51
|
Silvestri D, Wacławek S, Sobel B, Torres–Mendieta R, Pawlyta M, Padil VV, Filip J, Černík M. Modification of nZVI with a bio-conjugate containing amine and carbonyl functional groups for catalytic activation of persulfate. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117880] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
52
|
|
53
|
Choi JH, Kim JG, Kim HB, Shin DH, Baek K. Dual radicals-enhanced wet chemical oxidation of non-biodegradable chemicals. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123746. [PMID: 33113729 DOI: 10.1016/j.jhazmat.2020.123746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
Total organic carbon (TOC) has been suggested and utilized as an index of organic matter in aqueous phases. The overall performance of TOC is highly dependent on the method of oxidation of organic matter to carbon dioxide, such as high-temperature combustion (HTC) and wet chemical oxidation (WCO). HTC requires more energy and maintenance cost, it is a major barrier to the field application. In contrast, WCO is more suitable for the application of on-line monitoring systems due to requiring lower energy and easy maintenance. However, WCO shows lower oxidation than HTC, thus, oxidation performance should be improved for the application to the field. In this study, a dual radical system (DRS), including sulfate and hydroxyl radicals, was proposed to enhance oxidation ability. The DRS uses alkaline pH and persulfate to generate sulfate radicals, which have been used to activate hydroxyl radicals and oxidize organic matter. The oxidation mechanism for the DRS has been verified using model chemicals with different reaction rate constants. The applicability of the DRS has been confirmed using authentic wastewater with a high concentration of chloride. In this study, the DRS showed similar performance compared to the HTC within 10 % error range. The DRS shows similar oxidation performance with HTC even at a high concentration of chloride. DRS did not show interference by the presence of chloride up to 30,000 mg/L of chloride. Results of this study indicate that the DRS can enhance overall oxidation performance compared to the conventional WCO system.
Collapse
Affiliation(s)
- Jeong-Hwan Choi
- Department of Environment & Energy and Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 561-756, Republic of Korea
| | - Jong-Gook Kim
- Department of Environment & Energy and Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 561-756, Republic of Korea
| | - Hye-Bin Kim
- Department of Environment & Energy and Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 561-756, Republic of Korea
| | - Dong-Hun Shin
- Department of Environment & Energy and Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 561-756, Republic of Korea
| | - Kitae Baek
- Department of Environment & Energy and Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo, 561-756, Republic of Korea.
| |
Collapse
|
54
|
Ma J, Ding Y, Chi L, Yang X, Zhong Y, Wang Z, Shi Q. Degradation of benzotriazole by sulfate radical-based advanced oxidation process. ENVIRONMENTAL TECHNOLOGY 2021; 42:238-247. [PMID: 31145672 DOI: 10.1080/09593330.2019.1625959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
Benzotriazole (BTA) is a recalcitrant contaminant that is widely distributed in aquatic environments. This study explored the effectiveness of sulfate radical-based advanced oxidation process in degrading BTA (SR-AOP). The sulfate radical was generated by heat activation of persulfate (PS). Our results show alkaline pH promoted the BTA degradation. The solution pH also affected the speciation of total radicals. Sulfate radical ( S O 4 ⋅ - ) predominated at acidic pH while hydroxyl radical (HO•) predominated at basic pH. High temperature, high PS concentration and low BTA concentration promoted the BTA degradation. Influence of water matrix constituents on the reaction kinetics was assessed. We found that ≤10 mM of Cl- promoted the reaction, but 100 mM Cl- inhibited it. H C O 3 - was similar to Cl-. Br- and C O 3 2 - inhibited the reaction while S O 4 2 - did not affect the reaction. N O 3 - of ≤10 mM did not affect the reaction, but 100 mM of N O 3 - inhibited it. Eleven degradation intermediates were identified using ultra-high solution Orbitrap mass spectrometry. Based on the intermediates identified, possible reaction pathways were proposed. Overall, SR-AOP can effectively mineralize BTA, but water matrix constituents greatly influenced the reaction kinetics and thus should be carefully considered for its practical application. Abbreviations: BTA, benzotriazole; PS, persulfate; PMS, peroxymonosulfate; SPC, sodium percarbonate; AOP, advanced oxidation process; PS-AOP, persulfate-based advanced oxidation process; SR-AOP, sulfate radical-based advanced oxidation process; TAP, thermally activated persulfate; TOC, total organic carbon; TBA, tert-butyl alcohol.
Collapse
Affiliation(s)
- Jie Ma
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, People's Republic of China
| | - Yi Ding
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, People's Republic of China
| | - Liping Chi
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, People's Republic of China
| | - Xin Yang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, People's Republic of China
| | - Yingjie Zhong
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, People's Republic of China
| | - Zhiheng Wang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, People's Republic of China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, People's Republic of China
| |
Collapse
|
55
|
Liu T, Wu K, Wang M, Jing C, Chen Y, Yang S, Jin P. Performance and mechanisms of sulfadiazine removal using persulfate activated by Fe 3O 4@CuO x hollow spheres. CHEMOSPHERE 2021; 262:127845. [PMID: 32799147 DOI: 10.1016/j.chemosphere.2020.127845] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
A Fe-Cu bimetal catalyst (FCHS) was synthesized by depositing Fe3O4 on the shell of CuOx hollow spheres, which were prepared via a soft template method. Several characterization methods, including XRD, SEM-EDS&mapping, TEM, FTIR, and XPS, were used to reveal the morphology and surface properties of FCHS. The characterization results demonstrated that the double-shell hollow structure is formed with a dense coating of Fe3O4 nanoparticles on the surface of CuOx hollow spheres. FCHS can exhibit excellent catalytic activity to degrade sulfadiazine (SDZ) with the oxidant of persulfate (PS). The optimal SDZ removal performance was explored by adjusting reaction parameters, including catalyst dosage, oxidant dosage, and solution pH. The SDZ removal efficiency in the FCHS + PS system could reach 95% at the optimal reaction condition ([catalyst]0 = 0.2 g/L, [PS]0 = 2 mM, pH = 7.0) with 5 mg/L of SDZ. Meanwhile, the degradation efficiency decreased with the coexistence of phosphate or carbonate anions. According to the results of radicals scavenging experiments and the electron paramagnetic resonance analysis, the radicals of SO4·-, O2·- and ·OH generated in the FCHS + PS system contribute to the degradation of SDZ. Moreover, the results of XPS revealed that the solid-state charge-transfer redox couple of Fe(III)/Fe(II) and Cu(I)/Cu(II) can promote the activation of PS. It means that the cooperation effect between Cu oxides and Fe oxides in the double-shell structure is beneficial to the catalytic degradation of SDZ. Furthermore, four possible pathways for SDZ degradation were proposed according to the analysis of intermediate products detected by the LCMS-IT-TOF.
Collapse
Affiliation(s)
- Ting Liu
- College of Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kun Wu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Beiling District, Xi'an, 710055, Shaanxi Province, China; Key Laboratory of Water Resource, Environment and Ecology, MOE, Xi'an, 710055, China.
| | - Meng Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Beiling District, Xi'an, 710055, Shaanxi Province, China
| | - Chunyang Jing
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Beiling District, Xi'an, 710055, Shaanxi Province, China
| | - Yuanyuan Chen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Beiling District, Xi'an, 710055, Shaanxi Province, China
| | - Shengjiong Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Beiling District, Xi'an, 710055, Shaanxi Province, China
| | - Pengkang Jin
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Beiling District, Xi'an, 710055, Shaanxi Province, China
| |
Collapse
|
56
|
Tao Y, Monfort O, Brigante M, Zhang H, Mailhot G. Phenanthrene decomposition in soil washing effluents using UVB activation of hydrogen peroxide and peroxydisulfate. CHEMOSPHERE 2021; 263:127996. [PMID: 33297035 DOI: 10.1016/j.chemosphere.2020.127996] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/08/2020] [Accepted: 08/10/2020] [Indexed: 06/12/2023]
Abstract
In this work, the decomposition of phenanthrene (PHE) in mimic and real soil washing (SW) effluents was investigated using UVB light assisted activation of hydrogen peroxide (H2O2) and peroxydisulfate (PDS) oxidation processes. The impact of oxidant concentration, initial pH, and coexisting inorganic anions (Cl-, HCO3- and NO3-) on PHE removal was evaluated. PHE degradation efficiency under UVB irradiation followed the order of UVB/PDS > UVB/H2O2 > UVB. The increase of PHE decomposition efficiency was observed with increasing oxidant dose in the range of 2-30 mM upon the two processes. It was found Cl- played different roles in the two activation systems depending on the solution pH and Cl- concentration. The influence of HCO3- on PHE elimination was negligible in the UVB/PDS process, while an inhibitory effect was observed in the UVB/H2O2 system. Nitrate inhibited the PHE decay in both UVB/H2O2 and UVB/PDS processes at the investigated pH 3.3, 7.1 and 8.6. Finally, the application of the two activation processes to the treatment of real SW effluents indicated that up to 85.0% of PHE degradation could be reached under 6 h UVB irradiation with PDS, indicating UVB/PDS process is a promising alternative for SW effluent treatment.
Collapse
Affiliation(s)
- Yufang Tao
- Department of Environmental Science and Engineering, Wuhan University, 430079, China; Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000, Clermont-Ferrand, France
| | - Olivier Monfort
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000, Clermont-Ferrand, France
| | - Marcello Brigante
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000, Clermont-Ferrand, France
| | - Hui Zhang
- Department of Environmental Science and Engineering, Wuhan University, 430079, China.
| | - Gilles Mailhot
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
57
|
Tufail A, Price WE, Hai FI. A critical review on advanced oxidation processes for the removal of trace organic contaminants: A voyage from individual to integrated processes. CHEMOSPHERE 2020; 260:127460. [PMID: 32673866 DOI: 10.1016/j.chemosphere.2020.127460] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Advanced oxidation processes (AOPs), such as photolysis, photocatalysis, ozonation, Fenton process, anodic oxidation, sonolysis, and wet air oxidation, have been investigated extensively for the removal of a wide range of trace organic contaminants (TrOCs). A standalone AOP may not achieve complete removal of a broad group of TrOCs. When combined, AOPs produce more hydroxyl radicals, thus performing better degradation of the TrOCs. A number of studies have reported significant improvement in TrOC degradation efficiency by using a combination of AOPs. This review briefly discusses the individual AOPs and their limitations towards the degradation of TrOCs containing different functional groups. It also classifies integrated AOPs and comprehensively explains their effectiveness for the degradation of a wide range of TrOCs. Integrated AOPs are categorized as UV irradiation based AOPs, ozonation/Fenton process-based AOPs, and electrochemical AOPs. Under appropriate conditions, combined AOPs not only initiate degradation but may also lead to complete mineralization. Various factors can affect the efficiency of integrated processes including water chemistry, the molecular structure of TrCOs, and ions co-occurring in water. For example, the presence of organic ions (e.g., humic acid and fulvic acid) and inorganic ions (e.g., halide, carbonate, and nitrate ions) in water can have a significant impact. In general, these ions either convert to high redox potential radicals upon collision with other reactive species and increase the reaction rates, or may act as radical scavengers and decrease the process efficiency.
