51
|
Liapis E, Klemm U, Karlas A, Reber J, Ntziachristos V. Resolution of Spatial and Temporal Heterogeneity in Bevacizumab-Treated Breast Tumors by Eigenspectra Multispectral Optoacoustic Tomography. Cancer Res 2020; 80:5291-5304. [PMID: 32994204 DOI: 10.1158/0008-5472.can-20-1011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/05/2020] [Accepted: 09/24/2020] [Indexed: 11/16/2022]
Abstract
Understanding temporal and spatial hemodynamic heterogeneity as a function of tumor growth or therapy affects the development of novel therapeutic strategies. In this study, we employed eigenspectra multispectral optoacoustic tomography (eMSOT) as a next-generation optoacoustic method to impart high accuracy in resolving tumor hemodynamics during bevacizumab therapy in two types of breast cancer xenografts (KPL-4 and MDA-MB-468). Patterns of tumor total hemoglobin concentration (THb) and oxygen saturation (sO2) were imaged in control and bevacizumab-treated tumors over the course of 58 days (KPL-4) and 16 days (MDA-MB-468), and the evolution of functional vasculature "normalization" was resolved macroscopically. An initial sharp drop in tumor sO2 and THb content shortly after the initiation of bevacizumab treatment was followed by a recovery in oxygenation levels. Rim-core subregion analysis revealed steep spatial oxygenation gradients in growing tumors that were reduced after bevacizumab treatment. Critically, eMSOT imaging findings were validated directly by histopathologic assessment of hypoxia (pimonidazole) and vascularity (CD31). These data demonstrate how eMSOT brings new abilities for accurate observation of entire tumor responses to challenges at spatial and temporal dimensions not available by other techniques today. SIGNIFICANCE: Accurate assessment of hypoxia and vascularization over space and time is critical for understanding tumor development and the role of spatial heterogeneity in tumor aggressiveness, metastasis, and response to treatment.
Collapse
Affiliation(s)
- Evangelos Liapis
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Munich, Neuherberg, Germany.
| | - Uwe Klemm
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Munich, Neuherberg, Germany
| | - Angelos Karlas
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Munich, Neuherberg, Germany.,Chair of Biological Imaging, TranslaTUM Technical University of Munich, Munich, Germany
| | - Josefine Reber
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Munich, Neuherberg, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Munich, Neuherberg, Germany.,Chair of Biological Imaging, TranslaTUM Technical University of Munich, Munich, Germany
| |
Collapse
|
52
|
Yang H, Jüstel D, Prakash J, Karlas A, Helfen A, Masthoff M, Wildgruber M, Ntziachristos V. Soft ultrasound priors in optoacoustic reconstruction: Improving clinical vascular imaging. PHOTOACOUSTICS 2020; 19:100172. [PMID: 32280585 PMCID: PMC7139114 DOI: 10.1016/j.pacs.2020.100172] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 05/06/2023]
Abstract
Using the same ultrasound detector, hybrid optoacoustic-ultrasound (OPUS) imaging provides concurrent scans of tissue slices or volumes and visualizes complementary sound- and light-based contrast at similar resolutions. In addition to the benefit of hybrid contrast, spatial co-registration enables images from one modality to be employed as prior information for improving an aspect of the performance of the other modality. We consider herein a handheld OPUS system and utilize structural information from ultrasound images to guide regional Laplacian regularization-based reconstruction of optoacoustic images. Using phantoms and data from OPUS scans of human radial and carotid arteries, we show that ultrasound-driven optoacoustic inversion reduces limited-view artefacts and improves image contrast. In phantoms, prior-integrated reconstruction leads to a 50 % higher contrast-to-noise ratio (CNR) of the image than standard reconstruction, and a 17 % higher structural similarity (SSIM) index. In clinical data, prior-integrated reconstruction detects deep-seated radial arteries with higher CNR than the standard method at three different depths. In this way, the prior-integrated method offers unique insights into atherosclerotic carotid plaques in humans (with p<0.01 between patients and healthy volunteers), potentially paving the way for new abilities in vascular imaging and more generally in optoacoustic imaging.
Collapse
Affiliation(s)
- Hong Yang
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Chair of Biological Imaging and TranslaTUM, Technical University of Munich, Ismaninger Str. 22, 81675, München, Germany
| | - Dominik Jüstel
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Chair of Biological Imaging and TranslaTUM, Technical University of Munich, Ismaninger Str. 22, 81675, München, Germany
| | - Jaya Prakash
- Dept. of Instrumentation and Applied Physics, Indian Institute of Science, C. V. Raman Road, 560012, Bangalore, India
| | - Angelos Karlas
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Chair of Biological Imaging and TranslaTUM, Technical University of Munich, Ismaninger Str. 22, 81675, München, Germany
- Clinic for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Ismaninger Str. 22, D-81675, München, Germany
| | - Anne Helfen
- Department of Clinical Radiology, University Hospital Muenster, Albert-Schweitzer-Campus 1, A16, 49149, Muenster, Germany
| | - Max Masthoff
- Department of Clinical Radiology, University Hospital Muenster, Albert-Schweitzer-Campus 1, A16, 49149, Muenster, Germany
| | - Moritz Wildgruber
- Department of Clinical Radiology, University Hospital Muenster, Albert-Schweitzer-Campus 1, A16, 49149, Muenster, Germany
- Klinik und Poliklinik für Radiologie, Klinikum der Universität München, Munich, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Chair of Biological Imaging and TranslaTUM, Technical University of Munich, Ismaninger Str. 22, 81675, München, Germany
- Corresponding author at: Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany.
| |
Collapse
|
53
|
Mahmoodkalayeh S, Zarei M, Ansari MA, Kratkiewicz K, Ranjbaran M, Manwar R, Avanaki K. Improving vascular imaging with co-planar mutually guided photoacoustic and diffuse optical tomography: a simulation study. BIOMEDICAL OPTICS EXPRESS 2020; 11:4333-4347. [PMID: 32923047 PMCID: PMC7449743 DOI: 10.1364/boe.385017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 05/04/2023]
Abstract
Diffuse optical tomography (DOT) and photoacoustic tomography (PAT) are functional imaging modalities that provide absorption coefficient maps of the tissue. Spatial resolution of DOT is relatively low due to light scattering characteristics of the tissue. On the other hand, although PAT can resolve regions of different absorptions with a high spatial resolution, measuring the absolute value of optical absorptions using PAT is challenging due to unknown light fluence distribution in the tissue. Development of image guidance techniques using a priori information of imaging target structure has been shown to increase the accuracy of DOT. PAT is one such method that can be used as a complementary modality to serve as a guide for DOT image reconstruction. On the other hand, estimated fluence map provided by DOT can be used to quantitatively correct PAT images. In this study we introduce a mutually-guided imaging system for fast and simultaneous optical and photoacoustic measurements of tissue absorption map, where DOT is guided by the PAT image and vice versa. Using the obtained absorption map of the tissue, we then estimate the tissue scattering map. We conducted this study using a series of simulations on digital phantoms and demonstrated the effectiveness of the proposed method.
Collapse
Affiliation(s)
| | - Mehrdad Zarei
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 19839 69411, Iran
| | - Mohammad Ali Ansari
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 19839 69411, Iran
| | - Karl Kratkiewicz
- Wayne State University, Bioengineering Department, Detroit, Michigan 48201, USA
| | - Mohsen Ranjbaran
- Department of Physics, University of Isfahan, Isfahan 81746-73441, Iran
| | - Rayyan Manwar
- Wayne State University, Bioengineering Department, Detroit, Michigan 48201, USA
| | - Kamran Avanaki
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
- Department of Dermatology, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
54
|
Yang J, Zhang G, Shang Q, Wu M, Huang L, Jiang H. Detecting hemodynamic changes in the foot vessels of diabetic patients by photoacoustic tomography. JOURNAL OF BIOPHOTONICS 2020; 13:e202000011. [PMID: 32362070 DOI: 10.1002/jbio.202000011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/04/2020] [Accepted: 04/27/2020] [Indexed: 05/21/2023]
Abstract
Limb perfusion monitoring is critical for diabetes mellitus (DM) patients as they are vulnerable to vascular complications due to prolonged hyperglycemia. However, current clinical approaches are ineffective in vascular imaging and in assessing vascular function in lower limbs. In this work, a concave ultrasound transducer array-based photoacoustic tomography (PAT) system was used to image the foot dorsal section of a subject, and a total of seven DM patients and seven healthy volunteers were enrolled in this study. Hemodynamic changes in foot vessels during vascular occlusion as well as oxygen saturation (SO2 ) in rest were analyzed for both groups. The results obtained showed that DM patients have a unique peripheral hemodynamic response to occlusion and a lower level SO2 , compared to that for healthy subjects. This suggests that PAT has the potential to detect vascular dysfunction in DM patients and to measure the effect of treatment.
Collapse
Affiliation(s)
- Jinge Yang
- School of Optoelectric Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Guang Zhang
- School of Electronic Science and Engineering (National Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu, China
- Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiquan Shang
- School of Electronic Science and Engineering (National Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu, China
- Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Man Wu
- School of Electronic Science and Engineering (National Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu, China
- Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Huang
- School of Electronic Science and Engineering (National Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu, China
- Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huabei Jiang
- Department of Medical Engineering, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
55
|
Manwar R, Kratkiewicz K, Avanaki K. Overview of Ultrasound Detection Technologies for Photoacoustic Imaging. MICROMACHINES 2020; 11:E692. [PMID: 32708869 PMCID: PMC7407969 DOI: 10.3390/mi11070692] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022]
Abstract
Ultrasound detection is one of the major components of photoacoustic imaging systems. Advancement in ultrasound transducer technology has a significant impact on the translation of photoacoustic imaging to the clinic. Here, we present an overview on various ultrasound transducer technologies including conventional piezoelectric and micromachined transducers, as well as optical ultrasound detection technology. We explain the core components of each technology, their working principle, and describe their manufacturing process. We then quantitatively compare their performance when they are used in the receive mode of a photoacoustic imaging system.
Collapse
Affiliation(s)
- Rayyan Manwar
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA;
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA;
| | - Karl Kratkiewicz
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA;
| | - Kamran Avanaki
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA;
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA;
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
56
|
Mishra K, Stankevych M, Fuenzalida-Werner JP, Grassmann S, Gujrati V, Huang Y, Klemm U, Buchholz VR, Ntziachristos V, Stiel AC. Multiplexed whole-animal imaging with reversibly switchable optoacoustic proteins. SCIENCE ADVANCES 2020; 6:eaaz6293. [PMID: 32582850 PMCID: PMC7292636 DOI: 10.1126/sciadv.aaz6293] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 05/01/2020] [Indexed: 05/04/2023]
Abstract
We introduce two photochromic proteins for cell-specific in vivo optoacoustic (OA) imaging with signal unmixing in the temporal domain. We show highly sensitive, multiplexed visualization of T lymphocytes, bacteria, and tumors in the mouse body and brain. We developed machine learning-based software for commercial imaging systems for temporal unmixed OA imaging, enabling its routine use in life sciences.
