51
|
Liu J, Sun Z, Mao X, Gerken H, Wang X, Yang W. Multiomics analysis reveals a distinct mechanism of oleaginousness in the emerging model alga Chromochloris zofingiensis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:1060-1077. [PMID: 30828893 DOI: 10.1111/tpj.14302] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Chromochloris zofingiensis, featured due to its capability to simultaneously synthesize triacylglycerol (TAG) and astaxanthin, is emerging as a leading candidate alga for production uses. To better understand the oleaginous mechanism of this alga, we conducted a multiomics analysis by systematically integrating time-resolved transcriptomes, lipidomes and metabolomes in response to nitrogen deprivation. The data analysis unraveled the distinct mechanism of TAG accumulation, which involved coordinated stimulation of multiple biological processes including supply of energy and reductants, carbon reallocation from protein and starch, and 'pushing' and 'pulling' carbon to TAG synthesis. Unlike the model alga Chlamydomonas, de novo fatty acid synthesis in C. zofingiensis was promoted, together with enhanced turnover of both glycolipids and phospholipids, supporting the drastic need of acyls for TAG assembly. Moreover, genomewide analysis identified many key functional enzymes and transcription factors that had engineering potential for TAG modulation. Two genes encoding glycerol-3-phosphate acyltransferase (GPAT), the first committed enzyme for TAG assembly, were found in the C. zofingiensis genome; in vivo functional characterization revealed that extrachloroplastic GPAT instead of chloroplastic GPAT played a central role in TAG synthesis. These findings illuminate distinct oleaginousness mechanisms in C. zofingiensis and pave the way towards rational manipulation of this alga to becone an emerging model for trait improvements.
Collapse
Affiliation(s)
- Jin Liu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Zheng Sun
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Xuemei Mao
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Henri Gerken
- School of Sustainable Engineering and the Built Environment, Arizona State University Polytechnic campus, Mesa, AZ, 85212, USA
| | - Xiaofei Wang
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Wenqiang Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
52
|
Kong F, Yamaoka Y, Ohama T, Lee Y, Li-Beisson Y. Molecular Genetic Tools and Emerging Synthetic Biology Strategies to Increase Cellular Oil Content in Chlamydomonas reinhardtii. PLANT & CELL PHYSIOLOGY 2019; 60:1184-1196. [PMID: 30715500 DOI: 10.1093/pcp/pcz022] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/18/2019] [Indexed: 05/26/2023]
Abstract
Microalgae constitute a highly diverse group of eukaryotic and photosynthetic microorganisms that have developed extremely efficient systems for harvesting and transforming solar energy into energy-rich molecules such as lipids. Although microalgae are considered to be one of the most promising platforms for the sustainable production of liquid oil, the oil content of these organisms is naturally low, and algal oil production is currently not economically viable. Chlamydomonas reinhardtii (Chlamydomonas) is an established algal model due to its fast growth, high transformation efficiency, and well-understood physiology and to the availability of detailed genome information and versatile molecular tools for this organism. In this review, we summarize recent advances in the development of genetic manipulation tools for Chlamydomonas, from gene delivery methods to state-of-the-art genome-editing technologies and fluorescent dye-based high-throughput mutant screening approaches. Furthermore, we discuss practical strategies and toolkits that enhance transgene expression, such as choice of expression vector and background strain. We then provide examples of how advanced genetic tools have been used to increase oil content in Chlamydomonas. Collectively, the current literature indicates that microalgal oil content can be increased by overexpressing key enzymes that catalyze lipid biosynthesis, blocking lipid degradation, silencing metabolic pathways that compete with lipid biosynthesis and modulating redox state. The tools and knowledge generated through metabolic engineering studies should pave the way for developing a synthetic biological approach to enhance lipid productivity in microalgae.
Collapse
Affiliation(s)
- Fantao Kong
- Department of Integrative Bioscience & Biotechnology, Pohang University of Science and Technology, Pohang, Korea
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Yasuyo Yamaoka
- Department of Integrative Bioscience & Biotechnology, Pohang University of Science and Technology, Pohang, Korea
| | - Takeshi Ohama
- School of Environmental Science and Engineering, Kochi University of Technology (KUT), Tosayamada, Kochi, Japan
| | - Youngsook Lee
- Department of Integrative Bioscience & Biotechnology, Pohang University of Science and Technology, Pohang, Korea
- Department of Life Science, Pohang University of Science and Technology, Pohang, Korea
| | - Yonghua Li-Beisson
- Aix-Marseille Univ., CEA, CNRS, BIAM, UMR7265, CEA Cadarache, Saint-Paul-lez Durance F, France
| |
Collapse
|
53
|
Shinkawa H, Kajikawa M, Nomura Y, Ogura M, Sawaragi Y, Yamano T, Nakagami H, Sugiyama N, Ishihama Y, Kanesaki Y, Yoshikawa H, Fukuzawa H. Algal Protein Kinase, Triacylglycerol Accumulation Regulator 1, Modulates Cell Viability and Gametogenesis in Carbon/Nitrogen-Imbalanced Conditions. PLANT & CELL PHYSIOLOGY 2019; 60:916-930. [PMID: 30668822 DOI: 10.1093/pcp/pcz010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/08/2019] [Indexed: 05/20/2023]
Abstract
Nutrient-deprived microalgae accumulate triacylglycerol (TAG) in lipid droplets. A dual-specificity tyrosine phosphorylation-regulated kinase, TAG accumulation regulator 1 (TAR1) has been shown to be required for acetate-dependent TAG accumulation and the degradation of chlorophyll and photosynthesis-related proteins in photomixotrophic nitrogen (N)-deficient conditions (Kajikawa et�al. 2015). However, this previous report only examined particular condition. Here, we report that in photoautotrophic N-deficient conditions, tar1-1 cells, with a mutation in the TAR1 gene, maintained higher levels of cell viability and lower levels of hydrogen peroxide generation and accumulated higher levels of TAG and starch compared with those of wild type (WT) cells with bubbling of air containing 5% carbon dioxide. Transcriptomic analyses suggested that genes involved in the scavenging of reactive oxygen species are not repressed in tar1-1 cells. In contrast, the mating efficiency and mRNA levels of key regulatory genes for gametogenesis, MID, MTD and FUS, were suppressed in tar1-1 cells. Among the TAR1-dependent phosphopeptides deduced by phosphoproteomic analysis, protein kinases and enzymes related to N assimilation and carbon (C) metabolism are of particular interest. Characterization of these putative downstream factors may elucidate the molecular pathway whereby TAR1 mediates cellular propagation and C and N metabolism in C/N-imbalanced stress conditions.
Collapse
Affiliation(s)
- Haruka Shinkawa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | - Yuko Nomura
- RIKEN Center for Sustainable Resource Science, Kanagawa, 230-0045 Japan
| | - Mayu Ogura
- Graduate School of Pharmaceutical Science, Kyoto University, Kyoto, 606-8501 Japan
| | - Yuri Sawaragi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takashi Yamano
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hirofumi Nakagami
- RIKEN Center for Sustainable Resource Science, Kanagawa, 230-0045 Japan
| | - Naoyuki Sugiyama
- Graduate School of Pharmaceutical Science, Kyoto University, Kyoto, 606-8501 Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Science, Kyoto University, Kyoto, 606-8501 Japan
| | - Yu Kanesaki
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, 156-8502 Japan
| | - Hirofumi Yoshikawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502 Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
54
|
Batista AD, Rosa RM, Machado M, Magalhães AS, Shalaguti BA, Gomes PF, Covell L, Vaz MGMV, Araújo WL, Nunes-Nesi A. Increased urea availability promotes adjustments in C/N metabolism and lipid content without impacting growth in Chlamydomonas reinhardtii. Metabolomics 2019; 15:31. [PMID: 30830512 DOI: 10.1007/s11306-019-1496-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/21/2019] [Indexed: 01/31/2023]
Abstract
INTRODUCTION The use of urea as a nitrogen (N) source by Chlorophytes usually enhances biomass and lipid production when compared to ammonium (NH4+). However, the metabolic shifts displayed by Chlamydomonas reinhardtii growing with this organic N source are not known. OBJECTIVES This study aimed: (i) to characterize the metabolism of C. reinhardtii cultivated in media containing only urea as N source as well as combined with different NH4+ ratios; (ii) to understand how metabolism respond to urea availability. METHODS Specific quantification of metabolites using 96-well microplates, and high-performance liquid chromatography combined with non-targeted metabolite profiling by gas chromatography (GC)-time-of-flight (TOF)-mass spectrometry (MS) were used in this study. In addition, GC analysis was used to determine fatty acid profiling. RESULTS The use of urea did not alter the growth rate in comparison with NH4+. Interestingly, the cell number decreased and the cell size increased proportionally with urea availability. Furthermore, chlorophyll, protein and lipid contents increased with the amount of urea. Regarding the fatty acid profile, oleic acid (C18:1 w8) decreased with amount of urea, while linoleic acid (C18:2 w6) doubled in urea-containing medium. CONCLUSIONS These results indicate that urea promotes remarkable adjustments in metabolism, without drastic changes in biomass, promoting changes in carbohydrate and amino acid metabolism, as well as in lipids production and fatty acid profile.
Collapse
Affiliation(s)
- Aline D Batista
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Rinamara M Rosa
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Mariana Machado
- Instituto de Biociências, Universidade Federal de Goiás - Regional Jataí, Jataí, Goiás, 75801-615, Brazil
| | - Alan S Magalhães
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Bárbara A Shalaguti
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Priscilla F Gomes
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Lidiane Covell
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Marcelo G M V Vaz
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
| |
Collapse
|
55
|
Li-Beisson Y, Thelen JJ, Fedosejevs E, Harwood JL. The lipid biochemistry of eukaryotic algae. Prog Lipid Res 2019; 74:31-68. [PMID: 30703388 DOI: 10.1016/j.plipres.2019.01.003] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 02/06/2023]
Abstract
Algal lipid metabolism fascinates both scientists and entrepreneurs due to the large diversity of fatty acyl structures that algae produce. Algae have therefore long been studied as sources of genes for novel fatty acids; and, due to their superior biomass productivity, algae are also considered a potential feedstock for biofuels. However, a major issue in a commercially viable "algal oil-to-biofuel" industry is the high production cost, because most algal species only produce large amounts of oils after being exposed to stress conditions. Recent studies have therefore focused on the identification of factors involved in TAG metabolism, on the subcellular organization of lipid pathways, and on interactions between organelles. This has been accompanied by the development of genetic/genomic and synthetic biological tools not only for the reference green alga Chlamydomonas reinhardtii but also for Nannochloropsis spp. and Phaeodactylum tricornutum. Advances in our understanding of enzymes and regulatory proteins of acyl lipid biosynthesis and turnover are described herein with a focus on carbon and energetic aspects. We also summarize how changes in environmental factors can impact lipid metabolism and describe present and potential industrial uses of algal lipids.