Collapse
Affiliation(s)
- Arbab Tufail
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - William E Price
- Strategic Water Infrastructure Lab, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Faisal I Hai
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
58
|
Li X, Wu B, Zhang Q, Liu Y, Wang J, Li F, Ma F, Gu Q. Complexation of humic acid with Fe ions upon persulfate/ferrous oxidation: Further insight from spectral analysis. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123071. [PMID: 32534396 DOI: 10.1016/j.jhazmat.2020.123071] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/08/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
The complexation of humic acid (HA) with dissolved Fe ions is beneficial to 2,4-dinitrotoluene degradation by PS/Fe2+, while the mechanism on HA binding with Fe ions is still unclear and warrants further exploration. In this study, the binding characteristics of HA with Fe ions and structural variations of HA during the complexation with Fe ions were investigated. Synchronous fluorescence analysis showed that the complexation ability of HA with Fe species at acid (pH = 5.0) and neutral condition (pH = 7.0) is higher than that of alkaline condition (pH = 9.0 and 11.0). Different components in HA including humic-like fraction (C1), fulvic-like fraction (C2), protein-like fraction (C3), and microbial-derived humic-like fraction (C4) were identified by excitation emission matrix-parallel factor analysis (EEM-PARAFAC). The complexation ability of C1, C2, and C4 with Fe species is higher than that of C3, and C1 and C4 primarily contributed to the complexation of HA with Fe species. Moreover, the sequence of HA structural variation during the complexation with Fe species was elucidated by Fourier transform infrared spectroscopy coupled with two-dimensional correlation spectroscopy analysis (2D FTIR COS), and could be concluded as follows: ester→ quinoid rings→ aromatic groups→ aliphatic groups→ phenolic groups.
Collapse
Affiliation(s)
- Xiaodong Li
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Bin Wu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Qian Zhang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Yuqin Liu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jiaqi Wang
- School of Chemical and Environmental Engineering, China University of Mining & Technology, Beijing, 100083, China
| | - Fasheng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fujun Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Qingbao Gu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
59
|
Pesticide decontamination using UV/ferrous-activated persulfate with the aid neuro-fuzzy modeling: A case study of Malathion. Food Res Int 2020; 137:109557. [DOI: 10.1016/j.foodres.2020.109557] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/20/2020] [Accepted: 07/13/2020] [Indexed: 11/30/2022]
|
60
|
Guan YH, Chen J, Chen LJ, Jiang XX, Fu Q. Comparison of UV/H 2O 2, UV/PMS, and UV/PDS in Destruction of Different Reactivity Compounds and Formation of Bromate and Chlorate. Front Chem 2020; 8:581198. [PMID: 33102448 PMCID: PMC7545204 DOI: 10.3389/fchem.2020.581198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/18/2020] [Indexed: 01/27/2023] Open
Abstract
In this study, we compared the decontamination kinetics of various target compounds and the oxidation by-products (bromate and chlorate) of PMS, PDS, and H2O2 under UV irradiation (UV/PMS, UV/PDS, UV/H2O2). Probes of different reactivity with hydroxyl and sulfate radicals, such as benzoic acid (BA), nitrobenzene (NB), and trichloromethane (TCM), were selected to compare the decontamination efficiency of the three oxidation systems. Experiments were performed under acidic, neutral, and alkaline pH conditions to obtain a full-scale comparison of UV/peroxides. Furthermore, the decontamination efficiency was also compared in the presence of common radical scavengers in water bodies [bicarbonate, carbonate, and natural organic matter (NOM)]. Finally, the formation of oxidation by-products, bromate, and chlorate, was also monitored in comparison in pure water and tap water. Results showed that UV/H2O2 showed higher decontamination efficiency than UV/PDS and UV/PMS for BA degradation while UV/H2O2 and UV/PMS showed better decontamination performance than UV/PDS for NB degradation under acidic and neutral conditions. UV/PMS was the most efficient among the three processes for BA and NB degradation under alkaline conditions, while UV/PDS was the most efficient for TCM degradation under all pH conditions. In pure water, both bromate and chlorate were formed in UV/PDS, small amounts of bromate and rare chlorate were observed in UV/PMS, and no detectable bromate and chlorate were formed in UV/H2O2. In tap water, no bromate and chlorate were detectable for all three systems.
Collapse
Affiliation(s)
- Ying-Hong Guan
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, China
| | - Jin Chen
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, China
| | - Li-Jun Chen
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, China
| | - Xin-Xin Jiang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, China
| |
Collapse
|
61
|
Du J, Kim SH, Hassan MA, Irshad S, Bao J. Application of biochar in advanced oxidation processes: supportive, adsorptive, and catalytic role. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:37286-37312. [PMID: 31933079 DOI: 10.1007/s11356-020-07612-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/01/2020] [Indexed: 05/20/2023]
Abstract
The advanced oxidation processes (AOPs), especially sulphate radical (SO4•-)-based AOPs (SR-AOPs), have been considered more effective, selective, and prominent technologies for the removal of highly toxic emerging contaminants (ECs) due to wide operational pH range and relatively higher oxidation potential (2.5-3.1 V). Recently, biochar (BC)-based composite materials have been introduced in AOPs due to the dual benefits of adsorption and catalytic degradation, but the scientific review of BC-based catalysts for the generation of reactive oxygen species (ROSs) through radical- and non-radical-oriented routes for EC removal was rarely reported. The chemical treatments, such as acid/base treatment, chemical oxidation, surfactant incorporation, and coating and impregnation of minerals, were applied to make BC suitable as supporting materials (SMs) for the loading of Fenton catalysts to boost up peroxymonosulphate/persulphate/H2O2 activation to get ROSs including •OH, SO4•-, 1O2, and O2•- for targeted pollutant degradation. In this review, all the possible merits of BC-based catalysts including supportive, adsorptive, and catalytic role are summarised along with the possible route for the development prospects of BC properties. The limitations of SR-AOPs especially on production of non-desired oxyanions, as well as disinfection intermediates and their potential solutions, have been identified. Lastly, the knowledge gap and future-oriented research needs are highlighted.
Collapse
Affiliation(s)
- Jiangkun Du
- School of Environmental Studies, China University of Geosciences, 430074, Wuhan, People's Republic of China.
| | - Sang Hoon Kim
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 136-791, Korea
| | - Muhammad Azher Hassan
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Sana Irshad
- School of Environmental Studies, China University of Geosciences, 430074, Wuhan, People's Republic of China
| | - Jianguo Bao
- School of Environmental Studies, China University of Geosciences, 430074, Wuhan, People's Republic of China.
| |
Collapse
|
62
|
Wan Y, Wan J, Zhao JR, Wang Y, Luo T, Yang S, Liu Y. Facile preparation of iron oxide doped Fe-MOFs-MW as robust peroxydisulfate catalyst for emerging pollutants degradation. CHEMOSPHERE 2020; 254:126798. [PMID: 32334254 DOI: 10.1016/j.chemosphere.2020.126798] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/04/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
A novel catalyst (Fe-MOFs-MW) was facilely synthesized under microwave-assisted with NaOH as modulator for activating peroxydisulfate (PDS). The accelerated nucleation process was confirmed by Johnson-Mehl-Avrami (JMA) model. There were abundant reactive sites on prepared Fe-MOFs-MW while maintaining high Space-Time-Yield value up to 2300 kg/m3·d. Degradation performance of Fe-MOFs-MW as PDS catalyst on sulfamethoxazole (SMX) removal was evaluated. Results indicated that Fe-MOFs-MW with more Fe element anchored (10%) exhibited excellent catalytic capacity for PDS. Besides, the fantastic stability and reusability were confirmed through recycle experiment. After recycled for 4 times, the removal efficiency of SMX and TOC was 88% and 31.3% compared to 98% and 38% without recycling, respectively. An accurate prediction model on the degradation effect with water matrices coexisted was established by response surface methodology (RSM) method. Moreover, SO4·-, O2·- and ·OH were confirmed as the main reactive species through chemical quenching and EPR tests. The mechanism of Fe-MOFs-MW/PDS process mainly based on electron circulation theory was proposed. As the robust PDS catalyst, facile prepared Fe-MOFs-MW was promising in the treatment of emerging pollutants.
Collapse
Affiliation(s)
- Yongjie Wan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jinquan Wan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, 510640, China.
| | - Joe R Zhao
- Tri-Y Environmental Research Institute, 2655 Lillooet St., Vancouver, BC V5M 4P7, Canada
| | - Yan Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, 510640, China
| | - Ting Luo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Shou Yang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yaxin Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
63
|
Camacho-Muñoz D, Lawton LA, Edwards C. Degradation of okadaic acid in seawater by UV/TiO 2 photocatalysis - Proof of concept. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:139346. [PMID: 32447082 PMCID: PMC7298613 DOI: 10.1016/j.scitotenv.2020.139346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/16/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
The consumption of contaminated shellfish with marine toxins causes adverse socioeconomical, environmental and health impacts. The marine toxin okadaic acid (OA) provokes diarrhetic shellfish poisoning (DSP) syndrome characterized by severe gastrointestinal symptoms. Therefore, there is increasing interest in removing these toxins from the marine environment to protect shellfish harvesting sites. Photocatalysis is proposed as an efficient method to detoxify the marine environment. In this study, Prorocentrum lima was used to produce high purity DSP toxins, in particular OA, for degradation studies. The profiling, characterization and quantification of DSP toxins in the culture of P. lima were achieved by ultrahigh performance liquid chromatography coupled to quadrupole-time of flight mass spectrometry (UPLC-QTOF-MSE) for accurate-mass full spectrum acquisition data. The effectiveness of UV/TiO2 system to degrade OA in seawater was assessed in lab-scale experiments and identification of transformation products was proposed based on the data obtained during analysis by UPLC-QTOF-MSE. The detoxification potential of the UV/TiO2 system was investigated using the phosphatase inhibition assay. Sufficient amount of high-purity OA (25 mg, >90% purity) was produced in-house for use in photocatalysis experiments by simple reversed-phase flash chromatography. Complete degradation of OA was observed in seawater after 30 min and 7.5 min in deionized water. The rate constants fitted with the pseudo-first order kinetic model (R2 > 0.96). High-resolution mass spectrometry analysis of the photocatalyzed OA allowed tentative identification of four transformation products. Detoxification was achieved in parallel with the degradation of OA in deionized water and artificial ocean water (≤20 min) but not for seawater. Overall, results suggest that UV/TiO2 photocatalysis can be an effective approach for degrading OA and their TPs in the marine environment. To the best of our knowledge, this is the first report on the use of photocatalysis to degrade marine toxins and its promising potential to protect shellfish harvesting sites.
Collapse
Affiliation(s)
- Dolores Camacho-Muñoz
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK.
| | - Linda Ann Lawton
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK
| | - Christine Edwards
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10 7GJ, UK
| |
Collapse
|
64
|
Gao J, Luo C, Gan L, Wu D, Tan F, Cheng X, Zhou W, Wang S, Zhang F, Ma J. A comparative study of UV/H 2O 2 and UV/PDS for the degradation of micro-pollutants: kinetics and effect of water matrix. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:24531-24541. [PMID: 32306270 DOI: 10.1007/s11356-020-08794-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Organic micro-pollutants such as pesticides and endocrine disruptors cause serious harm to human health and aquatic ecosystem. In this study, the potential degradation of atrazine (ATZ), triclosan (TCS), and 2,4,6-trichloroanisole (TCA) by UV-activated peroxydisulfate (UV/PDS) and UV-activated H2O2 (UV/H2O2) processes were evaluated under different conditions. Results showed that UV/PDS process was more effective than UV/H2O2 under the same conditions. Increasing oxidant dosage or decreasing the initial ATZ, TCS, and TCA concentrations promoted the degradation rates of these three compounds. The presence of natural organic matter (NOM) could effectively scavenge sulfate radical (SO4•-) and hydroxyl radical (HO•) and reduced the removal rates of target compounds. Degradation rates of ATZ and TCA decreased with pH increasing from 5.0 to 9.0 in UV/PDS process, while in UV/H2O2 process, the increase of solution pH had little effect on ATZ and TCA degradation. In the UV/PDS and UV/H2O2 oxidation process, when the solution pH increased from 5 to 8, the removal rates of TCS decreased by 19% and 1%, while when the solution pH increased to 9, the degradation rates of TCS increased by 23% and 17%. CO32-/HCO3- had a small inhibitory effect on ATZ and TCA degradation by UV/H2O2 and UV/PDS processes but promoted the degradation of TCS significantly (> 2 mM). Cl- had little effect on the degradation of ATZ, TCA, and TCS in UV/H2O2 process. Cl- significant inhibited on the degradation of ATZ and TCS, but the influence of Cl- on the degradation of TCA was weak in UV/PDS process. Based on these experimental results, the various contributions of those secondary radicals (i.e., carbonate radical, chlorine radical) were discussed. This study can contribute to better understand the reactivities when UV/PDS and UV/H2O2 are applied for the treatment of micro-pollutant-containing waters.
