51
|
Rushing GV, Bollig MK, Ihrie RA. Heterogeneity of Neural Stem Cells in the Ventricular-Subventricular Zone. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1169:1-30. [PMID: 31487016 DOI: 10.1007/978-3-030-24108-7_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this chapter, heterogeneity is explored in the context of the ventricular-subventricular zone, the largest stem cell niche in the mammalian brain. This niche generates up to 10,000 new neurons daily in adult mice and extends over a large spatial area with dorso-ventral and medio-lateral subdivisions. The stem cells of the ventricular-subventricular zone can be subdivided by their anatomical position and transcriptional profile, and the stem cell lineage can also be further subdivided into stages of pre- and post-natal quiescence and activation. Beyond the stem cells proper, additional differences exist in their interactions with other cellular constituents of the niche, including neurons, vasculature, and cerebrospinal fluid. These variations in stem cell potential and local interactions are discussed, as well as unanswered questions within this system.
Collapse
Affiliation(s)
- Gabrielle V Rushing
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - Madelyn K Bollig
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - Rebecca A Ihrie
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA. .,Neuroscience Program, Vanderbilt University, Nashville, TN, USA. .,Department of Neurological Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
52
|
Sato Y, Kiyozumi D, Futaki S, Nakano I, Shimono C, Kaneko N, Ikawa M, Okabe M, Sawamoto K, Sekiguchi K. Ventricular-subventricular zone fractones are speckled basement membranes that function as a neural stem cell niche. Mol Biol Cell 2018; 30:56-68. [PMID: 30379609 PMCID: PMC6337917 DOI: 10.1091/mbc.e18-05-0286] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Neural stem cells (NSCs) are retained in the adult ventricular–subventricular zone (V-SVZ), a specialized neurogenic niche with a unique cellular architecture. It currently remains unclear whether or how NSCs utilize basement membranes (BMs) in this niche. Here, we examine the molecular compositions and functions of BMs in the adult mouse V-SVZ. Whole-mount V-SVZ immunostaining revealed that fractones, which are fingerlike processes of extravascular BMs, are speckled BMs unconnected to the vasculature, and differ in their molecular composition from vascular BMs. Glial fibrillary acidic protein (GFAP)-positive astrocytes and NSCs produce and adhere to speckled BMs. Furthermore, Gfap-Cre-mediated Lamc1flox(E1605Q) knockin mice, in which integrin-binding activities of laminins are specifically nullified in GFAP-positive cells, exhibit a decreased number and size of speckled BMs and reduced in vitro neurosphere-forming activity. Our results reveal niche activities of fractones/speckled BMs for NSCs and provide molecular insights into how laminin–integrin interactions regulate NSCs in vivo.
Collapse
Affiliation(s)
- Yuya Sato
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Daiji Kiyozumi
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Sugiko Futaki
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Itsuko Nakano
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Chisei Shimono
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoko Kaneko
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8610, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masaru Okabe
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8610, Japan.,Division of Neural Development and Regeneration, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Kiyotoshi Sekiguchi
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.,Laboratory of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
53
|
Ma G, Abbasi F, Koch WT, Mostowski H, Varadkar P, Mccright B. Evaluation of the differentiation status of neural stem cells based on cell morphology and the expression of Notch and Sox2. Cytotherapy 2018; 20:1472-1485. [PMID: 30523789 DOI: 10.1016/j.jcyt.2018.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 12/14/2022]
Abstract
Neural stem cells (NSCs) isolated from a variety of sources are being developed as cellular therapies aimed at treating neurodegenerative diseases. During NSC culture and expansion it is important the cells do not differentiate prematurely because this may have an unfavorable effect on product quality and yield. In our study, we evaluated the use of Notch and Sox2 as markers for undifferentiated human and mouse NSCs. The expression of Notch2 and Sox2 during extensive-passage, low-oxygen culture and differentiation conditions were analyzed to confirm that the presence of these signature proteins directly correlates with the ability of NSCs to form new neurospheres and differentiate into multiple cell types. Using expression of Notch1, Notch2 and Sox2 as a reference, we then used flow cytometry to identify a specific morphological profile for undifferentiated murine and human NSCs. Our studies show that Notch and Sox2 expression, along with flow cytometry analysis, can be used to monitor the differentiation status of NSCs grown in culture for use in cellular therapies.
Collapse
Affiliation(s)
- Ge Ma
- US Food & Drug Administration, Center for Biologics Evaluation and Research, Office of Tissues and Advanced Therapies, Division of Cellular and Gene Therapies, Silver Spring, Maryland, USA
| | - Fatima Abbasi
- US Food & Drug Administration, Center for Biologics Evaluation and Research, Office of Tissues and Advanced Therapies, Division of Cellular and Gene Therapies, Silver Spring, Maryland, USA
| | - William T Koch
- US Food & Drug Administration, Center for Biologics Evaluation and Research, Office of Tissues and Advanced Therapies, Division of Cellular and Gene Therapies, Silver Spring, Maryland, USA
| | - Howard Mostowski
- US Food & Drug Administration, Center for Biologics Evaluation and Research, Office of Tissues and Advanced Therapies, Division of Cellular and Gene Therapies, Silver Spring, Maryland, USA
| | - Prajakta Varadkar
- US Food & Drug Administration, Center for Biologics Evaluation and Research, Office of Tissues and Advanced Therapies, Division of Cellular and Gene Therapies, Silver Spring, Maryland, USA
| | - Brent Mccright
- US Food & Drug Administration, Center for Biologics Evaluation and Research, Office of Tissues and Advanced Therapies, Division of Cellular and Gene Therapies, Silver Spring, Maryland, USA.
| |
Collapse
|
54
|
Adams KV, Morshead CM. Neural stem cell heterogeneity in the mammalian forebrain. Prog Neurobiol 2018; 170:2-36. [PMID: 29902499 DOI: 10.1016/j.pneurobio.2018.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 05/23/2018] [Accepted: 06/07/2018] [Indexed: 12/21/2022]
Abstract
The brain was long considered an organ that underwent very little change after development. It is now well established that the mammalian central nervous system contains neural stem cells that generate progeny that are capable of making new neurons, astrocytes, and oligodendrocytes throughout life. The field has advanced rapidly as it strives to understand the basic biology of these precursor cells, and explore their potential to promote brain repair. The purpose of this review is to present current knowledge about the diversity of neural stem cells in vitro and in vivo, and highlight distinctions between neural stem cell populations, throughout development, and within the niche. A comprehensive understanding of neural stem cell heterogeneity will provide insights into the cellular and molecular regulation of neural development and lifelong neurogenesis, and will guide the development of novel strategies to promote regeneration and neural repair.
Collapse
Affiliation(s)
- Kelsey V Adams
- Institute of Medical Science, Terrence Donnelly Centre, University of Toronto, Toronto ON, M5S 3E2, Canada.
| | - Cindi M Morshead
- Institute of Medical Science, Terrence Donnelly Centre, University of Toronto, Toronto ON, M5S 3E2, Canada; Department of Surgery, Division of Anatomy, Canada; Institute of Biomaterials and Biomedical Engineering, Canada; Rehabilitation Science Institute, University of Toronto, Canada.
| |
Collapse
|
55
|
Chang YH, Wu KC, Harn HJ, Lin SZ, Ding DC. Exosomes and Stem Cells in Degenerative Disease Diagnosis and Therapy. Cell Transplant 2018; 27:349-363. [PMID: 29692195 PMCID: PMC6038041 DOI: 10.1177/0963689717723636] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Stroke can cause death and disability, resulting in a huge burden on society. Parkinson’s disease (PD) is a chronic neurodegenerative disorder characterized by motor dysfunction. Osteoarthritis (OA) is a progressive degenerative joint disease characterized by cartilage destruction and osteophyte formation in the joints. Stem cell therapy may provide a biological treatment alternative to traditional pharmacological therapy. Mesenchymal stem cells (MSCs) are preferred because of their differentiation ability and possible derivation from many adult tissues. In addition, the paracrine effects of MSCs play crucial anti-inflammatory and immunosuppressive roles in immune cells. Extracellular vesicles (EVs) are vital mediators of cell-to-cell communication. Exosomes contain various molecules such as microRNA (miRNA), which mediates biological functions through gene regulation. Therefore, exosomes carrying miRNA or other molecules can enhance the therapeutic effects of MSC transplantation. MSC-derived exosomes have been investigated in various animal models representing stroke, PD, and OA. Exosomes are a subtype of EVs. This review article focuses on the mechanism and therapeutic potential of MSC-derived exosomes in stroke, PD, and OA in basic and clinical aspects.
Collapse
Affiliation(s)
- Yu-Hsun Chang
- 1 Department of Pediatrics, Buddhist Tzu Chi General Hospital, Hualien, Taiwan.,2 Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Kung-Chi Wu
- 3 Department of Orthopedics, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Horng-Jyh Harn
- 4 Department of Pathology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Shinn-Zong Lin
- 5 Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Dah-Ching Ding
- 2 Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,6 Department of Obstetrics and Gynecology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| |
Collapse
|
56
|
Su W, Matsumoto S, Sorg B, Sherman LS. Distinct roles for hyaluronan in neural stem cell niches and perineuronal nets. Matrix Biol 2018; 78-79:272-283. [PMID: 29408010 DOI: 10.1016/j.matbio.2018.01.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/25/2018] [Accepted: 01/28/2018] [Indexed: 12/15/2022]
Abstract
Adult neurogenesis in mammals is a tightly regulated process where neural stem cells (NSCs), especially in the subgranular zone (SGZ) of the hippocampal dentate gyrus, proliferate and differentiate into new neurons that form new circuits or integrate into old circuits involved in episodic memory, pattern discrimination, and emotional responses. Recent evidence suggests that changes in the hyaluronan (HA)-based extracellular matrix of the SGZ may regulate neurogenesis by controlling NSC proliferation and early steps in neuronal differentiation. These studies raise the intriguing possibility that perturbations in this matrix, including HA accumulation with aging, could impact adult neurogenesis and cognitive functions, and that alterations to this matrix could be beneficial following insults to the central nervous system that impact hippocampal functions.