Collapse
Affiliation(s)
- Yonghua Li-Beisson
- Aix-Marseille Univ, CEA, CNRS, BIAM, UMR7265, CEA Cadarache, Saint-Paul-lez Durance F-13108, France.
| | - Jay J Thelen
- Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, United States.
| | - Eric Fedosejevs
- Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, United States.
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
56
|
Colina F, Amaral J, Carbó M, Pinto G, Soares A, Cañal MJ, Valledor L. Genome-wide identification and characterization of CKIN/SnRK gene family in Chlamydomonas reinhardtii. Sci Rep 2019; 9:350. [PMID: 30674892 PMCID: PMC6344539 DOI: 10.1038/s41598-018-35625-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 11/09/2018] [Indexed: 12/29/2022] Open
Abstract
The SnRK (Snf1-Related protein Kinase) gene family plays an important role in energy sensing and stress-adaptive responses in plant systems. In this study, Chlamydomonas CKIN family (SnRK in Arabidopsis) was defined after a genome-wide analysis of all sequenced Chlorophytes. Twenty-two sequences were defined as plant SnRK orthologs in Chlamydomonas and classified into two subfamilies: CKIN1 and CKIN2. While CKIN1 subfamily is reduced to one conserved member and a close protein (CKIN1L), a large CKIN2 subfamily clusters both plant-like and algae specific CKIN2s. The responsiveness of these genes to abiotic stress situations was tested by RT-qPCR. Results showed that almost all elements were sensitive to osmotic stress while showing different degrees of sensibility to other abiotic stresses, as occurs in land plants, revealing their specialization and the family pleiotropy for some elements. The regulatory pathway of this family may differ from land plants since these sequences shows unique regulatory features and some of them are sensitive to ABA, despite conserved ABA receptors (PYR/PYL/RCAR) and regulatory domains are not present in this species. Core Chlorophytes and land plant showed divergent stress signalling, but SnRKs/CKINs share the same role in cell survival and stress response and adaption including the accumulation of specific biomolecules. This fact places the CKIN family as well-suited target for bioengineering-based studies in microalgae (accumulation of sugars, lipids, secondary metabolites), while promising new findings in stress biology and specially in the evolution of ABA-signalling mechanisms.
Collapse
Affiliation(s)
- Francisco Colina
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology (IUBA), University of Oviedo, Oviedo, Spain
| | - Joana Amaral
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - María Carbó
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology (IUBA), University of Oviedo, Oviedo, Spain
| | - Gloria Pinto
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Amadeu Soares
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - María Jesús Cañal
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology (IUBA), University of Oviedo, Oviedo, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology (IUBA), University of Oviedo, Oviedo, Spain.
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
57
|
Shin YS, Jeong J, Nguyen THT, Kim JYH, Jin E, Sim SJ. Targeted knockout of phospholipase A 2 to increase lipid productivity in Chlamydomonas reinhardtii for biodiesel production. BIORESOURCE TECHNOLOGY 2019; 271:368-374. [PMID: 30293032 DOI: 10.1016/j.biortech.2018.09.121] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/22/2018] [Accepted: 09/24/2018] [Indexed: 05/10/2023]
Abstract
Biofuel derived from microalgae have several advantages over other oleaginous crops, however, still needs to be improved with its cost aspect and can be achieved by developing of a strain with improved lipid productivity. In this study, the CRISPR-Cas9 system was incorporated to carry out a target-specific knockout of the phospholipase A2 gene in Chlamydomonas reinhardtii. The targeted gene encodes a key enzyme in the Lands cycle. As a result, the mutants showed a characteristic of increased diacylglycerol pool, followed by a higher accumulation of triacylglycerol without being significantly compensated with the cell growth. As a result, the overall lipid productivities of phospholipase A2 knockout mutants have increased by up to 64.25% (to 80.92 g L-1 d-1). This study can provide crucial information for the biodiesel industry.
Collapse
Affiliation(s)
- Ye Sol Shin
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seoungbuk-gu, Seoul 02841, Republic of Korea
| | - Jooyeon Jeong
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Thu Ha Thi Nguyen
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jaoon Young Hwan Kim
- Convergence Research Division, National Marine Biodiversity Institute of Korea, Jangsan-ro 101beon-gil 75, Janghang-eup, Seocheon-gun, Chungcheongnam-do 33662, Republic of Korea
| | - EonSeon Jin
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seoungbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
58
|
Abstract
Microalgae have been used commercially since the 1950s and 1960s, particularly in the Far East for human health foods and in the United States for wastewater treatment. Initial attempts to produce bulk chemicals such as biofuels from microalgae were not successful, despite commercially favorable conditions during the 1970s oil crisis. However, research initiatives at this time, many using extremophilic microalgae and cyanobacteria (e.g., Dunaliella and Spirulina), did solve many problems and clearly identified biomass productivity and harvesting as the two main constraints stopping microalgae producing bulk chemicals, such as biofuels, on a large scale. In response to the growing unease around global warming, induced by anthropogenic CO2 emissions, microalgae were again suggested as a carbon neutral process to produce biofuels. This recent phase of microalgae biofuels research can be thought to have started around 2007, when a very highly cited review by Chisti was published. Since 2007, a large body of scientific publications have appeared on all aspects of microalgae biotechnology, but with a clear emphasis on neutral lipid (triacylglycerol) synthesis and the use of neutral lipids as precursors for biodiesel production. In this review, the key research on microalgal biotechnology that took place prior to 2007 will be summarized and then the research trends post 2007 will be examined emphasizing the research into producing biodiesel from microalgae.
Collapse
Affiliation(s)
- D James Gilmour
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
59
|
Kajikawa M, Yamauchi M, Shinkawa H, Tanaka M, Hatano K, Nishimura Y, Kato M, Fukuzawa H. Isolation and Characterization of Chlamydomonas Autophagy-Related Mutants in Nutrient-Deficient Conditions. PLANT & CELL PHYSIOLOGY 2019; 60:126-138. [PMID: 30295899 DOI: 10.1093/pcp/pcy193] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 09/17/2018] [Indexed: 05/08/2023]
Abstract
Autophagy is a recycling system for amino acids and carbon- and nitrogen (N)-containing compounds. To date, the functional importance of autophagy in microalgae in nutrient-deficient conditions has not been evaluated by using autophagy-defective mutants. Here, we provide evidence which supports the following notions by characterizing an insertional mutant of the autophagy-related gene ATG8, encoding a ubiquitin-like protein necessary for the formation of the autophagosome in the green alga, Chlamydomonas reinhardtii. First, ATG8 is required for maintenance of cell survival and Chl content in N-, sulfur- and phosphate-deficient conditions. Secondly, ATG8 supports the degradation of triacylglycerol and lipid droplets after the resupply of N to cells cultured in N-limiting conditions. Thirdly, ATG8 is also necessary for accumulation of starch in phosphate-deficient conditions. Additionally, autophagy is not essential for maternal inheritance of the organelle genomes in gametogenesis.
Collapse
Affiliation(s)
| | - Marika Yamauchi
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Haruka Shinkawa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Manabu Tanaka
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Kyoko Hatano
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | | | - Misako Kato
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
60
|
Takeuchi T, Benning C. Nitrogen-dependent coordination of cell cycle, quiescence and TAG accumulation in Chlamydomonas. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:292. [PMID: 31890020 PMCID: PMC6927116 DOI: 10.1186/s13068-019-1635-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/12/2019] [Indexed: 05/07/2023]
Abstract
Microalgae hold great promises as sustainable cellular factories for the production of alternative fuels, feeds, and biopharmaceuticals for human health. While the biorefinery approach for fuels along with the coproduction of high-value compounds with industrial, therapeutic, or nutraceutical applications have the potential to make algal biofuels more economically viable, a number of challenges continue to hamper algal production systems at all levels. One such hurdle includes the metabolic trade-off often observed between the increased yields of desired products, such as triacylglycerols (TAG), and the growth of an organism. Initial genetic engineering strategies to improve lipid productivity in microalgae, which focused on overproducing the enzymes involved in fatty acid and TAG biosynthesis or inactivating competing carbon (C) metabolism, have seen some successes albeit at the cost of often greatly reduced biomass. Emergent approaches that aim at modifying the dynamics of entire metabolic pathways by engineering of pertinent transcription factors or signaling networks appear to have successfully achieved a balance between growth and neutral lipid accumulation. However, the biological knowledge of key signaling networks and molecular components linking these two processes is still incomplete in photosynthetic eukaryotes, making it difficult to optimize metabolic engineering strategies for microalgae. Here, we focus on nitrogen (N) starvation of the model green microalga, Chlamydomonas reinhardtii, to present the current understanding of the nutrient-dependent switch between proliferation and quiescence, and the drastic reprogramming of metabolism that results in the storage of C compounds following N starvation. We discuss the potential components mediating the transcriptional repression of cell cycle genes and the establishment of quiescence in Chlamydomonas, and highlight the importance of signaling pathways such as those governed by the target of rapamycin (TOR) and sucrose nonfermenting-related (SnRK) kinases in the coordination of metabolic status with cellular growth. A better understanding of how the cell division cycle is regulated in response to nutrient scarcity and of the signaling pathways linking cellular growth to energy and lipid homeostasis, is essential to improve the prospects of biofuels and biomass production in microalgae.