Collapse
Affiliation(s)
- Jing Gao
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250010, China
| | - Congwei Luo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250010, China.
| | - Lu Gan
- Shandong Electric Power Engineering Consulting Institute Corp., LTD., Jinan, 250010, China
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250010, China.
| | - Fengxun Tan
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250010, China
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250010, China
| | - Weiwei Zhou
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250010, China
| | - Shishun Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250010, China
| | - Fumiao Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250010, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
65
|
Lai WWP, Chen KL, Lin AYC. Solar photodegradation of the UV filter 4-methylbenzylidene camphor in the presence of free chlorine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137860. [PMID: 32197163 DOI: 10.1016/j.scitotenv.2020.137860] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/24/2020] [Accepted: 03/10/2020] [Indexed: 06/10/2023]
Abstract
UV filters are essential ingredients in sunscreens and many personal care products. The coexposure of UV filters to solar photolysis and free chlorine (solar/free chlorine) is inevitable in outdoor swimming pools and many other aquatic matrices, and this study aims to investigate the degradation mechanism of one specific UV filter, 4-methylbenzylidene camphor (4MBC), under solar/free chlorine system. Under solar irradiation alone, 4MBC only undergoes isomerization from (E)- to (Z)-4MBC; however, in the solar/free chlorine system, 4MBC was significantly degraded, with a pseudo-first-order rate constant of 0.0137 s-1 (pH = 7). The effects of the initial free chlorine concentration, solution pH and water matrix (presence of dissolved organic matter, HCO3- and Cl-) were studied. The results revealed that reactive chlorine species (RCS) are the dominant species influencing 4MBC degradation via solar/free chlorine, while OH and O3 played minor roles. These species would likely react with the 4-methylstyrene moiety of 4MBC and subsequently lead to 4MBC degradation through hydroxylation, chlorine substitution, oxidation and demethylation. Nevertheless, the dramatic increase in acute toxicity (Microtox®) during solar/free chlorine degradation of 4MBC highlights the need to further explore the transformation byproducts as well as their associated risks to humans and the environment.
Collapse
Affiliation(s)
- Webber Wei-Po Lai
- Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei 106, Taiwan
| | - Kuen-Lin Chen
- Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei 106, Taiwan
| | - Angela Yu-Chen Lin
- Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei 106, Taiwan; International Graduate Program of Molecular Science and Technology, National Taiwan University (NTU-MST), Taipei 106, Taiwan.
| |
Collapse
|
66
|
Palharim PH, Graça CAL, Teixeira ACSC. Comparison between UVA- and zero-valent iron-activated persulfate processes for degrading propylparaben. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:22214-22224. [PMID: 32124285 DOI: 10.1007/s11356-020-08141-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Conventional wastewater treatments are not efficient in removing parabens, which may thus end up in surface waters, posing a threat to aquatic biota and human health. As an alternative treatment, persulfate (PS)-driven advanced oxidation technologies have gained growing attention for removing these pollutants. In this study, the degradation of propylparaben (PrP) by UVA- and zero-valent iron (ZVI)-activated persulfate was investigated. The effects of initial PS concentration ([PS]0) and irradiance or ZVI concentration were explored using the Doehlert experimental design. For the UVA-activated system, the specific PrP degradation rate (k) and percent removal were consistently higher for increasing [PS]0 and irradiance, varying in the ranges 0.0053-0.0192 min-1 and 37.9-77.3%, respectively. In contrast, extremely fast PrP degradation was achieved through the ZVI/PS process (0.3304 < k < 0.9212 min-1), with removal percentages above 97.5%; in this case, paraben degradation was hindered for a ZVI dosage beyond 40 mg L-1. Regarding toxicity, ECOSAR predictions suggest that the degradation products elucidated by LC-MS/MS are less toxic than PrP toward fish, daphnid, and green algae. In addition, both processes showed to be strongly dependent on the water matrix, being ZVI/PS more impacted for a MBR effluent, although its performance was much better than that exhibited by the UVA-driven process (t1/2 of 65.4 and 276.1 min, respectively).
Collapse
Affiliation(s)
- Priscila H Palharim
- Research Group in Advanced Oxidation Processes (AdOx), Department of Chemical Engineering, University of São Paulo, Av. Prof. Luciano Gualberto, 380, tv 3, São Paulo, 05508-900, Brazil.
| | - Cátia A L Graça
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| | - Antonio C S C Teixeira
- Research Group in Advanced Oxidation Processes (AdOx), Department of Chemical Engineering, University of São Paulo, Av. Prof. Luciano Gualberto, 380, tv 3, São Paulo, 05508-900, Brazil
| |
Collapse
|
67
|
Coupling Persulfate-Based AOPs: A Novel Approach for Piroxicam Degradation in Aqueous Matrices. WATER 2020. [DOI: 10.3390/w12061530] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The activated persulfate degradation of piroxicam, a non-steroidal anti-inflammatory drug (NSAID) belonging to oxicams, was investigated. Persulfate was activated with thermal energy or (UV-A and simulated solar) irradiation. Using 250 mg/L sodium persulfate at 40 °C degraded almost completely 0.5 mg/L of piroxicam in 30 min. Increasing piroxicam concentration from 0.5 to 4.5 mg/L decreased its removal. The observed kinetic constant was increased almost ten times from 0.077 to 0.755 min−1, when the temperature was increased from 40 to 60 °C, respectively. Process efficiency was enhanced at pH 5–7. At ambient conditions and 30 min of irradiation, 94.1% and 89.8% of 0.5 mg/L piroxicam was removed using UV-A LED or simulated solar radiation, respectively. Interestingly, the use of simulated sunlight was advantageous over UV-A light for both secondary effluent, and 20 mg/L of humic acid solution. Unlike other advanced oxidation processes, the presence of bicarbonate or chloride in the range 50–250 mg/L enhanced the degradation rate, while the presence of humic acid delayed the removal of piroxicam. The use of 0.5 and 10 g/L of methanol or tert-butanol as radical scavengers inhibited the reaction. The coupling of thermal and light activation methods in different aqueous matrices showed a high level of synergy. The synergy factor was calculated as 68.4% and 58.4% for thermal activation (40 °C) coupled with either solar light in 20 mg/L of humic acid or UV-A LED light in secondary effluent, respectively.
Collapse
|
68
|
Gao YQ, Zhang J, Zhou JQ, Li C, Gao NY, Yin DQ. Persulfate activation by nano zero-valent iron for the degradation of metoprolol in water: influencing factors, degradation pathways and toxicity analysis. RSC Adv 2020; 10:20991-20999. [PMID: 35517766 PMCID: PMC9054289 DOI: 10.1039/d0ra01273d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022] Open
Abstract
In this study, nano zero-valent iron (nZVI) was utilized to activate persulfate (PS) for the degradation of metoprolol (MTP), a commonly used drug for curing cardiovascular diseases, in water. Quenching tests indicated that both the sulfate radical (SO4˙−) and hydroxyl radical (˙OH) contributed to the degradation of MTP, while SO4˙− seemed to play a large role under natural pH conditions. Batch tests were conducted to investigate the effects of several influencing factors, such as PS concentration, initial MTP concentration, pH, temperature and common anions, on the degradation performance of MTP. Generally, lower MTP concentration and pH values, and higher PS concentration and temperature favoured MTP degradation. HCO3−, NO3− and SO42− were found to inhibit MTP degradation, while Cl− enhanced MTP degradation. Several corrosion products of nZVI, including Fe3O4, Fe2O3 and FeSO4, were formed during the reaction, which was reflected by the combined XRD and XPS analysis. Degradation pathways of MTP were proposed according to the identified transformation products, and the peak areas of the major products along with the time were also monitored. Finally, the toxicity of the reaction solution was assessed by experiments using Aliivibrio fischeri. Overall, it could be concluded that nZVI/PS might be a promising method for the rapid treatment of MTP-caused water pollution. The influencing factors, mechanism and toxicity of MTP degradation by nZVI activated persulfate were investigated.![]()
Collapse
Affiliation(s)
- Yu-Qiong Gao
- School of Environment and Architecture, University of Shanghai for Science and Technology Shanghai 200093 China +86 21 55275979
| | - Jia Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology Shanghai 200093 China +86 21 55275979
| | - Jin-Qiang Zhou
- School of Environment and Architecture, University of Shanghai for Science and Technology Shanghai 200093 China +86 21 55275979
| | - Cong Li
- School of Environment and Architecture, University of Shanghai for Science and Technology Shanghai 200093 China +86 21 55275979
| | - Nai-Yun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University Shanghai 200092 China
| | - Da-Qiang Yin
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University Shanghai 200092 China
| |
Collapse
|
69
|
Zhao X, Wu W, Jing G, Zhou Z. Activation of sulfite autoxidation with CuFe 2O 4 prepared by MOF-templated method for abatement of organic contaminants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114038. [PMID: 31995773 DOI: 10.1016/j.envpol.2020.114038] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/30/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Copper ferrite (denoted as CuFe2O4MOF), prepared via a complexation reaction to obtain bimetal-organic frameworks (Cu/Fe bi-MOFs), followed by a combustion process to remove the MOF template, is employed as a heterogeneous activator to promote sulfite autoxidation for the removal of organic contaminants. At pH 8.0, more than 80% of the recalcitrant organic contaminant iohexol (10 μM) can be removed within 2 min by the activation of sulfite (500 μM) with CuFe2O4MOF (0.1 g L-1). CuFe2O4MOF exhibits more pronounced catalytic activity in accelerating sulfite autoxidation for iohexol abatement compared to that fabricated by hydrothermal and sol-gel combustion methods. Radical quenching studies suggest that the sulfate radical (SO4•-) is the main reactive species responsible for iohexol abatement. The performance of CuFe2O4MOF/sulfite for iohexol abatement can be affected by several critical influencing factors, including the solution pH and the presence of humic acid, Cl-, and HCO3-. The effect of the ionic strength and the results of the attenuated total reflectance-Fourier transform infrared (ATR-FTIR) analysis indicate that sulfite autoxidation in the presence of CuFe2O4MOF involves an inner-sphere interaction with the surface Cu(II) sites of CuFe2O4MOF. X-ray photoelectron spectroscopy (XPS) characterization suggests that the surface Cu(II)-Cu(I)-Cu(II) redox cycle is responsible for efficient SO4•- production from sulfite. Overall, CuFe2O4MOF can be considered an alternative activator for sulfite autoxidation for potential application in the treatment of organic-contaminated water.
