51
|
Rai PK, Sonne C, Song H, Kim KH. Plastic wastes in the time of COVID-19: Their environmental hazards and implications for sustainable energy resilience and circular bio-economies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159880. [PMID: 36328266 PMCID: PMC9618453 DOI: 10.1016/j.scitotenv.2022.159880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 06/06/2023]
Abstract
The global scope of pollution from plastic waste is a well-known phenomenon associated with trade, mass consumption, and disposal of plastic products (e.g., personal protective equipment (PPE), viral test kits, and vacuum-packaged food). Recently, the scale of the problem has been exacerbated by increases in indoor livelihood activities during lockdowns imposed in response to the coronavirus disease 2019 (COVID-19) pandemic. The present study describes the effects of increased plastic waste on environmental footprint and human health. Further, the technological/regulatory options and life cycle assessment (LCA) approach for sustainable plastic waste management are critically dealt in terms of their implications on energy resilience and circular economy. The abrupt increase in health-care waste during pandemic has been worsening environmental quality to undermine the sustainability in general. In addition, weathered plastic particles from PPE along with microplastics (MPs) and nanoplastics (NPs) can all adsorb chemical and microbial contaminants to pose a risk to ecosystems, biota, occupational safety, and human health. PPE-derived plastic pollution during the pandemic also jeopardizes sustainable development goals, energy resilience, and climate control measures. However, it is revealed that the pandemic can be regarded as an opportunity for explicit LCA to better address the problems associated with environmental footprints of plastic waste and to focus on sustainable management technologies such as circular bio-economies, biorefineries, and thermal gasification. Future researches in the energy-efficient clean technologies and circular bio-economies (or biorefineries) in concert with a "nexus" framework are expected to help reduce plastic waste into desirable directions.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Phyto-Technologies and Plant Invasion Lab, Department of Environmental Science, School of Earth Sciences and Natural Resources Management, Mizoram University, Aizawl, Mizoram, India
| | - C Sonne
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - H Song
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
52
|
Ma J, Chen F, Zhang Z, Li Y, Liu J, Chen CC, Pan K. Eukaryotic community succession on discarded face masks in the marine environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158552. [PMID: 36087664 PMCID: PMC9448716 DOI: 10.1016/j.scitotenv.2022.158552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 05/29/2023]
Abstract
Wearing facemasks remains an essential strategy for combating the COVID-19 pandemic. However, used masks are becoming plastic wastes that are widespread in the oceans, which is raising concerns about the potential impacts of these novel plastic niches on marine organisms. To delve into this issue, we exposed surgical masks to coastal waters for 30 days. Valuable information was recorded weekly in regard to the succession of the eukaryotic community inhabiting the masks via high-throughput 18S rRNA gene sequencing. Generally, the community on masks was significantly distinct from that in the surrounding seawater. With 1150 different eukaryotic taxa identified, the diversity of the vigorous colonizers of masks peaked at the beginning and decreased over time. A hallmark of initial colonization was the aggregation of diatoms, which formed biofilms on masks, followed by dinoflagellates that acted as a turning point for subsequent development of calcified species and other predators. This study provides insight into the eukaryotic community dynamics on discarded masks in the marine environment and highlights that the potential mask-mediated harmful species clustering may threaten the marine ecosystem.
Collapse
Affiliation(s)
- Jie Ma
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong Province, China
| | - Fengyuan Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong Province, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhen Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong Province, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yanping Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong Province, China
| | - Jingli Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong Province, China
| | - Ciara Chun Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong Province, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong Province, China.
| |
Collapse
|
53
|
Senousy HH, Khairy HM, El-Sayed HS, Sallam ER, El-Sheikh MA, Elshobary ME. Interactive adverse effects of low-density polyethylene microplastics on marine microalga Chaetoceros calcitrans. CHEMOSPHERE 2023; 311:137182. [PMID: 36356803 DOI: 10.1016/j.chemosphere.2022.137182] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/22/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Low-density polyethylene (LDPE) is broadly utilized worldwide, increasing more dramatically during the COVID-19 pandemic, and the majority ends up in the aquatic environment as microplastics. The influence of polyethylene microplastics (LDPE-MPs) on aquatic ecosystems still needs further investigation, especially on microalgae as typical organisms represented in all aquatic systems and at the base of the trophic chain. Thereby, the biological and toxicity impacts of LDPE-MPs on Chaetoceros calcitrans were examined in this work. The results revealed that LDPE-MPs had a concentration-dependent adverse effect on the growth and performance of C. calcitrans. LDPE-MPs contributed the maximum inhibition rates of 85%, 51.3%, 21.49% and 16.13% on algal growth chlorophyll content, φPSII and Fv/Fm, respectively. The total protein content, superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activities were significantly increased at 25 mg L-1 LDPE-MPs by 1.37, 3.52, 2.75 and 1.84 folds higher than those of the controls to sustain the adverse effects of LDPE-MPs. Extracellular polymeric substance (EPS) and monosaccharides contents of C. calcitrans were improved under low concentration of LDPE-MPs, which could facilitate the adsorption of MPs particles on the microalgae cell wall. This adsorption caused significant physical damage to the algal cell structure, as observed by SEM. These results suggest that the ecological footprint of MPs may require more attention, particularly due to the continuing breakdown of plastics in the ecosystem.
Collapse
Affiliation(s)
- Hoda H Senousy
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Hanan M Khairy
- National Institute of Oceanography and Fisheries, NIOF, Egypt
| | - Heba S El-Sayed
- National Institute of Oceanography and Fisheries, NIOF, Egypt
| | - Eman R Sallam
- National Institute of Oceanography and Fisheries, NIOF, Egypt
| | - Mohamed A El-Sheikh
- Botany & Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mostafa E Elshobary
- Department of Botany, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
54
|
Mohamadi S, Madadi R, Rakib MRJ, De-la-Torre GE, Idris AM. Abundance and characterization of personal protective equipment (PPE) polluting Kish Island, Persian Gulf. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158678. [PMID: 36099950 PMCID: PMC9464308 DOI: 10.1016/j.scitotenv.2022.158678] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 05/13/2023]
Abstract
Plastic pollution is one of the major environmental threats the world is facing nowadays, which was exacerbated during the COVID-19 pandemic. In particular, multiple reports of single-use plastics driven by the pandemic, namely personal protective equipment (PPE) (e.g., face masks and gloves), contaminating coastal areas have been published. However, most studies focused solely on counting and visually characterizing this type of litter. In the present study, we complement conventional reports by characterizing this type of litter through chemical-analytical techniques. Standardized sampling procedures were carried out in Kish Island, The Persian Gulf, resulting in an average density of 2.34 × 10-4 PPE/m2. Fourier transformed infrared spectroscopy confirmed the polymeric composition of weathered face masks and showed the occurrence of additional absorption bands associated with the photooxidation of the polymer backbone. On the other hand, the three layers of typical surgical face masks showed different non-woven structures, as well as signs of physical degradation (ruptures, cracks, rough surfaces), possibly leading to the release of microplastics. Furthermore, elemental mapping through energy-dispersive X-ray spectroscopy showed that the middle layer of the masks allocated more elements of external origin (e.g., Na, Cl, Ca, Mg) than the outer and inner layers. This is likely to the overall higher surface area of the middle layer. Furthermore, our evidence indicates that improperly disposed PPE is already having an impact on a number of organisms in the study area.
Collapse
Affiliation(s)
- Sedigheh Mohamadi
- Environmental Research Laboratory, School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran.
| | - Reyhane Madadi
- Environmental Research Laboratory, School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh.
| | - Gabriel E De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru.
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
55
|
Jiang H, Luo D, Wang L, Zhang Y, Wang H, Wang C. A review of disposable facemasks during the COVID-19 pandemic: A focus on microplastics release. CHEMOSPHERE 2023; 312:137178. [PMID: 36368541 PMCID: PMC9640709 DOI: 10.1016/j.chemosphere.2022.137178] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/19/2022] [Accepted: 11/05/2022] [Indexed: 05/29/2023]
Abstract
The COVID-19 epidemic seriously threats the human society and provokes the panic of the public. Personal Protective Equipment (PPE) are widely utilized for frontline health workers to face the ongoing epidemic, especially disposable face masks (DFMs) to prevent airborne transmission of coronavirus. The overproduction and massive utilization of DFMs seriously challenge the management of plastic wastes. A huge amount of DFMs are discharged into environment, potentially induced the generation of microplastics (MPs) owing to physicochemical destruction. The MPs release will pose severe contamination burden on environment and human. In this review, environmental threats of DFMs regarding to DFMs fate in environment and DFMs threats to aquatic and terrestrial species were surveyed. A full summary of recent studies on MPs release from DFMs was provided. The knowledge of extraction and characterizations of MPs, the release behavior, and potential threats of MPs derived from DFMs was discussed. To confront the problem, feasible strategies for control DFMs pollution were analyzed from the perspective of source control and waste management. This review provides a better understanding the threats, fate, and management of DFMs linked to COVID-19 pandemic.
Collapse
Affiliation(s)
- Hongru Jiang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China; School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Dan Luo
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Luyao Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yingshuang Zhang
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Hui Wang
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
56
|
Santos J, Cifrian E, Rodriguez-Romero A, Yoris-Nobile AI, Blanco-Fernandez E, Castro-Fresno D, Andres A. Assessment of the environmental acceptability of potential artificial reef materials using two ecotoxicity tests: Luminescent bacteria and sea urchin embryogenesis. CHEMOSPHERE 2023; 310:136773. [PMID: 36220438 DOI: 10.1016/j.chemosphere.2022.136773] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Ecotoxicological analysis of construction products is a relatively unexplored area at international level. Aquatic toxicity tests on construction products has been recommended recently for freshwater environment. However, the biological effects of alternative materials on marine ecosystem are still not considered. In this study, the main aim was to assess the environmental impact of alternative mortars proposed as artificial reefs (ARs) materials. The ARs specimens were developed by 3D printing, based on cement and geopolymer mortars using recycled sands of glass and seashells. For this purpose, a leaching test and two different toxicity bioassays, luminosity reduction of marine bacteria Vibrio fischeri (Microtox®) and the success of embryo-larval development of sea-urchin Paracentrotus lividus, were conducted. From the leaching results it should be noted that the mobility of all trace elements considered in both, raw materials and mortars, meet the inert landfill limits, except As, Mo, Se or Sb in the leachates geopolymer mortars. However, the results obtained from the both bioassays show low environmental acceptability for those mortars containing shell sand, probably due to the degradation of the organic matter adhered to the shells. On the other hand, cement mortars obtain better results than geopolymer mortars, regardless of the aggregate used, showing certain consistency with the leaching behaviour, since they present the lowest mobility of trace chemical elements. Therefore, the results supporting the environmental acceptability of its potential use as alternative materials in the production of ARs.
