51
|
Płociniczak T, Fic E, Pacwa-Płociniczak M, Pawlik M, Piotrowska-Seget Z. Improvement of phytoremediation of an aged petroleum hydrocarbon-contaminated soil by Rhodococcus erythropolis CD 106 strain. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:614-620. [PMID: 28103078 DOI: 10.1080/15226514.2016.1278420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The aim of this study was to assess the impact of soil inoculation with the Rhodococcus erythropolis CD 106 strain on the effectiveness of the phytoremediation of an aged hydrocarbon-contaminated [approx. 1% total petroleum hydrocarbon (TPH)] soil using ryegrass (Lolium perenne). The introduction of CD 106 into the soil significantly increased the biomass of ryegrass and the removal of hydrocarbons in planted soil. The fresh weight of the shoots and roots of plants inoculated with CD 106 increased by 49% and 30%, respectively. After 210 days of the experiment, the concentration of TPH was reduced by 31.2%, whereas in the planted, non-inoculated soil, it was reduced by 16.8%. By contrast, the concentration of petroleum hydrocarbon decreased by 18.7% in non-planted soil bioaugmented with the CD 106 strain. The rifampicin-resistant CD 106 strain survived after inoculation into soil and was detected in the soil during the entire experimental period, but the number of CD 106 cells decreased constantly during the enhanced phytoremediation and bioaugmentation experiments. The plant growth-promoting and hydrocarbon-degrading properties of CD 106, which are connected with its long-term survival and limited impact on autochthonous microflora, make this strain a good candidate for improving the phytoremediation efficiency of soil contaminated with hydrocarbons.
Collapse
Affiliation(s)
- Tomasz Płociniczak
- a Department of Microbiology , University of Silesia , Katowice , Poland
| | - Ewa Fic
- a Department of Microbiology , University of Silesia , Katowice , Poland
| | | | - Małgorzata Pawlik
- a Department of Microbiology , University of Silesia , Katowice , Poland
| | | |
Collapse
|
52
|
Zabbey N, Sam K, Onyebuchi AT. Remediation of contaminated lands in the Niger Delta, Nigeria: Prospects and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 586:952-965. [PMID: 28214111 DOI: 10.1016/j.scitotenv.2017.02.075] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 06/06/2023]
Abstract
Contamination of the total environment (air, soil, water and biota) by crude oil has become a paramount interest in the Niger Delta region of Nigeria. Studies have revealed variable impacts of oil toxicity on the environment and exposed populations. The revelation gained much international attention in 2011 with the release of Environmental Assessment of Ogoniland report by the United Nations Environment Programme (UNEP). This has up scaled local and international pressures for urgent clean-up and restoration of degraded bio-resource rich environments of the Niger Delta, starting from Ogoniland. Previous remediation attempts in the area had failed due to erroneous operational conclusions (such as conclusions by oil industry operators that the Niger Delta soil is covered by a layer of clay and as such oil percolation remains within the top soil and makes remediation by enhanced natural attenuation (RENA) suitable for the region) and the adoption of incompatible and ineffective approaches (i.e. RENA) for the complex and dynamic environments. Perennial conflicts, poor regulatory oversights and incoherent standards are also challenges. Following UNEP recommendations, the Federal Government of Nigeria recently commissioned the clean-up and remediation of Ogoniland project; it would be novel and trend setting. While UNEP outlined some measures of contaminated land remediation, no specific approach was identified to be most effective for the Niger Delta region. Resolving the technical dilemma and identified social impediments is the key success driver of the above project. In this paper, we reviewed the socio-economic and ecological impacts of contaminated land in the Niger Delta region and the global state-of-the-art remediation approaches. We use coastal environment clean-up case studies to demonstrate the effectiveness of bioremediation (sometimes in combination with other technologies) for remediating most of the polluted sites in the Niger Delta. Bioremediation should primarily be the preferred option considering its low greenhouse gas and environmental footprints, and low-cost burden on the weak and overstretched economy of Nigeria.
Collapse
Affiliation(s)
- Nenibarini Zabbey
- Department of Fisheries, Faculty of Agriculture, University of Port Harcourt, PMB 5323, East-West Road, Choba, Rivers State, Nigeria; Environment and Conservation Unit, Center for Environment, Human Rights and Development (CEHRD), Legacy Centre, 6 Abuja Lane, D-Line, Port Harcourt, Rivers State, Nigeria
| | - Kabari Sam
- Cranfield University, School of Water, Energy, and Environment, College Road, Cranfield MK43 0AL, UK.
| | - Adaugo Trinitas Onyebuchi
- Environment and Conservation Unit, Center for Environment, Human Rights and Development (CEHRD), Legacy Centre, 6 Abuja Lane, D-Line, Port Harcourt, Rivers State, Nigeria
| |
Collapse
|
53
|
Chen T, Delgado AG, Yavuz BM, Maldonado J, Zuo Y, Kamath R, Westerhoff P, Krajmalnik-Brown R, Rittmann BE. Interpreting Interactions between Ozone and Residual Petroleum Hydrocarbons in Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:506-513. [PMID: 27973790 DOI: 10.1021/acs.est.6b04534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We evaluated how gas-phase O3 interacts with residual petroleum hydrocarbons in soil. Total petroleum hydrocarbons (TPH) were 18 ± 0.6 g/kg soil, and TPH carbon constituted ∼40% of the dichloromethane-extractable carbon (DeOC) in the soil. At the benchmark dose of 3.4 kg O3/kg initial TPH, TPH carbon was reduced by nearly 6 gC/kg soil (40%), which was accompanied by an increase of about 4 gC/kg soil in dissolved organic carbon (DOC) and a 4-fold increase in 5-day biochemical oxygen demand (BOD5). Disrupting gas channeling in the soil improved mass transport of O3 to TPH bound to soil and increased TPH removal. Ozonation resulted in two measurable alterations of the composition of the organic carbon. First, part of DeOC was converted to DOC (∼4.1 gC/kg soil), 75% of which was not extractable by dichloromethane. Second, the DeOC containing saturates, aromatics, resins, and asphaltenes (SARA), was partially oxidized, resulting in a decline in saturates and aromatics, but increases in resins and asphaltenes. Ozone attack on resins, asphaltenes, and soil organic matter led to the production of NO3-, SO42-, and PO43-. The results illuminate the mechanisms by which ozone gas interacted with the weathered petroleum residuals in soil to generate soluble and biodegradable products.
Collapse
Affiliation(s)
- Tengfei Chen
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University , 727 Tyler Road, Tempe, Arizona 85287-5701, United States
- School of Sustainable Engineering and the Built Environment, Arizona State University , Tempe, Arizona 85287-3005, United States
| | - Anca G Delgado
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University , 727 Tyler Road, Tempe, Arizona 85287-5701, United States
| | - Burcu M Yavuz
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University , 727 Tyler Road, Tempe, Arizona 85287-5701, United States
- School of Sustainable Engineering and the Built Environment, Arizona State University , Tempe, Arizona 85287-3005, United States
| | - Juan Maldonado
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University , 727 Tyler Road, Tempe, Arizona 85287-5701, United States
| | - Yi Zuo
- Chevron Energy Technology Company, San Ramon, California 94583, United States
| | - Roopa Kamath
- Chevron Energy Technology Company, Houston, Texas 77002, United States
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University , Tempe, Arizona 85287-3005, United States
| | - Rosa Krajmalnik-Brown
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University , 727 Tyler Road, Tempe, Arizona 85287-5701, United States
- School of Sustainable Engineering and the Built Environment, Arizona State University , Tempe, Arizona 85287-3005, United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University , 727 Tyler Road, Tempe, Arizona 85287-5701, United States
- School of Sustainable Engineering and the Built Environment, Arizona State University , Tempe, Arizona 85287-3005, United States
| |
Collapse
|
54
|
Li R, Liu Y, Mu R, Cheng W, Ognier S. Evaluation of pulsed corona discharge plasma for the treatment of petroleum-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:1450-1458. [PMID: 27783249 DOI: 10.1007/s11356-016-7929-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/16/2016] [Indexed: 06/06/2023]
Abstract
Petroleum hydrocarbons released to the environment caused by leakage or illegal dumping pose a threat to human health and the natural environment. In this study, the potential of a pulsed corona discharge plasma system for treating petroleum-polluted soils was evaluated. This system removed 76.93 % of the petroleum from the soil in 60 min with an energy efficiency of 0.20 mg/kJ. Furthermore, the energy and degradation efficiencies for the remediation of soil contaminated by single polyaromatic hydrocarbons, such as phenanthrene and pyrene, were also compared, and the results showed that this technology had potential in organic-polluted soil remediation. In addition, the role of water molecules was investigated for their direct involvement in the formation and transportation of active species. The increase of soil moisture to a certain extent clearly benefitted degradation efficiency. Then, treated soils were analyzed by FTIR and GC-MS for proposing the degradation mechanism of petroleum. During the plasma discharging processes, the change of functional group and the detection of small aromatic hydrocarbons indicated that the plasma active species attached petroleum hydrocarbons and degradation occurred. This technique reported herein demonstrated significant potential for the remediation of heavily petroleum-polluted soil, as well as for the treatment of organic-polluted soils.
Collapse
Affiliation(s)
- Rui Li
- School of Environmental Science and Engineering, Dong Hua University, Shanghai, China
| | - Yanan Liu
- School of Environmental Science and Engineering, Dong Hua University, Shanghai, China.