Collapse
Affiliation(s)
- Kanuj Mishra
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany
| | - Mariia Stankevych
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Simon Grassmann
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Vipul Gujrati
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging and Center for Translational Cancer Research (TranslaTUM), Technische Universität München (TUM), Munich, Germany
| | - Yuanhui Huang
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging and Center for Translational Cancer Research (TranslaTUM), Technische Universität München (TUM), Munich, Germany
| | - Uwe Klemm
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany
| | - Veit R. Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging and Center for Translational Cancer Research (TranslaTUM), Technische Universität München (TUM), Munich, Germany
| | - Andre C. Stiel
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany
- Corresponding author.
| |
Collapse
|
57
|
Karlas A, Kallmayer M, Fasoula NA, Liapis E, Bariotakis M, Krönke M, Anastasopoulou M, Reber J, Eckstein HH, Ntziachristos V. Multispectral optoacoustic tomography of muscle perfusion and oxygenation under arterial and venous occlusion: A human pilot study. JOURNAL OF BIOPHOTONICS 2020; 13:e201960169. [PMID: 32134550 DOI: 10.1002/jbio.201960169] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/26/2020] [Accepted: 02/11/2020] [Indexed: 05/21/2023]
Abstract
Perfusion and oxygenation are critical parameters of muscle metabolism in health and disease. They have been both the target of many studies, in particular using near-infrared spectroscopy (NIRS). However, difficulties with quantifying NIRS signals have limited a wide dissemination of the method to the clinics. Our aim was to investigate whether clinical multispectral optoacoustic tomography (MSOT) could enable the label-free imaging of muscle perfusion and oxygenation under clinically relevant challenges: the arterial and venous occlusion. We employed a hybrid clinical MSOT/ultrasound system equipped with a hand-held scanning probe to visualize hemodynamic and oxygenation changes in skeletal muscle under arterial and venous occlusions. Four (N = 4) healthy volunteers were scanned over the forearm for both 3-minute occlusion challenges. MSOT-recorded pathophysiologically expected results during tests of disturbed blood flow with high resolution and without the need for contrast agents. During arterial occlusion, MSOT-extracted Hb-values showed an increase, while HbO2 - and total blood volume (TBV)-values remained roughly steady, followed by a discrete increase during the hyperemic period after cuff deflation. During venous occlusion, results showed a clear increase in intramuscular HbO2 , Hb and TBV within the segmented muscle area. MSOT was found to be capable of label-free non-invasive imaging of muscle hemodynamics and oxygenation under arterial and venous occlusion. We introduce herein MSOT as a novel modality for the assessment of vascular disorders characterized by disturbed blood flow, such as acute limb ischemia and venous thrombosis.
Collapse
Affiliation(s)
- Angelos Karlas
- Chair for Biological Imaging, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Helmholtz Zentrum München, Institute of Biological and Medical Imaging, Neuherberg, Germany
- Clinic of Vascular and Endovascular Surgery, Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Michael Kallmayer
- Clinic of Vascular and Endovascular Surgery, Technical University of Munich, Munich, Germany
| | - Nikolina-Alexia Fasoula
- Chair for Biological Imaging, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Helmholtz Zentrum München, Institute of Biological and Medical Imaging, Neuherberg, Germany
| | - Evangelos Liapis
- Chair for Biological Imaging, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Helmholtz Zentrum München, Institute of Biological and Medical Imaging, Neuherberg, Germany
| | - Michail Bariotakis
- Chair for Biological Imaging, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Helmholtz Zentrum München, Institute of Biological and Medical Imaging, Neuherberg, Germany
| | - Markus Krönke
- Clinic of Nuclear Medicine, Technical University of Munich, Klinikum Rechts der Isar, Germany
| | - Maria Anastasopoulou
- Chair for Biological Imaging, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Helmholtz Zentrum München, Institute of Biological and Medical Imaging, Neuherberg, Germany
| | - Josefine Reber
- Chair for Biological Imaging, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Helmholtz Zentrum München, Institute of Biological and Medical Imaging, Neuherberg, Germany
| | - Hans-Henning Eckstein
- Clinic of Vascular and Endovascular Surgery, Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Vasilis Ntziachristos
- Chair for Biological Imaging, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Helmholtz Zentrum München, Institute of Biological and Medical Imaging, Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
58
|
Ron A, Deán-Ben XL, Reber J, Ntziachristos V, Razansky D. Characterization of Brown Adipose Tissue in a Diabetic Mouse Model with Spiral Volumetric Optoacoustic Tomography. Mol Imaging Biol 2020; 21:620-625. [PMID: 30387020 DOI: 10.1007/s11307-018-1291-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE Diabetes is associated with a deterioration of the microvasculature in brown adipose tissue (BAT) and with a decrease in its metabolic activity. Multispectral optoacoustic tomography has been recently proposed as a new tool capable of differentiating healthy and diabetic BAT by observing hemoglobin gradients and microvasculature density in cross-sectional (2D) views. We report on the use of spiral volumetric optoacoustic tomography (SVOT) for an improved characterization of BAT. PROCEDURES A streptozotocin-induced diabetes model and control mice were scanned with SVOT. Volumetric oxygen saturation (sO2) as well as total blood volume (TBV) in the subcutaneous interscapular BAT (iBAT) was quantified. Segmentation further enabled separating feeding and draining vessels from the BAT anatomical structure. RESULTS Scanning revealed a 46 % decrease in TBV and a 25 % decrease in sO2 in the diabetic iBAT with respect to the healthy control. CONCLUSIONS These results suggest that SVOT may serve as an effective tool for studying the effects of diabetes on BAT. The volumetric optoacoustic imaging probe used for the SVOT scans can be operated in a handheld mode, thus potentially providing a clinical translation route for BAT-related studies with this imaging technology.
Collapse
Affiliation(s)
- Avihai Ron
- Institute for Biological and Medical Imaging, Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Xosé Luís Deán-Ben
- Institute for Biological and Medical Imaging, Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Josephine Reber
- Institute for Biological and Medical Imaging, Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging, Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Daniel Razansky
- Institute for Biological and Medical Imaging, Technical University of Munich and Helmholtz Center Munich, Munich, Germany.
| |
Collapse
|
59
|
Schnabl K, Li Y, Klingenspor M. The gut hormone secretin triggers a gut-brown fat-brain axis in the control of food intake. Exp Physiol 2020; 105:1206-1213. [PMID: 32271980 DOI: 10.1113/ep087878] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/06/2020] [Indexed: 12/25/2022]
Abstract
NEW FINDINGS What is the topic of this review? Brown fat's role in meal-associated thermogenesis and the related consequences for energy balance regulation with a focus on the gut hormone secretin, which has been identified as the endocrine molecular mediator of meal-associated brown fat thermogenesis. What advances does it highlight? The finding of the secretin-induced gut-brown fat-brain axis creates new opportunities to manipulate brown fat and thereby energy balance in a natural way while living in a thermoneutral environment. The role of brown fat as a mere catabolic heater organ needs to be revised and more attention should be directed towards the regulatory role of brown fat beyond energy expenditure. ABSTRACT Brown fat research concentrates on the energy expenditure function of this heating organ, whereas previous evidence for a role of brown fat in regulating energy intake has been mostly neglected. Ingestion of a single mixed meal activates human brown fat thermogenesis to the same degree as cold. In mice, activation of brown fat thermogenesis with a β3 -adrenergic receptor agonist inhibits food intake. Pharmacological β-blockade, however, inhibits neither meal-associated thermogenesis nor food intake. We recently identified the gut hormone secretin as a non-adrenergic activator of brown fat. In vivo, secretin treatment acutely increases energy expenditure and inhibits food intake in wild-type, but not in uncoupling protein 1 (UCP1)-knockout (KO) mice, which lack thermogenic brown fat function. Concurrently, secretin alters gene expression of melanocortinergic peptides of hypothalamic neurons in wild-type mice, but not UCP1-KO. Blocking endogenous secretin with a neutralizing antibody attenuates brown fat thermogenesis during refeeding, increases food intake of mice, and alters ad libitum feeding behaviour. Taken together, these findings demonstrate that secretin triggers an endocrine gut-brown adipose tissue-brain axis in the control of satiation. We hypothesize that meal-associated activation of brown adipose tissue thermogenesis induced by secretin results in a rise in brain temperature and increased melanocortinergic signalling. Taken together, brown fat is not a mere heating organ dissipating excess calories but also involved in gut-brain communication in the control of food intake.
Collapse
Affiliation(s)
- Katharina Schnabl
- TUM School of Life Sciences, Technical University of Munich, Freising, Germany.,EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany.,ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Yongguo Li
- TUM School of Life Sciences, Technical University of Munich, Freising, Germany.,EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
| | - Martin Klingenspor
- TUM School of Life Sciences, Technical University of Munich, Freising, Germany.,EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany.,ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| |
Collapse
|
60
|
Pouli D, Thieu HT, Genega EM, Baecher-Lind L, House M, Bond B, Roncari DM, Evans ML, Rius-Diaz F, Munger K, Georgakoudi I. Label-free, High-Resolution Optical Metabolic Imaging of Human Cervical Precancers Reveals Potential for Intraepithelial Neoplasia Diagnosis. CELL REPORTS MEDICINE 2020; 1. [PMID: 32577625 PMCID: PMC7311071 DOI: 10.1016/j.xcrm.2020.100017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
While metabolic changes are considered a cancer hallmark, their assessment has not been incorporated in the detection of early or precancers, when treatment is most effective. Here, we demonstrate that metabolic changes are detected in freshly excised human cervical precancerous tissues using label-free, non-destructive imaging of the entire epithelium. The images rely on two-photon excited fluorescence from two metabolic co-enzymes, NAD(P)H and FAD, and have micron-level resolution, enabling sensitive assessments of the redox ratio and mitochondrial fragmentation, which yield metrics of metabolic function and heterogeneity. Simultaneous characterization of morphological features, such as the depth-dependent variation of the nuclear:cytoplasmic ratio, is demonstrated. Multi-parametric analysis combining several metabolic metrics with morphological ones enhances significantly the diagnostic accuracy of identifying high-grade squamous intraepithelial lesions. Our results motivate the translation of such functional metabolic imaging to in vivo studies, which may enable improved identification of cervical lesions, and other precancers, at the bedside.
