51
|
Hao R, Jiang Y, Li F, Sun-Waterhouse D, Li D. MiR-182-5p/TLR4/NF-κB axis contributes to the protective effect of caffeic acid phenethyl ester against cadmium-induced spleen toxicity and associated damage in mice. Food Chem Toxicol 2021; 158:112654. [PMID: 34743973 DOI: 10.1016/j.fct.2021.112654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 01/17/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal pollutant that can be accumulated in organs including the spleen, thereby threatening human health. In this study, the effect of caffeic acid phenethyl ester (CAPE, a bioactive component of honeybee propolis) on CdCl2-induced spleen toxicity and underlying mechanisms were examined in mice. Histological examinations revealed that CAPE (10 μmol/kg/day b.w.) could mitigate spleen damage induced by CdCl2 (1.5 mg/kg/day b.w.) in mice. Compared to the mice treated only by CdCl2, CAPE administration increased the body weight while decreasing the spleen weight, spleen Cd content and spleen to body ratio of the CdCl2-treated mice. Western blot and ELISA tests revealed that CAPE suppressed CdCl2-induced inflammation (indicated by the decreases in the levels of inflammatory indictors). TUNEL and Western blot results showed that CAPE suppressed CdCl2-induced apoptosis through reducing the percentage of TUNEL-positive cells and regulating apoptosis factors. The antagonistic effect of CAPE against CdCl2-induced spleen toxicity was realized by increasing miR-182-5p expression to regulate the TLR4/NF-κB pathway. Therefore, CAPE could be a food-derived spleen protector to counteract Cd-induced spleen toxicity through alleviating apoptosis and inflammation via the miR-182-5p/TLR4/NF-κB axis.
Collapse
Affiliation(s)
- Rili Hao
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, People's Republic of China
| | - Yang Jiang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, People's Republic of China
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, People's Republic of China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, People's Republic of China; School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, People's Republic of China.
| |
Collapse
|
52
|
Wang J, Deng W, Zou T, Bai B, Chang AK, Ying X. Cadmium-induced oxidative stress in Meretrix meretrix gills leads to mitochondria-mediated apoptosis. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:2011-2023. [PMID: 34529205 DOI: 10.1007/s10646-021-02465-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is one of the most important marine environmental pollutants that can cause oxidative damage and apoptosis in living organisms, and mitochondria are the key cell organelles affected by Cd toxicity. In this study, we investigated the effect of Cd on the mitochondria in the gill cells of the clam Meretrix meretrix and the underlying mechanism of mitochondria-mediated apoptosis following exposure to the metal. Exposure of the clams to artificial seawater containing 1.5, 3, 6 and 12 mg L-1 Cd2+ led to swollen mitochondria compared with the untreated clams. The mitochondria also became vacuolated at the higher Cd2+ concentrations. Biochemical assays showed that monoamine oxidase (MAO) activity and mitochondrial membrane potential (Δψm) increased at 1.5 mg L-1 Cd2+, but decreased at higher Cd2+ concentrations, while the activities of malate dehydrogenase (MDH) and cytochrome oxidase (CCO) and the scavenging capacities of anti-superoxide anion (ASA) and anti-hydroxy radical (AHR) all decreased with increasing Cd2+ concentrations. Significant increases in the levels of malondialdehyde (MDA) and H2O2 as well as in the activity levels of caspase-3, -8, and -9 were also observed in the Cd2+-treated clams. The results implied that Cd might induce apoptosis in M. meretrix via the mitochondrial caspase-dependent pathway.
Collapse
Affiliation(s)
- Jinhua Wang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, People's Republic of China
| | - Wanfei Deng
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, People's Republic of China
| | - Ting Zou
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, People's Republic of China
| | - Binbin Bai
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, People's Republic of China
| | - Alan K Chang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, People's Republic of China
| | - Xueping Ying
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
53
|
Manfrin J, Gonçalves Junior AC, Schwantes D, Zimmermann J, Conradi Junior E. Effective Cd 2+ removal from water using novel micro-mesoporous activated carbons obtained from tobacco: CCD approach, optimization, kinetic, and isotherm studies. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1851-1874. [PMID: 34900312 PMCID: PMC8617146 DOI: 10.1007/s40201-021-00740-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/11/2021] [Indexed: 06/14/2023]
Abstract
PURPOSE This research aimed to develop activated carbons from tobacco by double (thermal-physical) and triple activations (thermal-chemical-physical) for high-efficiency removal of Cd2+. METHODS The adsorbents were characterized by their chemical composition, point of zero charge (pHPZC), SEM, FT-IR, BET, and BJH. The subsequent adsorption studies were conducted: optimal conditions (CCD on adsorbent dose versus pH of Cd2+ solution), kinetics, equilibrium, thermodynamics, and desorption studies. RESULTS The activated carbons have irregular and heterogeneous morphology, surface functional groups COO-, C-O, C-O-C, C=O and O-H, pHPZC of 11.11 and 10.86, and enhanced SSA (especially for CT NaOH + CO2 = 103.40 g m-2). The optimal conditions for Cd2+ adsorption occur using 4.0 g L-1, pH from 3.0 to 7.0, with most of the Cd2+ adsorbed in the first 10-20 min. The goodness of the fit found for pseudo-first order, pseudo-second order, intraparticle diffusion, Langmuir, Freundlich, Dubinin-Radushkevich, Sips, and Temkin suggest the occurrence of Cd2+ chemisorption and physisorption in mono and multilayers. The values of ∆G° < 0 kJ mol-1 indicate that the observed phenomena are energetically favorable and spontaneous; the values of ∆H° < 0 and the effective desorption rates (58.52% and 44.64%) suggest that the adsorption of Cd2+ is ruled mainly (but not only) by physical interactions. CONCLUSION Our excellent results on Cd2+ removal allow us to state that tobacco use as a raw material for adsorbent development is a renewable and eco-friendly technique, allowing the production of highly effective activated carbons and providing an adequate destination for this waste. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40201-021-00740-8.