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Shanghai, China.
| | - Ruiwen Mu
- School of Environmental Science and Engineering, Dong Hua University, Shanghai, China
| | - Wenyan Cheng
- School of Environmental Science and Engineering, Dong Hua University, Shanghai, China
| | - Stéphanie Ognier
- Laboratoire de Génie des Procédés et Traitements de Surface, UPMC Univirsity of Paris 06, EA 3492, 11 rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
55
|
Leal AJ, Rodrigues EM, Leal PL, Júlio ADL, Fernandes RDCR, Borges AC, Tótola MR. Changes in the microbial community during bioremediation of gasoline-contaminated soil. Braz J Microbiol 2016; 48:342-351. [PMID: 28034596 PMCID: PMC5470457 DOI: 10.1016/j.bjm.2016.10.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/26/2016] [Accepted: 10/05/2016] [Indexed: 01/11/2023] Open
Abstract
We aimed to verify the changes in the microbial community during bioremediation of gasoline-contaminated soil. Microbial inoculants were produced from successive additions of gasoline to municipal solid waste compost (MSWC) previously fertilized with nitrogen-phosphorous. To obtain Inoculant A, fertilized MSWC was amended with gasoline every 3 days during 18 days. Inoculant B received the same application, but at every 6 days. Inoculant C included MSWC fertilized with N–P, but no gasoline. The inoculants were applied to gasoline-contaminated soil at 10, 30, or 50 g/kg. Mineralization of gasoline hydrocarbons in soil was evaluated by respirometric analysis. The viability of the inoculants was evaluated after 103 days of storage under refrigeration or room temperature. The relative proportions of microbial groups in the inoculants and soil were evaluated by FAME. The dose of 50 g/kg of inoculants A and B led to the largest CO2 emission from soil. CO2 emissions in treatments with inoculant C were inversely proportional to the dose of inoculant. Heterotrophic bacterial counts were greater in soil treated with inoculants A and B. The application of inoculants decreased the proportion of actinobacteria and increased of Gram-negative bacteria. Decline in the density of heterotrophic bacteria in inoculants occurred after storage. This reduction was bigger in inoculants stored at room temperature. The application of stored inoculants in gasoline-contaminated soil resulted in a CO2 emission twice bigger than that observed in uninoculated soil. We concluded that MSWC is an effective material for the production of microbial inoculants for the bioremediation of gasoline-contaminated soil.
Collapse
Affiliation(s)
- Aline Jaime Leal
- Instituto Federal Sul-rio-grandense, Bagé, Rio Grande do Sul, Brazil
| | - Edmo Montes Rodrigues
- Universidade Federal de Viçosa, Departamento de Microbiologia, Laboratório de Biotecnologia Ambiental e Biodiversidade, Viçosa, Minas Gerais, Brazil.
| | - Patrícia Lopes Leal
- Universidade Federal de Viçosa, Departamento de Microbiologia, Laboratório de Biotecnologia Ambiental e Biodiversidade, Viçosa, Minas Gerais, Brazil
| | - Aline Daniela Lopes Júlio
- Universidade Federal de Viçosa, Departamento de Microbiologia, Laboratório de Biotecnologia Ambiental e Biodiversidade, Viçosa, Minas Gerais, Brazil
| | - Rita de Cássia Rocha Fernandes
- Universidade Federal de Viçosa, Departamento de Microbiologia, Laboratório de Biotecnologia Ambiental e Biodiversidade, Viçosa, Minas Gerais, Brazil
| | - Arnaldo Chaer Borges
- Universidade Federal de Viçosa, Departamento de Microbiologia, Laboratório de Biotecnologia Ambiental e Biodiversidade, Viçosa, Minas Gerais, Brazil
| | - Marcos Rogério Tótola
- Universidade Federal de Viçosa, Departamento de Microbiologia, Laboratório de Biotecnologia Ambiental e Biodiversidade, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
56
|
Horel A, Schiewer S. Impact of VOC removal by activated carbon on biodegradation rates of diesel, Syntroleum and biodiesel in contaminated sand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 573:106-114. [PMID: 27552734 DOI: 10.1016/j.scitotenv.2016.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/23/2016] [Accepted: 08/01/2016] [Indexed: 06/06/2023]
Abstract
The degradation of conventional diesel (D), synthetic diesel (Syntroleum), and pure fish biodiesel (B100) by indigenous microbes was investigated in laboratory microcosms containing contaminated sand. The fate of volatiles and the influence of volatilization on degradation rates were examined by placing activated carbon (AC) in microcosm headspaces to sorb volatiles. Three AC regimes were compared: no activated carbon (NAC), regular weekly AC change (RAC), and frequent AC change (FAC), where the frequency of activated carbon exchange declined from daily to weekly. Generally, the alternative fuels were biodegraded faster than diesel fuel. Hydrocarbon mineralization percentages for the different fuel types over 28days were between 23% (D) and 48% (B100) in the absence of activated carbon, decreased to 12% (D) - 37% (B100) with weekly AC exchange, and were further reduced to 9-22% for more frequent AC change. Sorption of volatiles to AC lowered their availability as a substrate for microbes, reducing respiration. Volatilization was negligible for the biodiesel. A mass balance for the carbon initially present as hydrocarbons in microcosms with activated carbon in the head space was on average 92% closed, with 45-70% remaining in the soil after 4weeks, 9-37% mineralized and up to 12% volatilized. Based on nutrient consumption, up to 29% of the contaminants were likely converted into biomass.
Collapse
Affiliation(s)
- Agota Horel
- Institute of Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman O. 15, Budapest 1022, Hungary; Civil and Environmental Engineering Department, Water and Environmental Research Center, University of Alaska Fairbanks, P.O. Box 755900, Fairbanks, AK 99775-5900, USA
| | - Silke Schiewer
- Civil and Environmental Engineering Department, Water and Environmental Research Center, University of Alaska Fairbanks, P.O. Box 755900, Fairbanks, AK 99775-5900, USA.
| |
Collapse
|
57
|
Marchand C, Hogland W, Kaczala F, Jani Y, Marchand L, Augustsson A, Hijri M. Effect of Medicago sativa L. and compost on organic and inorganic pollutant removal from a mixed contaminated soil and risk assessment using ecotoxicological tests. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:1136-47. [PMID: 27216854 DOI: 10.1080/15226514.2016.1186594] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Several Gentle Remediation Options (GRO), e.g., plant-based options (phytoremediation), singly and combined with soil amendments, can be simultaneously efficient for degrading organic pollutants and either stabilizing or extracting trace elements (TEs). Here, a 5-month greenhouse trial was performed to test the efficiency of Medicago sativa L., singly and combined with a compost addition (30% w/w), to treat soils contaminated by petroleum hydrocarbons (PHC), Co and Pb collected at an auto scrap yard. After 5 months, total soil Pb significantly decreased in the compost-amended soil planted with M. sativa, but not total soil Co. Compost incorporation into the soil promoted PHC degradation, M. sativa growth and survival, and shoot Pb concentrations [3.8 mg kg(-1) dry weight (DW)]. Residual risk assessment after the phytoremediation trial showed a positive effect of compost amendment on plant growth and earthworm development. The O2 uptake by soil microorganisms was lower in the compost-amended soil, suggesting a decrease in microbial activity. This study underlined the benefits of the phytoremediation option based on M. sativa cultivation and compost amendment for remediating PHC- and Pb-contaminated soils.
Collapse
Affiliation(s)
- Charlotte Marchand
- a Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal , Montréal , QC , Canada
| | - William Hogland
- b Department of Biology and Environmental Sciences , Linnaeus University , Kalmar , Sweden
| | - Fabio Kaczala
- b Department of Biology and Environmental Sciences , Linnaeus University , Kalmar , Sweden
| | - Yahya Jani
- b Department of Biology and Environmental Sciences , Linnaeus University , Kalmar , Sweden
| | | | - Anna Augustsson
- b Department of Biology and Environmental Sciences , Linnaeus University , Kalmar , Sweden
| | - Mohamed Hijri
- a Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal , Montréal , QC , Canada
| |
Collapse
|
58
|
Modrzyński JJ, Christensen JH, Mayer P, Brandt KK. Limited recovery of soil microbial activity after transient exposure to gasoline vapors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 216:826-835. [PMID: 27376993 DOI: 10.1016/j.envpol.2016.06.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 06/06/2023]
Abstract
During gasoline spills complex mixtures of toxic volatile organic compounds (VOCs) are released to terrestrial environments. Gasoline VOCs exert baseline toxicity (narcosis) and may thus broadly affect soil biota. We assessed the functional resilience (i.e. resistance and recovery of microbial functions) in soil microbial communities transiently exposed to gasoline vapors by passive dosing via headspace for 40 days followed by a recovery phase of 84 days. Chemical exposure was characterized with GC-MS, whereas microbial activity was monitored as soil respiration (CO2 release) and soil bacterial growth ([(3)H]leucine incorporation). Microbial activity was strongly stimulated and inhibited at low and high exposure levels, respectively. Microbial growth efficiency decreased with increasing exposure, but rebounded during the recovery phase for low-dose treatments. Although benzene, toluene, ethylbenzene and xylene (BTEX) concentrations decreased by 83-97% during the recovery phase, microbial activity in high-dose treatments did not recover and numbers of viable bacteria were 3-4 orders of magnitude lower than in control soil. Re-inoculation with active soil microorganisms failed to restore microbial activity indicating residual soil toxicity, which could not be attributed to BTEX, but rather to mixture toxicity of more persistent gasoline constituents or degradation products. Our results indicate a limited potential for functional recovery of soil microbial communities after transient exposure to high, but environmentally relevant, levels of gasoline VOCs which therefore may compromise ecosystem services provided by microorganisms even after extensive soil VOC dissipation.
