauma on Lipid and Glucose Metabolism: Implications for Insulin Sensitivity. J Burn Care Res 2020; 39:713-723. [PMID: 29931151 DOI: 10.1093/jbcr/irx047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Severe burns represent a unique form of trauma in terms of the magnitude and persistence of the stress response they incur. Given advances in acute burn care in the last quarter of a century and the resultant reduction in mortality rates, even for those with massive burns, greater emphasis is now placed on understanding the metabolic stress response to severe burn trauma in order to devise strategies that promote recovery and reduce morbidity. Derangements in metabolism including protein and lipid redistribution and altered glucose handling are hallmarks of the pathophysiological response to burn trauma. In this review article, we aim to distill and discuss the c urrent literature concerning the effect of burn trauma on lipid and glucose metabolism. Furthermore, we will discuss the implications of altered lipid metabolism with regards to insulin sensitivity and glucose control, while discussing the utility of agents and strategies aimed at restoring normal lipid and glucose metabolism in burned patients.
Collapse
Affiliation(s)
- Robert P Clayton
- Shriners Hospitals for Children®-Galveston.,The Institute for Translational Sciences, University of Texas Medical Branch, Galveston
| | - David N Herndon
- Shriners Hospitals for Children®-Galveston.,The Institute for Translational Sciences, University of Texas Medical Branch, Galveston.,Department of Surgery, University of Texas Medical Branch, Galveston
| | - Nicola Abate
- Shriners Hospitals for Children®-Galveston.,The Institute for Translational Sciences, University of Texas Medical Branch, Galveston.,Department of Internal Medicine, University of Texas Medical Branch, Galveston
| | - Craig Porter
- Shriners Hospitals for Children®-Galveston.,The Institute for Translational Sciences, University of Texas Medical Branch, Galveston
| |
Collapse
|
76
|
Abstract
Burn injuries are under-appreciated injuries that are associated with substantial morbidity and mortality. Burn injuries, particularly severe burns, are accompanied by an immune and inflammatory response, metabolic changes and distributive shock that can be challenging to manage and can lead to multiple organ failure. Of great importance is that the injury affects not only the physical health, but also the mental health and quality of life of the patient. Accordingly, patients with burn injury cannot be considered recovered when the wounds have healed; instead, burn injury leads to long-term profound alterations that must be addressed to optimize quality of life. Burn care providers are, therefore, faced with a plethora of challenges including acute and critical care management, long-term care and rehabilitation. The aim of this Primer is not only to give an overview and update about burn care, but also to raise awareness of the ongoing challenges and stigmata associated with burn injuries.
Collapse
Affiliation(s)
- Marc G Jeschke
- Ross Tilley Burn Center, Department of Surgery, Sunnybrook Health Science Center, Toronto, Ontario, Canada.
- Departments of Surgery and Immunology, University of Toronto, Toronto, Ontario, Canada.
| | - Margriet E van Baar
- Association of Dutch Burn Centres, Maasstad Hospital, Rotterdam, Netherlands
- Erasmus MC, University Medical Center Rotterdam, Department of Public Health, Rotterdam, Netherlands
| | - Mashkoor A Choudhry
- Burn and Shock Trauma Research Institute, Alcohol Research Program, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL, USA
| | - Kevin K Chung
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Nicole S Gibran
- Department of Surgery, University of Washington School of Medicine, Seattle, WA, USA
| | - Sarvesh Logsetty
- Departments of Surgery and Psychiatry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
77
|
Targeting fat browning in hypermetabolic conditions: a clinical perspective. Future Sci OA 2020; 6:FSO448. [PMID: 32025331 PMCID: PMC6997915 DOI: 10.2144/fsoa-2019-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
78
|
Barayan D, Vinaik R, Auger C, Knuth CM, Abdullahi A, Jeschke MG. Inhibition of Lipolysis With Acipimox Attenuates Postburn White Adipose Tissue Browning and Hepatic Fat Infiltration. Shock 2020; 53:137-145. [PMID: 31425403 PMCID: PMC10880813 DOI: 10.1097/shk.0000000000001439] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Extensive burn injuries promote an increase in the lipolysis of white adipose tissue (WAT), a complication that enhances postburn hypermetabolism contributing to hyperlipidemia and hepatic steatosis. The systemic increase of free fatty acids (FFAs) due to burn-induced lipolysis and subsequent organ fatty infiltration may culminate in multiple organ dysfunction and, ultimately, death. Thus, reducing WAT lipolysis to diminish the mobilization of FFAs may render an effective means to improve outcomes postburn. Here, we investigated the metabolic effects of Acipimox, a clinically approved drug that suppresses lipolysis via inhibition of hormone-sensitive lipase (HSL). Using a murine model of thermal injury, we show that specific inhibition of HSL with Acipimox effectively suppresses burn-induced lipolysis in the inguinal WAT leading to lower levels of circulating FFAs at 7 days postburn (P < 0.05). The FFA substrate shortage indirectly repressed the thermogenic activation of adipose tissue after injury, reflected by the decrease in protein expression of key browning markers, UCP-1 (P < 0.001) and PGC-1α (P < 0.01). Importantly, reduction of FFA mobilization by Acipimox significantly decreased liver weight and intracellular fat accumulation (P < 0.05), suggesting that it may also improve organ function postburn. Our data validate the pharmacological inhibition of lipolysis as a potentially powerful therapeutic strategy to counteract the detrimental metabolic effects induced by burn.
