51
|
Liao TL, Liu HJ, Chen DY, Tang KT, Chen YM, Liu PY. SARS-CoV-2 primed platelets-derived microRNAs enhance NETs formation by extracellular vesicle transmission and TLR7/8 activation. Cell Commun Signal 2023; 21:304. [PMID: 37904132 PMCID: PMC10614402 DOI: 10.1186/s12964-023-01345-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/28/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Hyperactive neutrophil extracellular traps (NETs) formation plays a key role in the pathogenesis of severe COVID-19. Extracellular vesicles (EVs) are vehicles which carry cellular components for intercellular communication. The association between COVID-19 patients-derived EVs and NETs formation remains elusive. METHODS We explored the roles of EVs in NETs formation from 40 COVID-19 patients with different disease severities as well as 30 healthy subjects. The EVs-carried microRNAs profile was analyzed using next generation sequencing approach which was validated by quantitative reverse transcription PCR. The regulatory mechanism of EVs on NETs formation was investigated by using an in vitro cell-based assay, including immunofluorescence assay, flow cytometry, and immunoblotting. RESULTS COVID-19 patient-derived EVs induced NETs formation by endocytosis uptake. SARS-CoV-2 spike protein-triggered NETs formation was significantly enhanced in the presence of platelet-derived EVs (pEVs) and this effect was Toll-like receptor (TLR) 7/8- and NADPH oxidase-dependent. Increased levels of miR-21/let-7b were revealed in EVs from COVID-19 patients and were associated with disease severity. We demonstrated that the spike protein activated platelets directly, followed by the subsequent intracellular miR-21/let-7b upregulation and then were loaded into pEVs. The pEVs-carried miR-21 interacted with TLR7/8 to prime p47phox phosphorylation in neutrophils, resulting in NADPH oxidase activation to promote ROS production and NETs enhancement. In addition, miR-21 modulates NF-κB activation and IL-1β/TNFα/IL-8 upregulation in neutrophils upon TLR7/8 engagement. The miR-21 inhibitor and TLR8 antagonist could suppress efficiently spike protein-induced NETs formation and pEVs primed NETs enhancement. CONCLUSIONS We identified SARS-CoV-2 triggered platelets-derived GU-enriched miRNAs (e.g., miR-21/let-7b) as a TLR7/8 ligand that could activate neutrophils through EVs transmission. The miR-21-TLR8 axis could be used as a potential predisposing factor or therapeutic target for severe COVID-19.
Collapse
Affiliation(s)
- Tsai-Ling Liao
- Department of Medical Research, Taichung Veterans General Hospital, No.1650, Sec.4, Taiwan Boulevard, Xitun Dist, Taichung City, 407, Taiwan.
- Rong Hsing Translational Medicine Research Center, National Chung Hsing University, Taichung, 402, Taiwan.
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.
| | - Hung-Jen Liu
- Rong Hsing Translational Medicine Research Center, National Chung Hsing University, Taichung, 402, Taiwan
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan
| | - Der-Yuan Chen
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung, 404, Taiwan
- Translational Medicine Laboratory, Rheumatology and Immunology Center, China Medical University Hospital, Taichung, 404, Taiwan
- College of Medicine, China Medical University, Taichung, 404, Taiwan
- Institute of Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Kuo-Tung Tang
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, 407, Taiwan
| | - Yi-Ming Chen
- Department of Medical Research, Taichung Veterans General Hospital, No.1650, Sec.4, Taiwan Boulevard, Xitun Dist, Taichung City, 407, Taiwan
- Rong Hsing Translational Medicine Research Center, National Chung Hsing University, Taichung, 402, Taiwan
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, 407, Taiwan
| | - Po-Yu Liu
- Rong Hsing Translational Medicine Research Center, National Chung Hsing University, Taichung, 402, Taiwan.
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.
- Division of Infection, Department of Internal Medicine, Taichung Veterans General Hospital, No.1650, Sec.4, Taiwan Boulevard, Xitun Dist, Taichung City, 407, Taiwan.
| |
Collapse
|
52
|
Wang L, Guzman M, Muñoz-Santos D, Honrubia JM, Ripoll-Gomez J, Delgado R, Sola I, Enjuanes L, Zuñiga S. Cell type dependent stability and virulence of a recombinant SARS-CoV-2, and engineering of a propagation deficient RNA replicon to analyze virus RNA synthesis. Front Cell Infect Microbiol 2023; 13:1268227. [PMID: 37942479 PMCID: PMC10628495 DOI: 10.3389/fcimb.2023.1268227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023] Open
Abstract
Engineering of reverse genetics systems for newly emerged viruses allows viral genome manipulation, being an essential tool for the study of virus life cycle, virus-host interactions and pathogenesis, as well as for the development of effective antiviral strategies. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emergent human coronavirus that has caused the coronavirus disease (COVID-19) pandemic. The engineering of a full-length infectious cDNA clone and a fluorescent replicon of SARS-CoV-2 Wuhan-Hu-1, using a bacterial artificial chromosome, is reported. Viral growth and genetic stability in eleven cell lines were analyzed, showing that both VeroE6 cells overexpressing transmembrane serin protease 2 (TMPRSS2) and human lung derived cells resulted in the optimization of a cell system to preserve SARS-CoV-2 genetic stability. The recombinant SARS-CoV-2 virus and a point mutant expressing the D614G spike protein variant were virulent in a mouse model. The RNA replicon was propagation-defective, allowing its use in BSL-2 conditions to analyze viral RNA synthesis. The SARS-CoV-2 reverse genetics systems developed constitute a useful tool for studying the molecular biology of the virus, the development of genetically defined vaccines and to establish systems for antiviral compounds screening.
Collapse
Affiliation(s)
- Li Wang
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | - María Guzman
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | - Diego Muñoz-Santos
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | - Jose Manuel Honrubia
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | - Jorge Ripoll-Gomez
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | - Rafael Delgado
- Laboratory of Molecular Microbiology, Instituto de Investigación Hospital 12 de Octubre (Imas12), Madrid, Spain
| | - Isabel Sola
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | - Sonia Zuñiga
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| |
Collapse
|
53
|
Zahid W, Farooqui N, Zahid N, Ahmed K, Anwar MF, Rizwan-ul-Hasan S, Hussain AR, Sarría-Santamera A, Abidi SH. Association of Interferon Lambda 3 and 4 Gene SNPs and Their Expression with COVID-19 Disease Severity: A Cross-Sectional Study. Infect Drug Resist 2023; 16:6619-6628. [PMID: 37840831 PMCID: PMC10576565 DOI: 10.2147/idr.s422095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Expression and certain SNPs of interferon lambda 3 and 4 (IFNL3 and 4) have been associated with variable outcomes in COVID-19 patients in different regions, suggesting population-specific differences in the disease outcome. This study examined the association of INFL3 and INFL4 SNPs (rs12979860 and rs368234815, respectively) and nasopharyngeal expression with COVID-19 disease severity in Pakistani patients. Methods For this study, 117 retrospectively collected nasopharyngeal swab samples were used from individuals with mild and severe COVID-19 disease. qPCR assays were used to determine the viral loads and mRNA expression of IFNL3 and 4 through the Ct and delta Ct methods, respectively. Due to funding limitations, only one SNP each in INFL3 and INFL4 (found to be most significant through literature search) was analyzed using tetra-arm PCR and RFLP-PCR strategies, respectively. The Mann-Whitney U-test was applied to evaluate the statistical differences in the expression of IFNL3/4 genes in the mild and severe groups, while for SNPs, a Chi-square test was employed. A multivariate Cox regression test was performed to assess the relationship of different variables with COVID-19 severity. Results Comparative analysis of SNPs between mild and severe groups showed only the difference in SNP of the IFNL4 gene to be statistically significant (p = 0.001). Similarly, nasopharyngeal expression of IFNL3 and IFNL4 genes, respectively, was found to be 3.48-fold less and 3.48-fold higher in the severe group as compared to the mild group. Multivariate analysis revealed SNP in the IFNL4 gene and age to have a significant association with COVID-19 severity. Conclusion Despite the small sample size, IFNL4 gene SNP and patient age were associated with COVID-19 severity. Age, IFNL3/IFNL4 mRNA expression in the nasopharyngeal milieu, and the presence of SNP in the IFNL4 (rs368234815) gene in COVID-19 patients may be biomarkers for infection severity and help improve SARS-CoV-2 infection management.
Collapse
Affiliation(s)
- Warisha Zahid
- Department of Community Health Sciences, Aga Khan University, Karachi, Pakistan
| | - Nida Farooqui
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Nida Zahid
- Department of Surgery, Aga Khan University, Karachi, Pakistan
| | - Khalid Ahmed
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Muhammad Faraz Anwar
- Department of Biochemistry, Bahria University Medical and Dental College, Karachi, Pakistan
| | | | - Azhar R Hussain
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | | | - Syed Hani Abidi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, Kazakhstan
| |
Collapse
|
54
|
Montenegro YHA, Bobermin LD, Sesterheim P, Salvato RS, Anschau F, de Oliveira MJS, Wyse ATS, Netto CA, Gonçalves CAS, Quincozes-Santos A, Leipnitz G. Serum of COVID-19 patients changes neuroinflammation and mitochondrial homeostasis markers in hippocampus of aged rats. J Neurovirol 2023; 29:577-587. [PMID: 37501054 DOI: 10.1007/s13365-023-01156-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/18/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023]
Abstract
Patients affected by COVID-19 present mostly with respiratory symptoms but acute neurological symptoms are also commonly observed. Furthermore, a considerable number of individuals develop persistent and often remitting symptoms months after infection, characterizing the condition called long-COVID. Since the pathophysiology of acute and persistent neurological manifestations is not fully established, we evaluated the expression of different genes in hippocampal slices of aged rats exposed to the serum of a post-COVID (sPC) individual and to the serum of patients infected by SARS-CoV-2 [Zeta (sZeta) and Gamma (sGamma) variants]. The expression of proteins related to inflammatory process, redox homeostasis, mitochondrial quality control and glial reactivity was determined. Our data show that the exposure to sPC, sZeta and sGamma differentially altered the mRNA levels of most inflammatory proteins and reduced those of antioxidant response markers in rat hippocampus. Furthermore, a decrease in the expression of mitochondrial biogenesis genes was induced by all serum samples, whereas a reduction in mitochondrial dynamics was only caused by sPC. Regarding the glial reactivity, S100B expression was modified by sPC and sZeta. These findings demonstrate that changes in the inflammatory response and a reduction of mitochondrial biogenesis and dynamics may contribute to the neurological damage observed in COVID-19 patients.
Collapse
Affiliation(s)
- Yorran Hardman A Montenegro
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil.
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil
| | - Patrícia Sesterheim
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências da Saúde: Cardiologia, Instituto de Cardiologia/ Fundação Universitária de Cardiologia, RS, Porto Alegre, Brazil
- Centro de Desenvolvimento Científico e Tecnológico, Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul, RS, Porto Alegre, Brazil
| | - Richard Steiner Salvato
- Centro de Desenvolvimento Científico e Tecnológico, Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul, RS, Porto Alegre, Brazil
| | - Fernando Anschau
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil
- Setor de Pesquisa da Gerência de Ensino, Pesquisa e Inovação do Grupo Hospitalar Conceição (GHC), RS, Porto Alegre, Brazil
- Programa de Pós-Graduação em Avaliação de Tecnologias para o SUS do GHC, Porto Alegre, RS, Brazil
- Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria José Santos de Oliveira
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil
| | - Angela T S Wyse
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil
| | - Carlos Alexandre Netto
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil
| | - Carlos-Alberto Saraiva Gonçalves
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Porto Alegre, Brazil.
| |
Collapse
|
55
|
Du T, Gao C, Lu S, Liu Q, Yang Y, Yu W, Li W, Qiao Sun Y, Tang C, Wang J, Gao J, Zhang Y, Luo F, Yang Y, Yang YG, Peng X. Differential Transcriptomic Landscapes of SARS-CoV-2 Variants in Multiple Organs from Infected Rhesus Macaques. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:1014-1029. [PMID: 37451436 PMCID: PMC10928377 DOI: 10.1016/j.gpb.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/27/2023] [Accepted: 06/04/2023] [Indexed: 07/18/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the persistent coronavirus disease 2019 (COVID-19) pandemic, which has resulted in millions of deaths worldwide and brought an enormous public health and global economic burden. The recurring global wave of infections has been exacerbated by growing variants of SARS-CoV-2. In this study, the virological characteristics of the original SARS-CoV-2 strain and its variants of concern (VOCs; including Alpha, Beta, and Delta) in vitro, as well as differential transcriptomic landscapes in multiple organs (lung, right ventricle, blood, cerebral cortex, and cerebellum) from the infected rhesus macaques, were elucidated. The original strain of SARS-CoV-2 caused a stronger innate immune response in host cells, and its VOCs markedly increased the levels of subgenomic RNAs, such as N, Orf9b, Orf6, and Orf7ab, which are known as the innate immune antagonists and the inhibitors of antiviral factors. Intriguingly, the original SARS-CoV-2 strain and Alpha variant induced larger alteration of RNA abundance in tissues of rhesus monkeys than Beta and Delta variants did. Moreover, a hyperinflammatory state and active immune response were shown in the right ventricles of rhesus monkeys by the up-regulation of inflammation- and immune-related RNAs. Furthermore, peripheral blood may mediate signaling transmission among tissues to coordinate the molecular changes in the infected individuals. Collectively, these data provide insights into the pathogenesis of COVID-19 at the early stage of infection by the original SARS-CoV-2 strain and its VOCs.