Collapse
Affiliation(s)
- Jéssica Manfrin
- Universidade Estadual do Oeste do Paraná (UNIOESTE), Universitária Street, 1619, Universitário, Cascavel, State of Paraná 85819-110 Brazil
| | - Affonso Celso Gonçalves Junior
- Pesquisador Produtividade em Pesquisa do CNPq -Nível 1C, Universidade Estadual do Oeste do Paraná (UNIOESTE), Universitária Street, 1619, Universitário, Cascavel, State of Paraná 85819-110 Brazil
| | - Daniel Schwantes
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ing. Forestal, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Región Metropolitana, Santiago, Chile
| | - Juliano Zimmermann
- Universidade Estadual do Oeste do Paraná (UNIOESTE), Universitária Street, 1619, Universitário, Cascavel, State of Paraná 85819-110 Brazil
| | - Elio Conradi Junior
- Universidade Estadual do Oeste do Paraná (UNIOESTE), Universitária Street, 1619, Universitário, Cascavel, State of Paraná 85819-110 Brazil
| |
Collapse
|
54
|
Chan MWH, Ali A, Ullah A, Mirani ZA, Balthazar-Silva D. A Size-dependent Bioaccumulation of Metal Pollutants, Antibacterial and Antifungal Activities of Telescopium telescopium, Nerita albicilla and Lunella coronata. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103722. [PMID: 34391907 DOI: 10.1016/j.etap.2021.103722] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
We assessed metal/metalloid pollutants (through multi-indices) in seawater, sediments, tissues and shells of gastropods using various indices such as contamination degree (modified/unmodified; Cd/mCd; 1875/187.5). From sediment indices; e.g. the potential ecological risk index/enrichment factor (Eri/EF; 3396.8/105.5) indicated the area to be highly contaminated with metal/metalloid pollutants. Indeed, bioaccumulation with these materials was gastropod size dependent. Antimicrobial and percentage activity indices (AMI/PAI) for; T. telescopium was (AMI/PAI; 1.59/159), N. albicilla (1.14/114) and L. coronata (0.95/95) against E. coli. Similarly T. telescopium (1.33/133), N. albicilla (1.19/119) and L. coronata (1.14/114) have AMI/PAI against A. terreus. The total activity index (TAI), for T. telescopium was the highest, while L. coronata has lowest for all pathogens. This study indicates, T. telescopium, N. albicilla and L. coronata, surviving under metal/metalloid stress exhibited altered natural defense to pathogens which was related to the degree of toxin bioaccumulation.
Collapse
Affiliation(s)
| | - Amjad Ali
- Centre of Excellence in Marine Biology, University of Karachi, Karachi, 75270, Pakistan
| | - Asad Ullah
- Food and Marine Resources Research Center, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Karachi, 75280, Pakistan
| | - Zulfiqar Ali Mirani
- Pakistan Council of Scientific and Industrial Research Laboratories Complex, Microbiology Section, Karachi, 75280, Pakistan
| | - Danilo Balthazar-Silva
- Instituto de Ciências da Saúde, Universidade Paulista, Campus Jundiaí, São Paulo, Brazil; Laboratório de Manejo, Ecologia e Conservação Marinha, Instituto Oceanográfico, USP, São Paulo, Brazil
| |
Collapse
|
55
|
Suhani I, Sahab S, Srivastava V, Singh RP. Impact of cadmium pollution on food safety and human health. CURRENT OPINION IN TOXICOLOGY 2021. [DOI: 10.1016/j.cotox.2021.04.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
56
|
Xu Y, Liu H, Han D, Ren L, Gong X, Jiang F, Cui Y, Liu X, Ren C, Xue J, Tian X. Metabolomic Alterations in the Digestive System of the Mantis Shrimp Oratosquilla oratoria Following Short-Term Exposure to Cadmium. Front Physiol 2021; 12:706579. [PMID: 34421644 PMCID: PMC8374601 DOI: 10.3389/fphys.2021.706579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/12/2021] [Indexed: 02/02/2023] Open
Abstract
Mantis shrimp Oratosquilla oratoria is an economically critical aquatic species along the coast of China but strongly accumulates marine pollutant cadmium (Cd) in its digestive system. It is necessary to characterize the toxicity of Cd in the digestive system of mantis shrimp. The metabolic process is an essential target of Cd toxicity response. In this work, we used ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry (UPLC-TOF-MS) for untargeted metabolomics to characterize the metabolic changes in the digestive system of O. oratoria, exposed to 0.05 mg/L for 96 h. The aim of this study was to further investigate the effect of O. oratoria on Cd response to toxicity and develop biomarkers. Metabolomics analysis showed the alteration of metabolism in the digestive system of mantis shrimp under Cd stress. A total of 91 metabolites were differentially expressed and their main functions were classified into amino acids, phospholipids, and fatty acid esters. The enrichment results of differential metabolite functional pathways showed that biological processes such as amino acid metabolism, transmembrane transport, energy metabolism, and signal transduction are significantly affected. Based on the above results, the Cd-induced oxidative stress and energy metabolism disorders were characterized by the differential expression of amino acids and ADP in mantis shrimp, while the interference of transmembrane transport and signal transduction was due to the differential expression of phospholipids. Overall, this work initially discussed the toxicological response of Cd stress to O. oratoria from the metabolic level and provided new insights into the mechanism.