Collapse
Affiliation(s)
- Jorge Santos
- Department of Chemistry and Process & Resource Engineering, ETSIIT, University of Cantabria, Cantabria, 39005, Spain
| | - Eva Cifrian
- Department of Chemistry and Process & Resource Engineering, ETSIIT, University of Cantabria, Cantabria, 39005, Spain.
| | - Araceli Rodriguez-Romero
- Department of Analytical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, Puerto Real, Cádiz, 11510, Spain
| | | | | | | | - Ana Andres
- Department of Chemistry and Process & Resource Engineering, ETSIIT, University of Cantabria, Cantabria, 39005, Spain
| |
Collapse
|
57
|
Dharmaraj S, Ashokkumar V, Chew KW, Chia SR, Show PL, Ngamcharussrivichai C. Novel strategy in biohydrogen energy production from COVID - 19 plastic waste: A critical review. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2022; 47:42051-42074. [PMID: 34776598 PMCID: PMC8576595 DOI: 10.1016/j.ijhydene.2021.08.236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 06/06/2023]
Abstract
Usage of plastics in the form of personal protective equipment, medical devices, and common packages has increased alarmingly during these pandemic times. Though they have served as an excellent protection source in minimizing the coronavirus disease (COVID-19) spreading, they have still emerged as major environmental pollutants nowadays. These non-degradable COVID-19 plastic wastes (CPW) were treated through incineration and landfilling process, which may lead to either the release of harmful gases or contaminating the surrounding environment. Further, they can cause numerous health hazards to the human and animal populations. These plastic wastes can be efficiently managed through thermochemical processes like pyrolysis or gasification, which assist in degrading the plastic waste and also effectively convert them into useful energy-yielding products. The pyrolysis process promotes the formation of liquid fuels and chemicals, whereas gasification leads to syngas and hydrogen fuel production. These energy-yielding products can help to compensate for the fossil fuels depletion in the near future. There are many insights explained in terms of the types of reactors and influential factors that can be adopted for the pyrolysis and gasification process, to produce high efficient energy products from the wastes. In addition, advanced technologies including co-gasification and two-stage gasification were also reviewed.
Collapse
Affiliation(s)
- Selvakumar Dharmaraj
- Department of Marine Biotechnology, Academy of Maritime Education and Training [AMET] (Deemed to be University), Chennai 603112, Tamil Nadu, India
| | - Veeramuthu Ashokkumar
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kit Wayne Chew
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor Darul Ehsan, Malaysia
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Shir Reen Chia
- Institute of Sustainable Energy, Universiti Tenaga Nasional (UNITEN), Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Chawalit Ngamcharussrivichai
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
58
|
Song G, Cao H, Liu L, Jin M. Analysis of Marine Microplastic Pollution of Disposable Masks under COVID-19 Epidemic-A DPSIR Framework. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16299. [PMID: 36498372 PMCID: PMC9735856 DOI: 10.3390/ijerph192316299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Marine microplastic pollution (MMP) is becoming one of the most pressing environmental problems facing humanity today. The novel coronavirus epidemic has raised the issue of environmental contamination caused by large-scale improper disposal of medical waste such as disposable masks (DMs). To assess the impact of MMP caused by DMs and to seek solutions for the prevention and control of MMP, this study uses the Driving force-Pressure-State-Impact-Response (DPSIR) framework to establish a causal chain of MMP caused by DMs. The conclusion shows that the novel coronavirus epidemic has led to a surge in the use of DMs, which has brought pressure on resource constraints and environmental pollution at the same time. Improperly DMs enter the environment and eventually transform into MMP, which not only endangers the marine ecological system but also poses potential human health risks as well as economic and social hazards. In addition, further research on environmentally friendly masks (cloth masks and biodegradable masks) is essential to mitigate the environmental damage caused by the large-scale global use of DMs. This study provides a scientific and theoretical basis for the assessment of MMP from discarded DMs, and the findings of this study will provide a reference for the formulation of relevant policies.
Collapse
Affiliation(s)
| | | | | | - Min Jin
- School of Environment and Natural Resources, Renmin University of China, No. 59 Zhongguancun Street, Beijing 100872, China
| |
Collapse
|
59
|
Synthesis of Sulfonated Carbon from Discarded Masks for Effective Production of 5-Hydroxymethylfurfural. Catalysts 2022. [DOI: 10.3390/catal12121567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
5-hydroxymethylfurfural (HMF), as one of the top ten important platform chemicals, can be used to produce 2,5-furandicarboxylic acid (FDCA), 2,5-dimethyl furan (DMF), levulinic acid, and other chemicals. An environmentally friendly system for the synthesis of sulfonated carbon materials from discarded masks has been proposed. A series of mask-based solid acid catalysts (bMC-SO3H) were prepared by a simple two-step process. Mechanochemical pretreatment (ball milling) of waste mask and sulfonated group precursor, followed by thermal carbonization under nitrogen gas, were used to synthesize sulfonated porous carbon. The total acid amount of the prepared bMC-SO3H was measured by the Boehm method, which exhibited 1.2–5.3 mmol/g. The addition of the sulfonated group precursor in the mechanochemical treatment (ball milling) process caused intense structure fragmentation of the discarded masks. These sulfonated porous carbons (bMC(600)-SO3H) as solid acid catalysts achieved fructose conversion of 100% and HMF yield of 82.1% after 120 min at 95 °C in 1-butyl-3-methylimidazolium chloride. The bMC-SO3H could be reused five times, during which both the HMF yield and fructose conversion were stable. This work provides a strategy for the synthesis of sulfonated carbon from discarded masks and efficient catalyzed fructose upgrading to HMF.
Collapse
|
60
|
Rex M C, Mukherjee A. Prospects of TiO2-based photocatalytic degradation of microplastic leachates related disposable facemask, a major COVID-19 waste. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1072227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
COVID-19 is one of the serious catastrophes that have a substantial influence on human health and the environment. Diverse preventive actions were implemented globally to limit its spread and transmission. Personnel protective equipment (PPE) was an important part of these control approaches. But unfortunately, these types of PPE mainly comprise plastics, which sparked challenges in the management of plastic waste. Disposable face masks (DFM) are one of the efficient strategies used across the world to ward off disease transmission. DFMs can contribute to micro and nano plastic pollution as the plastic present in the mask may degrade when exposed to certain environmental conditions. Microplastics (MPs) can enter the food chain and devastate human health. Recognizing the possible environmental risks associated with the inappropriate disposal of masks, it is crucial to avert it from becoming the next plastic crisis. To address this environmental threat, titanium dioxide (TiO2)-based photocatalytic degradation (PCD) of MPs is one of the promising approaches. TiO2-based photocatalysts exhibit excellent plastic degradation potential due to their outstanding photocatalytic ability, cost efficiency, chemical, and thermal stability. In this review, we have discussed the reports on COVID-19 waste generation, the limitation of current waste management techniques, and the environmental impact of MPs leachates from DFMs. Mainly, the prominence of TiO2 in the PCD and the applications of TiO2-based photocatalysts in MPs degradation are the prime highlights of this review. Additionally, various synthesis methods to enhance the photocatalytic performance of TiO2 and the mechanism of PCD are also discussed. Furthermore, current challenges and the future research perspective on the improvement of this approach have been proposed.
Collapse
|
61
|
Liang H, Wang N, Liu D, Ge W, Song N, Wang F, Chai C. Release of microplastics and nanoplastics in water from disposable surgical masks after disinfection. MARINE POLLUTION BULLETIN 2022; 184:114184. [PMID: 36183509 PMCID: PMC9525138 DOI: 10.1016/j.marpolbul.2022.114184] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/03/2022] [Accepted: 09/24/2022] [Indexed: 05/03/2023]
Abstract
During the COVID-19 pandemic, disposable surgical masks were generally disinfected and reused due to mask shortages. Herein, the role of disinfected masks as a source of microplastics (MPs) and nanoplastics (NPs) was investigated. The amount of MPs and NPs released from masks disinfected by UV ranged from 1054 ± 106 to 2472 ± 70 and from 2.55 ± 0.22 × 109 to 6.72 ± 0.27 × 109 particles/piece, respectively, comparable to that of the undisinfected masks, and the MPs were changed to small-sized particles. The amount of MPs and NPs released after alcohol and steam treatment were respectively lower and higher than those from undisinfected masks, and MPs were shifted to small-sized particles. The amount of MPs and NPs released in water after autoclaving was lower than for undisinfected masks. In all, the amount of fibers released after disinfection decreased greatly, and certain disinfection processes were found to increase the amount of small-sized NPs released from masks into aqueous environments.
Collapse
Affiliation(s)
- Hao Liang
- School of Resources and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Na Wang
- School of Resources and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Di Liu
- School of Resources and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Ge
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China
| | - Ningning Song
- School of Resources and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Fangli Wang
- School of Resources and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Chao Chai
- School of Resources and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
62
|
Ganesapillai M, Mondal B, Sarkar I, Sinha A, Ray SS, Kwon YN, Nakamura K, Govardhan K. The face behind the Covid-19 mask - A comprehensive review. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2022; 28:102837. [PMID: 35879973 PMCID: PMC9299984 DOI: 10.1016/j.eti.2022.102837] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 05/07/2023]
Abstract
The threat of epidemic outbreaks like SARS-CoV-2 is growing owing to the exponential growth of the global population and the continual increase in human mobility. Personal protection against viral infections was enforced using ambient air filters, face masks, and other respiratory protective equipment. Available facemasks feature considerable variation in efficacy, materials usage and characteristic properties. Despite their widespread use and importance, face masks pose major potential threats due to the uncontrolled manufacture and disposal techniques. Improper solid waste management enables viral propagation and increases the volume of associated biomedical waste at an alarming rate. Polymers used in single-use face masks include a spectrum of chemical constituents: plasticisers and flame retardants leading to health-related issues over time. Despite ample research in this field, the efficacy of personal protective equipment and its impact post-disposal is yet to be explored satisfactorily. The following review assimilates information on the different forms of personal protective equipment currently in use. Proper waste management techniques pertaining to such special wastes have also been discussed. The study features a holistic overview of innovations made in face masks and their corresponding impact on human health and environment. Strategies with SDG3 and SDG12, outlining safe and proper disposal of solid waste, have also been discussed. Furthermore, employing the CFD paradigm, a 3D model of a face mask was created based on fluid flow during breathing techniques. Lastly, the review concludes with possible future advancements and promising research avenues in personal protective equipment.
Collapse
Affiliation(s)
- Mahesh Ganesapillai
- Mass Transfer Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Bidisha Mondal
- Mass Transfer Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ishita Sarkar
- Mass Transfer Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Aritro Sinha
- Mass Transfer Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Saikat Sinha Ray
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Republic of Korea
| | - Young-Nam Kwon
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Republic of Korea
| | - Kazuho Nakamura
- Faculty of Engineering, Division of Material Science and Chemical Engineering, Yokohama National University, Tokiwadai, Yokohama, Kanagawa 240-8501, Japan
| | - K Govardhan
- Department of Micro and Nano-Electronics, School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
63
|
Rathinamoorthy R, Raja Balasaraswathi S. Mitigation of microfibers release from disposable masks - An analysis of structural properties. ENVIRONMENTAL RESEARCH 2022; 214:114106. [PMID: 35987377 PMCID: PMC9385379 DOI: 10.1016/j.envres.2022.114106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 05/09/2023]
Abstract
The use of disposable face masks increased rapidly among the general public to control the COVID-19 spread. Eventually, it increased the disposal of masks and their associated impacts on environmental pollution. Hence, this study aims to analyze the impact of nonwoven fabric structural parameters and weathering on the microfiber release characteristics. Spunbond polypropylene nonwoven with four different weights and meltblown nonwoven with two different weights were used in this study to analyze microfiber release at dry, and wet conditions to simulate improper disposal in the environment. Exposure to sunlight significantly increases the microfiber release from 35 to 50% for spunbond fabric and 56-89% for meltblown fabric. Weathering in sunlight structurally affected the tensile properties of the polypropylene fibers due to photodegradation. The study showed that each mask can produce 1.5 × 102 and 3.45 × 101 mg of microfiber/mask respectively in dry and wet states. In the case of structural parameters, a higher GSM (grams per square meter), abrasion resistance, bursting strength, and thickness showed a positive correlation with microfiber release in both fabrics. Significantly a higher microfiber release was reported with meltblown fabric than the spunbond for a given GSM. The presence of finer fibers and more fibers per unit area in meltblown fabric was noted as the main cause. Nonwoven fabric GSM and the number of fibers in a specific area showed a higher influence on microfiber release. Based on the mask consumption reported in the literature, India alone can produce around 4.27 × 102 tons of microfibers/week as an average of dry and wet conditions. The study suggests that the proper selection of physical parameters can significantly reduce the microfiber fiber release at all stages.