Collapse
Affiliation(s)
- Dalia Barayan
- Institute of Medical Science, University of Toronto, Canada
| | - Roohi Vinaik
- Institute of Medical Science, University of Toronto, Canada
| | - Christopher Auger
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Canada
- Sunnybrook Research Institute, Toronto, Canada
| | - Carly M. Knuth
- Institute of Medical Science, University of Toronto, Canada
| | - Abdikarim Abdullahi
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Canada
- Sunnybrook Research Institute, Toronto, Canada
| | - Marc G. Jeschke
- Department of Surgery, Division of Plastic Surgery, University of Toronto, Canada
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Canada
- Sunnybrook Research Institute, Toronto, Canada
- Institute of Medical Science, University of Toronto, Canada
| |
Collapse
|
79
|
Yousuf Y, Datu A, Barnes B, Amini-Nik S, Jeschke MG. Metformin alleviates muscle wasting post-thermal injury by increasing Pax7-positive muscle progenitor cells. Stem Cell Res Ther 2020; 11:18. [PMID: 31915055 PMCID: PMC6950874 DOI: 10.1186/s13287-019-1480-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/14/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Profound skeletal muscle wasting and weakness is common after severe burn and persists for years after injury contributing to morbidity and mortality of burn patients. Currently, no ideal treatment exists to inhibit muscle catabolism. Metformin is an anti-diabetic agent that manages hyperglycemia but has also been shown to have a beneficial effect on stem cells after injury. We hypothesize that metformin administration will increase protein synthesis in the skeletal muscle by increasing the proliferation of muscle progenitor cells, thus mitigating muscle atrophy post-burn injury. METHODS To determine whether metformin can attenuate muscle catabolism following burn injury, we utilized a 30% total burn surface area (TBSA) full-thickness scald burn in mice and compared burn injuries with and without metformin treatment. We examined the gastrocnemius muscle at 7 and 14 days post-burn injury. RESULTS At 7 days, burn injury significantly reduced myofiber cross-sectional area (CSA) compared to sham, p < 0.05. Metformin treatment significantly attenuated muscle catabolism and preserved muscle CSA at the sham size. To investigate metformin's effect on satellite cells (muscle progenitors), we examined changes in Pax7, a transcription factor regulating the proliferation of muscle progenitors. Burned animals treated with metformin had a significant increase in Pax7 protein level and the number of Pax7-positive cells at 7 days post-burn, p < 0.05. Moreover, through BrdU proliferation assay, we show that metformin treatment increased the proliferation of satellite cells at 7 days post-burn injury, p < 0.05. CONCLUSION In summary, metformin's various metabolic effects and its modulation of stem cells make it an attractive alternative to mitigate burn-induced muscle wasting while also managing hyperglycemia.
Collapse
Affiliation(s)
- Yusef Yousuf
- Sunnybrook Research Institute, 2075 Bayview Ave., Rm. D704, Toronto, ON, M4N 3M5, Canada
| | - Andrea Datu
- Sunnybrook Research Institute, 2075 Bayview Ave., Rm. D704, Toronto, ON, M4N 3M5, Canada
| | - Ben Barnes
- Sunnybrook Research Institute, 2075 Bayview Ave., Rm. D704, Toronto, ON, M4N 3M5, Canada
| | - Saeid Amini-Nik
- Sunnybrook Research Institute, 2075 Bayview Ave., Rm. D704, Toronto, ON, M4N 3M5, Canada. .,Laboratory in Medicine and Pathobiology, University of Toronto, Toronto, Canada. .,Division of Plastic Surgery, Department of Surgery, University of Toronto, Toronto, Canada.
| | - Marc G Jeschke
- Sunnybrook Research Institute, 2075 Bayview Ave., Rm. D704, Toronto, ON, M4N 3M5, Canada. .,Division of Plastic Surgery, Department of Surgery, University of Toronto, Toronto, Canada. .,Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Canada. .,Department of Immunology, University of Toronto, Toronto, Canada.
| |
Collapse
|
80
|
Abstract
Neuroimmunology and immunometabolism are burgeoning topics of study, but the intersection of these two fields is scarcely considered. This interplay is particularly prevalent within adipose tissue, where immune cells and the sympathetic nervous system (SNS) have an important role in metabolic homeostasis and pathology, namely in obesity. In the present Review, we first outline the established reciprocal adipose-SNS relationship comprising the neuroendocrine loop facilitated primarily by adipose tissue-derived leptin and SNS-derived noradrenaline. Next, we review the extensive crosstalk between adipocytes and resident innate immune cells as well as the changes that occur in these secretory and signalling pathways in obesity. Finally, we discuss the effect of SNS adrenergic signalling in immune cells and conclude with exciting new research demonstrating an immutable role for SNS-resident macrophages in modulating SNS-adipose crosstalk. We posit that the latter point constitutes the existence of a new field - neuroimmunometabolism.
Collapse
Affiliation(s)
- Chelsea M Larabee
- Department of Physiology, Anatomy & Genetics, Oxford University, Oxford, UK
| | - Oliver C Neely
- Department of Physiology, Anatomy & Genetics, Oxford University, Oxford, UK
| | - Ana I Domingos
- Department of Physiology, Anatomy & Genetics, Oxford University, Oxford, UK.
- The Howard Hughes Medical Institute (HHMI), New York, NY, USA.
| |
Collapse
|
81
|
Abstract
Understanding the mammalian energy balance can pave the way for future therapeutics that enhance energy expenditure as an anti-obesity and anti-diabetic strategy. Several studies showed that brown adipose tissue activity increases daily energy expenditure. However, the size and activity of brown adipose tissue is reduced in individuals with obesity and type two diabetes. Humans have an abundance of functionally similar beige adipocytes that have the potential to contribute to increased energy expenditure. This makes beige adipocytes a promising target for metabolic disease therapies. While brown adipocytes tend to be stable, beige adipocytes have a high level of plasticity that allows for the rapid and dynamic induction of thermogenesis by external stimuli such as low environmental temperatures. This means that after browning stimuli have been withdrawn beige adipocytes quickly transition back to their white adipose state. The detailed molecular mechanisms regulating beige adipocytes development, function, and reversibility are not fully understood. The goal of this review is to give a comprehensive overview of beige fat development and origins, along with the transcriptional and epigenetic programs that lead to beige fat formation, and subsequent thermogenesis in humans. An improved understanding of the molecular pathways of beige adipocyte plasticity will enable us to selectively manipulate beige cells to induce and maintain their thermogenic output thus improving the whole-body energy homeostasis.