Collapse
Affiliation(s)
- Xiaodan Zhao
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Wenjing Wu
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Guohua Jing
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Zuoming Zhou
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China.
| |
Collapse
|
70
|
Yang H, Li Y, Chen Y, Ye G, Sun X. Comparison of ciprofloxacin degradation in reclaimed water by UV/chlorine and UV/persulfate advanced oxidation processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1576-1588. [PMID: 31100181 DOI: 10.1002/wer.1144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
This study analyzed the ciprofloxacin (CIP) degradation in real reclaimed water through UV/chlorine and UV/persulfate (UV/PS) advanced oxidation processes. The influence of oxidant dosage, pH, inorganic anions, and humic acid (HA) on the oxidation capacity and performances of various UV-based processes was investigated. The results revealed that the CIP degradation rate constants in the UV/chlorine and UV/PS processes were higher than that in UV/H2 O2 , direct-UV, NaClO, and K2 S2 O8 processes. The removal rate peaked at 0.1 mM oxidant dosage for 1 μM CIP, while the rate constant was highest at pH 5 (UV/chlorine) and pH 7 (UV/PS). The presence of Cl- , HCO3 - , and HA inhibited CIP removal in both processes. The degradation rate observed in reclaimed water was high, but still lower than that in laboratory water by 9.2 (UV/chlorine) and 9 (UV/PS) times. The UV/chlorine and UV/PS processes were found to be more cost-effective and hence more feasible in removing refractory compounds in reclaimed water. PRACTITIONER POINTS: The addition of oxidant and UV irradiation together had a pronounced promotion in the degradation of CIP. Cl· and SO4 ·- had potential importance for enhancing CIP degradation in UV/chlorine and UV/PS process, respectively. UV/chlorine and UV/PS processes exhibited effective removal capability to CIP in real reclaimed water.
Collapse
Affiliation(s)
- Haiyan Yang
- Sino-Dutch R&D Center for Future Wastewater Treatment Technologies, Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, China
| | - Yi Li
- Sino-Dutch R&D Center for Future Wastewater Treatment Technologies, Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, China
| | - Yihua Chen
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, China
| | - Guihong Ye
- Sino-Dutch R&D Center for Future Wastewater Treatment Technologies, Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, China
| | - Xiaobo Sun
- Sino-Dutch R&D Center for Future Wastewater Treatment Technologies, Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, China
| |
Collapse
|
71
|
Nie C, Dai Z, Meng H, Duan X, Qin Y, Zhou Y, Ao Z, Wang S, An T. Peroxydisulfate activation by positively polarized carbocatalyst for enhanced removal of aqueous organic pollutants. WATER RESEARCH 2019; 166:115043. [PMID: 31514098 DOI: 10.1016/j.watres.2019.115043] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs)/peroxydisulfate (PDS) is a green oxidative system for abatement of aqueous organic pollutants, while the powder form and poor cycling performance of the catalyst limit its practical application. To solve these problems, fabricating a MWCNT cathode (negative polarization) to coupling carbocatalysis-driven PDS activation with electrosorption of organic pollutant was previously demonstrated to be a possible solution to these problems. To further improve the activation efficiency of PDS, positive polarization of MWCNT electrode (anode) was adapted to activate PDS for removing acyclovir and phenol in this work. Under a working voltage of 1.2 V, the MWCNT anode was more efficient than the MWCNT cathode and the non-polarized MWCNT electrode for PDS activation and removal of organic pollutants, owing to the enhanced attraction between S2O82- anions and anode. Although the positive/negative polarization of MWCNT electrode doesn't alter the nonradical mechanism involved in MWCNTs/PDS system, theoretical calculations suggest that different polarization affect the electron configuration and oxidative capacity of activated S2O82- bounded to MWCNTs differently, and that the adsorbed S2O82- with stretched S-O bond and much higher oxidative capacity than that in the case of non-polarized MWCNT electrode is responsible for the MWCNTs anode, while adsorbed S2O82- with stretched O-O bond and slightly higher oxidative capacity is responsible for the MWCNTs cathode. Finally, implications of operation parameters including electrode potential, energy cost, pH, etc. on the elimination efficiency by MWCNT anode/PDS system were investigated and the results suggest that the MWCNT anode/PDS is an efficient and economical metal-free electrochemical oxidative system for organic contaminants remediation.
Collapse
Affiliation(s)
- Chunyang Nie
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 51006, People's Republic of China
| | - Zhenhua Dai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 51006, People's Republic of China
| | - Hong Meng
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 51006, People's Republic of China
| | - Xiaoguang Duan
- School of Chemical Engineering, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yanlin Qin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 51006, People's Republic of China
| | - Yanbo Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Xuhui District, Shanghai, 200237, China
| | - Zhimin Ao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 51006, People's Republic of China.
| | - Shaobin Wang
- School of Chemical Engineering, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 51006, People's Republic of China
| |
Collapse
|
72
|
Feng Y, Shen M, Wang Z, Liu G. Transformation of atenolol by a laccase-mediator system: Efficiencies, effect of water constituents, and transformation pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109555. [PMID: 31419699 DOI: 10.1016/j.ecoenv.2019.109555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
In this study, we investigated the transformation of atenolol (ATL) by the naturally occurring laccase from Trametes versicolor in aqueous solution. Removal efficiency of ATL via laccase-catalyzed reaction in the presence of various laccase mediators was examined, and found that only the mediator 2, 2, 6, 6-tetramethyl-1-piperidinyloxy (TEMPO) was able to greatly promote ATL transformation. The influences of TEMPO concentration, laccase dosage, as well as solution pH and temperature on ATL transformation efficiency were tested. As TEMPO concentrations was increased from 0 to 2000 μM, ATL transformation efficiency first increased and then decreased, and the optimal TEMPO concentration was determined as 500 μM. ATL transformation efficiency was gradually increased with increasing laccase dosage. ATL transformation was highly pH-dependent with an optimum pH of 7.0, and it was almost constant over a temperature range of 25-50 °C. Humic acid inhibited ATL transformation through competition reaction with laccase. The presence of anions HCO3- and CO32- reduced ATL transformation due to both anions enhanced solution pHs, while Cl-, SO42-, and NO3- at 10 mM showed no obvious influence. The main transformation products were identified, and the potential transformation pathways were proposed. After enzymatic treatment, the toxicity of ATL and TEMPO mixtures was greatly reduced. The results of this study might present an alternative clean strategy for the remediation of ATL contaminated water matrix.
Collapse
Affiliation(s)
- Yiping Feng
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Mengyao Shen
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhu Wang
- Research Institute of Environmental Studies at Greater Bay, Rural Non-point Source Pollution Comprehensive Management Technology Center of Guangdong Province, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Guoguang Liu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
73
|
Accelerated photocatalytic degradation of quinolone antibiotics over Z-scheme MoO3/g-C3N4 heterostructure by peroxydisulfate under visible light irradiation: Mechanism; kinetic; and products. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.08.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
74
|
Guan C, Jiang J, Shen Y, Pang S, Luo C, Zhao X. Carbon Materials Inhibit Formation of Nitrated Aromatic Products in Treatment of Phenolic Compounds by Thermal Activation of Peroxydisulfate in the Presence of Nitrite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9054-9062. [PMID: 31282149 DOI: 10.1021/acs.est.9b01354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recent studies have reported that toxic nitrated aromatic products are generated during treatment of phenolic compounds by thermally activated peroxydisulfate (thermal/PDS) in the presence of nitrite (NO2-). This work explored the potential of carbon materials on controlling the formation of nitrated aromatic products using phenol as a model compound. In the presence of selected carbon materials including diverse carbon nanotubes (CNT) and powdered activated carbon (PAC), the transformation kinetics of phenol was significantly enhanced, primarily attributed to nonradical activation of PDS by carbon materials. Nitrophenols (NPs) including 2-NP and 4-NP were formed in phenol oxidation by the thermal/PDS/NO2- process, due to the reaction of phenol with reactive nitrogen species generated from NO2- oxidation. The addition of carbon materials obviously inhibited NPs formation under various experimental conditions. The bonding of nitro groups on the CNT surface was clearly confirmed by means of various characterizations, probably resulting from the competitive reaction of reactive nitrogen species with CNT vs phenol. The controlling effect of carbon materials was also verified in the cases of other phenolic compounds. Therefore, the addition of carbon materials may be a promising approach to control the formation of undesirable nitrated byproducts by the thermal/PDS process in the presence of NO2-.
Collapse
Affiliation(s)
- Chaoting Guan
- Institute of Environmental and Ecological Engineering , Guangdong University of Technology , Guangzhou 510006 , China
- State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Jin Jiang
- Institute of Environmental and Ecological Engineering , Guangdong University of Technology , Guangzhou 510006 , China
- State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Yongming Shen
- Institute of Environmental and Ecological Engineering , Guangdong University of Technology , Guangzhou 510006 , China
| | - Suyan Pang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, School of Municipal and Environmental Engineering , Jilin Jianzhu University , Changchun 130118 , China
| | - Congwei Luo
- School of Municipal and Environmental Engineering , Shandong Jianzhu University , Jinan 250010 , China
| | - Xi Zhao
- State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology , Harbin 150090 , China
| |
Collapse
|
75
|
Ahmadi S, Igwegbe CA, Rahdar S. The application of thermally activated persulfate for degradation of Acid Blue 92 in aqueous solution. INTERNATIONAL JOURNAL OF INDUSTRIAL CHEMISTRY 2019. [DOI: 10.1007/s40090-019-0188-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
76
|
Chen C, Feng H, Deng Y. Re-evaluation of sulfate radical based-advanced oxidation processes (SR-AOPs) for treatment of raw municipal landfill leachate. WATER RESEARCH 2019; 153:100-107. [PMID: 30703674 DOI: 10.1016/j.watres.2019.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/22/2018] [Accepted: 01/13/2019] [Indexed: 05/27/2023]
Abstract
Sulfate radical (SO4-) -based advanced oxidation processes (SR-AOPs) have proven effective for simultaneously removing refractory dissolved organic matter (DOM) and ammonia in municipal landfill leachates. However, the knowledge on the competition of leachate DOM and ammonia for SO4-, the utilization efficiency of persulfate, as well as the reaction pathways and final products of ammonia oxidation during the SR-AOP treatment remains little known, thereby leading to a lack of a comprehensive evaluation of the emerging leachate treatment technology. The objective of this study was to further investigate the performance of a thermally activated persulfate system for treatment of a mature landfill leachate and re-evaluate the benefits and restrictions of SR-AOPs for leachate treatment. The laboratory experimental results showed that removal patterns of chemical oxygen demand (COD) and ammonia relied heavily upon the dose of persulfate that could be thermally activated to produce reactive sulfate radicals, reflecting the competition of leachate DOM, ammonia, and non-target leachate constituents for SO4-. The utilization efficiency of the added persulfate could be more efficiently utilized for removing the two target leachate pollutants at a lower persulfate dose, whereas more persulfate was wasted due to the reactions with non-target leachate constituents (e.g. Cl- and CO32-) and/or self-decomposition with the increasing persulfate dose. During the treatment, ammonia was oxidized, via the direct attack of SO4- and/or by molecular chlorine produced from the reactions of chloride and sulfate radicals, into nitrate and nitrogen gas, while nitrite was not detected. Of importance, this study highlighted three potentially negative impacts of SR-AOPs on the quality of treated leachate, including accumulation of total dissolved solids, the production of undesirable nitrate, and the pH decrease due to the continuous formation of hydrochloric acid. Therefore, the three issues should be carefully evaluated when a SR-AOP is selected for leachate treatment. Because these impacts become less pronounced with a decreasing persulfate dose, SR-AOPs as a pre-treatment, which is achieved at a relatively low persulfate dose, may be an appropriate option for the SR-AOP application to leachate treatment.