Collapse
Affiliation(s)
- Tomomi Takeuchi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
| | - Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
61
|
Li M, van Zee M, Riche CT, Tofig B, Gallaher SD, Merchant SS, Damoiseaux R, Goda K, Di Carlo D. A Gelatin Microdroplet Platform for High-Throughput Sorting of Hyperproducing Single-Cell-Derived Microalgal Clones. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1803315. [PMID: 30369052 DOI: 10.1002/smll.201803315] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/06/2018] [Indexed: 05/08/2023]
Abstract
Microalgae are an attractive feedstock organism for sustainable production of biofuels, chemicals, and biomaterials, but the ability to rationally engineer microalgae to enhance production has been limited. To enable the evolution-based selection of new hyperproducing variants of microalgae, a method is developed that combines phase-transitioning monodisperse gelatin hydrogel droplets with commercial flow cytometric instruments for high-throughput screening and selection of clonal populations of cells with desirable properties, such as high lipid productivity per time traced over multiple cell cycles. It is found that gelatin microgels enable i) the growth and metabolite (e.g., chlorophyll and lipids) production of single microalgal cells within the compartments, ii) infusion of fluorescent reporter molecules into the hydrogel matrices following a sol-gel transition, iii) selection of high-producing clonal populations of cells using flow cytometry, and iv) cell recovery under mild conditions, enabling regrowth after sorting. This user-friendly method is easily integratable into directed cellular evolution pipelines for strain improvement and can be adopted for other applications that require high-throughput processing, e.g., cellular secretion phenotypes and intercellular interactions.
Collapse
Affiliation(s)
- Ming Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- School of Engineering, Macquarie University, Sydney, NSW, 2122, Australia
| | - Mark van Zee
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Carson T Riche
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Bobby Tofig
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Sean D Gallaher
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Sabeeha S Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Robert Damoiseaux
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Molecular and Medicinal Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Keisuke Goda
- Department of Chemistry, University of Tokyo, Tokyo, 113-8655, Japan
- Japan Science and Technology Agency, Kawaguchi, 332-0012, Japan
- Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
62
|
Inorganic carbon and nitrogen assimilation in cellular compartments of a benthic kleptoplastic foraminifer. Sci Rep 2018; 8:10140. [PMID: 29973634 PMCID: PMC6031614 DOI: 10.1038/s41598-018-28455-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/20/2018] [Indexed: 11/08/2022] Open
Abstract
Haynesina germanica, an ubiquitous benthic foraminifer in intertidal mudflats, has the remarkable ability to isolate, sequester, and use chloroplasts from microalgae. The photosynthetic functionality of these kleptoplasts has been demonstrated by measuring photosystem II quantum efficiency and O2 production rates, but the precise role of the kleptoplasts in foraminiferal metabolism is poorly understood. Thus, the mechanism and dynamics of C and N assimilation and translocation from the kleptoplasts to the foraminiferal host requires study. The objective of this study was to investigate, using correlated TEM and NanoSIMS imaging, the assimilation of inorganic C and N (here ammonium, NH4+) in individuals of a kleptoplastic benthic foraminiferal species. H. germanica specimens were incubated for 20 h in artificial seawater enriched with H13CO3- and 15NH4+ during a light/dark cycle. All specimens (n = 12) incorporated 13C into their endoplasm stored primarily in the form of lipid droplets. A control incubation in darkness resulted in no 13C-uptake, strongly suggesting that photosynthesis is the process dominating inorganic C assimilation. Ammonium assimilation was observed both with and without light, with diffuse 15N-enrichment throughout the cytoplasm and distinct 15N-hotspots in fibrillar vesicles, electron-opaque bodies, tubulin paracrystals, bacterial associates, and, rarely and at moderate levels, in kleptoplasts. The latter observation might indicate that the kleptoplasts are involved in N assimilation. However, the higher N assimilation observed in the foraminiferal endoplasm incubated without light suggests that another cytoplasmic pathway is dominant, at least in darkness. This study clearly shows the advantage provided by the kleptoplasts as an additional source of carbon and provides observations of ammonium uptake by the foraminiferal cell.
Collapse
|
63
|
Du ZY, Alvaro J, Hyden B, Zienkiewicz K, Benning N, Zienkiewicz A, Bonito G, Benning C. Enhancing oil production and harvest by combining the marine alga Nannochloropsis oceanica and the oleaginous fungus Mortierella elongata. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:174. [PMID: 29977335 PMCID: PMC6013958 DOI: 10.1186/s13068-018-1172-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/12/2018] [Indexed: 05/29/2023]
Abstract
BACKGROUND Although microalgal biofuels have potential advantages over conventional fossil fuels, high production costs limit their application in the market. We developed bio-flocculation and incubation methods for the marine alga, Nannochloropsis oceanica CCMP1779, and the oleaginous fungus, Mortierella elongata AG77, resulting in increased oil productivity. RESULTS By growing separately and then combining the cells, the M. elongata mycelium could efficiently capture N. oceanica due to an intricate cellular interaction between the two species leading to bio-flocculation. Use of a high-salt culture medium induced accumulation of triacylglycerol (TAG) and enhanced the contents of polyunsaturated fatty acids (PUFAs) including arachidonic acid and docosahexaenoic acid in M. elongata. To increase TAG productivity in the alga, we developed an effective, reduced nitrogen-supply regime based on ammonium in environmental photobioreactors. Under optimized conditions, N. oceanica produced high levels of TAG that could be indirectly monitored by following chlorophyll content. Combining N. oceanica and M. elongata to initiate bio-flocculation yielded high levels of TAG and total fatty acids, with ~ 15 and 22% of total dry weight (DW), respectively, as well as high levels of PUFAs. Genetic engineering of N. oceanica for higher TAG content in nutrient-replete medium was accomplished by overexpressing DGTT5, a gene encoding the type II acyl-CoA:diacylglycerol acyltransferase 5. Combined with bio-flocculation, this approach led to increased production of TAG under nutrient-replete conditions (~ 10% of DW) compared to the wild type (~ 6% of DW). CONCLUSIONS The combined use of M. elongata and N. oceanica with available genomes and genetic engineering tools for both species opens up new avenues to improve biofuel productivity and allows for the engineering of polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Zhi-Yan Du
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Jonathan Alvaro
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Brennan Hyden
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
| | - Krzysztof Zienkiewicz
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, 37073 Goettingen, Germany
| | - Nils Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Agnieszka Zienkiewicz
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824 USA
| | - Gregory Bonito
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824 USA
| | - Christoph Benning
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
64
|
Willette S, Gill SS, Dungan B, Schaub TM, Jarvis JM, St. Hilaire R, Omar Holguin F. Alterations in lipidome and metabolome profiles of Nannochloropsis salina in response to reduced culture temperature during sinusoidal temperature and light. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
65
|
Smith RT, Gilmour DJ. The influence of exogenous organic carbon assimilation and photoperiod on the carbon and lipid metabolism of Chlamydomonas reinhardtii. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.01.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
66
|
Yamaoka Y, Choi BY, Kim H, Shin S, Kim Y, Jang S, Song WY, Cho CH, Yoon HS, Kohno K, Lee Y. Identification and functional study of the endoplasmic reticulum stress sensor IRE1 in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:91-104. [PMID: 29385296 DOI: 10.1111/tpj.13844] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 01/07/2018] [Accepted: 01/15/2018] [Indexed: 06/07/2023]
Abstract
In many eukaryotes, endoplasmic reticulum (ER) stress activates the unfolded protein response (UPR) via the transmembrane endoribonuclease IRE1 to maintain ER homeostasis. The ER stress response in microalgae has not been studied in detail. Here, we identified Chlamydomonas reinhardtii IRE1 (CrIRE1) and characterized two independent knock-down alleles of this gene. CrIRE1 is similar to IRE1s identified in budding yeast, plants, and humans, in terms of conserved domains, but differs in having the tandem zinc-finger domain at the C terminus. CrIRE1 was highly induced under ER stress conditions, and the expression of a chimeric protein consisting of the luminal N-terminal region of CrIRE1 fused to the cytosolic C-terminal region of yeast Ire1p rescued the yeast ∆ire1 mutant. Both allelic ire1 knock-down mutants ire1-1 and ire1-2 were much more sensitive than their parental strain CC-4533 to the ER stress inducers tunicamycin, dithiothreitol and brefeldin A. Treatment with a low concentration of tunicamycin resulted in growth arrest and cytolysis in ire1 mutants, but not in CC-4533 cells. Furthermore, in the mutants, ER stress marker gene expression was reduced, and reactive oxygen species (ROS) marker gene expression was increased. The survival of ire1 mutants treated with tunicamycin improved in the presence of the ROS scavenger glutathione, suggesting that ire1 mutants failed to maintain ROS levels under ER stress. Together, these results indicate that CrIRE1 functions as an important component of the ER stress response in Chlamydomonas, and suggest that the ER stress sensor IRE1 is highly conserved during the evolutionary history.
Collapse
Affiliation(s)
- Yasuyo Yamaoka
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Bae Young Choi
- Department of Integrative Bioscience & Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Hanul Kim
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Seungjun Shin
- Department of Integrative Bioscience & Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Yeongho Kim
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Sunghoon Jang
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Won-Yong Song
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Chung H Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Kenji Kohno
- Graduate School of Biological Sciences and Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Youngsook Lee
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Korea
- Department of Integrative Bioscience & Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| |
Collapse
|
67
|
Maeda Y, Yoshino T, Matsunaga T, Matsumoto M, Tanaka T. Marine microalgae for production of biofuels and chemicals. Curr Opin Biotechnol 2018; 50:111-120. [DOI: 10.1016/j.copbio.2017.11.018] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 01/17/2023]
|
68
|
McKie-Krisberg ZM, Laurens LM, Huang A, Polle JE. Comparative energetics of carbon storage molecules in green algae. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
69
|
Couso I, Pérez-Pérez ME, Martínez-Force E, Kim HS, He Y, Umen JG, Crespo JL. Autophagic flux is required for the synthesis of triacylglycerols and ribosomal protein turnover in Chlamydomonas. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1355-1367. [PMID: 29053817 PMCID: PMC6018900 DOI: 10.1093/jxb/erx372] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/28/2017] [Indexed: 05/19/2023]
Abstract
Autophagy is an intracellular catabolic process that allows cells to recycle unneeded or damaged material to maintain cellular homeostasis. This highly dynamic process is characterized by the formation of double-membrane vesicles called autophagosomes, which engulf and deliver the cargo to the vacuole. Flow of material through the autophagy pathway and its degradation in the vacuole is known as autophagic flux, and reflects the autophagic degradation activity. A number of assays have been developed to determine autophagic flux in yeasts, mammals, and plants, but it has not been examined yet in algae. Here we analyzed autophagic flux in the model green alga Chlamydomonas reinhardtii. By monitoring specific autophagy markers such as ATG8 lipidation and using immunofluorescence and electron microscopy techniques, we show that concanamycin A, a vacuolar ATPase inhibitor, blocks autophagic flux in Chlamydomonas. Our results revealed that vacuolar lytic function is needed for the synthesis of triacylglycerols and the formation of lipid bodies in nitrogen- or phosphate-starved cells. Moreover, we found that concanamycin A treatment prevented the degradation of ribosomal proteins RPS6 and RPL37 under nitrogen or phosphate deprivation. These results indicate that autophagy might play an important role in the regulation of lipid metabolism and the recycling of ribosomal proteins under nutrient limitation in Chlamydomonas.