Collapse
|
82
|
Sommerhalder C, Blears E, Murton AJ, Porter C, Finnerty C, Herndon DN. Current problems in burn hypermetabolism. Curr Probl Surg 2020; 57:100709. [PMID: 32033707 PMCID: PMC7822219 DOI: 10.1016/j.cpsurg.2019.100709] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/08/2019] [Indexed: 12/29/2022]
Affiliation(s)
| | | | | | - Craig Porter
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | | | | |
Collapse
|
83
|
Abdullahi A, Auger C, Stanojcic M, Patsouris D, Parousis A, Epelman S, Jeschke MG. Alternatively Activated Macrophages Drive Browning of White Adipose Tissue in Burns. Ann Surg 2019; 269:554-563. [PMID: 28817438 DOI: 10.1097/sla.0000000000002465] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The aim of this study was to uncover the mediators and mechanistic events that facilitate the browning of white adipose tissue (WAT) in response to burns. BACKGROUND In hypermetabolic patients (eg, burns, cancer), the browning of WAT has presented substantial clinical challenges related to cachexia, atherosclerosis, and poor clinical outcomes. Browning of the adipose tissue has recently been found to induce and sustain hypermetabolism. Although browning appears central in trauma-, burn-, or cancer-induced hypermetabolic catabolism, the mediators are essentially unknown. METHODS WAT and blood samples were collected from patients admitted to the Ross Tilley Burn Centre at Sunnybrook Hospital. Wild type, CCR2 KO, and interleukin (IL)-6 KO male mice were purchased from Jax laboratories and subjected to a 30% total body surface area burn injury. WAT and serum collected were analyzed for browning markers, macrophages, and metabolic state via histology, gene expression, and mitochondrial respiration. RESULTS In the present study, we show that burn-induced browning is associated with an increased macrophage infiltration, with a greater type 2 macrophage profile in the fat of burn patients. Similar to our clinical findings in burn patients, both an increase in macrophage recruitment and a type 2 macrophage profile were also observed in post burn mice. Genetic loss of the chemokine CCR2 responsible for macrophage migration to the adipose impairs burn-induced browning. Mechanistically, we show that macrophages recruited to burn-stressed subcutaneous WAT (sWAT) undergo alternative activation to induce tyrosine hydroxylase expression and catecholamine production mediated by IL-6, factors required for browning of sWAT. CONCLUSION Together, our findings uncover macrophages as the key instigators and missing link in trauma-induced browning.
Collapse
Affiliation(s)
- Abdikarim Abdullahi
- University of Toronto, Toronto, ON, Canada.,Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Christopher Auger
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Mile Stanojcic
- University of Toronto, Toronto, ON, Canada.,Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - David Patsouris
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | | | - Slava Epelman
- University of Toronto, Toronto, ON, Canada.,Peter Munk Cardiac Centre, University Health Network, Toronto General Hospital Research Institute, Toronto, ON, Canada
| | - Marc G Jeschke
- University of Toronto, Toronto, ON, Canada.,Ross Tilley Burn Centre, Sunnybrook Hospital, Toronto, ON, Canada.,Department of Surgery, Division of Plastic Surgery and Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
84
|
Towards a Better Understanding of Beige Adipocyte Plasticity. Cells 2019; 8:cells8121552. [PMID: 31805721 PMCID: PMC6953037 DOI: 10.3390/cells8121552] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 12/16/2022] Open
Abstract
Beige adipocytes are defined as Ucp1+, multilocular adipocytes within white adipose tissue (WAT) that are capable of thermogenesis, the process of heat generation. In both mouse models and humans, the increase of beige adipocyte population, also called WAT browning, is associated with certain metabolic benefits, such as reduced obesity and increased insulin sensitivity. In this review, we summarize the current knowledge regarding WAT browning, with a special focus on the beige adipocyte plasticity, collectively referring to a bidirectional transition between thermogenic active and latent states in response to environmental changes. We further exploit the utility of a unique beige adipocyte ablation system to interrogate anti-obesity effect of beige adipocytes in vivo.
Collapse
|
85
|
Lang TC, Zhao R, Kim A, Wijewardena A, Vandervord J, Xue M, Jackson CJ. A Critical Update of the Assessment and Acute Management of Patients with Severe Burns. Adv Wound Care (New Rochelle) 2019; 8:607-633. [PMID: 31827977 PMCID: PMC6904939 DOI: 10.1089/wound.2019.0963] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022] Open
Abstract
Significance: Burns are debilitating, life threatening, and difficult to assess and manage. Recent advances in assessment and management have occurred since a comprehensive review of the care of patients with severe burns was last published, which may influence research and clinical practice. Recent Advances: Recent advances have occurred in the understanding of burn pathophysiology, which has led to the identification of potential biomarkers of burn severity, such as protein C. There is new evidence about the potential superiority of natural colloids over crystalloids during fluid resuscitation, and new evidence about components of initial and perioperative management, including an improved understanding of pain following burns. Critical Issues: The limitations of the clinical examination highlight the need for imaging and biomarkers to assist in estimations of burn severity. Fluid resuscitation reduces mortality, although there is conjecture over the ideal method. The subsequent perioperative period is associated with significant morbidity and the evidence for preventing and treating pain, infection, and fluid overload while maximizing wound healing potential is described. Future Directions: Promising developments are ongoing in imaging technology, histopathology, biomarkers, and wound healing adjuncts such as hyperbaric oxygen therapy, topical negative pressure therapy, stem cell treatments, and skin substitutes. The greatest benefit from further research on management of patients with burns would most likely be derived from the elucidation of optimal fluid resuscitation protocols, pain management protocols, and surgical techniques from randomized controlled trials.
Collapse
Affiliation(s)
- Thomas Charles Lang
- Department of Anesthesia, Prince of Wales and Sydney Children's Hospitals, Randwick, Australia
| | - Ruilong Zhao
- Sutton Laboratories, The Kolling Institute, St. Leonards, Australia
| | - Albert Kim
- Department of Critical Care Medicine, Royal North Shore Hospital, St. Leonards, Australia
| | - Aruna Wijewardena
- Department of Burns, Reconstructive and Plastic Surgery, Royal North Shore Hospital, St. Leonards, Australia
| | - John Vandervord
- Department of Burns, Reconstructive and Plastic Surgery, Royal North Shore Hospital, St. Leonards, Australia
| | - Meilang Xue
- Sutton Laboratories, The Kolling Institute, St. Leonards, Australia
| | | |
Collapse
|
86
|
Abdullahi A, Samadi O, Auger C, Kanagalingam T, Boehning D, Bi S, Jeschke MG. Browning of white adipose tissue after a burn injury promotes hepatic steatosis and dysfunction. Cell Death Dis 2019; 10:870. [PMID: 31740668 PMCID: PMC6861318 DOI: 10.1038/s41419-019-2103-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/19/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023]
Abstract
Burn patients experiencing hypermetabolism develop hepatic steatosis, which is associated with liver failure and poor outcomes after the injury. These same patients also undergo white adipose tissue (WAT) browning, which has been implicated in mediating post-burn cachexia and sustained hypermetabolism. Despite the clinical presentation of hepatic steatosis and WAT browning in burns, whether or not these two pathological responses are linked remains poorly understood. Here, we show that the burn-induced WAT browning and its associated increased lipolysis leads to the accelerated development of hepatic steatosis in mice. Deletion of interleukin 6 (IL-6) and the uncoupling protein 1 (UCP1), regulators of burn-induced WAT browning completely protected mice from hepatic steatosis after the injury. Treatment of post-burn mice with propranolol or IL-6 receptor blocker attenuated burn-induced WAT browning and its associated hepatic steatosis pathology. Lipidomic profiling in the plasma of post-burn mice and burn patients revealed elevated levels of damage-inducing lipids (palmitic and stearic acids), which induced hepatic endoplasmic reticulum (ER) stress and compromised hepatic fat oxidation. Mechanistically, we show that hepatic ER stress after a burn injury leads to a greater ER-mitochondria interaction, hepatocyte apoptosis, oxidative stress, and impaired fat oxidation. Collectively, our findings uncover an adverse "cross-talk" between the adipose and liver tissue in the context of burn injury, which is critically mediated by WAT browning.