Collapse
Affiliation(s)
- Tingfu Du
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Chunchun Gao
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuaiyao Lu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Qianlan Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Yang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Wenhai Yu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Wenjie Li
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Yong Qiao Sun
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Cong Tang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Junbin Wang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Jiahong Gao
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Yong Zhang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Fangyu Luo
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Ying Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yun-Gui Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiaozhong Peng
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China; Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
56
|
Shafqat A, Omer MH, Albalkhi I, Alabdul Razzak G, Abdulkader H, Abdul Rab S, Sabbah BN, Alkattan K, Yaqinuddin A. Neutrophil extracellular traps and long COVID. Front Immunol 2023; 14:1254310. [PMID: 37828990 PMCID: PMC10565006 DOI: 10.3389/fimmu.2023.1254310] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023] Open
Abstract
Post-acute COVID-19 sequelae, commonly known as long COVID, encompasses a range of systemic symptoms experienced by a significant number of COVID-19 survivors. The underlying pathophysiology of long COVID has become a topic of intense research discussion. While chronic inflammation in long COVID has received considerable attention, the role of neutrophils, which are the most abundant of all immune cells and primary responders to inflammation, has been unfortunately overlooked, perhaps due to their short lifespan. In this review, we discuss the emerging role of neutrophil extracellular traps (NETs) in the persistent inflammatory response observed in long COVID patients. We present early evidence linking the persistence of NETs to pulmonary fibrosis, cardiovascular abnormalities, and neurological dysfunction in long COVID. Several uncertainties require investigation in future studies. These include the mechanisms by which SARS-CoV-2 brings about sustained neutrophil activation phenotypes after infection resolution; whether the heterogeneity of neutrophils seen in acute SARS-CoV-2 infection persists into the chronic phase; whether the presence of autoantibodies in long COVID can induce NETs and protect them from degradation; whether NETs exert differential, organ-specific effects; specifically which NET components contribute to organ-specific pathologies, such as pulmonary fibrosis; and whether senescent cells can drive NET formation through their pro-inflammatory secretome in long COVID. Answering these questions may pave the way for the development of clinically applicable strategies targeting NETs, providing relief for this emerging health crisis.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mohamed H. Omer
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | | | | | | | | | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
57
|
Häring C, Jungwirth J, Schroeder J, Löffler B, Engert B, Ehrhardt C. The Local Anaesthetic Procaine Prodrugs ProcCluster ® and Procaine Hydrochloride Impair SARS-CoV-2 Replication and Egress In Vitro. Int J Mol Sci 2023; 24:14584. [PMID: 37834031 PMCID: PMC10572566 DOI: 10.3390/ijms241914584] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
As vaccination efforts against SARS-CoV-2 progress in many countries, there is still an urgent need for efficient antiviral treatment strategies for those with severer disease courses, and lately, considerable efforts have been undertaken to repurpose existing drugs as antivirals. The local anaesthetic procaine has been investigated for antiviral properties against several viruses over the past decades. Here, we present data on the inhibitory effect of the procaine prodrugs ProcCluster® and procaine hydrochloride on SARS-CoV-2 infection in vitro. Both procaine prodrugs limit SARS-CoV-2 progeny virus titres as well as reduce interferon and cytokine responses in a proportional manner to the virus load. The addition of procaine during the early stages of the SARS-CoV-2 replication cycle in a cell culture first limits the production of subgenomic RNA transcripts, and later affects the replication of the viral genomic RNA. Interestingly, procaine additionally exerts a prominent effect on SARS-CoV-2 progeny virus release when added late during the replication cycle, when viral RNA production and protein production are already largely completed.
Collapse
Affiliation(s)
- Clio Häring
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, 07745 Jena, Germany; (C.H.); (J.J.); (J.S.)
| | - Johannes Jungwirth
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, 07745 Jena, Germany; (C.H.); (J.J.); (J.S.)
| | - Josefine Schroeder
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, 07745 Jena, Germany; (C.H.); (J.J.); (J.S.)
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, 07747 Jena, Germany;
| | | | - Christina Ehrhardt
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, 07745 Jena, Germany; (C.H.); (J.J.); (J.S.)
| |
Collapse
|
58
|
Vernia F, Ashktorab H, Cesaro N, Monaco S, Faenza S, Sgamma E, Viscido A, Latella G. COVID-19 and Gastrointestinal Tract: From Pathophysiology to Clinical Manifestations. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1709. [PMID: 37893427 PMCID: PMC10608106 DOI: 10.3390/medicina59101709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/10/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023]
Abstract
Background: Since its first report in Wuhan, China, in December 2019, COVID-19 has become a pandemic, affecting millions of people worldwide. Although the virus primarily affects the respiratory tract, gastrointestinal symptoms are also common. The aim of this narrative review is to provide an overview of the pathophysiology and clinical manifestations of gastrointestinal COVID-19. Methods: We conducted a systematic electronic search of English literature up to January 2023 using Medline, Scopus, and the Cochrane Library, focusing on papers that analyzed the role of SARS-CoV-2 in the gastrointestinal tract. Results: Our review highlights that SARS-CoV-2 directly infects the gastrointestinal tract and can cause symptoms such as diarrhea, nausea/vomiting, abdominal pain, anorexia, loss of taste, and increased liver enzymes. These symptoms result from mucosal barrier damage, inflammation, and changes in the microbiota composition. The exact mechanism of how the virus overcomes the acid gastric environment and leads to the intestinal damage is still being studied. Conclusions: Although vaccination has increased the prevalence of less severe symptoms, the long-term interaction with SARS-CoV-2 remains a concern. Understanding the interplay between SARS-CoV-2 and the gastrointestinal tract is essential for future management of the virus.
Collapse
Affiliation(s)
- Filippo Vernia
- Gastroenterology Unit, Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| | - Hassan Ashktorab
- Department of Medicine, Gastroenterology Division, Howard University College of Medicine, Washington, DC 20060, USA
| | - Nicola Cesaro
- Gastroenterology Unit, Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| | - Sabrina Monaco
- Gastroenterology Unit, Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| | - Susanna Faenza
- Gastroenterology Unit, Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| | - Emanuele Sgamma
- Gastroenterology Unit, Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| | - Angelo Viscido
- Gastroenterology Unit, Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| | - Giovanni Latella
- Gastroenterology Unit, Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| |
Collapse
|
59
|
Do MH, Li H, Cho SY, Oh S, Jeong JH, Song MS, Jeong JM. Animal efficacy study of a plant extract complex (BEN815) as a potential treatment for COVID-19. PLoS One 2023; 18:e0291537. [PMID: 37708114 PMCID: PMC10501575 DOI: 10.1371/journal.pone.0291537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023] Open
Abstract
In a short time, several types of injectable and oral therapeutics have been developed and used to effectively manage patients with coronavirus disease 2019 (COVID-19). BEN815 is an improved mixture of three extracts (Psidium guajava, Camellia sinensis, and Rosa hybrida) recognized by the Ministry of Food and Drug Safety of Korea as a health food ingredient that alleviates allergic rhinitis. The current animal efficacy study was performed to assess its probability of improving COVID-19 symptoms. BEN815 treatment significantly increased the survival of K18-hACE2 transgenic mice and reduced viral titers in the lungs at 5 days post infection (DPI). Furthermore, the lungs of the treated mice showed mild tissue damage at 5 DPI and nearly complete recovery from COVID-19 at 14 DPI. BEN815 appears to be an effective and minimally toxic anti-SARS-CoV-2 agent in mice and has potential for clinical applications.
Collapse
Affiliation(s)
- Moon Ho Do
- Biotechnology Research Center, Ben’s Lab Co., Ltd., Anyang-si, Gyeonggi-do, Republic of Korea
| | - Hua Li
- Biotechnology Research Center, Ben’s Lab Co., Ltd., Anyang-si, Gyeonggi-do, Republic of Korea
| | - Su Yeon Cho
- Biotechnology Research Center, Ben’s Lab Co., Ltd., Anyang-si, Gyeonggi-do, Republic of Korea
| | - Subin Oh
- Biotechnology Research Center, Ben’s Lab Co., Ltd., Anyang-si, Gyeonggi-do, Republic of Korea
| | - Ju Hwan Jeong
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Min-Suk Song
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Jong-Moon Jeong
- Biotechnology Research Center, Ben’s Lab Co., Ltd., Anyang-si, Gyeonggi-do, Republic of Korea
- Department of Bioscience, The University of Suwon, Hwasung-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
60
|
Zhou Z, Li D, Zhao Z, Shi S, Wu J, Li J, Zhang J, Gui K, Zhang Y, Ouyang Q, Mei H, Hu Y, Li F. Dynamical modelling of viral infection and cooperative immune protection in COVID-19 patients. PLoS Comput Biol 2023; 19:e1011383. [PMID: 37656752 PMCID: PMC10501599 DOI: 10.1371/journal.pcbi.1011383] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/14/2023] [Accepted: 07/24/2023] [Indexed: 09/03/2023] Open
Abstract
Once challenged by the SARS-CoV-2 virus, the human host immune system triggers a dynamic process against infection. We constructed a mathematical model to describe host innate and adaptive immune response to viral challenge. Based on the dynamic properties of viral load and immune response, we classified the resulting dynamics into four modes, reflecting increasing severity of COVID-19 disease. We found the numerical product of immune system's ability to clear the virus and to kill the infected cells, namely immune efficacy, to be predictive of disease severity. We also investigated vaccine-induced protection against SARS-CoV-2 infection. Results suggested that immune efficacy based on memory T cells and neutralizing antibody titers could be used to predict population vaccine protection rates. Finally, we analyzed infection dynamics of SARS-CoV-2 variants within the construct of our mathematical model. Overall, our results provide a systematic framework for understanding the dynamics of host response upon challenge by SARS-CoV-2 infection, and this framework can be used to predict vaccine protection and perform clinical diagnosis.
Collapse
Affiliation(s)
- Zhengqing Zhou
- School of Physics, Center for Quantitative Biology, Peking University, Beijing, China
| | - Dianjie Li
- School of Physics, Center for Quantitative Biology, Peking University, Beijing, China
| | - Ziheng Zhao
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Shuyu Shi
- Peking University Third Hospital, Peking University, Beijing, China
| | - Jianghua Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianwei Li
- School of Physics, Center for Quantitative Biology, Peking University, Beijing, China
| | - Jingpeng Zhang
- School of Physics, Center for Quantitative Biology, Peking University, Beijing, China
| | - Ke Gui
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Yu Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Qi Ouyang
- School of Physics, Center for Quantitative Biology, Peking University, Beijing, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangting Li
- School of Physics, Center for Quantitative Biology, Peking University, Beijing, China
| |
Collapse
|
61
|
Liu W, Zhao Y, Fan J, Shen J, Tang H, Tang W, Wu D, Huang W, Ding Y, Qiao P, Lin J, Li Z, Li Q, Cui Q, Liu Y, Chen Y, Pu R, Han X, Yin J, Tan X, Cao G. Smoke and Spike: Benzo[a]pyrene Enhances SARS-CoV-2 Infection by Boosting NR4A2-Induced ACE2 and TMPRSS2 Expression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300834. [PMID: 37428471 PMCID: PMC10502855 DOI: 10.1002/advs.202300834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/21/2023] [Indexed: 07/11/2023]
Abstract
Cigarette smoke aggravates severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, the underlying mechanisms remain unclear. Here, they show that benzo[a]pyrene in cigarette smoke extract facilitates SARS-CoV-2 infection via upregulating angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2). Benzo[a]pyrene trans-activates the promoters of ACE2 and TMPRSS2 by upregulating nuclear receptor subfamily 4 A number 2 (NR4A2) and promoting its binding of NR4A2 to their promoters, which is independent of functional genetic polymorphisms in ACE2 and TMPRSS2. Benzo[a]pyrene increases the susceptibility of lung epithelial cells to SARS-CoV-2 pseudoviruses and facilitates the infection of authentic Omicron BA.5 in primary human alveolar type II cells, lung organoids, and lung and testis of hamsters. Increased expression of Nr4a2, Ace2, and Tmprss2, as well as decreased methylation of CpG islands at the Nr4a2 promoter are observed in aged mice compared to their younger counterparts. NR4A2 knockdown or interferon-λ2/λ3 stimulation downregulates the expression of NR4A2, ACE2, and TMPRSS2, thereby inhibiting the infection. In conclusion, benzo[a]pyrene enhances SARS-CoV-2 infection by boosting NR4A2-induced ACE2 and TMPRSS2 expression. This study elucidates the mechanisms underlying the detrimental effects of cigarette smoking on SARS-CoV-2 infection and provides prophylactic options for coronavirus disease 2019, particularly for the elderly population.
Collapse
|
62
|
Samuel CE. Interferon at the crossroads of SARS-CoV-2 infection and COVID-19 disease. J Biol Chem 2023; 299:104960. [PMID: 37364688 PMCID: PMC10290182 DOI: 10.1016/j.jbc.2023.104960] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
A novel coronavirus now known as SARS-CoV-2 emerged in late 2019, possibly following a zoonotic crossover from a coronavirus present in bats. This virus was identified as the pathogen responsible for the severe respiratory disease, coronavirus disease-19 (COVID-19), which as of May 2023, has killed an estimated 6.9 million people globally according to the World Health Organization. The interferon (IFN) response, a cornerstone of antiviral innate immunity, plays a key role in determining the outcome of infection by SARS-CoV-2. This review considers evidence that SARS-CoV-2 infection leads to IFN production; that virus replication is sensitive to IFN antiviral action; molecular mechanisms by which the SARS-CoV-2 virus antagonizes IFN action; and how genetic variability of SARS-CoV-2 and the human host affects the IFN response at the level of IFN production or action or both. Taken together, the current understanding suggests that deficiency of an effective IFN response is an important determinant underlying some cases of critical COVID-19 disease and that IFNλ and IFNα/β have potential as therapeutics for the treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Charles E Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA.
| |
Collapse
|
63
|
Jacob RA, Zhang A, Ajoge HO, D'Agostino MR, Nirmalarajah K, Shigayeva A, Demian WL, Baker SJC, Derakhshani H, Rossi L, Nasir JA, Panousis EM, Draia AN, Vermeiren C, Gilchrist J, Smieja N, Bulir D, Smieja M, Surette MG, McArthur AG, McGeer AJ, Mubareka S, Banerjee A, Miller MS, Mossman K. Sensitivity to Neutralizing Antibodies and Resistance to Type I Interferons in SARS-CoV-2 R.1 Lineage Variants, Canada. Emerg Infect Dis 2023; 29:1386-1396. [PMID: 37308158 PMCID: PMC10310370 DOI: 10.3201/eid2907.230198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023] Open
Abstract
Isolating and characterizing emerging SARS-CoV-2 variants is key to understanding virus pathogenesis. In this study, we isolated samples of the SARS-CoV-2 R.1 lineage, categorized as a variant under monitoring by the World Health Organization, and evaluated their sensitivity to neutralizing antibodies and type I interferons. We used convalescent serum samples from persons in Canada infected either with ancestral virus (wave 1) or the B.1.1.7 (Alpha) variant of concern (wave 3) for testing neutralization sensitivity. The R.1 isolates were potently neutralized by both the wave 1 and wave 3 convalescent serum samples, unlike the B.1.351 (Beta) variant of concern. Of note, the R.1 variant was significantly more resistant to type I interferons (IFN-α/β) than was the ancestral isolate. Our study demonstrates that the R.1 variant retained sensitivity to neutralizing antibodies but evolved resistance to type I interferons. This critical driving force will influence the trajectory of the pandemic.