Collapse
Affiliation(s)
- Jakub J Modrzyński
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark.
| | - Jan H Christensen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark.
| | - Philipp Mayer
- Department of Environmental Engineering, Technical University of Denmark, 2800, Kongens Lyngby, Denmark; Department of Environmental Science, Aarhus University, 4000, Roskilde, Denmark.
| | - Kristian K Brandt
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark.
| |
Collapse
|
59
|
Ribeiro H, Mucha AP, Azevedo I, Salgado P, Teixeira C, Almeida CMR, Joye SB, Magalhães C. Differential effects of crude oil on denitrification and anammox, and the impact on N2O production. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 216:391-399. [PMID: 27395442 DOI: 10.1016/j.envpol.2016.05.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 06/06/2023]
Abstract
Denitrification and anammox are key processes for reducing the external nitrogen loads delivered to coastal ecosystems, and these processes can be affected by pollutants. In this study, we investigated the effect of crude oil on denitrification and anammox. Controlled laboratory experiments were performed using sediment slurries from the Lima Estuary (NW Portugal). Anammox and denitrification rates were measured using (15)N-labeled NO3(-), and the production of (29)N2 and (30)N2 quantified by membrane inlet mass spectrometry. Results revealed that while denitrification rates were stimulated between 10 and 25 000 times after crude oil amendment, anammox activity was partially (between 2 and 5 times) or completely inhibited by the addition of crude oil when comparing to rates in unamended controls. Similar results were observed across four estuarine sediment types, despite their different physical-chemical characteristics. Moreover, N2O production was reduced by 2-36 times following crude oil addition. Further work is required to fully understand the mechanism(s) of the observed reduction in N2O production. This study represents one of the first contributions to the understanding of the impact of crude oil pollution on denitrification and anammox, with profound implications for the management of aquatic ecosystems regarding eutrophication (N-removal).
Collapse
Affiliation(s)
- Hugo Ribeiro
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal.
| | - Ana P Mucha
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal
| | - Isabel Azevedo
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal
| | - Paula Salgado
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar (ICBAS-UP), Universidade do Porto, Porto, Portugal
| | - Catarina Teixeira
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar (ICBAS-UP), Universidade do Porto, Porto, Portugal
| | - C Marisa R Almeida
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal
| | - Samantha B Joye
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Catarina Magalhães
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal
| |
Collapse
|
60
|
Liang Y, Zhao H, Deng Y, Zhou J, Li G, Sun B. Long-Term Oil Contamination Alters the Molecular Ecological Networks of Soil Microbial Functional Genes. Front Microbiol 2016; 7:60. [PMID: 26870020 PMCID: PMC4737900 DOI: 10.3389/fmicb.2016.00060] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/13/2016] [Indexed: 12/11/2022] Open
Abstract
With knowledge on microbial composition and diversity, investigation of within-community interactions is a further step to elucidate microbial ecological functions, such as the biodegradation of hazardous contaminants. In this work, microbial functional molecular ecological networks were studied in both contaminated and uncontaminated soils to determine the possible influences of oil contamination on microbial interactions and potential functions. Soil samples were obtained from an oil-exploring site located in South China, and the microbial functional genes were analyzed with GeoChip, a high-throughput functional microarray. By building random networks based on null model, we demonstrated that overall network structures and properties were significantly different between contaminated and uncontaminated soils (P < 0.001). Network connectivity, module numbers, and modularity were all reduced with contamination. Moreover, the topological roles of the genes (module hub and connectors) were altered with oil contamination. Subnetworks of genes involved in alkane and polycyclic aromatic hydrocarbon degradation were also constructed. Negative co-occurrence patterns prevailed among functional genes, thereby indicating probable competition relationships. The potential "keystone" genes, defined as either "hubs" or genes with highest connectivities in the network, were further identified. The network constructed in this study predicted the potential effects of anthropogenic contamination on microbial community co-occurrence interactions.
Collapse
Affiliation(s)
- Yuting Liang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences Nanjing, China
| | - Huihui Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences Nanjing, China
| | - Ye Deng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua UniversityBeijing, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of SciencesBeijing, China
| | - Jizhong Zhou
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of SciencesBeijing, China; Department of Botany and Microbiology, Institute for Environmental Genomics, University of Oklahoma, NormanOK, USA
| | - Guanghe Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua UniversityBeijing, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of SciencesBeijing, China
| | - Bo Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences Nanjing, China
| |
Collapse
|
61
|
Agarwal A, Liu Y. Remediation technologies for oil-contaminated sediments. MARINE POLLUTION BULLETIN 2015; 101:483-490. [PMID: 26414316 DOI: 10.1016/j.marpolbul.2015.09.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/21/2015] [Accepted: 09/03/2015] [Indexed: 06/05/2023]
Abstract
Oil-contaminated sediments pose serious environmental hazards for both aquatic and terrestrial ecosystems. Innovative and environmentally compatible technologies are urgently required to remove oil-contaminated sediments. In this paper, various physical, chemical and biological technologies are investigated for the remediation of oil-contaminated sediments such as flotation and washing, coal agglomeration, thermal desorption, ultrasonic desorption, bioremediation, chemical oxidation and extraction using ionic liquids. The basic principles of these technologies as well as their advantages and disadvantages for practical application have been discussed. A combination of two or more technologies is expected to provide an innovative solution that is economical, eco-friendly and adaptable.
Collapse
Affiliation(s)
- Ashutosh Agarwal
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
62
|
Bastida F, Jehmlich N, Lima K, Morris BEL, Richnow HH, Hernández T, von Bergen M, García C. The ecological and physiological responses of the microbial community from a semiarid soil to hydrocarbon contamination and its bioremediation using compost amendment. J Proteomics 2015. [PMID: 26225916 DOI: 10.1016/j.jprot.2015.07.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The linkage between phylogenetic and functional processes may provide profound insights into the effects of hydrocarbon contamination and biodegradation processes in high-diversity environments. Here, the impacts of petroleum contamination and the bioremediation potential of compost amendment, as enhancer of the microbial activity in semiarid soils, were evaluated in a model experiment. The analysis of phospholipid fatty-acids (PLFAs) and metaproteomics allowed the study of biomass, phylogenetic and physiological responses of the microbial community in polluted semiarid soils. Petroleum pollution induced an increase of proteobacterial proteins during the contamination, while the relative abundance of Rhizobiales lowered in comparison to the non-contaminated soil. Despite only 0.55% of the metaproteome of the compost-treated soil was involved in biodegradation processes, the addition of compost promoted the removal of polycyclic aromatic hydrocarbons (PAHs) and alkanes up to 88% after 50 days. However, natural biodegradation of hydrocarbons was not significant in soils without compost. Compost-assisted bioremediation was mainly driven by Sphingomonadales and uncultured bacteria that showed an increased abundance of catabolic enzymes such as catechol 2,3-dioxygenases, cis-dihydrodiol dehydrogenase and 2-hydroxymuconic semialdehyde. For the first time, metaproteomics revealed the functional and phylogenetic relationships of petroleum contamination in soil and the microbial key players involved in the compost-assisted bioremediation.
Collapse
Affiliation(s)
- F Bastida
- Department of Soil and Water Conservation, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo, Aptdo. de Correos 164, Espinardo, 30100 Murcia, Spain; Department of Agroforestry Technology and Science and Genetics, School of Advanced Agricultural Engineering, Castilla La Mancha University, Campus Universitario s/n, Albacete, Spain.
| | - N Jehmlich
- Department of Proteomics, Helmholtz - Centre for Environmental Research - UFZ, Permoserstrasse 15, D-04318 Leipzig, Germany
| | - K Lima
- Department of Soil and Water Conservation, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo, Aptdo. de Correos 164, Espinardo, 30100 Murcia, Spain
| | - B E L Morris
- Dow Microbial Control, Dow Europe GmbH, Bachtobelstrasse 3, 8810 Horgen, Switzerland
| | - H H Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - T Hernández
- Department of Soil and Water Conservation, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo, Aptdo. de Correos 164, Espinardo, 30100 Murcia, Spain
| | - M von Bergen
- Department of Proteomics, Helmholtz - Centre for Environmental Research - UFZ, Permoserstrasse 15, D-04318 Leipzig, Germany; Department of Metabolomics, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - C García
- Department of Soil and Water Conservation, Centro de Edafología y Biología Aplicada del Segura, CEBAS-CSIC, Campus Universitario de Espinardo, Aptdo. de Correos 164, Espinardo, 30100 Murcia, Spain
| |
Collapse
|
63
|
Fallah M, Shabanpor M, Zakerinia M, Ebrahimi S. Risk assessment of gas oil and kerosene contamination on some properties of silty clay soil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:437. [PMID: 26085279 DOI: 10.1007/s10661-015-4633-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 05/21/2015] [Indexed: 06/04/2023]
Abstract
Soil and ground water resource pollution by petroleum compounds and chemical solvents has multiple negative environmental impacts. The aim of this research was to investigate the impacts of kerosene and gas oil pollutants on some physical and chemical properties, breakthrough curve (BTC), and water retention curve (SWRC) of silty clay soil during a 3-month period. Therefore, some water-saturated soils were artificially contaminated in the pulse condition inside some glassy cylinders by applying half and one pore volume of these pollutants, and then parametric investigations of the SWRC were performed using RETC software for Van Genukhten and Brooks-Corey equations in the various suctions and the soil properties were determined before and after pollution during 3 months. The results showed that gas oil and kerosene had a slight effect on soil pH and caused the cumulative enhancement in the soil respiration, increase in the bulk density and organic matter, and reduction in the soil porosity and electrical and saturated hydraulic conductivity. Furthermore, gas oil retention was significantly more than kerosene (almost 40%) in the soil. The survey of SWRC indicated that the contaminated soil samples had a little higher amount of moisture retention (just under 15% in most cases) compared to the unpolluted ones during this 3-month period. The parametric analysis of SWRC demonstrated an increase in the saturated water content, Θ s, from nearly 49% in the control sample to just under 53% in the polluted ones. Contaminants not only decreased the residual water content, Θ r, but also reduced the SWRC gradient, n, and amount of α parameter. The evaluation of both equations revealed more accurate prediction of SWRC's parameters by Van Genukhten compared to those of Brooks and Corey.