Collapse
Affiliation(s)
- Inmaculada Couso
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Sevilla, Seville, Spain
| | - María Esther Pérez-Pérez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Sevilla, Seville, Spain
| | - Enrique Martínez-Force
- Instituto de la Grasa (CSIC), Edificio 46, Campus Universitario Pablo de Olavide, Seville, Spain
| | - Hee-Sik Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Yonghua He
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - James G Umen
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - José L Crespo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Sevilla, Seville, Spain
- Correspondence:
| |
Collapse
|
70
|
Sato N, Awai K. "Prokaryotic Pathway" Is Not Prokaryotic: Noncyanobacterial Origin of the Chloroplast Lipid Biosynthetic Pathway Revealed by Comprehensive Phylogenomic Analysis. Genome Biol Evol 2018; 9:3162-3178. [PMID: 29145606 PMCID: PMC5716074 DOI: 10.1093/gbe/evx238] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2017] [Indexed: 12/12/2022] Open
Abstract
Lipid biosynthesis within the chloroplast, or more generally plastids, was conventionally called “prokaryotic pathway,” which produces glycerolipids bearing C18 acids at the sn-1 position and C16 acids at the sn-2 position, as in cyanobacteria such as Anabaena and Synechocystis. This positional specificity is determined during the synthesis of phosphatidate, which is a precursor to diacylglycerol, the acceptor of galactose for the synthesis of galactolipids. The first acylation at sn-1 is catalyzed by glycerol-3-phosphate acyltransferase (GPAT or GPT), whereas the second acylation at sn-2 is performed by lysophosphatidate acyltransferase (LPAAT, AGPAT, or PlsC). Here we present comprehensive phylogenomic analysis of the origins of various acyltransferases involved in the synthesis of phosphatidate, as well as phosphatidate phosphatases in the chloroplasts. The results showed that the enzymes involved in the two steps of acylation in cyanobacteria and chloroplasts are entirely phylogenetically unrelated despite a previous report stating that the chloroplast LPAAT (ATS2) and cyanobacterial PlsC were sister groups. Phosphatidate phosphatases were separated into eukaryotic and prokaryotic clades, and the chloroplast enzymes were not of cyanobacterial origin, in contrast with another previous report. These results indicate that the lipid biosynthetic pathway in the chloroplasts or plastids did not originate from the cyanobacterial endosymbiont and is not “prokaryotic” in the context of endosymbiotic theory of plastid origin. This is another line of evidence for the discontinuity of plastids and cyanobacteria, which has been suggested in the glycolipid biosynthesis.
Collapse
Affiliation(s)
- Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Japan.,Japan Science and Technology Agency, CREST, Tokyo, Japan
| | - Koichiro Awai
- Japan Science and Technology Agency, CREST, Tokyo, Japan.,Department of Biological Science, Faculty of Science, and Research Institute of Electronics, Shizuoka University, Japan
| |
Collapse
|
71
|
Arnold AA, Bourgouin JP, Genard B, Warschawski DE, Tremblay R, Marcotte I. Whole cell solid-state NMR study of Chlamydomonas reinhardtii microalgae. JOURNAL OF BIOMOLECULAR NMR 2018; 70:123-131. [PMID: 29327221 DOI: 10.1007/s10858-018-0164-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/04/2018] [Indexed: 05/03/2023]
Abstract
In vivo or whole-cell solid-state NMR is an emerging field which faces tremendous challenges. In most cases, cell biochemistry does not allow the labelling of specific molecules and an in vivo study is thus hindered by the inherent difficulty of identifying, among a formidable number of resonances, those arising from a given molecule. In this work we examined the possibility of studying, by solid-state NMR, the model organism Chlamydomonas reinhardtii fully and non-specifically 13C labelled. The extension of NMR-based dynamic filtering from one-dimensional to two-dimensional experiments enabled an enhanced selectivity which facilitated the assignment of cell constituents. The number of resonances detected with these robust and broadly applicable experiments appears to be surprisingly sparse. Various constituents, notably galactolipids abundant in organelle membranes, carbohydrates from the cell wall, and starch from storage grains could be unambiguously assigned. Moreover, the dominant crystal form of starch could be determined in situ. This work illustrates the feasibility and caveats of using solid-state NMR to study intact non-specifically 13C labelled micro-organisms.
Collapse
Affiliation(s)
- Alexandre A Arnold
- Department of Chemistry, Université du Québec à Montréal, Downtown Station, P.O. Box 8888, Montreal, H3C 3P8, Canada
| | - Jean-Philippe Bourgouin
- Department of Chemistry, Université du Québec à Montréal, Downtown Station, P.O. Box 8888, Montreal, H3C 3P8, Canada
| | - Bertrand Genard
- Department of Chemistry, Université du Québec à Montréal, Downtown Station, P.O. Box 8888, Montreal, H3C 3P8, Canada
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, 310 allée des Ursulines, Rimouski, G5L 3A1, Canada
| | - Dror E Warschawski
- Department of Chemistry, Université du Québec à Montréal, Downtown Station, P.O. Box 8888, Montreal, H3C 3P8, Canada
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS, Université Paris Diderot and IBPC, 13 rue Pierre et Marie-Curie, 75005, Paris, France
| | - Réjean Tremblay
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, 310 allée des Ursulines, Rimouski, G5L 3A1, Canada
| | - Isabelle Marcotte
- Department of Chemistry, Université du Québec à Montréal, Downtown Station, P.O. Box 8888, Montreal, H3C 3P8, Canada.
| |
Collapse
|
72
|
Mao X, Wu T, Sun D, Zhang Z, Chen F. Differential responses of the green microalga Chlorella zofingiensis to the starvation of various nutrients for oil and astaxanthin production. BIORESOURCE TECHNOLOGY 2018; 249:791-798. [PMID: 29136934 DOI: 10.1016/j.biortech.2017.10.090] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 05/03/2023]
Abstract
Chlorella zofingiensis has been proposed as a potential producer of lipids and the high-value carotenoid astaxanthin. In this study, the responses of photoautotrophic C. zofingiensis with respect to growth, lipid profiles and astaxanthin accumulation were investigated upon the starvation of N (NS), P (PS) and S (SS). NS and SS stimulated triacylglycerol (TAG) accumulation, which reached 27% and 21% of dry weight (DW), respectively. Stresses also stimulated astaxanthin accumulation greatly, reaching 3.9 mg/g DW by NS. SS led to the highest TAG productivity (52.4 mg L-1 d-1) while NS gave rise to the highest astaxanthin productivity (0.624 mg L-1 d-1). In combination with transcriptional analysis, a working model for stress-associated TAG and astaxanthin biosynthesis was proposed. Taken together, these detailed data shed light on the elucidation of differential responses to nutrient stresses and may provide insights into future engineering of this promising alga for improving TAG and astaxanthin production.
Collapse
Affiliation(s)
- Xuemei Mao
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Tao Wu
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Dongzhe Sun
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Zhao Zhang
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Feng Chen
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
73
|
Matich EK, Ghafari M, Camgoz E, Caliskan E, Pfeifer BA, Haznedaroglu BZ, Atilla-Gokcumen GE. Time-series lipidomic analysis of the oleaginous green microalga species Ettlia oleoabundans under nutrient stress. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:29. [PMID: 29441127 PMCID: PMC5800086 DOI: 10.1186/s13068-018-1026-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/17/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Microalgae are uniquely advantageous organisms cultured and harvested for several value-added biochemicals. A majority of these compounds are lipid-based, such as triacylglycerols (TAGs), which can be used for biofuel production, and their accumulation is most affected under nutrient stress conditions. As such, the balance between cellular homeostasis and lipid metabolism becomes more intricate to achieve efficiency in bioproduct synthesis. Lipidomics studies in microalgae are of great importance as biochemical diversity also plays a major role in lipid regulation among oleaginous species. METHODS The aim of this study was to analyze time-series changes in lipid families produced by microalga under different nutrient conditions and growth phases to gain comprehensive information at the cellular level. For this purpose, we worked with a highly adaptable, oleaginous, non-model green microalga species, Ettlia oleoabundans (a.k.a. Neochloris oleoabundans). Using a mass spectrometry-based untargeted and targeted metabolomics' approach, we analyzed the changes in major lipid families under both replete and deplete nitrogen and phosphorus conditions at four different time points covering exponential and stationary growth phases. RESULTS Comprehensive analysis of the lipid metabolism highlighted the accumulation of TAGs, which can be utilized for the production of biodiesel via transesterification, and depletion of chlorophylls and certain structural lipids required for photosynthesis, under nutrient deprived conditions. We also found a correlation between the depletion of digalactosyldiacylglycerols (DGDGs) and sulfoquinovosyldiacylglycerols (SQDGs) under nutrient deprivation. CONCLUSIONS High accumulation of TAGs under nutrient limitation as well as a depletion of other lipids of interest such as phosphatidylglycerols (PGs), DGDGs, SQDGs, and chlorophylls seem to be interconnected and related to the microalgal photosynthetic efficiency. Overall, our results provided key biochemical information on the lipid regulation and physiology of a non-model green microalga, along with optimization potential for biodiesel and other value-added product synthesis.