Collapse
|
64
|
Yazdanparast S, Bakhtiyaridovvombaygi M, Mikanik F, Ahmadi R, Ghorbani M, Mansoorian MR, Mansoorian M, Chegni H, Moshari J, Gharehbaghian A. Spotlight on contributory role of host immunogenetic profiling in SARS-CoV-2 infection: Susceptibility, severity, mortality, and vaccine effectiveness. Life Sci 2023:121907. [PMID: 37394094 DOI: 10.1016/j.lfs.2023.121907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND The SARS-CoV-2 virus has spread continuously worldwide, characterized by various clinical symptoms. The immune system responds to SARS-CoV-2 infection by producing Abs and secreting cytokines. Recently, numerous studies have highlighted that immunogenetic factors perform a putative role in COVID-19 pathogenesis and implicate vaccination effectiveness. AIM This review summarizes the relevant articles and evaluates the significance of mutation and polymorphism in immune-related genes regarding susceptibility, severity, mortality, and vaccination effectiveness of COVID-19. Furthermore, the correlation between host immunogenetic and SARS-CoV-2 reinfection is discussed. METHOD A comprehensive search was conducted to identify relevant articles using five databases until January 2023, which resulted in 105 total articles. KEY FINDINGS Taken to gather this review summarized that: (a) there is a plausible correlation between immune-related genes and COVID-19 outcomes, (b) the HLAs, cytokines, chemokines, and other immune-related genes expression profiles can be a prognostic factor in COVID-19-infected patients, and (c) polymorphisms in immune-related genes have been associated with the effectiveness of vaccination. SIGNIFICANCE Regarding the importance of mutation and polymorphisms in immune-related genes in COVID-19 outcomes, modulating candidate genes is expected to help clinical decisions, patient outcomes management, and innovative therapeutic approach development. In addition, the manipulation of host immunogenetics is hypothesized to induce more robust cellular and humoral immune responses, effectively increase the efficacy of vaccines, and subsequently reduce the incidence rates of reinfection-associated COVID-19.
Collapse
Affiliation(s)
- Somayeh Yazdanparast
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Bakhtiyaridovvombaygi
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mikanik
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Ahmadi
- Department of Infectious Diseases, School of Medicine, Infectious Diseases Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mohammad Ghorbani
- Laboratory Hematology and Transfusion Medicine, Department of Pathology, Faculty Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| | | | - Mozhgan Mansoorian
- Nursing Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Hamid Chegni
- Department of Immunology, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalil Moshari
- School of Medicine, Gonabad University of Medical Science, Gonabad, Iran
| | - Ahmad Gharehbaghian
- Department of Hematology and Blood Bank, School of Allied Medical Science, Shahid Beheshti University of Medical Science, Tehran, Iran; Pediatric Congenital Hematologic Disorders Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
65
|
Umakanthan S, Monice M, Mehboob S, Jones CL, Lawrence S. Post-acute (long) COVID-19 quality of life: validation of the German version of (PAC19QoL) instrument. Front Public Health 2023; 11:1163360. [PMID: 37457286 PMCID: PMC10349205 DOI: 10.3389/fpubh.2023.1163360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/23/2023] [Indexed: 07/18/2023] Open
Abstract
Purpose The aim of our study was to validate a German translation of the post-acute (long) COVID-19 quality of life (PAC-19QoL) instrument among German patients with long COVID-19 syndrome. Patients and methods The PAC-19QoL instrument was translated into the German language and administrated to patients with long COVID-19 syndrome. Cronbach's alpha coefficient was used to analyze the internal consistency of the instrument. Construction validity was evaluated by using Pearson's correlation coefficient and Spearman's rank correlation. Scores of patients and controls were compared using the Mann-Whitney U-test. Results A total of 45 asymptomatic and 41 symptomatic participants were included. In total, 41 patients with long COVID-19 syndrome completed the PAC-19QoL and EQ-5D-5L questionnaires. PAC-19QoL domain scores were significantly different between symptomatic and asymptomatic participants. All items achieved a Cronbach's alpha >0.7. There was a significant correlation between all domains on the test (p < 0.001), with the highest correlation between total (r = 0.994) and domain 1 (r = 0.991). Spearman's rank correlation analysis confirmed that the instrument items correlated with the objective PAC-19QoL examination findings. Conclusion The German version of the instrument is valid and reliable and can be a suitable tool for research and daily clinical practice among patients with long COVID-19 syndrome.
Collapse
Affiliation(s)
- Srikanth Umakanthan
- Department of Para-Clinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | | | | | | | - Sam Lawrence
- COVID-19 Independent Research Study Group, Berlin, Germany
| |
Collapse
|
66
|
Zhou H, Xu M, Hu P, Li Y, Ren C, Li M, Pan Y, Wang S, Liu X. Identifying hub genes and common biological pathways between COVID-19 and benign prostatic hyperplasia by machine learning algorithms. Front Immunol 2023; 14:1172724. [PMID: 37426635 PMCID: PMC10328422 DOI: 10.3389/fimmu.2023.1172724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
Background COVID-19, a serious respiratory disease that has the potential to affect numerous organs, is a serious threat to the health of people around the world. The objective of this article is to investigate the potential biological targets and mechanisms by which SARS-CoV-2 affects benign prostatic hyperplasia (BPH) and related symptoms. Methods We downloaded the COVID-19 datasets (GSE157103 and GSE166253) and the BPH datasets (GSE7307 and GSE132714) from the Gene Expression Omnibus (GEO) database. In GSE157103 and GSE7307, differentially expressed genes (DEGs) were found using the "Limma" package, and the intersection was utilized to obtain common DEGs. Further analyses followed, including those using Protein-Protein Interaction (PPI), Gene Ontology (GO) function enrichment analysis, and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Potential hub genes were screened using three machine learning methods, and they were later verified using GSE132714 and GSE166253. The CIBERSORT analysis and the identification of transcription factors, miRNAs, and drugs as candidates were among the subsequent analyses. Results We identified 97 common DEGs from GSE157103 and GSE7307. According to the GO and KEGG analyses, the primary gene enrichment pathways were immune-related pathways. Machine learning methods were used to identify five hub genes (BIRC5, DNAJC4, DTL, LILRB2, and NDC80). They had good diagnostic properties in the training sets and were validated in the validation sets. According to CIBERSORT analysis, hub genes were closely related to CD4 memory activated of T cells, T cells regulatory and NK cells activated. The top 10 drug candidates (lucanthone, phytoestrogens, etoposide, dasatinib, piroxicam, pyrvinium, rapamycin, niclosamide, genistein, and testosterone) will also be evaluated by the P value, which is expected to be helpful for the treatment of COVID-19-infected patients with BPH. Conclusion Our findings reveal common signaling pathways, possible biological targets, and promising small molecule drugs for BPH and COVID-19. This is crucial to understand the potential common pathogenic and susceptibility pathways between them.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Mingming Xu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ping Hu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuezheng Li
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Congzhe Ren
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Muwei Li
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang Pan
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shangren Wang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoqiang Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
67
|
Regolo M, Sorce A, Vaccaro M, Colaci M, Stancanelli B, Natoli G, Motta M, Isaia I, Castelletti F, Giangreco F, Fichera D, Aparo P, Lanzafame A, Russo M, Santangelo N, Noto P, Malatino L. Assessing Humoral Immuno-Inflammatory Pathways Associated with Respiratory Failure in COVID-19 Patients. J Clin Med 2023; 12:4057. [PMID: 37373750 DOI: 10.3390/jcm12124057] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
All severe cases of SARS-CoV-2 infections are characterized by a high risk of disease progression towards ARDS, leading to a bad outcome. Respiratory symptoms in COVID-19 patients often do not correspond to disease's worsening. In our sample, median age was 74 years (72-75) and 54% were men. The median period of hospitalization was 9 days. Firstly, we observed a significant asynchronous trend of neutrophil-to-lymphocyte ratio (NLR) and C-reactive protein (CRP) in 764 selected among 963 patients, who were consecutively recruited in two hospitals (Cannizzaro, S. Marco) in Catania, Italy. NLR values in deceased patients showed an increase from baseline over time. By contrast, CRP tended to fall from baseline to median day of hospitalization in all three subgroups, but steeply increased at the end of hospitalization only in ICU-admitted patients. Then, we evaluated the relationships between NLR and CRP as continuous variables with PaO2/FiO2 ratio (P/F). NLR was an independent predictor of mortality (HR: 1.77, p < 0.0001), while ICU admission was more significantly associated with CRP (HR: 1.70, p < 0.0001). Finally, age, neutrophils, CRP, and lymphocytes are significantly and directly linked to P/F, while the influence of inflammation on P/F, reflected by CRP, was also mediated by neutrophils.
Collapse
Affiliation(s)
- Matteo Regolo
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Academic Unit of Internal Medicine, Cannizzaro Hospital, 95126 Catania, Italy
| | - Alessandra Sorce
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, "G. D'Alessandro" (PROMISE), Unit of Nephrology and Hypertension, European Society of Hypertension Excellence Centre, University of Palermo, 90133 Palermo, Italy
| | - Mauro Vaccaro
- Department of Emergency Medicine, San Marco-Polyclinic Academic Hospital, 95121 Catania, Italy
| | - Michele Colaci
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Academic Unit of Internal Medicine, Cannizzaro Hospital, 95126 Catania, Italy
| | - Benedetta Stancanelli
- Unit of Internal Medicine, San Marco-Polyclinic Academic Hospital, 95121 Catania, Italy
| | - Giuseppe Natoli
- Academic Unit of Internal Medicine, Cannizzaro Hospital, 95126 Catania, Italy
| | - Massimo Motta
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Academic Unit of Internal Medicine, Cannizzaro Hospital, 95126 Catania, Italy
| | - Ivan Isaia
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Federica Castelletti
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Federica Giangreco
- Academic Unit of Internal Medicine, Cannizzaro Hospital, 95126 Catania, Italy
| | - Daniela Fichera
- Department of Emergency Medicine, San Marco-Polyclinic Academic Hospital, 95121 Catania, Italy
| | - Paola Aparo
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Academic Unit of Internal Medicine, Cannizzaro Hospital, 95126 Catania, Italy
| | - Alessandra Lanzafame
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Academic Unit of Internal Medicine, Cannizzaro Hospital, 95126 Catania, Italy
| | - Mario Russo
- Academic Unit of Internal Medicine, Cannizzaro Hospital, 95126 Catania, Italy
| | - Nicola Santangelo
- Academic Unit of Internal Medicine, Cannizzaro Hospital, 95126 Catania, Italy
| | - Paola Noto
- Department of Emergency Medicine, San Marco-Polyclinic Academic Hospital, 95121 Catania, Italy
| | - Lorenzo Malatino
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Academic Unit of Internal Medicine, Cannizzaro Hospital, 95126 Catania, Italy
| |
Collapse
|
68
|
Valdés-López JF, Urcuqui-Inchima S. Antiviral response and immunopathogenesis of interleukin 27 in COVID-19. Arch Virol 2023; 168:178. [PMID: 37310504 DOI: 10.1007/s00705-023-05792-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/11/2023] [Indexed: 06/14/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with a high mortality rate. The clinical course is attributed to the severity of pneumonia and systemic complications. In COVID-19 patients and murine models of SARS-CoV-2 infection, the disease may be accompanied by excessive production of cytokines, leading to an accumulation of immune cells in affected organs such as lungs. Previous reports have shown that SARS-CoV-2 infection antagonizes interferon (IFN)-dependent antiviral response, thereby preventing the expression of IFN-stimulated genes (ISGs). Lower IFN levels have been linked to more-severe COVID-19. Interleukin 27 (IL27) is a heterodimeric cytokine composed of IL27p28 and EBI3 subunits, which induce both pro- and anti-inflammatory responses. Recently, we and others have reported that IL27 also induces a strong antiviral response in an IFN-independent manner. Here, we investigated transcription levels of both IL27 subunits in COVID-19 patients. The results show that SARS-CoV-2 infection modulates TLR1/2-MyD88 signaling in PBMCs and monocytes and induces NF-κB activation and expression of NF-κB-target genes that are dependent on a robust pro-inflammatory response, including EBI3; and activates IRF1 signaling which induces IL27p28 mRNA expression. The results suggest that IL27 induces a robust STAT1-dependent pro-inflammatory and antiviral response in an IFN-independent manner in COVID-derived PBMCs and monocytes as a function of a severe clinical course of COVID-19. Similar results were observed in macrophages stimulated with the SARS-CoV-2 spike protein. Thus, IL27 can trigger an antiviral response in the host, suggesting the possibility of novel therapeutics against SARS-CoV-2 infection in humans.
Collapse
Affiliation(s)
- Juan Felipe Valdés-López
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
69
|
McManus D, Davis MW, Ortiz A, Britto-Leon C, Dela Cruz CS, Topal JE. Immunomodulatory Agents for Coronavirus Disease-2019 Pneumonia. Clin Chest Med 2023; 44:299-319. [PMID: 37085221 PMCID: PMC9678826 DOI: 10.1016/j.ccm.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Morbidity and mortality from COVID-19 is due to severe inflammation and end-organ damage caused by a hyperinflammatory response. Multiple immunomodulatory agents to attenuate this response have been studied. Corticosteroids, specifically dexamethasone, have been shown to reduce mortality in hospitalized patients who require supplemental oxygen. Interleukin-6 antagonist, tocilizimab, and Janus kinase inhibitors have also been shown to reduce mortality. However, patients who have severe pulmonary end-organ damage requiring mechanical ventilation or extracorporeal membrane oxygenation appear not to benefit from immunomodulatory therapies. This highlights the importance of appropriate timing to initiate immunomodulatory therapies in the management of severe COVID-19 disease.