Collapse
Affiliation(s)
- Yingjiang Xu
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Huan Liu
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai, China.,College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - Dianfeng Han
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Lihua Ren
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Xianghong Gong
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Fang Jiang
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Yanmei Cui
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Xiaojing Liu
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Chuanbo Ren
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Jinglin Xue
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Xiuhui Tian
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai, China
| |
Collapse
|
57
|
Liu H, Li H, Zhang X, Gong X, Han D, Zhang H, Tian X, Xu Y. Metabolomics comparison of metabolites and functional pathways in the gills of Chlamys farreri under cadmium exposure. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103683. [PMID: 34052434 DOI: 10.1016/j.etap.2021.103683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/17/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
The biological processes of Chlamys farreri (C. farreri), an economically important shellfish, are affected when exposed to Cd2+. In this study, changes to biological processes and metabolite levels in C. farreri were examined when exposed to Cd2+. Ultra-performance liquid chromatography-tandem TOF mass spectrometry (UPLC-TOF/MS)-based untargeted metabolomics was used to examine changes in the metabolism of C. farreri gill tissue exposed to 0.050 mg/L Cd2+ for 96 h in a natural environment. Sixty-eight metabolites with significant differences were screened by multivariate statistical analysis. Eleven enriched functional pathways displayed significant changes in inactivity. Differential metabolites, mainly C00157 and C00350, have a significant impact on functional pathways and can be used as potential major biomarkers. Lipid phosphorylation, disruption of signal transduction, and autophagy activation were observed to change in C. farreri when exposed to Cd. The metabolome information supplements research on C. farreri exposure to heavy metals and provides a platform for further multi-omics analysis.
Collapse
Affiliation(s)
- Huan Liu
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai, 200120, China
| | - Huanjun Li
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, China
| | - Xiuzhen Zhang
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, China
| | - Xianghong Gong
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, China
| | - Dianfeng Han
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, China
| | - Huawei Zhang
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, China
| | - Xiuhui Tian
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, China
| | - Yingjiang Xu
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, China.
| |
Collapse
|
58
|
Yu X, Zhao J, Liu X, Sun L, Tian J, Wu N. Cadmium Pollution Impact on the Bacterial Community Structure of Arable Soil and the Isolation of the Cadmium Resistant Bacteria. Front Microbiol 2021; 12:698834. [PMID: 34367100 PMCID: PMC8339475 DOI: 10.3389/fmicb.2021.698834] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/02/2021] [Indexed: 11/13/2022] Open
Abstract
Microorganisms play an important role in the remediation of cadmium pollution in the soil and their diversity can be affected by cadmium. In this study, the bacterial community in arable soil samples collected from two near geographical sites, with different degrees of cadmium pollution at three different seasons, were characterized using Illumina MiSeq sequencing. The result showed that cadmium is an important factor to affect the bacterial diversity and the microbial communities in the high cadmium polluted area (the site H) had significant differences compared with low cadmium polluted area (the site L). Especially, higher concentrations of Cd significantly increased the abundance of Proteobacteria and Gemmatimonas whereas decreased the abundance of Nitrospirae. Moreover, 42 Cd-resistant bacteria were isolated from six soil samples and evaluated for potential application in Cd bioremediation. Based on their Cd-MIC [minimum inhibitory concentration (MIC) of Cd2+], Cd2+ removal rate and 16S rDNA gene sequence analyses, three Burkholderia sp. strains (ha-1, hj-2, and ho-3) showed very high tolerance to Cd (5, 5, and 6 mM) and exhibited high Cd2+ removal rate (81.78, 79.37, and 63.05%), six Bacillus sp. strains (151-5,151-6,151-13, 151-20, and 151-21) showed moderate tolerance to Cd (0.8, 0.4, 0.8, 0.4, 0.6, and 0.4 mM) but high Cd2+ removal rate (84.78, 90.14, 82.82, 82.39, 81.79, and 84.17%). Those results indicated that Burkholderia sp. belonging to the phylum Proteobacteria and Bacillus sp. belonging to the phylum Firmicutes have developed a resistance for cadmium and may play an important role in Cd-contaminated soils. Our study provided baseline data for bacterial communities in cadmium polluted soils and concluded that Cd-resistant bacteria have potential for bioremediation of Cd-contaminated soils.
Collapse
Affiliation(s)
- Xiaoxia Yu
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, China
| | - JinTong Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoqing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - LiXin Sun
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, China
| | - Jian Tian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ningfeng Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
59
|
Hongyan X, Zhanling X, Hongchen J, Jing G, Qing M, Yuan Z, Xiaofang W. Transcriptome Analysis and Expression Profiling of Molecular Responses to Cd Toxicity in Morchella spongiola. MYCOBIOLOGY 2021; 49:421-433. [PMID: 34512085 PMCID: PMC8409932 DOI: 10.1080/12298093.2021.1937882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/09/2021] [Accepted: 05/28/2021] [Indexed: 05/25/2023]
Abstract
Morchella is a genus of fungi with the ability to concentrate Cd both in the fruit-body and mycelium. However, the molecular mechanisms conferring resistance to Cd stress in Morchella are unknown. Here, RNA-based transcriptomic sequencing was used to identify the genes and pathways involved in Cd tolerance in Morchella spongiola. 7444 differentially expressed genes (DEGs) were identified by cultivating M. spongiola in media containing 0.15, 0.90, or 1.50 mg/L Cd2+. The DEGs were divided into six sub-clusters based on their global expression profiles. GO enrichment analysis indicated that numerous DEGs were associated with catalytic activity, cell cycle control, and the ribosome. KEGG enrichment analysis showed that the main pathways under Cd stress were MAPK signaling, oxidative phosphorylation, pyruvate metabolism, and propanoate metabolism. In addition, several DEGs encoding ion transporters, enzymatic/non-enzymatic antioxidants, and transcription factors were identified. Based on these results, a preliminary gene regulatory network was firstly proposed to illustrate the molecular mechanisms of Cd detoxification in M. spongiola. These results provide valuable insights into the Cd tolerance mechanism of M. spongiola and constitute a robust foundation for further studies on detoxification mechanisms in macrofungi that could potentially lead to the development of new and improved fungal bioremediation strategies.