Collapse
Affiliation(s)
- Weiping Su
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Steven Matsumoto
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Integrative Biosciences Department, School of Dentistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Barbara Sorg
- Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA 98686, USA
| | - Larry S Sherman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
57
|
Spéder P, Brand AH. Systemic and local cues drive neural stem cell niche remodelling during neurogenesis in Drosophila. eLife 2018; 7. [PMID: 29299997 PMCID: PMC5754201 DOI: 10.7554/elife.30413] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/13/2017] [Indexed: 12/21/2022] Open
Abstract
Successful neurogenesis requires adequate proliferation of neural stem cells (NSCs) and their progeny, followed by neuronal differentiation, maturation and survival. NSCs inhabit a complex cellular microenvironment, the niche, which influences their behaviour. To ensure sustained neurogenesis, niche cells must respond to extrinsic, environmental changes whilst fulfilling the intrinsic requirements of the neurogenic program and adapting their roles accordingly. However, very little is known about how different niche cells adjust their properties to such inputs. Here, we show that nutritional and NSC-derived signals induce the remodelling of Drosophila cortex glia, adapting this glial niche to the evolving needs of NSCs. First, nutrition-induced activation of PI3K/Akt drives the cortex glia to expand their membrane processes. Second, when NSCs emerge from quiescence to resume proliferation, they signal to glia to promote membrane remodelling and the formation of a bespoke structure around each NSC lineage. The remodelled glial niche is essential for newborn neuron survival.
Collapse
Affiliation(s)
- Pauline Spéder
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Andrea H Brand
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
58
|
Sinnaeve J, Mobley BC, Ihrie RA. Space Invaders: Brain Tumor Exploitation of the Stem Cell Niche. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:29-38. [PMID: 29024634 PMCID: PMC5745521 DOI: 10.1016/j.ajpath.2017.08.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/22/2017] [Accepted: 08/17/2017] [Indexed: 12/20/2022]
Abstract
Increasing evidence indicates that the adult neurogenic niche of the ventricular-subventricular zone (V-SVZ), beyond serving as a potential site of origin, affects the outcome of malignant brain cancers. Glioma contact with this niche predicts worse prognosis, suggesting a supportive role for the V-SVZ environment in tumor initiation or progression. In this review, we describe unique components of the V-SVZ that may permit or promote tumor growth within the region. Cell-cell interactions, soluble factors, and extracellular matrix composition are discussed, and the role of the niche in future therapies is explored. The purpose of this review is to highlight niche intrinsic factors that may promote or support malignant cell growth and maintenance, and point out how we might leverage these features to improve patient outcome.
Collapse
Affiliation(s)
- Justine Sinnaeve
- Departments of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Bret C Mobley
- Departments of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rebecca A Ihrie
- Departments of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
59
|
Choi SW, Lee JY, Kang KS. miRNAs in stem cell aging and age-related disease. Mech Ageing Dev 2017; 168:20-29. [DOI: 10.1016/j.mad.2017.08.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 07/21/2017] [Accepted: 08/21/2017] [Indexed: 02/07/2023]
|
60
|
Go and stop signals for glial regeneration. Curr Opin Neurobiol 2017; 47:182-187. [PMID: 29126016 PMCID: PMC6419527 DOI: 10.1016/j.conb.2017.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/16/2017] [Accepted: 10/10/2017] [Indexed: 12/22/2022]
Abstract
The regenerative response of ensheating glia to central nervous system (CNS) injury involves proliferation and differentiation, axonal re-enwrapment and some recovery of behaviour. Understanding this limited response could enable the enhancement of it. In Drosophila, the glial progenitor state is maintained by Notch, an activator of cell division and Prospero (Pros), a repressor. Injury provokes the activation of NFκB and up-regulation of Kon-tiki (Kon), driving cell proliferation. Homeostatic switch-off comes about as two negative feedback loops involving Pros terminate the response. Importantly, the functions of the kon and pros homologues NG2 and prox1, respectively, are conserved in mammalian NG2 glia. Controlling these genes is key for therapeutic manipulation of progenitors and stem cells to promote regeneration of the damaged CNS.
Collapse
|
61
|
Redondo PA, Pavlou M, Loizidou M, Cheema U. Elements of the niche for adult stem cell expansion. J Tissue Eng 2017; 8:2041731417725464. [PMID: 28890779 PMCID: PMC5574483 DOI: 10.1177/2041731417725464] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/18/2017] [Indexed: 12/21/2022] Open
Abstract
Adult stem cells are crucial for tissue homeostasis. These cells reside within exclusive locations in tissues, termed niches, which protect adult stem cell fidelity and regulate their many functions through biophysical-, biochemical- and cellular-mediated mechanisms. There is a growing understanding of how these mechanisms and their components contribute towards maintaining stem cell quiescence, self-renewal, expansion and differentiation patterns. In vitro expansion of adult stem cells is a powerful tool for understanding stem cell biology, and for tissue engineering and regenerative medicine applications. However, it is technically challenging, since adult stem cell removal from their native microenvironment has negative repercussions on their sustainability. In this review, we overview specific elements of the biomimetic niche and how recreating such elements can help in vitro propagation of adult stem cells.
Collapse
Affiliation(s)
- Patricia A Redondo
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Marina Pavlou
- Institute of Orthopaedics & Musculoskeletal Science, University College London, London, UK
| | - Marilena Loizidou
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Umber Cheema
- Institute of Orthopaedics & Musculoskeletal Science, University College London, London, UK
| |
Collapse
|
62
|
In Vivo Analysis of the Neurovascular Niche in the Developing Xenopus Brain. eNeuro 2017; 4:eN-NWR-0030-17. [PMID: 28795134 PMCID: PMC5548361 DOI: 10.1523/eneuro.0030-17.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 12/17/2022] Open
Abstract
The neurovascular niche is a specialized microenvironment formed by the interactions between neural progenitor cells (NPCs) and the vasculature. While it is thought to regulate adult neurogenesis by signaling through vascular-derived soluble cues or contacted-mediated cues, less is known about the neurovascular niche during development. In Xenopus laevis tadpole brain, NPCs line the ventricle and extend radial processes tipped with endfeet to the vascularized pial surface. Using in vivo labeling and time-lapse imaging in tadpoles, we find that intracardial injection of fluorescent tracers rapidly labels Sox2/3-expressing NPCs and that vascular-circulating molecules are endocytosed by NPC endfeet. Confocal imaging indicates that about half of the endfeet appear to appose the vasculature, and time-lapse analysis of NPC proliferation and endfeet-vascular interactions suggest that proliferative activity does not correlate with stable vascular apposition. Together, these findings characterize the neurovascular niche in the developing brain and suggest that, while signaling to NPCs may occur through vascular-derived soluble cues, stable contact between NPC endfeet and the vasculature is not required for developmental neurogenesis.
Collapse
|
63
|
Abstract
Cell and tissue specific somatic stem cells develop as dynamic populations of precursor cells to discrete tissue and organ differentiation during embryonic and fetal stages and their potential evolves with development. Some of their progeny are sequestered into separate cell niches of tissues as adult somatic stem cells at various times during organ development and differentiation These are diverse cell populations of stem and progenitor cells that respond to homeostatic needs for cell and tissue maintenance and the cycling of differentiated cells for physiological/ endocrinological changes. Nominally, multipotent stem cells in one or more niches follow specific lineages of differentiation that can be followed by diverse markers of differentiation. The activation of precursors appears to be stochastic and results in a population of heterogeneous progenitor cells. When variations in the functional need of the tissue or organ occurs, the progenitor cells exhibit flexibility in their differentiation capacity. Regulation of the progenitors is the result of signals from the stem cell niche that can cause adaptive changes in the behavior or function of the stem -progenitor cell lineage. A possible mechanism may be alteration in the differentiation capacity of the resident or introduced cells. Certain quiescent stem cells also serve as a potential cell reservoir for trauma induced cell regeneration through adaptive changes in differentiation of stem cells, progenitor cells and differentiated cells. If the stem-progenitor cell population is normally depleted or destroyed by trauma, differentiated cells from the niche microenvironment can restore the specific stem potency which suggests the process of dedifferentiation.
Collapse
Affiliation(s)
- Kenyon S Tweedell
- Department of Biological Sciences, University of Notre Dame, Notre Dame IN 46556 USA
| |
Collapse
|
64
|
Paul A, Chaker Z, Doetsch F. Hypothalamic regulation of regionally distinct adult neural stem cells and neurogenesis. Science 2017; 356:1383-1386. [PMID: 28619719 DOI: 10.1126/science.aal3839] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 06/01/2017] [Indexed: 12/17/2022]
Abstract
Neural stem cells (NSCs) in specialized niches in the adult mammalian brain generate neurons throughout life. NSCs in the adult mouse ventricular-subventricular zone (V-SVZ) exhibit a regional identity and, depending on their location, generate distinct olfactory bulb interneuron subtypes. Here, we show that the hypothalamus, a brain area regulating physiological states, provides long-range regionalized input to the V-SVZ niche and can regulate specific NSC subpopulations. Hypothalamic proopiomelanocortin neurons selectively innervate the anterior ventral V-SVZ and promote the proliferation of Nkx2.1+ NSCs and the generation of deep granule neurons. Accordingly, hunger and satiety regulate adult neurogenesis by modulating the activity of this hypothalamic-V-SVZ connection. Our findings reveal that neural circuitry, via mosaic innervation of the V-SVZ, can recruit distinct NSC pools, allowing on-demand neurogenesis in response to physiology and environmental signals.
Collapse
Affiliation(s)
- Alex Paul
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA.,Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Zayna Chaker
- Biozentrum, University of Basel, CH 4056 Basel, Switzerland
| | - Fiona Doetsch
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA. .,Biozentrum, University of Basel, CH 4056 Basel, Switzerland
| |
Collapse
|
65
|
Notch signaling regulates metabolic heterogeneity in glioblastoma stem cells. Oncotarget 2017; 8:64932-64953. [PMID: 29029402 PMCID: PMC5630302 DOI: 10.18632/oncotarget.18117] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 05/10/2017] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) stem cells (GSCs) reside in both hypoxic and vascular microenvironments within tumors. The molecular mechanisms that allow GSCs to occupy such contrasting niches are not understood. We used patient-derived GBM cultures to identify GSC subtypes with differential activation of Notch signaling, which co-exist in tumors but occupy distinct niches and match their metabolism accordingly. Multipotent GSCs with Notch pathway activation reside in perivascular niches, and are unable to entrain anaerobic glycolysis during hypoxia. In contrast, most CD133-expressing GSCs do not depend on canonical Notch signaling, populate tumors regardless of local vascularity and selectively utilize anaerobic glycolysis to expand in hypoxia. Ectopic activation of Notch signaling in CD133-expressing GSCs is sufficient to suppress anaerobic glycolysis and resistance to hypoxia. These findings demonstrate a novel role for Notch signaling in regulating GSC metabolism and suggest intratumoral GSC heterogeneity ensures metabolic adaptations to support tumor growth in diverse tumor microenvironments.