Collapse
Affiliation(s)
- Dayna McManus
- Department of Pharmacy Services, Yale New Haven Hospital, 20 York Street, New Haven, CT 06510, USA.
| | - Matthew W Davis
- Department of Pharmacy Services, Yale New Haven Hospital, 20 York Street, New Haven, CT 06510, USA
| | - Alex Ortiz
- Pulmonary, Critical Care & Sleep Medicine, 300 Cedar Street, P.O. Box 208057, New Haven, CT 06520-8057, USA
| | - Clemente Britto-Leon
- Pulmonary, Critical Care & Sleep Medicine, 300 Cedar Street, P.O. Box 208057, New Haven, CT 06520-8057, USA
| | - Charles S Dela Cruz
- Pulmonary, Critical Care & Sleep Medicine, 300 Cedar Street, P.O. Box 208057, New Haven, CT 06520-8057, USA
| | - Jeffrey E Topal
- Department of Pharmacy Services, Yale New Haven Hospital, 20 York Street, New Haven, CT 06510, USA.
| |
Collapse
|
70
|
García-Nicolás O, Godel A, Zimmer G, Summerfield A. Macrophage phagocytosis of SARS-CoV-2-infected cells mediates potent plasmacytoid dendritic cell activation. Cell Mol Immunol 2023:10.1038/s41423-023-01039-4. [PMID: 37253946 DOI: 10.1038/s41423-023-01039-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/06/2023] [Indexed: 06/01/2023] Open
Abstract
Early and strong interferon type I (IFN-I) responses are usually associated with mild COVID-19 disease, whereas persistent or unregulated proinflammatory cytokine responses are associated with severe disease outcomes. Previous work suggested that monocyte-derived macrophages (MDMs) are resistant and unresponsive to SARS-CoV-2 infection. Here, we demonstrate that upon phagocytosis of SARS-CoV-2-infected cells, MDMs are activated and secrete IL-6 and TNF. Importantly, activated MDMs in turn mediate strong activation of plasmacytoid dendritic cells (pDCs), leading to the secretion of high levels of IFN-α and TNF. Furthermore, pDC activation promoted IL-6 production by MDMs. This kind of pDC activation was dependent on direct integrin-mediated cell‒cell contacts and involved stimulation of the TLR7 and STING signaling pathways. Overall, the present study describes a novel and potent pathway of pDC activation that is linked to the macrophage-mediated clearance of infected cells. These findings suggest that a high infection rate by SARS-CoV-2 may lead to exaggerated cytokine responses, which may contribute to tissue damage and severe disease.
Collapse
Affiliation(s)
- O García-Nicolás
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland.
| | - A Godel
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - G Zimmer
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - A Summerfield
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
71
|
Mohandas S, Jagannathan P, Henrich TJ, Sherif ZA, Bime C, Quinlan E, Portman MA, Gennaro M, Rehman J. Immune mechanisms underlying COVID-19 pathology and post-acute sequelae of SARS-CoV-2 infection (PASC). eLife 2023; 12:e86014. [PMID: 37233729 PMCID: PMC10219649 DOI: 10.7554/elife.86014] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
With a global tally of more than 500 million cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections to date, there are growing concerns about the post-acute sequelae of SARS-CoV-2 infection (PASC), also known as long COVID. Recent studies suggest that exaggerated immune responses are key determinants of the severity and outcomes of the initial SARS-CoV-2 infection as well as subsequent PASC. The complexity of the innate and adaptive immune responses in the acute and post-acute period requires in-depth mechanistic analyses to identify specific molecular signals as well as specific immune cell populations which promote PASC pathogenesis. In this review, we examine the current literature on mechanisms of immune dysregulation in severe COVID-19 and the limited emerging data on the immunopathology of PASC. While the acute and post-acute phases may share some parallel mechanisms of immunopathology, it is likely that PASC immunopathology is quite distinct and heterogeneous, thus requiring large-scale longitudinal analyses in patients with and without PASC after an acute SARS-CoV-2 infection. By outlining the knowledge gaps in the immunopathology of PASC, we hope to provide avenues for novel research directions that will ultimately lead to precision therapies which restore healthy immune function in PASC patients.
Collapse
Affiliation(s)
- Sindhu Mohandas
- Division of Infectious Diseases, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Prasanna Jagannathan
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford UniversityStanfordUnited States
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California, San FranciscoSan FranciscoUnited States
| | - Zaki A Sherif
- Department of Biochemistry & Molecular Biology, Howard University College of MedicineWashingtonUnited States
| | - Christian Bime
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, University of Arizona College of MedicineTucsonUnited States
| | - Erin Quinlan
- National Center for Complementary and Integrative Health, National Institutes of HealthBethesdaUnited States
| | - Michael A Portman
- Seattle Children’s Hospital, Division of Pediatric Cardiology, Department of Pediatrics, University of WashingtonSeattleUnited States
| | - Marila Gennaro
- Public Health Research Institute and Department of Medicine, Rutgers New Jersey Medical SchoolNewarkUnited States
| | - Jalees Rehman
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of MedicineChicagoUnited States
| |
Collapse
|
72
|
Araújo A, Sgorlon G, Aguiar LE, Cidrão MHMC, Teixeira KS, Villalobos Salcedo JM, Passos-Silva AM, Vieira D. Influence of polymorphic variations of IFNL, HLA, and IL-6 genes in severe cases of COVID-19. Exp Biol Med (Maywood) 2023; 248:787-797. [PMID: 37452704 PMCID: PMC10350587 DOI: 10.1177/15353702231181343] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
The administration of vaccination doses to the global population has led to a decrease in the incidence of COVID-19. However, the clinical picture developed by infected individuals remains extremely concerning due to the great variability in the severity of cases even in vaccinated individuals. The clinical progression of the pathology is characterized by various influential factors such as sex, age group, comorbidities, and the genetics of the individual. The immune response to viral infections can be strongly influenced by the genetics of individuals; nucleotide variations called single-nucleotide polymorphisms (SNPs) in structures involved in the innate and adaptive immune response such as interferon (IFN)-λ, human leukocyte antigen (HLA), and interleukin (IL)-6 are frequently associated with pathological progression. In this study, we conducted a review of the main SNPs of these structures that are associated with severity in COVID-19. Searches were conducted on some platforms of the National Center for Biotechnology and Information (NCBI), and 102 studies were selected for full reading according to the inclusion criteria. IFNs showed a strong association with antiviral function, specifically, IFN-λ3 (IL-28B) demonstrated genetic variants commonly related to clinical progression in various pathologies. For COVID-19, rs12979860 and rs1298275 presented frequently described unfavorable genotypes for pathological conditions of hepatitis C and hepatocellular carcinoma. The high genetic variability of HLA was reported in the studies as a crucial factor relevant to the late immune response, mainly due to its ability to recognize antigens, with the HLA-B*46:01 SNP being associated with susceptibility to COVID-19. For IL-6, rs1554606 showed a strong relationship with the clinical progression of COVID-19. In addition, rs2069837 was identified with possible host protection relationships when linked to this infection.
Collapse
Affiliation(s)
- Adrhyan Araújo
- Laboratório de Virologia Molecular, Fundação Oswaldo Cruz Rondônia (FIOCRUZ/RO), Porto Velho 76812-329, Brazil
- Centro de Pesquisa em Medicina Tropical (CEPEM), Porto Velho 76812-329, Brazil
| | - Gabriella Sgorlon
- Laboratório de Virologia Molecular, Fundação Oswaldo Cruz Rondônia (FIOCRUZ/RO), Porto Velho 76812-329, Brazil
- Centro de Pesquisa em Medicina Tropical (CEPEM), Porto Velho 76812-329, Brazil
- Programa de Pós-Graduação em Biologia Experimental, Universidade Federal de Rondônia (UNIR), Porto Velho 76801-059, Brazil
| | | | | | - Karolaine Santos Teixeira
- Laboratório de Virologia Molecular, Fundação Oswaldo Cruz Rondônia (FIOCRUZ/RO), Porto Velho 76812-329, Brazil
- Centro de Pesquisa em Medicina Tropical (CEPEM), Porto Velho 76812-329, Brazil
| | - Juan Miguel Villalobos Salcedo
- Laboratório de Virologia Molecular, Fundação Oswaldo Cruz Rondônia (FIOCRUZ/RO), Porto Velho 76812-329, Brazil
- Universidade Federal de Rondônia (UNIR), Porto Velho 76801-059, Brazil
| | - Ana Maísa Passos-Silva
- Laboratório de Virologia Molecular, Fundação Oswaldo Cruz Rondônia (FIOCRUZ/RO), Porto Velho 76812-329, Brazil
- Centro de Pesquisa em Medicina Tropical (CEPEM), Porto Velho 76812-329, Brazil
- Programa de Pós-Graduação em Biologia Experimental, Universidade Federal de Rondônia (UNIR), Porto Velho 76801-059, Brazil
| | - Deusilene Vieira
- Laboratório de Virologia Molecular, Fundação Oswaldo Cruz Rondônia (FIOCRUZ/RO), Porto Velho 76812-329, Brazil
- Centro de Pesquisa em Medicina Tropical (CEPEM), Porto Velho 76812-329, Brazil
- Programa de Pós-Graduação em Biologia Experimental, Universidade Federal de Rondônia (UNIR), Porto Velho 76801-059, Brazil
| |
Collapse
|
73
|
Su HC, Jing H, Zhang Y, Casanova JL. Interfering with Interferons: A Critical Mechanism for Critical COVID-19 Pneumonia. Annu Rev Immunol 2023; 41:561-585. [PMID: 37126418 DOI: 10.1146/annurev-immunol-101921-050835] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Infection with SARS-CoV-2 results in clinical outcomes ranging from silent or benign infection in most individuals to critical pneumonia and death in a few. Genetic studies in patients have established that critical cases can result from inborn errors of TLR3- or TLR7-dependent type I interferon immunity, or from preexisting autoantibodies neutralizing primarily IFN-α and/or IFN-ω. These findings are consistent with virological studies showing that multiple SARS-CoV-2 proteins interfere with pathways of induction of, or response to, type I interferons. They are also congruent with cellular studies and mouse models that found that type I interferons can limit SARS-CoV-2 replication in vitro and in vivo, while their absence or diminution unleashes viral growth. Collectively, these findings point to insufficient type I interferon during the first days of infection as a general mechanism underlying critical COVID-19 pneumonia, with implications for treatment and directions for future research.
Collapse
Affiliation(s)
- Helen C Su
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH; Bethesda, Maryland, USA;
| | - Huie Jing
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH; Bethesda, Maryland, USA;
| | - Yu Zhang
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH; Bethesda, Maryland, USA;
| | - Jean-Laurent Casanova
- Howard Hughes Medical Institute and St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
- University of Paris Cité, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
74
|
Liu X, Yuan L, Chen J, Zhang Y, Chen P, Zhou M, Xie J, Ma J, Zhang J, Wu K, Tang Q, Yuan Q, Zhu H, Cheng T, Guan Y, Liu G, Xia N. Antiviral Nanobiologic Therapy Remodulates Innate Immune Responses to Highly Pathogenic Coronavirus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2207249. [PMID: 37096860 DOI: 10.1002/advs.202207249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Highly pathogenic coronavirus (CoV) infection induces a defective innate antiviral immune response coupled with the dysregulated release of proinflammatory cytokines and finally results in acute respiratory distress syndrome (ARDS). A timely and appropriate triggering of innate antiviral response is crucial to inhibit viral replication and prevent ARDS. However, current medical countermeasures can rarely meet this urgent demand. Here, an antiviral nanobiologic named CoVR-MV is developed, which is polymerized of CoVs receptors based on a biomimetic membrane vesicle system. The designed CoVR-MV interferes with the viral infection by absorbing the viruses with maximized viral spike target interface, and mediates the clearance of the virus through its inherent interaction with macrophages. Furthermore, CoVR-MV coupled with the virus promotes a swift production and signaling of endogenous type I interferon via deregulating 7-dehydrocholesterol reductase (DHCR7) inhibition of interferon regulatory factor 3 (IRF3) activation in macrophages. These sequential processes re-modulate the innate immune responses to the virus, trigger spontaneous innate antiviral defenses, and rescue infected Syrian hamsters from ARDS caused by SARS-CoV-2 and all tested variants.