Collapse
Affiliation(s)
- Dimitra Pouli
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.,Present address: Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Hong-Thao Thieu
- Department of Obstetrics and Gynecology, Tufts University School of Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| | - Elizabeth M Genega
- Department of Pathology and Laboratory Medicine, Tufts University School of Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| | - Laura Baecher-Lind
- Department of Obstetrics and Gynecology, Tufts University School of Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| | - Michael House
- Department of Obstetrics and Gynecology, Tufts University School of Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| | - Brian Bond
- Department of Obstetrics and Gynecology, Tufts University School of Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA.,Present address: Department of Obstetrics and Gynecology, University of Massachusetts School of Medicine, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Danielle M Roncari
- Department of Obstetrics and Gynecology, Tufts University School of Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| | - Megan L Evans
- Department of Obstetrics and Gynecology, Tufts University School of Medicine, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| | - Francisca Rius-Diaz
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of Málaga, 32 Louis Pasteur Boulevard, 29071 Málaga, Spain
| | - Karl Munger
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.,Lead Contact
| |
Collapse
|
61
|
Photoacoustic Imaging Probes Based on Tetrapyrroles and Related Compounds. Int J Mol Sci 2020; 21:ijms21093082. [PMID: 32349297 PMCID: PMC7247687 DOI: 10.3390/ijms21093082] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022] Open
Abstract
Photoacoustic imaging (PAI) is a rapidly evolving field in molecular imaging that enables imaging in the depths of ultrasound and with the sensitivity of optical modalities. PAI bases on the photoexcitation of a chromophore, which converts the absorbed light into thermal energy, causing an acoustic pressure wave that can be captured with ultrasound transducers, in generating an image. For in vivo imaging, chromophores strongly absorbing in the near-infrared range (NIR; > 680 nm) are required. As tetrapyrroles have a long history in biomedical applications, novel tetrapyrroles and inspired mimics have been pursued as potentially suitable contrast agents for PAI. The goal of this review is to summarize the current state of the art in PAI applications using tetrapyrroles and related macrocycles inspired by it, highlighting those compounds exhibiting strong NIR-absorption. Furthermore, we discuss the current developments of other absorbers for in vivo photoacoustic (PA) applications.
Collapse
|
62
|
Li W, Ma J, Jiang Q, Zhang T, Qi Q, Cheng Y. Fast Noninvasive Measurement of Brown Adipose Tissue in Living Mice by Near-Infrared Fluorescence and Photoacoustic Imaging. Anal Chem 2020; 92:3787-3794. [PMID: 32066237 DOI: 10.1021/acs.analchem.9b05162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aberrant brown adipose tissue (BAT) metabolism is linked to obesity as well as other metabolic disorders. However, the paucity of imaging tools limits the study of in vivo BAT metabolism in animal models. The current work evaluated a heptamethine dye (CyHF-8) in living mice as a dual-modality BAT-avid molecular probe for two imaging approaches, including near-infrared fluorescence imaging (NIRF) and photoacoustic imaging (PAI). CyHF-8 exhibited favorable spectral properties in the near-infrared window (786/787/805 nm) and accumulated in the subcellular mitochondria of brown adipocytes. After intravenous injection of CyHF-8, NIRF and PAI were both capable of noninvasively detecting interscapular BAT at early time points in living mice. Quantitative analysis of NIRF and PAI images showed that CyHF-8 signals respond to dynamic BAT changes in mice stimulated by norepinephrine (NE) and in diabetic mice induced by streptozotocin (STZ). In summary, dual-modality NIRF/PAI probe CyHF-8 can be used for both NIRF and PAI to noninvasively assess BAT metabolism in living animals.
Collapse
Affiliation(s)
- Wanyun Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jing Ma
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qian Jiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ting Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qingrong Qi
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yan Cheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
63
|
He S, Wei X, Qin Z, Chen C, Wu Z, Qu JY. In vivo study of metabolic dynamics and heterogeneity in brown and beige fat by label-free multiphoton redox and fluorescence lifetime microscopy. JOURNAL OF BIOPHOTONICS 2020; 13:e201960057. [PMID: 31626372 DOI: 10.1002/jbio.201960057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/07/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
In this work, the metabolic characteristics of adipose tissues in live mouse model were investigated using a multiphoton redox ratio and fluorescence lifetime imaging technology. By analyzing the intrinsic fluorescence of metabolic coenzymes, we measured the optical redox ratios of adipocytes in vivo and studied their responses to thermogenesis. The fluorescence lifetime imaging further revealed changes in protein bindings of metabolic coenzymes in the adipocytes during thermogenesis. Our study uncovered significant heterogeneity in the cellular structures and metabolic characteristics of thermogenic adipocytes in brown and beige fat. Subgroups of brown and beige adipocytes were identified based on the distinct lipid size distributions, redox ratios, fluorescence lifetimes and thermogenic capacities. The results of our study show that this label-free imaging technique can shed new light on in vivo study of metabolic dynamics and heterogeneity of adipose tissues in live organisms.
Collapse
Affiliation(s)
- Sicong He
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China
- State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China
- Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China
| | - Xiuqing Wei
- State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China
- Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China
- Division of Life Science, Center for Stem Cell Research, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China
| | - Zhongya Qin
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China
- State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China
- Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China
| | - Congping Chen
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China
- State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China
- Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China
| | - Zhenguo Wu
- State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China
- Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China
- Division of Life Science, Center for Stem Cell Research, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China
| | - Jianan Y Qu
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China
- State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China
- Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Kowloon, Hong Kong, People's Republic of China
| |
Collapse
|
64
|
Wu M, Junker D, Branca RT, Karampinos DC. Magnetic Resonance Imaging Techniques for Brown Adipose Tissue Detection. Front Endocrinol (Lausanne) 2020; 11:421. [PMID: 32849257 PMCID: PMC7426399 DOI: 10.3389/fendo.2020.00421] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) methods can non-invasively assess brown adipose tissue (BAT) structure and function. Recently, MRI and MRS have been proposed as a means to differentiate BAT from white adipose tissue (WAT) and to extract morphological and functional information on BAT inaccessible by other means. Specifically, proton MR (1H) techniques, such as proton density fat fraction mapping, diffusion imaging, and intermolecular multiple quantum coherence imaging, have been employed to access BAT microstructure; MR thermometry, relaxometry, and MRI and MRS with 31P, 2H, 13C, and 129Xe have shown to provide complementary information on BAT function. The purpose of the present review is to provide a comprehensive overview of MR imaging and spectroscopy techniques used to detect BAT in rodents and in humans. The present work discusses common challenges of current methods and provides an outlook on possible future directions of using MRI and MRS in BAT studies.
Collapse
Affiliation(s)
- Mingming Wu
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
- *Correspondence: Mingming Wu
| | - Daniela Junker
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Rosa Tamara Branca
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Dimitrios C. Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
65
|
Fernández-Galilea M, Félix-Soriano E, Colón-Mesa I, Escoté X, Moreno-Aliaga MJ. Omega-3 fatty acids as regulators of brown/beige adipose tissue: from mechanisms to therapeutic potential. J Physiol Biochem 2019; 76:251-267. [PMID: 31853728 DOI: 10.1007/s13105-019-00720-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022]
Abstract
Adipose tissue dysfunction represents the hallmark of obesity. Brown/beige adipose tissues play a crucial role in maintaining energy homeostasis through non-shivering thermogenesis. Brown adipose tissue (BAT) activity has been inversely related to body fatness, suggesting that BAT activation is protective against obesity. BAT plays also a key role in the control of triglyceride clearance, glucose homeostasis, and insulin sensitivity. Therefore, BAT/beige activation has been proposed as a strategy to prevent or ameliorate obesity development and associated commorbidities. In the last few years, a variety of preclinical studies have proposed n-3 polyunsaturated fatty acids (n-3 PUFAs) as novel inducers of BAT activity and white adipose tissue browning. Here, we review the in vitro and in vivo available evidences of the thermogenic properties of n-3 PUFAs, especially focusing on the molecular and cellular physiological mechanisms involved. Finally, we also discuss the challenges and future perspectives to better characterize the therapeutic potential of n-3 PUFAs as browning agents, especially in humans.
Collapse
Affiliation(s)
- Marta Fernández-Galilea
- University of Navarra, Centre for Nutrition Research and Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Pamplona, Spain.,IDISNA, Navarra's Health Research Institute, Pamplona, Spain
| | - Elisa Félix-Soriano
- University of Navarra, Centre for Nutrition Research and Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Pamplona, Spain
| | - Ignacio Colón-Mesa
- University of Navarra, Centre for Nutrition Research and Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Pamplona, Spain
| | - Xavier Escoté
- University of Navarra, Centre for Nutrition Research and Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Pamplona, Spain.,Unitat de Nutrició i Salut, Centre Tecnològic de Catalunya, Eurecat, Reus, Spain
| | - Maria J Moreno-Aliaga
- University of Navarra, Centre for Nutrition Research and Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Pamplona, Spain. .,IDISNA, Navarra's Health Research Institute, Pamplona, Spain. .,CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain.
| |
Collapse
|
66
|
Attia ABE, Balasundaram G, Moothanchery M, Dinish U, Bi R, Ntziachristos V, Olivo M. A review of clinical photoacoustic imaging: Current and future trends. PHOTOACOUSTICS 2019; 16:100144. [PMID: 31871888 PMCID: PMC6911900 DOI: 10.1016/j.pacs.2019.100144] [Citation(s) in RCA: 394] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/05/2019] [Accepted: 08/21/2019] [Indexed: 05/02/2023]
Abstract
Photoacoustic imaging (or optoacoustic imaging) is an upcoming biomedical imaging modality availing the benefits of optical resolution and acoustic depth of penetration. With its capacity to offer structural, functional, molecular and kinetic information making use of either endogenous contrast agents like hemoglobin, lipid, melanin and water or a variety of exogenous contrast agents or both, PAI has demonstrated promising potential in a wide range of preclinical and clinical applications. This review provides an overview of the rapidly expanding clinical applications of photoacoustic imaging including breast imaging, dermatologic imaging, vascular imaging, carotid artery imaging, musculoskeletal imaging, gastrointestinal imaging and adipose tissue imaging and the future directives utilizing different configurations of photoacoustic imaging. Particular emphasis is placed on investigations performed on human or human specimens.