Collapse
Affiliation(s)
- Abdikarim Abdullahi
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Osai Samadi
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Christopher Auger
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | | | - Darren Boehning
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sheng Bi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marc G Jeschke
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada. .,Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada. .,Ross Tilley Burn Centre, Sunnybrook Hospital, Toronto, ON, Canada. .,Department of Surgery, Division of Plastic Surgery and Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
87
|
Vinaik R, Barayan D, Abdullahi A, Jeschke MG. NLRP3 inflammasome mediates white adipose tissue browning after burn. Am J Physiol Endocrinol Metab 2019; 317:E751-E759. [PMID: 31453709 PMCID: PMC6879867 DOI: 10.1152/ajpendo.00180.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A hallmark after burn is the stress and inflammatory-induced hypermetabolic response. Recently, we and others found that browning of white adipose tissue (WAT) is a critical component of this complex detrimental response. Although browning and inflammation have been independently delineated to occur after injury, their interaction is currently not well defined. One of the master regulators of inflammation and adipose tissue remodeling after burns is nucleotide-binding and oligomerization domain, leucine rich repeat and pyrin domain containing 3 (NLRP3) inflammasome. The aim of this this study was to determine whether NLRP3 modulates and activates WAT browning after burn. To obtain molecular and mechanistic insights, we used an NLRP3 knockout (NLRP3-/-) murine burn model. We demonstrated that genetic deletion of NLRP3 promoted persistent and augmented browning in adipocytes, evidenced by increased gene expression of peroxisome proliferator-activated receptor γ and CIDEA at 3 days (5.74 vs. 0.29, P < 0.05; 26.0 vs. 0.71, P < 0.05) and uncoupling protein 1 (UCP1) and PGC1α at 7 days (7,406 vs. 3,894, P < 0.05; 20.6 vs. 2.52, P < 0.01) and enhanced UCP1 staining and multilocularity. Additionally, the main regulator of postburn WAT browning, IL-6, was elevated in the plasma acutely after burn in NLRP3-/- compared with wild-type counterparts (478.9 vs. 67.1 pg/mL, P < 0.05 at 3 days). These results suggest that NLRP3 has antibrowning effects and that blocking NLRP3 increases thermogenesis and augments browning via increased levels of IL-6. Our findings provide insights into targeting innate inflammatory systems for regulation of adaptive thermogenesis, a critical response after burns and other hypermetabolic conditions.
Collapse
Affiliation(s)
- Roohi Vinaik
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Dalia Barayan
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | - Marc G Jeschke
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Surgery, Division of Plastic Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|
88
|
Rajbhandari P, Arneson D, Hart SK, Ahn IS, Diamante G, Santos LC, Zaghari N, Feng AC, Thomas BJ, Vergnes L, Lee SD, Rajbhandari AK, Reue K, Smale ST, Yang X, Tontonoz P. Single cell analysis reveals immune cell-adipocyte crosstalk regulating the transcription of thermogenic adipocytes. eLife 2019; 8:49501. [PMID: 31644425 PMCID: PMC6837845 DOI: 10.7554/elife.49501] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
Immune cells are vital constituents of the adipose microenvironment that influence both local and systemic lipid metabolism. Mice lacking IL10 have enhanced thermogenesis, but the roles of specific cell types in the metabolic response to IL10 remain to be defined. We demonstrate here that selective loss of IL10 receptor α in adipocytes recapitulates the beneficial effects of global IL10 deletion, and that local crosstalk between IL10-producing immune cells and adipocytes is a determinant of thermogenesis and systemic energy balance. Single Nuclei Adipocyte RNA-sequencing (SNAP-seq) of subcutaneous adipose tissue defined a metabolically-active mature adipocyte subtype characterized by robust expression of genes involved in thermogenesis whose transcriptome was selectively responsive to IL10Rα deletion. Furthermore, single-cell transcriptomic analysis of adipose stromal populations identified lymphocytes as a key source of IL10 production in response to thermogenic stimuli. These findings implicate adaptive immune cell-adipocyte communication in the maintenance of adipose subtype identity and function.
Collapse
Affiliation(s)
- Prashant Rajbhandari
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, United States.,Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Douglas Arneson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, United States.,Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, United States
| | - Sydney K Hart
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - In Sook Ahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, United States
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, United States.,Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, United States
| | - Luis C Santos
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Nima Zaghari
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, United States
| | - An-Chieh Feng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
| | - Brandon J Thomas
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
| | - Laurent Vergnes
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Stephen D Lee
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Abha K Rajbhandari
- Department of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
| | - Stephen T Smale
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, United States.,Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, United States.,Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
89
|
Liu B, Page AJ, Hutchison AT, Wittert GA, Heilbronn LK. Intermittent fasting increases energy expenditure and promotes adipose tissue browning in mice. Nutrition 2019; 66:38-43. [DOI: 10.1016/j.nut.2019.03.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/07/2019] [Accepted: 03/10/2019] [Indexed: 12/14/2022]
|
90
|
Sebo ZL, Rendina-Ruedy E, Ables GP, Lindskog DM, Rodeheffer MS, Fazeli PK, Horowitz MC. Bone Marrow Adiposity: Basic and Clinical Implications. Endocr Rev 2019; 40:1187-1206. [PMID: 31127816 PMCID: PMC6686755 DOI: 10.1210/er.2018-00138] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 04/03/2019] [Indexed: 12/14/2022]
Abstract
The presence of adipocytes in mammalian bone marrow (BM) has been recognized histologically for decades, yet, until recently, these cells have received little attention from the research community. Advancements in mouse transgenics and imaging methods, particularly in the last 10 years, have permitted more detailed examinations of marrow adipocytes than ever before and yielded data that show these cells are critical regulators of the BM microenvironment and whole-body metabolism. Indeed, marrow adipocytes are anatomically and functionally separate from brown, beige, and classic white adipocytes. Thus, areas of BM space populated by adipocytes can be considered distinct fat depots and are collectively referred to as marrow adipose tissue (MAT) in this review. In the proceeding text, we focus on the developmental origin and physiologic functions of MAT. We also discuss the signals that cause the accumulation and loss of marrow adipocytes and the ability of these cells to regulate other cell lineages in the BM. Last, we consider roles for MAT in human physiology and disease.