Collapse
Affiliation(s)
- M Fallah
- Faculty of Agriculture, Guilan University, Rasht, Iran,
| | | | | | | |
Collapse
|
64
|
Teng Y, Zhou Q, Miao X, Chen Y. Assessment of soil organic contamination in a typical petrochemical industry park in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:10227-34. [PMID: 25697555 DOI: 10.1007/s11356-015-4219-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 02/06/2015] [Indexed: 05/27/2023]
Abstract
The concentrations of total petroleum hydrocarbons (TPH), n-alkanes (n-C8 through n-C40), and 16 polycyclic aromatic hydrocarbons (PAHs) in soils were determined to assess the level of organic contamination in soils from the Da-gang Petrochemical Industry Park with several big state-run enterprises, a recent rapid flourishing park in China. The results showed that the concentration of TPH in soil was high, up to 20 ng/g-12.8478%; in particular, the content in most sites ranged from 1 to 2%. Thus, it is clear that soil environment in the Da-gang Petrochemical Industry Park has been seriously polluted by TPH according to the Nemerow pollution index method. Furthermore, the average concentration of Σ(n-C>16 through n-C34) in 30 sampling sites was above the maximum limit set for F3 under all the conditions in the Canada-wide standards for petroleum hydrocarbons (PHC CWS) with 43.33-93.33% soil samples exceeding F3 standards, and n-alkanes possessing higher concentrations were proved much abundant alkanes in this study. Besides, the predominance of even n-alkanes and lower carbon preference index (CPI) demonstrated that n-alkanes in surface soils were mainly caused by anthropogenic inputs, while the concentration of Σ16-PAHs was in the range of 1652.5-8217.3 ng/g and the BaA/(BaA + Chr) and Flu/(Flu + Pyr) ratios indicated that pyrogenic PAHs may be the dominant PAHs in most soils with the contribution of petrogenic hydrocarbons in some sites.
Collapse
Affiliation(s)
- Yong Teng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | | | | | | |
Collapse
|
65
|
Development of an NDIR CO₂ sensor-based system for assessing soil toxicity using substrate-induced respiration. SENSORS 2015; 15:4734-48. [PMID: 25730479 PMCID: PMC4435110 DOI: 10.3390/s150304734] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/14/2015] [Accepted: 02/09/2015] [Indexed: 11/17/2022]
Abstract
The eco-toxicological indicators used to evaluate soil quality complement the physico-chemical criteria employed in contaminated site remediation, but their cost, time, sophisticated analytical methods and in-situ inapplicability pose a major challenge to rapidly detect and map the extent of soil contamination. This paper describes a sensor-based approach for measuring potential (substrate-induced) microbial respiration in diesel-contaminated and non-contaminated soil and hence, indirectly evaluates their microbial activity. A simple CO2 sensing system was developed using an inexpensive non-dispersive infrared (NDIR) CO2 sensor and was successfully deployed to differentiate the control and diesel-contaminated soils in terms of CO2 emission after glucose addition. Also, the sensor system distinguished glucose-induced CO2 emission from sterile and control soil samples (p ≤ 0.0001). Significant effects of diesel contamination (p ≤ 0.0001) and soil type (p ≤ 0.0001) on glucose-induced CO2 emission were also found. The developed sensing system can provide in-situ evaluation of soil microbial activity, an indicator of soil quality. The system can be a promising tool for the initial screening of contaminated environmental sites to create high spatial density maps at a relatively low cost.
Collapse
|
66
|
Ye M, Sun M, Wan J, Fang G, Li H, Hu F, Jiang X, Kengara FO. Enhanced soil washing process for the remediation of PBDEs/Pb/Cd-contaminated electronic waste site with carboxymethyl chitosan in a sunflower oil-water solvent system and microbial augmentation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:2687-2698. [PMID: 25201695 DOI: 10.1007/s11356-014-3518-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/24/2014] [Indexed: 06/03/2023]
Abstract
An innovative ex situ soil washing technology was developed to remediate polybrominated diphenyl ethers (PBDEs) and heavy metals in an electronic waste site. Elevated temperature (50 °C) in combination with ultrasonication (40 kHz, 20 min) at 5.0 mL L(-1) sunflower oil and 2.5 g L(-1) carboxymethyl chitosan were found to be effective in extracting mixed pollutants from soil. After two successive washing cycles, the removal efficiency rates for total PBDEs, BDE28, BDE47, BDE209, Pb, and Cd were approximately 94.1, 93.4, 94.3, 99.1, 89.3, and 92.7 %, respectively. Treating the second washed soil with PBDE-degrading bacteria (Rhodococcus sp. strain RHA1) inoculation and nutrient addition for 3 months led to maximum biodegradation rates of 37.3, 52.6, 23.9, and 1.3 % of the remaining total PBDEs, BDE28, BDE47, BDE209, respectively. After the combined treatment, the microbiological functions of washed soil was partially restored, as indicated by a significant increase in the counts, biomass C, N, and functioning diversity of soil microorganisms (p < 0.05), and the residual PBDEs and heavy metals mainly existed as very slow desorbing fractions and residual fractions, as evaluated by Tenax extraction combined with a first-three-compartment model and sequential extraction with metal stability indices (I R and U ts). Additionally, the secondary environmental risk of mixed contaminants in the remediated soil was limited. Therefore, the proposed combined cleanup strategy is an environment-friendly technology that is important for risk assessment and management in mixed-contaminated sites.
Collapse
Affiliation(s)
- Mao Ye
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China,
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Klamerus-Iwan A, Błońska E, Lasota J, Kalandyk A, Waligórski P. Influence of Oil Contamination on Physical and Biological Properties of Forest Soil After Chainsaw Use. WATER, AIR, AND SOIL POLLUTION 2015; 226:389. [PMID: 26549912 PMCID: PMC4628096 DOI: 10.1007/s11270-015-2649-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/16/2015] [Indexed: 05/13/2023]
Abstract
Forestry works using chainsaws result in up to 7 million liters of various mineral oils being soaked annually into forest soils. These substances, containing a complex mixture of polycyclic aromatic hydrocarbons (PAHs), are highly toxic. The aim of the study was to determine the effect of oil contamination with PAHs on the physical and biological properties of forest soils. The study area was located in southern Poland in the Miechów forest district. The experiment was conducted on four treatment blocks with various amounts of oil addition. The study included the determination of PAH content, dehydrogenase and urease activity, and biomass of earthworms. Physical properties were determined using the dryer method and Kopecky rings of 250 cm3 volume. The results obtained confirmed the hypothesis that oil contamination with PAHs modified the physical properties of forest soils and oil had a negative impact on enzyme activity in soil. Enzyme activity in the studied soils was negatively correlated with PAH content. Earthworm population density reflected the contamination level of oil-contaminated soils.
Collapse
Affiliation(s)
- Anna Klamerus-Iwan
- />Faculty of Forestry, Department of Forest Engineering, University of Agriculture in Kraków, Al. 29 Listopada 46, 31-425 Kraków, Poland
| | - Ewa Błońska
- />Faculty of Forestry, Department of Forest Soil, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Kraków, Poland
| | - Jarosław Lasota
- />Faculty of Forestry, Department of Forest Soil, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Kraków, Poland
| | - Agnieszka Kalandyk
- />The F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków, ul. Niezapominajek 21, 30-233 Kraków, Poland
| | - Piotr Waligórski
- />The F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków, ul. Niezapominajek 21, 30-233 Kraków, Poland
| |
Collapse
|
68
|
Simonin M, Guyonnet JP, Martins JMF, Ginot M, Richaume A. Influence of soil properties on the toxicity of TiO₂ nanoparticles on carbon mineralization and bacterial abundance. JOURNAL OF HAZARDOUS MATERIALS 2015; 283:529-35. [PMID: 25464292 DOI: 10.1016/j.jhazmat.2014.10.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/27/2014] [Accepted: 10/03/2014] [Indexed: 05/12/2023]
Abstract
Information regarding the impact of low concentration of engineered nanoparticles on soil microbial communities is currently limited and the importance of soil characteristics is often neglected in ecological risk assessment. To evaluate the impact of TiO2 nanoparticles (NPs) on soil microbial communities (measured on bacterial abundance and carbon mineralization activity), 6 agricultural soils exhibiting contrasted textures and organic matter contents were exposed for 90 days to a low environmentally relevant concentration or to an accidental spiking of TiO2-NPs (1 and 500mgkg(-1) dry soil, respectively) in microcosms. In most soils, TiO2-NPs did not impact the activity and abundance of microbial communities, except in the silty-clay soil (high OM) where C-mineralization was significantly lowered, even with the low NPs concentration. Our results suggest that TiO2-NPs toxicity does not depend on soil texture but likely on pH and OM content. We characterized TiO2-NPs aggregation and zeta potential in soil solutions, in order to explain the difference of TiO2-NPs effects on soil C-mineralization. Zeta potential and aggregation of TiO2-NPs in the silty-clay (high OM) soil solution lead to a lower stability of TiO2-NP-aggregates than in the other soils. Further experiments would be necessary to evaluate the relationship between TiO2-NPs stability and toxicity in the soil.