Collapse
Affiliation(s)
- E. K. Matich
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260 USA
| | - M. Ghafari
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260 USA
| | - E. Camgoz
- Department of Chemical and Biological Engineering, Koc University, 34450 Istanbul, Turkey
| | - E. Caliskan
- Institute of Environmental Sciences, Bogazici University, 34342 Istanbul, Turkey
| | - B. A. Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260 USA
| | - B. Z. Haznedaroglu
- Institute of Environmental Sciences, Bogazici University, 34342 Istanbul, Turkey
| | - G. E. Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260 USA
| |
Collapse
|
74
|
Jüppner J, Mubeen U, Leisse A, Caldana C, Wiszniewski A, Steinhauser D, Giavalisco P. The target of rapamycin kinase affects biomass accumulation and cell cycle progression by altering carbon/nitrogen balance in synchronized Chlamydomonas reinhardtii cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:355-376. [PMID: 29172247 DOI: 10.1111/tpj.13787] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/31/2017] [Accepted: 11/15/2017] [Indexed: 05/19/2023]
Abstract
Several metabolic processes tightly regulate growth and biomass accumulation. A highly conserved protein complex containing the target of rapamycin (TOR) kinase is known to integrate intra- and extracellular stimuli controlling nutrient allocation and hence cellular growth. Although several functions of TOR have been described in various heterotrophic eukaryotes, our understanding lags far behind in photosynthetic organisms. In the present investigation, we used the model alga Chlamydomonas reinhardtii to conduct a time-resolved analysis of molecular and physiological features throughout the diurnal cycle after TOR inhibition. Detailed examination of the cell cycle phases revealed that growth is not only repressed by 50%, but also that significant, non-linear delays in the progression can be observed. By using metabolomics analysis, we elucidated that the growth repression was mainly driven by differential carbon partitioning between anabolic and catabolic processes. Accordingly, the time-resolved analysis illustrated that metabolic processes including amino acid-, starch- and triacylglycerol synthesis, as well RNA degradation, were redirected within minutes of TOR inhibition. Here especially the high accumulation of nitrogen-containing compounds indicated that an active TOR kinase controls the carbon to nitrogen balance of the cell, which is responsible for biomass accumulation, growth and cell cycle progression.
Collapse
Affiliation(s)
- Jessica Jüppner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Umarah Mubeen
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Andrea Leisse
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Camila Caldana
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Brazilian Bioethanol Science and Technology Laboratory/CNPEM, Rua Giuseppe Máximo Scolfano 10000, 13083-970, Campinas, Brazil
| | - Andrew Wiszniewski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Dirk Steinhauser
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Patrick Giavalisco
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
75
|
Lipid enhancement in microalgae by temporal phase separation: Use of indigenous sources of nutrients. Chin J Chem Eng 2018. [DOI: 10.1016/j.cjche.2017.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
76
|
Cui Y, Zhao J, Wang Y, Qin S, Lu Y. Characterization and engineering of a dual-function diacylglycerol acyltransferase in the oleaginous marine diatom Phaeodactylum tricornutum. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:32. [PMID: 29449880 PMCID: PMC5806285 DOI: 10.1186/s13068-018-1029-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 01/23/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND Photosynthetic oleaginous microalgae are promising feedstocks for biofuels. Acyl-CoA:diacylglycerol acyltransferases (DGATs) represent rich sources for engineering microalgal lipid production. The principal activity of DGATs has been defined as a single-function enzyme catalyzing the esterification of diacylglycerol with acyl-CoA. RESULTS A dual-function PtWS/DGAT associated with diatom Phaeodactylum tricornutum is discovered in the current study. Distinctive to documented microalgal DGAT types, PtWS/DGAT exhibits activities of both a wax ester synthase (WS) and a DGAT. WS/DGATs are broadly distributed in microalgae, with different topology and phylogeny from those of DGAT1s, DGAT2s, and DGAT3s. In vitro and in vivo assays revealed that PtWS/DGAT, functioning as either a WS or a DGAT, exhibited a preference on saturated FA substrate. Endogenous overexpression of PtWS/DGAT demonstrated that the DGAT activity was dominant, whereas the WS activity was condition dependent and relatively minor. Compared with the wild type (WT), overexpression of PtWS/DGAT in the diatom resulted in increased levels of total lipids (TL) and triacylglycerol (TAG) regardless of nitrogen availability. The stability and scalability of the introduced traits were further investigated at a 10-L photobioreactor, where the mutant growth resembled WT, with moderately increased productivity of TL and TAG. Furthermore, the production of wax esters increased considerably (from undetectable levels to 2.83%) under nitrogen-deplete conditions. CONCLUSIONS PtWS/DGAT is a bifunctional enzyme and may serve as a promising target for the engineering of microalga-based oils and waxes for future industrial use.
Collapse
Affiliation(s)
- Yulin Cui
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003 Shandong China
| | - Jialin Zhao
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003 Shandong China
- University of Chinese Academy of Sciences, Beijing, 101408 China
| | - Yinchu Wang
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003 Shandong China
| | - Song Qin
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003 Shandong China
| | - Yandu Lu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, Hainan 570228 China
| |
Collapse
|
77
|
Roustan V, Weckwerth W. Quantitative Phosphoproteomic and System-Level Analysis of TOR Inhibition Unravel Distinct Organellar Acclimation in Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2018; 9:1590. [PMID: 30546371 PMCID: PMC6280106 DOI: 10.3389/fpls.2018.01590] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 10/15/2018] [Indexed: 05/13/2023]
Abstract
Rapamycin is an inhibitor of the evolutionary conserved Target of Rapamycin (TOR) kinase which promotes and coordinates translation with cell growth and division. In heterotrophic organisms, TOR regulation is based on intra- and extracellular stimuli such as amino acids level and insulin perception. However, how plant TOR pathways have evolved to integrate plastid endosymbiosis is a remaining question. Despite the close association of the TOR signaling with the coordination between protein turn-over and growth, proteome and phosphoproteome acclimation to a rapamycin treatment have not yet been thoroughly investigated in Chlamydomonas reinhardtii. In this study, we have used in vivo label-free phospho-proteomic analysis to profile both protein and phosphorylation changes at 0, 24, and 48 h in Chlamydomonas cells treated with rapamycin. Using multivariate statistics we highlight the impact of TOR inhibition on both the proteome and the phosphoproteome. Two-way ANOVA distinguished differential levels of proteins and phosphoproteins in response either to culture duration and rapamycin treatment or combined effects. Finally, protein-protein interaction networks and functional enrichment analysis underlined the relation between plastid and mitochondrial metabolism. Prominent changes of proteins involved in sulfur, cysteine, and methionine as well as nucleotide metabolism on the one hand, and changes in the TCA cycle on the other highlight the interplay of chloroplast and mitochondria metabolism. Furthermore, TOR inhibition revealed changes in the endomembrane trafficking system. Phosphoproteomics data, on the other hand, highlighted specific differentially regulated phosphorylation sites for calcium-regulated protein kinases as well as ATG7, S6K, and PP2C. To conclude we provide a first combined Chlamydomonas proteomics and phosphoproteomics dataset in response to TOR inhibition, which will support further investigations.
Collapse
Affiliation(s)
- Valentin Roustan
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
- *Correspondence: Wolfram Weckwerth,
| |
Collapse
|
78
|
Mathieu-Rivet E, Lerouge P, Bardor M. Chlamydomonas reinhardtii: Protein Glycosylation and Production of Biopharmaceuticals. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-66360-9_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
79
|
Efficient targeted DNA editing and replacement in Chlamydomonas reinhardtii using Cpf1 ribonucleoproteins and single-stranded DNA. Proc Natl Acad Sci U S A 2017; 114:13567-13572. [PMID: 29208717 DOI: 10.1073/pnas.1710597114] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The green alga Chlamydomonas reinhardtii is an invaluable reference organism to research fields including algal, plant, and ciliary biology. Accordingly, decades-long standing inefficiencies in targeted nuclear gene editing broadly hinder Chlamydomonas research. Here we report that single-step codelivery of CRISPR/Cpf1 ribonucleoproteins with single-stranded DNA repair templates results in precise and targeted DNA replacement with as much as ∼10% efficiency in C. reinhardtii We demonstrate its use in transgene- and selection-free generation of sequence-specific mutations and epitope tagging at an endogenous locus. As the direct delivery of gene-editing reagents bypasses the use of transgenes, this method is potentially applicable to a wider range of species without the need to develop methods for stable transformation.
Collapse
|
80
|
Freitas BCB, Morais MG, Costa JAV. Chlorella minutissima cultivation with CO 2 and pentoses: Effects on kinetic and nutritional parameters. BIORESOURCE TECHNOLOGY 2017; 244:338-344. [PMID: 28780268 DOI: 10.1016/j.biortech.2017.07.125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/17/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
CO2 emissions and the large quantity of lignocellulosic waste generated by industrialized nations constitute problems that may affect human health as well as the global economy. The objective of this work was to evaluate the effects of using CO2 and pentoses on the growth, protein profile, carbohydrate content and potential ethanol production by fermentation of Chlorella minutissima biomass. CO2 and pentose supplementation can induce changes in the microalgal protein profile. A biomass production of 1.84g.L-1 and a CO2 biofixation rate of 274.63mg.L-1.d-1 were obtained with the use of 20% (v.v-1) CO2. For cultures with 20% (v.v-1) CO2 and reduced nitrogen, the carbohydrate content was 52.3% (w.w-1), and theoretically, 33.9mL.100g-1 of ethanol can be produced. These results demonstrate that C. minutissima cultured with the combined use of CO2 and pentoses generates a biomass with high bioenergetic potential.