Collapse
Affiliation(s)
- Zachary L Sebo
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut
| | | | - Gene P Ables
- Orentreich Foundation for the Advancement of Science, Cold Spring, New York
| | - Dieter M Lindskog
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut
| | - Matthew S Rodeheffer
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut
| | - Pouneh K Fazeli
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Mark C Horowitz
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
91
|
Chao T, Gómez BI, Heard TC, Smith BW, Dubick MA, Burmeister DM. Burn-induced reductions in mitochondrial abundance and efficiency are more pronounced with small volumes of colloids in swine. Am J Physiol Cell Physiol 2019; 317:C1229-C1238. [PMID: 31532719 DOI: 10.1152/ajpcell.00224.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Severe burn injury results in systemic disruption of metabolic regulations and impaired cardiac function. Restoration of hemodynamic homeostasis utilizing intravenous (IV) fluids is critical for acute care of the burn victim. However, the effects of burns and resuscitation on cardiomyocyte mitochondria are currently unknown. The purpose of this study is to determine cardiac mitochondrial function in a swine burn model with subsequent resuscitation using either crystalloids or colloids. Anesthetized Yorkshire swine (n = 23) sustained 40% total body surface area burns and received IV crystalloids (n = 11) or colloids (n = 12) after recovery from anesthesia. Non-burned swine served as controls (n = 9). After euthanasia at 48 h, heart tissues were harvested, permeabilized, and analyzed by high-resolution respirometry. Citrate synthase (CS) activity was measured, and Western blots were performed to quantify proteins associated with mitochondrial fusion (OPA1), fission (FIS1), and mitophagy (PINK1). There were no differences in state 2 respiration or maximal oxidative phosphorylation. Coupled complex 1 respiration decreased, while uncoupled state 4O and complex II increased significantly due to burn injury, particularly in animals receiving colloids (P < 0.05). CS activity and electron transfer coupling efficiency were significantly lower in burned animals, particularly with colloid treatment (P < 0.05). Protein analysis revealed increased FIS1 but no differences in mitophagy in cardiac tissue from colloid-treated compared with crystalloid-treated swine. Taken together, severe burns alter mitochondrial respiration in heart tissue, which may be exacerbated by early IV resuscitation with colloids. Early IV burn resuscitation with colloids may require close hemodynamic observation. Mitochondrial stabilizing agents incorporated into resuscitation fluids may help the hemodynamic response to burn injury.
Collapse
Affiliation(s)
- Tony Chao
- Damage Control Resuscitation Task Area, United States Army Institute of Surgical Research, San Antonio, Texas
| | - Belinda I Gómez
- Damage Control Resuscitation Task Area, United States Army Institute of Surgical Research, San Antonio, Texas
| | - Tiffany C Heard
- Damage Control Resuscitation Task Area, United States Army Institute of Surgical Research, San Antonio, Texas
| | - Brian W Smith
- Damage Control Resuscitation Task Area, United States Army Institute of Surgical Research, San Antonio, Texas
| | - Michael A Dubick
- Damage Control Resuscitation Task Area, United States Army Institute of Surgical Research, San Antonio, Texas
| | - David M Burmeister
- Damage Control Resuscitation Task Area, United States Army Institute of Surgical Research, San Antonio, Texas
| |
Collapse
|
92
|
The Role of Mitochondrial Stress in Muscle Wasting Following Severe Burn Trauma. J Burn Care Res 2019; 39:100-108. [PMID: 28448295 DOI: 10.1097/bcr.0000000000000553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/26/2018] [Indexed: 11/26/2022]
Abstract
Increased resting metabolic rate and skeletal muscle wasting are hallmarks of the pathophysiological stress response to severe burn trauma. However, whether these two responses occur independently in burn patients or are in fact related remains unclear. In light of recent evidence demonstrating that increased proteolysis in skeletal muscle of burned patients is accompanied by mitochondrial hypermetabolism, oxidative stress, and protein damage; in this article, we discuss the evidence for a role for the mitochondrion in skeletal muscle wasting following severe burn trauma. In particular, we focus on the role of mitochondrial superoxide production in oxidative stress and subsequent proteolysis, and discuss the role of the mitochondrion as a signaling organelle resulting in protein catabolism in other cellular compartments following severe burn trauma.
Collapse
|
93
|
Auger C, Knuth CM, Abdullahi A, Samadi O, Parousis A, Jeschke MG. Metformin prevents the pathological browning of subcutaneous white adipose tissue. Mol Metab 2019; 29:12-23. [PMID: 31668383 PMCID: PMC6728757 DOI: 10.1016/j.molmet.2019.08.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/02/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
Objective Browning, the conversion of white adipose tissue (WAT) to a beige phenotype, has gained interest as a strategy to induce weight loss and improve insulin resistance in metabolic disorders. However, for hypermetabolic conditions stemming from burn trauma or cancer cachexia, browning is thought to contribute to energy wasting and supraphysiological nutritional requirements. Metformin's impact on this phenomenon and underlying mechanisms have not been explored. Methods We used both a murine burn model and human ex vivo adipose explants to assess metformin and 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR)'s effects on the development of subcutaneous beige adipose. Enzymes involved in fat homeostasis and browning, as well as mitochondrial dynamics, were assessed to determine metformin's effects. Results Treatment with the biguanide metformin lowers lipolysis in beige fat by inducing protein phosphatase 2A (PP2A) independently of adenosine monophosphate kinase (AMPK) activation. Increased PP2A activity catalyzes the dephosphorylation of acetyl-CoA carboxylase (Ser 79) and hormone sensitive lipase (Ser 660), thus promoting fat storage and the “whitening” of otherwise lipolytic beige adipocytes. Moreover, co-incubation of metformin with the PP2A inhibitor okadaic acid countered the anti-lipolytic effects of this biguanide in human adipose. Additionally, we show that metformin does not activate this pathway in the WAT of control mice and that AICAR sustains the browning of white adipose, offering further evidence that metformin acts independently of this cellular energy sensor. Conclusions This work provides novel insights into the mechanistic underpinnings of metformin's therapeutic benefits and potential as an agent to reduce the lipotoxicity associated with hypermetabolism and adipose browning. Metformin prevents the catabolism of murine iWAT tissue post-burn injury. Mitochondrial respiration and uncoupling in adipose are decreased by metformin. Metformin, independently of AMPK, reduces adipose lipolysis and β-oxidation via PP2A. AICAR treatment activates AMPK in peripheral adipose leading to sustained browning. PP2A is directly induced by metformin in scWAT, lowering ACC/HSL phosphorylation.