Collapse
Affiliation(s)
- Xuan Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Lunzhi Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jijing Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Yali Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Peiwen Chen
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, 999077, China
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, Shantou, 515063, China
| | - Ming Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jiaxuan Xie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jian Ma
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Kun Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC, 20059, USA
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Huachen Zhu
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, 999077, China
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, Shantou, 515063, China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Yi Guan
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, 999077, China
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, Shantou, 515063, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health & School of Life Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
75
|
Radzikowska U, Eljaszewicz A, Tan G, Stocker N, Heider A, Westermann P, Steiner S, Dreher A, Wawrzyniak P, Rückert B, Rodriguez-Coira J, Zhakparov D, Huang M, Jakiela B, Sanak M, Moniuszko M, O'Mahony L, Jutel M, Kebadze T, Jackson JD, Edwards RM, Thiel V, Johnston LS, Akdis AC, Sokolowska M. Rhinovirus-induced epithelial RIG-I inflammasome suppresses antiviral immunity and promotes inflammation in asthma and COVID-19. Nat Commun 2023; 14:2329. [PMID: 37087523 PMCID: PMC10122208 DOI: 10.1038/s41467-023-37470-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/16/2023] [Indexed: 04/24/2023] Open
Abstract
Rhinoviruses and allergens, such as house dust mite are major agents responsible for asthma exacerbations. The influence of pre-existing airway inflammation on the infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is largely unknown. We analyse mechanisms of response to viral infection in experimental in vivo rhinovirus infection in healthy controls and patients with asthma, and in in vitro experiments with house dust mite, rhinovirus and SARS-CoV-2 in human primary airway epithelium. Here, we show that rhinovirus infection in patients with asthma leads to an excessive RIG-I inflammasome activation, which diminishes its accessibility for type I/III interferon responses, leading to their early functional impairment, delayed resolution, prolonged viral clearance and unresolved inflammation in vitro and in vivo. Pre-exposure to house dust mite augments this phenomenon by inflammasome priming and auxiliary inhibition of early type I/III interferon responses. Prior infection with rhinovirus followed by SARS-CoV-2 infection augments RIG-I inflammasome activation and epithelial inflammation. Timely inhibition of the epithelial RIG-I inflammasome may lead to more efficient viral clearance and lower the burden of rhinovirus and SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard-Strasse 9, 7265, Davos Wolfgang, Switzerland
- Christine Kühne - Center for Allergy Research and Education (CK-CARE), Herman-Burchard-Strasse 1, 7265, Davos Wolfgang, Switzerland
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Waszyngtona 13 Str., 15-269, Bialystok, Poland
| | - Andrzej Eljaszewicz
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard-Strasse 9, 7265, Davos Wolfgang, Switzerland
- Christine Kühne - Center for Allergy Research and Education (CK-CARE), Herman-Burchard-Strasse 1, 7265, Davos Wolfgang, Switzerland
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Waszyngtona 13 Str., 15-269, Bialystok, Poland
| | - Ge Tan
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard-Strasse 9, 7265, Davos Wolfgang, Switzerland
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Nino Stocker
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard-Strasse 9, 7265, Davos Wolfgang, Switzerland
| | - Anja Heider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard-Strasse 9, 7265, Davos Wolfgang, Switzerland
| | - Patrick Westermann
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard-Strasse 9, 7265, Davos Wolfgang, Switzerland
| | - Silvio Steiner
- Institute of Virology and Immunology (IVI), Laenggassstrasse 122, 3012, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 122, 3012, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland
| | - Anita Dreher
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard-Strasse 9, 7265, Davos Wolfgang, Switzerland
- Christine Kühne - Center for Allergy Research and Education (CK-CARE), Herman-Burchard-Strasse 1, 7265, Davos Wolfgang, Switzerland
| | - Paulina Wawrzyniak
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard-Strasse 9, 7265, Davos Wolfgang, Switzerland
- Christine Kühne - Center for Allergy Research and Education (CK-CARE), Herman-Burchard-Strasse 1, 7265, Davos Wolfgang, Switzerland
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Beate Rückert
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard-Strasse 9, 7265, Davos Wolfgang, Switzerland
| | - Juan Rodriguez-Coira
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard-Strasse 9, 7265, Davos Wolfgang, Switzerland
- IMMA, Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities Madrid, C. de Julian Romea 23, 28003, Madrid, Spain
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities Madrid, Urb. Monteprincipe 28925, Alcorcon, Madrid, Spain
| | - Damir Zhakparov
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard-Strasse 9, 7265, Davos Wolfgang, Switzerland
| | - Mengting Huang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard-Strasse 9, 7265, Davos Wolfgang, Switzerland
| | - Bogdan Jakiela
- Department of Internal Medicine, Jagiellonian University Medical College, M. Skawinska 8 Str., 31-066, Krakow, Poland
| | - Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, M. Skawinska 8 Str., 31-066, Krakow, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Waszyngtona 13 Str., 15-269, Bialystok, Poland
- Department of Allergology and Internal Medicine, Medical University of Bialystok, M. Sklodowskiej-Curie 24A Str., 15-276, Bialystok, Poland
| | - Liam O'Mahony
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard-Strasse 9, 7265, Davos Wolfgang, Switzerland
- Department of Medicine and School of Microbiology, APC Microbiome Ireland, University College Cork, College Rd, T12 E138, Cork, Ireland
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, wyb. Lidwika Pasteura 1 Str, 50-367, Wroclaw, Poland
- ALL-MED Medical Research Institute, Gen. Jozefa Hallera 95 Str., 53-201, Wroclaw, Poland
| | - Tatiana Kebadze
- National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Cale Street, London, SW3 6LY, UK
- Department of Infectious Diseases, Imperial College London, School of Medicine, St Mary's Hospital, Praed Street, London, W21NY, UK
| | - J David Jackson
- Guy's Severe Asthma Centre, School of Immunology & Microbial Sciences, King's College London, Strand, London, WC2R 2LS, UK
- Guy's & St Thomas' NHS Trust, St Thomas' Hospital, Westminster Bridge Rd, London, SE1 7EH, UK
| | - R Michael Edwards
- National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Cale Street, London, SW3 6LY, UK
- Asthma UK Centre in Allergic Mechanisms of Asthma, Norfolk Place, London, W2 1PG, UK
| | - Volker Thiel
- Institute of Virology and Immunology (IVI), Laenggassstrasse 122, 3012, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Hallerstrasse 6, 3012, Bern, Switzerland
| | - L Sebastian Johnston
- National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Cale Street, London, SW3 6LY, UK
- Asthma UK Centre in Allergic Mechanisms of Asthma, Norfolk Place, London, W2 1PG, UK
- Imperial College Healthcare HNS Trust, The Bays, S Wharf Rd, London, W2 1NY, UK
| | - A Cezmi Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard-Strasse 9, 7265, Davos Wolfgang, Switzerland
- Christine Kühne - Center for Allergy Research and Education (CK-CARE), Herman-Burchard-Strasse 1, 7265, Davos Wolfgang, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard-Strasse 9, 7265, Davos Wolfgang, Switzerland.
- Christine Kühne - Center for Allergy Research and Education (CK-CARE), Herman-Burchard-Strasse 1, 7265, Davos Wolfgang, Switzerland.
| |
Collapse
|
76
|
Ishii H, Jounai K, Tsuji R, Ohshio K, Kaneda D, Okazaki M, Harada S, Fujiwara D, Matano T. Plasmacytoid dendritic cells stimulated with Lactococcus lactis strain Plasma produce soluble factors to suppress SARS-CoV-2 replication. Biochem Biophys Res Commun 2023; 662:26-30. [PMID: 37094430 PMCID: PMC10110276 DOI: 10.1016/j.bbrc.2023.04.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023]
Abstract
Innate immune responses are important in the control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication. We have previously found a lactic acid bacteria species, Lactococcus lactis strain Plasma (LC-Plasma), which possesses specific feature to activate plasmacytoid dendritic cells (pDCs) and thus may affect innate immune responses. Here, we investigated the impact of pDC activation by LC-Plasma on SARS-CoV-2 replication in vitro. Addition of the culture supernatant of pDCs stimulated with LC-Plasma resulted in suppression of SARS-CoV-2 replication in Vero and Calu-3 cells. We confirmed interferon-α (IFN-α) secretion in the supernatant of pDCs stimulated with LC-Plasma and induction of IFN-stimulated genes in cells treated with the pDC supernatant. Anti-IFN-α antibody impaired the suppression of SARS-CoV-2 replication by the supernatant of LC-Plasma-stimulated pDCs, suggesting that IFN-α plays an important role in the SARS-CoV-2 suppression. Our results indicate the potential of LC-Plasma to induce inhibitory responses against SARS-CoV-2 replication through pDC stimulation with IFN-α secretion.
Collapse
Affiliation(s)
- Hiroshi Ishii
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| | - Kenta Jounai
- Kirin Central Research Institute, Kirin Holdings, Co., Ltd., 2-26-1 Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan
| | - Ryohei Tsuji
- Kirin Central Research Institute, Kirin Holdings, Co., Ltd., 2-26-1 Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan
| | - Konomi Ohshio
- Kirin Central Research Institute, Kirin Holdings, Co., Ltd., 2-26-1 Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan
| | - Daiki Kaneda
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan; Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Midori Okazaki
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Shigeyoshi Harada
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Daisuke Fujiwara
- Kirin Central Research Institute, Kirin Holdings, Co., Ltd., 2-26-1 Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan; Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan; Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan.
| |
Collapse
|
77
|
Qudus MS, Tian M, Sirajuddin S, Liu S, Afaq U, Wali M, Liu J, Pan P, Luo Z, Zhang Q, Yang G, Wan P, Li Y, Wu J. The roles of critical pro-inflammatory cytokines in the drive of cytokine storm during SARS-CoV-2 infection. J Med Virol 2023; 95:e28751. [PMID: 37185833 DOI: 10.1002/jmv.28751] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/17/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023]
Abstract
In patients with severe COVID-19, acute respiratory distress syndrome (ARDS), multiple organ dysfunction syndrome (MODS), and even mortality can result from cytokine storm, which is a hyperinflammatory medical condition caused by the excessive and uncontrolled release of pro-inflammatory cytokines. High levels of numerous crucial pro-inflammatory cytokines, such as interleukin-1 (IL-1), IL-2, IL-6, tumor necrosis factor-α, interferon (IFN)-γ, IFN-induced protein 10 kDa, granulocyte-macrophage colony-stimulating factor, monocyte chemoattractant protein-1, and IL-10 and so on, have been found in severe COVID-19. They participate in cascade amplification pathways of pro-inflammatory responses through complex inflammatory networks. Here, we review the involvements of these critical inflammatory cytokines in SARS-CoV-2 infection and discuss their potential roles in triggering or regulating cytokine storm, which can help to understand the pathogenesis of severe COVID-19. So far, there is rarely effective therapeutic strategy for patients with cytokine storm besides using glucocorticoids, which is proved to result in fatal side effects. Clarifying the roles of key involved cytokines in the complex inflammatory network of cytokine storm will help to develop an ideal therapeutic intervention, such as neutralizing antibody of certain cytokine or inhibitor of some inflammatory signal pathways.
Collapse
Affiliation(s)
- Muhammad Suhaib Qudus
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mingfu Tian
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Summan Sirajuddin
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Siyu Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Uzair Afaq
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Muneeba Wali
- Department of Allied Health Sciences, CECOS University of IT and Emerging Sciences, Peshawar, Pakistan
| | - Jinbiao Liu
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Pan Pan
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Zhen Luo
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Qiwei Zhang
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Ge Yang
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Pin Wan
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Yongkui Li
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| |
Collapse
|
78
|
Mao S, Cai X, Niu S, Wei J, Jiang N, Deng H, Wang W, Zhang J, Shen S, Ma Y, Wu X, Peng Q, Huang A, Wang D. TRIM21 promotes ubiquitination of SARS-CoV-2 nucleocapsid protein to regulate innate immunity. J Med Virol 2023; 95:e28719. [PMID: 37185839 DOI: 10.1002/jmv.28719] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023]
Abstract
The innate immune response is the first line of host defense against viral infections, but its role in immunity against SARS-CoV-2 remains unclear. By using immunoprecipitation coupled with mass spectroscopy, we observed that the E3 ubiquitin ligase TRIM21 interacted with the SARS-CoV-2 nucleocapsid (N) protein and ubiquitinated it at Lys375 . Upon determining the topology of the TRIM21-mediated polyubiquitination chain on N protein, we then found that polyubiquitination led to tagging of the N protein for degradation by the host cell proteasome. Furthermore, TRIM21 also ubiquitinated the N proteins of SARS-CoV-2 variants of concern, including Alpha, Beta, Gamma, Delta, and Omicron together with SARS-CoV and MERS-CoV variants. Herein, we propose that ubiquitylation and degradation of the SARS-CoV-2 N protein inhibited SARS-CoV-2 viral particle assembly, by which it probably involved in preventing cytokine storm. Eventually, our study has fully revealed the association between the host innate immune system and SARS-CoV-2 N protein, which may aid in developing novel SARS-CoV-2 treatment strategies.
Collapse
Affiliation(s)
- Shenglan Mao
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xuefei Cai
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Siqiang Niu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Wei
- Department of Clinical Laboratory, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China
| | - Ning Jiang
- School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Haijun Deng
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Wen Wang
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jing Zhang
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Shimei Shen
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yuanyan Ma
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xiaoli Wu
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Qiling Peng
- School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Ailong Huang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Deqiang Wang
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
79
|
Santa Cruz A, Mendes-Frias A, Azarias-da-Silva M, André S, Oliveira AI, Pires O, Mendes M, Oliveira B, Braga M, Lopes JR, Domingues R, Costa R, Silva LN, Matos AR, Ângela C, Costa P, Carvalho A, Capela C, Pedrosa J, Castro AG, Estaquier J, Silvestre R. Post-acute sequelae of COVID-19 is characterized by diminished peripheral CD8 +β7 integrin + T cells and anti-SARS-CoV-2 IgA response. Nat Commun 2023; 14:1772. [PMID: 36997530 PMCID: PMC10061413 DOI: 10.1038/s41467-023-37368-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 03/15/2023] [Indexed: 04/01/2023] Open
Abstract
Several millions of individuals are estimated to develop post-acute sequelae SARS-CoV-2 condition (PASC) that persists for months after infection. Here we evaluate the immune response in convalescent individuals with PASC compared to convalescent asymptomatic and uninfected participants, six months following their COVID-19 diagnosis. Both convalescent asymptomatic and PASC cases are characterised by higher CD8+ T cell percentages, however, the proportion of blood CD8+ T cells expressing the mucosal homing receptor β7 is low in PASC patients. CD8 T cells show increased expression of PD-1, perforin and granzyme B in PASC, and the plasma levels of type I and type III (mucosal) interferons are elevated. The humoral response is characterized by higher levels of IgA against the N and S viral proteins, particularly in those individuals who had severe acute disease. Our results also show that consistently elevated levels of IL-6, IL-8/CXCL8 and IP-10/CXCL10 during acute disease increase the risk to develop PASC. In summary, our study indicates that PASC is defined by persisting immunological dysfunction as late as six months following SARS-CoV-2 infection, including alterations in mucosal immune parameters, redistribution of mucosal CD8+β7Integrin+ T cells and IgA, indicative of potential viral persistence and mucosal involvement in the etiopathology of PASC.
Collapse
Affiliation(s)
- André Santa Cruz
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal.
- Clinical Academic Center-Braga, Braga, Portugal.
| | - Ana Mendes-Frias
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Sónia André
- INSERM-U1124, Université Paris Cité, Paris, France
| | | | - Olga Pires
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Marta Mendes
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Bárbara Oliveira
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Marta Braga
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Joana Rita Lopes
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Rui Domingues
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Ricardo Costa
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Luís Neves Silva
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Ana Rita Matos
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Cristina Ângela
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Patrício Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandre Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
- Clinical Academic Center-Braga, Braga, Portugal
| | - Carlos Capela
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
- Clinical Academic Center-Braga, Braga, Portugal
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António Gil Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jérôme Estaquier
- INSERM-U1124, Université Paris Cité, Paris, France.
- CHU de Québec - Université Laval Research Center, Québec City, Québec, Canada.
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
80
|
Harne R, Williams B, Abdelaal HFM, Baldwin SL, Coler RN. SARS-CoV-2 infection and immune responses. AIMS Microbiol 2023; 9:245-276. [PMID: 37091818 PMCID: PMC10113164 DOI: 10.3934/microbiol.2023015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
The recent pandemic caused by the SARS-CoV-2 virus continues to be an enormous global challenge faced by the healthcare sector. Availability of new vaccines and drugs targeting SARS-CoV-2 and sequelae of COVID-19 has given the world hope in ending the pandemic. However, the emergence of mutations in the SARS-CoV-2 viral genome every couple of months in different parts of world is a persistent danger to public health. Currently there is no single treatment to eradicate the risk of COVID-19. The widespread transmission of SARS-CoV-2 due to the Omicron variant necessitates continued work on the development and implementation of effective vaccines. Moreover, there is evidence that mutations in the receptor domain of the SARS-CoV-2 spike glycoprotein led to the decrease in current vaccine efficacy by escaping antibody recognition. Therefore, it is essential to actively identify the mechanisms by which SARS-CoV-2 evades the host immune system, study the long-lasting effects of COVID-19 and develop therapeutics targeting SARS-CoV-2 infections in humans and preclinical models. In this review, we describe the pathogenic mechanisms of SARS-CoV-2 infection as well as the innate and adaptive host immune responses to infection. We address the ongoing need to develop effective vaccines that provide protection against different variants of SARS-CoV-2, as well as validated endpoint assays to evaluate the immunogenicity of vaccines in the pipeline, medications, anti-viral drug therapies and public health measures, that will be required to successfully end the COVID-19 pandemic.