Collapse
Affiliation(s)
- R Rathinamoorthy
- Department of Fashion Technology, PSG College of Technology, Coimbatore, India.
| | - S Raja Balasaraswathi
- Department of Fashion Technology, National Institute of Fashion Technology, Bengaluru, India
| |
Collapse
|
64
|
Zhang K, Li Z, Zhang J, Zhao D, Pi Y, Shi Y, Wang R, Chen P, Li C, Chen G, Lei IM, Zhong J. Biodegradable Smart Face Masks for Machine Learning-Assisted Chronic Respiratory Disease Diagnosis. ACS Sens 2022; 7:3135-3143. [PMID: 36196484 DOI: 10.1021/acssensors.2c01628] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Utilizing smart face masks to monitor and analyze respiratory signals is a convenient and effective method to give an early warning for chronic respiratory diseases. In this work, a smart face mask is proposed with an air-permeable and biodegradable self-powered breath sensor as the key component. This smart face mask is easily fabricated, comfortable to use, eco-friendly, and has sensitive and stable output performances in real wearable conditions. To verify the practicability, we use smart face masks to record respiratory signals of patients with chronic respiratory diseases when the patients do not have obvious symptoms. With the assistance of the machine learning algorithm of the bagged decision tree, the accuracy for distinguishing the healthy group and three groups of chronic respiratory diseases (asthma, bronchitis, and chronic obstructive pulmonary disease) is up to 95.5%. These results indicate that the strategy of this work is feasible and may promote the development of wearable health monitoring systems.
Collapse
Affiliation(s)
- Kaijun Zhang
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, Macau SAR 999078, China
| | - Zhaoyang Li
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, Macau SAR 999078, China
| | - Jianfeng Zhang
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, Macau SAR 999078, China.,Laboratory of Electret & Its Application, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Dazhe Zhao
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, Macau SAR 999078, China
| | - Yucong Pi
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, Macau SAR 999078, China
| | - Yujun Shi
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, Macau SAR 999078, China
| | - Renkun Wang
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, Macau SAR 999078, China
| | - Peisheng Chen
- Zhuhai Hospital of Integrated Traditional Chinese & Western Medicine, Zhuhai 519000, China
| | - Chaojie Li
- Zhuhai Hospital of Integrated Traditional Chinese & Western Medicine, Zhuhai 519000, China
| | - Gangjin Chen
- Laboratory of Electret & Its Application, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Iek Man Lei
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, Macau SAR 999078, China
| | - Junwen Zhong
- Department of Electromechanical Engineering and Centre for Artificial Intelligence and Robotics, University of Macau, Macau SAR 999078, China
| |
Collapse
|
65
|
Li Y, Hui B, Yang X, Wang H, Xu N, Feng P, Ma Z, Wang H. Multi-Scale Characterization of High-Temperature Properties and Thermal Storage Stability Performance of Discarded-Mask-Modified Asphalt. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7593. [PMID: 36363185 PMCID: PMC9654420 DOI: 10.3390/ma15217593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
In the context of the global pandemic of COVID-19, the use and disposal of medical masks have created a series of ethical and environmental issues. The purpose of this paper is to study and evaluate the high temperature properties and thermal storage stability of discarded-mask (DM)-modified asphalt from a multi-scale perspective using molecular dynamics (MD) simulation and experimental methods. A series of tests was conducted to evaluate the physical, rheological, thermal storage stability and microscopic properties of the samples. These tests include softening point, rotational viscosity, dynamic shear rheology (DSR), Fourier transform infrared (FT-IR) spectroscopy and molecular dynamics simulation. The results showed that the DM modifier could improve the softening point, rotational viscosity and rutting factor of the asphalt. After thermal storage, the DM-modified asphalt produced segregation. The difference in the softening point between the top and bottom of the sample increased from 2.2 °C to 17.1 °C when the DM modifier admixture was increased from 1% to 4%. FT-IR test results showed that the main component of the DM modifier was polypropylene, and the DM-modified asphalt was mainly a physical co-blending process. MD simulation results show that the DM modifier can increase the cohesive energy density (CED) and reduce the fractional free volume (FFV) of asphalt and reduce the binding energy between base asphalt and DM modifier. Multi-scale characterization reveals that DM modifiers can improve the high temperature performance and reduce the thermal storage stability of asphalt. It is noteworthy that both macroscopic tests and microscopic simulations show that 1% is an acceptable dosage level.
Collapse
Affiliation(s)
- Yuanle Li
- School of Highway, Chang’an University, Xi’an 710064, China
| | - Bing Hui
- School of Highway, Chang’an University, Xi’an 710064, China
| | - Xinyi Yang
- School of Highway, Chang’an University, Xi’an 710064, China
| | - Huimin Wang
- School of Highway, Chang’an University, Xi’an 710064, China
| | - Ning Xu
- School of Highway, Chang’an University, Xi’an 710064, China
| | - Ponan Feng
- College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Ziye Ma
- School of Highway, Chang’an University, Xi’an 710064, China
| | - Hainian Wang
- School of Highway, Chang’an University, Xi’an 710064, China
| |
Collapse
|
66
|
Cai K, Zeng W, Song Q, Liang Y, Peng S, Hu J, Li J. What makes residents more willing to participate in source separation of waste masks under the COVID-19 pandemic? JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT 2022; 25:103-116. [PMID: 36249570 PMCID: PMC9540058 DOI: 10.1007/s10163-022-01513-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
With the outbreak of the novel coronavirus (COVID-19), the generation of a large amount of medical waste brought a rude shock to the existing solid waste management system. Since masks constitute the most common household medical waste under the COVID-19 pandemic, their effective collection and treatment can significantly reduce the potential risks for secondary transmission, and this concern has attracted worldwide attention. Taking Macau City as a case study, this research tried to identify factors that can influence residents' behavioral intentions toward the source separation of COVID-19 waste masks. The extended theory of planned behavior (TPB) model is used to examine the influence factors of the source separation behaviors of 510 respondents. The results show that the main factors that positively affected respondents' behavioral intentions toward waste-mask source separation are: cognitive attitude, convenience, and perceived behavioral control, and among these, cognitive attitude has the highest influence. Subjective norm is also proved to be the weak factor to improving behavioral intention. Policy advocacy, and demographic variables have no significant effect on behavioral intention. The results of this study can help decision makers and managers formulate effective strategies to increase residents' participation in the source separation of waste masks. Supplementary Information The online version contains supplementary material available at 10.1007/s10163-022-01513-7.
Collapse
Affiliation(s)
- Kaihan Cai
- Macao Institute of Systems Engineering, Macau University of Science and Technology, Macao, 999078 China
| | - Wenlei Zeng
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Macao, 999078 China
| | - Qingbin Song
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Macao, 999078 China
| | - Yangyang Liang
- Macao Institute of Systems Engineering, Macau University of Science and Technology, Macao, 999078 China
| | - Shaohong Peng
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Guangdong University of Petrochemical Technology, Maoming, 525000 Guangdong China
| | - Jiaqi Hu
- China National Electric Apparatus Research Institute Co., Ltd., Guangzhou, 513000 China
| | - Jinhui Li
- School of Environment, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
67
|
Farnood R, Mahmoud H, Gibson J, Mao T, Odegaard C. Generalized Kubelka's theory for light transmission in multilayer materials and its application for UV light penetration in filtering facepiece respirators. JOURNAL OF BIOPHOTONICS 2022; 15:e202200068. [PMID: 35771214 PMCID: PMC9350410 DOI: 10.1002/jbio.202200068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The spread of SARS-CoV-2 has resulted in the shortage of filtering facepiece respirators (FFRs). As a result, the use of ultraviolet (UV) irradiation for disinfection and reuse of FFRs has been the topic of much investigation. In this article, a mathematical model is developed based on Kubelka's theory to determine light transmission in multilayer materials, such as N95 masks. Using this model, the predicted UV transmittance and absorbance of a N95 mask layers were found to be in close agreement with the experimental values. In addition, when the mask was exposed to UV equally from both surfaces, the estimated minimum UV irradiance inside the N95 mask was 14.5% of the incident irradiance, suggesting a significant degree of light penetration. The proposed model provides a simple and practical methodology for the design and use of UV decontamination equipment for FFRs and other multilayer materials.
Collapse
Affiliation(s)
- Ramin Farnood
- Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoOntarioCanada
| | | | - John Gibson
- Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoOntarioCanada
| | - Ted Mao
- Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoOntarioCanada
- MW Technologies IncLondonOntarioCanada
| | | |
Collapse
|
68
|
Sipkens TA, Corbin JC, Koukoulas T, Oldershaw A, Lavoie T, Norooz Oliaee J, Liu F, Leroux ID, Smallwood GJ, Lobo P, Green RG. Comparison of measurement systems for assessing number- and mass-based particle filtration efficiency. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2022; 19:629-645. [PMID: 35994755 DOI: 10.1080/15459624.2022.2114596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The particle filtration efficiency (PFE) of a respirator or face mask is one of its key properties. While the physics of particle filtration results in the PFE being size-dependent, measurement standards are specified using a single, integrated PFE, for simplicity. This integrated PFE is commonly defined concerning either the number (NPFE) or mass (MPFE) distribution of particles as a function of size. This relationship is non-trivial; it is influenced by both the shape of the particle distribution and the fact that multiple practical definitions of particle size are used. This manuscript discusses the relationship between NPFE and MPFE in detail, providing a guide to practitioners. Our discussion begins with a description of the theory underlying different variants of PFE. We then present experimental results for a database of size-resolved PFE (SPFE) measurements for several thousand candidate respirators and filter media, including filter media with systematically varied properties and commercial samples that span 20%-99.8% MPFE. The observed relationships between NPFE and MPFE are discussed in terms of the most-penetrating particle size (MPPS) and charge state of the media. For the sodium chloride particles used here, we observed that the MPFE was greater than NPFE for charged materials and vice versa for uncharged materials. This relationship is observed because a shift from NPFE to MPFE weights the distribution toward larger sizes, while charged materials shift the MPPS to smaller sizes. Results are validated by comparing the output of a pair of automated filter testers, which are used in gauging standards compliance, to that of MPFE computed from a system capable of measuring SPFE over the 20 nm-500 nm range.