Collapse
Affiliation(s)
- Christopher Auger
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, M4N 3M5, Canada
| | - Carly M Knuth
- University of Toronto, Toronto, Ontario, M5S 1A1, Canada
| | | | - Osai Samadi
- University of Toronto, Toronto, Ontario, M5S 1A1, Canada
| | - Alexandra Parousis
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, M4N 3M5, Canada
| | - Marc G Jeschke
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, M4N 3M5, Canada; University of Toronto, Toronto, Ontario, M5S 1A1, Canada.
| |
Collapse
|
94
|
Wise AK, Hromatka KA, Miller KR. Energy Expenditure and Protein Requirements Following Burn Injury. Nutr Clin Pract 2019; 34:673-680. [PMID: 31418486 DOI: 10.1002/ncp.10390] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Severe burn injuries have long been known to have a profound effect on metabolic equilibrium that can persist after resolution of the cutaneous injuries. Following burn injury, metabolism is a dynamic state resulting in the need for frequent interval reassessment over the course of the care continuum. The acute phase of injury transitions to chronic alterations in macronutrient utilization characterized by futile energy cycling and disproportionate catabolism of skeletal muscle. Protein supplementation appears to be preferentially distributed to the burn wound rather than the skeletal muscle pool. Accurate assessment of caloric and protein requirements is extremely difficult in these patients but is an essential step in efforts to attenuate functional impairment. Indirect calorimetry should be utilized to determine caloric requirements, but trophic feeding strategies are preferred in the initial resuscitative phase to prevent overfeeding while maintaining enteric and immune function. Controversy persists regarding optimal protein targets, and weight-based estimates remain the norm. Exogenous protein and caloric provision performed in isolation is insufficient to optimize outcomes and should be incorporated within a multidisciplinary approach to include muscle loading and pharmaceutical adjuncts.
Collapse
Affiliation(s)
- Amy K Wise
- Department of Surgery, University of Louisville, Louisville, Kentucky, USA
| | | | - Keith R Miller
- Department of Surgery, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
95
|
Hafidi ME, Buelna-Chontal M, Sánchez-Muñoz F, Carbó R. Adipogenesis: A Necessary but Harmful Strategy. Int J Mol Sci 2019; 20:ijms20153657. [PMID: 31357412 PMCID: PMC6696444 DOI: 10.3390/ijms20153657] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/16/2019] [Accepted: 07/20/2019] [Indexed: 02/06/2023] Open
Abstract
Obesity is considered to significantly increase the risk of the development of a vast range of metabolic diseases. However, adipogenesis is a complex physiological process, necessary to sequester lipids effectively to avoid lipotoxicity in other tissues, like the liver, heart, muscle, essential for maintaining metabolic homeostasis and has a crucial role as a component of the innate immune system, far beyond than only being an inert mass of energy storage. In pathophysiological conditions, adipogenesis promotes a pro-inflammatory state, angiogenesis and the release of adipokines, which become dangerous to health. It results in a hypoxic state, causing oxidative stress and the synthesis and release of harmful free fatty acids. In this review, we try to explain the mechanisms occurring at the breaking point, at which adipogenesis leads to an uncontrolled lipotoxicity. This review highlights the types of adipose tissue and their functions, their way of storing lipids until a critical point, which is associated with hypoxia, inflammation, insulin resistance as well as lipodystrophy and adipogenesis modulation by Krüppel-like factors and miRNAs.
Collapse
Affiliation(s)
- Mohammed El Hafidi
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico
| | - Mabel Buelna-Chontal
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico
| | - Roxana Carbó
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico.
| |
Collapse
|
96
|
Townsend LK, Wright DC. Looking on the "brite" side exercise-induced browning of white adipose tissue. Pflugers Arch 2019; 471:455-465. [PMID: 29982948 DOI: 10.1007/s00424-018-2177-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/17/2022]
Abstract
The need for effective and convenient ways of combatting obesity has created great interest in brown adipose tissue (BAT). However, because adult humans have relatively little amounts of BAT, the possibility of browning white adipose tissue (WAT), i.e., switching the metabolism of WAT from an energy storing to energy burning organ, has gained considerable attention. Exercise has countless health benefits, and has consistently been shown to cause browning in rodent white adipose tissue. The purpose of this review is to provide an overview of recent studies examining the effects of exercise and other interventions on the browning of white adipose tissue. The role of various endocrine factors, including catecholamines, interleukin-6, irisin, and meteorin-like in addition to local re-esterification-mediated mechanisms in inducing the browning of WAT will be discussed. The physiological importance of browning will be discussed, as will discrepancies in the literature between human and rodent studies.