Collapse
|
66
|
Jin Y, Barnett A, Zhang Y, Yu X, Luo Y. Poststroke Sonic Hedgehog Agonist Treatment Improves Functional Recovery by Enhancing Neurogenesis and Angiogenesis. Stroke 2017; 48:1636-1645. [PMID: 28487338 DOI: 10.1161/strokeaha.117.016650] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/20/2017] [Accepted: 03/30/2017] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND PURPOSE Because of the limitation in treatment window of the r-tPA (recombinant tissue-type plasminogen activator), the development of delayed treatment for stroke is needed. In this study, we examined the efficacy of delayed poststroke treatment (post 3-8 days) of the sonic hedgehog pathway agonist on functional recovery and the underlying mechanisms. METHODS We evaluated functional recovery at 1 month after stroke using locomotion analysis and Barnes maze test for cognitive function. We used a genetically inducible neural stem cell-specific reporter mouse line (nestin-CreERT2-R26R-YFP) to label and track their proliferation, survival, and differentiation in ischemic brain. Brain tissue damage, angiogenesis, and cerebral blood flow recovery was evaluated using magnetic resonance imaging techniques and immunostaining. RESULTS Our results show that delayed treatment of sonic hedgehog pathway agonist in stroke mice results in enhanced functional recovery both in locomotor function and in cognitive function at 1 month after stroke. Furthermore, using the Nestincre-ERT2-YFP mice, we showed that poststroke sonic hedgehog pathway agonist treatment increased surviving newly born cells derived from both subventricular zone and subgranular zone neural stem cells, total surviving DCX+ (Doublecortin) neuroblast cells, and neurons (NeuN+/YFP+) in the ischemic brain. Sonic hedgehog pathway agonist treatment also improved the brain tissue repair in ischemic region supported by our T2-weighted magnetic resonance imaging, cerebral blood flow map by arterial spin labeling, and immunohistochemistry (α-smooth muscle actin and CD31 immunostaining). CONCLUSIONS These data confirm an important role for the hedgehog pathway in poststroke brain repair and functional recovery, suggesting a prolonged treatment window for potential treatment strategy to modulate sonic hedgehog pathway after stroke.
Collapse
Affiliation(s)
- Yongming Jin
- From the Department of Neurological Surgery (Y.J., A.B., Y.L.) and Department of Biomedical Engineering (Y.Z., X.Y.), Case Western Reserve University, Cleveland, OH
| | - Austin Barnett
- From the Department of Neurological Surgery (Y.J., A.B., Y.L.) and Department of Biomedical Engineering (Y.Z., X.Y.), Case Western Reserve University, Cleveland, OH
| | - Yifan Zhang
- From the Department of Neurological Surgery (Y.J., A.B., Y.L.) and Department of Biomedical Engineering (Y.Z., X.Y.), Case Western Reserve University, Cleveland, OH
| | - Xin Yu
- From the Department of Neurological Surgery (Y.J., A.B., Y.L.) and Department of Biomedical Engineering (Y.Z., X.Y.), Case Western Reserve University, Cleveland, OH
| | - Yu Luo
- From the Department of Neurological Surgery (Y.J., A.B., Y.L.) and Department of Biomedical Engineering (Y.Z., X.Y.), Case Western Reserve University, Cleveland, OH.
| |
Collapse
|
67
|
Bhattarai P, Thomas AK, Zhang Y, Kizil C. The effects of aging on Amyloid-β42-induced neurodegeneration and regeneration in adult zebrafish brain. NEUROGENESIS 2017; 4:e1322666. [PMID: 28656156 DOI: 10.1080/23262133.2017.1322666] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 10/19/2022]
Abstract
Alzheimer disease is the most prevalent neurodegenerative disease and is associated with aggregation of Amyloid-β42 peptides. In mammals, Amyloid-β42 causes impaired neural stem/progenitor cell (NSPC) proliferation and neurogenesis, which exacerbate with aging. The molecular programs necessary to enhance NSPC proliferation and neurogenesis in our brains to mount successful regeneration are largely unknown. Therefore, to identify the molecular basis of effective brain regeneration, we previously established an Amyloid-β42 model in adult zebrafish that displayed Alzheimer-like phenotypes reminiscent of humans. Interestingly, zebrafish exhibited enhanced NSPC proliferation and neurogenesis after microinjection of Amyloid-β42 peptide. Here, we compare old and young fish to address the effects of aging on regenerative ability after Amyloid-β42 deposition. We found that aging does not affect the rate of NSPC proliferation but reduces the neurogenic response and microglia/macrophage activation after microinjection of Amyloid-β42 in zebrafish, suggesting an important link between aging, neuroinflammation, regenerative neurogenesis and neural stem cell plasticity.
Collapse
Affiliation(s)
- Prabesh Bhattarai
- German Centre for Neurodegenerative Diseases (DZNE) Dresden within Helmholtz Association, Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Alvin Kuriakose Thomas
- B CUBE, Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Yixin Zhang
- B CUBE, Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Caghan Kizil
- German Centre for Neurodegenerative Diseases (DZNE) Dresden within Helmholtz Association, Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
68
|
Brunet A, Rando TA. Interaction between epigenetic and metabolism in aging stem cells. Curr Opin Cell Biol 2017; 45:1-7. [PMID: 28129586 PMCID: PMC5482778 DOI: 10.1016/j.ceb.2016.12.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 12/31/2016] [Indexed: 01/03/2023]
Abstract
Aging is accompanied by a decline in tissue function, regeneration, and repair. A large part of this decline is caused by the deterioration of tissue stem cell function. Understanding the mechanisms that drive stem cell aging and how to counteract them is a critical step for enhancing tissue repair and maintenance during aging. Emerging evidence indicates that epigenetic modifiers and metabolism regulators interact to impact lifespan, suggesting that this mechanism may also affect stem cell function with age. This review focuses on the interaction between chromatin and metabolism in the regulation of tissue stem cells during aging. We also discuss how these mechanisms integrate environmental stimuli such as nutrient stress to regulate stem cell function. Finally, this review examines new perspectives for regeneration, rejuvenation, and treatment of age-related decline of stem cell function.
Collapse
Affiliation(s)
- Anne Brunet
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University, USA.
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University, USA; Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
69
|
The vasculature as a neural stem cell niche. Neurobiol Dis 2017; 107:4-14. [PMID: 28132930 DOI: 10.1016/j.nbd.2017.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 01/06/2017] [Accepted: 01/25/2017] [Indexed: 12/31/2022] Open
Abstract
Neural stem cells (NSCs) are multipotent, self-renewing progenitors that generate progeny that differentiate into neurons and glia. NSCs in the adult mammalian brain are generally quiescent. Environmental stimuli such as learning or exercise can activate quiescent NSCs, inducing them to proliferate and produce new neurons and glia. How are these behaviours coordinated? The neurovasculature, the circulatory system of the brain, is a key component of the NSC microenvironment, or 'niche'. Instructive signals from the neurovasculature direct NSC quiescence, proliferation, self-renewal and differentiation. During ageing, a breakdown in the niche accompanies NSC dysfunction and cognitive decline. There is much interest in reversing these changes and enhancing NSC activity by targeting the neurovasculature therapeutically. Here we discuss principles of neurovasculature-NSC crosstalk, and the implications for the design of NSC-based therapies. We also consider the emerging contributions to this field of the model organism Drosophila melanogaster.
Collapse
|
70
|
Zhang R, Zhang Z, Chopp M. Function of neural stem cells in ischemic brain repair processes. J Cereb Blood Flow Metab 2016; 36:2034-2043. [PMID: 27742890 PMCID: PMC5363673 DOI: 10.1177/0271678x16674487] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 12/21/2022]
Abstract
Hypoxic/ischemic injury is the single most important cause of disabilities in infants, while stroke remains a leading cause of morbidity in children and adults around the world. The injured brain has limited repair capacity, and thereby only modest improvement of neurological function is evident post injury. In rodents, embryonic neural stem cells in the ventricular zone generate cortical neurons, and adult neural stem cells in the ventricular-subventricular zone of the lateral ventricle produce new neurons through animal life. In addition to generation of new neurons, neural stem cells contribute to oligodendrogenesis. Neurogenesis and oligodendrogenesis are essential for repair of injured brain. Much progress has been made in preclinical studies on elucidating the cellular and molecular mechanisms that control and coordinate neurogenesis and oligodendrogenesis in perinatal hypoxic/ischemic injury and the adult ischemic brain. This article will review these findings with a focus on the ventricular-subventricular zone neurogenic niche and discuss potential applications to facilitate endogenous neurogenesis and thereby to improve neurological function post perinatal hypoxic/ischemic injury and stroke.