Collapse
Affiliation(s)
- Timothy A Sipkens
- Metrology Research Centre, National Research Council Canada, Ottawa, Ontario
| | - Joel C Corbin
- Metrology Research Centre, National Research Council Canada, Ottawa, Ontario
| | | | - Andrew Oldershaw
- Metrology Research Centre, National Research Council Canada, Ottawa, Ontario
| | - Thierry Lavoie
- Metrology Research Centre, National Research Council Canada, Ottawa, Ontario
| | - Jalal Norooz Oliaee
- Metrology Research Centre, National Research Council Canada, Ottawa, Ontario
| | - Fengshan Liu
- Metrology Research Centre, National Research Council Canada, Ottawa, Ontario
| | - Ian D Leroux
- Metrology Research Centre, National Research Council Canada, Ottawa, Ontario
| | - Gregory J Smallwood
- Metrology Research Centre, National Research Council Canada, Ottawa, Ontario
| | - Prem Lobo
- Metrology Research Centre, National Research Council Canada, Ottawa, Ontario
| | - Richard G Green
- Metrology Research Centre, National Research Council Canada, Ottawa, Ontario
| |
Collapse
|
69
|
Sainz-García A, Toledano P, Muro-Fraguas I, Álvarez-Erviti L, Múgica-Vidal R, López M, Sainz-García E, Rojo-Bezares B, Sáenz Y, Alba-Elías F. Mask disinfection using atmospheric pressure cold plasma. Int J Infect Dis 2022; 123:145-156. [PMID: 35995313 PMCID: PMC9389523 DOI: 10.1016/j.ijid.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Mask usage has increased over the last few years due to the COVID-19 pandemic, resulting in a mask shortage. Furthermore, their prolonged use causes skin problems related to bacterial overgrowth. To overcome these problems, atmospheric pressure cold plasma was studied as an alternative technology for mask disinfection. METHODS Different microorganisms (Pseudomonas aeruginosa, Escherichia coli, Staphylococcus spp.), different gases (nitrogen, argon, and air), plasma power (90-300 W), and treatment times (45 seconds to 5 minutes) were tested. RESULTS The best atmospheric pressure cold plasma treatment was the one generated by nitrogen gas at 300 W and 1.5 minutes. Testing of breathing and filtering performance and microscopic and visual analysis after one and five plasma treatment cycles, highlighted that these treatments did not affect the morphology or functional capacity of the masks. CONCLUSION Considering the above, we strongly believe that atmospheric pressure cold plasma could be an inexpensive, eco-friendly, and sustainable mask disinfection technology enabling their reusability and solving mask shortage.
Collapse
Affiliation(s)
- Ana Sainz-García
- Department of Mechanical Engineering, University of La Rioja, C/ San José de Calasanz 31, 26004 Logroño, La Rioja, Spain
| | - Paula Toledano
- Molecular Microbiology Area, Center for Biomedical Research of La Rioja (CIBIR), C/Piqueras 98, 26006 Logroño, La Rioja, Spain
| | - Ignacio Muro-Fraguas
- Department of Mechanical Engineering, University of La Rioja, C/ San José de Calasanz 31, 26004 Logroño, La Rioja, Spain
| | - Lydia Álvarez-Erviti
- Molecular Neurobiology Area, Center for Biomedical Research of La Rioja (CIBIR), C/Piqueras 98, 26006 Logroño, La Rioja, Spain
| | - Rodolfo Múgica-Vidal
- Department of Mechanical Engineering, University of La Rioja, C/ San José de Calasanz 31, 26004 Logroño, La Rioja, Spain
| | - María López
- Molecular Microbiology Area, Center for Biomedical Research of La Rioja (CIBIR), C/Piqueras 98, 26006 Logroño, La Rioja, Spain
| | - Elisa Sainz-García
- Department of Mechanical Engineering, University of La Rioja, C/ San José de Calasanz 31, 26004 Logroño, La Rioja, Spain
| | - Beatriz Rojo-Bezares
- Molecular Microbiology Area, Center for Biomedical Research of La Rioja (CIBIR), C/Piqueras 98, 26006 Logroño, La Rioja, Spain
| | - Yolanda Sáenz
- Molecular Microbiology Area, Center for Biomedical Research of La Rioja (CIBIR), C/Piqueras 98, 26006 Logroño, La Rioja, Spain.
| | - Fernando Alba-Elías
- Department of Mechanical Engineering, University of La Rioja, C/ San José de Calasanz 31, 26004 Logroño, La Rioja, Spain.
| |
Collapse
|
70
|
Understanding and combating COVID-19 using the biology and chemistry of SARS-CoV-2. Bioprocess Biosyst Eng 2022; 45:1753-1769. [PMID: 36125525 PMCID: PMC9486761 DOI: 10.1007/s00449-022-02788-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022]
Abstract
The coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Symptoms of COVID-19 can range from asymptomatic to severe, which could lead to fatality. Like other pathogenic viruses, the infection of SARS-CoV-2 relies on binding its spike glycoprotein to the host receptor angiotensin-converting enzyme 2 (ACE 2). Molecular studies suggested that there is a high affinity between the spike glycoprotein and ACE 2 that might arise due to their hydrophobic interaction. This property is mainly responsible for making this virus highly infectious. Apart from this, the transmissibility of the virus, prolonged viability in certain circumstances, and rapid mutations also contributed to the current pandemic situation. Nanotechnology provides potential alternative solutions to combat COVID-19 with the development of i. nanomaterial-based COVID-19 detection technology, ii. nanomaterial-based disinfectants, iii. nanoparticle-based vaccines, and iv. nanoparticle-based drug delivery. Hence, this review provides diverse insight into understanding COVID-19.
Collapse
|
71
|
Moreira BRDA, Cruz VH, Barbosa Júnior MR, Meneses MD, Lopes PRM, da Silva RP. Agro-residual biomass and disposable protective face mask: a merger for converting waste to plastic-fiber fuel via an integrative carbonization-pelletization framework. BIOMASS CONVERSION AND BIOREFINERY 2022:1-22. [PMID: 36124332 PMCID: PMC9476463 DOI: 10.1007/s13399-022-03285-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Incineration and landfilling offer possibilities for addressing high-rate management of COVID-waste streams. However, they can be costly and environmentally unsustainable. In addition, they do not allow to convert them to fuels and chemicals as waste-to-energy and waste-to-product technologies. Therefore, we analyzed whether integrating hydrothermal carbonization (HTC) and pelletization can allow converting the surgical face mask (SFM) and biomass to composite plastic-fiber fuel (CPFF). We blended the plastic material and corncob, peanut shell, or sugarcane bagasse at the proportion of 50:50 (%, dry mass basis) for HTC. We performed the thermal pretreatment of blends in an autoclaving reactor at 180 °C and 1.5 MPa. Then we pelletized the hydrochars in a presser machine at 200 MPa and 125 °C. By analyzing the evidence from our study, we recognized the viability of combining the SFM and agricultural residues for CPFF from comparable technical features of our products to standards for premium-grade wood pellets. For instance, the elemental composition of their low-meltable ash was not stoichiometrically sufficient to severely produce slagging and fouling in the equipment for thermal conversion. Although they contained synthetic polymers in their structures, such as polyethylene from filter layers and nylon from the earloop, they emitted CO and NOx below the critical limits of 200 and 500 mg m-3, respectively, for occupational safety. Therefore, we extended the knowledge on waste-to-energy pathways to transform SFM into high-quality hybrid fuel by carbonization and pelletization. Our framework can provide stakeholders opportunities to address plastic and biogenic waste in the context of a circular economy. Supplementary Information The online version contains supplementary material available at 10.1007/s13399-022-03285-4.
Collapse
Affiliation(s)
- Bruno Rafael de Almeida Moreira
- Department of Engineering and Mathematical Sciences, School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo Brazil
| | - Victor Hugo Cruz
- Department of Plant Production, School of Agricultural and Technological Sciences, São Paulo State University (Unesp), Dracena, São Paulo Brazil
| | - Marcelo Rodrigues Barbosa Júnior
- Department of Engineering and Mathematical Sciences, School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo Brazil
| | - Mariana Dias Meneses
- Department of Engineering and Mathematical Sciences, School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo Brazil
| | - Paulo Renato Matos Lopes
- Department of Plant Production, School of Agricultural and Technological Sciences, São Paulo State University (Unesp), Dracena, São Paulo Brazil
| | - Rouverson Pereira da Silva
- Department of Engineering and Mathematical Sciences, School of Agricultural and Veterinary Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo Brazil
| |
Collapse
|
72
|
Environmental Hazard of Polypropylene from Disposable Face Masks Linked to the COVID-19 Pandemic and Its Possible Mitigation Techniques through a Green Approach. J CHEM-NY 2022. [DOI: 10.1155/2022/9402236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The COVID-19 outbreak again underlined plastic items’ importance in our daily lives. The public has widely utilized disposable face masks constructed of polypropylene polymer materials as effective and inexpensive personal protective equipment (PPE) to inhibit virus transmission. The consequences of this have resulted in millions of tons of plastic garbage littering the environment due to inappropriate disposal and mismanagement. Surgical masks are among them, and this study aimed to assess the biodegrading efficiency of disposable face masks using Pseudomonas aeruginosa VJ 1. This work used a bacterial strain, Pseudomonas aeruginosa VJ 1, obtained from sewage water-contaminated surface soil in Tiruchirappalli, India, to investigate the biodegradation of polypropylene (PP) face masks. The mask pieces were incubated with Pseudomonas aeruginosa VJ 1 culture in three different solid and liquid media for 30 days at 37°C. Surface changes and variations in the intensity of functional groups and carbonyl index variations were confirmed using Field Emission Scanning Electron Microscopy (FE-SEM) and Fourier Transform Infrared Spectroscopy (FTIR) analysis to ensure microbial degradation (up to 5.37% weight reduction of PP films within 30 days). These findings show that Pseudomonas aeruginosa VJ 1 could be a good choice for biodegrading PP masks without harming our health or the environment. There is a need for a novel solution for the degradation of PP. The methods and strain presented here reveal the potential biodegrading agents of PP masks.
Collapse
|
73
|
Using the concept of circular economy to reduce the environmental impact of COVID-19 face mask waste. SUSTAINABLE MATERIALS AND TECHNOLOGIES 2022. [PMCID: PMC9355742 DOI: 10.1016/j.susmat.2022.e00475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
COVID-19 pandemic has posed severe threats to the society globally. World Health Organization (WHO) guidelines suggest that people wear face masks as a precautionary measure daily. This has resulted in the generation of massive amounts of mask-associated waste in the environment. Owing to the criticality of the epidemic, there has not been a large-scale investigation on where to discard masks, making this situation daunting. As the pandemic continues, the use of masks continues to increase; repeated use and disposal of masks has become an imperative issue. Most disposable masks comprise chemical fibers in the filter layer. Without proper treatment and disposal, these large amounts of chemical waste will eventually flow into rivers or oceans, leading to serious pollution. Therefore, to reduce the negative effects on the marine environment, it is crucial that we produce reusable masks and reduce disposable wearing habits. This study aimed to resolve this challenge using textile materials created by recycling fish-scale waste. Functional and comfortable masks manufactured without chemical additives to achieve multiple functions can increase the willingness to wear and be reused. Hence, product use can be prolonged, and the use of disposable masks can be curtailed. The product manufactured herein is biodegradable in nature, thus conforming to the green sustainable initiative.
Collapse
|
74
|
Mahyari KF, Sun Q, Klemeš JJ, Aghbashlo M, Tabatabaei M, Khoshnevisan B, Birkved M. To what extent do waste management strategies need adaptation to post-COVID-19? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155829. [PMID: 35561899 PMCID: PMC9087148 DOI: 10.1016/j.scitotenv.2022.155829] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 05/02/2023]
Abstract
The world has been grappling with the crisis of the COVID-19 pandemic for more than a year. Various sectors have been affected by COVID-19 and its consequences. The waste management system is one of the sectors affected by such unpredictable pandemics. The experience of COVID-19 proved that adaptability to such pandemics and the post-pandemic era had become a necessity in waste management systems and this requires an accurate understanding of the challenges that have been arising. The accurate information and data from most countries severely affected by the pandemic are not still available to identify the key challenges during and post-COVID-19. The documented evidence from literature has been collected, and the attempt has been made to summarize the rising challenges and the lessons learned. This review covers all raised challenges concerning the various aspects of the waste management system from generation to final disposal (i.e., generation, storage, collection, transportation, processing, and burial of waste). The necessities and opportunities are recognized for increasing flexibility and adaptability in waste management systems. The four basic pillars are enumerated to adapt the waste management system to the COVID-19 pandemic and post-COVID-19 conditions. Striving to support and implement a circular economy is one of its basic strategies.