Collapse
Affiliation(s)
- Xu Hongyan
- College of Eco-Environmental Engineering, Qinghai University, Qinghai, China
- Academy of Agriculture and Forestry Sciences, Qinghai University, Qinghai, China
| | - Xie Zhanling
- College of Eco-Environmental Engineering, Qinghai University, Qinghai, China
| | - Jiang Hongchen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Guo Jing
- College of Eco-Environmental Engineering, Qinghai University, Qinghai, China
| | - Meng Qing
- College of Eco-Environmental Engineering, Qinghai University, Qinghai, China
| | - Zhao Yuan
- College of Eco-Environmental Engineering, Qinghai University, Qinghai, China
| | - Wang Xiaofang
- College of Eco-Environmental Engineering, Qinghai University, Qinghai, China
| |
Collapse
|
60
|
Gao Y, Hong J, Guo Y, Chen M, Chang AK, Xie L, Ying X. Assessment spermatogenic cell apoptosis and the transcript levels of metallothionein and p53 in Meretrix meretrix induced by cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112230. [PMID: 33864984 DOI: 10.1016/j.ecoenv.2021.112230] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) has been widely used in industry and can accumulate in the water, soil, and food. Meretrix meretrix is one of the marine shellfishes cultivated for economic purpose in China. The increasing Cd levels in coastal marine water could adversely affect the economic benefits of shellfish cultivation. In the present study, M. meretrix were exposed to different Cd2+ concentrations (0, 1.5, 3, 6, and 12 mg L-1) for 5 d to evaluate the effects of Cd on spermatogenic cell. The Cd accumulation, survival rate and the indices of oxidative stress and apoptosis were determined in the spermatogenic cells of M. meretrix. The expression levels of p53 and metallothionein (MT) mRNA were also measured in the spermatogenic cells. Cd accumulation and the mortality rate of spermatogenic cells were found to increase in a dose-response manner with Cd2+ concentrations. Histopathology changes, especially the damage of membranous structure, were more severe as the Cd2+ levels in the testis became higher. The indexes of oxidative stress, including reactive oxygen species, malondialdehyde, protein carbonyl derivates and DNA-protein crosslinks all increased after exposure to Cd2+. However, the total antioxidant capacity gradually decreased with the increasing Cd2+ concentration. In addition, exposure to Cd2+ increased the apoptotic rate and caspase-3 and 9 activities but decreased the level of mitochondrial membrane potential and cytochrome C oxidase in the spermatogenic cells. MT mRNA expression increased in lower Cd2+ concentration treated groups whereas decreased in higher groups, while the p53 mRNA expression increased in a dose-response manner with Cd2+ and was positively correlated with the oxidative damage indices. These results indicated that Cd2+ caused oxidative stress and p53 induced apoptosis in the spermatogenic cells, and thus decreased the survival rate of sperm cells. This finding highlights that Cd can reduce the reproductive capacity of M. meretrix, thus threatening to wild shellfish populations and reducing the efficiency of shellfish farming.
Collapse
Affiliation(s)
- Yilu Gao
- College of Life and Environmental Science, Wenzhou University, 325035 Wenzhou, China
| | - Jiameng Hong
- College of Life and Environmental Science, Wenzhou University, 325035 Wenzhou, China
| | - Yuke Guo
- College of Life and Environmental Science, Wenzhou University, 325035 Wenzhou, China
| | - Mengxu Chen
- College of Life and Environmental Science, Wenzhou University, 325035 Wenzhou, China
| | - Alan K Chang
- College of Life and Environmental Science, Wenzhou University, 325035 Wenzhou, China
| | - Lei Xie
- College of Life and Environmental Science, Wenzhou University, 325035 Wenzhou, China.
| | - Xueping Ying
- College of Life and Environmental Science, Wenzhou University, 325035 Wenzhou, China.
| |
Collapse
|
61
|
Iqbal T, Cao M, Zhao Z, Zhao Y, Chen L, Chen T, Li C, Zhou X. Damage to the Testicular Structure of Rats by Acute Oral Exposure of Cadmium. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18116038. [PMID: 34199704 PMCID: PMC8200047 DOI: 10.3390/ijerph18116038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
Cadmium (Cd) is one of the most important heavy metal toxicants, used throughout the world at the industrial level. It affects humans through environmental and occupational exposure and animals through the environment. The most severe effects of oral exposure to Cd on the male reproductive system, particularly spermatogenesis, have not been discussed. In this study, we observed the damage to the testes and heritable DNA caused by oral exposure to Cd. Adult male Sprague–Dawley rats were divided into four groups: a control group and three groups treated with 5, 10, and 15 mg Cd/kg/day for 17 days by oral gavage. Our results revealed that Cd significantly decreases weight gain in 10 and 15 mg/kg groups, whereas the 5 mg/kg groups showed no difference in weight gain. The histopathology showed adverse structural effects on the rat testis by significantly reducing the thickness of the tunica albuginea, the diameter of the tubular lumen, and the interstitial space among seminiferous tubules and increasing the height of the epithelium and the diameter of the seminiferous tubules in Cd treated groups. Comet assay in epididymal sperms demonstrated a significant difference in the lengths of the head and comet in all the 3 Cd treated groups, indicating damage in heritable DNA, although variations in daily sperm production were not significant. Only a slight decrease in sperm count was reported in Cd-treated groups as compared to the control group, whereas the tail length, percentage of DNA in head, and tail showed no significant difference in control and all the experimental groups. Overall, our findings indicate that Cd toxicity must be controlled using natural sources, such as herbal medicine or bioremediation, with non-edible plants, because it could considerably affect heritable DNA and induce damage to the reproductive system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xu Zhou
- Correspondence: (C.L.); (X.Z.)