Collapse
Affiliation(s)
- Ruilan Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, USA
| | | | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, USA
- Department of Physics, Oakland University, Rochester, USA
| |
Collapse
|
71
|
Currie KW, Molinaro AM, Pearson BJ. Neuronal sources of hedgehog modulate neurogenesis in the adult planarian brain. eLife 2016; 5:19735. [PMID: 27864883 PMCID: PMC5153250 DOI: 10.7554/elife.19735] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 11/18/2016] [Indexed: 12/13/2022] Open
Abstract
The asexual freshwater planarian is a constitutive adult, whose central nervous system (CNS) is in a state of constant homeostatic neurogenesis. However, very little is known about the extrinsic signals that act on planarian stem cells to modulate rates of neurogenesis. We have identified two planarian homeobox transcription factors, Smed-nkx2.1 and Smed-arx, which are required for the maintenance of cholinergic, GABAergic, and octopaminergic neurons in the planarian CNS. These very same neurons also produce the planarian hedgehog ligand (Smed-hh), which appears to communicate with brain-adjacent stem cells to promote normal levels of neurogenesis. Planarian stem cells nearby the brain express core hh signal transduction genes, and consistent hh signaling levels are required to maintain normal production of neural progenitor cells and new mature cholinergic neurons, revealing an important mitogenic role for the planarian hh signaling molecule in the adult CNS. DOI:http://dx.doi.org/10.7554/eLife.19735.001 Most animals can continue to generate and add new neurons in their nervous system into adulthood, though the process is often tightly regulated. In adult humans, only a small number of neurons are made or lost, such that the fewer than 2% of the neurons in the nervous will change over, or “turnover”, the course of a year. The turnover of neurons in some other animals is much higher than it is in humans. A freshwater flatworm, called Schmidtea mediterranea, is one example of such an animal that can even regenerate an entirely new brain if its head is decapitated. These flatworms have a large population of adult stem cells, which makes these high rates of neuron production and regeneration possible. However, it is largely unknown if this population contains stem cells that can only become new neurons, in other words “dedicated neuronal stem cells”. Moreover, it is also not clear what kinds of signals communicate with these stem cells to promote the production of new neurons. In animals from flies to humans, a signaling molecule encoded by a gene called hedgehog forms part of a signaling pathway that can promote neuron production during development. Therefore, Currie et al. asked if the hedgehog signaling molecule might communicate with the stem cells in adult flatworms to control how many new neurons they produce. The experiments revealed that the hedgehog signaling molecule is almost exclusively produced by the flatworm’s brain and the pair of nerve cords that run the length of the flatworm. Currie et al. then found a smaller group of cells close to the flatworm’s brain that looked like dedicated neural stem cells. These cells can receive the hedgehog signals, and further experiments showed that flatworm’s brain requires hedgehog signaling to be able to produce new neurons at its normal level. The hedgehog signaling molecule is likely only one of many signaling molecules that regulate the production of new neurons in flatworms. It will be important to uncover these additional signals and understand how they work in concert. In the future, a better understanding of this process will help efforts to devise ways to induce humans to replace neurons that are lost following injury or neurodegenerative diseases. DOI:http://dx.doi.org/10.7554/eLife.19735.002
Collapse
Affiliation(s)
- Ko W Currie
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Alyssa M Molinaro
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Bret J Pearson
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Ontario Institute for Cancer Research, Toronto, Canada
| |
Collapse
|
72
|
Chaker Z, Codega P, Doetsch F. A mosaic world: puzzles revealed by adult neural stem cell heterogeneity. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2016; 5:640-658. [PMID: 27647730 PMCID: PMC5113677 DOI: 10.1002/wdev.248] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/11/2016] [Accepted: 07/26/2016] [Indexed: 12/28/2022]
Abstract
Neural stem cells (NSCs) reside in specialized niches in the adult mammalian brain. The ventricular-subventricular zone (V-SVZ), adjacent to the lateral ventricles, gives rise to olfactory bulb (OB) neurons, and some astrocytes and oligodendrocytes throughout life. In vitro assays have been widely used to retrospectively identify NSCs. However, cells that behave as stem cells in vitro do not reflect the identity, diversity, and behavior of NSCs in vivo. Novel tools including fluorescence activated cell sorting, lineage-tracing, and clonal analysis have uncovered multiple layers of adult V-SVZ NSC heterogeneity, including proliferation state and regional identity. In light of these findings, we reexamine the concept of adult NSCs, considering heterogeneity as a key parameter for analyzing their dynamics in vivo. V-SVZ NSCs form a mosaic of quiescent (qNSCs) and activated cells (aNSCs) that reside in regionally distinct microdomains, reflecting their regional embryonic origins, and give rise to specific subtypes of OB interneurons. Prospective purification and transcriptome analysis of qNSCs and aNSCs has illuminated their molecular and functional properties. qNSCs are slowly dividing, have slow kinetics of neurogenesis in vivo, can be recruited to regenerate the V-SVZ, and only rarely give rise to in vitro colonies. aNSCs are highly proliferative, undergo rapid clonal expansion of the neurogenic lineage in vivo, and readily form in vitro colonies. Key open questions remain about stem cell dynamics in vivo and the lineage relationship between qNSCs and aNSCs under homeostasis and regeneration, as well as context-dependent plasticity of regionally distinct adult NSCs under different external stimuli. WIREs Dev Biol 2016, 5:640-658. doi: 10.1002/wdev.248 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Zayna Chaker
- Biozentrum, University of Basel, Basel, Switzerland
| | - Paolo Codega
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Fiona Doetsch
- Biozentrum, University of Basel, Basel, Switzerland.
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
73
|
Gonzalez-Fernandez C, Arevalo-Martin A, Paniagua-Torija B, Ferrer I, Rodriguez FJ, Garcia-Ovejero D. Wnts Are Expressed in the Ependymal Region of the Adult Spinal Cord. Mol Neurobiol 2016; 54:6342-6355. [PMID: 27722925 DOI: 10.1007/s12035-016-0132-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/14/2016] [Indexed: 12/21/2022]
Abstract
The Wnt family of proteins plays key roles during central nervous system development and in several physiological processes during adulthood. Recently, experimental evidence has linked Wnt-related genes to regulation and maintenance of stem cells in the adult neurogenic niches. In the spinal cord, the ependymal cells surrounding the central canal form one of those niches, but little is known about their Wnt expression patterns. Using microdissection followed by TaqMan® low-density arrays, we show here that the ependymal regions of young, mature rats and adult humans express several Wnt-related genes, including ligands, conventional and non-conventional receptors, co-receptors, and soluble inhibitors. We found 13 genes shared between rats and humans, 4 exclusively expressed in rats and 9 expressed only in humans. Also, we observed a reduction with age on spontaneous proliferation of ependymal cells in rats paralleled by a decrease in the expression of Fzd1, Fzd8, and Fzd9. Our results suggest a role for Wnts in the regulation of the adult spinal cord neurogenic niche and provide new data on the specific differences in this region between humans and rodents.
Collapse
Affiliation(s)
- Carlos Gonzalez-Fernandez
- Laboratory of Molecular Neurology, Hospital Nacional de Paraplejicos (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain
| | - Angel Arevalo-Martin
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain
| | - Beatriz Paniagua-Torija
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain
| | - Isidro Ferrer
- Institut de Neuropatologia, Serveid'AnatomiaPatològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
| | - Francisco J Rodriguez
- Laboratory of Molecular Neurology, Hospital Nacional de Paraplejicos (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain.
| | - Daniel Garcia-Ovejero
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain.
| |
Collapse
|
74
|
Zhang Z, Chopp M. Neural Stem Cells and Ischemic Brain. J Stroke 2016; 18:267-272. [PMID: 27488979 PMCID: PMC5066435 DOI: 10.5853/jos.2016.00206] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/13/2016] [Accepted: 05/18/2016] [Indexed: 01/19/2023] Open
Abstract
Stroke activates neural stem cells in the ventricular-subventricular zone (V/SVZ) of the lateral ventricle, which increases neuroblasts and oligodendrocyte progenitor cells (OPCs). Within the ischemic brain, neural stem cells, neuroblasts and OPCs appear to actively communicate with cerebral endothelial cells and other brain parenchymal cells to mediate ischemic brain repair; however, stroke-induced neurogenesis unlikely plays any significant roles in neuronal replacement. In this mini-review, we will discuss recent findings how intercellular communications between stroke-induced neurogenesis and oligodendrogenesis and brain parenchymal cells could potentially facilitate brain repair processes.
Collapse
Affiliation(s)
| | - Michael Chopp
- Henry Ford Hospital, Michigan, United States.,Department of Physics, Oakland University, Rochester, Michigan, United States
| |
Collapse
|
75
|
Silva-Vargas V, Maldonado-Soto AR, Mizrak D, Codega P, Doetsch F. Age-Dependent Niche Signals from the Choroid Plexus Regulate Adult Neural Stem Cells. Cell Stem Cell 2016; 19:643-652. [PMID: 27452173 DOI: 10.1016/j.stem.2016.06.013] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 05/04/2016] [Accepted: 06/20/2016] [Indexed: 10/21/2022]
Abstract
Specialized niches support the lifelong maintenance and function of tissue-specific stem cells. Adult neural stem cells in the ventricular-subventricular zone (V-SVZ) contact the cerebrospinal fluid (CSF), which flows through the lateral ventricles. A largely ignored component of the V-SVZ stem cell niche is the lateral ventricle choroid plexus (LVCP), a primary producer of CSF. Here we show that the LVCP, in addition to performing important homeostatic support functions, secretes factors that promote colony formation and proliferation of purified quiescent and activated V-SVZ stem cells and transit-amplifying cells. The functional effect of the LVCP secretome changes throughout the lifespan, with activated neural stem cells being especially sensitive to age-related changes. Transcriptome analysis identified multiple factors that recruit colony formation and highlights novel facets of LVCP function. Thus, the LVCP is a key niche compartment that translates physiological changes into molecular signals directly affecting neural stem cell behavior.
Collapse
Affiliation(s)
- Violeta Silva-Vargas
- Biozentrum, University of Basel, 4056 Basel, Switzerland; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | | | - Dogukan Mizrak
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Paolo Codega
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Fiona Doetsch
- Biozentrum, University of Basel, 4056 Basel, Switzerland; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA; Department of Neuroscience, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
76
|
Abstract
Stem cells hold great promise in treating many diseases either through promoting endogenous cell repair or through direct cell transplants. In order to maximize their potential, understanding the fundamental signals and mechanisms that regulate their behavior is essential. The extracellular matrix (ECM) is one such component involved in mediating stem cell fate. Recent studies have made significant progress in understanding stem cell-ECM interactions. Technological developments have provided greater clarity in how cells may sense and respond to the ECM, in particular the physical properties of the matrix. This review summarizes recent developments, providing illustrative examples of the different modes with which the ECM controls both embryonic and adult stem cell behavior.
Collapse
|
77
|
Azari H, Reynolds BA. In Vitro Models for Neurogenesis. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a021279. [PMID: 26438595 DOI: 10.1101/cshperspect.a021279] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The process of generating new neurons of different phenotype and function from undifferentiated stem and progenitor cells starts at very early stages of development and continues in discrete regions of the mammalian nervous system throughout life. Understanding mechanisms underlying neuronal cell development, biology, function, and interaction with other cells, especially in the neurogenic niche of fully developed adults, is important in defining and developing new therapeutic regimes in regenerative neuroscience. Studying these complex and dynamic processes in vivo is challenging because of the complexity of the nervous system and the presence of many known and unknown confounding variables. However, the challenges could be overcome with simple and robust in vitro models that more or less recapitulate the in vivo events. In this work, we will present an overview of present available in vitro cell-based models of neurogenesis.