Collapse
Affiliation(s)
- Marie Simonin
- Université de Lyon, Lyon, France; Université Claude Bernard Lyon 1, Villeurbanne, France; CNRS, UMR 5557, Ecologie Microbienne, Université Lyon 1, Villeurbanne, France; UJF-Grenoble/CNRS-INSU/G-INP/IRD, LTHE UMR 5564, Grenoble F-38041, France
| | - Julien P Guyonnet
- Université de Lyon, Lyon, France; Université Claude Bernard Lyon 1, Villeurbanne, France; CNRS, UMR 5557, Ecologie Microbienne, Université Lyon 1, Villeurbanne, France
| | - Jean M F Martins
- UJF-Grenoble/CNRS-INSU/G-INP/IRD, LTHE UMR 5564, Grenoble F-38041, France
| | - Morgane Ginot
- Université de Lyon, Lyon, France; Université Claude Bernard Lyon 1, Villeurbanne, France; CNRS, UMR 5557, Ecologie Microbienne, Université Lyon 1, Villeurbanne, France
| | - Agnès Richaume
- Université de Lyon, Lyon, France; Université Claude Bernard Lyon 1, Villeurbanne, France; CNRS, UMR 5557, Ecologie Microbienne, Université Lyon 1, Villeurbanne, France.
| |
Collapse
|
69
|
Gutiérrez-Ginés MJ, Hernández AJ, Pérez-Leblic MI, Pastor J, Vangronsveld J. Phytoremediation of soils co-contaminated by organic compounds and heavy metals: bioassays with Lupinus luteus L. and associated endophytic bacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2014; 143:197-207. [PMID: 24912107 DOI: 10.1016/j.jenvman.2014.04.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 03/10/2014] [Accepted: 04/23/2014] [Indexed: 06/03/2023]
Abstract
In the central part of the Iberian Peninsula there are old sealed landfills containing soils co-contaminated by several heavy metals (Cu, Zn, Pb, Cd, Ni, As, Cr, Fe, Al, Mn) and organic pollutants of different families (hydrocarbons, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, pesticides and other organochlorinated compounds, phenols and volatile compounds), which this work will address. We have focused on phytoremedial plants that are able to deal with this type of complex pollution, not only species that tolerate the joint effect of heavy metals in the soil, but also those that can take advantage of associated bacteria to efficiently break down organic compounds. This study was carried out with Lupinus luteus and its endophytes in two greenhouse experiments: A) growing in a substrate artificially contaminated with benzo(a)pyrene (BaP), and B) using real co-contaminated landfill soils. Endophytes of roots and shoots were isolated in both bioassays. Plant growth-promotion tests and organic pollutant tolerance and degradation tests were conducted on all strains isolated in bioassay A), and on those proving to be pure cultures from bioassay B). The selected landfill is described as are isolation and test procedures. Results indicate that plants did not show toxicity symptoms when exposed to BaP but did when grown in landfill soil. Some endophytes demonstrated plant growth-promotion capacity and tolerance to BaP and other organic compounds (diesel and PCB commercial mixtures). A few strains may even have the capacity to metabolize those organic pollutants. The overall decline in plant growth-promotion capacity in those strains isolated from the landfill soil experiment, compared with those from the bioassay with BaP, may indicate that lupin endophytes are not adapted to metal concentration in roots and shoots and fail to grow. As a result, most isolated root endophytes must have colonized root tissues from the soil. While preliminary degradation tests showed promising results (some strains exhibiting the potential to use organic pollutants as their sole source of carbon), these are not conclusive and further in-depth degradation assays need to be performed.
Collapse
Affiliation(s)
| | - A J Hernández
- Department of Life Sciences, Alcalá University, Alcalá de Henares, Spain
| | - M I Pérez-Leblic
- Department of Biomedical Sciences, Alcalá University, Alcalá de Henares, Spain
| | - J Pastor
- Department of Environmental Biology, Natural Sciences National Museum, CSIC, Madrid, Spain
| | - J Vangronsveld
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
70
|
Ye M, Sun M, Liu Z, Ni N, Chen Y, Gu C, Kengara FO, Li H, Jiang X. Evaluation of enhanced soil washing process and phytoremediation with maize oil, carboxymethyl-β-cyclodextrin, and vetiver grass for the recovery of organochlorine pesticides and heavy metals from a pesticide factory site. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2014; 141:161-168. [PMID: 24794390 DOI: 10.1016/j.jenvman.2014.03.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/26/2014] [Accepted: 03/29/2014] [Indexed: 06/03/2023]
Abstract
An innovative ex situ soil washing technology was developed in this study to remediate organochlorine pesticides (OCPs) and heavy metals in a mixed contaminated site. Elevated temperature (60 °C) combined with ultrasonication (40 kHz, 20 min) at 50 mL L(-1) maize oil and 45 g L(-1) carboxylmethyl-β-cyclodextrin were effective in extracting pollutants from the soil. After two successive washing cycles, the removal efficiency rates for total OCPs, mirex, endosulfans, chlordanes, Cd, and Pb were approximately 94.7%, 87.2%, 98.5%, 92.3%, 91.6%, and 87.3%, respectively. Cultivation of vetiver grass and addition of nutrients for 3 months further degraded 34.7% of the residual total OCPs and partially restored the microbiological functions of the soil. This result was indicated by the significant increase in the number, biomass C, N, and functioning diversity of soil microorganisms (p < 0.05). After the treatment, the residual OCPs and heavy metals existed as very slowly desorbing fraction and residual fraction, as evaluated by Tenax extraction combined with a first-three-compartment model and sequential extraction. Moreover, the secondary environmental risk of residual pollutants in the remediated soil was at an acceptable level. The proposed combined cleanup strategy proved to be effective and environmentally friendly.
Collapse
Affiliation(s)
- Mao Ye
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Mingming Sun
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Zongtang Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ni Ni
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yinwen Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chengang Gu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | | | - Huixin Li
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
71
|
Engel AS, Gupta AA. Regime shift in sandy beach microbial communities following Deepwater Horizon oil spill remediation efforts. PLoS One 2014; 9:e102934. [PMID: 25036744 PMCID: PMC4103866 DOI: 10.1371/journal.pone.0102934] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 06/25/2014] [Indexed: 11/18/2022] Open
Abstract
Sandy beaches support a wide variety of underappreciated biodiversity that is critical to coastal ecosystems. Prior to the 2010 Deepwater Horizon oil spill, the diversity and function of supratidal beach sediment microbial communities along Gulf of Mexico coastlines were not well understood. As such, it was unclear if microbial community compositional changes would occur following exposure to beached oil, if indigenous communities could biodegrade oil, or how cleanup efforts, such as sand washing and sediment redistribution, would impact microbial ecosystem resiliency. Transects perpendicular to the shoreline were sampled from public beaches on Grand Isle, Louisiana, and Dauphin Island, Alabama, over one year. Prior to oil coming onshore, elevated levels of bacteria associated with fecal contamination were detected (e.g., Enterobacteriales and Campylobacterales). Over time, significant shifts within major phyla were identified (e.g., Proteobacteria, Firmicutes, Actinobacteria) and fecal indicator groups were replaced by taxa affiliated with open-ocean and marine systems (e.g., Oceanospirillales, Rhodospirillales, and Rhodobacterales). These new bacterial groups included putative hydrocarbon degraders, similar to those identified near the oil plume offshore. Shifts in the microbial community composition strongly correlated to more poorly sorted sediment and grain size distributional changes. Natural oceanographic processes could not account for the disrupted sediment, especially from the backshore well above the maximum high-tide levels recorded at these sites. Sand washing and tilling occurred on both open beaches from August through at least December 2010, which were mechanisms that could replace fecal indicator groups with open-ocean groups. Consequently, remediation efforts meant to return beaches to pre-spill compositions caused a regime shift that may have added potential ecosystem function, like hydrocarbon degradation, to the sediment. Future research will need to assess the persistence and impact of the newly formed microbial communities to the overall sandy beach ecosystems.
Collapse
Affiliation(s)
- Annette Summers Engel
- Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail:
| | - Axita A. Gupta
- Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
72
|
Aleer S, Adetutu EM, Weber J, Ball AS, Juhasz AL. Potential impact of soil microbial heterogeneity on the persistence of hydrocarbons in contaminated subsurface soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2014; 136:27-36. [PMID: 24553295 DOI: 10.1016/j.jenvman.2014.01.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 12/06/2013] [Accepted: 01/27/2014] [Indexed: 06/03/2023]
Abstract
In situ bioremediation is potentially a cost effective treatment strategy for subsurface soils contaminated with petroleum hydrocarbons, however, limited information is available regarding the impact of soil spatial heterogeneity on bioremediation efficacy. In this study, we assessed issues associated with hydrocarbon biodegradation and soil spatial heterogeneity (samples designated as FTF 1, 5 and 8) from a site in which in situ bioremediation was proposed for hydrocarbon removal. Test pit activities showed similarities in FTF soil profiles with elevated hydrocarbon concentrations detected in all soils at 2 m below ground surface. However, PCR-DGGE-based cluster analysis showed that the bacterial community in FTF 5 (at 2 m) was substantially different (53% dissimilar) and 2-3 fold more diverse than communities in FTF 1 and 8 (with 80% similarity). When hydrocarbon degrading potential was assessed, differences were observed in the extent of (14)C-benzene mineralisation under aerobic conditions with FTF 5 exhibiting the highest hydrocarbon removal potential compared to FTF 1 and 8. Further analysis indicated that the FTF 5 microbial community was substantially different from other FTF samples and dominated by putative hydrocarbon degraders belonging to Pseudomonads, Xanthomonads and Enterobacteria. However, hydrocarbon removal in FTF 5 under anaerobic conditions with nitrate and sulphate electron acceptors was limited suggesting that aerobic conditions were crucial for hydrocarbon removal. This study highlights the importance of assessing available microbial capacity prior to bioremediation and shows that the site's spatial heterogeneity can adversely affect the success of in situ bioremediation unless area-specific optimizations are performed.
Collapse
Affiliation(s)
- Sam Aleer
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes Campus, Adelaide, South Australia 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Mawson Lakes, Adelaide, South Australia 5095, Australia
| | - Eric M Adetutu
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes Campus, Adelaide, South Australia 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Mawson Lakes, Adelaide, South Australia 5095, Australia; School of Biological Sciences, Flinders University, Adelaide, South Australia 5001, Australia
| | - John Weber
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes Campus, Adelaide, South Australia 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Mawson Lakes, Adelaide, South Australia 5095, Australia
| | - Andrew S Ball
- School of Biological Sciences, Flinders University, Adelaide, South Australia 5001, Australia
| | - Albert L Juhasz
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes Campus, Adelaide, South Australia 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Mawson Lakes, Adelaide, South Australia 5095, Australia.
| |
Collapse
|
73
|
Ye M, Sun M, Ni N, Chen Y, Liu Z, Gu C, Bian Y, Hu F, Li H, Kengara FO, Jiang X. Role of cosubstrate and bioaccessibility played in the enhanced anaerobic biodegradation of organochlorine pesticides (OCPs) in a paddy soil by nitrate and methyl-β-cyclodextrin amendments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:7785-7796. [PMID: 24638834 DOI: 10.1007/s11356-014-2703-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/25/2014] [Indexed: 06/03/2023]
Abstract
The present study was conducted to investigate the anaerobic biodegradation potential of biostimulation by nitrate (KNO3) and methyl-β-cyclodextrin (MCD) addition on an aged organochlorine pesticide (OCP)-contaminated paddy soil. After 180 days of incubation, total OCP biodegradation was highest in soil receiving the addition of nitrate and MCD simultaneously and then followed by nitrate addition, MCD addition, and control. The highest biodegradation of chlordanes, hexachlorocyclohexanes, endosulfans, and total OCPs was 74.3, 63.5, 51.2, and 65.1%, respectively. Meanwhile, MCD addition significantly increased OCP bioaccessibility (p < 0.05) evaluated by Tenax TA extraction and a three-compartment model method. Moreover, the addition of nitrate and MCD also obtained the highest values of soil microbial activities, including soil microbial biomass carbon and nitrogen, ATP production, denitrifying bacteria count, and nitrate reductase activity. Such similar trend between OCP biodegradation and soil-denitrifying activities suggests a close relationship between OCP biodegradation and N cycling and the indirect/direct involvement of soil microorganisms, especially denitrifying microorganisms in the anaerobic biodegradation of OCPs.