| |
Collapse
|
62
|
Baş H, Apaydın FG, Kalender S, Kalender Y. Lead nitrate and cadmium chloride induced hepatotoxicity and nephrotoxicity: Protective effects of sesamol on biochemical indices and pathological changes. J Food Biochem 2021; 45:e13769. [PMID: 34021611 DOI: 10.1111/jfbc.13769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/30/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022]
Abstract
Lead nitrate (LN) and cadmium chloride (CdCl2 ), regarded as environmental contaminants, are toxic heavy metals. Sesamol is a dietary phytochemical found in sesame oil. We aimed to analyze the hepatotoxic and nephrotoxic effects of LN and CdCl2 and to evaluate the possible protective effect of sesamol. LN (90 mg/kg bw per day), CdCl2 (3 mg/kg bw per day), and sesamol (50 mg/kg bw per day) were given to rats via gavage for 28 days. Total protein, albumin, alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, total cholesterol, urea, uric acid, creatinine, superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, malondialdehyde, acetylcholinesterase, and histopathological changes were investigated in liver and kidney tissues. Lead and cadmium were found to result in decreases in the antioxidant enzymes and acetylcholinesterase activities, increases in malondialdehyde levels, and changes in serum biochemical parameters and various pathological findings. An improvement in all these parameters was observed in the sesamol-treated groups. PRACTICAL APPLICATIONS: Heavy metals are used in many areas of the industry all over the world. Heavy metals which include lead nitrate and cadmium chloride cause cell damage by oxidative stress. Some of the examining parameters for oxidative stress are SOD, GST, MDA, GPx, and CAT. However, some chemicals such as sesamol are well-liked and widely used as antioxidants against xenobiotic toxicity. We also indicate that sesamol has been shown to protective effect against heavy metals caused cell damage.
Collapse
Affiliation(s)
- Hatice Baş
- Faculty of Arts and Science, Department of Biology, Yozgat Bozok University, Yozgat, Turkey
| | | | - Suna Kalender
- Gazi Education Faculty, Department of Science Education, Gazi University, Ankara, Turkey
| | - Yusuf Kalender
- Faculty of Science, Department of Biology, Gazi University, Ankara, Turkey
| |
Collapse
|
63
|
Yin X, Wu Q, Song W, Yang Q, Wu Y, Fang M, Gong Z. Study on toxicological effect and the mechanism of cadmium in rice and inorganic cadmium on ICR mice. Toxicol Res (Camb) 2021; 10:639-650. [PMID: 34141178 PMCID: PMC8201557 DOI: 10.1093/toxres/tfab043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 11/15/2022] Open
Abstract
Cadmium (Cd) exposure may induce chronic intoxication, but the harm of cadmium in rice to human at chronic low-level Cd exposure remains unclear. This study employed a mouse model to investigate the toxicity and mechanism of cadmium in rice and CdCl2. After 8-week exposure to Cd (CdCl2 and Cd-contaminated rice), the biochemical indicators and oxidation indicators in the serum and liver of mice were determined, and used mRNA sequencing to investigate the mechanism of different forms of Cd. Results showed that the cadmium concentration of the liver in the CdCl2 + Rice-N group (CdCl2 mixed with feed and normal rice, 0.4mg/kg.bw) was higher than that in the Rice-H group (0.4mg/kg.bw). However, the cadmium concentration of the kidneys in the Rice-H group was higher than that in the CdCl2 + Rice-N group. Our study demonstrated that Cd-treated (Cd in rice and CdCl2) ICR mice generated obviously tissues injury, such as the increased biochemical studies, the activity of antioxidant enzymes debasement. Simultaneously, our data also indicated that there existed difference of the hepatic toxicity between Cd in rice and CdCl2. By means of transcriptomics, we discovered that CdCl2 and Cd in rice may affect different gene expression at the molecular level. We hope to provide some theoretical basis for the revision of food security standards.
Collapse
Affiliation(s)
- Xiaoyao Yin
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, 68 Xuefu South Road, Wuhan 430023, Hubei, China
| | - Qian Wu
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, 68 Xuefu South Road, Wuhan 430023, Hubei, China
| | - Wanying Song
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, 68 Xuefu South Road, Wuhan 430023, Hubei, China
| | - Qing Yang
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, 68 Xuefu South Road, Wuhan 430023, Hubei, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, 37 Guangqu Road, Chaoyang District, Beijing 100021, China
| | - Min Fang
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, 68 Xuefu South Road, Wuhan 430023, Hubei, China
| | - Zhiyong Gong
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, 68 Xuefu South Road, Wuhan 430023, Hubei, China
| |
Collapse
|
64
|
Meng J, Wang WX, Li L, Zhang G. Accumulation of different metals in oyster Crassostrea gigas: Significance and specificity of SLC39A (ZIP) and SLC30A (ZnT) gene families and polymorphism variation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116706. [PMID: 33592447 DOI: 10.1016/j.envpol.2021.116706] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
The Zrt/Irt-like proteins (ZIP, SLC39A) and zinc transporters (ZnT, SLC30A) are the two major gene families responsible for the import/export of Zn and other metals. In this study, the mRNA expression levels and genetic variations of eight ZnTs and 14 ZIPs were identified in Crassostrea gigas after exposure to Zn, Cd, Cu, Hg, and Pb. Metal exposure induced reactive oxygen species (ROS) and malondialdehyde (MDA) accumulation and antioxidant enzyme expression. The expanded gene numbers of superoxide dismutase (SOD) in the oysters exhibited diverse expression under exposure to the five metals, and the contrasting expressions of both ZnTs and ZIPs under different metal exposures were observed, revealing their ion-specific responses. Zn and Cu have similar transporters and induce high expression levels of ZnT1, 2, 7, and 9 and ZIP1, 3, 6, 9, 10, 11, and 14. Pb induced high expression levels of ZIP7, and 13 and ZnT5, 6, and 7, which are mainly expressed in the endoplasmic reticulum (ER). Cd induced high expression levels of ZnT1, 2, and 7 and ZIP1, 6, 9, 10, 11, and 13. Hg exposure was found to have little effect on the ZIP and ZnT expression levels. Based on 3784 single nucleotide polymorphisms (SNPs) within the ZnTs and ZIPs, genetic association analysis for Zn accumulation was conducted on 427 oyster samples. The 38 SNPs, which were located within 12 genes, were identified to be associated with Zn content (p < 0.01), explaining the phenotypic variation from 1.61% to 3.37%. One nonsynonymous mutation and related haplotypes were identified within ZIP1, explaining 1.69% of the variation in Zn. Its high expression under Zn exposure revealed its important role in Zn transportation. To the best of our knowledge, this study is the first comprehensive investigation of the transportation mechanisms of ZIPs and ZnTs under different metal exposures and the genetic effect of Zn accumulation in oysters, and provides valuable biomarkers and genetic resources to evaluate environmental metal pollution.