Collapse
Affiliation(s)
- Hassan Azari
- Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, Florida 32611 Neural Stem Cell and Regenerative Neuroscience Laboratory, Department of Anatomical Sciences & Shiraz Stem Cell Institute, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Brent A Reynolds
- Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
78
|
Qiao SP, Zhao YF, Li CF, Yin YB, Meng QY, Lin FH, Liu Y, Hou XL, Guo K, Chen XB, Tian WM. An alginate-based platform for cancer stem cell research. Acta Biomater 2016; 37:83-92. [PMID: 27109764 DOI: 10.1016/j.actbio.2016.04.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 12/14/2022]
Abstract
UNLABELLED As the primary determinants of the clinical behaviors of human cancers, the discovery of cancer stem cells (CSCs) represents an ideal target for novel anti-cancer therapies (Kievit et al., 2014). Notably, CSCs are difficult to propagate in vitro, which severely restricts the study of CSC biology and the development of therapeutic agents. Emerging evidence indicates that CSCs rely on a niche that controls their differentiation and proliferation, as is the case with normal stem cells (NSCs). Replicating the in vivo CSC microenvironment in vitro using three-dimensional (3D) porous scaffolds can provide means to effectively generate CSCs, thus enabling the discovery of CSC biology. This paper presents our study on a novel alginate-based platform for mimicking the CSC niche to promote CSC proliferation and enrichment. In this study, we used a versatile mouse 4T1 breast cancer model to independently evaluate the matrix parameters of a CSC niche - including the material's mechanical properties, cytokine immobilization, and the composition of the extracellular matrix's (ECM's) molecular impact - on CSC proliferation and enrichment. On this basis, the optimal stiffness and concentration of hyaluronic acid (HA), as well as epidermal growth factor and basic fibroblast growth factor immobilization, were identified to establish the platform for mimicking the 4T1 breast CSCs (4T1 CSCs) niche. The 4T1 CSCs obtained from the platform show increased expression of the genes involved in breast CSC and NSC, as compared to general 2D or 3D culture, and 4T1 CSCs were also demonstrated to have the ability to quickly form a subcutaneous tumor in homologous Balb/c mice in vivo. In addition, the platform can be adjusted according to different parameters for CSC screening. Our results indicate that our platform offers a simple and efficient means to isolate and enrich CSCs in vitro, which can help researchers better understand CSC biology and thus develop more effective therapeutic agents to treat cancer. STATEMENT OF SIGNIFICANCE As the primary determinants of the clinical behaviors of human cancers, the discovery of cancer stem cells (CSCs) represents an ideal target for novel anti-cancer therapies. However, CSCs are difficult to propagate in vitro, which severely restricts the study of CSC biology and the development of therapeutic agents. Emerging evidence indicates that CSCs rely on a niche that controls their differentiation and proliferation, as is the case with normal stem cells (NSCs). Replicating the in vivo CSC microenvironment in vitro using three-dimensional (3D) porous scaffolds can provide means to effectively generate CSCs, thus enabling the discovery of CSC biology. In our study, a novel alginate-based platform were developed for mimicking the CSC niche to promote CSC proliferation and enrichment.
Collapse
Affiliation(s)
- Shu-Pei Qiao
- Bio-X Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, PR China
| | - Yu-Fang Zhao
- Bio-X Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, PR China
| | - Chun-Feng Li
- Bio-X Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, PR China
| | - Yan-Bin Yin
- Bio-X Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, PR China
| | - Qing-Yuan Meng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, PR China
| | - Feng-Huei Lin
- Division of Biomedical Engineering and Nanomedicine Research, National Health Research Institutes, Miaoli, Taiwan, ROC; Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan, ROC
| | - Yi Liu
- Bio-X Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, PR China
| | - Xiao-Lu Hou
- Bio-X Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, PR China
| | - Kai Guo
- Bio-X Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, PR China
| | - Xiong-Biao Chen
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Canada; Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Wei-Ming Tian
- Bio-X Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, PR China.
| |
Collapse
|
79
|
Hollands C, Bartolotti N, Lazarov O. Alzheimer's Disease and Hippocampal Adult Neurogenesis; Exploring Shared Mechanisms. Front Neurosci 2016; 10:178. [PMID: 27199641 PMCID: PMC4853383 DOI: 10.3389/fnins.2016.00178] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/07/2016] [Indexed: 12/22/2022] Open
Abstract
New neurons incorporate into the granular cell layer of the dentate gyrus throughout life. Neurogenesis is modulated by behavior and plays a major role in hippocampal plasticity. Along with older mature neurons, new neurons structure the dentate gyrus, and determine its function. Recent data suggest that the level of hippocampal neurogenesis is substantial in the human brain, suggesting that neurogenesis may have important implications for human cognition. In support of that, impaired neurogenesis compromises hippocampal function and plays a role in cognitive deficits in Alzheimer's disease mouse models. We review current work suggesting that neuronal differentiation is defective in Alzheimer's disease, leading to dysfunction of the dentate gyrus. Additionally, alterations in critical signals regulating neurogenesis, such as presenilin-1, Notch 1, soluble amyloid precursor protein, CREB, and β-catenin underlie dysfunctional neurogenesis in Alzheimer's disease. Lastly, we discuss the detectability of neurogenesis in the live mouse and human brain, as well as the therapeutic implications of enhancing neurogenesis for the treatment of cognitive deficits and Alzheimer's disease.
Collapse
Affiliation(s)
- Carolyn Hollands
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago Chicago, IL, USA
| | - Nancy Bartolotti
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago Chicago, IL, USA
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago Chicago, IL, USA
| |
Collapse
|
80
|
Rafii S, Butler JM, Ding BS. Angiocrine functions of organ-specific endothelial cells. Nature 2016; 529:316-25. [PMID: 26791722 DOI: 10.1038/nature17040] [Citation(s) in RCA: 648] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 11/26/2015] [Indexed: 12/13/2022]
Abstract
Endothelial cells that line capillaries are not just passive conduits for delivering blood. Tissue-specific endothelium establishes specialized vascular niches that deploy sets of growth factors, known as angiocrine factors. These cues participate actively in the induction, specification, patterning and guidance of organ regeneration, as well as in the maintainance of homeostasis and metabolism. When upregulated following injury, they orchestrate self-renewal and differentiation of tissue-specific resident stem and progenitor cells into functional organs. Uncovering the mechanisms by which organotypic endothelium distributes physiological levels of angiocrine factors both spatially and temporally will lay the foundation for clinical trials that promote organ repair without scarring.
Collapse
Affiliation(s)
- Shahin Rafii
- Ansary Stem Cell Institute, Department of Medicine, Division of Regenerative Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065, USA
| | - Jason M Butler
- Ansary Stem Cell Institute, Department of Medicine, Division of Regenerative Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065, USA
| | - Bi-Sen Ding
- Ansary Stem Cell Institute, Department of Medicine, Division of Regenerative Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065, USA
| |
Collapse
|
81
|
Fine processes of Nestin-GFP-positive radial glia-like stem cells in the adult dentate gyrus ensheathe local synapses and vasculature. Proc Natl Acad Sci U S A 2016; 113:E2536-45. [PMID: 27091993 DOI: 10.1073/pnas.1514652113] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adult hippocampal neurogenesis relies on the activation of neural stem cells in the dentate gyrus, their division, and differentiation of their progeny into mature granule neurons. The complex morphology of radial glia-like (RGL) stem cells suggests that these cells establish numerous contacts with the cellular components of the neurogenic niche that may play a crucial role in the regulation of RGL stem cell activity. However, the morphology of RGL stem cells remains poorly described. Here, we used light microscopy and electron microscopy to examine Nestin-GFP transgenic mice and provide a detailed ultrastructural reconstruction analysis of Nestin-GFP-positive RGL cells of the dentate gyrus. We show that their primary processes follow a tortuous path from the subgranular zone through the granule cell layer and ensheathe local synapses and vasculature in the inner molecular layer. They share the ensheathing of synapses and vasculature with astrocytic processes and adhere to the adjacent processes of astrocytes. This extensive interaction of processes with their local environment could allow them to be uniquely receptive to signals from local neurons, glia, and vasculature, which may regulate their fate.
Collapse
|
82
|
Cullen CL, Young KM. How Does Transcranial Magnetic Stimulation Influence Glial Cells in the Central Nervous System? Front Neural Circuits 2016; 10:26. [PMID: 27092058 PMCID: PMC4820444 DOI: 10.3389/fncir.2016.00026] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/23/2016] [Indexed: 12/13/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is widely used in the clinic, and while it has a direct effect on neuronal excitability, the beneficial effects experienced by patients are likely to include the indirect activation of other cell types. Research conducted over the past two decades has made it increasingly clear that a population of non-neuronal cells, collectively known as glia, respond to and facilitate neuronal signaling. Each glial cell type has the ability to respond to electrical activity directly or indirectly, making them likely cellular effectors of TMS. TMS has been shown to enhance adult neural stem and progenitor cell (NSPC) proliferation, but the effect on cell survival and differentiation is less certain. Furthermore there is limited information regarding the response of astrocytes and microglia to TMS, and a complete paucity of data relating to the response of oligodendrocyte-lineage cells to this treatment. However, due to the critical and yet multifaceted role of glial cells in the central nervous system (CNS), the influence that TMS has on glial cells is certainly an area that warrants careful examination.
Collapse
Affiliation(s)
- Carlie L. Cullen
- Menzies Institute for Medical Research, University of TasmaniaHobart, TAS, Australia
| | - Kaylene M. Young
- Menzies Institute for Medical Research, University of TasmaniaHobart, TAS, Australia
| |
Collapse
|
83
|
Abstract
Stroke is one of the leading causes of death and disability worldwide. Stroke recovery is orchestrated by a set of highly interactive processes that involve the neurovascular unit and neural stem cells. Emerging data suggest that exosomes play an important role in intercellular communication by transferring exosomal protein and RNA cargo between source and target cells in the brain. Here, we review these advances and their impact on promoting coupled brain remodeling processes after stroke. The use of exosomes for therapeutic applications in stroke is also highlighted.
Collapse
Affiliation(s)
- Zheng Gang Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
- Department of Physics, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
84
|
Porlan E, Martí-Prado B, Consiglio A, Fariñas I. Stable and Efficient Genetic Modification of Cells in the Adult Mouse V-SVZ for the Analysis of Neural Stem Cell Autonomous and Non-autonomous Effects. J Vis Exp 2016:53282. [PMID: 26967974 DOI: 10.3791/53282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Relatively quiescent somatic stem cells support life-long cell renewal in most adult tissues. Neural stem cells in the adult mammalian brain are restricted to two specific neurogenic niches: the subgranular zone of the dentate gyrus in the hippocampus and the ventricular-subventricular zone (V-SVZ; also called subependymal zone or SEZ) in the walls of the lateral ventricles. The development of in vivo gene transfer strategies for adult stem cell populations (i.e. those of the mammalian brain) resulting in long-term expression of desired transgenes in the stem cells and their derived progeny is a crucial tool in current biomedical and biotechnological research. Here, a direct in vivo method is presented for the stable genetic modification of adult mouse V-SVZ cells that takes advantage of the cell cycle-independent infection by LVs and the highly specialized cytoarchitecture of the V-SVZ niche. Specifically, the current protocol involves the injection of empty LVs (control) or LVs encoding specific transgene expression cassettes into either the V-SVZ itself, for the in vivo targeting of all types of cells in the niche, or into the lateral ventricle lumen, for the targeting of ependymal cells only. Expression cassettes are then integrated into the genome of the transduced cells and fluorescent proteins, also encoded by the LVs, allow the detection of the transduced cells for the analysis of cell autonomous and non-autonomous, niche-dependent effects in the labeled cells and their progeny.