Collapse
Affiliation(s)
- Rakhi Harne
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle Children's Hospital, Seattle, Washington, USA
| | - Brittany Williams
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle Children's Hospital, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Hazem F. M. Abdelaal
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle Children's Hospital, Seattle, Washington, USA
| | - Susan L. Baldwin
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle Children's Hospital, Seattle, Washington, USA
| | - Rhea N. Coler
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle Children's Hospital, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
81
|
Zhu S, Sun P, Bennett S, Charlesworth O, Tan R, Peng X, Gu Q, Kujan O, Xu J. The therapeutic effect and mechanism of parthenolide in skeletal disease, cancers, and cytokine storm. Front Pharmacol 2023; 14:1111218. [PMID: 37033622 PMCID: PMC10080395 DOI: 10.3389/fphar.2023.1111218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
Parthenolide (PTL or PAR) was first isolated from Magnolia grandiflora and identified as a small molecule cancer inhibitor. PTL has the chemical structure of C15H20O3 with characteristics of sesquiterpene lactones and exhibits the biological property of inhibiting DNA biosynthesis of cancer cells. In this review, we summarise the recent research progress of medicinal PTL, including the therapeutic effects on skeletal diseases, cancers, and inflammation-induced cytokine storm. Mechanistic investigations reveal that PTL predominantly inhibits NF-κB activation and other signalling pathways, such as reactive oxygen species. As an inhibitor of NF-κB, PTL appears to inhibit several cytokines, including RANKL, TNF-α, IL-1β, together with LPS induced activation of NF-κB and NF-κB -mediated specific gene expression such as IL-1β, TNF-α, COX-2, iNOS, IL-8, MCP-1, RANTES, ICAM-1, VCAM-1. It is also proposed that PTL could inhibit cytokine storms or hypercytokinemia triggered by COVID-19 via blocking the activation of NF-κB signalling. Understanding the pharmacologic properties of PTL will assist us in developing its therapeutic application for medical conditions, including arthritis, osteolysis, periodontal disease, cancers, and COVID-19-related disease.
Collapse
Affiliation(s)
- Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- *Correspondence: Sipin Zhu, ; Jiake Xu,
| | - Ping Sun
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Samuel Bennett
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Oscar Charlesworth
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Renxiang Tan
- The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing, China
| | - Xing Peng
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiang Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Omar Kujan
- UWA Dental School, The University of Western Australia, Perth, WA, Australia
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- *Correspondence: Sipin Zhu, ; Jiake Xu,
| |
Collapse
|
82
|
Alterations in the Expression of IFN Lambda, IFN Gamma and Toll-like Receptors in Severe COVID-19 Patients. Microorganisms 2023; 11:microorganisms11030689. [PMID: 36985262 PMCID: PMC10058642 DOI: 10.3390/microorganisms11030689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Contradictory results have been reported regarding interferon (IFN) lambda (λ1–3) and IFN gamma (γ) production in COVID-19 patients. To gain insight into the roles played by these IFNs in SARS-CoV-2 infection, IFNλ1–3 and IFNγ mRNA expression was evaluated in peripheral blood mononuclear cells (PBMCs) (n = 32) and in cells of paired bronchoalveolar lavages (BALs) (n = 12). Lower IFNλ1–3 values (p < 0.001 for IFNλ1 and 3 and p = 0.013 for IFNλ2) in the PBMCs of severely ill patients were found compared to healthy donors (n = 15). Reduced levels of IFNγ were also detected in patients’ PBMCs (p < 0.01) and BALs (p = 0.041) compared to healthy donors. The presence of secondary bacterial infections was associated with decreased IFNλ amounts in PBMCs (p = 0.001, p = 0.015 and p = 0.003, respectively) but increased concentrations of IFNλ3 (p = 0.022) in BALs. Patients with alterations in C-reactive protein, lactate dehydrogenase and D-dimer levels had decreased IFNλ1 and 3 (p = 0.003 and p < 0.001) and increased IFNγ (p = 0.08) in PBMCs. Analyzing Toll-like receptors (TLRs) involved in IFN production, we found that TLR3 was highly expressed (p = 0.033) in patients with bacterial superinfections, while TLR7 and 8 (p = 0.029 and p = 0.049) were reduced in BALs of deceased patients. Overall, severe COVID-19 might be characterized by dysregulation in IFNγ, IFNλ and TLR3, 7 and 8 production.
Collapse
|
83
|
Treating COVID-19: Targeting the Host Response, Not the Virus. Life (Basel) 2023; 13:life13030712. [PMID: 36983871 PMCID: PMC10054780 DOI: 10.3390/life13030712] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 03/09/2023] Open
Abstract
In low- and middle-income countries (LMICs), inexpensive generic drugs like statins, ACE inhibitors, and ARBs, especially if used in combination, might be the only practical way to save the lives of patients with severe COVID-19. These drugs will already be available in all countries on the first pandemic day. Because they target the host response to infection instead of the virus, they could be used to save lives during any pandemic. Observational studies show that inpatient statin treatment reduces 28–30-day mortality but randomized controlled trials have failed to show this benefit. Combination treatment has been tested for antivirals and dexamethasone but, with the exception of one observational study in Belgium, not for inexpensive generic drugs. Future pandemic research must include testing combination generic drug treatments that could be used in LMICs.
Collapse
|
84
|
Perlman S, Peiris M. Coronavirus research: knowledge gaps and research priorities. Nat Rev Microbiol 2023; 21:125-126. [PMID: 36792727 DOI: 10.1038/s41579-022-00837-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA.
| | - Malik Peiris
- HKU-Pasteur Research Pole, The University of Hong Kong (HKU), Hong Kong Special Administrative Region, People's Republic of China
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong (HKU), Hong Kong Special Administrative Region, People's Republic of China
| |
Collapse
|
85
|
Taylor MK, Williams EP, Xue Y, Jenjaroenpun P, Wongsurawat T, Smith AP, Smith AM, Parvathareddy J, Kong Y, Vogel P, Cao X, Reichard W, Spruill-Harrell B, Samarasinghe AE, Nookaew I, Fitzpatrick EA, Smith MD, Aranha M, Smith JC, Jonsson CB. Dissecting Phenotype from Genotype with Clinical Isolates of SARS-CoV-2 First Wave Variants. Viruses 2023; 15:611. [PMID: 36992320 PMCID: PMC10059853 DOI: 10.3390/v15030611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
The emergence and availability of closely related clinical isolates of SARS-CoV-2 offers a unique opportunity to identify novel nonsynonymous mutations that may impact phenotype. Global sequencing efforts show that SARS-CoV-2 variants have emerged and then been replaced since the beginning of the pandemic, yet we have limited information regarding the breadth of variant-specific host responses. Using primary cell cultures and the K18-hACE2 mouse, we investigated the replication, innate immune response, and pathology of closely related, clinical variants circulating during the first wave of the pandemic. Mathematical modeling of the lung viral replication of four clinical isolates showed a dichotomy between two B.1. isolates with significantly faster and slower infected cell clearance rates, respectively. While isolates induced several common immune host responses to infection, one B.1 isolate was unique in the promotion of eosinophil-associated proteins IL-5 and CCL11. Moreover, its mortality rate was significantly slower. Lung microscopic histopathology suggested further phenotypic divergence among the five isolates showing three distinct sets of phenotypes: (i) consolidation, alveolar hemorrhage, and inflammation, (ii) interstitial inflammation/septal thickening and peribronchiolar/perivascular lymphoid cells, and (iii) consolidation, alveolar involvement, and endothelial hypertrophy/margination. Together these findings show divergence in the phenotypic outcomes of these clinical isolates and reveal the potential importance of nonsynonymous mutations in nsp2 and ORF8.
Collapse
Affiliation(s)
- Mariah K. Taylor
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Evan P. Williams
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Yi Xue
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Piroon Jenjaroenpun
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Thidathip Wongsurawat
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Amanda P. Smith
- Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Amber M. Smith
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Institute for the Study of Host-Pathogen Systems, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jyothi Parvathareddy
- Regional Biocontainment Laboratory, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ying Kong
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Peter Vogel
- Veterinary Pathology Core Laboratory, St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Xueyuan Cao
- Department of Health Promotion and Disease Prevention, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Walter Reichard
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Briana Spruill-Harrell
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Amali E. Samarasinghe
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Intawat Nookaew
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Elizabeth A. Fitzpatrick
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Institute for the Study of Host-Pathogen Systems, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Micholas Dean Smith
- Center for Molecular Biophysics, University of Tennessee-Oak Ridge National Laboratory, Knoxville, TN 37996, USA
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee- Knoxville, Knoxville, TN 37996, USA
| | - Michelle Aranha
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee- Knoxville, Knoxville, TN 37996, USA
| | - Jeremy C. Smith
- Center for Molecular Biophysics, University of Tennessee-Oak Ridge National Laboratory, Knoxville, TN 37996, USA
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee- Knoxville, Knoxville, TN 37996, USA
| | - Colleen B. Jonsson
- Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Institute for the Study of Host-Pathogen Systems, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Regional Biocontainment Laboratory, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
86
|
Study of the Effects of Several SARS-CoV-2 Structural Proteins on Antiviral Immunity. Vaccines (Basel) 2023; 11:vaccines11030524. [PMID: 36992107 DOI: 10.3390/vaccines11030524] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/25/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike (S) protein is a critical viral antigenic protein that enables the production of neutralizing antibodies, while other structural proteins, including the membrane (M), nucleocapsid (N) and envelope (E) proteins, have unclear roles in antiviral immunity. In this study, S1, S2, M, N and E proteins were expressed in 16HBE cells to explore the characteristics of the resultant innate immune response. Furthermore, peripheral blood mononuclear cells (PBMCs) from mice immunized with two doses of inactivated SARS-CoV-2 vaccine or two doses of mRNA vaccine were isolated and stimulated by these five proteins to evaluate the corresponding specific T-cell immune response. In addition, the levels of humoral immunity induced by two-dose inactivated vaccine priming followed by mRNA vaccine boosting, two homologous inactivated vaccine doses and two homologous mRNA vaccine doses in immunized mice were compared. Our results suggested that viral structural proteins can activate the innate immune response and elicit a specific T-cell response in mice immunized with the inactivated vaccine. However, the existence of the specific T-cell response against M, N and E is seemingly insufficient to improve the level of humoral immunity.
Collapse
|
87
|
Kapten K, Orczyk K, Smolewska E. Immunity in SARS-CoV-2 Infection: Clarity or Mystery? A Broader Perspective in the Third Year of a Worldwide Pandemic. Arch Immunol Ther Exp (Warsz) 2023; 71:7. [PMID: 36810662 PMCID: PMC9943048 DOI: 10.1007/s00005-023-00673-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/09/2023] [Indexed: 02/23/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its mechanisms have been thoroughly studied by researchers all over the world with the hope of finding answers that may aid the discovery of new treatment options or effective means of prevention. Still, over 2 years into the pandemic that is an immense burden on health care and economic systems, there seem to be more questions than answers. The character and multitude of immune responses elicited in coronavirus disease 2019 (COVID-19) vary from uncontrollable activation of the inflammatory system, causing extensive tissue damage and consequently leading to severe or even fatal disease, to mild or asymptomatic infections in the majority of patients, resulting in the unpredictability of the current pandemic. The aim of the study was to systematize the available data regarding the immune response to SARS-CoV-2, to provide some clarification among the abundance of the knowledge available. The review contains concise and current information on the most significant immune reactions to COVID-19, including components of both innate and adaptive immunity, with an additional focus on utilizing humoral and cellular responses as effective diagnostic tools. Moreover, the authors discussed the present state of knowledge on SARS-CoV-2 vaccines and their efficacy in cases of immunodeficiency.
Collapse
Affiliation(s)
- Katarzyna Kapten
- Department of Pediatric Cardiology and Rheumatology, Central Teaching Hospital of Medical University of Lodz, Lodz, Poland
| | - Krzysztof Orczyk
- Department of Pediatric Cardiology and Rheumatology, Medical University of Lodz, Sporna 36/50, 91-738, Lodz, Poland
| | - Elzbieta Smolewska
- Department of Pediatric Cardiology and Rheumatology, Medical University of Lodz, Sporna 36/50, 91-738, Lodz, Poland.
| |
Collapse
|
88
|
Liu Z, Han Z, Jin X, An J, Kim J, Chen W, Kim JS, Zheng J, Deng J. Regulating the microenvironment with nanomaterials: Potential strategies to ameliorate COVID-19. Acta Pharm Sin B 2023; 13:S2211-3835(23)00054-0. [PMID: 36846153 PMCID: PMC9941074 DOI: 10.1016/j.apsb.2023.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
COVID-19, caused by SARS-CoV-2, has resulted in serious economic and health burdens. Current treatments remain inadequate to extinguish the epidemic, and efficient therapeutic approaches for COVID-19 are urgently being sought. Interestingly, accumulating evidence suggests that microenvironmental disorder plays an important role in the progression of COVID-19 in patients. In addition, recent advances in nanomaterial technologies provide promising opportunities for alleviating the altered homeostasis induced by a viral infection, providing new insight into COVID-19 treatment. Most literature reviews focus only on certain aspects of microenvironment alterations and fail to provide a comprehensive overview of the changes in homeostasis in COVID-19 patients. To fill this gap, this review systematically discusses alterations of homeostasis in COVID-19 patients and potential mechanisms. Next, advances in nanotechnology-based strategies for promoting homeostasis restoration are summarized. Finally, we discuss the challenges and prospects of using nanomaterials for COVID-19 management. This review provides a new strategy and insights into treating COVID-19 and other diseases associated with microenvironment disorders.