Collapse
Affiliation(s)
- Jie Meng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
65
|
Mechanisms of Cd (II) binding to GMP and UMP: a combined conductometry, isothermal titration calorimetry and NMR study. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01452-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
66
|
The Role of Toxic Metals and Metalloids in Nrf2 Signaling. Antioxidants (Basel) 2021; 10:antiox10050630. [PMID: 33918986 PMCID: PMC8142989 DOI: 10.3390/antiox10050630] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/18/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2), an emerging regulator of cellular resistance to oxidants, serves as one of the key defensive factors against a range of pathological processes such as oxidative damage, carcinogenesis, as well as various harmful chemicals, including metals. An increase in human exposure to toxic metals via air, food, and water has been recently observed, which is mainly due to anthropogenic activities. The relationship between environmental exposure to heavy metals, particularly cadmium (Cd), lead (Pb), mercury (Hg), and nickel (Ni), as well as metaloid arsenic (As), and transition metal chromium (Cr), and the development of various human diseases has been extensively investigated. Their ability to induce reactive oxygen species (ROS) production through direct and indirect actions and cause oxidative stress has been documented in various organs. Taking into account that Nrf2 signaling represents an important pathway in maintaining antioxidant balance, recent research indicates that it can play a dual role depending on the specific biological context. On one side, Nrf2 represents a potential crucial protective mechanism in metal-induced toxicity, but on the other hand, it can also be a trigger of metal-induced carcinogenesis under conditions of prolonged exposure and continuous activation. Thus, this review aims to summarize the state-of-the-art knowledge regarding the functional interrelation between the toxic metals and Nrf2 signaling.
Collapse
|
67
|
Chen J, Lai W, Deng Y, Liu M, Dong M, Liu Z, Wang T, Li X, Zhao Z, Yin X, Yang J, Yu R, Liu L. MicroRNA-363-3p promotes apoptosis in response to cadmium-induced renal injury by down-regulating phosphoinositide 3-kinase expression. Toxicol Lett 2021; 345:12-23. [PMID: 33857584 DOI: 10.1016/j.toxlet.2021.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/03/2021] [Accepted: 04/09/2021] [Indexed: 12/09/2022]
Abstract
We previously determined that specific microRNAs (miRNAs) are involved in renal pathophysiological occurrences induced by cadmium (Cd) in rats. This study expands our studies on miRNAs, determining their role in Cd-induced nephrotoxicity in occupational workers. We performed miRNA microarray analyses of blood and urine samples from patients diagnosed as occupational chronic Cd poisoning (OCCP) with abnormally elevated concentrations of urinary beta-2-microglobulin (U-β2-MG), an indicator of tubular proteinuria. We also performed in vitro bioinformatics-based investigations of apoptosis-related genes targeted by miRNAs involved in the biological response to Cd exposure. We tested five differentially expressed miRNAs and determined a significant increase of sera miR-363-3p. Also, we determined that miR-363-3p increase is associated with phosphoinositide 3-kinase (PI3K) down-regulation and the suppressed proliferation and enhanced apoptosis of renal tubule epithelial cells. The obtained results suggest miR-363-3p involvement in the pathophysiology of Cd-induced renal injury in humans and maybe considered for possible interventional therapeutic strategies for Cd-associated kidney damage.
Collapse
Affiliation(s)
- Jiabin Chen
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China
| | - Weina Lai
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China; Department of Occupational and Environmental Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, Guangdong, China
| | - Yaotang Deng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Min Liu
- Dongguan Maternal and Child Healthcare Hospital, Dongguan, 523700, Guangdong, China
| | - Ming Dong
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China
| | - Zhidong Liu
- Huizhou Hospital for Occupational Disease Prevention and Treatment, Huizhou, 516008, Guangdong, China
| | - Ting Wang
- Huizhou Hospital for Occupational Disease Prevention and Treatment, Huizhou, 516008, Guangdong, China
| | - Xiang Li
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China
| | - Zhiqiang Zhao
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China
| | - Xiao Yin
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China
| | - Jinmei Yang
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Rian Yu
- Department of Occupational and Environmental Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, Guangdong, China
| | - Lili Liu
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China.