Collapse
Affiliation(s)
- Eva Porlan
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO)
| | - Beatriz Martí-Prado
- Centro de Investigaciones Biomédicas en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Departmento de Biologìa Celular, Universidad de Valencia
| | - Antonella Consiglio
- Institut de Biomedicina de la Universitat de Barcelona (IBUB); Department of Molecular and Translational Medicine, Fibroblast Reprogramming Unit, University of Brescia;
| | - Isabel Fariñas
- Centro de Investigaciones Biomédicas en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Departmento de Biologìa Celular, Universidad de Valencia;
| |
Collapse
|
85
|
Lattanzi W, Parolisi R, Barba M, Bonfanti L. Osteogenic and Neurogenic Stem Cells in Their Own Place: Unraveling Differences and Similarities Between Niches. Front Cell Neurosci 2015; 9:455. [PMID: 26635534 PMCID: PMC4656862 DOI: 10.3389/fncel.2015.00455] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/06/2015] [Indexed: 02/06/2023] Open
Abstract
Although therapeutic use of stem cells (SCs) is already available in some tissues (cornea, blood, and skin), in most organs we are far from reaching the translational goal of regenerative medicine. In the nervous system, due to intrinsic features which make it refractory to regeneration/repair, it is very hard to obtain functionally integrated regenerative outcomes, even starting from its own SCs (the neural stem cells; NSCs). Besides NSCs, mesenchymal stem cells (MSCs) have also been proposed for therapeutic purposes in neurological diseases. Yet, direct (regenerative) and indirect (bystander) effects are often confused, as are MSCs and bone marrow-derived (stromal, osteogenic) stem cells (BMSCs), whose plasticity is actually overestimated (i.e., trans-differentiation along non-mesodermal lineages, including neural fates). In order to better understand failure in the "regenerative" use of SCs for neurological disorders, it could be helpful to understand how NSCs and BMSCs have adapted to their respective organ niches. In this perspective, here the adult osteogenic and neurogenic niches are considered and compared within their in vivo environment.
Collapse
Affiliation(s)
- Wanda Lattanzi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore , Rome , Italy ; Latium Musculoskeletal Tissue Bank , Rome , Italy
| | - Roberta Parolisi
- Neuroscience Institute Cavalieri Ottolenghi (NICO) , Orbassano , Italy ; Department of Veterinary Sciences, University of Turin , Turin , Italy
| | - Marta Barba
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore , Rome , Italy
| | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO) , Orbassano , Italy ; Department of Veterinary Sciences, University of Turin , Turin , Italy
| |
Collapse
|
86
|
Platel JC, Bordey A. The multifaceted subventricular zone astrocyte: From a metabolic and pro-neurogenic role to acting as a neural stem cell. Neuroscience 2015; 323:20-8. [PMID: 26546469 DOI: 10.1016/j.neuroscience.2015.10.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 10/22/2015] [Accepted: 10/28/2015] [Indexed: 10/22/2022]
Abstract
A few decades ago it was discovered that two regions of the adult brain retain the ability to generate new neurons. These regions include the subgranular zone of the hippocampal dentate gyrus and the ventricular-subventricular zone (V-SVZ) located at the border of the lateral ventricle. In the V-SVZ, it was discovered that neural progenitor cells (NPCs) share many features of mature astrocytes and are often referred as V-SVZ astrocytes. We will first describe the markers, the morphology, and the neurophysiological characteristics of the mouse V-SVZ astrocytes. We will then discuss the fact that V-SVZ astrocytes constitute a mixed population with respect to their neurogenic properties, e.g., quiescent versus activated state, neurogenic fate, and transcription factors expression. Finally, we will describe two functions of V-SVZ astrocytes, their metabolic coupling to blood vessels and their neurogenic-supportive role consisting of providing guidance and survival cues to migrating newborn neurons.
Collapse
Affiliation(s)
- J C Platel
- Aix-Marseille University, Centre National de la Recherche Scientifique, Marseille, IBDM, UMR7288, Marseille, France.
| | - A Bordey
- Department of Neurosurgery and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
87
|
Kempermann G. Activity Dependency and Aging in the Regulation of Adult Neurogenesis. Cold Spring Harb Perspect Biol 2015; 7:a018929. [PMID: 26525149 PMCID: PMC4632662 DOI: 10.1101/cshperspect.a018929] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Age and activity might be considered the two antagonistic key regulators of adult neurogenesis. Adult neurogenesis decreases with age but remains present, albeit at a very low level, even in the oldest individuals. Activity, be it physical or cognitive, increases adult neurogenesis and thereby seems to counteract age effects. It is, thus, proposed that activity-dependent regulation of adult neurogenesis might contribute to some sort of "neural reserve," the brain's ability to compensate functional loss associated with aging or neurodegeneration. Activity can have nonspecific and specific effects on adult neurogenesis. Mechanistically, nonspecific stimuli that largely affect precursor cell stages might be related by the local microenvironment, whereas more specific, survival-promoting effects take place at later stages of neuronal development and require the synaptic integration of the new cell and its particular synaptic plasticity.
Collapse
Affiliation(s)
- Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Dresden and Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
88
|
Ghanbari A, Esmaeilpour T, Bahmanpour S, Golmohammadi MG, Sharififar S, Azari H. Depletion of neural stem cells from the subventricular zone of adult mouse brain using cytosine b-Arabinofuranoside. Brain Behav 2015; 5:e00404. [PMID: 26664789 PMCID: PMC4667764 DOI: 10.1002/brb3.404] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 08/02/2015] [Accepted: 09/02/2015] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Neural stem cells (NSCs) reside along the ventricular axis of the mammalian brain. They divide infrequently to maintain themselves and the down-stream progenitors. Due to the quiescent property of NSCs, attempts to deplete these cells using antimitotic agents such as cytosine b-Aarabinofuranoside (Ara-C) have not been successful. We hypothesized that implementing infusion gaps in Ara-C kill paradigms would recruit the quiescent NSCs and subsequently eliminate them from their niches in the subventricular zone (SVZ). METHODS We infused the right lateral ventricle of adult mice brain with 2% Ara-C using four different paradigms--1: one week; 2: two weeks; 3, 4: two weeks with an infusion gap of 6 and 12 h on day 7. Neurosphere assay (NSA), neural colony-forming cell assay (N-CFCA) and immunofluorescent staining were used to assess depletion of NSCs from the SVZ. RESULTS Neurosphere formation dramatically decreased in all paradigms immediately after Ara-C infusion. Reduction in neurosphere formation was more pronounced in the 3rd and 4th paradigms. Interestingly 1 week after Ara-C infusion, neurosphere formation recovered toward control values implying the presence of NSCs in the harvested SVZ tissue. Unexpectedly, N-CFCA in the 3rd paradigm, as one of the most effective paradigms, did not result in formation of NSC-derived colonies (colonies >2 mm) even from SVZs harvested 1 week after completion of Ara-C infusion. However, formation of big colonies with serial passaging capability, again confirmed the presence of NSCs. CONCLUSIONS Overall, these data suggest Ara-C kill paradigms with infusion gaps deplete NSCs in the SVZ more efficiently but the niches would repopulate even after the most vigorous kill paradigm used in this study.
Collapse
Affiliation(s)
- Amir Ghanbari
- Neural Stem Cell and Regenerative Neuroscience Laboratory Department of Anatomical Sciences Shiraz School of Medicine Shiraz University of Medical Sciences Shiraz Iran
| | - Tahereh Esmaeilpour
- Neural Stem Cell and Regenerative Neuroscience Laboratory Department of Anatomical Sciences Shiraz School of Medicine Shiraz University of Medical Sciences Shiraz Iran
| | - Soghra Bahmanpour
- Neural Stem Cell and Regenerative Neuroscience Laboratory Department of Anatomical Sciences Shiraz School of Medicine Shiraz University of Medical Sciences Shiraz Iran
| | | | - Sharareh Sharififar
- Department of Physical Therapy College of Public Health and Health Professions University of Florida Gainesville Florida
| | - Hassan Azari
- Neural Stem Cell and Regenerative Neuroscience Laboratory Department of Anatomical Sciences Shiraz School of Medicine Shiraz University of Medical Sciences Shiraz Iran ; Neural Stem Cell and Regenerative Neuroscience Laboratory Shiraz Stem Cell Institute Shiraz University of Medical Sciences Shiraz Iran
| |
Collapse
|
89
|
Dray N, Bedu S, Vuillemin N, Alunni A, Coolen M, Krecsmarik M, Supatto W, Beaurepaire E, Bally-Cuif L. Large-scale live imaging of adult neural stem cells in their endogenous niche. Development 2015; 142:3592-600. [PMID: 26395477 PMCID: PMC4631764 DOI: 10.1242/dev.123018] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 08/20/2015] [Indexed: 12/30/2022]
Abstract
Live imaging of adult neural stem cells (aNSCs) in vivo is a technical challenge in the vertebrate brain. Here, we achieve long-term imaging of the adult zebrafish telencephalic neurogenic niche and track a population of >1000 aNSCs over weeks, by taking advantage of fish transparency at near-infrared wavelengths and of intrinsic multiphoton landmarks. This methodology enables us to describe the frequency, distribution and modes of aNSCs divisions across the entire germinal zone of the adult pallium, and to highlight regional differences in these parameters.