Collapse
Affiliation(s)
- Khadijeh Faraji Mahyari
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Iran
| | - Qiaoyu Sun
- Center for Science and Technology Personnel Exchange and Development Service, Ministry of Science and Technology of the People's Republic of China, No.54 Sanlihe Road, Xicheng District, Beijing, PR China
| | - Jiří Jaromír Klemeš
- Sustainable Process Integration Laboratory - SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology - VUT Brno, Technická 2896/2, 616 69 Brno, Czech Republic
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Iran
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Benyamin Khoshnevisan
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Denmark.
| | - Morten Birkved
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Denmark.
| |
Collapse
|
75
|
Ali SA, Parvin F. Examining challenges and multi-strategic approaches in waste management during the COVID-19 pandemic: A systematic review. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2022; 40:1356-1380. [PMID: 35300557 DOI: 10.1177/0734242x221079303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The COVID-19 pandemic has a negative impact on the environment. Waste generation and improper management during the COVID-19 pandemic posed a major threat to human health and the environment. Irregular and improper waste collection, handling, suspension of waste recycling and unsanitary disposal were all important issues in the processing and management of generated waste. This study emphasised a systematic review and content analysis to categorise all types of waste management (WM) during the COVID-19 pandemic to accomplish a well understanding of the relation between the COVID-19 pandemic and its impacts on WM within the literature. In this systematic review, a number of published papers on different aspects of WM during March 2020 to February 2021 were considered in order to identify major challenges in handling WM during the pandemic time and highlight multi-strategic approaches suggested. A content analysis of the 58 relevant papers was carried out by incorporating different types of WM at local as well as global scales. The present review results revealed that the COVID-19 has impacted the quantity and composition of waste, and the crisis caused by the pandemic has also altered the nature of global WM system. A comprehensive analysis on how the systems of WM were affected through the advancement of COVID-19 and what would be the healthier solutions was also highlighted in this systematic review. The results of this systematic review would be beneficial for better policymakers to holistically address potential future pandemics, if any.
Collapse
Affiliation(s)
- Sk Ajim Ali
- Department of Geography, Faculty of Science, Aligarh Muslim University (AMU), Aligarh, India
| | - Farhana Parvin
- Department of Geography, Faculty of Science, Aligarh Muslim University (AMU), Aligarh, India
| |
Collapse
|
76
|
Rathinamoorthy R, Raja Balasaraswathi S. Impact of coronavirus pandemic litters on microfiber pollution-effect of personal protective equipment and disposable face masks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2022; 20:1-20. [PMID: 36035637 PMCID: PMC9391648 DOI: 10.1007/s13762-022-04462-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/08/2022] [Accepted: 08/03/2022] [Indexed: 05/25/2023]
Abstract
Coronavirus Pandemic is the current biggest challenge against humanity. Apart from the personal health issues and higher mortality by the coronavirus, recent research works have also reported the environmental impacts of the pandemic. The review aims to analyze the current status of face masks and personal protective equipment littering and subsequent environmental impact in terms of microplastic and microfiber pollution. Recent researches in this domain are collected from the leading databases with relevant keywords and critically analyzed. The review results report a multi-fold increment in the usage of personal protective equipment, particularly face masks after the pandemic. Mismanagement of these items leads them to reach the marine environment through a variety of transportation. The results show a significant amount of increment in plastic and pandemic-related littering after the pandemic. The systematic review shows that the use of synthetic fibers in disposable personal protective equipment and masks leads to release of fibers that can add-on to microfiber pollution. The results are also true in the case of reusable masks as the repeated laundry and disinfection methods release a significantly higher amount of microfibers. Only very few studies have addressed the release of microfiber from the mask, and no studies have reported the impact of personal protective equipment. The worldwide mass adaptation and improper disposal of these materials increase the seriousness of the problem multiple folds. These findings suggest the immediate requirement of critical analysis of the pandemic-related littering and microfiber release characteristics. The research also urges the need for the implementation of an environmental management plan as a mitigation strategy around the globe.
Collapse
Affiliation(s)
- R. Rathinamoorthy
- Department of Fashion Technology, PSG College of Technology, Coimbatore, 641004 India
| | | |
Collapse
|
77
|
Kuppusamy PP, Bhatia A, Verma A, Shah NR, Pratyush P, Shanmugarajan V, Kim SC, Poongavanam G, Duraisamy S. Accumulation of biomedical waste during the COVID-19 pandemic: concerns and strategies for effective treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55528-55540. [PMID: 35697985 PMCID: PMC9191757 DOI: 10.1007/s11356-022-21086-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
This study deals with the pollution impact of biomedical waste (BMW) generation due to the COVID-19 pandemic at both the global and national levels. This discussion is important in light of clear scientific evidence that, apart from the airborne transmission of the disease, the virus also survives on different surfaces and poses the risk of infection. Moreover, an investigation is conducted on BMW generation in tons/day in India during the COVID-19 period, with implications for future projection. Additionally, a pioneering study was conducted to estimate the usage of facemasks during the COVID-19 pandemic in India. This paper also provides a feasible solution, by adopting a modern perspective, towards managing BMW generated in the context of SARS-CoV-2 at isolation wards and crematoriums. Strategical approaches have been suggested for segregating and safely disposing BMW. The latest availability of disposal facilities is discussed based on source data provided by the Central Pollution Control Board (CPCB), India. Among the many disposal methods, incineration technologies are examined in depth. The impact of existing incineration technology on the environment and human health has been extensively studied. This study suggests strategies for controlling BMW generation during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Pon Pavithiran Kuppusamy
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Arpit Bhatia
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Anmol Verma
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Nehal Ratnesh Shah
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Prakash Pratyush
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Vigneswaran Shanmugarajan
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, Chennai, 602105, India
| | - Sung Chul Kim
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 712-749, Republic of Korea
| | - GaneshKumar Poongavanam
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 712-749, Republic of Korea.
- Department of Mechanical Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, Tamil Nadu, India.
| | - Sakthivadivel Duraisamy
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| |
Collapse
|
78
|
Özşeker K, Terzi Y, Erüz C. Solid waste composition and COVID-19-induced changes in an inland water ecosystem in Turkey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022. [PMID: 35306657 DOI: 10.1007/s11356-022-19750-6/tables/3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The composition and abundance of solid waste and the effect of COVID-19 measures were studied in an inland water ecosystem in Turkey. Solid waste items were collected annually for 5 years from 2017 to 2021 from seven stations located in Borçka Dam Lake (B1-B4) and Murgul Stream (M1-M3) in the Artvin Province. The highest densities by number and weight were recorded at M3 in 2020 (5.72 items/m2) and M1 in 2020 (0.39 kg/m2), respectively. However, no significant difference in density was recorded (p < 0.05) between the years. Plastic was the most abundant waste material by number of items in all the stations with a percentage contribution varying between 25.47 and 88.89%. There was a considerable increase in medical items during the COVID-19 pandemic in 2020-2021. Nonmetric multidimensional scaling (NMDS) and ANOSIM results revealed visually and statistically significant differences in solid waste composition between the years and stations. The dissimilarity between the years was driven by plastic and medical waste. The main sources of solid waste were river transportation (22.93%), improper disposal (20.74%), aquaculture activities (16.42%), and recreational and tourism activities (14.72%). The results of our study can be a baseline for transportation models, local administrations, and non-governmental organizations. Besides, the current waste management measures in Turkey are not effective in preventing waste accumulation in inland aquatic systems such as the Borçka Dam Lake and Murgul Stream. Furthermore, these findings indicate that the COVID-19 pandemic influenced solid waste composition and increased its abundance in the study area.
Collapse
Affiliation(s)
- Koray Özşeker
- Institute of Marine Sciences and Technology, Karadeniz Technical University, Trabzon, Turkey.
| | - Yahya Terzi
- Faculty of Marine Sciences, Karadeniz Technical University, Trabzon, Turkey
| | - Coşkun Erüz
- Faculty of Marine Sciences, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
79
|
Özşeker K, Terzi Y, Erüz C. Solid waste composition and COVID-19-induced changes in an inland water ecosystem in Turkey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:54596-54605. [PMID: 35306657 PMCID: PMC8934177 DOI: 10.1007/s11356-022-19750-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/11/2022] [Indexed: 05/09/2023]
Abstract
The composition and abundance of solid waste and the effect of COVID-19 measures were studied in an inland water ecosystem in Turkey. Solid waste items were collected annually for 5 years from 2017 to 2021 from seven stations located in Borçka Dam Lake (B1-B4) and Murgul Stream (M1-M3) in the Artvin Province. The highest densities by number and weight were recorded at M3 in 2020 (5.72 items/m2) and M1 in 2020 (0.39 kg/m2), respectively. However, no significant difference in density was recorded (p < 0.05) between the years. Plastic was the most abundant waste material by number of items in all the stations with a percentage contribution varying between 25.47 and 88.89%. There was a considerable increase in medical items during the COVID-19 pandemic in 2020-2021. Nonmetric multidimensional scaling (NMDS) and ANOSIM results revealed visually and statistically significant differences in solid waste composition between the years and stations. The dissimilarity between the years was driven by plastic and medical waste. The main sources of solid waste were river transportation (22.93%), improper disposal (20.74%), aquaculture activities (16.42%), and recreational and tourism activities (14.72%). The results of our study can be a baseline for transportation models, local administrations, and non-governmental organizations. Besides, the current waste management measures in Turkey are not effective in preventing waste accumulation in inland aquatic systems such as the Borçka Dam Lake and Murgul Stream. Furthermore, these findings indicate that the COVID-19 pandemic influenced solid waste composition and increased its abundance in the study area.
Collapse
Affiliation(s)
- Koray Özşeker
- Institute of Marine Sciences and Technology, Karadeniz Technical University, Trabzon, Turkey.
| | - Yahya Terzi
- Faculty of Marine Sciences, Karadeniz Technical University, Trabzon, Turkey
| | - Coşkun Erüz
- Faculty of Marine Sciences, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
80
|
Liao J, Ji S, Chi Y. Effects of Discarded Masks on the Offshore Microorganisms during the COVID-19 Pandemic. TOXICS 2022; 10:toxics10080426. [PMID: 36006105 PMCID: PMC9414469 DOI: 10.3390/toxics10080426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022]
Abstract
Numerous disposable plastic masks had been produced and used for preventing the worldwide COVID-19 pandemic effectively. Discarded masks are a potential source of microplastic pollution in marine ecosystems. The effect of discarded masks on offshore microorganisms is still unclear. Herein, we profiled the interaction between the microplastics released by discarded masks and marine microbes. The effects of mask quantity, time, and environment on the microplastic-related communities were determined. We characterized the bacterial communities of each group using 16S rRNA gene sequencing and metagenomic sequencing and correlated the community diversity to the physicochemical properties of seawater. We found that the diversity and richness of microflora on the surface of microplastics with different quantity and time varied significantly. Proteobacteria are the main bacteria on microplastics, and the KEGG metabolic pathway prediction shows that amino acid metabolism and carbohydrate metabolism were abundant. In addition, there was a correlation between bacterial communities and Antibiotic Resistance Ontology (ARO). We used scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR) techniques to evaluate the plastic polymer characteristics of disposable medical masks. Our research shows that disposable medical masks immersed in seawater can alter the microbial community. This study provides the most recent data and insights into the contamination of discarded masks in the marine environment.