| |
Collapse
|
68
|
Sochorova L, Baron M, Dadakova K, Kasparovsky T, Sochor J. Health Beneficial Properties of Grapevine Seed Extract and Its Influence on Selected Biochemical Markers in the Blood, Liver and Kidneys of Rattus norvegicus. Molecules 2021; 26:2099. [PMID: 33917585 PMCID: PMC8038788 DOI: 10.3390/molecules26072099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 11/16/2022] Open
Abstract
Cadmium (Cd) is a heavy metal that occurs in all areas of the environment, including the food chain. In the body, it causes oxidative stress by producing free radicals that are harmful to the cells. Grape seed extract (GSE) contains a wide range of biologically active components that help to neutralize the adverse effects of free radicals. In this study, the effects of GSE prepared form semi-resistant grapevine cultivar Cerason, which is rich in phenolics, on biochemical markers of brown rats exposed to the effects of cadmium were monitored. GSE increased the plasma antioxidant activity and, in the kidneys and the liver, Cd content was significantly lowered by GSE co-administration. Accordingly, the increase in creatinine content and alanine aminotransferase activity and the decrease of catalase and superoxide dismutase activities caused by cadmium were slowed down by GSE co-administration. The results of this work reveal that grape seed extract offers a protective effect against the intake of heavy metals into the organism.
Collapse
Affiliation(s)
- Lenka Sochorova
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valtická 337, 69144 Lednice, Czech Republic
| | - Mojmir Baron
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valtická 337, 69144 Lednice, Czech Republic
| | - Katerina Dadakova
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Tomas Kasparovsky
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Jiri Sochor
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valtická 337, 69144 Lednice, Czech Republic
| |
Collapse
|
69
|
Baralić K, Jorgovanović D, Živančević K, Buha Djordjević A, Antonijević Miljaković E, Miljković M, Kotur-Stevuljević J, Antonijević B, Đukić-Ćosić D. Combining in vivo pathohistological and redox status analysis with in silico toxicogenomic study to explore the phthalates and bisphenol A mixture-induced testicular toxicity. CHEMOSPHERE 2021; 267:129296. [PMID: 33348264 DOI: 10.1016/j.chemosphere.2020.129296] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
The aim of this study was to: (i) determine and compare the capacity of bis (2 -ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP), bisphenol A (BPA), and their mixture to produce testicular toxicity after the subacute exposure; (ii) explore the mechanisms behind the observed changes using in silico toxicogenomic approach. Male rats were randomly split into groups (n = 6): (1) Control (corn oil); (2) DEHP (50 mg/kg b.w./day); (3) DBP (50 mg/kg b.w./day); (4) BPA (25 mg/kg b.w./day); and (5) MIX (50 mg/kg b.w./day DEHP + 50 mg/kg b.w/day DBP + 25 mg/kg b.w./day BPA). Animals were sacrificed after 28 days of oral exposure, testes were extracted and prepared for histological assessments under the light microscope (haematoxylin and eosin staining) and redox status analysis. The Comparative Toxicogenomics Database (CTD; http://CTD.mdibl.org), Cytoscape software (https://cytoscape.org) and ToppGene Suite (https://toppgene.cchmc.org) were used for data-mining. Present pathohistological study has demonstrated more pronounced testicular toxicity of the MIX group (desquamated germinal epithelium cells, enlarged cells with hyperchromatic nuclei, multinucleated cell forms and intracytoplasmic vacuoles) in comparison with the single substances, while effects on redox status parameters were either more prominent, or present only in the MIX group. In silico investigation revealed 20 genes linked to male reproductive disorders, affected by all three investigated substances. Effects on metabolism, AhR pathway, apoptosis and oxidative stress could be singled out as the most probable mechanisms involved in the subacute DEHP, DBP and BPA mixture testicular toxicity, while the effect on oxidative stress parameters was confirmed by in vivo experiment.
Collapse
Affiliation(s)
- Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia.
| | - Dragica Jorgovanović
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Katarina Živančević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Aleksandra Buha Djordjević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Evica Antonijević Miljaković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Milica Miljković
- Department of Biochemistry, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Jelena Kotur-Stevuljević
- Department of Biochemistry, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| |
Collapse
|
70
|
Živančević K, Baralić K, Jorgovanović D, Buha Djordjević A, Ćurčić M, Antonijević Miljaković E, Antonijević B, Bulat Z, Đukić-Ćosić D. Elucidating the influence of environmentally relevant toxic metal mixture on molecular mechanisms involved in the development of neurodegenerative diseases: In silico toxicogenomic data-mining. ENVIRONMENTAL RESEARCH 2021; 194:110727. [PMID: 33465344 DOI: 10.1016/j.envres.2021.110727] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
This in silico toxicogenomic analysis aims to: (i) testify the hypothesis about the influence of the environmentally relevant toxic metals (lead, methylmercury (organic form of mercury), cadmium and arsenic) on molecular mechanisms involved in amyotrophic lateral sclerosis (ALS), Parkinson's Disease (PD) and Alzheimer's disease (AD) development; and (ii) demonstrate the capability of in silico toxicogenomic data-mining for distinguishing the probable mechanisms of mixture-induced toxic effects. The Comparative Toxicogenomics Database (CTD; http://ctd. mdibl.org) and Cytoscape software were used as the main data-mining tools in this analysis. The results have shown that there were 7, 13 and 14 common genes for all the metals present in the mixture for each of the selected neurodegenerative disease (ND), respectively: ALS, PD and AD. Physical interactions (68.18%) were the most prominent interactions between the genes extracted for ALS, co-expression (60.85%) for PD and interactions predicted by the server (44.30%) for AD. SOD2 gene was noted as the mutual gene for all the selected ND. Oxidative stress, folate metabolism, vitamin B12, AGE-RAGE, apoptosis were noted as the key disrupted molecular pathways that contribute to the neurodegenerative disease's development. Gene ontology analysis revealed biological processes affected by the investigated mixture (glutathione metabolic process was listed as the most important for ALS, cellular response to toxic substance for PD, and neuron death for AD). Our results emphasize the role of oxidative stress, particularly SOD2, in neurodegeneration triggered by environmental toxic metal mixture and give a new insight into common molecular mechanisms involved in ALS, PD and AD pathology.