Collapse
Affiliation(s)
- Cuibai Chen
- School of Water Resources and Environment, Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences, Beijing, 100083, China; Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ, 07043, United States
| | - Huan Feng
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ, 07043, United States
| | - Yang Deng
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ, 07043, United States.
| |
Collapse
|
77
|
Rodríguez-Chueca J, Varella Della Giustina S, Rocha J, Fernandes T, Pablos C, Encinas Á, Barceló D, Rodríguez-Mozaz S, Manaia CM, Marugán J. Assessment of full-scale tertiary wastewater treatment by UV-C based-AOPs: Removal or persistence of antibiotics and antibiotic resistance genes? THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:1051-1061. [PMID: 30586792 DOI: 10.1016/j.scitotenv.2018.10.223] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/04/2018] [Accepted: 10/16/2018] [Indexed: 06/09/2023]
Abstract
This research reports for the first time the full-scale application of different homogeneous Advanced Oxidation Processes (AOPs) (H2O2/UV-C, PMS/UV-C and PMS/Fe(II)/UV-C) for the removal of antibiotics (ABs) and antibiotic resistance genes (ARGs) from wastewater effluent at Estiviel wastewater treatment plant (WWTP) (Toledo, Spain). AOPs based on the photolytic decomposition of H2O2 and peroxymonosulfate tested at low dosages (0.05-0.5 mM) and with very low UV-C contact time (4-18 s) demonstrated to be more efficient than UV-C radiation alone on the removal of the analyzed ABs. PMS (0.5 mM) combined with UV-C (7 s contact time) was the most efficient treatment in terms of AB removal: 7 out of 10 ABs detected in the wastewater were removed more efficiently than using the other oxidants. In terms of ARGs removal efficiency, UV-C alone seemed the most efficient treatment, although H2O2/UV-C, PMS/UV-C and PMS/Fe(II)/UV-C were supposed to generate higher concentrations of free radicals. The results show that treatments with the highest removal of ABs and ARGs did not coincide, which could be attributed to the competition between DNA and oxidants in the absorption of UV photons, reducing the direct photolysis of the DNA. Whereas the photolytic ABs removal is improved by the generation of hydroxyl and sulfate radicals, the opposite behavior occurs in the case of ARGs. These results suggest that a compromise between ABs and ARGs removal must be achieved in order to optimize wastewater treatment processes.
Collapse
Affiliation(s)
- Jorge Rodríguez-Chueca
- Department of Chemical and Environmental Technology (ESCET), Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933, Móstoles, Madrid, Spain; Department of Chemical and Environmental Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/ José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Saulo Varella Della Giustina
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, 17003 Girona, Spain
| | - Jaqueline Rocha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
| | - Telma Fernandes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
| | - Cristina Pablos
- Department of Chemical and Environmental Technology (ESCET), Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933, Móstoles, Madrid, Spain
| | - Ángel Encinas
- Department of Innovation & Technology, FCC Aqualia, S.A., C/ Montesinos 28, 06002 Badajoz, Spain
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, 17003 Girona, Spain; Environmental Chemistry Department, IDAEA-CSIC, Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, 17003 Girona, Spain
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
| | - Javier Marugán
- Department of Chemical and Environmental Technology (ESCET), Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933, Móstoles, Madrid, Spain.
| |
Collapse
|
78
|
Farooq U, Danish M, Lyu S, Brusseau ML, Gu M, Zaman WQ, Qiu Z, Sui Q. The impact of surface properties and dominant ions on the effectiveness of G-nZVI heterogeneous catalyst for environmental remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:1182-1188. [PMID: 30360250 PMCID: PMC6435274 DOI: 10.1016/j.scitotenv.2018.09.148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 05/14/2023]
Abstract
The surface properties of nanocomposites are influenced by the existence of inorganic species that may affect its performance for specific catalytic applications. The impact of different ionic species on particular catalytic activity had not been investigated to date. In this study, the surface charge (zeta potential) of graphene-oxide-supported nano zero valent iron (G-nZVI) was tested in definitive cationic (Na+, K+, Ca2+ and Mg2+) and anionic (Br-, Cl-, NO3-, SO42-, and HCO3-) environments. The efficiency of G-nZVI catalyst was inspected by measuring the generation of reactive oxygen species (ROS) for the degradation of 1,1,1-trichloroethane (TCA) in sodium percarbonate (SPC) system. Tests conducted using probe compounds confirmed the generation of OH and O2- radicals in the system. In addition, the experiments performed using scavenging agents certified that O2- were primary radicals responsible for TCA removal, along with prominent contribution from OH radicals. The study confirmed that G-nZVI catalytic capability for TCA degradation is notably affected by various cationic species. The presence of Ni2+ and Cu2+ significantly enhanced (94%), whereas Na+ and K+ had minor effects on TCA removal. Overall, the results indicated that groundwater ionic composition may have low impact on the effectiveness of G-nZVI-catalyzed peroxide TCA treatment.
Collapse
Affiliation(s)
- Usman Farooq
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200098, China
| | - Muhammad Danish
- Department of Chemical Engineering, University of Engineering and Technology, Lahore, Pakistan
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200098, China.
| | - Mark L Brusseau
- Soil, Water and Environmental Science Department, School of Earth and Environmental Sciences, The University of Arizona, 429 Shantz Bldg., Tucson, AZ 85721, United States
| | - Mengbin Gu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Waqas Qamar Zaman
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Zhaofu Qiu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200098, China.
| |
Collapse
|
79
|
Chen P, Zhang Q, Shen L, Li R, Tan C, Chen T, Liu H, Liu Y, Cai Z, Liu G, Lv W. Insights into the synergetic mechanism of a combined vis-RGO/TiO 2/peroxodisulfate system for the degradation of PPCPs: Kinetics, environmental factors and products. CHEMOSPHERE 2019; 216:341-351. [PMID: 30384303 DOI: 10.1016/j.chemosphere.2018.10.096] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/01/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
In recent years, how to effectively remove emerging organic pollutants in water bodies has been studied extensively, especially in the actual complex water environment. In the present study, an effective wastewater treatment system that combined photocatalysis and an oxidizing agent was investigated. Specifically, visible-light driven reduced graphene oxide (RGO)/TiO2 composites were prepared, and peroxodisulfate (PDS) was used as electron acceptor to accelerate the photocatalytic activity of this material. The vis-RGO/TiO2/PDS system exhibited outstanding properties in the degradation of diclofenac (DCF), which was also facilitated by acidic conditions and Cl-. Lake water, tap water, river water and HCO3- decreased the DCF degradation rate, while NO3- affected the system only slightly. Low concentrations of fulvic acid (FA) promoted the degradation of DCF via the generation of excited states, whereas a high concentration of FA inhibited the degradation, which was likely due to the light screening effect. The photocatalytic mechanism revealed that PDS served as an electron acceptor for the promotion of electron-hole pair separation and the generation of additional reactive oxygen species, while the RGO served as an electric conductor. The active substances, h+, OH, 1O2, SO4- and O2- were generated in this system, O2- and h+ played significant roles in the degradation of DCF based electron spin resonance tests and radical quenching results. According to the mass spectrometry results, the amide bond cleavage, dechlorination reaction, hydroxyl addition reaction, and decarboxylation reaction were the primary transformative pathways.
Collapse
Affiliation(s)
- Ping Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Qianxin Zhang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Lingzhi Shen
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Ruobai Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Cuiwen Tan
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Tiansheng Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Haijin Liu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, Xinxiang, 453007, China
| | - Yang Liu
- Faculty of Environmental and Biological Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Zongwei Cai
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Guoguang Liu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Wenying Lv
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
80
|
Song W, Li J, Wang Z, Zhang X. A mini review of activated methods to persulfate-based advanced oxidation process. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:573-579. [PMID: 30924812 DOI: 10.2166/wcc.2018.168] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Persulfate-based advanced oxidation has been widely applied in environmental remediation for degrading contaminants. In recent years, numerous kinds of organic analytes including pesticides, dyes and pharmaceuticals, have emerged and related researches on the activation methods, the mechanism and the application have been performed. The activation is critical in persulfate-based advanced oxidation because the persulfate alone has a weaker oxidation potential to degrade these organic pollutants. Hence various activation methods have been extensively investigated to achieve a higher oxidation efficiency. These novel methods are gradually expanding the applicability and practicality. This review focuses on the classification of the different activation methods based on whether it is related to the substances or not. The effect of the environmental conditions (solution pH, dosage and the co-existing substance) on the oxidation capacity are also discussed.
Collapse
Affiliation(s)
- Wei Song
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China E-mail:
| | - Ji Li
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China E-mail:
| | - Zhuoyue Wang
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China E-mail:
| | - Xiaolei Zhang
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China E-mail:
| |
Collapse
|
81
|
Li R, Cai M, Liu H, Liu G, Lv W. Thermo-activated peroxydisulfate oxidation of indomethacin: Kinetics study and influences of co-existing substances. CHEMOSPHERE 2018; 212:1067-1075. [PMID: 30286536 DOI: 10.1016/j.chemosphere.2018.08.126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 08/02/2018] [Accepted: 08/24/2018] [Indexed: 05/27/2023]
Abstract
The widespread occurrence of non-steroidal anti-inflammatory drugs (NSAIDs) (e.g., Indomethacin) in the ambient environment has attracted growing concerns due to their potential threats to ecosystems and human health. Herein, we investigated the degradation of indomethacin (IM) by thermo-activated peroxydisulfate (PDS). The pseudo first-order rate constant (kobs) of degradation of IM was increased significantly with higher temperatures and PDS doses. Moreover, when the initial pH value was raised from 5 to 9 the IM degradation was initially decreased and then increased. Basic conditions were favorable for the removal of IM in the thermo-activated peroxydisulfate system. A response surface methodology based on the Box-Behnken design (BBD) was successfully employed for the optimization of the thermo-activated peroxydisulfate (PDS) system. The presence of chlorine ions manifested a dual effect on the degradation of IM, while bicarbonate and SRFA (as a NOM model) reduced it. Radical scavenging tests and electron spin resonance (ESR) revealed that the dominant oxidizing species were SO4- and OH at pH 9. Furthermore, the TOC removal efficiency attained 28.8% and the release of Cl-was 38.5% at 60 °C within 24min, while the mineralization rate of IM were 85.5% with the PDS concentration up to 20 mM at 2 h oxidation. To summarize, thermo-activated PDS oxidation is a promising technique for the remediation of IM-contaminated water.
Collapse
Affiliation(s)
- Ruobai Li
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Meixuan Cai
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Haijin Liu
- School of Environment, Henan Normal University, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, China
| | - Guoguang Liu
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Wenying Lv
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
82
|
Metheniti ME, Frontistis Z, Ribeiro RS, Silva AMT, Faria JL, Gomes HT, Mantzavinos D. Degradation of propyl paraben by activated persulfate using iron-containing magnetic carbon xerogels: investigation of water matrix and process synergy effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:34801-34810. [PMID: 28986771 DOI: 10.1007/s11356-017-0178-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 09/11/2017] [Indexed: 06/07/2023]
Abstract
An advanced oxidation process comprising an iron-containing magnetic carbon xerogel (CX/Fe) and persulfate was tested for the degradation of propyl paraben (PP), a contaminant of emerging concern, in various water matrices. Moreover, the effect of 20 kHz ultrasound or light irradiation on process performance was evaluated. The pseudo-first order degradation rate of PP was found to increase with increasing SPS concentration (25-500 mg/L) and decreasing PP concentration (1690-420 μg/L) and solution pH (9-3). Furthermore, the effect of water matrix on kinetics was detrimental depending on the complexity (i.e., wastewater, river water, bottled water) and the concentration of matrix constituents (i.e., humic acid, chloride, bicarbonate). The simultaneous use of CX/Fe and ultrasound as persulfate activators resulted in a synergistic effect, with the level of synergy (between 35 and 50%) depending on the water matrix. Conversely, coupling CX/Fe with simulated solar or UVA irradiation resulted in a cumulative effect in experiments performed in ultrapure water.