Collapse
Key Words
- AR-PAM, acoustic resolution-photoacoustic microscopy
- Clinical applications
- DAQ, data acquisition
- FOV, field-of-view
- Hb, deoxy-hemoglobin
- HbO2, oxy-hemoglobin
- LED, light emitting diode
- MAP, maximum amplitude projection
- MEMS, microelectromechanical systems
- MRI, magnetic resonance imaging
- MSOT, multispectral optoacoustic tomography
- OCT, optical coherence tomography
- OR-PAM, optical resolution-photoacoustic microscopy
- Optoacoustic mesoscopy
- Optoacoustic tomography
- PA, photoacoustic
- PAI, photoacoustic imaging
- PAM, photoacoustic microscopy
- PAT, photoacoustic tomography
- Photoacoustic imaging
- Photoacoustic microscopy
- RSOM, raster-scanning optoacoustic mesoscopy
- SBH-PACT, single breath hold photoacoustic computed tomography system
- US, ultrasound
- sO2, saturation
Collapse
Affiliation(s)
| | | | - Mohesh Moothanchery
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, A*STAR, Singapore
| | - U.S. Dinish
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, A*STAR, Singapore
| | - Renzhe Bi
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, A*STAR, Singapore
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging, Technische Universität München and Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Malini Olivo
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, A*STAR, Singapore
| |
Collapse
|
67
|
Hochuli R, An L, Beard PC, Cox BT. Estimating blood oxygenation from photoacoustic images: can a simple linear spectroscopic inversion ever work? JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-13. [PMID: 31849203 PMCID: PMC7005536 DOI: 10.1117/1.jbo.24.12.121914] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/21/2019] [Indexed: 05/07/2023]
Abstract
Linear spectroscopic inversions, in which photoacoustic amplitudes are assumed to be directly proportional to absorption coefficients, are widely used in photoacoustic imaging to estimate blood oxygen saturation because of their simplicity. Unfortunately, they do not account for the spatially varying wavelength-dependence of the light fluence within the tissue, which introduces "spectral coloring," a potentially significant source of error. However, accurately correcting for spectral coloring is challenging, so we investigated whether there are conditions, e.g., sets of wavelengths, where it is possible to ignore the spectral coloring and still obtain accurate oxygenation measurements using linear inversions. Accurate estimates of oxygenation can be obtained when the wavelengths are chosen to (i) minimize spectral coloring, (ii) avoid ill-conditioning, and (iii) maintain a sufficiently high signal-to-noise ratio (SNR) for the estimates to be meaningful. It is not obvious which wavelengths will satisfy these conditions, and they are very likely to vary for different imaging scenarios, making it difficult to find general rules. Through the use of numerical simulations, we isolated the effect of spectral coloring from sources of experimental error. It was shown that using wavelengths between 500 nm and 1000 nm yields inaccurate estimates of oxygenation and that careful selection of wavelengths in the 620- to 920-nm range can yield more accurate oxygenation values. However, this is only achievable with a good prior estimate of the true oxygenation. Even in this idealized case, it was shown that considerable care must be exercised over the choice of wavelengths when using linear spectroscopic inversions to obtain accurate estimates of blood oxygenation. This suggests that for a particular imaging scenario, obtaining accurate and reliable oxygenation estimates using linear spectroscopic inversions requires careful modeling or experimental studies of that scenario, taking account of the instrumentation, tissue anatomy, likely sO2 range, and image formation process.
Collapse
Affiliation(s)
- Roman Hochuli
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Lu An
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Paul C. Beard
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Benjamin T. Cox
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
- Address all correspondence to Benjamin T. Cox, E-mail:
| |
Collapse
|
68
|
Oreskovich SM, Ong FJ, Ahmed BA, Konyer NB, Blondin DP, Gunn E, Singh NP, Noseworthy MD, Haman F, Carpentier AC, Punthakee Z, Steinberg GR, Morrison KM. MRI Reveals Human Brown Adipose Tissue Is Rapidly Activated in Response to Cold. J Endocr Soc 2019; 3:2374-2384. [PMID: 31745532 PMCID: PMC6855213 DOI: 10.1210/js.2019-00309] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/08/2019] [Indexed: 01/05/2023] Open
Abstract
CONTEXT In rodents, cold exposure induces the activation of brown adipose tissue (BAT) and the induction of intracellular triacylglycerol (TAG) lipolysis. However, in humans, the kinetics of supraclavicular (SCV) BAT activation and the potential importance of TAG stores remain poorly defined. OBJECTIVE To determine the time course of BAT activation and changes in intracellular TAG using MRI assessment of the SCV (i.e., BAT depot) and fat in the posterior neck region (i.e., non-BAT). DESIGN Cross-sectional. SETTING Clinical research center. PATIENTS OR OTHER PARTICIPANTS Twelve healthy male volunteers aged 18 to 29 years [body mass index = 24.7 ± 2.8 kg/m2 and body fat percentage = 25.0% ± 7.4% (both, mean ± SD)]. INTERVENTIONS Standardized whole-body cold exposure (180 minutes at 18°C) and immediate rewarming (30 minutes at 32°C). MAIN OUTCOME MEASURES Proton density fat fraction (PDFF) and T2* of the SCV and posterior neck fat pads. Acquisitions occurred at 5- to 15-minute intervals during cooling and subsequent warming. RESULTS SCV PDFF declined significantly after only 10 minutes of cold exposure [-1.6% (SE: 0.44%; P = 0.007)] and continued to decline until 35 minutes, after which time it remained stable until 180 minutes. A similar time course was also observed for SCV T2*. In the posterior neck fat (non-BAT), there were no cold-induced changes in PDFF or T2*. Rewarming did not result in a change in SCV PDFF or T2*. CONCLUSIONS The rapid cold-induced decline in SCV PDFF suggests that in humans BAT is activated quickly in response to cold and that TAG is a primary substrate.
Collapse
Affiliation(s)
- Stephan M Oreskovich
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Frank J Ong
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Basma A Ahmed
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Norman B Konyer
- Imaging Research Centre, St. Joseph’s Healthcare, Hamilton, Ontario, Canada
| | - Denis P Blondin
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Elizabeth Gunn
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Nina P Singh
- Department of Radiology, McMaster University Medical Center, Hamilton, Ontario, Canada
| | - Michael D Noseworthy
- Imaging Research Centre, St. Joseph’s Healthcare, Hamilton, Ontario, Canada
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, Canada
- McMaster School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Francois Haman
- School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Andre C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Zubin Punthakee
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Katherine M Morrison
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
69
|
Weidenfeld I, Zakian C, Duewell P, Chmyrov A, Klemm U, Aguirre J, Ntziachristos V, Stiel AC. Homogentisic acid-derived pigment as a biocompatible label for optoacoustic imaging of macrophages. Nat Commun 2019; 10:5056. [PMID: 31699983 PMCID: PMC6838096 DOI: 10.1038/s41467-019-13041-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 10/15/2019] [Indexed: 02/06/2023] Open
Abstract
Macrophages are one of the most functionally-diverse cell types with roles in innate immunity, homeostasis and disease making them attractive targets for diagnostics and therapy. Photo- or optoacoustics could provide non-invasive, deep tissue imaging with high resolution and allow to visualize the spatiotemporal distribution of macrophages in vivo. However, present macrophage labels focus on synthetic nanomaterials, frequently limiting their ability to combine both host cell viability and functionality with strong signal generation. Here, we present a homogentisic acid-derived pigment (HDP) for biocompatible intracellular labeling of macrophages with strong optoacoustic contrast efficient enough to resolve single cells against a strong blood background. We study pigment formation during macrophage differentiation and activation, and utilize this labeling method to track migration of pro-inflammatory macrophages in vivo with whole-body imaging. We expand the sparse palette of macrophage labels for in vivo optoacoustic imaging and facilitate research on macrophage functionality and behavior.
Collapse
Affiliation(s)
- Ina Weidenfeld
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany
| | - Christian Zakian
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging, Technische Universität München, Munich, Germany
| | - Peter Duewell
- Institute of Innate Immunity, University of Bonn, Bonn, Germany
| | - Andriy Chmyrov
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany
- Center for Translational Cancer Research (TranslaTUM), Technische Universität München, Munich, Germany
| | - Uwe Klemm
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany
| | - Juan Aguirre
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging, Technische Universität München, Munich, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), Technische Universität München, Munich, Germany
| | - Andre C Stiel
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
70
|
Frankl J, Sherwood A, Clegg DJ, Scherer PE, Öz OK. Imaging Metabolically Active Fat: A Literature Review and Mechanistic Insights. Int J Mol Sci 2019; 20:ijms20215509. [PMID: 31694216 PMCID: PMC6862590 DOI: 10.3390/ijms20215509] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023] Open
Abstract
Currently, obesity is one of the leading causes death in the world. Shortly before 2000, researchers began describing metabolically active adipose tissue on cancer-surveillance 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in adult humans. This tissue generates heat through mitochondrial uncoupling and functions similar to classical brown and beige adipose tissue in mice. Despite extensive research, human brown/beige fat's role in resistance to obesity in humans has not yet been fully delineated. FDG uptake is the de facto gold standard imaging technique when studying brown adipose tissue, although it has not been rigorously compared to other techniques. We, therefore, present a concise review of established and emerging methods to image brown adipose tissue activity in humans. Reviewed modalities include anatomic imaging with CT and magnetic resonance imaging (MRI); molecular imaging with FDG, fatty acids, and acetate; and emerging techniques. FDG-PET/CT is the most commonly used modality because of its widespread use in cancer imaging, but there are mechanistic reasons to believe other radiotracers may be more sensitive and accurate at detecting brown adipose tissue activity. Radiation-free modalities may help the longitudinal study of brown adipose tissue activity in the future.
Collapse
Affiliation(s)
- Joseph Frankl
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (J.F.); (A.S.)
| | - Amber Sherwood
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (J.F.); (A.S.)
| | - Deborah J. Clegg
- College of Nursing and Health Professions, Drexel University, 10th Floor, Room 1092, 1601 Cherry Street, Mail Stop 10501, Philadelphia, PA 19102, USA;
| | - Philipp E. Scherer
- Department of Internal Medicine, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA;
| | - Orhan K. Öz
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (J.F.); (A.S.)
- Correspondence:
| |
Collapse
|
71
|
Deán-Ben XL, Razansky D. Optoacoustic image formation approaches-a clinical perspective. Phys Med Biol 2019; 64:18TR01. [PMID: 31342913 DOI: 10.1088/1361-6560/ab3522] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Clinical translation of optoacoustic imaging is fostered by the rapid technical advances in imaging performance as well as the growing number of clinicians recognizing the immense diagnostic potential of this technology. Clinical optoacoustic systems are available in multiple configurations, including hand-held and endoscopic probes as well as raster-scan approaches. The hardware design must be adapted to the accessible portion of the imaged region and other application-specific requirements pertaining the achievable depth, field of view or spatio-temporal resolution. Equally important is the adequate choice of the signal and image processing approach, which is largely responsible for the resulting imaging performance. Thus, new image reconstruction algorithms are constantly evolving in parallel to the newly-developed set-ups. This review focuses on recent progress on optoacoustic image formation algorithms and processing methods in the clinical setting. Major reconstruction challenges include real-time image rendering in two and three dimensions, efficient hybridization with other imaging modalitites as well as accurate interpretation and quantification of bio-markers, herein discussed in the context of ongoing progress in clinical translation.