Collapse
Affiliation(s)
- Logan K Townsend
- Department of Human Health and Nutritional Science, University of Guelph, 50 Stone Rd E, Guelph, Ontario, N1G 2W1, Canada
| | - David C Wright
- Department of Human Health and Nutritional Science, University of Guelph, 50 Stone Rd E, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
97
|
Townsend LK, Medak KD, Knuth CM, Peppler WT, Charron MJ, Wright DC. Loss of glucagon signaling alters white adipose tissue browning. FASEB J 2019; 33:4824-4835. [PMID: 30615494 DOI: 10.1096/fj.201802048rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Various endocrine factors contribute to cold-induced white adipose tissue (WAT) browning, but glucagon has largely been ignored. The purpose of the current investigation was to determine if glucagon was required for the effects of cold on WAT browning. Utilizing whole-body glucagon receptor knockout (Gcgr-/-) mice and their wild-type (WT) littermate controls, we examined the response of inguinal WAT (iWAT) and interscapular brown adipose tissue (BAT) to an acute (48 h) cold stress or challenge with the β3-adrenergic agonist CL316,243. The effects of glucagon alone on the induction of thermogenic genes in adipose tissue from C57BL6/J mice were also examined. Gcgr-/- mice displayed modest increases in indices of browning at room temperature while displaying a blunted induction of Ucp1, Cidea, and Ffg21 mRNA expression in iWAT following cold exposure. Similarly, cold induced increases in mitochondrial DNA copy number, and the protein content of mitochondrial respiratory chain complexes, UCP1, and PGC1α were attenuated in iWAT from Gcgr-/- mice. In BAT, the induction of thermogenic markers following cold exposure was reduced, but the effect was less pronounced than in iWAT. Glucagon treatment increased the expression of thermogenic genes in both iWAT and BAT of C57BL6/J mice. In response to CL316,243, circulating fatty acids, glycerol, and the phosphorylation of hormone-sensitive lipase were attenuated in iWAT of Gcgr-/- mice. We provide evidence that glucagon is sufficient for the induction of thermogenic genes in iWAT, and the absence of intact glucagon signaling blunts the cold-induced browning of WAT, possibly due, in part, to impaired adrenergic signaling.-Townsend, L. K., Medak, K. D., Knuth, C. M., Peppler, W. T., Charron, M. J., Wright, D. C. Loss of glucagon signaling alters white adipose tissue browning.
Collapse
Affiliation(s)
- Logan K Townsend
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Kyle D Medak
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Carly M Knuth
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Willem T Peppler
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Maureen J Charron
- Department of Biochemistry, Albert Einstein College of Medicine, New York, New York, USA.,Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, New York, New York, USA; and.,Division of Endocrinology and Diabetes, Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
98
|
Bettini S, Favaretto F, Compagnin C, Belligoli A, Sanna M, Fabris R, Serra R, Dal Prà C, Prevedello L, Foletto M, Vettor R, Milan G, Busetto L. Resting Energy Expenditure, Insulin Resistance and UCP1 Expression in Human Subcutaneous and Visceral Adipose Tissue of Patients With Obesity. Front Endocrinol (Lausanne) 2019; 10:548. [PMID: 31440209 PMCID: PMC6692889 DOI: 10.3389/fendo.2019.00548] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/23/2019] [Indexed: 01/31/2023] Open
Abstract
Determinants of resting energy expenditure (REE) in humans are still under investigation, especially the association with insulin resistance. Brown adipose tissue (AT) regulates energy expenditure through the activity of the uncoupling protein 1 (UCP1). White AT browning is the process by which some adipocytes within AT depots acquire properties of brown adipocytes ("brite" adipocytes) and it correlates with metabolic improvement. We analyzed determinants of REE in patients with obesity and assessed UCP1 expression as a "brite" marker in abdominal subcutaneous AT (SAT) and visceral omental AT (VAT). Clinical data, REE, free fat mass (FFM), and fat mass (FM) were determined in 209 patients with obesity. UCP1, PPARG coactivator 1 alpha (PPARGC1A), transcription factor A, mitochondrial (TFAM), T-box transcription factor 1 (TBX1), and solute carrier family 27 member 1 (SLC27A1) expression was assayed in SAT and VAT samples, obtained during sleeve gastrectomy from 62 patients with obesity. REE and body composition data were also available for a subgroup of 35 of whom. In 209 patients with obesity a multiple regression model was computed with REE as the dependent variable and sex, waist, FFM, FM, homeostasis model assessment-insulin resistance (HOMA), interleukin-6 and High Density Lipoprotein-cholesterol as the independent variables. Only FFM, FM and HOMA were independently correlated with REE (r = 0.787, AdjRsqr = 0.602). In each patient VAT displayed a higher UCP1, PPARGC1A, TFAM, TBX1, and SLC27A1 expression than SAT and UCP1 expression in VAT (UCP1-VAT) correlated with Body Mass Index (BMI) (r = 0.287, p < 0.05). Introducing UCP1-VAT in the multivariate model, we showed that FFM, HOMA, interleukin-6, High Density Lipoprotein-cholesterol, and UCP1-VAT were independent factors correlated with REE (r = 0.736, AdjRsqr = 0.612). We confirmed that REE correlates with FFM, FM and HOMA in a large cohort of patients. Our results clearly showed that UCP1-VAT expression was significantly increased in severe human obesity (BMI > 50 kg/m2) and that it behaved as an independent predictor of REE. Lastly, we suggest that an increased REE and browning in metabolically complicated severe obesity could represent an effort to counteract further weight gain.