Collapse
Affiliation(s)
- Nicolas Dray
- Paris-Saclay Institute for Neuroscience, CNRS UMR9197 - Université Paris-Sud, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Building 5, Gif-sur-Yvette F-91198, France
| | - Sébastien Bedu
- Paris-Saclay Institute for Neuroscience, CNRS UMR9197 - Université Paris-Sud, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Building 5, Gif-sur-Yvette F-91198, France
| | - Nelly Vuillemin
- Laboratory for Optics and Biosciences, École Polytechnique, Centre National de la Recherche Scientifique (UMR 7645) and Institut National de la Santé et de la Recherche Médicale (U1182), Palaiseau 91128, France
| | - Alessandro Alunni
- Paris-Saclay Institute for Neuroscience, CNRS UMR9197 - Université Paris-Sud, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Building 5, Gif-sur-Yvette F-91198, France
| | - Marion Coolen
- Paris-Saclay Institute for Neuroscience, CNRS UMR9197 - Université Paris-Sud, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Building 5, Gif-sur-Yvette F-91198, France
| | - Monika Krecsmarik
- Paris-Saclay Institute for Neuroscience, CNRS UMR9197 - Université Paris-Sud, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Building 5, Gif-sur-Yvette F-91198, France
| | - Willy Supatto
- Laboratory for Optics and Biosciences, École Polytechnique, Centre National de la Recherche Scientifique (UMR 7645) and Institut National de la Santé et de la Recherche Médicale (U1182), Palaiseau 91128, France
| | - Emmanuel Beaurepaire
- Laboratory for Optics and Biosciences, École Polytechnique, Centre National de la Recherche Scientifique (UMR 7645) and Institut National de la Santé et de la Recherche Médicale (U1182), Palaiseau 91128, France
| | - Laure Bally-Cuif
- Paris-Saclay Institute for Neuroscience, CNRS UMR9197 - Université Paris-Sud, Team Zebrafish Neurogenetics, Avenue de la Terrasse, Building 5, Gif-sur-Yvette F-91198, France
| |
Collapse
|
90
|
Zhang Z, Ma W, Wang L, Gong H, Tian Y, Zhang J, Liu J, Lu H, Chen X, Liu Y. Activation of Type 4 Metabotropic Glutamate Receptor Attenuates Oxidative Stress-Induced Death of Neural Stem Cells with Inhibition of JNK and p38 MAPK Signaling. Stem Cells Dev 2015; 24:2709-22. [PMID: 26176363 DOI: 10.1089/scd.2015.0067] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Promoting both endogenous and exogenous neural stem cells' (NSCs) survival in the hostile host environments is essential to cell replacement therapy for central nervous system (CNS) disorders. Type 4 metabotropic glutamate receptor (mGluR4), one of the members of mGluRs, has been shown to protect neurons from acute and chronic excitotoxic insults in various brain damages. The present study investigated the preventive effects of mGluR4 on NSC injury induced by oxidative stress. Under challenge with H2O2, loss of cell viability was observed in cultured rat NSCs, and treatment with selective mGluR4 agonist VU0155041 conferred protective effects against the loss of cellular viability in a concentration-dependent manner, as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Pretreatment of VU0155041 (30 μM) also inhibited the excessive NSC death induced by H2O2, and group III mGluRs antagonist (RS)-a-methylserine-O-phosphate (MSOP) or gene-targeted knockdown abolished the protective action of mGluR4, indicated by propidium iodide-Hoechst and terminal deoxynucleotidyl transferase-mediated UTP nick end labeling (TUNEL) staining. Western blot assay demonstrated that mGluR4 activation reversed the decreased procaspase-8/9/3and the destructed Bcl-2/Bax expressing balance, and likewise, MSOP and mGluR4 knockdown abrogated the action of mGluR4 activity. Furthermore, inhibition of JNK and p38 mitogen-activated protein kinases (MAPKs) were observed after mGluR4 activation, and as paralleling control, JNK-specific inhibitor SP600125 and p38-specific inhibitor SB203580 significantly rescued the H2O2-mediated NSC apoptosis and cleavage of procaspase-3. We suggest that activation of mGluR4 prevents oxidative stress-induced NSC death and apoptotic-associated protein activities with involvement of inhibiting the JNK and p38 pathways in cell culture. Our findings may help to develop strategies for enhancing the resided and transplanted NSC survival after oxidative stress insult of CNS.
Collapse
Affiliation(s)
- Zhichao Zhang
- 1 Institute of Neurobiology, Xi'an Jiaotong University Health Science Center , Xi'an, Shaanxi, China
| | - Wen Ma
- 1 Institute of Neurobiology, Xi'an Jiaotong University Health Science Center , Xi'an, Shaanxi, China
| | - Li Wang
- 2 Department of Obstetrics and Gynecology, The Affiliated Hospital of Xi'an Medical College , Xi'an, Shaanxi, China
| | - Hanshi Gong
- 1 Institute of Neurobiology, Xi'an Jiaotong University Health Science Center , Xi'an, Shaanxi, China
| | - Yumei Tian
- 3 Xi'an Mental Health Center , Xi'an, Shaanxi, China
| | - Jianshui Zhang
- 1 Institute of Neurobiology, Xi'an Jiaotong University Health Science Center , Xi'an, Shaanxi, China
| | - Jianxin Liu
- 1 Institute of Neurobiology, Xi'an Jiaotong University Health Science Center , Xi'an, Shaanxi, China
| | - Haixia Lu
- 1 Institute of Neurobiology, Xi'an Jiaotong University Health Science Center , Xi'an, Shaanxi, China
| | - Xinlin Chen
- 1 Institute of Neurobiology, Xi'an Jiaotong University Health Science Center , Xi'an, Shaanxi, China
| | - Yong Liu
- 1 Institute of Neurobiology, Xi'an Jiaotong University Health Science Center , Xi'an, Shaanxi, China
| |
Collapse
|
91
|
Coste C, Neirinckx V, Gothot A, Wislet S, Rogister B. Are neural crest stem cells the missing link between hematopoietic and neurogenic niches? Front Cell Neurosci 2015; 9:218. [PMID: 26136659 PMCID: PMC4469833 DOI: 10.3389/fncel.2015.00218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/22/2015] [Indexed: 12/24/2022] Open
Abstract
Hematopoietic niches are defined as cellular and molecular microenvironments that regulate hematopoietic stem cell (HSC) function together with stem cell autonomous mechanisms. Many different cell types have been characterized as contributors to the formation of HSC niches, such as osteoblasts, endothelial cells, Schwann cells, and mesenchymal progenitors. These mesenchymal progenitors have themselves been classified as CXC chemokine ligand (CXCL) 12-abundant reticular (CAR) cells, stem cell factor expressing cells, or nestin-positive mesenchymal stem cells (MSCs), which have been recently identified as neural crest-derived cells (NCSCs). Together, these cells are spatially associated with HSCs and believed to provide appropriate microenvironments for HSC self-renewal, differentiation, mobilization and hibernation both by cell-cell contact and soluble factors. Interestingly, it appears that regulatory pathways governing the hematopoietic niche homeostasis are operating in the neurogenic niche as well. Therefore, this review paper aims to compare both the regulation of hematopoietic and neurogenic niches, in order to highlight the role of NCSCs and nervous system components in the development and the regulation of the hematopoietic system.
Collapse
Affiliation(s)
- Cécile Coste
- Groupe Interdisciplinaire de Génoprotéomique Appliquée-Neurosciences, Unit of Nervous System Disorders and Treatment, University of Liège Liège, Belgium
| | - Virginie Neirinckx
- Groupe Interdisciplinaire de Génoprotéomique Appliquée-Neurosciences, Unit of Nervous System Disorders and Treatment, University of Liège Liège, Belgium
| | - André Gothot
- Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cardiovascular Sciences, University of Liège Liège, Belgium ; Hematology Department, University Hospital Liège, Belgium
| | - Sabine Wislet
- Groupe Interdisciplinaire de Génoprotéomique Appliquée-Neurosciences, Unit of Nervous System Disorders and Treatment, University of Liège Liège, Belgium
| | - Bernard Rogister
- Groupe Interdisciplinaire de Génoprotéomique Appliquée-Neurosciences, Unit of Nervous System Disorders and Treatment, University of Liège Liège, Belgium ; Groupe Interdisciplinaire de Génoprotéomique Appliquée-Development, Stem Cells and Regenerative Medicine, University of Liège Liège, Belgium ; Neurology Department, University Hospital Liège, Belgium
| |
Collapse
|
92
|
Regional and stage-specific effects of prospectively purified vascular cells on the adult V-SVZ neural stem cell lineage. J Neurosci 2015; 35:4528-39. [PMID: 25788671 DOI: 10.1523/jneurosci.1188-14.2015] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Adult neural stem cells reside in specialized niches. In the ventricular-subventricular zone (V-SVZ), quiescent neural stem cells (qNSCs) become activated (aNSCs), and generate transit amplifying cells (TACs), which give rise to neuroblasts that migrate to the olfactory bulb. The vasculature is an important component of the adult neural stem cell niche, but whether vascular cells in neurogenic areas are intrinsically different from those elsewhere in the brain is unknown. Moreover, the contribution of pericytes to the neural stem cell niche has not been defined. Here, we describe a rapid FACS purification strategy to simultaneously isolate primary endothelial cells and pericytes from brain microregions of nontransgenic mice using CD31 and CD13 as surface markers. We compared the effect of purified vascular cells from a neurogenic (V-SVZ) and non-neurogenic brain region (cortex) on the V-SVZ stem cell lineage in vitro. Endothelial and pericyte diffusible signals from both regions differentially promote the proliferation and neuronal differentiation of qNSCs, aNSCs, and TACs. Unexpectedly, diffusible cortical signals had the most potent effects on V-SVZ proliferation and neurogenesis, highlighting the intrinsic capacity of non-neurogenic vasculature to support stem cell behavior. Finally, we identify PlGF-2 as an endothelial-derived mitogen that promotes V-SVZ cell proliferation. This purification strategy provides a platform to define the functional and molecular contribution of vascular cells to stem cell niches and other brain regions under different physiological and pathological states.
Collapse
|
93
|
Soriano‐Cantón R, Perez‐Villalba A, Morante‐Redolat JM, Marqués‐Torrejón MÁ, Pallás M, Pérez‐Sánchez F, Fariñas I. Regulation of the p19(Arf)/p53 pathway by histone acetylation underlies neural stem cell behavior in senescence-prone SAMP8 mice. Aging Cell 2015; 14:453-62. [PMID: 25728253 PMCID: PMC4406674 DOI: 10.1111/acel.12328] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2015] [Indexed: 01/24/2023] Open
Abstract
Brain aging is associated with increased neurodegeneration and reduced neurogenesis. B1/neural stem cells (B1-NSCs) of the mouse subependymal zone (SEZ) support the ongoing production of olfactory bulb interneurons, but their neurogenic potential is progressively reduced as mice age. Although age-related changes in B1-NSCs may result from increased expression of tumor suppressor proteins, accumulation of DNA damage, metabolic alterations, and microenvironmental or systemic changes, the ultimate causes remain unclear. Senescence-accelerated-prone mice (SAMP8) relative to senescence-accelerated-resistant mice (SAMR1) exhibit signs of hastened senescence and can be used as a model for the study of aging. We have found that the B1-NSC compartment is transiently expanded in young SAMP8 relative to SAMR1 mice, resulting in disturbed cytoarchitecture of the SEZ, B1-NSC hyperproliferation, and higher yields of primary neurospheres. These unusual features are, however, accompanied by premature loss of B1-NSCs. Moreover, SAMP8 neurospheres lack self-renewal and enter p53-dependent senescence after only two passages. Interestingly, in vitro senescence of SAMP8 cells could be prevented by inhibition of histone acetyltransferases and mimicked in SAMR1 cells by inhibition of histone deacetylases (HDAC). Our data indicate that expression of the tumor suppressor p19, but not of p16, is increased in SAMP8 neurospheres, as well as in SAMR1 neurospheres upon HDAC inhibition, and suggest that the SAMP8 phenotype may, at least in part, be due to changes in chromatin status. Interestingly, acute HDAC inhibition in vivo resulted in changes in the SEZ of SAMR1 mice that resembled those found in young SAMP8 mice.