Collapse
Affiliation(s)
- Xosé Luís Deán-Ben
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland. Department of Information Technology and Electrical Engineering and Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
72
|
Merkes JM, Rueping M, Kiessling F, Banala S. Photoacoustic Detection of Superoxide Using Oxoporphyrinogen and Porphyrin. ACS Sens 2019; 4:2001-2008. [PMID: 31262172 DOI: 10.1021/acssensors.9b00224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The superoxide (O2•-) ion is a highly reactive oxygen species involved in many diseases; hence, its noninvasive detection is desirable to identify the onset of pathological processes. Here, we employed photoacoustic (PA) spectroscopy, which enables imaging at ultrasound resolution with the sensitivity of optical modality, for the first time to detect O2•-, using stimuli-responsive contrast agents. meso-(3,5-Di-tert-butyl 4-hydroxyphenyl) porphyrins and oxoporphyrinogens were used as PA contrast agents, which trap the O2•- and enable its detection. The trapped O2•- increased the PA signal amplitude of chromophores up to 9.6-fold, and induced a red-shift in the PA signal maxima of up to 225 nm. Therefore, these trigger-responsive probes may be highly valuable as smart diagnostic PA probes to investigate pathological events stimulated by O2•- species.
Collapse
Affiliation(s)
- Jean Michél Merkes
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D52074 Aachen, Germany
| | - Magnus Rueping
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D52074 Aachen, Germany
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Clinic, and Comprehensive Diagnostic Center Aachen, RWTH Aachen University, Forckenbeckstrasse 55, D52074 Aachen, Germany
| | - Srinivas Banala
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D52074 Aachen, Germany
- Institute for Experimental Molecular Imaging, University Clinic, and Comprehensive Diagnostic Center Aachen, RWTH Aachen University, Forckenbeckstrasse 55, D52074 Aachen, Germany
| |
Collapse
|
73
|
Self-Gated Respiratory Motion Rejection for Optoacoustic Tomography. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9132737] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Respiratory motion in living organisms is known to result in image blurring and loss of resolution, chiefly due to the lengthy acquisition times of the corresponding image acquisition methods. Optoacoustic tomography can effectively eliminate in vivo motion artifacts due to its inherent capacity for collecting image data from the entire imaged region following a single nanoseconds-duration laser pulse. However, multi-frame image analysis is often essential in applications relying on spectroscopic data acquisition or for scanning-based systems. Thereby, efficient methods to correct for image distortions due to motion are imperative. Herein, we demonstrate that efficient motion rejection in optoacoustic tomography can readily be accomplished by frame clustering during image acquisition, thus averting excessive data acquisition and post-processing. The algorithm’s efficiency for two- and three-dimensional imaging was validated with experimental whole-body mouse data acquired by spiral volumetric optoacoustic tomography (SVOT) and full-ring cross-sectional imaging scanners.
Collapse
|
74
|
Das D, Pramanik M. Combined ultrasound and photoacoustic imaging of blood clot during microbubble-assisted sonothrombolysis. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-8. [PMID: 31342692 PMCID: PMC7005573 DOI: 10.1117/1.jbo.24.12.121902] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/12/2019] [Indexed: 05/06/2023]
Abstract
Blockage of healthy blood vessels by blood clots can lead to serious or even life-threatening complications. The use of a combined ultrasound (US) and photoacoustic (PA) imaging was explored for blood clot monitoring during microbubble-assisted sonothrombolysis. PA imaging is an emerging hybrid imaging modality that has garnered the attention of the biomedical imaging community in recent years. It enables the study of the composition of a blood clot due to its sensitivity toward optical absorption. Here, in vitro imaging of the side of a blood clot facing the microbubbles was done over time. The US and PA signal-to-noise (SNR) ratio value changes during microbubble-assisted sonothrombolysis were studied for two different local environments: blood clot in deionized water and blood clot in blood. In the first case, US and PA SNR values increased by 4.6% and reduced by 20.8%, respectively after 30 min of sonothrombolysis treatment. After 10 min of sonothrombolysis treatment of the blood clot in blood, the US and PA SNR values increased by 7.7% and 38.3%, respectively. The US and PA SNR value changes were recorded in response to its local environment. This technique can be used to determine the final composition of the blood clot which may, in turn, help in the administration of clot-dissolving drugs.
Collapse
Affiliation(s)
- Dhiman Das
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
| | - Manojit Pramanik
- Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
- Address all correspondence to Manojit Pramanik, E-mail:
| |
Collapse
|
75
|
Mc Larney B, Rebling J, Chen Z, Deán-Ben XL, Gottschalk S, Razansky D. Uniform light delivery in volumetric optoacoustic tomography. JOURNAL OF BIOPHOTONICS 2019; 12:e201800387. [PMID: 30701679 DOI: 10.1002/jbio.201800387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 05/03/2023]
Abstract
Accurate image reconstruction in volumetric optoacoustic tomography implies the efficient generation and collection of ultrasound signals around the imaged object. Non-uniform delivery of the excitation light is a common problem in optoacoustic imaging often leading to a diminished field of view, limited dynamic range and penetration, as well as impaired quantification abilities. Presented here is an optimized illumination concept for volumetric tomography that utilizes additive manufacturing via 3D printing in combination with custom-made optical fiber illumination. The custom-designed sample chamber ensures convenient access to the imaged object along with accurate positioning of the sample and a matrix array ultrasound transducer used for collection of the volumetric image data. Ray tracing is employed to optimize the positioning of the individual fibers in the chamber. Homogeneity of the generated light excitation field was confirmed in tissue-mimicking agar spheres. Applicability of the system to image entire mouse organs ex vivo has been showcased. The new approach showed a clear advantage over conventional, single-sided illumination strategies by eliminating the need to correct for illumination variances and resulting in enhancement of the effective field of view, greater penetration depth and significant improvements in the overall image quality.
Collapse
Affiliation(s)
- Benedict Mc Larney
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
- Faculty of Medicine, Technical University of Munich, Munich, Germany
| | - Johannes Rebling
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
- Faculty of Medicine, Technical University of Munich, Munich, Germany
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Zhenyue Chen
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
| | - Xosé Luís Deán-Ben
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Sven Gottschalk
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
| | - Daniel Razansky
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
- Faculty of Medicine, Technical University of Munich, Munich, Germany
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
76
|
Karlas A, Fasoula NA, Paul-Yuan K, Reber J, Kallmayer M, Bozhko D, Seeger M, Eckstein HH, Wildgruber M, Ntziachristos V. Cardiovascular optoacoustics: From mice to men - A review. PHOTOACOUSTICS 2019; 14:19-30. [PMID: 31024796 PMCID: PMC6476795 DOI: 10.1016/j.pacs.2019.03.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 05/04/2023]
Abstract
Imaging has become an indispensable tool in the research and clinical management of cardiovascular disease (CVD). An array of imaging technologies is considered for CVD diagnostics and therapeutic assessment, ranging from ultrasonography, X-ray computed tomography and magnetic resonance imaging to nuclear and optical imaging methods. Each method has different operational characteristics and assesses different aspects of CVD pathophysiology; nevertheless, more information is desirable for achieving a comprehensive view of the disease. Optoacoustic (photoacoustic) imaging is an emerging modality promising to offer novel information on CVD parameters by allowing high-resolution imaging of optical contrast several centimeters deep inside tissue. Implemented with illumination at several wavelengths, multi-spectral optoacoustic tomography (MSOT) in particular, is sensitive to oxygenated and deoxygenated hemoglobin, water and lipids allowing imaging of the vasculature, tissue oxygen saturation and metabolic or inflammatory parameters. Progress with fast-tuning lasers, parallel detection and advanced image reconstruction and data-processing algorithms have recently transformed optoacoustics from a laboratory tool to a promising modality for small animal and clinical imaging. We review progress with optoacoustic CVD imaging, highlight the research and diagnostic potential and current applications and discuss the advantages, limitations and possibilities for integration into clinical routine.
Collapse
Affiliation(s)
- Angelos Karlas
- Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Clinic for Vascular and Endovascular Surgery, University Hospital rechts der Isar, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Nikolina-Alexia Fasoula
- Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Korbinian Paul-Yuan
- Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Josefine Reber
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michael Kallmayer
- Clinic for Vascular and Endovascular Surgery, University Hospital rechts der Isar, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Dmitry Bozhko
- Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Markus Seeger
- Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Hans-Henning Eckstein
- Clinic for Vascular and Endovascular Surgery, University Hospital rechts der Isar, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Moritz Wildgruber
- Institute for Diagnostic and Interventional Radiology, University Hospital rechts der Isar, Munich, Germany
- Institute for Clinical Radiology, University Hospital Muenster, Muenster, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
77
|
Abstract
Fuelled by innovation, optical microscopy plays a critical role in the life sciences and medicine, from basic discovery to clinical diagnostics. However, optical microscopy is limited by typical penetration depths of a few hundred micrometres for in vivo interrogations in the visible spectrum. Optoacoustic microscopy complements optical microscopy by imaging the absorption of light, but it is similarly limited by penetration depth. In this Review, we summarize progress in the development and applicability of optoacoustic mesoscopy (OPAM); that is, optoacoustic imaging with acoustic resolution and wide-bandwidth ultrasound detection. OPAM extends the capabilities of optical imaging beyond the depths accessible to optical and optoacoustic microscopy, and thus enables new applications. We explain the operational principles of OPAM, its placement as a bridge between optoacoustic microscopy and optoacoustic macroscopy, and its performance in the label-free visualization of tissue pathophysiology, such as inflammation, oxygenation, vascularization and angiogenesis. We also review emerging applications of OPAM in clinical and biological imaging.
Collapse
|
78
|
Ntziachristos V, Pleitez MA, Aime S, Brindle KM. Emerging Technologies to Image Tissue Metabolism. Cell Metab 2019; 29:518-538. [PMID: 30269982 DOI: 10.1016/j.cmet.2018.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/24/2018] [Accepted: 09/02/2018] [Indexed: 12/19/2022]
Abstract
Due to the implication of altered metabolism in a large spectrum of tissue function and disease, assessment of metabolic processes becomes essential in managing health. In this regard, imaging can play a critical role in allowing observation of biochemical and physiological processes. Nuclear imaging methods, in particular positron emission tomography, have been widely employed for imaging metabolism but are mainly limited by the use of ionizing radiation and the sensing of only one parameter at each scanning session. Observations in healthy individuals or longitudinal studies of disease could markedly benefit from non-ionizing, multi-parameter imaging methods. We therefore focus this review on progress with the non-ionizing radiation methods of MRI, hyperpolarized magnetic resonance and magnetic resonance spectroscopy, chemical exchange saturation transfer, and emerging optoacoustic (photoacoustic) imaging. We also briefly discuss the role of nuclear and optical imaging methods for research and clinical protocols.