Collapse
Affiliation(s)
- Maria Evangelia Metheniti
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504, Patras, Greece
| | - Zacharias Frontistis
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504, Patras, Greece
| | - Rui S Ribeiro
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Adrián M T Silva
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Joaquim L Faria
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Helder T Gomes
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Dionissios Mantzavinos
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504, Patras, Greece.
| |
Collapse
|
83
|
Weng CH, Tao H. Highly efficient persulfate oxidation process activated with Fe0 aggregate for decolorization of reactive azo dye Remazol Golden Yellow. ARAB J CHEM 2018. [DOI: 10.1016/j.arabjc.2015.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
84
|
Zhou Y, Xiang Y, He Y, Yang Y, Zhang J, Luo L, Peng H, Dai C, Zhu F, Tang L. Applications and factors influencing of the persulfate-based advanced oxidation processes for the remediation of groundwater and soil contaminated with organic compounds. JOURNAL OF HAZARDOUS MATERIALS 2018; 359:396-407. [PMID: 30055429 DOI: 10.1016/j.jhazmat.2018.07.083] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/04/2018] [Accepted: 07/23/2018] [Indexed: 05/06/2023]
Abstract
Persulfate is the latest oxidant which is being used increasingly for the remediation of groundwater and soil contaminated with organic compounds. It is of great significant to offer readers a general summary about different methods of activating persulfate, mainly including heat-activated, metal ions-activated, UV-activated, and alkaline-activated. Meanwhile, in addition to persulfate concentration as an influencing factor for persulfate oxidation process, selected information like temperature, anions, cations, pH, and humic acid are presented and discussed. The last section focuses on the advantages of different activated persulfate processes, and the suggestions and research needs for persulfate-based advanced oxidation in the remediation of polluted groundwater and soil.
Collapse
Affiliation(s)
- Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Yujia Xiang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yangzhuo He
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yuan Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Hui Peng
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Chunhao Dai
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Feng Zhu
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
85
|
Kang YM, Kim MK, Zoh KD. Effect of nitrate, carbonate/bicarbonate, humic acid, and H 2O 2 on the kinetics and degradation mechanism of Bisphenol-A during UV photolysis. CHEMOSPHERE 2018; 204:148-155. [PMID: 29655107 DOI: 10.1016/j.chemosphere.2018.04.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/13/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
In this study, the effects of natural water components (nitrate, carbonate/bicarbonate, and humic acid) on the kinetics and degradation mechanisms of bisphenol A (BPA) during UV-C photolysis and UV/H2O2 reaction were examined. The presence of NO3- (0.04-0.4 mM) and CO32-/HCO3- (0.4-4 mM) ions increased BPA degradation during UV photolysis. Humic acid less than 3 mg/L promoted BPA degradation, but greater than 3 mg/L of humic acid inhibited BPA degradation. During the UV/H2O2 reaction, all water matrix components acted as radical scavengers in the order of humic acid > CO32-/HCO3- > NO3-. All of the degradation reactions agreed with the pseudo-first-order kinetics. While eight byproducts (m/z = 122, 136, 139, 164, 181, 244, 273, 289) were identified in UV-C/NO3- photolysis reaction, four (m/z = 122, 136, 164, 244) and three byproducts (m/z = 122, 136, 164) were observed during UV-C/NO3-/CO32-/HCO3- and UV-C/CO32-/HCO3- reactions. Nitrogenated and hydrogenated byproducts were first observed during the UV-C/NO3- photolysis, but only hydrogenated byproducts as adducts were detected during the UV-C/NO3-/CO32-/HCO3- photolysis. Nitrogenated and hydrogenated byproducts were formed in the early stage of degradation by OH or NO2 radicals, and these byproducts were subsequently degraded into smaller compounds with further reaction during UV-C/NO3- and UV-C/NO3-/CO32-/HCO3- reactions. In contrast, BPA was directly degraded into smaller compounds by β-scission of the isopropyl group by CO3-/HCO3 radicals during UV-C/CO32-/HCO3- reaction. Our results imply that the water components can change the degradation mechanism of BPA during UV photolysis.
Collapse
Affiliation(s)
- Young-Min Kang
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Moon-Kyung Kim
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea
| | - Kyung-Duk Zoh
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, South Korea.
| |
Collapse
|
86
|
Benincá C, Charao Boni E, Gonçalves FF, Primel EG, Freire FB, Zanoelo EF. Photo-fenton and UV photo degradation of naphthalene with zero- and two-valent iron in the presence of persulfate. CHEM ENG COMMUN 2018. [DOI: 10.1080/00986445.2018.1469015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Cristina Benincá
- School of Chemistry and Food, Federal University of Rio Grande, Santo Antônio da Patrulha, Rio Grande do Sul, Brazil
| | - Eduardo Charao Boni
- School of Chemistry and Food, Federal University of Rio Grande, Santo Antônio da Patrulha, Rio Grande do Sul, Brazil
| | - Fabio Ferreira Gonçalves
- School of Chemistry and Food, Federal University of Rio Grande, Santo Antônio da Patrulha, Rio Grande do Sul, Brazil
| | - Ednei Gilberto Primel
- School of Chemistry and Food, Federal University of Rio Grande, Santo Antônio da Patrulha, Rio Grande do Sul, Brazil
| | - Flavio Bentes Freire
- Academic Center of Civil Engineering, Federal University of Technology, Curitiba, Paraná, Brazil
| | | |
Collapse
|
87
|
Ma J, Li H, Yang Y, Li X. Influence of water matrix species on persulfate oxidation of phenol: reaction kinetics and formation of undesired degradation byproducts. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 2017:340-350. [PMID: 29851386 DOI: 10.2166/wst.2018.147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The present study explored the influence of Cl-, Br-, CO32-, HCO3-, PO43-, HPO42-, NO3-, SO32- and natural organic matter (NOM) on the reaction kinetics and the formation of undesired degradation byproducts during phenol oxidation by heat-activated persulfate (PS). CO32- and PO43- promoted the phenol degradation, because the hydrolysis of CO32- and PO43- created basic pH conditions which were conducive to enhanced PS oxidation rate. Br- promoted the reaction by reacting with sulfate radicals (SO4•-) to produce bromine radicals that can selectively react with electron-rich phenol. NOM scavenged reactive SO4•-, thus inhibiting the reaction. As a strong reducing agent, SO32- rapidly reduced PS, thus completely suppressing the reaction. HCO3-, HPO42-, Cl-, and NO3- had negligible impact on PS oxidation of phenol. Six intermediates were detected in the no anion control using gas chromatography-mass spectrometry (GC-MS). Various toxic halogenated phenols and halogenated hydroquinones were detected in the treatment containing Cl- and Br-. In contrast, in the treatment containing CO32-, HCO3-, PO43-, HPO42-, and NO3-, no new intermediates were identified except for the intermediates already detected in the control treatment. Based on intermediates identified, reaction pathways for PS oxidation of phenol without anions and in the presence of halides were proposed respectively.
Collapse
Affiliation(s)
- Jie Ma
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102200, China E-mail:
| | - Haiyan Li
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102200, China E-mail:
| | - Yongqi Yang
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102200, China E-mail:
| | - Xuening Li
- State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety & Environment Technology, Beijing 102206, China
| |
Collapse
|
88
|
Huang W, Bianco A, Brigante M, Mailhot G. UVA-UVB activation of hydrogen peroxide and persulfate for advanced oxidation processes: Efficiency, mechanism and effect of various water constituents. JOURNAL OF HAZARDOUS MATERIALS 2018; 347:279-287. [PMID: 29329010 DOI: 10.1016/j.jhazmat.2018.01.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/21/2017] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
In the present work we investigate the activation efficiency of H2O2 and S2O82- using UVA and UVB radiation. Bisphenol-A (BPA) is used as model pollutants to estimate the oxidative process efficiency in simulated and real sewage treatment plant waters. Particular attention is paid to the BPA removal efficiency and to the radical mechanism involvement considering the effect of typical inorganic water constituents (carbonates and chloride ions) and organic matter. Despite a detrimental effect observed when carbonate ions are in solution using both hydrogen peroxide and persulafate, the presence of high chloride ions concentration was found to improve BPA removal using S2O82- as radical precursor. This enhancement, investigated combining chemical kinetic model approach and laser flash photolysis experiments, is attributed to the formation of hydroxyl radical and chlorine radical species from sulfate radical. Different transformation products are identified by means of GC-MS and HPLC-MS analyses. Moreover, experiments using sewage treatment plant water (STPW) spiked with BPA are performed in order to assess the efficiency of oxidative processes in a simulated treatment systems activated using UVA + UVB radiations.
Collapse
Affiliation(s)
- Wenyu Huang
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France; School of the Environment, Guangxi University, Nanning 530004, China.
| | - Angelica Bianco
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Marcello Brigante
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France.
| | - Gilles Mailhot
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| |
Collapse
|
89
|
Pan X, Yan L, Qu R, Wang Z. Degradation of the UV-filter benzophenone-3 in aqueous solution using persulfate activated by heat, metal ions and light. CHEMOSPHERE 2018; 196:95-104. [PMID: 29291519 DOI: 10.1016/j.chemosphere.2017.12.152] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
The goals of this study were to bring forward new data and insights into the effect of activation methods, operational variables and reaction pathways during sulfate radicals-based oxidation of benzophenone-3 (BP-3) in aqueous solution. Heat, transition metal ions (Fe2+, Cu2+, Co2+), UV and visible light irradiation were used to activate persulfate (PS) to degrade BP-3. The results showed that these three activation methods can remarkably enhance BP-3 removal efficiency. Under the conditions of [BP-3]0: [PS]0 = 1: 500, pH = 7.0, and 40 °C, complete removal of BP-3 (1.31 μM) was observed in 3 h. In the pH range of 3.0-9.0, the degradation of BP-3 decreased with increasing pH. Increasing the PS dosage accelerated the reaction, while the presence of humic acid (HA) significantly inhibited the efficiency of BP-3 removal. Based on electron paramagnetic resonance (EPR) and radical quenching studies, sulfate and hydroxyl radicals contributed to the oxidation process. According to the evolution of BP-3 and its 7 by-products, as well as frontier electron densities (FED) calculation, two routes were proposed involving hydroxylation, demethylation and direct oxidation. On the whole, this work is a unique contribution to the systematic elucidation of BP-3 removal by PS.
Collapse
Affiliation(s)
- Xiaoxue Pan
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Liqing Yan
- Environmental Engineering School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0373, USA
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China.
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| |
Collapse
|
90
|
Wang Z, Shao Y, Gao N, Lu X, An N. Degradation of diethyl phthalate (DEP) by UV/persulfate: An experiment and simulation study of contributions by hydroxyl and sulfate radicals. CHEMOSPHERE 2018; 193:602-610. [PMID: 29169136 DOI: 10.1016/j.chemosphere.2017.11.075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/24/2017] [Accepted: 11/16/2017] [Indexed: 06/07/2023]
Abstract
Degradation of diethyl phthalate (DEP) by ultraviolet/persulfate (UV/PS) process at different reaction conditions was evaluated. DEP can be degraded effectively via this process. Both tert-butyl (TBA) and methanol (MeOH) inhibited the degradation of DEP with MeOH having a stronger impact than TBA, suggesting sulfate radical () and hydroxyl radical (HO) both existed in the reaction systems studied. The second-order rate constants of DEP reacting with and HO were calculated to be (6.4±0.3)×107 M-1s-1 and (3.7±0.1)×109 M-1s-1, respectively. To further access the potential degradation mechanism in this system, the pseudo-first-order rate constants (ko) and the radical contributions were modeled using a simple steady-state kinetic model involving and HO. Generally, HO had a greater contribution to DEP degradation than . The ko of DEP increased as PS dosages increased when PS dosages were below 1.9 mM. However, it decreased with increasing initial DEP concentrations, which might be due to the radical scavenging effect of DEP. The ko values in acidic conditions were higher than those in alkaline solutions, which was probably caused by the increasing concentration of hydrogen phosphate (with higher scavenging effects than dihydrogen phosphate) from the phosphate buffer as pH values rose. Natural organic matter and bicarbonate dramatically suppressed the degradation of DEP by scavenging and HO. Additionally, the presence of chloride ion (Cl-) promoted the degradation of DEP at low Cl- concentrations (0.25-1 mM). Finally, the proposed degradation pathways were illustrated.