Collapse
Affiliation(s)
- Zhicheng Liu
- Department of Urology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
- Department of Urology, Urological Surgery Research Institute, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhuolei Han
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xin Jin
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jusung An
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Jaewon Kim
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Wenting Chen
- Department of Rheumatology and Clinical Immunology, Army Medical Center, Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Ji Zheng
- Department of Urology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
- Department of Urology, Urological Surgery Research Institute, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
89
|
Barnett KC, Xie Y, Asakura T, Song D, Liang K, Taft-Benz SA, Guo H, Yang S, Okuda K, Gilmore RC, Loome JF, Oguin Iii TH, Sempowski GD, Randell SH, Heise MT, Lei YL, Boucher RC, Ting JPY. An epithelial-immune circuit amplifies inflammasome and IL-6 responses to SARS-CoV-2. Cell Host Microbe 2023; 31:243-259.e6. [PMID: 36563691 PMCID: PMC9731922 DOI: 10.1016/j.chom.2022.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/12/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
Elevated levels of cytokines IL-1β and IL-6 are associated with severe COVID-19. Investigating the underlying mechanisms, we find that while primary human airway epithelia (HAE) have functional inflammasomes and support SARS-CoV-2 replication, they are not the source of IL-1β released upon infection. In leukocytes, the SARS-CoV-2 E protein upregulates inflammasome gene transcription via TLR2 to prime, but not activate, inflammasomes. SARS-CoV-2-infected HAE supply a second signal, which includes genomic and mitochondrial DNA, to stimulate leukocyte IL-1β release. Nuclease treatment, STING, and caspase-1 inhibition but not NLRP3 inhibition blocked leukocyte IL-1β release. After release, IL-1β stimulates IL-6 secretion from HAE. Therefore, infection alone does not increase IL-1β secretion by either cell type. Rather, bi-directional interactions between the SARS-CoV-2-infected epithelium and immune bystanders stimulates both IL-1β and IL-6, creating a pro-inflammatory cytokine circuit. Consistent with these observations, patient autopsy lungs show elevated myeloid inflammasome gene signatures in severe COVID-19.
Collapse
Affiliation(s)
- Katherine C Barnett
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yuying Xie
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, USA; Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| | - Takanori Asakura
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dingka Song
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kaixin Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Oral and Craniofacial Biomedicine Program, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sharon A Taft-Benz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Haitao Guo
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shuangshuang Yang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kenichi Okuda
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rodney C Gilmore
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jennifer F Loome
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | - Scott H Randell
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| | - Mark T Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yu Leo Lei
- Department of Periodontics and Oral Medicine, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48104, USA; Department of Otolaryngology-Head and Neck Surgery, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jenny P-Y Ting
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
90
|
Zheng Y, Gao C. Phase Separation: The Robust Modulator of Innate Antiviral Signaling and SARS-CoV-2 Infection. Pathogens 2023; 12:pathogens12020243. [PMID: 36839515 PMCID: PMC9962166 DOI: 10.3390/pathogens12020243] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
SARS-CoV-2 has been a pandemic threat to human health and the worldwide economy, but efficient treatments are still lacking. Type I and III interferons are essential for controlling viral infection, indicating that antiviral innate immune signaling is critical for defense against viral infection. Phase separation, one of the basic molecular processes, governs multiple cellular activities, such as cancer progression, microbial infection, and signaling transduction. Notably, recent studies suggest that phase separation regulates antiviral signaling such as the RLR and cGAS-STING pathways. Moreover, proper phase separation of viral proteins is essential for viral replication and pathogenesis. These observations indicate that phase separation is a critical checkpoint for virus and host interaction. In this study, we summarize the recent advances concerning the regulation of antiviral innate immune signaling and SARS-CoV-2 infection by phase separation. Our review highlights the emerging notion that phase separation is the robust modulator of innate antiviral signaling and viral infection.
Collapse
|
91
|
Mohammad MG, Ashmawy NS, Al-Rawi AM, Abu-Qiyas A, Hamoda AM, Hamdy R, Dakalbab S, Arikat S, Salahat D, Madkour M, Soliman SSM. SARS-CoV-2-free residual proteins mediated phenotypic and metabolic changes in peripheral blood monocytic-derived macrophages in support of viral pathogenesis. PLoS One 2023; 18:e0280592. [PMID: 36656874 PMCID: PMC9851515 DOI: 10.1371/journal.pone.0280592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
The large-scale dissemination of coronavirus disease-2019 (COVID-19) and its serious complications have pledged the scientific research communities to uncover the pathogenesis mechanisms of its etiologic agent, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Methods of unveiling such mechanisms are rooted in understanding the viral agent's interactions with the immune system, including its ability to activate macrophages, due to their suggested role in prolonged inflammatory phases and adverse immune responses. The objective of this study is to test the effect of SARS-CoV-2-free proteins on the metabolic and immune responses of macrophages. We hypothesized that SARS-CoV-2 proteins shed during the infection cycle may dynamically induce metabolic and immunologic alterations with an inflammatory impact on the infected host cells. It is imperative to delineate such alterations in the context of macrophages to gain insight into the pathogenesis of these highly infectious viruses and their associated complications and thus, expedite the vaccine and drug therapy advent in combat of viral infections. Human monocyte-derived macrophages were treated with SARS-CoV-2-free proteins at different concentrations. The phenotypic and metabolic alterations in macrophages were investigated and the subsequent metabolic pathways were analyzed. The obtained results indicated that SARS-CoV-2-free proteins induced concentration-dependent alterations in the metabolic and phenotypic profiles of macrophages. Several metabolic pathways were enriched following treatment, including vitamin K, propanoate, and the Warburg effect. These results indicate significant adverse effects driven by residual viral proteins that may hence be considered determinants of viral pathogenesis. These findings provide important insight as to the impact of SARS-CoV-2-free residual proteins on the host cells and suggest a potential new method of management during the infection and prior to vaccination.
Collapse
Affiliation(s)
- Mohammad G. Mohammad
- Department of Medical Laboratory Sciences, Collage of Health Sciences, University of Sharjah, Sharjah, UAE
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| | - Naglaa S. Ashmawy
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Ahmed M. Al-Rawi
- Department of Medical Laboratory Sciences, Collage of Health Sciences, University of Sharjah, Sharjah, UAE
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| | - Ameera Abu-Qiyas
- Department of Medical Laboratory Sciences, Collage of Health Sciences, University of Sharjah, Sharjah, UAE
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| | - Alshaimaa M. Hamoda
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
- College of Medicine, University of Sharjah, Sharjah, UAE
- Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Rania Hamdy
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
- Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Salam Dakalbab
- Department of Medical Laboratory Sciences, Collage of Health Sciences, University of Sharjah, Sharjah, UAE
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| | - Shahad Arikat
- Department of Medical Laboratory Sciences, Collage of Health Sciences, University of Sharjah, Sharjah, UAE
| | - Dana Salahat
- Department of Medical Laboratory Sciences, Collage of Health Sciences, University of Sharjah, Sharjah, UAE
| | - Mohamed Madkour
- Department of Medical Laboratory Sciences, Collage of Health Sciences, University of Sharjah, Sharjah, UAE
| | - Sameh S. M. Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
- College of Pharmacy, University of Sharjah, Sharjah, UAE
| |
Collapse
|
92
|
Hurtado-Tamayo J, Requena-Platek R, Enjuanes L, Bello-Perez M, Sola I. Contribution to pathogenesis of accessory proteins of deadly human coronaviruses. Front Cell Infect Microbiol 2023; 13:1166839. [PMID: 37197199 PMCID: PMC10183600 DOI: 10.3389/fcimb.2023.1166839] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/11/2023] [Indexed: 05/19/2023] Open
Abstract
Coronaviruses (CoVs) are enveloped and positive-stranded RNA viruses with a large genome (∼ 30kb). CoVs include essential genes, such as the replicase and four genes coding for structural proteins (S, M, N and E), and genes encoding accessory proteins, which are variable in number, sequence and function among different CoVs. Accessory proteins are non-essential for virus replication, but are frequently involved in virus-host interactions associated with virulence. The scientific literature on CoV accessory proteins includes information analyzing the effect of deleting or mutating accessory genes in the context of viral infection, which requires the engineering of CoV genomes using reverse genetics systems. However, a considerable number of publications analyze gene function by overexpressing the protein in the absence of other viral proteins. This ectopic expression provides relevant information, although does not acknowledge the complex interplay of proteins during virus infection. A critical review of the literature may be helpful to interpret apparent discrepancies in the conclusions obtained by different experimental approaches. This review summarizes the current knowledge on human CoV accessory proteins, with an emphasis on their contribution to virus-host interactions and pathogenesis. This knowledge may help the search for antiviral drugs and vaccine development, still needed for some highly pathogenic human CoVs.
Collapse
Affiliation(s)
| | | | | | | | - Isabel Sola
- *Correspondence: Melissa Bello-Perez, ; Isabel Sola,
| |
Collapse
|
93
|
Lu T, Man Q, Yu X, Xia S, Lu L, Jiang S, Xiong L. Development and validation of a prognostic model based on immune variables to early predict severe cases of SARS-CoV-2 Omicron variant infection. Front Immunol 2023; 14:1157892. [PMID: 36936976 PMCID: PMC10014461 DOI: 10.3389/fimmu.2023.1157892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/15/2023] [Indexed: 03/04/2023] Open
Abstract
Background The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant has prevailed globally since November 2021. The extremely high transmissibility and occult manifestations were notable, but the severity and mortality associated with the Omicron variant and subvariants cannot be ignored, especially for immunocompromised populations. However, no prognostic model for specially predicting the severity of the Omicron variant infection is available yet. In this study, we aim to develop and validate a prognostic model based on immune variables to early recognize potentially severe cases of Omicron variant-infected patients. Methods This was a single-center prognostic study involving patients with SARS-CoV-2 Omicron variant infection. Eligible patients were randomly divided into the training and validation cohorts. Variables were collected immediately after admission. Candidate variables were selected by three variable-selecting methods and were used to construct Cox regression as the prognostic model. Discrimination, calibration, and net benefit of the model were evaluated in both training and validation cohorts. Results Six hundred eighty-nine of the involved 2,645 patients were eligible, consisting of 630 non-ICU cases and 59 ICU cases. Six predictors were finally selected to establish the prognostic model: age, neutrophils, lymphocytes, procalcitonin, IL-2, and IL-10. For discrimination, concordance indexes in the training and validation cohorts were 0.822 (95% CI: 0.748-0.896) and 0.853 (95% CI: 0.769-0.942). For calibration, predicted probabilities and observed proportions displayed high agreements. In the 21-day decision curve analysis, the threshold probability ranges with positive net benefit were 0~1 and nearly 0~0.75 in the training and validation cohorts, correspondingly. Conclusions This model had satisfactory high discrimination, calibration, and net benefit. It can be used to early recognize potentially severe cases of Omicron variant-infected patients so that they can be treated timely and rationally to reduce the severity and mortality of Omicron variant infection.
Collapse
Affiliation(s)
- Tianyu Lu
- Key Laboratory of Medical Molecular Virology Ministry of Education (MOE)/National Health Commission of China (NHC)/Chinese Academy of Medical Sciences (CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qiuhong Man
- Department of Laboratory Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xueying Yu
- Department of Laboratory Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology Ministry of Education (MOE)/National Health Commission of China (NHC)/Chinese Academy of Medical Sciences (CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology Ministry of Education (MOE)/National Health Commission of China (NHC)/Chinese Academy of Medical Sciences (CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology Ministry of Education (MOE)/National Health Commission of China (NHC)/Chinese Academy of Medical Sciences (CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
- *Correspondence: Shibo Jiang, ; Lize Xiong,
| | - Lize Xiong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Shibo Jiang, ; Lize Xiong,
| |
Collapse
|
94
|
Li J, Lin H, Fan T, Huang L, Zhang X, Tai Y, Fang Y, Li Q, Zhao R, Wang P, Zhou L, Wan L, Wu Y, Zhong H, Wei C, Yang X. BPOZ-2 is a negative regulator of the NLPR3 inflammasome contributing to SARS-CoV-2-induced hyperinflammation. Front Cell Infect Microbiol 2023; 13:1134511. [PMID: 36936774 PMCID: PMC10019892 DOI: 10.3389/fcimb.2023.1134511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/09/2023] [Indexed: 03/05/2023] Open
Abstract
Introduction Inflammation play important roles in the initiation and progression of acute lung injury (ALI), acute respiratory distress syndrome (ARDS), septic shock, clotting dysfunction, or even death associated with SARS-CoV-2 infection. However, the pathogenic mechanisms underlying SARS-CoV-2-induced hyperinflammation are still largely unknown. Methods The animal model of septic shock and ALI was established after LPS intraperitoneal injection or intratracheal instillation. Bone marrow-derived macrophages (BMDMs) from WT and BPOZ-2 KO mouse strains were harvested from the femurs and tibias of mice. Immunohistology staining, ELISA assay, coimmunoprecipitation, and immunoblot analysis were used to detect the histopathological changes of lung tissues and the expression of inflammatory factors and protein interaction. Results and conclusions We show a distinct mechanism by which the SARS-CoV-2 N (SARS-2-N) protein targets Bood POZ-containing gene type 2 (BPOZ-2), a scaffold protein for the E3 ubiquitin ligase Cullin 3 that we identified as a negative regulator of inflammatory responses, to promote NLRP3 inflammasome activation. We first demonstrated that BPOZ-2 knockout (BPOZ-2 KO) mice were more susceptible to lipopolysaccharide (LPS)-induced septic shock and ALI and showed increased serum IL-1β levels. In addition, BMDMs isolated from BPOZ-2 KO mice showed increased IL-1β production in response to NLRP3 stimuli. Mechanistically, BPOZ-2 interacted with NLRP3 and mediated its degradation by recruiting Cullin 3. In particular, the expression of BPOZ-2 was significantly reduced in lung tissues from mice infected with SARS-CoV-2 and in cells overexpressing SARS-2-N. Importantly, proinflammatory responses triggered by the SARS-2-N were significantly blocked by BPOZ-2 reintroduction. Thus, we concluded that BPOZ-2 is a negative regulator of the NLPR3 inflammasome that likely contributes to SARS-CoV-2-induced hyperinflammation.