Collapse
Affiliation(s)
- Jinlan Liao
- School of Advanced Manufacturing, Fuzhou University, Quanzhou 362200, China;
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Shouping Ji
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
- Correspondence: (S.J.); (Y.C.)
| | - Yulang Chi
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
- Correspondence: (S.J.); (Y.C.)
| |
Collapse
|
81
|
Zajemska M, Magdziarz A, Iwaszko J, Skrzyniarz M, Poskart A. Numerical and experimental analysis of pyrolysis process of RDF containing a high percentage of plastic waste. FUEL (LONDON, ENGLAND) 2022; 320:123981. [PMID: 36000017 PMCID: PMC9388221 DOI: 10.1016/j.fuel.2022.123981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
The current COVID-19 pandemic situation and the associated restrictions have increased the amount of generated waste. It results from the necessity to wear personal protective equipment. Thus, the disposal of masks and gloves is a topical issue and requires immediate investigation. The main aims of this work are management and environmental studies of municipal solid wastes (MSW), which have been generated during the COVID-19 pandemic time. Effective waste management in relation to a circular economy is presented. A sample of refuse derived fuel (RDF) with a high content of plastics was used for the experimental and calculation studies. Pyrolysis was selected as the best thermal decomposition process for this kind of wastes. Proximate and ultimate analyses were performed for RDF and its products. Pyrolysis was carried out using a pilot-scale reactor with a continuous flow of 250 kg/h at 900 °C. Thermogravimetric analysis was applied during the pyrolysis investigation and showed that the main decomposition of RDF took place in the temperature range of 250-500 °C. The pyrolysis gas contained combustible compounds like CO (19.8%), H2 (13.2%), CH4 (18.9%) and C2H4 (7.1%), giving a high calorific value - 24.4 MJ/m3. The experimental results were implemented for numerical calculations. Chemkin-Pro software was applied to predict the chemical composition of the pyrolysis gas. The performed computer simulations demonstrated very good agreement with the results obtained during the experiments. They also indicated that there is a strong relationship between the chemical composition of the pyrolysis gas, the process temperature and residence time in the reactor.
Collapse
Affiliation(s)
- Monika Zajemska
- Czestochowa University of Technology, Faculty of Production Engineering and Materials Technology, 19 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Aneta Magdziarz
- AGH University of Science and Technology, 30 Mickiewicza Ave., 30-059 Krakow, Poland
| | - Józef Iwaszko
- Czestochowa University of Technology, Faculty of Production Engineering and Materials Technology, 19 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Magdalena Skrzyniarz
- Czestochowa University of Technology, Faculty of Production Engineering and Materials Technology, 19 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Anna Poskart
- Czestochowa University of Technology, Faculty of Management, 19 B Armii Krajowej Ave., 42-200 Czestochowa, Poland
| |
Collapse
|
82
|
Lin L, Yuan B, Zhang B, Li H, Liao R, Hong H, Lu H, Liu J, Yan C. Uncovering the disposable face masks as vectors of metal ions (Pb(Ⅱ), Cd(Ⅱ), Sr(Ⅱ)) during the COVID-19 pandemic. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2022; 439:135613. [PMID: 36568492 PMCID: PMC9761293 DOI: 10.1016/j.cej.2022.135613] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 05/06/2023]
Abstract
The demand for disposable face masks (DFMs) increased sharply in response to the COVID-19 pandemic. However, information regarding the underlying roles of the largely discarded DFMs in the environment is extremely lacking. This study focused on the pristine and UV-aged DFMs as vectors of metal ions (Pb(Ⅱ), Cd(Ⅱ), and Sr(Ⅱ)). Further, the aging mechanism of DFMs with UV radiation as well as the interaction mechanisms between DFMs and metal ions were investigated. Results revealed that the aging process would help to promote more metal ions adsorbed onto DFMs, which was mainly attributed to the presence of oxygen-containing groups on the aged DFMs. The adsorption affinity of pristine and aged DFMs for the metal ions followed Pb(Ⅱ) > Cd(Ⅱ) > Sr(Ⅱ), which was positively corrected with the electronegativity of the metals. Interestingly, we found that even if DFMs were not disrupted, DFMs had similar or even higher adsorption affinity for metals compared with other existing microplastics. Besides, regarding environmental factors, including salinity and solution pH played a crucial role in the adsorption processes, with greater adsorption capacities for pristine and aged DFMs at higher pH values and low salinity. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and density functional theory further confirmed that the pristine DFMs interacted with the metals mainly through electrostatic interaction, while electrostatic interaction and surface complexation jointly regulated the adsorption of the metals onto aged DFMs. Overall, these findings would help to evaluate environmental behaviors and risks of DFMs associated with metals.
Collapse
Affiliation(s)
- Lujian Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Bo Yuan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Binghuang Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Hanyi Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Ran Liao
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Hualong Hong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Haoliang Lu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Jingchun Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Chongling Yan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China
| |
Collapse
|
83
|
Assessing the Connections between COVID-19 and Waste Management in Brazil. SUSTAINABILITY 2022. [DOI: 10.3390/su14138083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In addition to the health crisis caused by the coronavirus pandemic, several countries—particularly in developing regions—faced serious additional challenges in the economic, social and environmental areas. In Brazil, one of these challenges refers to the changes in consumption caused by the lockdowns, and the environmental impacts caused by new patterns of waste generation. Against this background, this paper investigates the changes in consumption and waste generation in Brazil during the COVID-19 pandemic. It provides a technical contribution to the topic by comparing the perception of survey respondents on the amount of household waste produced before and during the pandemic, and cross-checking these with information on current aspects of policymaking, the findings suggest that the amount of some specific types of household waste has noticeably increased, challenging even more the local waste management systems. The data instrument was validated by a pre-test, prior to deployment. According to the respondents, packaging (both plastic and paper/cardboard) was the type of waste that reported the highest increase in generation during the lockdowns, which is in line with the results of increased consumption of food delivery within this period. The results also suggest that current waste management policies make Brazil ill-equipped to deal with one of the non-intended effects of the COVID-19 pandemic, which has severely impacted Latin America’s largest country.
Collapse
|
84
|
Yalcin E, Munir Ozdemir A, Vural Kok B, Yilmaz M, Yilmaz B. Influence of pandemic waste face mask on rheological, physical and chemical properties of bitumen. CONSTRUCTION AND BUILDING MATERIALS 2022; 337:127576. [PMID: 35493028 PMCID: PMC9044031 DOI: 10.1016/j.conbuildmat.2022.127576] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 05/06/2023]
Abstract
Recently, COVID-19 has appeared as an international pandemic, leading to serious risks for humans. Using face masks is one of the most common measures in a wide-ranging prevention program that could control the COVID-19 dissemination. Face masks are typically composed of non-biodegradable and non-renewable polymers based on petroleum, which are harmful to nature and lead to health problems. In the present study, disposable face masks, the use of which has increased due to the Covid-19 pandemic throughout the world and which cause environmental pollution, were divided into very small pieces and utilized as a modifier in the bitumen binder. Therefore, this study aimed to provide a solution to such a significant environmental problem. Five different ratios of waste mask and the single ratio of styrene-butadienestyrene (SBS) were added to the pure binder and the rheological, physical, and chemical properties of the modified binders were compared. The result showed that adding a waste mask and SBS to the pure bitumen caused increases in binders' softening point and viscosity and reductions in the penetration value. Waste mask modifications were able to better maintain its elastic properties both at low stress and high-stress levels with increasing temperature. 3% SBS was the binder most affected by temperature rise. As a result, it has been determined that binders containing more than 2% waste mask have better performance characteristics than binders containing 3% SBS in terms of physical and rheological properties.
Collapse
Affiliation(s)
- Erkut Yalcin
- Engineering Department, University of Firat, Elazig, Turkey
| | | | - B Vural Kok
- Engineering Department, University of Firat, Elazig, Turkey
| | - Mehmet Yilmaz
- Engineering Department, University of Firat, Elazig, Turkey
| | - Bahadir Yilmaz
- Engineering Department, University of Bursa Technical, Bursa, Turkey
| |
Collapse
|
85
|
Bhattacharjee S, Bahl P, Chughtai AA, Heslop D, MacIntyre CR. Face masks and respirators: Towards sustainable materials and technologies to overcome the shortcomings and challenges. NANO SELECT 2022. [DOI: 10.1002/nano.202200101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Shovon Bhattacharjee
- Biosecurity Program The Kirby Institute, Faculty of Medicine University of New South Wales Kensington Sydney Australia
- Department of Applied Chemistry and Chemical Engineering Faculty of Engineering and Technology Noakhali Science and Technology University Noakhali Bangladesh
| | - Prateek Bahl
- School of Mechanical & Manufacturing Engineering University of New South Wales Sydney Australia
| | - Abrar Ahmad Chughtai
- School of Population Health Faculty of Medicine University of New South Wales Kensington Sydney Australia
| | - David Heslop
- School of Population Health Faculty of Medicine University of New South Wales Kensington Sydney Australia
| | - C. Raina MacIntyre
- Biosecurity Program The Kirby Institute, Faculty of Medicine University of New South Wales Kensington Sydney Australia
- College of Public Service and Community Solutions and College of Health Solutions Arizona State University Tempe Arizona USA
| |
Collapse
|
86
|
Li B, Huang Y, Guo D, Liu Y, Liu Z, Han JC, Zhao J, Zhu X, Huang Y, Wang Z, Xing B. Environmental risks of disposable face masks during the pandemic of COVID-19: Challenges and management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153880. [PMID: 35189225 PMCID: PMC8855619 DOI: 10.1016/j.scitotenv.2022.153880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 05/10/2023]
Abstract
Since the COVID-19 outbreak in early 2020, face mask (FM) has been recognized as an effective measure to reduce the infection, increasing its consumption across the world. However, the large amount of at-home FM usage changed traditional medical waste management practices, lack of improper management. Currently, few studies estimate FM consumption at a global scale, not to say a comprehensive investigation on the environmental risks of FM from a life cycle perspective. Therefore, global FM consumption and its associated environmental risks are clarified in the present study. Our result shows that 449.5 billion FMs were consumed from January 2020 to March 2021, with an average of 59.4 FMs per person worldwide. This review also provides a basis to understand the environmental risk of randomly disposed of FM and highlights the urgent requirement for the attention of FMs waste management to prevent pollution in the near future.
Collapse
Affiliation(s)
- Bing Li
- Water Research Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Department of Hydraulic Engineering, Tsinghua University, Beijing, PR China
| | - Yuxiong Huang
- Water Research Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Dengting Guo
- Water Research Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Chemical and Materials Engineering, The University of Auckland, New Zealand
| | - Yuzhi Liu
- Water Research Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Ziyi Liu
- Water Research Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Jing-Cheng Han
- Water Science and Environmental Engineering Research Centre, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, PR China
| | - Jian Zhao
- School of Environmental Science and Engineering, Ocean University of China, Qingdao 214122, PR China
| | - Xiaoshan Zhu
- Water Research Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| | - Yuefei Huang
- Water Research Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Department of Hydraulic Engineering, Tsinghua University, Beijing, PR China
| | - Zhenyu Wang
- Institute of Environmental Process and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
87
|
Novel sustainable filter for virus filtration and inactivation. Sci Rep 2022; 12:9109. [PMID: 35650235 PMCID: PMC9156824 DOI: 10.1038/s41598-022-13316-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/23/2022] [Indexed: 11/08/2022] Open
Abstract
The COVID-19 pandemic has caused a multi-scale impact on the world population that started from a nano-scale respiratory virus and led to the shutdown of macro-scale economies. Direct transmission of SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) and its variants through aerosolized droplets is a major contributor towards increasing cases of this infection. To curb the spread, one of the best engineered solutions is the use of face masks to prevent the passage of infectious saliva micro-droplets from an infected person to a healthy person. The commercially available masks are single use, passive face-piece filters. These become difficult to breathe in during strenuous activities. Also, they need to be disposed regularly due to accumulation of unwanted particulate and pathogens over time. Frequent disposal of these masks is unsustainable for the environment. In this study, we have proposed a novel design for a filter for enhanced virus filtration, better breathability, and virus inactivation over time. The filter is called Hy–Cu named after its (Hy) drophobic properties and another significant layer comprises of copper (Cu). The breathability (pressure drop across filter) of Hy–Cu is tested and compared with widely used surgical masks and KN95 masks, both experimentally and numerically. The results show that the Hy–Cu filter offers at least 10% less air resistance as compared to commercially available masks. The experimental results on virus filtration and inactivation tests using MS2 bacteriophage (a similar protein structure as SARS-CoV-2) show that the novel filter has 90% filtering efficiency and 99% virus inactivation over a period of 2 h. This makes the Hy–Cu filter reusable and a judicious substitute to the single use masks.