Collapse
Affiliation(s)
- Raúl Soriano‐Cantón
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) Universidad de Valencia Burjassot 46100 Spain
- Departamento de Biología Celular Universidad de Valencia Burjassot 46100Spain
| | - Ana Perez‐Villalba
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) Universidad de Valencia Burjassot 46100 Spain
- Departamento de Biología Celular Universidad de Valencia Burjassot 46100Spain
| | - José Manuel Morante‐Redolat
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) Universidad de Valencia Burjassot 46100 Spain
- Departamento de Biología Celular Universidad de Valencia Burjassot 46100Spain
| | - María Ángeles Marqués‐Torrejón
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) Universidad de Valencia Burjassot 46100 Spain
- Departamento de Biología Celular Universidad de Valencia Burjassot 46100Spain
| | - Mercé Pallás
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) Universidad de Valencia Burjassot 46100 Spain
- Departamento de Farmacología y Química Terapéutica Instituto de Biomedicina de la Universidad de Barcelona Barcelona 08028Spain
| | - Francisco Pérez‐Sánchez
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) Universidad de Valencia Burjassot 46100 Spain
- Departamento de Biología Celular Universidad de Valencia Burjassot 46100Spain
| | - Isabel Fariñas
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED) Universidad de Valencia Burjassot 46100 Spain
- Departamento de Biología Celular Universidad de Valencia Burjassot 46100Spain
| |
Collapse
|
94
|
Montalbán-Loro R, Domingo-Muelas A, Bizy A, Ferrón SR. Epigenetic regulation of stemness maintenance in the neurogenic niches. World J Stem Cells 2015; 7:700-710. [PMID: 26029342 PMCID: PMC4444611 DOI: 10.4252/wjsc.v7.i4.700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/12/2014] [Accepted: 03/20/2015] [Indexed: 02/06/2023] Open
Abstract
In the adult mouse brain, the subventricular zone lining the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus are two zones that contain neural stem cells (NSCs) with the capacity to give rise to neurons and glia during the entire life of the animal. Spatial and temporal regulation of gene expression in the NSCs population is established and maintained by the coordinated interaction between transcription factors and epigenetic regulators which control stem cell fate. Epigenetic mechanisms are heritable alterations in genome function that do not involve changes in DNA sequence itself but that modulate gene expression, acting as mediators between the environment and the genome. At the molecular level, those epigenetic mechanisms comprise chemical modifications of DNA such as methylation, hydroxymethylation and histone modifications needed for the maintenance of NSC identity. Genomic imprinting is another normal epigenetic process leading to parental-specific expression of a gene, known to be implicated in the control of gene dosage in the neurogenic niches. The generation of induced pluripotent stem cells from NSCs by expression of defined transcription factors, provide key insights into fundamental principles of stem cell biology. Epigenetic modifications can also occur during reprogramming of NSCs to pluripotency and a better understanding of this process will help to elucidate the mechanisms required for stem cell maintenance. This review takes advantage of recent studies from the epigenetic field to report knowledge regarding the mechanisms of stemness maintenance of neural stem cells in the neurogenic niches.
Collapse
|
95
|
Than-Trong E, Bally-Cuif L. Radial glia and neural progenitors in the adult zebrafish central nervous system. Glia 2015; 63:1406-28. [DOI: 10.1002/glia.22856] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 04/22/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Emmanuel Than-Trong
- Team Zebrafisdh Neurogenetics; Paris-Saclay University, Paris-Sud University, CNRS, UMR 9197, Paris-Saclay Institute for Neuroscience (NeuroPSI); Avenue De La Terrasse, Bldg 5 Gif-sur-Yvette F-91190 France
| | - Laure Bally-Cuif
- Team Zebrafisdh Neurogenetics; Paris-Saclay University, Paris-Sud University, CNRS, UMR 9197, Paris-Saclay Institute for Neuroscience (NeuroPSI); Avenue De La Terrasse, Bldg 5 Gif-sur-Yvette F-91190 France
| |
Collapse
|
96
|
Wabik A, Jones PH. Switching roles: the functional plasticity of adult tissue stem cells. EMBO J 2015; 34:1164-79. [PMID: 25812989 PMCID: PMC4426478 DOI: 10.15252/embj.201490386] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/09/2015] [Accepted: 02/11/2015] [Indexed: 12/15/2022] Open
Abstract
Adult organisms have to adapt to survive, and the same is true for their tissues. Rates and types of cell production must be rapidly and reversibly adjusted to meet tissue demands in response to both local and systemic challenges. Recent work reveals how stem cell (SC) populations meet these requirements by switching between functional states tuned to homoeostasis or regeneration. This plasticity extends to differentiating cells, which are capable of reverting to SCs after injury. The concept of the niche, the micro-environment that sustains and regulates stem cells, is broadening, with a new appreciation of the role of physical factors and hormonal signals. Here, we review different functions of SCs, the cellular mechanisms that underlie them and the signals that bias the fate of SCs as they switch between roles.
Collapse
Affiliation(s)
- Agnieszka Wabik
- MRC Cancer Unit, University of Cambridge Hutchison/MRC Research Centre Cambridge Biomedical Campus, Cambridge, UK
| | - Philip H Jones
- MRC Cancer Unit, University of Cambridge Hutchison/MRC Research Centre Cambridge Biomedical Campus, Cambridge, UK Wellcome Trust Sanger Institute, Hinxton, UK
| |
Collapse
|
97
|
Faissner A, Reinhard J. The extracellular matrix compartment of neural stem and glial progenitor cells. Glia 2015; 63:1330-49. [DOI: 10.1002/glia.22839] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/25/2015] [Accepted: 03/30/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology; Ruhr-University Bochum; Germany
| | - Jacqueline Reinhard
- Department of Cell Morphology and Molecular Neurobiology; Ruhr-University Bochum; Germany
| |
Collapse
|
98
|
Enabling nanomaterial, nanofabrication and cellular technologies for nanoneuromedicines. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:715-29. [PMID: 25652894 DOI: 10.1016/j.nano.2014.12.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/15/2014] [Accepted: 12/18/2014] [Indexed: 12/11/2022]
Abstract
Nanoparticulate delivery systems represent an area of particular promise for nanoneuromedicines. They possess significant potential for desperately needed therapies designed to combat a range of disorders associated with aging. As such, the field was selected as the focus for the 2014 meeting of the American Society for Nanomedicine. Regenerative, protective, immune modulatory, anti-microbial and anti-inflammatory products, or imaging agents are readily encapsulated in or conjugated to nanoparticles and as such facilitate the delivery of drug payloads to specific action sites across the blood-brain barrier. Diagnostic imaging serves to precisely monitor disease onset and progression while neural stem cell replacement can regenerate damaged tissue through control of stem cell fates. These, taken together, can improve disease burden and limit systemic toxicities. Such enabling technologies serve to protect the nervous system against a broad range of degenerative, traumatic, metabolic, infectious and immune disorders. From the clinical editor: Nanoneuromedicine is a branch of nanomedicine that specifically looks at the nervous system. In the clinical setting, a fundamental hurdle in nervous system disorders is due to an inherent inability of nerve cells to regenerate after damage. Nanotechnology can offer new approaches to overcome these challenges. This review describes recent developments in nanomedicine delivery systems that would affect stem cell repair and regeneration in the nervous system.
Collapse
|
99
|
Rueger MA, Schroeter M. In vivo imaging of endogenous neural stem cells in the adult brain. World J Stem Cells 2015; 7:75-83. [PMID: 25621107 PMCID: PMC4300938 DOI: 10.4252/wjsc.v7.i1.75] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/02/2014] [Accepted: 10/29/2014] [Indexed: 02/06/2023] Open
Abstract
The discovery of endogenous neural stem cells (eNSCs) in the adult mammalian brain with their ability to self-renew and differentiate into functional neurons, astrocytes and oligodendrocytes has raised the hope for novel therapies of neurological diseases. Experimentally, those eNSCs can be mobilized in vivo, enhancing regeneration and accelerating functional recovery after, e.g., focal cerebral ischemia, thus constituting a most promising approach in stem cell research. In order to translate those current experimental approaches into a clinical setting in the future, non-invasive imaging methods are required to monitor eNSC activation in a longitudinal and intra-individual manner. As yet, imaging protocols to assess eNSC mobilization non-invasively in the live brain remain scarce, but considerable progress has been made in this field in recent years. This review summarizes and discusses the current imaging modalities suitable to monitor eNSCs in individual experimental animals over time, including optical imaging, magnetic resonance tomography and-spectroscopy, as well as positron emission tomography (PET). Special emphasis is put on the potential of each imaging method for a possible clinical translation, and on the specificity of the signal obtained. PET-imaging with the radiotracer 3’-deoxy-3’-[18F]fluoro-L-thymidine in particular constitutes a modality with excellent potential for clinical translation but low specificity; however, concomitant imaging of neuroinflammation is feasible and increases its specificity. The non-invasive imaging strategies presented here allow for the exploitation of novel treatment strategies based upon the regenerative potential of eNSCs, and will help to facilitate a translation into the clinical setting.
Collapse
|
100
|
Silva-Vargas V, Doetsch F. A new twist for neurotrophins: endothelial-derived NT-3 mediates adult neural stem cell quiescence. Neuron 2014; 83:507-9. [PMID: 25102554 DOI: 10.1016/j.neuron.2014.07.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A major question in studying adult neurogenesis is the source and identity of molecules that regulate stem cells. In this issue of Neuron, uncover that endothelial-derived NT-3 acts as a mediator of quiescence in the V-SVZ adult neural stem cell niche.
Collapse
Affiliation(s)
- Violeta Silva-Vargas
- Department of Pathology & Cell Biology, Neuroscience, Neurology, and Rehabilitation & Regenerative Medicine, Columbia Stem Cell Initiative, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA
| | - Fiona Doetsch
- Department of Pathology & Cell Biology, Neuroscience, Neurology, and Rehabilitation & Regenerative Medicine, Columbia Stem Cell Initiative, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA; Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland.
| |
Collapse
|