Collapse
Affiliation(s)
- Mao Ye
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Özçelik B, Aytar P, Gedikli S, Yardımcı E, Çalışkan F, Çabuk A. Production of an alkaline protease using Bacillus pumilus D3 without inactivation by SDS, its characterization and purification. J Enzyme Inhib Med Chem 2013; 29:388-96. [DOI: 10.3109/14756366.2013.788503] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Burçin Özçelik
- Department of Biology, Faculty of Arts and Science, Hitit University
CorumTurkey
| | - Pınar Aytar
- Graduate School of Natural and Applied Science, Department of Biology, Eskisehir Osmangazi University
26480, EskisehirTurkey
| | - Serap Gedikli
- Graduate School of Natural and Applied Science, Department of Biology, Eskisehir Osmangazi University
26480, EskisehirTurkey
| | - Ezgi Yardımcı
- Graduate School of Natural and Applied Science, Department of Biology, Eskisehir Osmangazi University
26480, EskisehirTurkey
| | - Figen Çalışkan
- Department of Biology, Faculty of Arts and Science, Eskisehir Osmangazi University
26480, EskisehirTurkey
| | - Ahmet Çabuk
- Department of Biology, Faculty of Arts and Science, Eskisehir Osmangazi University
26480, EskisehirTurkey
| |
Collapse
|
75
|
Pietravalle S, Aspray TJ. CO₂ and O₂ respiration kinetics in hydrocarbon contaminated soils amended with organic carbon sources used to determine catabolic diversity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 176:42-47. [PMID: 23410675 DOI: 10.1016/j.envpol.2013.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/27/2012] [Accepted: 01/08/2013] [Indexed: 06/01/2023]
Abstract
Multiple substrate induced respiration (MSIR) assays which assess the response of soils to carbon source amendment are effective approaches to determine catabolic diversity of soils. Many assays are based on a single short term (<6 h) time point measurement and usually limited to CO2 production only. However, repeated measurements of both CO2 and O2 simultaneously can provide additional valuable information. In this study, a MSIR assay involving eight carbon sources was applied to three hydrocarbon contaminated soils using continuous CO2 and O2 respiration measurements. Based on cumulative CO2 and O2 measurements at 4, 24 and 120 h, the soils were found to be distinct in terms of their catabolic diversity. Most noteworthy, however, was the response to the addition of maleic acid which provided strong evidence of abiotic CO2 efflux to be the overriding process, raising questions about the interpretation of CO2 only responses from organic acid addition in MSIR assays.
Collapse
|
76
|
Li YY, Yang H. Bioaccumulation and degradation of pentachloronitrobenzene in Medicago sativa. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 119:143-150. [PMID: 23474338 DOI: 10.1016/j.jenvman.2013.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/30/2013] [Accepted: 02/04/2013] [Indexed: 06/01/2023]
Abstract
Pentachloronitrobenzene (PCNB) is a fungicide belonging to the organochlorine family and used extensively in agriculture for crop production. Many studies have implied that PCNB has become an environmental concern due to its widespread contamination in eco-systems. However, whether PCNB is bioaccumulated, degraded and phytotoxic in plants is poorly understood. In this study, several alfalfa (Medicago sativa) cultivars were grown in soil with PCNB to investigate their absorption and catabolism, including PCNB residues in the soil and PCNB-induced toxic responses in plants. Alfalfa plants varied widely in their ability to accumulate and degrade PCNB. The degradation rate of PCNB was 66.26-77.68% after alfalfa growth in the soils for 20 d, while the rates in the control (soil without alfalfa) were only 48.42%. Moreover, concentrations of PCNB residues in the rhizosphere soil were significantly higher than those in the non-rhizosphere soils. Alfalfa exposed to 10 mg kg(-1) PCNB showed inhibited growth and oxidative damage, but the effects of PCNB on the cultivars differed significantly, indicating that the alfalfa cultivars have different tolerance to PCNB. Activities of invertase (INV), urease (URE), polyphenol oxidase (PPO), alkaline phosphatase (ALP) and acid phosphatase (ACP) were assayed in the treated soils and showed that the enzyme activities were altered after PCNB exposure. The URE, PPO, ALP and ACP activities were increased in soil following the planting of alfalfa. The objective of the study was to analyze the potential of different cultivars of alfalfa to accumulate and degrade PCNB from the contaminated soil.
Collapse
Affiliation(s)
- Ying Ying Li
- Jiangsu Key Laboratory of Pesticide Science, College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | | |
Collapse
|
77
|
Gao YF, Yang H, Zhan XH, Zhou LX. Scavenging of BHCs and DDTs from soil by thermal desorption and solvent washing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:1482-1492. [PMID: 22661262 DOI: 10.1007/s11356-012-0991-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 05/16/2012] [Indexed: 06/01/2023]
Abstract
Intensive remediation of abandoned former organochlorine pesticides (OCPs) manufacturing areas is necessary because the central and surrounding soils contaminated by OCPs are harmful to crop production and food safety. Organochlorine and its residues are persistent in environments and difficult to remove from contaminated soils due to their low solubility and higher sorption to the soils. We performed a comprehensive study on the remediation of OCPs-contaminated soils using thermal desorption technique and solvent washing approaches. The tested soil was thermally treated at 225, 325, 400, and 500 °C for 10, 20, 30, 45, 60, and 90 min, respectively. In addition, we tested soil washing with several organic solvents including n-alcohols and surfactants. The optimal ratio of soil/solvent was tested, and the recycling of used ethanol was investigated. Finally, activities of polyphenol oxidase (PPO), urease (URE), alkaline phosphatase, acid phosphatase (ACP), and invertase (INV) were assayed in the treated soils. The tested soil was thermally treated at 500 °C for 30 min, and the concentration of contaminants in soil was decreased from 3,115.77 to 0.33 mg kg(-1). The thermal desorption in soil was governed by the first-order kinetics model. For the chemical washing experiment, ethanol showed a higher efficiency than any other solvent. Using a 1:20 ratio of soil/solvent, the maximum removal of OCPs was achieved within 15 min. Under this condition, approximately 87 % of OCPs was removed from the soils. More than 90 % of ethanol in the spent wash fluid could be recovered. Activities of some enzymes in soils were increased after ethanol treatment. But ALP, ACP, and INV activities were decreased and PPO and URE showed slightly higher activities following remediation by thermal treatment. Both heating temperature and time were the key factors for thermal desorption of OCPs. The n-alcohol solvent showed higher removal of OCPs from soils than surfactants. The highly efficient removal of OCPs from soil was achieved using ethanol. More than 90 % of ethanol could be recovered and be reused following distillation. This study provides a cost-effective and highly efficient way to remediate the OCPs-contaminated soils.
Collapse
Affiliation(s)
- Yan Fei Gao
- Jiangsu Key Laboratory of Pesticide Science, College of Science, Nanjing Agricultural University, Weigang No. 1, Building of Chemistry, Nanjing, 210095, China
| | | | | | | |
Collapse
|
78
|
Akhmetzyanova LG, Saveliev AA, Selivanovskaya SY. Using the methods of statistical analysis to determine the safe content of oil products in gray forest soil. CONTEMP PROBL ECOL+ 2013. [DOI: 10.1134/s1995425512060029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
79
|
Li J, Song X, Hu G, Thring RW. Ultrasonic desorption of petroleum hydrocarbons from crude oil contaminated soils. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2013; 48:1378-1389. [PMID: 23705614 DOI: 10.1080/10934529.2013.781885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Ultrasonic irradiation was applied to improve the desorption of petroleum hydrocarbons (PHC) in crude oil from three types of soil. Soil A was an Ottawa sand, while soil B and soil C were fine soils that contained 27.6% and 55.3% of silt and clay contents, respectively. It was found that the ultrasonic desorption was highly related to soil types, with the highest and the lowest desorption occurring in coarse soil (i.e., soil A) and finer soil (i.e., soil C), respectively. Under the experimental conditions, the maximum ultrasonic desorption enhancement of the total petroleum hydrocarbons (TPH) reached 22% for soil A, 61% for soil B, and 49% for soil C, respectively. The maximum enhancement on the F2 (n-C10 to n-C16), F3 (n-C16 to n-C34), and F4 (n-C34 to n-C50) fractions of PHC reached 91, 44, and 51% for soil B, and 90, 38, and 31% for soil C, respectively. The desorption enhancement also illustrated an increasing trend with initial soil TPH concentration.