Collapse
Affiliation(s)
- Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg 85764, Germany; Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Ismaningerstr. 22, Munich 81675, Germany.
| | - Miguel A Pleitez
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg 85764, Germany; Chair of Biological Imaging, TranslaTUM, Technical University of Munich, Ismaningerstr. 22, Munich 81675, Germany
| | - Silvio Aime
- Molecular Imaging Center, Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin 10126, Italy
| | - Kevin M Brindle
- Department of Biochemistry, University of Cambridge, Old Addenbrooke's Site, Cambridge CB2 1GA, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
79
|
Wang H, Willershäuser M, Karlas A, Gorpas D, Reber J, Ntziachristos V, Maurer S, Fromme T, Li Y, Klingenspor M. A dual Ucp1 reporter mouse model for imaging and quantitation of brown and brite fat recruitment. Mol Metab 2019; 20:14-27. [PMID: 30580967 PMCID: PMC6358570 DOI: 10.1016/j.molmet.2018.11.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Brown adipose tissue (BAT) dissipates nutritional energy as heat through uncoupling protein 1 (UCP1). The discovery of functional BAT in healthy adult humans has promoted the search for pharmacological interventions to recruit and activate brown fat as a treatment of obesity and diabetes type II. These efforts require in vivo models to compare the efficacy of novel compounds in a relevant physiological context. METHODS We generated a knock-in mouse line expressing firefly luciferase and near-infrared red florescent protein (iRFP713) driven by the regulatory elements of the endogenous Ucp1 gene. RESULTS Our detailed characterization revealed that firefly luciferase activity faithfully reports endogenous Ucp1 gene expression in response to physiological and pharmacological stimuli. The iRFP713 fluorescence signal was detected in the interscapular BAT region of cold-exposed reporter mice in an allele-dosage dependent manner. Using this reporter mouse model, we detected a higher browning capacity in female peri-ovarian white adipose tissue compared to male epididymal WAT, which we further corroborated by molecular and morphological features. In situ imaging detected a strong luciferase activity signal in a previously unappreciated adipose tissue depot adjunct to the femoral muscle, now adopted as femoral brown adipose tissue. In addition, screening cultured adipocytes by bioluminescence imaging identified the selective Salt-Inducible Kinase inhibitor, HG-9-91-01, to increase Ucp1 gene expression and mitochondrial respiration in brown and brite adipocytes. CONCLUSIONS In our mouse model, firefly luciferase activity serves as a bona fide reporter for dynamic regulation of Ucp1. In addition, by means of iRFP713 we are able to monitor Ucp1 expression in a non-invasive fashion.
Collapse
Affiliation(s)
- Hui Wang
- EKFZ - Else Kröner-Fresenius Zentrum for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; Chair for Molecular Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Monja Willershäuser
- EKFZ - Else Kröner-Fresenius Zentrum for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; Chair for Molecular Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Angelos Karlas
- Chair for Biological Imaging, Technical University of Munich, Troger Str. 9, 81675 München, Germany
| | - Dimitris Gorpas
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Ingolstädter Landstr.1, 85764 Neuherberg, Germany; Chair for Biological Imaging, Technical University of Munich, Troger Str. 9, 81675 München, Germany
| | - Josefine Reber
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Ingolstädter Landstr.1, 85764 Neuherberg, Germany
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Ingolstädter Landstr.1, 85764 Neuherberg, Germany; Chair for Biological Imaging, Technical University of Munich, Troger Str. 9, 81675 München, Germany
| | - Stefanie Maurer
- EKFZ - Else Kröner-Fresenius Zentrum for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; Chair for Molecular Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Tobias Fromme
- EKFZ - Else Kröner-Fresenius Zentrum for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; Chair for Molecular Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Yongguo Li
- EKFZ - Else Kröner-Fresenius Zentrum for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; Chair for Molecular Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Martin Klingenspor
- EKFZ - Else Kröner-Fresenius Zentrum for Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; Chair for Molecular Nutritional Medicine, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany.
| |
Collapse
|
80
|
Zhang Y, Hu X, Hu S, Scotti A, Cai K, Wang J, Zhou X, Yang D, Figini M, Pan L, Shangguan J, Yang J, Zhang Z. Non-invasive Imaging Methods for Brown Adipose Tissue Detection and Function Evaluation. ACTA ACUST UNITED AC 2019; 8. [PMID: 31080698 PMCID: PMC6508884 DOI: 10.4172/2165-8048.1000299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Brown Adipose Tissue (BAT) has a major role in thermoregulation, producing heat by non-shivering thermogenesis. Primarily found in animals and human infants, the presence of significant brown adipose tissue was identified only recently, and its metabolic role in adults was reconsidered. BAT is believed to have an important role in many metabolic diseases, such as obesity and diabetes, and also to be associated with cancer cachexia. Therefore, it is currently a topic of great interest in the research community, and many groups are investigating the mechanisms underlying BAT metabolism in normal and pathological conditions. However, well established non-invasive methods for assessing BAT distribution and function are still lacking. The purpose of this review is to summarize the current state of the art of these methods, with a particular focus on PET, CT and MRI.
Collapse
Affiliation(s)
- Yaqi Zhang
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Xiaofei Hu
- Department of Radiology, Third Military Medical University Southwest Hospital, Chongqing, China
| | - Su Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alessandro Scotti
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Kejia Cai
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Jian Wang
- Department of Radiology, Third Military Medical University Southwest Hospital, Chongqing, China
| | - Xin Zhou
- Department of Cardiology, Pingjin Hospital, Tianjin, China
| | - Ding Yang
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Matteo Figini
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Liang Pan
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Junjie Shangguan
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jia Yang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Zhuoli Zhang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| |
Collapse
|
81
|
Karampinos DC, Weidlich D, Wu M, Hu HH, Franz D. Techniques and Applications of Magnetic Resonance Imaging for Studying Brown Adipose Tissue Morphometry and Function. Handb Exp Pharmacol 2019; 251:299-324. [PMID: 30099625 DOI: 10.1007/164_2018_158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The present review reports on the current knowledge and recent findings in magnetic resonance imaging (MRI) and spectroscopy (MRS) of brown adipose tissue (BAT). The work summarizes the features and mechanisms that allow MRI to differentiate BAT from white adipose tissue (WAT) by making use of their distinct morphological appearance and the functional characteristics of BAT. MR is a versatile imaging modality with multiple contrast mechanisms as potential candidates in the study of BAT, targeting properties of 1H, 13C, or 129Xe nuclei. Techniques for assessing BAT morphometry based on fat fraction and markers of BAT microstructure, including intermolecular quantum coherence and diffusion imaging, are first described. Techniques for assessing BAT function based on the measurement of BAT metabolic activity, perfusion, oxygenation, and temperature are then presented. The application of the above methods in studies of BAT in animals and humans is described, and future directions in MR study of BAT are finally discussed.
Collapse
Affiliation(s)
- Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| | - Dominik Weidlich
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Mingming Wu
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Houchun H Hu
- Department of Radiology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Daniela Franz
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
82
|
Mozaffarzadeh M, Hariri A, Moore C, Jokerst JV. The double-stage delay-multiply-and-sum image reconstruction method improves imaging quality in a LED-based photoacoustic array scanner. PHOTOACOUSTICS 2018; 12:22-29. [PMID: 30294542 PMCID: PMC6171539 DOI: 10.1016/j.pacs.2018.09.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/08/2018] [Accepted: 09/12/2018] [Indexed: 05/02/2023]
Abstract
Light-emitting diode-based photoacoustic imaging is more compact and affordable than laser-based systems, but it has low power and hence a high number of replicates. Here, we describe double-stage delay-multiply-and-sum (DS-DMAS) to improve image quality collected on a LED-based scanner. DS-DMAS was evaluated experimentally using point targets (in different laterals and depths) as well as a hair and a rabbit eye. This algorithm can compensate for the low SNR of LED-based systems and offer better lateral resolution of about 60%, 25%, higher contrast ratio of about 97%, 34%, and better full-width-half-maximum of about 60%, 25%, versus delay-and-sum) and delay-multiply-and-sum, respectively. More importantly, DS-DMAS offers this using a smaller number of frames (only 2% of all the frames). These results indicate that DS-DMAS might be a valuable tool in the translation of LED-based and other low power PAI systems.
Collapse
Affiliation(s)
- Moein Mozaffarzadeh
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092, United States
| | - Ali Hariri
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092, United States
| | - Colman Moore
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092, United States
| | - Jesse V. Jokerst
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092, United States
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092, United States
- Department of Radiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092, United States
- Corresponding author.
| |
Collapse
|
83
|
Dev K, Dinish US, Chakraborty S, Bi R, Andersson-Engels S, Sugii S, Olivo M. Quantitative in vivo detection of adipose tissue browning using diffuse reflectance spectroscopy in near-infrared II window. JOURNAL OF BIOPHOTONICS 2018; 11:e201800135. [PMID: 29978566 DOI: 10.1002/jbio.201800135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/04/2018] [Indexed: 05/23/2023]
Abstract
White adipose tissue (WAT) and brown adipose tissue (BAT) biologically function in an opposite way in energy metabolism. BAT induces energy consumption by heat production while WAT mainly stores energy in the form of triglycerides. Recent progress in the conversion of WAT cells to "beige" or "brown-like" adipocytes in animals, having functional similarity to BAT, spurred a great interest in developing the next-generation therapeutics in the field of metabolic disorders. Though magnetic resonance imaging and positron emission tomography could detect classical BAT and WAT in animals and humans, it is of a great challenge in detecting the "browning" process in vivo. Here, to the best of our knowledge, for the first time, we present a simple, cost-effective, label-free fiber optic-based diffuse reflectance spectroscopy measurement in the near infrared II window (~1050-1400 nm) for the quantitative detection of browning in a mouse model in vivo. We could successfully quantify the browning of WAT in a mouse model by estimating the lipid fraction, which serves as an endogenous marker. Lipid fraction exhibited a gradual decrease from WAT to BAT with beige exhibiting an intermediate value. in vivo browning process was also confirmed with standard molecular and biochemical assays.
Collapse
Affiliation(s)
- Kapil Dev
- Laboratory of Bio Optical Imaging, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| | - U S Dinish
- Laboratory of Bio Optical Imaging, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Smarajit Chakraborty
- Fat Metabolism and Stem Cell Group, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Renzhe Bi
- Laboratory of Bio Optical Imaging, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Stefan Andersson-Engels
- Irish Photonic Integration Centre (IPIC), Tyndall National Institute, Cork, Ireland
- Department of Physics, University College Cork, Cork, Ireland
| | - Shigeki Sugii
- Fat Metabolism and Stem Cell Group, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Malini Olivo
- Laboratory of Bio Optical Imaging, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| |
Collapse
|
84
|
Schweizer S, Oeckl J, Klingenspor M, Fromme T. Substrate fluxes in brown adipocytes upon adrenergic stimulation and uncoupling protein 1 ablation. Life Sci Alliance 2018; 1:e201800136. [PMID: 30456392 PMCID: PMC6238590 DOI: 10.26508/lsa.201800136] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 12/22/2022] Open
Abstract
Brown adipocytes are highly specialized cells with the unique metabolic ability to dissipate chemical energy in the form of heat. We determined and inferred the flux of a number of key catabolic metabolites, their changes in response to adrenergic stimulation, and the dependency on the presence of the thermogenic uncoupling protein 1 and/or oxidative phosphorylation. This study provides reference values to approximate flux rates from a limited set of measured parameters in the future and thereby allows to evaluate the plausibility of claims about the capacity of metabolic adaptations or manipulations. From the resulting model, we delineate that in brown adipocytes (1) free fatty acids are a significant contributor to extracellular acidification, (2) glycogen is the dominant glycolytic substrate source in the acute response to an adrenergic stimulus, and (3) the futile cycling of free fatty acids between lipolysis and re-esterification into triglyceride provides a mechanism for uncoupling protein 1-independent, non-shivering thermogenesis in brown adipocytes.