Collapse
Affiliation(s)
- B C B Freitas
- College of Chemistry and Food Engineering, Federal University of Rio Grande, Laboratory of Biochemical Engineering, Rio Grande, RS, Brazil
| | - M G Morais
- College of Chemistry and Food Engineering, Federal University of Rio Grande, Laboratory of Microbiology and Biochemistry, Rio Grande, RS, Brazil
| | - J A V Costa
- College of Chemistry and Food Engineering, Federal University of Rio Grande, Laboratory of Biochemical Engineering, Rio Grande, RS, Brazil.
| |
Collapse
|
81
|
Monitoring Autophagy in the Model Green Microalga Chlamydomonas reinhardtii. Cells 2017; 6:cells6040036. [PMID: 29065500 PMCID: PMC5755495 DOI: 10.3390/cells6040036] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 01/19/2023] Open
Abstract
Autophagy is an intracellular catabolic system that delivers cytoplasmic constituents and organelles in the vacuole. This degradative process is mediated by a group of proteins coded by autophagy-related (ATG) genes that are widely conserved from yeasts to plants and mammals. Homologs of ATG genes have been also identified in algal genomes including the unicellular model green alga Chlamydomonas reinhardtii. The development of specific tools to monitor autophagy in Chlamydomonas has expanded our current knowledge about the regulation and function of this process in algae. Recent findings indicated that autophagy is regulated by redox signals and the TOR network in Chlamydomonas and revealed that this process may play in important role in the control of lipid metabolism and ribosomal protein turnover in this alga. Here, we will describe the different techniques and approaches that have been reported to study autophagy and autophagic flux in Chlamydomonas.
Collapse
|
82
|
Cyclic decomposition explains a photosynthetic down regulation for Chlamydomonas reinhardtii. Biosystems 2017; 162:119-127. [PMID: 28970020 PMCID: PMC5720477 DOI: 10.1016/j.biosystems.2017.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 09/17/2017] [Accepted: 09/22/2017] [Indexed: 11/25/2022]
Abstract
The regulation of metabolic networks has been shown to be distributed and shared through the action of metabolic cycles. Biochemical cycles play important roles in maintaining flux and substrate availability for multiple pathways to supply cellular energy and contribute to dynamic stability. By understanding the cyclic and acyclic flows of matter through a network, we are closer to understanding how complex dynamic systems distribute flux along interconnected pathways. In this work, we have applied a cycle decomposition algorithm to a genome-scale metabolic model of Chlamydomonas reinhardtii to analyse how acetate supply affects the distribution of fluxes that sustain cellular activity. We examined the role of metabolic cycles which explain the down regulation of photosynthesis that is observed when cells are grown in the presence of acetate. Our results suggest that acetate modulates changes in global metabolism, with the pentose phosphate pathway, the Calvin-Benson cycle and mitochondrial respiration activity being affected whilst reducing photosynthesis. These results show how the decomposition of metabolic flux into cyclic and acyclic components helps to understand the impact of metabolic cycling on organismal behaviour at the genome scale.
Collapse
|
83
|
Goh FQY, Jeyakani J, Cazenave-Gassiot A, Tipthara P, Yeo Z, Wenk M, Clarke ND. Core features of triacylglyceride production in Ettlia oleoabundans revealed by lipidomic and gene expression profiling under distinct induction conditions. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
84
|
Jaeger D, Winkler A, Mussgnug JH, Kalinowski J, Goesmann A, Kruse O. Time-resolved transcriptome analysis and lipid pathway reconstruction of the oleaginous green microalga Monoraphidium neglectum reveal a model for triacylglycerol and lipid hyperaccumulation. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:197. [PMID: 28814974 PMCID: PMC5556983 DOI: 10.1186/s13068-017-0882-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/03/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Oleaginous microalgae are promising production hosts for the sustainable generation of lipid-based bioproducts and as bioenergy carriers such as biodiesel. Transcriptomics of the lipid accumulation phase, triggered efficiently by nitrogen starvation, is a valuable approach for the identification of gene targets for metabolic engineering. RESULTS An explorative analysis of the detailed transcriptional response to different stages of nitrogen availability was performed in the oleaginous green alga Monoraphidium neglectum. Transcript data were correlated with metabolic data for cellular contents of starch and of different lipid fractions. A pronounced transcriptional down-regulation of photosynthesis became apparent in response to nitrogen starvation, whereas glucose catabolism was found to be up-regulated. An in-depth reconstruction and analysis of the pathways for glycerolipid, central carbon, and starch metabolism revealed that distinct transcriptional changes were generally found only for specific steps within a metabolic pathway. In addition to pathway analyses, the transcript data were also used to refine the current genome annotation. The transcriptome data were integrated into a database and complemented with data for other microalgae which were also subjected to nitrogen starvation. It is available at https://tdbmn.cebitec.uni-bielefeld.de. CONCLUSIONS Based on the transcriptional responses to different stages of nitrogen availability, a model for triacylglycerol and lipid hyperaccumulation is proposed, which involves transcriptional induction of thioesterases, differential regulation of lipases, and a re-routing of the central carbon metabolism. Over-expression of distinct thioesterases was identified to be a potential strategy to increase the oleaginous phenotype of M. neglectum, and furthermore specific lipases were identified as potential targets for future metabolic engineering approaches.
Collapse
Affiliation(s)
- Daniel Jaeger
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Anika Winkler
- Microbial Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Jan H. Mussgnug
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-Universität, 35392 Gießen, Germany
| | - Olaf Kruse
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Universitaetsstrasse 27, 33615 Bielefeld, Germany
| |
Collapse
|
85
|
The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii. Biomolecules 2017; 7:biom7030054. [PMID: 28704927 PMCID: PMC5618235 DOI: 10.3390/biom7030054] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 12/18/2022] Open
Abstract
Cell growth is tightly coupled to nutrient availability. The target of rapamycin (TOR) kinase transmits nutritional and environmental cues to the cellular growth machinery. TOR functions in two distinct multiprotein complexes, termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2). While the structure and functions of TORC1 are highly conserved in all eukaryotes, including algae and plants, TORC2 core proteins seem to be missing in photosynthetic organisms. TORC1 controls cell growth by promoting anabolic processes, including protein synthesis and ribosome biogenesis, and inhibiting catabolic processes such as autophagy. Recent studies identified rapamycin-sensitive TORC1 signaling regulating cell growth, autophagy, lipid metabolism, and central metabolic pathways in the model unicellular green alga Chlamydomonas reinhardtii. The central role that microalgae play in global biomass production, together with the high biotechnological potential of these organisms in biofuel production, has drawn attention to the study of proteins that regulate cell growth such as the TOR kinase. In this review we discuss the recent progress on TOR signaling in algae.
Collapse
|
86
|
León-Saiki GM, Remmers IM, Martens DE, Lamers PP, Wijffels RH, van der Veen D. The role of starch as transient energy buffer in synchronized microalgal growth in Acutodesmus obliquus. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.05.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
87
|
Metabolic flux analysis of heterotrophic growth in Chlamydomonas reinhardtii. PLoS One 2017; 12:e0177292. [PMID: 28542252 PMCID: PMC5443493 DOI: 10.1371/journal.pone.0177292] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 04/25/2017] [Indexed: 12/18/2022] Open
Abstract
Despite the wealth of knowledge available for C. reinhardtii, the central metabolic fluxes of growth on acetate have not yet been determined. In this study, 13C-metabolic flux analysis (13C-MFA) was used to determine and quantify the metabolic pathways of primary metabolism in C. reinhardtii cells grown under heterotrophic conditions with acetate as the sole carbon source. Isotopic labeling patterns of compartment specific biomass derived metabolites were used to calculate the fluxes. It was found that acetate is ligated with coenzyme A in the three subcellular compartments (cytosol, mitochondria and plastid) included in the model. Two citrate synthases were found to potentially be involved in acetyl-coA metabolism; one localized in the mitochondria and the other acting outside the mitochondria. Labeling patterns demonstrate that Acetyl-coA synthesized in the plastid is directly incorporated in synthesis of fatty acids. Despite having a complete TCA cycle in the mitochondria, it was also found that a majority of the malate flux is shuttled to the cytosol and plastid where it is converted to oxaloacetate providing reducing equivalents to these compartments. When compared to predictions by flux balance analysis, fluxes measured with 13C-MFA were found to be suboptimal with respect to biomass yield; C. reinhardtii sacrifices biomass yield to produce ATP and reducing equivalents.
Collapse
|
88
|
Esquível MG, Matos A.R, Marques Silva J. Rubisco mutants of Chlamydomonas reinhardtii display divergent photosynthetic parameters and lipid allocation. Appl Microbiol Biotechnol 2017; 101:5569-5580. [DOI: 10.1007/s00253-017-8322-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 04/19/2017] [Accepted: 04/29/2017] [Indexed: 11/29/2022]
|
89
|
Cheng X, Liu G, Ke W, Zhao L, Lv B, Ma X, Xu N, Xia X, Deng X, Zheng C, Huang K. Building a multipurpose insertional mutant library for forward and reverse genetics in Chlamydomonas. PLANT METHODS 2017; 13:36. [PMID: 28515773 PMCID: PMC5430608 DOI: 10.1186/s13007-017-0183-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 05/02/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND The unicellular green alga, Chlamydomonas reinhardtii, is a classic model for studying flagella and biofuel. However, precise gene editing, such as Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein (Cas9) system, is not widely used in this organism. Screening of random insertional mutant libraries by polymerase chain reaction provides an alternate strategy to obtain null mutants of individual gene. But building, screening, and maintaining such a library was time-consuming and expensive. RESULTS By selecting a suitable parental strain, keeping individual mutants using the agar plate, and designing an insertion cassette-specific primer for library screening, we successfully generated and maintained ~150,000 insertional mutants of Chlamydomonas, which was used for both reverse and forward genetics analysis. We obtained 26 individual mutants corresponding to 20 genes and identified 967 motility-defect mutants including 10 mutants with defective accumulation of intraflagellar transport complex at the basal body. We also obtained 929 mutants defective in oil droplet assembly after nitrogen deprivation. Furthermore, a new insertion cassette with splicing donor sequences at both ends was also constructed, which increased the efficiency of gene interruption. CONCLUSION In summary, this library provides a multifunctional platform both for obtaining mutants of interested genes and for screening of mutants with specific phenotype.