Collapse
Affiliation(s)
- Jianbing Li
- China-Canada Resources and Environmental Research Academy, North China Electric Power University, Beijing, China.
| | | | | | | |
Collapse
|
80
|
Han J, Jung J, Hyun S, Park H, Park W. Effects of nutritional input and diesel contamination on soil enzyme activities and microbial communities in antarctic soils. J Microbiol 2012; 50:916-24. [DOI: 10.1007/s12275-012-2636-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 11/30/2012] [Indexed: 11/25/2022]
|
81
|
Impact of long-term diesel contamination on soil microbial community structure. Appl Environ Microbiol 2012; 79:619-30. [PMID: 23144139 DOI: 10.1128/aem.02747-12] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Microbial community composition and diversity at a diesel-contaminated railway site were investigated by pyrosequencing of bacterial and archaeal 16S rRNA gene fragments to understand the interrelationships among microbial community composition, pollution level, and soil geochemical and physical properties. To this end, 26 soil samples from four matrix types with various geochemical characteristics and contaminant concentrations were investigated. The presence of diesel contamination significantly impacted microbial community composition and diversity, regardless of the soil matrix type. Clean samples showed higher diversity than contaminated samples (P < 0.001). Bacterial phyla with high relative abundances in all samples included Proteobacteria, Firmicutes, Actinobacteria, Acidobacteria, and Chloroflexi. High relative abundances of Archaea, specifically of the phylum Euryarchaeota, were observed in contaminated samples. Redundancy analysis indicated that increased relative abundances of the phyla Chloroflexi, Firmicutes, and Euryarchaeota correlated with the presence of contamination. Shifts in the chemical composition of diesel constituents across the site and the abundance of specific operational taxonomic units (OTUs; defined using a 97% sequence identity threshold) in contaminated samples together suggest that natural attenuation of contamination has occurred. OTUs with sequence similarity to strictly anaerobic Anaerolineae within the Chloroflexi, as well as to Methanosaeta of the phylum Euryarchaeota, were detected. Anaerolineae and Methanosaeta are known to be associated with anaerobic degradation of oil-related compounds; therefore, their presence suggests that natural attenuation has occurred under anoxic conditions. This research underscores the usefulness of next-generation sequencing techniques both to understand the ecological impact of contamination and to identify potential molecular proxies for detection of natural attenuation.
Collapse
|
82
|
Khan MI, Cheema SA, Tang X, Shen C, Sahi ST, Jabbar A, Park J, Chen Y. Biotoxicity assessment of pyrene in soil using a battery of biological assays. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 63:503-512. [PMID: 22941450 DOI: 10.1007/s00244-012-9793-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 07/26/2012] [Indexed: 06/01/2023]
Abstract
A test battery, composed of a range of biological assays, was applied to evaluate the ecological health of soil aged for 69 days and spiked with a range of pyrene levels (1.04, 8.99, 41.5, 72.6, 136, and 399 μg g(-1) dry soil; Soxhlet-extracted concentrations after 69 days of aging). Chinese cabbage (Brassica rapa), earthworm (Eisenia fetida), and bacteria (Vibrio fischeri) were used as test organisms to represent different trophic levels. Among the acute ecotoxicity bioassays used, the V. fischeri luminescence inhibition assay was the most sensitive indicator of pyrene toxicity. We observed >8 % light inhibition at the lowest concentration (1.04 μg g(-1)) pyrene, and this inhibition increased to 60 % at 72.6 μg g(-1). The sensitivity ranking for toxicity of the pyrene-contaminated soil in the present study was in the following decreasing order: root elongation of Chinese cabbage < earthworm mortality (14 days) < earthworm mortality (28 days) < luminescence inhibition (15 min) < luminescence inhibition (5 min). In addition, genotoxic effects of pyrene were also evaluated by using comet assay in E. fetida. The strong relationship between DNA damage and soil pyrene levels showed that comet assay is suitable for testing the genotoxicity of pyrene-polluted soil. In addition, tail moment was well correlated with soil pyrene levels (r (2) = 0.99). Thus, tail moment may be the most informative DNA-damage parameter representing the results of comet assay. Based on these results, the earthworm DNA damage assay and Microtox test are rapid and sensitive bioassays and can be used to assess the risk of soil with low to high levels of hydrocarbon pollution. Furthermore, an analysis of the toxic effects at several trophic levels is essential for a more comprehensive understanding of the damage caused by highly contaminated soil.
Collapse
Affiliation(s)
- Muhammad Imran Khan
- Institute of Environmental Science and Technology, Zhejiang University, Hangzhou, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Biodegradation of used motor oil in soil using organic waste amendments. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2012; 2012:587041. [PMID: 22919502 PMCID: PMC3388317 DOI: 10.1155/2012/587041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/18/2012] [Accepted: 04/23/2012] [Indexed: 11/17/2022]
Abstract
Soil and surface water contamination by used lubricating oil is a common occurrence in most developing countries. This has been shown to have harmful effects on the environment and human beings at large. Bioremediation can be an alternative green technology for remediation of such hydrocarbon-contaminated soil. Bioremediation of soil contaminated with 5% and 15% (w/w) used lubricating oil and amended with 10% brewery spent grain (BSG), banana skin (BS), and spent mushroom compost (SMC) was studied for a period of 84 days, under laboratory condition. At the end of 84 days, the highest percentage of oil biodegradation (92%) was recorded in soil contaminated with 5% used lubricating oil and amended with BSG, while only 55% of oil biodegradation was recorded in soil contaminated with 15% used lubricating oil and amended with BSG. Results of first-order kinetic model to determine the rate of biodegradation of used lubricating oil revealed that soil amended with BSG recorded the highest rate of oil biodegradation (0.4361 day(-1)) in 5% oil pollution, while BS amended soil recorded the highest rate of oil biodegradation (0.0556 day(-1)) in 15% oil pollution. The results of this study demonstrated the potential of BSG as a good substrate for enhanced remediation of hydrocarbon contaminated soil at low pollution concentration.
Collapse
|
84
|
Kauppi S, Romantschuk M, Strömmer R, Sinkkonen A. Natural attenuation is enhanced in previously contaminated and coniferous forest soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:53-63. [PMID: 21660637 DOI: 10.1007/s11356-011-0528-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 05/13/2011] [Indexed: 05/30/2023]
Abstract
PURPOSE Prevalence of organic pollutants or their natural analogs in soil is often assumed to lead to adaptation in the bacterial community, which results in enhanced bioremediation if the soil is later contaminated. In this study, the effects of soil type and contamination history on diesel oil degradation and bacterial adaptation were studied. METHODS Mesocosms of mineral and organic forest soil (humus) were artificially treated with diesel oil, and oil hydrocarbon concentrations (GC-FID), bacterial community composition (denaturing gradient gel electrophoresis, DGGE), and oil hydrocarbon degraders (DGGE + sequencing of 16S rRNA genes) were monitored for 20 weeks at 16°C. RESULTS Degradation was advanced in previously contaminated soils as compared with pristine soils and in coniferous organic forest soil as compared with mineral soil. Contamination affected bacterial community composition especially in the pristine mineral soil, where diesel addition increased the number of strong bands in the DGGE gel. Sequencing of cloned 16S rRNA gene fragments and DGGE bands showed that potential oil-degrading bacteria were found in mineral and organic soils and in both pristine and previously contaminated mesocosms. Fast oil degradation was not associated with the presence of any particular bacterial strain in soil. CONCLUSIONS We demonstrate at the mesocosm scale that previously contaminated and coniferous organic soils are superior environments for fast oil degradation as compared with pristine and mineral soil environments. These results may be utilized in preventing soil pollution and planning soil remediation.
Collapse
Affiliation(s)
- Sari Kauppi
- Department of Environmental Sciences, Section of Ecology, University of Helsinki, Lahti, Finland
| | | | | | | |
Collapse
|
85
|
Zhang S, Wang L, Hu J, Zhang W, Fu X, Le Y, Jin F. Organic carbon accumulation capability of two typical tidal wetland soils in Chongming Dongtan, China. J Environ Sci (China) 2011; 23:87-94. [PMID: 21476345 DOI: 10.1016/s1001-0742(10)60377-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We measured organic carbon input and content of soil in two wetland areas of Chongming Dongtan (Yangtze River Estuary) to evaluate variability in organic carbon accumulation capability in different wetland soils. Observed differences were investigated based on the microbial activity and environmental factors of the soil at the two sites. Results showed that the organic carbon content of wetland soil vegetated with Phragmites australis (site A) was markedly lower than that with P. australis and Spartina alterniflora (site B). Sites differences were due to higher microbial activity at site A, which led to higher soil respiration intensity and greater carbon outputs. This indicated that the capability of organic carbon accumulation of the site B soils was greater than at site A. In addition, petroleum pollution and soil salinity were different in the two wetland soils. After bio-remediation, the soil petroleum pollution at site B was reduced to a similar level of site A. However, the culturable microbial biomass and enzyme activity in the remediated soils were also lower than at site A. These results indicated that greater petroleum pollution at site B did not markedly inhibit soil microbial activity. Therefore, differences in vegetation type and soil salinity were the primary factors responsible for the variation in microbial activity, organic carbon output and organic carbon accumulation capability between site A and site B.
Collapse
Affiliation(s)
- Shiping Zhang
- College of Environmental Science and Engineering of Tongji University, State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China.
| | | | | | | | | | | | | |
Collapse
|
86
|
Tang J, Wang M, Wang F, Sun Q, Zhou Q. Eco-toxicity of petroleum hydrocarbon contaminated soil. J Environ Sci (China) 2011; 23:845-51. [PMID: 21790059 DOI: 10.1016/s1001-0742(10)60517-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Total petroleum hydrocarbons (TPH) contaminated soil samples were collected from Shengli Oilfield of China. Toxicity analysis was carried out based on earthworm acute toxicity, plant growth experiment and luminescent bacteria test. The soil was contaminated by-petroleum hydrogcarbons with TPH concentration of 10.57%. With lethal and sub-lethal rate as endpoint, earthworm test showed that the LD50 (lethal dose 50%) values in 4 and 7 days were 1.45% and 1.37% respectively, and the inhibition rate of earthworm body weight increased with higher oil concentration. TPH pollution in the soil inhibited seed germination in both wheat and maize experiment when the concentration of petroleum was higher than 0.1%. The EC50 (effective concentration 50%) for germination is 3.04% and 2.86% in maize and wheat, respectively. While lower value of EC50 for root elongation was to be 1.11% and 1.64% in maize and wheat, respectively, suggesting higher sensitivity of root elongation on petroleum contamination in the soil. The EC50 value in luminescent bacteria test was 0.47% for petroleum in the contaminated soil. From the experiment result, it was concluded that TPH content of 1.5% is considered to be a critical value for plant growth and living of earthworm and 0.5% will affect the activity of luminescent bacteria.