Collapse
Affiliation(s)
- Sabine Schweizer
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Josef Oeckl
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.,EKFZ-Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany.,ZIEL-Institute for Food and Health, Technical University of Munich, Freising, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.,EKFZ-Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany.,ZIEL-Institute for Food and Health, Technical University of Munich, Freising, Germany
| | - Tobias Fromme
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.,EKFZ-Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
| |
Collapse
|
85
|
Li Y, Schnabl K, Gabler SM, Willershäuser M, Reber J, Karlas A, Laurila S, Lahesmaa M, u Din M, Bast-Habersbrunner A, Virtanen KA, Fromme T, Bolze F, O’Farrell LS, Alsina-Fernandez J, Coskun T, Ntziachristos V, Nuutila P, Klingenspor M. Secretin-Activated Brown Fat Mediates Prandial Thermogenesis to Induce Satiation. Cell 2018; 175:1561-1574.e12. [DOI: 10.1016/j.cell.2018.10.016] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/06/2018] [Accepted: 10/02/2018] [Indexed: 12/31/2022]
|
86
|
Samykutty A, Grizzle WE, Fouts BL, McNally MW, Chuong P, Thomas A, Chiba A, Otali D, Woloszynska A, Said N, Frederick PJ, Jasinski J, Liu J, McNally LR. Optoacoustic imaging identifies ovarian cancer using a microenvironment targeted theranostic wormhole mesoporous silica nanoparticle. Biomaterials 2018; 182:114-126. [PMID: 30118979 PMCID: PMC6289590 DOI: 10.1016/j.biomaterials.2018.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 12/12/2022]
Abstract
At the intersection of the newly emerging fields of optoacoustic imaging and theranostic nanomedicine, promising clinical progress can be made in dismal prognosis of ovarian cancer. An acidic pH targeted wormhole mesoporous silica nanoparticle (V7-RUBY) was developed to serve as a novel tumor specific theranostic nanoparticle detectable using multispectral optoacoustic tomographic (MSOT) imaging. We report the synthesis of a small, < 40 nm, biocompatible asymmetric wormhole pore mesoporous silica core particle that has both large loading capacity and favorable release kinetics combined with tumor-specific targeting and gatekeeping. V7-RUBY exploits the acidic tumor microenvironment for tumor-specific targeting and tumor-specific release. In vitro, treatment with V7-RUBY containing either paclitaxel or carboplatin resulted in increased cell death at pH 6.6 in comparison to drug alone (p < 0.0001). In orthotopic ovarian xenograft mouse models, V7-RUBY containing IR780 was specifically detected within the tumor 7X and 4X higher than the liver and >10X higher than in the kidney using both multispectral optoacoustic tomography (MSOT) imaging with secondary confirmation using near infrared fluorescence imaging (p < 0.0004). The V7-RUBY system carrying a cargo of either contrast agent or an anti-neoplastic drug has the potential to become a theranostic nanoparticle which can improve both diagnosis and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Abhilash Samykutty
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27013, USA
| | - William E Grizzle
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Benjamin L Fouts
- Department of Chemistry, Earlham College, Indianapolis, IN, 27013, USA
| | - Molly W McNally
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27013, USA
| | - Phillip Chuong
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Alexandra Thomas
- Department of Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27013, USA
| | - Akiko Chiba
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27013, USA
| | - Dennis Otali
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Anna Woloszynska
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Neveen Said
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27013, USA
| | - Peter J Frederick
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Jacek Jasinski
- Conn Center Materials Characterization, University of Louisville, Louisville, KY 40202, USA
| | - Jie Liu
- Department of Forest Materials, North Carolina State University, Raleigh, NC 27695, USA
| | - Lacey R McNally
- Department of Bioengineering, Wake Forest School of Medicine, Winston-Salem, North Carolina 27013, USA; Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27013, USA.
| |
Collapse
|
87
|
Coordinated targeting of cold and nicotinic receptors synergistically improves obesity and type 2 diabetes. Nat Commun 2018; 9:4304. [PMID: 30353008 PMCID: PMC6199300 DOI: 10.1038/s41467-018-06769-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 08/27/2018] [Indexed: 12/19/2022] Open
Abstract
Pharmacological stimulation of brown adipose tissue (BAT) thermogenesis to increase energy expenditure is progressively being pursued as a viable anti-obesity strategy. Here, we report that pharmacological activation of the cold receptor transient receptor potential cation channel subfamily M member 8 (TRPM8) with agonist icilin mimics the metabolic benefits of cold exposure. In diet-induced obese (DIO) mice, treatment with icilin enhances energy expenditure, and decreases body weight, without affecting food intake. To further potentiate the thermogenic action profile of icilin and add complementary anorexigenic mechanisms, we set out to identify pharmacological partners next to icilin. To that end, we specifically targeted nicotinic acetylcholine receptor (nAChR) subtype alpha3beta4 (α3β4), which we had recognized as a potential regulator of energy homeostasis and glucose metabolism. Combinatorial targeting of TRPM8 and nAChR α3β4 by icilin and dimethylphenylpiperazinium (DMPP) orchestrates synergistic anorexic and thermogenic pathways to reverse diet-induced obesity, dyslipidemia, and glucose intolerance in DIO mice. Tobacco smoking and cold exposure are environmental modulators of human energy metabolism suppressing appetite and increasing energy expenditure, respectively. Here, the authors develop a novel pharmacological strategy in which they simultaneously mimic the metabolic benefits of both phenomena through small-molecule combination therapy, and show that this treatment improves metabolic health of obese mice.
Collapse
|
88
|
Balasundaram G, Ding L, Li X, Attia ABE, Dean-Ben XL, Ho CJH, Chandrasekharan P, Tay HC, Lim HQ, Ong CB, Mason RP, Razansky D, Olivo M. Noninvasive Anatomical and Functional Imaging of Orthotopic Glioblastoma Development and Therapy using Multispectral Optoacoustic Tomography. Transl Oncol 2018; 11:1251-1258. [PMID: 30103155 PMCID: PMC6092474 DOI: 10.1016/j.tranon.2018.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/26/2018] [Accepted: 07/02/2018] [Indexed: 01/13/2023] Open
Abstract
PURPOSE Here we demonstrate the potential of multispectral optoacoustic tomography (MSOT), a new non-invasive structural and functional imaging modality, to track the growth and changes in blood oxygen saturation (sO2) in orthotopic glioblastoma (GBMs) and the surrounding brain tissues upon administration of a vascular disruptive agent (VDA). METHODS Nude mice injected with U87MG tumor cells were longitudinally monitored for the development of orthotopic GBMs up to 15 days and observed for changes in sO2 upon administration of combretastatin A4 phosphate (CA4P, 30 mg/kg), an FDA approved VDA for treating solid tumors. We employed a newly-developed non-negative constrained approach for combined MSOT image reconstruction and unmixing in order to quantitatively map sO2 in whole mouse brains. RESULTS Upon longitudinal monitoring, tumors could be detected in mouse brains using single-wavelength data as early as 6 days post tumor cell inoculation. Fifteen days post-inoculation, tumors had higher sO2 of 63 ± 11% (n = 5, P < .05) against 48 ± 7% in the corresponding contralateral brain, indicating their hyperoxic status. In a different set of animals, 42 days post-inoculation, tumors had lower sO2 of 42 ± 5% against 49 ± 4% (n = 3, P < .05) in the contralateral side, indicating their hypoxic status. Upon CA4P administration, sO2 in 15 days post-inoculation tumors dropped from 61 ± 9% to 36 ± 1% (n = 4, P < .01) within one hour, then reverted to pre CA4P treatment values (63 ± 6%) and remained constant until the last observation time point of 6 hours. CONCLUSION With the help of advanced post processing algorithms, MSOT was capable of monitoring the tumor growth and assessing hemodynamic changes upon administration of VDAs in orthotopic GBMs.
Collapse
Affiliation(s)
- Ghayathri Balasundaram
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios, Singapore 138667
| | - Lu Ding
- Institute for Biological and Medical Imaging, Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Xiuting Li
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios, Singapore 138667
| | - Amalina Binte Ebrahim Attia
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios, Singapore 138667
| | - Xose Luis Dean-Ben
- Institute for Biological and Medical Imaging, Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Chris Jun Hui Ho
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios, Singapore 138667
| | - Prashant Chandrasekharan
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios, Singapore 138667
| | - Hui Chien Tay
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios, Singapore 138667
| | - Hann Qian Lim
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios, Singapore 138667
| | - Chee Bing Ong
- Advanced Molecular Pathology Lab (AMPL), Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos building, Singapore 138673
| | - Ralph P Mason
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel Razansky
- Institute for Biological and Medical Imaging, Technical University of Munich and Helmholtz Center Munich, Munich, Germany.
| | - Malini Olivo
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios, Singapore 138667.
| |
Collapse
|
89
|
Han XY, Chen ZH, Zeng JZ, Fan QX, Fang ZQ, Shi G, Zhang M. Inorganic-Organic Hybrid Tongue-Mimic for Time-Resolved Luminescent Noninvasive Pattern and Chiral Recognition of Thiols in Biofluids toward Healthcare Monitoring. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31725-31734. [PMID: 30148952 DOI: 10.1021/acsami.8b13498] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, manganese(II)-doped zinc/germanium oxide nanoparticles (Mn@ZGNPs) have been hydrothermally synthesized to equip with appealing time-resolved luminescence (TRL). Interestingly, we reveal that they can be readily quenched ("turn off") via a facile surface coating with bioinspired polydopamine (PDA) polymerized from dopamine (DA), resulting from PDA-triggered TRL resonance energy transfer (TRL-RET). By integrated with the thiol-induced inhibition of PDA formation, an ingenious inorganic-organic hybrid tongue-mimic sensor array is thus unveiled for noninvasive pattern recognition of thiols in biofluids in a TRL-RET-reversed "turn on" format toward healthcare monitoring. The sensing principle is based on the new finding that there are differential inhibitions from thiols against the polymerization of DA with various concentrations. Furthermore, density function theory (DFT) studies excellently prove our sensing principle and experimental results, reinforcing the power of the presented system. More importantly, chiral recognition of varied concentrations and mixtures of cysteine enantiomers using our platform are also been demonstrated, promising its practical usage. This is a novel concept of inorganic-organic hybrid-based pattern and chiral recognition platform for TRL background-free sensing and would sprout more novel relevant strategies toward broader applications.