Collapse
Affiliation(s)
- Xi Cheng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Gai Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| | - Wenting Ke
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| | - Lijuan Zhao
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Bo Lv
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Xiaocui Ma
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Nannan Xu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Xiaoling Xia
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| | - Xuan Deng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| | - Chunlei Zheng
- College of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| |
Collapse
|
90
|
Gargouri M, Bates PD, Park JJ, Kirchhoff H, Gang DR. Functional photosystem I maintains proper energy balance during nitrogen depletion in Chlamydomonas reinhardtii, promoting triacylglycerol accumulation. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:89. [PMID: 28413444 PMCID: PMC5390395 DOI: 10.1186/s13068-017-0774-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 04/05/2017] [Indexed: 05/11/2023]
Abstract
BACKGROUND Nutrient deprivation causes significant stress to the unicellular microalga, Chlamydomonas reinhardtii, which responds by significantly altering its metabolic program. Following N deprivation, the accumulation of starch and triacylglycerols (TAGs) is significantly altered following massive reprogramming of cellular metabolism. One protein that was found to change dramatically and early to this stress was TAB2, a photosystem I (PSI) translation initiation factor, whose transcript and protein levels increased significantly after only 30 min of N deprivation. A detailed physiological and omics-based analysis of an insertional mutant of Chlamydomonas with reduced TAB2 function was conducted to determine what role the functional PSI plays in regulating the cellular response to N deprivation. RESULTS The tab2 mutant displayed increased acetate assimilation and elevated starch levels during the first 6 h of N deprivation, followed by a shift toward altered amino acid synthesis, reduced TAG content and altered fatty acid profiles. These results suggested a central role for PSI in controlling cellular metabolism and its implication in regulation of lipid/starch partitioning. Time course analyses of the tab2 mutant versus wild type under N-deprived versus N replete conditions revealed changes in the ATP/NADPH ratio and suggested that TAG biosynthesis may be associated with maintaining the redox state of the cell during N deprivation. The loss of ability to accumulate TAG in the tab2 mutant co-occurred with an up-regulation of photo-protective mechanisms, suggesting that the synthesis of TAG in the wild type occurs not only as a temporal energy sink, but also as a protective electron sink. CONCLUSIONS By exploiting the tab2 mutation in the cells of C. reinhardtii cultured under autotrophic, mixotrophic, and heterotrophic conditions during nitrogen replete growth and for the first 8 days of nitrogen deprivation, we showed that TAG accumulation and lipid/starch partitioning are dynamically regulated by alterations in PSI function, which concomitantly alters the immediate ATP/NADPH demand. This occurs even without removal of nitrogen from the medium, but sufficient external carbon must nevertheless be available. Efforts to increase lipid accumulation in algae such as Chlamydomonas need to consider carefully how the energy balance of the cell is involved in or affected by such efforts and that numerous layers of metabolic and genetic regulatory control are likely to interfere with such efforts to control oil biosynthesis. Such knowledge will enable synthetic biology approaches to alter the response to the N depletion stress, leading to rewiring of the regulatory networks so that lipid accumulation could be turned on in the absence of N deprivation, allowing for the development of algal production strains with highly enhanced lipid accumulation profiles.
Collapse
Affiliation(s)
- Mahmoud Gargouri
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164 USA
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, P.O. Box 901, 2050 Hammam-Lif, Tunisia
| | - Philip D. Bates
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164 USA
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS 39406 USA
| | - Jeong-Jin Park
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164 USA
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164 USA
| | - David R. Gang
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164 USA
| |
Collapse
|
91
|
Osada K, Maeda Y, Yoshino T, Nojima D, Bowler C, Tanaka T. Enhanced NADPH production in the pentose phosphate pathway accelerates lipid accumulation in the oleaginous diatom Fistulifera solaris. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.01.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
92
|
Wei L, Huang X. Long-duration effect of multi-factor stresses on the cellular biochemistry, oil-yielding performance and morphology of Nannochloropsis oculata. PLoS One 2017; 12:e0174646. [PMID: 28346505 PMCID: PMC5367823 DOI: 10.1371/journal.pone.0174646] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/13/2017] [Indexed: 12/03/2022] Open
Abstract
Microalga Nannochloropsis oculata is a promising alternative feedstock for biodiesel. Elevating its oil-yielding capacity is conducive to cost-saving biodiesel production. However, the regulatory processes of multi-factor collaborative stresses (MFCS) on the oil-yielding performance of N. oculata are unclear. The duration effects of MFCS (high irradiation, nitrogen deficiency and elevated iron supplementation) on N. oculata were investigated in an 18-d batch culture. Despite the reduction in cell division, the biomass concentration increased, resulting from the large accumulation of the carbon/energy-reservoir. However, different storage forms were found in different cellular storage compounds, and both the protein content and pigment composition swiftly and drastically changed. The analysis of four biodiesel properties using pertinent empirical equations indicated their progressive effective improvement in lipid classes and fatty acid composition. The variation curve of neutral lipid productivity was monitored with fluorescent Nile red and was closely correlated to the results from conventional methods. In addition, a series of changes in the organelles (e.g., chloroplast, lipid body and vacuole) and cell shape, dependent on the stress duration, were observed by TEM and LSCM. These changes presumably played an important role in the acclimation of N. oculata to MFCS and accordingly improved its oil-yielding performance.
Collapse
Affiliation(s)
- Likun Wei
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xuxiong Huang
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Centre of Aquaculture, Shanghai, China
- Shanghai University Knowledge Service Platform, Shanghai Ocean University Aquatic Animal Breeding Centre (ZF1206), Shanghai, China
- * E-mail:
| |
Collapse
|
93
|
Lipid metabolism and potentials of biofuel and high added-value oil production in red algae. World J Microbiol Biotechnol 2017; 33:74. [DOI: 10.1007/s11274-017-2236-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/01/2017] [Indexed: 10/20/2022]
|
94
|
Bagnato C, Prados MB, Franchini GR, Scaglia N, Miranda SE, Beligni MV. Analysis of triglyceride synthesis unveils a green algal soluble diacylglycerol acyltransferase and provides clues to potential enzymatic components of the chloroplast pathway. BMC Genomics 2017; 18:223. [PMID: 28274201 PMCID: PMC5343412 DOI: 10.1186/s12864-017-3602-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/24/2017] [Indexed: 12/26/2022] Open
Abstract
Background Microalgal triglyceride (TAG) synthesis has attracted considerable attention. Particular emphasis has been put towards characterizing the algal homologs of the canonical rate-limiting enzymes, diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT). Less work has been done to analyze homologs from a phylogenetic perspective. In this work, we used HMMER iterative profiling and phylogenetic and functional analyses to determine the number and sequence characteristics of algal DGAT and PDAT, as well as related sequences that constitute their corresponding superfamilies. We included most algae with available genomes, as well as representative eukaryotic and prokaryotic species. Results Amongst our main findings, we identified a novel clade of DGAT1-like proteins exclusive to red algae and glaucophyta and a previously uncharacterized subclade of DGAT2 proteins with an unusual number of transmembrane segments. Our analysis also revealed the existence of a novel DGAT exclusive to green algae with moderate similarity to plant soluble DGAT3. The DGAT3 clade shares a most recent ancestor with a group of uncharacterized proteins from cyanobacteria. Subcellular targeting prediction suggests that most green algal DGAT3 proteins are imported to the chloroplast, evidencing that the green algal chloroplast might have a soluble pathway for the de novo synthesis of TAGs. Heterologous expression of C. reinhardtii DGAT3 produces an increase in the accumulation of TAG, as evidenced by thin layer chromatography. Conclusions Our analysis contributes to advance in the knowledge of complex superfamilies involved in lipid metabolism and provides clues to possible enzymatic players of chloroplast TAG synthesis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3602-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carolina Bagnato
- Instituto de Energía y Desarrollo Sustentable, Comisión Nacional de Energía Atómica, Centro Atómico Bariloche, Av. Bustillo 9500, 8400S. C. de Bariloche, Río Negro, Argentina
| | - María B Prados
- Instituto de Energía y Desarrollo Sustentable, Comisión Nacional de Energía Atómica, Centro Atómico Bariloche, Av. Bustillo 9500, 8400S. C. de Bariloche, Río Negro, Argentina
| | - Gisela R Franchini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP-CONICET-UNLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120 s/n, 1900, La Plata, Argentina
| | - Natalia Scaglia
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP-CONICET-UNLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120 s/n, 1900, La Plata, Argentina
| | - Silvia E Miranda
- Universidad de Buenos Aires. CONICET Instituto de Investigaciones Cardiológicas (ININCA), - Laboratorio de Glico-Inmuno-Biología, Marcelo T. de Alvear 2270, C1122AAJ, Buenos Aires, Argentina
| | - María V Beligni
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, 7600, Mar del Plata, Argentina.
| |
Collapse
|
95
|
Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts. ALGAL RES 2017. [DOI: 10.1016/j.algal.2016.06.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
96
|
Wang F, Qi Y, Malnoë A, Choquet Y, Wollman FA, de Vitry C. The High Light Response and Redox Control of Thylakoid FtsH Protease in Chlamydomonas reinhardtii. MOLECULAR PLANT 2017; 10:99-114. [PMID: 27702692 DOI: 10.1016/j.molp.2016.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/07/2016] [Accepted: 09/17/2016] [Indexed: 05/23/2023]
Abstract
In Chlamydomonas reinhardtii, the major protease involved in the maintenance of photosynthetic machinery in thylakoid membranes, the FtsH protease, mostly forms large hetero-oligomers (∼1 MDa) comprising FtsH1 and FtsH2 subunits, whatever the light intensity for growth. Upon high light exposure, the FtsH subunits display a shorter half-life, which is counterbalanced by an increase in FTSH1/2 mRNA levels, resulting in the modest upregulation of FtsH1/2 proteins. Furthermore, we found that high light increases the protease activity through a hitherto unnoticed redox-controlled reduction of intermolecular disulfide bridges. We isolated a Chlamydomonas FTSH1 promoter-deficient mutant, ftsh1-3, resulting from the insertion of a TOC1 transposon, in which the high light-induced upregulation of FTSH1 gene expression is largely lost. In ftsh1-3, the abundance of FtsH1 and FtsH2 proteins are loosely coupled (decreased by 70% and 30%, respectively) with no formation of large and stable homo-oligomers. Using strains exhibiting different accumulation levels of the FtsH1 subunit after complementation of ftsh1-3, we demonstrate that high light tolerance is tightly correlated with the abundance of the FtsH protease. Thus, the response of Chlamydomonas to light stress involves higher levels of FtsH1/2 subunits associated into large complexes with increased proteolytic activity.