Collapse
Affiliation(s)
- Jingchun Tang
- College of Environmental Science and Engineering, Nankai University/Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300071, China.
| | | | | | | | | |
Collapse
|
87
|
Zhang C, Xu J, Liu X, Dong F, Kong Z, Sheng Y, Zheng Y. Impact of imazethapyr on the microbial community structure in agricultural soils. CHEMOSPHERE 2010; 81:800-806. [PMID: 20659755 DOI: 10.1016/j.chemosphere.2010.06.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 06/24/2010] [Accepted: 06/29/2010] [Indexed: 05/29/2023]
Abstract
Large amounts of imazethapyr were applied for weed control in cultivation fields in China, but their effects on the soil microbial community remains unclear. In this study, two agricultural soils, a silty loam (HS) and a loamy soil (QL), were spiked with imazethapyr (CK, 0.1, 1 and 10 mg kg(-1)) and incubated for 1, 15, 30, 60, 90 and 120 d. In addition, untreated controls received only water. The soil microbial community structures were characterized by investigating the phospholipid fatty acids (PLFA) and microbial biomass C. Soil microbial biomass C and total concentration of PLFA were variable with incubation time, which were also reduced by the addition of imazethapyr. Imazethapyr addition also decreased the ratios of GN/GP and fungi/bacteria. A larger stress level, measured as the ratio of PLFA (cyc17:0+cyc19:0)/(16:1ω7c+18:1ω7c), was found in the high concentration (1 and 10 mg kg(-1)) herbicide treatment groups. The effects of imazethapyr at the field application on soil microbial biomass and microbial community were minor. Principal component analysis (PCA) of the PLFA clearly separated the treatments and incubation times. Both soils showed different total PLFA concentrations and ratios of GN/GP and fungi/bacteria, but similar changes in the PLFA pattern upon soil treatment. The soil microbial community structure was shifted by the addition of imazethapyr, which recovered after 60d. In addition, the dissipation of imazethapyr was slow in both soils. Our results demonstrated that the addition of imazethapyr shifted the microbial community structure, but that it recovered after a period of incubation.
Collapse
Affiliation(s)
- Changpeng Zhang
- Key Laboratory of Pesticide Chemistry and Application, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | | | | | | | | | | | | |
Collapse
|
88
|
Wang J, Zhan X, Zhou L, Lin Y. Biological indicators capable of assessing thermal treatment efficiency of hydrocarbon mixture-contaminated soil. CHEMOSPHERE 2010; 80:837-44. [PMID: 20598340 DOI: 10.1016/j.chemosphere.2010.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Revised: 06/07/2010] [Accepted: 06/07/2010] [Indexed: 05/21/2023]
Abstract
In China, there are many special sites for recycling and washing the used drums, which release a variety of C5-C40 hydrocarbon mixture into the soil around the site. The remediation of these contaminated sites by thermal treatment is adopted ubiquitously and needs to be assessed. Here we report the feasibility of biological indicators applied to assess thermal treatment efficiency in such contaminated soil. A series of biological indicators, including seed germination index (SGI), root elongation index (REI), plant growth height, biomass, carbon dioxide evolved (CDE), soil respiration inhibition (SRI) and soil enzymatic activities, were employed to monitor or assess hydrocarbon mixture removal in thermal treated soil. The results showed that residual hydrocarbon mixture content correlated strongly negatively with SGI for sesamum (Sesamum indicum L.), plant height, and biomass for ryegrass (Lolium perenne L.) in the concentration ranges of 0-3990, 0-3170 and 0-2910 mg kg(-1), respectively. In contrast, REI for sesamum was positively correlated with residual hydrocarbon mixture content from 0 to 1860 mg kg(-1). In addition, both CDE and SRI demonstrated that 600 mg kg(-1) of residual hydrocarbon mixture content caused the highest amount of soil carbon dioxide emission and inhabitation of soil respiration. The results of soil enzymes indicated that 1000 mg kg(-1) of residual hydrocarbon mixture content was the threshold value of stimulating or inhibiting the activities of phosphatase and catalase, or completely destroying the activities of dehydrogenase, invertase, and urease. In conclusion, these biological indicators can be used as a meaningful complementation for traditional chemical content measurement in evaluating the environmental risk of the contaminated sites before and after thermal treatment.
Collapse
Affiliation(s)
- Jiangang Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | | | | |
Collapse
|
89
|
Investigation of saturated and aromatic hydrocarbon resistance mechanisms in Pseudomonas aeruginosa IBBML1. Open Life Sci 2009. [DOI: 10.2478/s11535-009-0050-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractPseudomonas aeruginosa IBBML1, isolated from Poeni petroleum sludge, was able to tolerate and degrade both saturated (n-hexane, n-heptane, n-hexadecane, cyclohexane) and aromatic (benzene, ethylbenzene, propylbenzene, xylene isomers, styrene) hydrocarbons. Molecular studies have revealed that the high hydrocarbon resistance of Pseudomonas aeruginosa IBBML1 could be due to the action of members of the HAE1 (hydrophobe/amphiphile efflux 1) family of transporters. It is further possible that additional mechanisms may account for the tolerance of Pseudomonas aeruginosa IBBML1 to hydrocarbons, and a combination of short-term and long-term mechanisms may act together in the adaptation of Pseudomonas aeruginosa IBBML1 cells to saturated and aromatic hydrocarbons. β-galactosidase activity measurements revealed that there was significant induction of the lacZ gene in Pseudomonas aeruginosa IBBML1 cells grown in the presence of either 5% and 10% (v/v) saturated or aromatic hydrocarbons, compared with control (cells incubated without hydrocarbons). Rhodamine 6G accumulation in Pseudomonas aeruginosa IBBML1 cells grown in the presence of 5% and 10% (v/v) saturated hydrocarbons was higher than rhodamine 6G accumulation in cells grown in the presence of 5% and 10% (v/v) aromatic hydrocarbons. The study of cellular and molecular modifications to Pseudomonas aeruginosa IBBML1 induced by 5% and 10% (v/v) saturated and aromatic hydrocarbons revealed a complex response of bacterial cells to the presence of different hydrophobic substrates in the culture medium.
Collapse
|
90
|
Serrano A, Tejada M, Gallego M, Gonzalez JL. Evaluation of soil biological activity after a diesel fuel spill. THE SCIENCE OF THE TOTAL ENVIRONMENT 2009; 407:4056-61. [PMID: 19395000 DOI: 10.1016/j.scitotenv.2009.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 02/25/2009] [Accepted: 03/09/2009] [Indexed: 04/13/2023]
Abstract
Diesel fuel contamination in soils may be toxic to soil microorganisms and plants and acts as a source of groundwater contamination. The objective of this study was to evaluate the soil biological activity and phytotoxicity to garden cress (Lepidium sativum L.) in a soil polluted with diesel fuel. For this, a diesel fuel spill was simulated on agricultural soil at dose 1 l m(-2). During the experiment (400 days) the soil was not covered in vegetation and no agricultural tasks were carried out. A stress period of 18 days following the spill led to a decrease in soil biological activity, reflected by the soil microbial biomass and soil enzymatic activities, after which it increased again. The n-C(17)/Pristine and n-C(18)/Phytane ratios were correlated negatively and significantly with the dehydrogenase, arylsulphatase, protease, phosphatase and urease activities and with the soil microbial biomass during the course of the experiment. The beta-glucosidase activity indicated no significant connection with the parameters related with the evolution of hydrocarbons in the soil. Finally, the germination activity of the soil was seen to recover 200 days after the spill.
Collapse
Affiliation(s)
- A Serrano
- Department of Analytical Chemistry, Campus of Rabanales, University of Cordoba, Cordoba, Spain
| | | | | | | |
Collapse
|
91
|
Wyszkowski M, Ziólkowska A. Role of compost, bentonite and calcium oxide in restricting the effect of soil contamination with petrol and diesel oil on plants. CHEMOSPHERE 2009; 74:860-5. [PMID: 19081125 DOI: 10.1016/j.chemosphere.2008.10.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 10/15/2008] [Accepted: 10/17/2008] [Indexed: 05/12/2023]
Abstract
The studies have been initiated to find a way to use compost, bentonite and calcium oxide in order to reduce the effect of contaminated soil with a small amount of petrol or diesel oil on the yield and nitrogen content in crop plants--spring rape and oats cultivated as the main and aftercrop. Petrol and diesel oil had a toxic effect on the growth of the plants and modified nitrogen content, with the intensity of the effect depending upon their type and dose and on the type of applied substance reducing the effect of oil derivatives. Spring rape (main crop), was more sensitive, and oats (aftercrop) was less so. Petroleum-derived substances reduced the yield of spring rape by a maximum of 73% for petrol and by as much as 99% for diesel oil. Nitrogen content was higher for spring rape than for oats and larger for petrol than for diesel oil. Adding bentonite, calcium oxide or compost to the soil contaminated with oil derivatives usually reduced the negative effect of petrol and diesel oil on plant growth and reduced the protein nitrogen content and increased the total nitrogen content in plants. Bentonite proved to be the most effective, with calcium oxide and compost slightly less so. The most positive results were obtained for spring rape as the main crop. An addition of compost, bentonite and calcium oxide to soil had a stronger modifying effect on nitrogen content in plants on soils contaminated by diesel oil than petrol.
Collapse
Affiliation(s)
- Mirosław Wyszkowski
- Department of Environmental Chemistry, University of Warmia and Mazury, Plac Łódzki 4, 10-718 Olsztyn, Poland.
| | | |
Collapse
|