Collapse
|
88
|
Su Y, Cheng H, Wang Z, Wang L. Impacts of the COVID-19 lockdown on building energy consumption and indoor environment: A case study in Dalian, China. ENERGY AND BUILDINGS 2022; 263:112055. [PMID: 35370351 PMCID: PMC8959662 DOI: 10.1016/j.enbuild.2022.112055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/12/2022] [Accepted: 03/23/2022] [Indexed: 05/03/2023]
Abstract
Restricting social distancing is an effective means of controlling the COVID-19 pandemic, resulting in a sharp drop in the utilization of commercial buildings. However, the specific changes in the operating parameters are not clear. This study aims to quantify the impact of COVID-19 lockdowns on commercial building energy consumption and the indoor environment, including correlation analysis. A large green commercial building in Dalian, China's only country to experience five lockdowns, has been chosen. We compared the performance during the lockdown to the same period last year. The study found that the first lockdown caused a maximum 63.5% drop in monthly energy consumption, and the second lockdown was 55.2%. The energy consumption per unit area in 2020 dropped by 55.4% compared with 2019. In addition, during the lockdown, the compliance rate of indoor thermal environment increased by 34.7%, and indoor air quality was 9.5%. These findings could partly explain the short-term and far-reaching effects of the lockdown on the operating parameters of large commercial buildings. Humans are likely to coexist with COVID-19 for a long time, and commercial buildings have to adapt to new energy and health demands. Effective management strategies need to be developed.
Collapse
Affiliation(s)
- Yuan Su
- School of Architecture & Fine Art, Dalian University of Technology, Dalian 116024, China
| | - Haoyuan Cheng
- School of Architecture & Fine Art, Dalian University of Technology, Dalian 116024, China
| | - Zhe Wang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, China
| | - Linwei Wang
- China Merchants Shekou Holdings Northeast Corporation, China
| |
Collapse
|
89
|
Ohara Y, Kanie J, Hori K. Fabrication of a highly protective 3D-printed mask and evaluation of its viral filtration efficiency using a human head mannequin. HARDWAREX 2022; 11:e00314. [PMID: 35572092 PMCID: PMC9078936 DOI: 10.1016/j.ohx.2022.e00314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/20/2022] [Accepted: 05/04/2022] [Indexed: 05/04/2023]
Abstract
Facemasks are one of the most effective and low-cost prophylactics for COVID-19. In the spring 2020, when a severe shortage of facemasks occurred worldwide, various types of 3D-printed masks were designed and proposed. However, the protective effects conferred by most of these masks were not experimentally evaluated. Here, we provide a new simple design of 3D-printed mask and evaluate its protective effect in a viral filtration test using a human head mannequin. The developed mask can be constructed with a low-cost 3D printer, with an approximate production cost of US $4. This mask has three parts: the main part, wearing parts, and a piece of non-woven fabric filter. The volume of the filter, which needs to be changed daily, was reduced to approximately 1/10 of that of commercially available surgical masks used in this study. The developed mask is fabricated from polylactic acid, a biodegradable plastic, and its surface contour contacting the face may be adjusted after softening the material with hot water at 60-80°C. The viral filtration efficiency of the developed mask was found to be over 80%. This performance is better than that of commercially available facemasks, such as surgical masks and cloth masks, and equal to those of KN95 and KF94.
Collapse
Affiliation(s)
- Yuki Ohara
- Friend Microbe Inc., Aichi 464-0858, Japan
| | | | - Katsutoshi Hori
- Friend Microbe Inc., Aichi 464-0858, Japan
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
90
|
Amuah EEY, Agyemang EP, Dankwa P, Fei-Baffoe B, Kazapoe RW, Douti NB. Are used face masks handled as infectious waste? Novel pollution driven by the COVID-19 pandemic. RESOURCES, CONSERVATION & RECYCLING ADVANCES 2022; 13:200062. [PMID: 34939066 PMCID: PMC8628605 DOI: 10.1016/j.rcradv.2021.200062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/24/2022]
Abstract
The extensive use of face masks has raised concerns about environmental pollution through improper disposal of used face masks after the emergence of COVID-19. The increasing use of PPEs to preventing the spread of COVID-19 has resulted in several environmental hazards, creating a new environmental barrier for solid waste management and worsened plastic pollution. This study aimed at assessing the occurrence and distribution of face masks in a metropolitan (Adum - Kumasi), municipal (Ejisu), community (Abenase) and an institution (KNUST) in Ghana. The study showed that a total of 535 face masks were numerated along a stretch of 1,720 m with a density ranging from 0.04 m to 0.42 m. A no significant relationship (P = 0.602) was established between the observation distances and the number of waste face masks numerated. The study also showed that for a 1% increase in the number of face masks on working days, there would be a 0.775% increase in non-working days. A review of literature showed that the disposal of used face masks results in the release of micro- and nano-plastics, Pb, Cu, Sb, Zn, Mn, Ti, Fe and Ca into environmental media. Plastic pollution may be a concern to ecosystems due to its persistence in the environment, lack of environmental awareness, sensitization and education, and poor waste management systems. To ensure a sustainable management of waste face masks, significant efforts are needed. These may include proper disposal, redesigning and producing masks from biodegradable materials, incorporating waste face masks into construction materials, and recycling PPE by pyrolyzing are suggested options for the effective management of face masks.
Collapse
Affiliation(s)
- Ebenezer Ebo Yahans Amuah
- Department of Environmental Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Paul Dankwa
- Department of Environmental Sciences, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana
| | - Bernard Fei-Baffoe
- Department of Environmental Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Nang Biyogue Douti
- Department of Environmental Sciences, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana
| |
Collapse
|
91
|
Serafin J, Sreńscek-Nazzal J, Kamińska A, Paszkiewicz O, Michalkiewicz B. Management of surgical mask waste to activated carbons for CO2 capture. J CO2 UTIL 2022; 59:101970. [PMID: 35309164 PMCID: PMC8917960 DOI: 10.1016/j.jcou.2022.101970] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/21/2022] [Accepted: 03/05/2022] [Indexed: 01/16/2023]
Affiliation(s)
- Jarosław Serafin
- Institute of Energy Technologies, Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, Eduard Maristany 16, 08019 Barcelona, Spain
| | - Joanna Sreńscek-Nazzal
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Catalytic and Sorbent Materials Engineering, Piastów Ave. 42, 71-065 Szczecin, Poland
| | - Adrianna Kamińska
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Catalytic and Sorbent Materials Engineering, Piastów Ave. 42, 71-065 Szczecin, Poland
| | - Oliwia Paszkiewicz
- Department of Chemical and Process Engineering, West Pomeranian University of Technology in Szczecin, Piastow 42, 71-065 Szczecin, Poland
| | - Beata Michalkiewicz
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Catalytic and Sorbent Materials Engineering, Piastów Ave. 42, 71-065 Szczecin, Poland
| |
Collapse
|
92
|
Sendra M, Pereiro P, Yeste MP, Novoa B, Figueras A. Surgical face masks as a source of emergent pollutants in aquatic systems: Analysis of their degradation product effects in Danio rerio through RNA-Seq. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128186. [PMID: 35042165 PMCID: PMC9761780 DOI: 10.1016/j.jhazmat.2021.128186] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/14/2021] [Accepted: 12/28/2021] [Indexed: 05/06/2023]
Abstract
Surgical face masks are the most popularised and effective personal equipment for protecting public health during the COVID-19 pandemic. They are composed of plastic polymer fibres with a large amount of inorganic and organic compounds that can be released into aquatic environments through degradation processes. This source of microplastics and inorganic and organic substances could potentially impact aquatic organisms. In this study, the toxicogenomic effects of face masks at different stages of degradation in water were analysed in zebrafish larvae (Danio rerio) through RNA-Seq. Larvae were exposed for 10 days to three treatments: 1) face mask fragments in an initial stage of degradation (poorly degraded masks -PDM- products) with the corresponding water; 2) face mask fragments in an advanced stage of degradation (highly degraded masks -HDM- products) with the corresponding water; and 3) water derived from HDM (W-HDM). Transcriptome analyses revealed that the three treatments provoked the down-regulation of genes related to reproduction, especially the HDM products, suggesting that degradation products derived from face masks could act as endocrine disruptors. The affected genes are involved in different steps of reproduction, including gametogenesis, sperm-egg recognition and binding or fertilisation. Immune-related genes and metabolic processes were also differentially affected by the treatments.
Collapse
Affiliation(s)
- Marta Sendra
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - Patricia Pereiro
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - María Pilar Yeste
- Department of Material Science, Metallurgical Engineering and Inorganic Chemistry, University of Cádiz, Spain
| | - Beatriz Novoa
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain.
| | - Antonio Figueras
- Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain.
| |
Collapse
|
93
|
Yuwen C, Liu B, Rong Q, Zhang L, Guo S. Porous carbon materials derived from discarded COVID-19 masks via microwave solvothermal method for lithium‑sulfur batteries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152995. [PMID: 35026252 DOI: 10.1016/j.scitotenv.2022.152995] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
With the spread of COVID-19, disposable medical masks (DMMs) have become a significant source of new hazardous solid waste. Their proper disposal is not only beneficial to the safety of biological systems but also useful to achieve considerable economic value. The first step of this study was to investigate the chemical composition of DMMs. It is primarily composed of polypropylene, polyethylene terephthalate and iron, with fibrous polypropylene accounting for approximately 80% of the total weight. Then, DMMs were sulfonated and oxidised by the microwave-driven concentrated sulfuric acid within 8 min based on the fact that the concentrated sulfuric acid exhibits a good microwave absorption capacity. The co-doping of sulfur and oxygen was achieved while improving the thermal stability of DMMs. Subsequently, the self-activation pyrolysis of sulfonated and oxidised DMMs (P-SO@DMMs) was further realized in low-flow-rate argon. The specific surface area of P-SO@DMMs increased from 2.0 to 830.9 m2·g-1. P-SO@DMMs sulfur cathodes have promising electrochemical properties because of their porous structures and the synergistic effect of sulfur and oxygen co-doping. The capacity of the samples irradiated by microwave for 10 min at 0.1, 0.2, 0.5, 1, 2 and 5 C were 1313.6, 1010.9, 816.5, 634.4, 513.4 and 453.1 mAh·g-1, respectively, and after returning to 0.2 C and continuing the cycle for 50 revolutions, maintained 50.5% of the initial capacity. After 400 cycles, its capacity is 38.1% of the initial capacity at 0.5 C. It is slightly higher than the electrochemical performance of the sample treated by microwave for 8 min and significantly higher than the sample treated by 6 min. This work converts structurally complex, biohazardous DMMs into porous carbon with high specific surface area by clean and efficient microwave solvothermal and self-activating pyrolysis, which facilitates the development of carbon based materials at low cost and large scale.