Collapse
Affiliation(s)
- Xin-Yue Han
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration , East China Normal University , Dongchuan Road 500 , Shanghai 200241 , China
| | - Zi-Han Chen
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration , East China Normal University , Dongchuan Road 500 , Shanghai 200241 , China
| | - Jin-Zhe Zeng
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration , East China Normal University , Dongchuan Road 500 , Shanghai 200241 , China
| | - Qian-Xi Fan
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration , East China Normal University , Dongchuan Road 500 , Shanghai 200241 , China
| | - Zheng-Qi Fang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration , East China Normal University , Dongchuan Road 500 , Shanghai 200241 , China
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration , East China Normal University , Dongchuan Road 500 , Shanghai 200241 , China
| | - Min Zhang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration , East China Normal University , Dongchuan Road 500 , Shanghai 200241 , China
| |
Collapse
|
90
|
Hankir MK, Klingenspor M. Brown adipocyte glucose metabolism: a heated subject. EMBO Rep 2018; 19:embr.201846404. [PMID: 30135070 DOI: 10.15252/embr.201846404] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/22/2018] [Accepted: 07/20/2018] [Indexed: 11/09/2022] Open
Abstract
The energy expending and glucose sink properties of brown adipose tissue (BAT) make it an attractive target for new obesity and diabetes treatments. Despite decades of research, only recently have mechanistic studies started to provide a more complete and consistent picture of how activated brown adipocytes handle glucose. Here, we discuss the importance of intracellular glycolysis, lactate production, lipogenesis, lipolysis, and beta-oxidation for BAT thermogenesis in response to natural (temperature) and artificial (pharmacological and optogenetic) forms of sympathetic nervous system stimulation. It is now clear that together, these metabolic processes in series and in parallel flexibly power ATP-dependent and independent futile cycles in brown adipocytes to impact on whole-body thermal, energy, and glucose balance.
Collapse
Affiliation(s)
- Mohammed K Hankir
- Department of Experimental Surgery, University Hospital Wuerzburg, Wuerzburg, Germany .,German Research Foundation Collaborative Research Center in Obesity Mechanisms 1052, University of Leipzig, Leipzig, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany .,EKFZ - Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
| |
Collapse
|
91
|
Carpentier AC, Blondin DP, Virtanen KA, Richard D, Haman F, Turcotte ÉE. Brown Adipose Tissue Energy Metabolism in Humans. Front Endocrinol (Lausanne) 2018; 9:447. [PMID: 30131768 PMCID: PMC6090055 DOI: 10.3389/fendo.2018.00447] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/20/2018] [Indexed: 12/16/2022] Open
Abstract
The demonstration of metabolically active brown adipose tissue (BAT) in humans primarily using positron emission tomography coupled to computed tomography (PET/CT) with the glucose tracer 18-fluorodeoxyglucose (18FDG) has renewed the interest of the scientific and medical community in the possible role of BAT as a target for the prevention and treatment of obesity and type 2 diabetes (T2D). Here, we offer a comprehensive review of BAT energy metabolism in humans. Considerable advances in methods to measure BAT energy metabolism, including nonesterified fatty acids (NEFA), chylomicron-triglycerides (TG), oxygen, Krebs cycle rate, and intracellular TG have led to very good quantification of energy substrate metabolism per volume of active BAT in vivo. These studies have also shown that intracellular TG are likely the primary energy source of BAT upon activation by cold. Current estimates of BAT's contribution to energy expenditure range at the lower end of what would be potentially clinically relevant if chronically sustained. Yet, 18FDG PET/CT remains the gold-standard defining method to quantify total BAT volume of activity, used to calculate BAT's total energy expenditure. Unfortunately, BAT glucose metabolism better reflects BAT's insulin sensitivity and blood flow. It is now clear that most glucose taken up by BAT does not fuel mitochondrial oxidative metabolism and that BAT glucose uptake can therefore be disconnected from thermogenesis. Furthermore, BAT thermogenesis is efficiently recruited upon repeated cold exposure, doubling to tripling its total oxidative capacity, with reciprocal reduction of muscle thermogenesis. Recent data suggest that total BAT volume may be much larger than the typically observed 50-150 ml with 18FDG PET/CT. Therefore, the current estimates of total BAT thermogenesis, largely relying on total BAT volume using 18FDG PET/CT, may underestimate the true contribution of BAT to total energy expenditure. Quantification of the contribution of BAT to energy expenditure begs for the development of more integrated whole body in vivo methods.
Collapse
Affiliation(s)
- André C. Carpentier
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Kirsi A. Virtanen
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland (UEF), Kuopio, Finland
| | - Denis Richard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, QC, Canada
| | - François Haman
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Éric E. Turcotte
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
92
|
Soler-Vázquez MC, Mera P, Zagmutt S, Serra D, Herrero L. New approaches targeting brown adipose tissue transplantation as a therapy in obesity. Biochem Pharmacol 2018; 155:346-355. [PMID: 30030977 DOI: 10.1016/j.bcp.2018.07.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/17/2018] [Indexed: 12/17/2022]
Abstract
Brown adipose tissue (BAT) is raising high expectations as a potential target in the fight against metabolic disorders such as obesity and type 2 diabetes. BAT utilizes fuels such as fatty acids to maintain body temperature by uncoupling mitochondrial electron transport to produce heat instead of ATP. This process is called thermogenesis. BAT was considered to be exclusive to rodents and human neonates. However, in the last decade several studies have demonstrated that BAT is not only present but also active in adult humans and that its activity is reduced in several pathological conditions, such as aging, obesity, and diabetes. Thus, tremendous efforts are being made by the scientific community to enhance either BAT mass or activity. Several activators of thermogenesis have been described, such as natriuretic peptides, bone morphogenic proteins, or fibroblast growth factor 21. Furthermore, recent studies have tested a therapeutic approach to directly increase BAT mass by the implantation of either adipocytes or fat tissue. This approach might have an important future in regenerative medicine and in the fight against metabolic disorders. Here, we review the emerging field of BAT transplantation including the various sources of mesenchymal stem cell isolation in rodents and humans and the described metabolic outcomes of adipocyte cell transplantation and BAT transplantation in obesity.
Collapse
Affiliation(s)
- M Carmen Soler-Vázquez
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Paula Mera
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Sebastián Zagmutt
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain.
| |
Collapse
|
93
|
Chan XHD, Balasundaram G, Attia ABE, Goggi JL, Ramasamy B, Han W, Olivo M, Sugii S. Multimodal imaging approach to monitor browning of adipose tissue in vivo. J Lipid Res 2018; 59:1071-1078. [PMID: 29654114 PMCID: PMC5983400 DOI: 10.1194/jlr.d083410] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/13/2018] [Indexed: 11/20/2022] Open
Abstract
The discovery that white adipocytes can undergo a browning process to become metabolically active beige cells has attracted significant interest in the fight against obesity. However, the study of adipose browning has been impeded by a lack of imaging tools that allow longitudinal and noninvasive monitoring of this process in vivo. Here, we report a preclinical imaging approach to detect development of beige adipocytes during adrenergic stimulation. In this approach, we expressed near-infrared fluorescent protein, iRFP720, driven under an uncoupling protein-1 (Ucp1) promoter in mice by viral transduction, and used multispectral optoacoustic imaging technology with ultrasound tomography (MSOT-US) to assess adipose beiging during adrenergic stimulation. We observed increased photoacoustic signal at 720 nm, coupled with attenuated lipid signals in stimulated animals. As a proof of concept, we validated our approach against hybrid positron emission tomography combined with magnetic resonance (PET/MR) imaging modality, and quantified the extent of adipose browning by MRI-guided segmentation of 2-deoxy-2-18F-fluoro-d-glucose uptake signals. The browning extent detected by MSOT-US and PET/MR are well correlated with Ucp1 induction. Taken together, these systems offer great opportunities for preclinical screening aimed at identifying compounds that promote adipose browning and translation of these discoveries into clinical studies of humans.
Collapse
Affiliation(s)
- Xin Hui Derryn Chan
- Fat Metabolism and Stem Cell Group, Singapore Bio-imaging Consortium, Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Ghayathri Balasundaram
- Laboratory of Bio-Optical Imaging, Singapore Bio-imaging Consortium, Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Amalina Binte Ebrahim Attia
- Laboratory of Bio-Optical Imaging, Singapore Bio-imaging Consortium, Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Julian L Goggi
- Isotopic Molecular Imaging Group, Singapore Bio-imaging Consortium, Agency for Science, Technology, and Research (A*STAR), Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Boominathan Ramasamy
- Isotopic Molecular Imaging Group, Singapore Bio-imaging Consortium, Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Weiping Han
- Laboratory of Metabolic Medicine, Singapore Bio-imaging Consortium, Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Malini Olivo
- Laboratory of Bio-Optical Imaging, Singapore Bio-imaging Consortium, Agency for Science, Technology, and Research (A*STAR), Singapore; School of Physics, National University of Ireland Galway, Galway, Ireland
| | - Shigeki Sugii
- Fat Metabolism and Stem Cell Group, Singapore Bio-imaging Consortium, Agency for Science, Technology, and Research (A*STAR), Singapore; Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore.
| |
Collapse
|
94
|
Karlas A, Reber J, Liapis E, Paul-Yuan K, Ntziachristos V. Multispectral Optoacoustic Tomography of Brown Adipose Tissue. Handb Exp Pharmacol 2018; 251:325-336. [PMID: 29896652 DOI: 10.1007/164_2018_141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
MSOT has revolutionized biomedical imaging because it allows anatomical, functional, and molecular imaging of deep tissues in vivo in an entirely noninvasive, label-free, and real-time manner. This imaging modality works by pulsing light onto tissue, triggering the production of acoustic waves, which can be collected and reconstructed to provide high-resolution images of features as deep as several centimeters below the body surface. Advances in hardware and software continue to bring MSOT closer to clinical translation. Most recently, a clinical handheld MSOT system has been used to image brown fat tissue (BAT) and its metabolic activity by directly resolving the spectral signatures of hemoglobin and lipids. This opens up new possibilities for studying BAT physiology and its role in metabolic disease without the need to inject animals or humans with contrast agents. In this chapter, we overview how MSOT works and how it has been implemented in preclinical and clinical contexts. We focus on our recent work using MSOT to image BAT in resting and activated states both in mice and humans.
Collapse
Affiliation(s)
- Angelos Karlas
- Chair of Biological Imaging, Technical University Munich, Munich, Germany
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany
| | - Josefine Reber
- Chair of Biological Imaging, Technical University Munich, Munich, Germany
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany
| | - Evangelos Liapis
- Chair of Biological Imaging, Technical University Munich, Munich, Germany
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany
| | - Korbinian Paul-Yuan
- Chair of Biological Imaging, Technical University Munich, Munich, Germany
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, Technical University Munich, Munich, Germany.
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|