Collapse
Affiliation(s)
- Silvia Bettini
- Internal Medicine 3, Department of Medicine, DIMED, University of Padua, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, University Hospital of Padua, Padua, Italy
- *Correspondence: Silvia Bettini
| | - Francesca Favaretto
- Internal Medicine 3, Department of Medicine, DIMED, University of Padua, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, University Hospital of Padua, Padua, Italy
| | - Chiara Compagnin
- Internal Medicine 3, Department of Medicine, DIMED, University of Padua, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, University Hospital of Padua, Padua, Italy
| | - Anna Belligoli
- Internal Medicine 3, Department of Medicine, DIMED, University of Padua, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, University Hospital of Padua, Padua, Italy
| | - Marta Sanna
- Internal Medicine 3, Department of Medicine, DIMED, University of Padua, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, University Hospital of Padua, Padua, Italy
| | - Roberto Fabris
- Internal Medicine 3, Department of Medicine, DIMED, University of Padua, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, University Hospital of Padua, Padua, Italy
| | - Roberto Serra
- Internal Medicine 3, Department of Medicine, DIMED, University of Padua, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, University Hospital of Padua, Padua, Italy
| | - Chiara Dal Prà
- Internal Medicine 3, Department of Medicine, DIMED, University of Padua, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, University Hospital of Padua, Padua, Italy
| | - Luca Prevedello
- Center for the Study and the Integrated Treatment of Obesity, University Hospital of Padua, Padua, Italy
| | - Mirto Foletto
- Center for the Study and the Integrated Treatment of Obesity, University Hospital of Padua, Padua, Italy
| | - Roberto Vettor
- Internal Medicine 3, Department of Medicine, DIMED, University of Padua, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, University Hospital of Padua, Padua, Italy
| | - Gabriella Milan
- Internal Medicine 3, Department of Medicine, DIMED, University of Padua, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, University Hospital of Padua, Padua, Italy
| | - Luca Busetto
- Internal Medicine 3, Department of Medicine, DIMED, University of Padua, Padua, Italy
- Center for the Study and the Integrated Treatment of Obesity, University Hospital of Padua, Padua, Italy
| |
Collapse
|
99
|
Otero-Díaz B, Rodríguez-Flores M, Sánchez-Muñoz V, Monraz-Preciado F, Ordoñez-Ortega S, Becerril-Elias V, Baay-Guzmán G, Obando-Monge R, García-García E, Palacios-González B, Villarreal-Molina MT, Sierra-Salazar M, Antuna-Puente B. Exercise Induces White Adipose Tissue Browning Across the Weight Spectrum in Humans. Front Physiol 2018; 9:1781. [PMID: 30618796 PMCID: PMC6297830 DOI: 10.3389/fphys.2018.01781] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/26/2018] [Indexed: 01/02/2023] Open
Abstract
While the effect of exercise on white adipose tissue browning and metabolic improvement in rodents is clear, there are few studies in humans with inconclusive results. Thus, the aim of the study was to assess whether an exercise intervention promotes subcutaneous adipose tissue browning in humans, and whether this response is associated with metabolic improvement in three groups of individuals defined by body mass index (BMI) (kg/m2). Sedentary adult subjects with different BMI were enrolled in a 12-week bicycle-training program (3 times per week, intensity 70-80% HRmax). Brown and beige gene expression in subcutaneous adipose tissue (scWAT) biopsies, and serum glucose, insulin, lipid, adipokine, and myokine levels were compared before and after the exercise intervention. Thirty-three non-diabetic subjects (mean age 30.4 ± 4.6 years; 57.57% female; 13 normal weight, 10 overweight and 10 with obesity) completed the exercise intervention. Without any significant change in body composition, exercise improved several metabolic parameters, most notably insulin resistance and particularly in the overweight group. Circulating adiponectin, apelin, and irisin exercise-induced changes predicted 60% of the insulin sensitivity improvement. After exercise UCP1, TBX1, CPT1B scWAT expression significantly increased, along with P2RX5 significant positive staining. These changes are compatible with scWAT browning, however, they were not associated with glucose metabolism improvement. In conclusion, 12-weeks of exercise training produced brown/beige gene expression changes in abdominal scWAT of non-diabetic individuals with different BMI, which did not contribute to the metabolic improvement. However, this result should not be interpreted as a lack of effect of browning on metabolic parameters. These findings suggest that a bigger effect is needed and should not preclude the development of more effective strategies of browning. Furthermore, exercise-induced changes in adiponectin, apelin, and irisin predicted insulin sensitivity improvement, supporting the important role of adipokines and myokines in metabolism homeostasis.
Collapse
Affiliation(s)
- Berenice Otero-Díaz
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Marcela Rodríguez-Flores
- Departamento de Endocrinología, Clínica de Obesidad y Trastornos de la Conducta Alimentaria, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City, Mexico
| | - Verónica Sánchez-Muñoz
- Centro de Nutrición y Obesidad, The American British Cowdray (ABC) Medical Center, Mexico City, Mexico
| | - Fernando Monraz-Preciado
- Departamento de Cirugía, Servicio de Cirugía Endocrina y Laparoscopia Avanzada, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City, Mexico
| | - Samuel Ordoñez-Ortega
- Departamento de Cirugía, Servicio de Cirugía Endocrina y Laparoscopia Avanzada, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City, Mexico
| | - Vicente Becerril-Elias
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Guillermina Baay-Guzmán
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Rodolfo Obando-Monge
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Eduardo García-García
- Departamento de Endocrinología, Clínica de Obesidad y Trastornos de la Conducta Alimentaria, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City, Mexico
| | | | | | - Mauricio Sierra-Salazar
- Departamento de Cirugía, Servicio de Cirugía Endocrina y Laparoscopia Avanzada, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City, Mexico
| | - Barbara Antuna-Puente
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
100
|
Amini-Nik S, Dolp R, Eylert G, Datu AK, Parousis A, Blakeley C, Jeschke MG. Stem cells derived from burned skin - The future of burn care. EBioMedicine 2018; 37:509-520. [PMID: 30409728 PMCID: PMC6284415 DOI: 10.1016/j.ebiom.2018.10.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Thermal injuries affect millions of adults and children worldwide and are associated with high morbidity and mortality. The key determinant for the survival of burns is rapid wound healing. Large wounds exceed intrinsic wound-healing capacities, and the currently available coverage materials are insufficient due to lack of cellularity, availability or immunological rejection. METHODS Using the surgically debrided tissue, we isolated viable cells from burned skin. The isolated cells cultured in tissue culture dishes and characterized. FINDINGS We report here that debrided burned skin, which is routinely excised from patients and otherwise considered medical waste and unconsciously discarded, contains viable, undamaged cells which show characteristics of mesenchymal skin stem cells. Those cells can be extracted, characterized, expanded, and incorporated into created epidermal-dermal substitutes to promote wound healing in immune-compromised mice and Yorkshire pigs without adverse side effects. INTERPRETATION These findings are of paramount importance and provide an ideal cell source for autologous skin regeneration. Furthermore, this study highlights that skin contains progenitor cells resistant to thermal stress. FUND: Canadian Institutes of Health Research # 123336. CFI Leader's Opportunity Fund: Project # 25407 National Institutes of Health 2R01GM087285-05A1. EMHSeed: Fund: 500463, A generous donation from Toronto Hydro. Integra© Life Science Company provided the meshed bilayer Integra© for porcine experiments.
Collapse
Affiliation(s)
- Saeid Amini-Nik
- Sunnybrook Research Institute, Canada; Department of Laboratory Medicine and Pathobiology (LMP), University of Toronto, Canada; Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, University of Toronto, Canada.
| | - Reinhard Dolp
- Sunnybrook Research Institute, Canada; Institute of Medical Science, University of Toronto, Canada
| | - Gertraud Eylert
- Sunnybrook Research Institute, Canada; Institute of Medical Science, University of Toronto, Canada
| | | | | | | | - Marc G Jeschke
- Sunnybrook Research Institute, Canada; Institute of Medical Science, University of Toronto, Canada; Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Canada; Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, University of Toronto, Canada.
| |
Collapse
|