Collapse
Affiliation(s)
- Chao Yuwen
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Bingguo Liu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming University of Science and Technology, Kunming 650093, Yunnan, China.
| | - Qian Rong
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control, Qujing Normal University, Qujing 655011, Yunnan, China
| | - Libo Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming University of Science and Technology, Kunming 650093, Yunnan, China.
| | - Shenghui Guo
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| |
Collapse
|
94
|
Liang H, Ji Y, Ge W, Wu J, Song N, Yin Z, Chai C. Release kinetics of microplastics from disposable face masks into the aqueous environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151650. [PMID: 34780824 PMCID: PMC8590477 DOI: 10.1016/j.scitotenv.2021.151650] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/19/2021] [Accepted: 11/09/2021] [Indexed: 05/19/2023]
Abstract
Disposable face masks are widely used as primary personal protective equipment to control the spread of the SARS-CoV-2 virus. Disposable face masks have been identified as a source of microplastics and a new threat to the environment when improperly handled. To understand the release of microplastics from discarded masks into water, the release quantities of microplastics from three types of disposable face masks (N95, medical surgical, and normal medical masks) were measured within 24 h and their release kinetics were analyzed over seven days. Results showed that polypropylene microplastics fibers and debris of various colors were released. N95 masks released 801 ± 71-2667 ± 97 microplastic particles/(piece·d), medical surgical masks released 1136 ± 87-2343 ± 168 microplastic particles/(piece·d), and normal medical masks released 1034 ± 119-2547 ± 185 microplastic particles/(piece·d), irrespective of the price, weight, or type of mask. The microplastics were first released fast and then slow. The Elovich equation described the release kinetics (R2 > 0.990), and the release rate did not differ with the type of mask. Microplastics of 100-500 μm and of <100 μm were released in large quantities and at rapid rates. Fiber and transparent microplastics accounted for a large proportion of those released, and their daily release proportion increased with time. Fiber microplastics <500 μm in length were predominant in the microplastics released from disposable face masks, indicating that disposable face masks could be a critical source of these in the aqueous environment. There is an urgent need to take action to implement a waste management system limiting the number of masks entering the environment.
Collapse
Affiliation(s)
- Hao Liang
- School of Resources and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Ya Ji
- School of Resources and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Ge
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China
| | - Juan Wu
- School of Resources and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Ningning Song
- School of Resources and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Zidie Yin
- School of Resources and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Chao Chai
- School of Resources and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
95
|
Plastic Waste Management towards Energy Recovery during the COVID-19 Pandemic: The Example of Protective Face Mask Pyrolysis. ENERGIES 2022. [DOI: 10.3390/en15072629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This paper presents an assessment of the impact of the COVID-19 pandemic on the waste management sector, and then, based on laboratory tests and computer calculations, indicates how to effectively manage selected waste generated during the pandemic. Elemental compositions—namely, C, H, N, S, Cl, and O—were determined as part of the laboratory tests, and the pyrolysis processes of the above wastes were analysed using the TGA technique. The calculations were performed for a pilot pyrolysis reactor with a continuous flow of 240 kg/h in the temperature range of 400–900 °C. The implemented calculation model was experimentally verified for the conditions of the refuse-derived fuel (RDF) pyrolysis process. As a result of the laboratory tests and computer simulations, comprehensive knowledge was obtained about the pyrolysis of protective masks, with particular emphasis on the gaseous products of this process. The high calorific value of the pyrolysis gas, amounting to approx. 47.7 MJ/m3, encourages the management of plastic waste towards energy recovery. The proposed approach may be helpful in the initial assessment of the possibility of using energy from waste, depending on its elemental composition, as well as in the assessment of the environmental effects.
Collapse
|
96
|
Khanolkar RA, Trajkovski A, Agarwal A, Pauls MA, Lang ES. Emerging evidence for non-pharmacologic interventions in reducing the burden of respiratory illnesses. Intern Emerg Med 2022; 17:639-644. [PMID: 35119570 PMCID: PMC8814568 DOI: 10.1007/s11739-022-02932-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/15/2022] [Indexed: 12/30/2022]
Abstract
The global pandemic caused by SARS-CoV-2 (COVID-19) has led to significant morbidity and mortality, and unprecedented economic and health system disruption. Non-pharmacologic interventions (NPIs) such as masking and physical distancing have formed the underpinnings of COVID-19 infection control strategies. Concomitantly, numerous jurisdictions have seen a decrease in hospitalizations for non-COVID-19 respiratory illnesses (NCRIs) such as asthma, community-acquired pneumonia, influenza, and chronic obstructive pulmonary disease relative to pre-pandemic levels. These associations give rise to a number of testable hypotheses regarding the efficacy of NPIs in reducing the substantial burden of NCRIs. Here, we review emerging perspectives on the role of NPIs in NCRI prevention with the ultimate goal of informing future research and public policy development as we move into what may be the endemic phase of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Rutvij A Khanolkar
- Cumming School of Medicine, University of Calgary, #305, 2011 University Dr NW, Calgary, AB, T2N 4T4, Canada.
- Department of Emergency Medicine, University of Calgary, Calgary, AB, Canada.
| | | | - Arnav Agarwal
- Division of General Internal Medicine, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Merril A Pauls
- Health Sciences Centre, Max Rady College of Medicine, Department of Emergency Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Eddy S Lang
- Cumming School of Medicine, University of Calgary, #305, 2011 University Dr NW, Calgary, AB, T2N 4T4, Canada
- Department of Emergency Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Health Services, Calgary, AB, Canada
| |
Collapse
|
97
|
Tesfaldet YT, Ndeh NT. Assessing face masks in the environment by means of the DPSIR framework. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152859. [PMID: 34995587 PMCID: PMC8724021 DOI: 10.1016/j.scitotenv.2021.152859] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 05/05/2023]
Abstract
The use of face masks outside the health care facility dates back a century ago. However, face masks use noticeably soared due to the COVID-19 (Coronavirus disease 2019) pandemic. As a result, an unprecedented influx of discarded face masks is ending up in the environment. This review paper delves into face masks in the environment using the DPSIR (driving forces, pressures, states, impacts, and responses) framework to simplify and communicate the environmental indicators. Firstly, the historical, and briefly the economic trajectory of face masks are discussed. Secondly, the main driving forces of face masks use with an emphasis on public health are explored. Then, the pressures exerted by efforts to fulfill the human needs (driving forces) are investigated. In turn, the state of the environment due to the influx of masks along with the impacts are examined. Furthermore, the upstream, and downstream societal responses to mitigate the environmental damages of the driving forces, pressures, states, and impacts are reviewed. In summary, it has been shown from this review that the COVID-19 pandemic has been causing a surge in face mask usage, which translates to face masks pollution in both terrestrial and aquatic environments. This implies proper usage and disposal of face masks is paramount to the quality of human health and the environment, respectively. Moreover, further research on eco-friendly face masks is indispensable to mitigating the environmental damages occurring due to the mass use of surgical masks worldwide.
Collapse
Affiliation(s)
- Yacob T Tesfaldet
- International Program in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Nji T Ndeh
- International Program in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
98
|
Zebardast L, Radaei M. The influence of global crises on reshaping pro-environmental behavior, case study: the COVID-19 pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151436. [PMID: 34742989 PMCID: PMC8596762 DOI: 10.1016/j.scitotenv.2021.151436] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/31/2021] [Accepted: 10/31/2021] [Indexed: 05/09/2023]
Abstract
As a profound crisis capable of threatening human well-being as well as existence, the COVID-19 pandemic can be considered as an awakening experience which may lead to the promotion of environmentally responsible behaviors in the society. In the present research, an extended form of the Theory of Planned Behavior has been applied to examine the moderating effect of COVID-19 pandemic on pro-environmental behavior mechanism in Iran. To evaluate this effect, a 5-scale Likert questionnaire was designed comprising of 28 questions in 7 sections of information and concerns about COVID-19, environmental knowledge, subjective norm, attitude, intention, perceived behavioral control and pro-environmental behavior. According to the results, the pandemic has led to an increase in people's knowledge about their environment and has positively affected individuals' subjective norms, or the perceived social pressure to get involved in environmentally friendly actions. Individuals' attitude to perform pro-environmental behaviors has also increased as a result of this incident. Moreover, the role of perceived behavioral control over environmental actions has been influenced by the pandemic situation and the COVID-19 crisis has positively influenced the relationship between intention and pro-environmental behavior.
Collapse
Affiliation(s)
- Lobat Zebardast
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran.
| | - Mahjabin Radaei
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
99
|
Zhou SYD, Lin C, Yang K, Yang LY, Yang XR, Huang FY, Neilson R, Su JQ, Zhu YG. Discarded masks as hotspots of antibiotic resistance genes during COVID-19 pandemic. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127774. [PMID: 34801300 PMCID: PMC8659516 DOI: 10.1016/j.jhazmat.2021.127774] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/21/2021] [Accepted: 11/10/2021] [Indexed: 05/09/2023]
Abstract
The demand for facial masks remains high. However, little is known about discarded masks as a potential refuge for contaminants and to facilitate enrichment and spread of antibiotic resistance genes (ARG) in the environment. We address this issue by conducting an in-situ time-series experiment to investigate the dynamic changes of ARGs, bacteria and protozoa associated with discarded masks. Masks were incubated in an estuary for 30 days. The relative abundance of ARGs in masks increased after day 7 but levelled off after 14 days. The absolute abundance of ARGs at 30 days was 1.29 × 1012 and 1.07 × 1012 copies for carbon and surgical masks, respectively. According to normalized stochasticity ratio analysis, the assembly of bacterial and protistan communities was determined by stochastic (NST = 62%) and deterministic (NST = 40%) processes respectively. A network analysis highlighted potential interactions between bacteria and protozoa, which was further confirmed by culture-dependent assays, that showed masks shelter and enrich microbial communities. An antibiotic susceptibility test suggested that antibiotic resistant pathogens co-exist within protozoa. This study provides an insight into the spread of ARGs through discarded masks and highlights the importance of managing discarded masks with the potential ecological risk of mask contamination.
Collapse
Affiliation(s)
- Shu-Yi-Dan Zhou
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723Xingke Road, Tianhe District, Guangzhou 510650, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Chenshuo Lin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Kai Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Le-Yang Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Fu-Yi Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| | - Roy Neilson
- Ecological Sciences, The James Hutton Institute, Dundee DD2 5DA, Scotland, UK
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
100
|
Abstract
Eco-friendly face mask is necessity to reduce the aggravates the environment due to increased face masks waste during COVID-19 pandemic. The successful eco-friendly masks development influenced by understanding of user’s need and effectiveness of communications. The employed conjoint analysis obtained user mask preferences information to support effective communication strategies by business enterprises and policy makers on encouraging public to consume appropriate masks. The attribute importance followed from eco-friendly (32.1%), mask certification (26.5%), filtration efficiency (19.8%), price (13.9%), layers (5.6%), type of mask (1.5%), material (0.7%). The public expecting the mask with the ability to recycled and biodegradable, with certification, performance above 90% filtration efficiency, and affordable prices in the range of Rp.1.500-Rp.25.000. Also, 3-ply fabrics for the medical type and cotton material are generally preferred to polyester/polypropylene. The government needs to improve the effectiveness masks education, provide convenience process to masks certification by manufacturers, and provision of incentives to reduce masks production cost. Meanwhile, manufacturers ensure produce of the standard eco-friendly masks in affordable pricing. Furthermore, gender did not show significant effect on preferences, but varied with average expenditure.
Collapse
|