Collapse
Affiliation(s)
- Ziying Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Yisheng Shao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China; China Academy of Urban Planning & Design, Beijing, China.
| | - Naiyun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Xian Lu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Na An
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| |
Collapse
|
91
|
Graça CAL, Fugita LTN, de Velosa AC, Teixeira ACSC. Amicarbazone degradation promoted by ZVI-activated persulfate: study of relevant variables for practical application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:5474-5483. [PMID: 29214480 DOI: 10.1007/s11356-017-0862-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
Alarming amounts of organic pollutants are being detected in waterbodies due to their ineffective removal by conventional treatment techniques, which warn of the urgent need of developing new technologies for their remediation. In this context, advanced oxidation processes (AOPs), especially those based on Fenton reactions, have proved to be suitable alternatives, due to their efficacy of removing persistent organic compounds. However, the use of ferrous iron in these processes has several operational constraints; to avoid this, an alternative iron source was here investigated: zero-valent-iron (ZVI). A Fenton-like process based on the activation of a recently explored oxidant-persulfate (PS)-with ZVI was applied to degrade an emerging contaminant: Amicarbazone (AMZ). The influence of ZVI size and source, PS/ZVI ratio, pH, UVA radiation, dissolved O2, and inorganic ions was evaluated in terms of AMZ removal efficiency. So far, this is the first time these parameters are simultaneously investigated, in the same study, to evaluate a ZVI-activated PS process. The radical mechanism was also explored and two radical scavengers were used to determine the identity of major active species taking part in the degradation of AMZ. The degradation efficiency was found to be strongly affected by the ZVI dosage, while positively affected by the PS concentration. The PS/ZVI system enabled AMZ degradation in a wide range of pH, although with a lower efficiency under slightly alkaline conditions. Dissolved O2 revealed to play an important role in reaction kinetics as well as the presence of inorganic ions. UVA radiation seems to improve the degradation kinetics only in the presence of extra O2 content. Radicals quenching experiments indicated that both sulfate (SO4•-) and hydroxyl (•OH) radicals contributed to the overall oxidation performance, but SO4•- was the dominant oxidative species.
Collapse
Affiliation(s)
- Cátia A L Graça
- Department of Chemical Engineering, University of São Paulo, Av. Prof. Luciano Gualberto, tr. 3, São Paulo, 380, Brazil.
| | - Lucas T N Fugita
- Department of Chemical Engineering, University of São Paulo, Av. Prof. Luciano Gualberto, tr. 3, São Paulo, 380, Brazil
| | - Adriana Correia de Velosa
- Department of Chemical Engineering, University of São Paulo, Av. Prof. Luciano Gualberto, tr. 3, São Paulo, 380, Brazil
| | - Antonio Carlos S C Teixeira
- Department of Chemical Engineering, University of São Paulo, Av. Prof. Luciano Gualberto, tr. 3, São Paulo, 380, Brazil
| |
Collapse
|
92
|
Liu N, Ding F, Weng CH, Hwang CC, Lin YT. Effective degradation of primary color direct azo dyes using Fe 0 aggregates-activated persulfate process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 206:565-576. [PMID: 29127929 DOI: 10.1016/j.jenvman.2017.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 10/27/2017] [Accepted: 11/02/2017] [Indexed: 06/07/2023]
Abstract
The present study examined the oxidation power of a Fe0 aggregates/persulfate (PS/Fe0) system for the degradation of the wastewater containing mixed primary direct dyes (i.e., Sirius® Gelb S-2G, Sirius® Red F3B, and Sirius® Turkis GL01). Results indicated that decolorization efficiency was determined by operating parameters of the PS/Fe0 system and the structural complexity of dye molecules. System efficiency increased with increasing persulfate and Fe0 dosages. Faster decolorization was observed in experiments conducted at pH < 10. The process obeyed a first-order kinetics. Slow heterogeneous reactions were observed at high initial pH (>10.5) and low PS concentration (<2 × 10-3 M). Inhibitory effect occurred in systems containing salts Na2SO4, NaCl, Na2CO3, and Na2HPO4 at 1 × 10-2 M. The effect was suppressed when reaction temperature was raised to 55 °C. Heat enhanced not only decolorization efficiency, but also COD removal. Complete decolorization of a mixed dye containing ADMI (the American Dye Manufacture Institute) 15105 was achieved within10 min in the PS/Fe0/55 °C system with an initial pH of 6.0 and dosages of 5 × 10-3 M Na2S2O8 and 0.5 g/L Fe0. Low molecular weight intermediates including organic acids were identified. Due to a relatively low activation energy (4.68 kcaL/mol), the PS/Fe0 system exhibited higher efficiency at higher temperature. This study demonstrated that Fe0-activated PS is a promising process for the treatment of textile wastewaters containing mixed azo direct dyes.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, PR China
| | - Feng Ding
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, PR China; Department of Civil and Ecological Engineering, I-Shou University, Kaohsiung City, 84008, Taiwan
| | - Chih-Huang Weng
- Department of Civil and Ecological Engineering, I-Shou University, Kaohsiung City, 84008, Taiwan.
| | - Chi-Chin Hwang
- Department of Ecoscience and Ecotechnology, National University of Tainan, Tainan, 70005, Taiwan
| | - Yao-Tung Lin
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| |
Collapse
|
93
|
Ma J, Yang Y, Jiang X, Xie Z, Li X, Chen C, Chen H. Impacts of inorganic anions and natural organic matter on thermally activated persulfate oxidation of BTEX in water. CHEMOSPHERE 2018; 190:296-306. [PMID: 28992483 DOI: 10.1016/j.chemosphere.2017.09.148] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/16/2017] [Accepted: 09/30/2017] [Indexed: 05/06/2023]
Abstract
The present study investigated the impacts of water matrix constituents (CO32-, HCO3-, Cl-, Br-, PO43-, HPO42-, H2PO4-, NO3-, SO42- and natural organic matters (NOM) on the oxidation of a mixture of benzene, toluene, ethylbenzene, and xylenes (BTEX) by thermally activated persulfate (PS). In the absence of matrix constituents, the BTEX oxidation rates decreased in the following order: xylenes > toluene ≈ ethylbenzene > benzene. HCO3-/CO32- and NOM inhibited the BTEX oxidation and the inhibiting effects became more pronounced as the HCO3-/CO32-/NOM concentration increased. SO42-, NO3-, PO43- and H2PO4- did not affect the BTEX oxidation while HPO42- slightly inhibited the reaction. The impacts of Cl- and Br- were complex. Cl- inhibited the benzene oxidation while 100 mM and 500 mM of Cl- promoted the oxidation of m-xylene and p-xylene. Br- completely suppressed the benzene oxidation while 500 mM of Br- strongly promoted the oxidation of xylenes. Detailed explanations on the influence of each matrix constituent were discussed. In addition, various halogenated degradation byproducts were detected in the treatments containing Cl- and Br-. Overall, this study indicates that some matrix constituents such as NOM, HCO3-, CO32-, H2PO4-, Cl- and Br- may reduce the BTEX removal efficiency of sulfate radical-based advanced oxidation process (SR-AOP) and the presence of Cl- and Br- may even lead to the formation of toxic halogenated byproducts.
Collapse
Affiliation(s)
- Jie Ma
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China.
| | - Yongqi Yang
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Xianchenghao Jiang
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Zhuoting Xie
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Xiaoxuan Li
- State Key Laboratory of Heavy Oil Processing, State Key Laboratory of Petroleum Pollution Control, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Changzhao Chen
- State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety & Environment Technology, Beijing 102206, China
| | - Hongkun Chen
- State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety & Environment Technology, Beijing 102206, China
| |
Collapse
|
94
|
Sheng B, Huang Y, Wang Z, Yang F, Ai L, Liu J. On peroxymonosulfate-based treatment of saline wastewater: when phosphate and chloride co-exist. RSC Adv 2018; 8:13865-13870. [PMID: 35539299 PMCID: PMC9079861 DOI: 10.1039/c8ra00600h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 04/03/2018] [Indexed: 11/21/2022] Open
Abstract
Both chloride and phosphate are common inorganic anions in industrial wastewater, however, their effects on peroxymonosulfate (PMS)-based oxidation systems are largely unknown. The present results show that addition of chloride (>1 mM) apparently enhanced the degradation of Acid Orange 7 (AO7) independent of the presence of phosphate (PBS) buffer. Both PBS and chloride favored the degradation of AO7, while PBS played a more important role when they co-existed. The degradation efficiency of AO7 was enhanced by increasing the concentration of PBS and chloride. A maximum of absorbable organic halides (AOX) accumulation was observed; indicating some chlorinated byproducts could be initially generated and further oxidized by increasing the reaction time. It is demonstrated that the PBS/PMS system, with a lower AOX formation at the same chloride concentration, is superior to the Co/PMS system, a typical sulfate radical-based system. The active chlorine species (HClO/Cl2) were found to be the dominant oxidants in the presence of higher chloride concentration (>50 mM) under neutral conditions. The findings of this work may promote the further application of PMS-based oxidation processes in saline effluents treatment. Both chloride and phosphate are common inorganic anions in industrial wastewater, however, their effects on peroxymonosulfate (PMS)-based oxidation systems are largely unknown.![]()
Collapse
Affiliation(s)
- Bo Sheng
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry
- College of Environmental Science and Engineering
- Donghua University
- Shanghai
- China
| | - Ying Huang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry
- College of Environmental Science and Engineering
- Donghua University
- Shanghai
- China
| | - Zhaohui Wang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry
- College of Environmental Science and Engineering
- Donghua University
- Shanghai
- China
| | - Fei Yang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry
- College of Environmental Science and Engineering
- Donghua University
- Shanghai
- China
| | - Luoyan Ai
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry
- College of Environmental Science and Engineering
- Donghua University
- Shanghai
- China
| | - Jianshe Liu
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry
- College of Environmental Science and Engineering
- Donghua University
- Shanghai
- China
| |
Collapse
|
95
|
Feng Y, Song Q, Lv W, Liu G. Degradation of ketoprofen by sulfate radical-based advanced oxidation processes: Kinetics, mechanisms, and effects of natural water matrices. CHEMOSPHERE 2017; 189:643-651. [PMID: 28965059 DOI: 10.1016/j.chemosphere.2017.09.109] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/15/2017] [Accepted: 09/23/2017] [Indexed: 06/07/2023]
Abstract
Ketoprofen (KET) is a mostly used nonsteroidal anti-inflammatory drug that has been frequently detected in wastewater effluents and surface waters. In this study, we investigated the degradation of KET by sulfate radical (SO4-) based advanced oxidation processes (SR-AOPs) in aqueous solution. The degradation kinetics, mechanisms, and effects of natural water matrices on thermally activated persulfate (TAP) oxidation of KET were systematically investigated. Increasing the temperature and persulfate (PS) concentrations greatly enhanced the degradation of KET. KET degradation is pH-dependent with an optimum pH of 5.0. Reactions in the presence of radical quenchers revealed the dominant role of SO4- in oxidizing KET. Water matrix significantly influenced the degradation of KET. The common inorganic anions present in natural waters exhibited inhibitory effect on KET degradation, and the inhibition followed the order of Cl- > CO32- > HCO3- > NO3-; however, no significant inhibition of KET degradation was observed in the presence of Ca2+ and Mg2+ cations. The presence of natural organic matter (NOM) suppressed KET degradation, and the suppression increased as NOM concentration increase. Products identification and mineralization experiments revealed that KET and its degradation intermediates were finally transformed into CO2 and H2O. The results of this study indicated that applying SR-AOPs for the remediation of KET contaminated water matrix is technically possible.