Collapse
Affiliation(s)
- Jingfei Li
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Haotian Lin
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Tinghui Fan
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Linfei Huang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xinyong Zhang
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yanhong Tai
- Department of Pathology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yi Fang
- Department of Endocrinology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qihong Li
- Department of Stomatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ruzhou Zhao
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Penghao Wang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Li Zhou
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Luming Wan
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yuhua Wu
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hui Zhong
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Congwen Wei
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xiaopan Yang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
- *Correspondence: Xiaopan Yang,
| |
Collapse
|
95
|
Shen S, Rui Y, Wang Y, Su J, Yu X. SARS-CoV-2, HIV, and HPV: Convergent evolution of selective regulation of cGAS-STING signaling. J Med Virol 2023; 95:e28220. [PMID: 36229923 PMCID: PMC9874546 DOI: 10.1002/jmv.28220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/21/2022] [Accepted: 10/11/2022] [Indexed: 01/27/2023]
Abstract
Recognizing aberrant cytoplasmic double-stranded DNA and stimulating innate immunity is essential for the host's defense against viruses and tumors. Cyclic GMP-AMP (cGAMP) synthase (cGAS) is a cytosolic DNA sensor that synthesizes the second messenger 2'3'-cGAMP and subsequently activates stimulator of interferon genes (STING)-mediated activation of TANK-binding kinase 1 (TBK1)/interferon regulatory factor 3 (IRF3) and the production of type I interferon (IFN-I). Both the cGAS-STING-mediated IFN-I antiviral defense and the countermeasures developed by diverse viruses have been extensively studied. However, recent studies have revealed a convergent evolutionary feature of severe acute respiratory syndrome coronavirus 2 and human immunodeficiency virus (HIV) viral proteins in terms of the selective regulation of cGAS-STING-mediated nuclear factor-κB (NF-κB) signaling without any effect on cGAS-STING-mediated TBK1/IRF3 activation and IFN production. The potential beneficial effect of this cGAS-STING-mediated, NF-κB-dependent antiviral effect, and the possible detrimental effect of IFN-I in the pathogenesis of coronavirus disease 2019 and HIV infection deserve more attention and future investigation.
Collapse
Affiliation(s)
- Si Shen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina,Cancer CenterZhejiang UniversityHangzhouZhejiangChina
| | - Yajuan Rui
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina,Cancer CenterZhejiang UniversityHangzhouZhejiangChina
| | - Yanpu Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina,Cancer CenterZhejiang UniversityHangzhouZhejiangChina
| | - Jiaming Su
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina,Cancer CenterZhejiang UniversityHangzhouZhejiangChina
| | - Xiao‐Fang Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina,Cancer CenterZhejiang UniversityHangzhouZhejiangChina
| |
Collapse
|
96
|
Rodríguez-Pulido M, Calvo-Pinilla E, Polo M, Saiz JC, Fernández-González R, Pericuesta E, Gutiérrez-Adán A, Sobrino F, Martín-Acebes MA, Sáiz M. Non-coding RNAs derived from the foot-and-mouth disease virus genome trigger broad antiviral activity against coronaviruses. Front Immunol 2023; 14:1166725. [PMID: 37063925 PMCID: PMC10090856 DOI: 10.3389/fimmu.2023.1166725] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/20/2023] [Indexed: 04/18/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of a potentially severe respiratory disease, the coronavirus disease 2019 (COVID-19), an ongoing pandemic with limited therapeutic options. Here, we assessed the anti-coronavirus activity of synthetic RNAs mimicking specific domains in the non-coding regions of the foot-and-mouth disease virus (FMDV) genome (ncRNAs). These molecules are known to exert broad-spectrum antiviral activity in cell culture, mice and pigs effectively triggering the host innate immune response. The ncRNAs showed potent antiviral activity against SARS-CoV-2 after transfection in human intestinal Caco-2 and lung epithelium Calu-3 2B4 cells. When the in vivo efficacy of the FMDV ncRNAs was assessed in K18-hACE2 mice, administration of naked ncRNA before intranasal SARS-CoV-2 infection significantly decreased the viral load and the levels of pro-inflammatory cytokines in the lungs compared with untreated infected mice. The ncRNAs were also highly efficacious when assayed against common human HCoV-229E and porcine transmissible gastroenteritis virus (TGEV) in hepatocyte-derived Huh-7 and swine testis ST cells, respectively. These results are a proof of concept of the pan-coronavirus antiviral activity of the FMDV ncRNAs including human and animal divergent coronaviruses and potentially enhance our ability to fight future emerging variants.
Collapse
Affiliation(s)
- Miguel Rodríguez-Pulido
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Eva Calvo-Pinilla
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| | - Miryam Polo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Juan-Carlos Saiz
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| | - Raúl Fernández-González
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| | - Eva Pericuesta
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| | - Alfonso Gutiérrez-Adán
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| | - Francisco Sobrino
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Miguel A. Martín-Acebes
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| | - Margarita Sáiz
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- *Correspondence: Margarita Sáiz,
| |
Collapse
|
97
|
Xu K, Wang Z, Qin M, Gao Y, Luo N, Xie W, Zou Y, Wang J, Ma X. A systematic review and meta-analysis of the effectiveness and safety of COVID-19 vaccination in older adults. Front Immunol 2023; 14:1113156. [PMID: 36936964 PMCID: PMC10020204 DOI: 10.3389/fimmu.2023.1113156] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
In the coronavirus disease 2019 (COVID-19) pandemic, vaccinations were essential in preventing COVID-19 infections and related mortality in older adults. The objectives of this study were to evaluate the effectiveness and safety of the COVID-19 vaccines in older adults. We systematically searched the electronic bibliographic databases of PubMed, Web of Science, Embase, Cochrane Library, ClinicalTrials.gov, Research Square, and OpenGrey, as well as other sources of gray literature, for studies published between January 1, 2020, and October 1, 2022. We retrieved 22 randomized controlled trials (RCTs), with a total of 3,404,696 older adults (aged over 60 years) participating, that were included in the meta-analysis. No significant publication bias was found. In the cumulative meta-analysis, we found that the COVID-19 vaccines were effective in preventing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (OR = 0.38, 95% CI = 0.23-0.65, p = 0.0004) and in reducing the number of COVID-19-related deaths (OR = 0.16, 95% CI = 0.10-0.25, p < 0.00001) in elderly people. Antibody seroconversion (AS) and geometric mean titer (GMT) levels significantly increased in vaccinated older adults [OR = 24.42, 95% CI = 19.29-30.92; standardized mean difference (SMD) = 0.92, 95% CI = 0.64-1.20, respectively]. However, local and systemic adverse events after COVID-19 vaccine administration were found in older adults (OR = 2.57, 95% CI = 1.83-3.62, p < 0.00001). Although vaccination might induce certain adverse reactions in the elderly population, the available evidence showed that the COVID-19 vaccines are effective and tolerated, as shown by the decrease in COVID-19-related deaths in older adults. It needs to be made abundantly clear to elderly people that the advantages of vaccination far outweigh any potential risks. Therefore, COVID-19 vaccination should be considered as the recommended strategy for the control of this disease by preventing SARS-CoV-2 infection and related deaths in older adults. More RCTs are needed to increase the certainty of the evidence and to verify our conclusions. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022319698, identifier CRD42022319698.
Collapse
Affiliation(s)
- Kun Xu
- School of Health Management, Xihua University, Chengdu, China
| | - Zihan Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Maorong Qin
- School of Health Management, Xihua University, Chengdu, China
| | - Yangyu Gao
- School of Health Management, Xihua University, Chengdu, China
| | - Na Luo
- School of Health Management, Xihua University, Chengdu, China
| | - Wanting Xie
- School of Health Management, Xihua University, Chengdu, China
| | - Yihan Zou
- School of Health Management, Xihua University, Chengdu, China
| | - Jie Wang
- School of Food and Biological Engineering, Xihua University, Chengdu, China
| | - Xingming Ma
- School of Health Management, Xihua University, Chengdu, China
- Health Promotion Center, Xihua University, Chengdu, China
- *Correspondence: Xingming Ma,
| |
Collapse
|
98
|
Ahmadi K, Shahbazi B, Zakeri AJ, Gouklani H. Characterization of SARS-CoV-2 omicron variants from Iran and evaluation of the effect of mutations on the spike, nucleocapsid, ORF8, and ORF9b proteins function. J Biomol Struct Dyn 2022; 41:11415-11430. [PMID: 36576175 DOI: 10.1080/07391102.2022.2162131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/18/2022] [Indexed: 12/29/2022]
Abstract
The SARS-CoV-2 'Omicron' strain, with 15 mutations in the receptor binding domain (RBD), was detected in South Africa and rapidly spread worldwide. SARS-CoV-2 ORF9b protein by binding to the TOM70 receptor and ORF8 protein by binding to MHC-I, IF3 receptors inhibit the host's immune response. In this study, genomics variations were evaluated for 96 samples isolated from Iran from March to July 2022 using the Nextclade web server and informatics tools. We identified the mutations occurring in the SARS-CoV-2 proteins. We also evaluated the effect of mutations on spike protein interaction with the ACE2 receptor, ORF9b protein interaction with the TOM70 receptor, and structural stability of ORF8 and nucleocapsid proteins using docking and molecular dynamics. Results indicated that during March and April 2022, the BA.2 strain was dominant in the south of Iran, while during June 2022, the BA.5 strain was dominant. BF.5 strain had the most divergence among SARS-CoV-2 strains reported from south of Iran. The binding affinity of BA.5 and BF.5 strains spike protein to ACE2 receptor is similar, and compared to BA.2 strain, was stronger. The BF.5 ORF9b K40R mutation causes a better binding affinity of the protein to the TOM70 receptor. Also, mutations that occurred in the ORF8 protein led to instability in the dimer formation of this protein and improved immune response for mutations that occurred in BA.2 strain, while this mutation did not occur in BF.5 strain. The mutations that were detected in nucleocapsid protein CTD and NTD domains caused the stability of these domains.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Behzad Shahbazi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Abdul-Jabbar Zakeri
- Social Determinants in Health Promotion Research Center, Research Institute for Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hamed Gouklani
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
99
|
Wang Z, Zhan J, Gao H. Computer-aided drug design combined network pharmacology to explore anti-SARS-CoV-2 or anti-inflammatory targets and mechanisms of Qingfei Paidu Decoction for COVID-19. Front Immunol 2022; 13:1015271. [PMID: 36618410 PMCID: PMC9816407 DOI: 10.3389/fimmu.2022.1015271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Coronavirus Disease-2019 (COVID-19) is an infectious disease caused by SARS-CoV-2. Severe cases of COVID-19 are characterized by an intense inflammatory process that may ultimately lead to organ failure and patient death. Qingfei Paidu Decoction (QFPD), a traditional Chines e medicine (TCM) formula, is widely used in China as anti-SARS-CoV-2 and anti-inflammatory. However, the potential targets and mechanisms for QFPD to exert anti-SARS-CoV-2 or anti-inflammatory effects remain unclear. Methods In this study, Computer-Aided Drug Design was performed to identify the antiviral or anti-inflammatory components in QFPD and their targets using Discovery Studio 2020 software. We then investigated the mechanisms associated with QFPD for treating COVID-19 with the help of multiple network pharmacology approaches. Results and discussion By overlapping the targets of QFPD and COVID-19, we discovered 8 common targets (RBP4, IL1RN, TTR, FYN, SFTPD, TP53, SRPK1, and AKT1) of 62 active components in QFPD. These may represent potential targets for QFPD to exert anti-SARS-CoV-2 or anti-inflammatory effects. The result showed that QFPD might have therapeutic effects on COVID-19 by regulating viral infection, immune and inflammation-related pathways. Our work will promote the development of new drugs for COVID-19.
Collapse
Affiliation(s)
| | | | - Hongwei Gao
- School of Life Science, Ludong University, Yantai, Shandong, China
| |
Collapse
|
100
|
Takeshita M, Fukuyama H, Kamada K, Matsumoto T, Makino-Okamura C, Uchikubo-Kamo T, Tomabechi Y, Hanada K, Moriyama S, Takahashi Y, Ishigaki H, Nakayama M, Nguyen CT, Kitagawa Y, Itoh Y, Imai M, Maemura T, Furusawa Y, Ueki H, Iwatsuki-Horimoto K, Ito M, Yamayoshi S, Kawaoka Y, Shirouzu M, Ishii M, Saya H, Kondo Y, Kaneko Y, Suzuki K, Fukunaga K, Takeuchi T. Potent SARS-CoV-2 neutralizing antibodies with therapeutic effects in two animal models. iScience 2022; 25:105596. [PMID: 36406861 PMCID: PMC9664764 DOI: 10.1016/j.isci.2022.105596] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/07/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
The use of therapeutic neutralizing antibodies against SARS-CoV-2 infection has been highly effective. However, there remain few practical antibodies against viruses that are acquiring mutations. In this study, we created 494 monoclonal antibodies from patients with COVID-19-convalescent, and identified antibodies that exhibited the comparable neutralizing ability to clinically used antibodies in the neutralization assay using pseudovirus and authentic virus including variants of concerns. These antibodies have different profiles against various mutations, which were confirmed by cell-based assay and cryo-electron microscopy. To prevent antibody-dependent enhancement, N297A modification was introduced. Our antibodies showed a reduction of lung viral RNAs by therapeutic administration in a hamster model. In addition, an antibody cocktail consisting of three antibodies was also administered therapeutically to a macaque model, which resulted in reduced viral titers of swabs and lungs and reduced lung tissue damage scores. These results showed that our antibodies have sufficient antiviral activity as therapeutic candidates.
Collapse
Affiliation(s)
- Masaru Takeshita
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hidehiro Fukuyama
- RIKEN Center for Integrative Medical Sciences, Infectious Diseases Research unit, Kanagawa 230-0045, Japan
- RIKEN Center for Integrative Medical Sciences, Laboratory for Lymphocyte Differentiation, Kanagawa 230-0045, Japan
- Cell Integrative Science Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa 230-0045, Japan
- INSERM EST, 67037 Strasbourg Cedex 2, France
- Near-InfraRed Photo-Immunotherapy Research Institute, Kansai Medical University, Hirakata, Osaka, 573-1010, Japan
| | - Katsuhiko Kamada
- RIKEN Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
- Laboratory for Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
| | | | - Chieko Makino-Okamura
- RIKEN Center for Integrative Medical Sciences, Laboratory for Lymphocyte Differentiation, Kanagawa 230-0045, Japan
| | | | - Yuri Tomabechi
- RIKEN Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
| | - Kazuharu Hanada
- RIKEN Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
| | - Saya Moriyama
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Hirohito Ishigaki
- Department of Pathology, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Misako Nakayama
- Department of Pathology, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Cong Thanh Nguyen
- Department of Pathology, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Yoshinori Kitagawa
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Yasushi Itoh
- Department of Pathology, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Masaki Imai
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Center for Global Viral Diseases, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Tadashi Maemura
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yuri Furusawa
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Center for Global Viral Diseases, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Hiroshi Ueki
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Center for Global Viral Diseases, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | | | - Mutsumi Ito
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Seiya Yamayoshi
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Center for Global Viral Diseases, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Center for Global Viral Diseases, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mikako Shirouzu
- RIKEN Center for Biosystems Dynamics Research, Kanagawa 230-0045, Japan
| | - Makoto Ishii
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 162-8640, Japan
| | - Yasushi Kondo
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yuko Kaneko
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Katsuya Suzuki
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|