Collapse
Affiliation(s)
- Fei Wang
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Paris 75005, France
| | - Yafei Qi
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Paris 75005, France
| | - Alizée Malnoë
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Paris 75005, France
| | - Yves Choquet
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Paris 75005, France
| | - Francis-André Wollman
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Paris 75005, France
| | - Catherine de Vitry
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Paris 75005, France.
| |
Collapse
|
97
|
Zienkiewicz K, Zienkiewicz A, Poliner E, Du ZY, Vollheyde K, Herrfurth C, Marmon S, Farré EM, Feussner I, Benning C. Nannochloropsis, a rich source of diacylglycerol acyltransferases for engineering of triacylglycerol content in different hosts. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:8. [PMID: 28070221 PMCID: PMC5210179 DOI: 10.1186/s13068-016-0686-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/10/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Photosynthetic microalgae are considered a viable and sustainable resource for biofuel feedstocks, because they can produce higher biomass per land area than plants and can be grown on non-arable land. Among many microalgae considered for biofuel production, Nannochloropsis oceanica (CCMP1779) is particularly promising, because following nutrient deprivation it produces very high amounts of triacylglycerols (TAG). The committed step in TAG synthesis is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT). Remarkably, a total of 13 putative DGAT-encoding genes have been previously identified in CCMP1779 but most have not yet been studied in detail. RESULTS Based on their expression profile, six out of 12 type-2 DGAT-encoding genes (NoDGTT1-NoDGTT6) were chosen for their possible role in TAG biosynthesis and the respective cDNAs were expressed in a TAG synthesis-deficient mutant of yeast. Yeast expressing NoDGTT5 accumulated TAG to the highest level. Over-expression of NoDGTT5 in CCMP1779 grown in N-replete medium resulted in levels of TAG normally observed only after N deprivation. Reduced growth rates accompanied NoDGTT5 over-expression in CCMP1779. Constitutive expression of NoDGTT5 in Arabidopsis thaliana was accompanied by increased TAG content in seeds and leaves. A broad substrate specificity for NoDGTT5 was revealed, with preference for unsaturated acyl groups. Furthermore, NoDGTT5 was able to successfully rescue the Arabidopsis tag1-1 mutant by restoring the TAG content in seeds. CONCLUSIONS Taken together, our results identified NoDGTT5 as the most promising gene for the engineering of TAG synthesis in multiple hosts among the 13 DGAT-encoding genes of N. oceanica CCMP1779. Consequently, this study demonstrates the potential of NoDGTT5 as a tool for enhancing the energy density in biomass by increasing TAG content in transgenic crops used for biofuel production.
Collapse
Affiliation(s)
- Krzysztof Zienkiewicz
- Michigan State University-US Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, 37073 Göttingen, Germany
| | - Agnieszka Zienkiewicz
- Michigan State University-US Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, 37073 Göttingen, Germany
- Great Lakes Bioenergy Center, Michigan State University, East Lansing, MI 48824 USA
| | - Eric Poliner
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824 USA
| | - Zhi-Yan Du
- Michigan State University-US Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
| | - Katharina Vollheyde
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, 37073 Göttingen, Germany
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, 37073 Göttingen, Germany
| | - Sofia Marmon
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, 37073 Göttingen, Germany
- Dept. of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Eva M. Farré
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, 37073 Göttingen, Germany
- Department of Plant Biochemistry, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University, 37073 Göttingen, Germany
- Department of Plant Biochemistry, International Center for Advanced Studies of Energy Conversion (ICASEC), Georg-August-University, 37073 Göttingen, Germany
| | - Christoph Benning
- Michigan State University-US Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
- Great Lakes Bioenergy Center, Michigan State University, East Lansing, MI 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
- Department Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
98
|
Shin SE, Koh HG, Kang NK, Suh WI, Jeong BR, Lee B, Chang YK. Isolation, phenotypic characterization and genome wide analysis of a Chlamydomonas reinhardtii strain naturally modified under laboratory conditions: towards enhanced microalgal biomass and lipid production for biofuels. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:308. [PMID: 29296121 PMCID: PMC5740574 DOI: 10.1186/s13068-017-1000-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/14/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Microalgal strain development through genetic engineering has received much attention as a way to improve the traits of microalgae suitable for biofuel production. However, there are still some limitations in application of genetically modified organisms. In this regard, there has been recent interest in the isolation and characterization of superior strains naturally modified and/or adapted under a certain condition and on the interpretation of phenotypic changes through the whole genome sequencing. RESULTS In this study, we isolated and characterized a novel derivative of C. reinhardtii, whose phenotypic traits diverged significantly from its ancestral strain, C. reinhardtii CC-124. This strain, designated as CC-124H, displayed cell population containing increased numbers of larger cells, which resulted in an increased biomass productivity compared to its ancestor CC-124. CC-124H was further compared with the CC-124 wild-type strain which underwent long-term storage under low light condition, designated as CC-124L. In an effort to evaluate the potential of CC-124H for biofuel production, we also found that CC-124H accumulated 116 and 66% greater lipids than that of the CC-124L, after 4 days under nitrogen and sulfur depleted conditions, respectively. Taken together, our results revealed that CC-124H had significantly increased fatty acid methyl ester (FAME) yields that were 2.66 and 1.98 times higher than that of the CC-124L at 4 days after the onset of cultivation under N and S depleted conditions, respectively, and these higher FAME yields were still maintained by day 8. We next analyzed single nucleotide polymorphisms (SNPs) and insertion/deletions (indels) based on the whole genome sequencing. The result revealed that of the 44 CDS region alterations, 34 resulted in non-synonymous substitutions within 33 genes which may mostly be involved in cell cycle, division or proliferation. CONCLUSION Our phenotypic analysis, which emphasized lipid productivity, clearly revealed that CC-124H had a dramatically enhanced biomass and lipid content compared to the CC-124L. Moreover, SNPs and indels analysis enabled us to identify 34 of non-synonymous substitutions which may result in phenotypic changes of CC-124H. All of these results suggest that the concept of adaptive evolution combined with genome wide analysis can be applied to microalgal strain development for biofuel production.
Collapse
Affiliation(s)
- Sung-Eun Shin
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Present Address: LG Chem, 188 Munji-ro, Yuseong-gu, Daejeon, 34122 Republic of Korea
| | - Hyun Gi Koh
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Nam Kyu Kang
- Advanced Biomass R&D Center, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - William I. Suh
- Advanced Biomass R&D Center, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Byeong-ryool Jeong
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Bongsoo Lee
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Yong Keun Chang
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Advanced Biomass R&D Center, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| |
Collapse
|
99
|
Praveenkumar R, Kim B, Lee J, Vijayan D, Lee K, Nam B, Jeon SG, Kim DM, Oh YK. Mild pressure induces rapid accumulation of neutral lipid (triacylglycerol) in Chlorella spp. BIORESOURCE TECHNOLOGY 2016; 220:661-665. [PMID: 27634024 DOI: 10.1016/j.biortech.2016.09.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 09/04/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
Effective enhancement of neutral lipid (especially triacylglycerol, TAG) content in microalgae is an important issue for commercialization of microalgal biorefineries. Pressure is a key physical factor affecting the morphological, physiological, and biochemical behaviors of organisms. In this paper, we report a new stress-based method for induction of TAG accumulation in microalgae (specifically, Chlorella sp. KR-1 and Ch. sp. AG20150) by very-short-duration application of mild pressure. Pressure treatments of 10-15bar for 2h resulted in a considerable, ∼55% improvement of the 10-100g/Lcells' TAG contents compared with the untreated control. The post-pressure-treatment increase of cytoplasmic TAG granules was further confirmed by transmission electron microscopy (TEM). Notwithstanding the increased TAG content, the total lipid content was not changed by pressurization, implying that pressure stress possibly induces rapid remodeling/transformation of algal lipids rather than de novo biosynthesis of TAG.
Collapse
Affiliation(s)
- Ramasamy Praveenkumar
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea; Department of Chemistry and Bioengineering, Tampere University of Technology, Tampere 33720, Finland
| | - Bohwa Kim
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea; Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jiye Lee
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Durairaj Vijayan
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Kyubock Lee
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea; Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Bora Nam
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Sang Goo Jeon
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Dong-Myung Kim
- Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - You-Kwan Oh
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea.
| |
Collapse
|
100
|
Freitas BCB, Esquível MG, Matos RG, Arraiano CM, Morais MG, Costa JAV. Nitrogen balancing and xylose addition enhances growth capacity and protein content in Chlorella minutissima cultures. BIORESOURCE TECHNOLOGY 2016; 218:129-133. [PMID: 27359061 DOI: 10.1016/j.biortech.2016.06.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 06/06/2023]
Abstract
This study aimed to examine the metabolic changes in Chlorella minutissima cells grown under nitrogen-deficient conditions and with the addition of xylose. The cell density, maximum photochemical efficiency, and chlorophyll and lipid levels were measured. The expression of two photosynthetic proteins, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and the beta subunit (AtpB) of adenosine triphosphate synthase, were measured. Comparison of cells grown in medium with a 50% reduction in the nitrogen concentration versus the traditional medium solution revealed that the cells grown under nitrogen-deficient conditions exhibited an increased growth rate, higher maximum cell density (12.7×10(6)cellsmL(-1)), optimal PSII efficiency (0.69) and decreased lipid level (25.08%). This study has taken the first steps toward protein detection in Chlorella minutissima, and the results can be used to optimize the culturing of other microalgae.
Collapse
Affiliation(s)
- B C B Freitas
- College of Chemical and Food Engineering, Federal University of Rio Grande, Laboratory of Biochemical Engineering, Rio Grande, RS, Brazil
| | - M G Esquível
- Landscape, Environment, Agriculture and Food - LEAF Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Portugal
| | - R G Matos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - C M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - M G Morais
- College of Chemical and Food Engineering, Federal University of Rio Grande, Laboratory of Microbiology and Biochemistry, Rio Grande, RS, Brazil
| | - J A V Costa
- College of Chemical and Food Engineering, Federal University of Rio Grande, Laboratory of Biochemical Engineering, Rio Grande, RS, Brazil.
| |
Collapse
|