Collapse
Affiliation(s)
- Yiping Feng
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China.
| | - Qingyun Song
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Wenying Lv
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Guoguang Liu
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
96
|
Outsiou A, Frontistis Z, Ribeiro RS, Antonopoulou M, Konstantinou IK, Silva AMT, Faria JL, Gomes HT, Mantzavinos D. Activation of sodium persulfate by magnetic carbon xerogels (CX/CoFe) for the oxidation of bisphenol A: Process variables effects, matrix effects and reaction pathways. WATER RESEARCH 2017; 124:97-107. [PMID: 28750289 DOI: 10.1016/j.watres.2017.07.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
An advanced oxidation process comprising sodium persulfate (SPS) and a novel magnetic carbon xerogel was tested for the degradation of bisphenol A (BPA), a model endocrine-disrupting compound. The catalyst, consisting of interconnected carbon microspheres with embedded iron and cobalt microparticles, was capable of activating persulfate to form sulfate and hydroxyl radicals at ambient conditions. The pseudo-first order degradation rate of BPA in ultrapure water (UPW) was found to increase with (i) increasing catalyst (25-75 mg/L) and SPS (31-250 mg/L) concentrations, (ii) decreasing BPA concentration (285-14,200 μg/L), and (iii) changing pH from alkaline to acidic values (9-3). Besides UPW, tests were conducted in drinking water, treated wastewater, groundwater and surface water; interestingly, the rate in UPW was always lower than in any other matrix containing several organic and inorganic constituents. The effect of natural organic matter (in the form of humic acids) and alcohols was detrimental to BPA degradation owing to the scavenging of radicals. Conversely, chlorides at concentrations greater than 50 mg/L had a positive effect due to the formation and subsequent participation of chlorine-containing radicals. Liquid chromatography time-of-flight mass spectrometry was employed to identify major transformation by-products (TBPs) of BPA degradation in the absence and presence of chlorides; in the latter case, several chlorinated TBPs were detected confirming the role of Cl-related radicals. Based on TBPs, main reaction pathways are proposed.
Collapse
Affiliation(s)
- Alexandra Outsiou
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece
| | - Zacharias Frontistis
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece
| | - Rui S Ribeiro
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria Antonopoulou
- Department of Environmental and Natural Resources Management, University of Patras, 2 Seferi St., GR-30100 Agrinio, Greece
| | - Ioannis K Konstantinou
- Department of Chemistry, Laboratory of Industrial Chemistry, University of Ioannina, GR-45110 Ioannina, Greece
| | - Adrián M T Silva
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joaquim L Faria
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Helder T Gomes
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Dionissios Mantzavinos
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece.
| |
Collapse
|
97
|
Rodríguez-Chueca J, Amor C, Mota J, Lucas MS, Peres JA. Oxidation of winery wastewater by sulphate radicals: catalytic and solar photocatalytic activations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:22414-22426. [PMID: 28803372 DOI: 10.1007/s11356-017-9896-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/02/2017] [Indexed: 05/28/2023]
Abstract
The treatment of winery effluents through sulphate radical-based advanced oxidation processes (SR-AOPs) driven by solar radiation is reported in this study. Photolytic and catalytic activations of peroxymonosulphate (PMS) and persulphate (KPS and SPS) at different pH values (4.5 and 7) were studied in the degradation of organic matter. Portugal is one of the largest wine producers in Europe. The wine making activities generate huge volume of effluents characterized by a variable volume and organic load, being their seasonal nature one of the most important drawbacks. Recently, SR-AOPs are gradually attracting attention as in situ chemical oxidation technologies, instead of hydroxyl radical AOPs (HR-AOPs). The studied concentrations are suitable to obtain notable values of organic matter degradation, with TOC removal around 50%. In general terms, no notable differences were observed between treatments at pH values 4.5 and 7. Photolytic activation of SPS with solar radiation treatments obtained the highest efficiency (28 and 40% of TOC removal with 1 and 50 mM, respectively, at pH 4.5) in comparison to KPS and PMS. The addition of a transition metal as catalyst, such as Fe(II) or Co(II), increased considerably the TOC removal efficiency higher than 50%, but not in all cases. For instance, the combination KPS or PMS with Co(II) at pH 4.5 did not allow to obtain better results than photolytic activation of these persulphate salts. In summary, the use of SR-AOPs could be a serious alternative as tertiary treatment for winery wastewaters.
Collapse
Affiliation(s)
- Jorge Rodríguez-Chueca
- Department of Chemical and Environmental Technology (ESCET), Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933, Mostoles, Madrid, Spain.
| | - Carlos Amor
- Centro de Química de Vila Real, Departamento de Química, Universidade de Trás-os-Montes e Alto Douro (UTAD), 5000-801, Vila Real, Portugal
| | - Joana Mota
- Centro de Química de Vila Real, Departamento de Química, Universidade de Trás-os-Montes e Alto Douro (UTAD), 5000-801, Vila Real, Portugal
| | - Marco S Lucas
- Centro de Química de Vila Real, Departamento de Química, Universidade de Trás-os-Montes e Alto Douro (UTAD), 5000-801, Vila Real, Portugal.
| | - José A Peres
- Centro de Química de Vila Real, Departamento de Química, Universidade de Trás-os-Montes e Alto Douro (UTAD), 5000-801, Vila Real, Portugal
| |
Collapse
|
98
|
Ling L, Zhang D, Fang J, Fan C, Shang C. A novel Fe(II)/citrate/UV/peroxymonosulfate process for micropollutant degradation: Optimization by response surface methodology and effects of water matrices. CHEMOSPHERE 2017; 184:417-428. [PMID: 28614745 DOI: 10.1016/j.chemosphere.2017.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/08/2017] [Accepted: 06/02/2017] [Indexed: 06/07/2023]
Abstract
This paper applied the response surface methodology (RSM) to optimizing a novel Fe(II)/citrate/UV/PMS process in the degradation of a model micropollutant, carbamazepine (CBZ), a persistent emerging contaminant frequently detected in surface water and groundwater. The experimental conditions in terms of two responses, CBZ removal efficiency (Y1) and cost per unit CBZ removal (Y2), were optimized by the central composite design (CCD) in RSM. Modeling data exhibited that the optimum condition resulting in the lowest Y2 while achieving >70% of Y1 was at a UV dose of 265.5 mJ/cm2 and Fe(II), PMS and citrate concentrations of 12.2 μM, 100 μM and 26.4 μM, respectively. Increasing Fe(II) concentration led to the decrease in CBZ degradation and cost-effectiveness of the process. On the other hand, increasing the UV dose, PMS concentration and citrate/Fe(II) ratio over 265.5 mJ/cm2, 100 μM and 2.16:1, respectively, slightly increased the CBZ degradation, but significantly increased the cost. Under the optimized condition, the experimentally obtained values for Y1 and Y2 were 70.44% and 0.0104 H K$/%/m3, respectively. The predicted Y1 and Y2 were 71.07% and 0.0098 H K$/%/m3, respectively, suggesting that RSM can be readily used to determine the optimum condition of the Fe(II)/citrate/UV/PMS process for CBZ degradation. Other aqueous constituents which impacted the CBZ removal in the Fe(II)/citrate/UV/PMS process are in the following order: NOM > alkalinity > bromide > ammonia ≈ chloride (both negligible).
Collapse
Affiliation(s)
- Li Ling
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Dapeng Zhang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jingyun Fang
- SYSU-HKUST Research Center for Innovative Environmental Technology (SHRCIET), School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - Chihhao Fan
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan.
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
99
|
Wang L, Kong D, Ji Y, Lu J, Yin X, Zhou Q. Transformation of iodide and formation of iodinated by-products in heat activated persulfate oxidation process. CHEMOSPHERE 2017; 181:400-408. [PMID: 28458215 DOI: 10.1016/j.chemosphere.2017.04.076] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 04/11/2017] [Accepted: 04/16/2017] [Indexed: 06/07/2023]
Abstract
Formation of halogenated disinfection by-products (DBPs) in sulfate radical-based advanced oxidation processes (SR-AOPs) have attracted considerable concerns recently. Previous studies have focused on the formation of chlorinated and brominated DBPs. This research examined the transformation of I- in heat activated PS oxidation process. Phenol was employed as a model compound to mimic the reactivity of dissolved natural organic matter (NOM) toward halogenation. It was found that I- was transformed to free iodine which attacked phenol subsequently leading to iodinated DBPs such as iodoform and iodoacetic acids. Iodophenols were detected as the intermediates during the formation of the iodoform and triiodoacetic acid (TIAA). However, diiodoacetic acid (DIAA) was formed almost concomitantly with iodophenols. In addition, the yield of DIAA was significantly higher than that of TIAA, which is distinct from conventional halogenation process. Both the facts suggest that different pathway might be involved during DIAA formation in SR-AOPs. Temperature and persulfate dose were the key factors governing the transformation process. The iodinated by-products can be further degraded by excessive SO4- and transformed to iodate. This study elucidated the transformation pathway of I- in SR-AOPs, which should be taken into consideration when persulfate was applied in environmental matrices containing iodine.
Collapse
Affiliation(s)
- Lu Wang
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Deyang Kong
- Nanjing Institute of Environmental Science, Ministry of Environmental Protection of PRC, Nanjing, 210042, China
| | - Yuefei Ji
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junhe Lu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xiaoming Yin
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Quansuo Zhou
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
100
|
Lu X, Shao Y, Gao N, Chen J, Zhang Y, Xiang H, Guo Y. Degradation of diclofenac by UV-activated persulfate process: Kinetic studies, degradation pathways and toxicity assessments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 141:139-147. [PMID: 28340369 DOI: 10.1016/j.ecoenv.2017.03.022] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 06/06/2023]
Abstract
Diclofenac (DCF) is the frequently detected non-steroidal pharmaceuticals in the aquatic environment. In this study, the degradation of DCF was evaluated by UV-254nm activated persulfate (UV/PS). The degradation of DCF followed the pseudo first-order kinetics pattern. The degradation rate constant (kobs) was accelerated by UV/PS compared to UV alone and PS alone. Increasing the initial PS dosage or solution pH significantly enhanced the degradation efficiency. Presence of various natural water constituents had different effects on DCF degradation, with an enhancement or inhibition in the presence of inorganic anions (HCO3- or Cl-) and a significant inhibition in the presence of NOM. In addition, preliminary degradation mechanisms and major products were elucidated using LC-MS/MS. Hydroxylation, decarbonylation, ring-opening and cyclation reaction involving the attack of SO4•- or other substances, were the main degradation mechanism. TOC analyzer and Microtox bioassay were employed to evaluate the mineralization and cytotoxicity of solutions treated by UV/PS at different times, respectively. Limited elimination of TOC (32%) was observed during the mineralization of DCF. More toxic degradation products and their related intermediate species were formed, and the UV/PS process was suitable for removing the toxicity. Of note, longer degradation time may be considered for the final toxicity removal.
Collapse
Affiliation(s)
- Xian Lu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Yisheng Shao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China; China Academy of Urban Planning & Design, Beijing, China.
| | - Naiyun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Juxiang Chen
- College of Architecture and Civil Engineering, Xinjiang University, Urumqi, China
| | - Yansen Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Huiming Xiang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Youluo Guo
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| |
Collapse
|