Collapse
Affiliation(s)
- Katarina Živančević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Dragica Jorgovanović
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Aleksandra Buha Djordjević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Marijana Ćurčić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Evica Antonijević Miljaković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia.
| |
Collapse
|
71
|
Huang L, Fang Z, Gao J, Wang J, Li Y, Sun L, Wang Y, Liao J, Gooneratne R. Protective role of l-threonine against cadmium toxicity in Saccharomyces cerevisiae. J Basic Microbiol 2021; 61:339-350. [PMID: 33570201 DOI: 10.1002/jobm.202100012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022]
Abstract
Environment and food contamination with cadmium (Cd) can cause serious toxicity, posing a severe threat to agricultural production and human health. However, how amino acids contribute to defenses against oxidative stress caused by Cd in cells is not fully understood. As a model eukaryote with a relatively clear genetic background, Saccharomyces cerevisiae has been commonly used in Cd toxicity research. To gain insight into Cd toxicity and cell defenses against it, 20 amino acids were screened for protective roles against Cd stress in S. cerevisiae. The results showed that threonine (Thr, T) had the strongest protective effect against Cd-induced mortality and membrane damage in the cells. Compared to the antioxidant vitamin C (VC), Thr exhibited a higher efficacy in restoring the superoxide dismutase (SOD) activity that was inhibited by Cd but not by H2 O2 in vivo. Thr exhibited evident DPPH (2,2-diphenyl-1-picrylhydrazyl) activity but weak ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-9 sulfonic acid)) scavenging activity, giving it a weaker effect against Cd-induced lipid peroxidation and superoxide radical O2- , compared to VC. More importantly, compared to the chelating agent EDTA, Thr showed stronger chelation of Cd, giving it a stronger protective effect on SOD against Cd than VC in vitro. The results of the in vivo and in vitro experiments revealed that the role Thr plays in cell defenses against Cd may be attributed to its protection of the SOD enzyme, predominantly through the preferential chelation of Cd. Our results provide insights into the protective mechanisms of amino acid Thr that ameliorate Cd toxicity and suggest that a supplement of Thr might help to reduce Cd-induced oxidative damage.
Collapse
Affiliation(s)
- Linru Huang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Cunjin College, Guangdong Ocean University, Zhanjiang, China
| | - Zhijia Fang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Cunjin College, Guangdong Ocean University, Zhanjiang, China
| | - Jian Gao
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Cunjin College, Guangdong Ocean University, Zhanjiang, China
| | - Jingwen Wang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Cunjin College, Guangdong Ocean University, Zhanjiang, China
| | - Yongbin Li
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Cunjin College, Guangdong Ocean University, Zhanjiang, China
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Cunjin College, Guangdong Ocean University, Zhanjiang, China
| | - Yaling Wang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Cunjin College, Guangdong Ocean University, Zhanjiang, China
| | - Jianmeng Liao
- Institute for Food and Drug Control, Zhanjiang, China
| | - Ravi Gooneratne
- Department of Wine, Food, and Molecular Biosciences, Lincoln University, Lincoln, Canterbury, New Zealand
| |
Collapse
|
72
|
Ferain A, Delbecque E, Neefs I, Dailly H, De Saeyer N, Van Larebeke M, Cornet V, Larondelle Y, Rees JF, Kestemont P, De Schamphelaere KAC, Debier C. Interplay between dietary lipids and cadmium exposure in rainbow trout liver: Influence on fatty acid metabolism, metal accumulation and stress response. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 231:105676. [PMID: 33341509 DOI: 10.1016/j.aquatox.2020.105676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 10/17/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
The present study aimed at investigating interactive effects between dietary lipids and both short- and long-term exposures to a low, environmentally realistic, cadmium (Cd) concentration. Juvenile rainbow trout were fed four isolipidic diets (31.7 g/kg) enriched in either linoleic acid (LA, 18:2n-6), alpha-linolenic acid (ALA, 18:3n-3), eicosapentaenoic acid (EPA, 20:5n-3) or docosahexaenoic acid (DHA, 22:6n-3). From the 4th week of this 10-week experiment, the lipid level of the diet was increased (120.0 g/kg) and half of the fish fed each diet were aqueously exposed to Cd (0.3 μg/L) while the other half were not exposed to Cd (control). Fish were sampled and their liver was harvested for fatty acid profile, hepatic Cd and calcium concentrations, total glutathione level and gene expression assessment, either (i) after 4 weeks of feeding and 24 h of Cd contamination (day 29) (short-term Cd exposure) or (ii) after 10 weeks of feeding and 6 weeks of Cd contamination (day 70) (long-term Cd exposure). We found that both dietary lipids and Cd exposure influenced fatty acid homeostasis and metabolism. The hepatic fatty acid profile mostly reflected that of the diet (e.g. n-3/n-6 ratio) with some differences, including selective retention of specific long chain polyunsaturated fatty acids (LC-PUFAs) like DHA and active biotransformation of dietary LA and ALA into LC-PUFAs. Cd effects on hepatic fatty acid profiles were influenced by the duration of the exposure and the nutritional status of the fish. The effects of diet and Cd exposure on the fatty acid profiles were only sparsely explained by variation of the expression pattern of genes involved in fatty acid metabolism. The biological responses to Cd were also influenced by dietary lipids. Fish fed the ALA-enriched diet seemed to be the least affected by the Cd exposure, as they showed a higher detoxifying ability against Cd with an early upregulation of protective metallothionein a (MTa) and apoptosis regulator BCL2-Like1 (BCLx) genes, an increased long-term phospholipid synthesis and turnover and fatty acid bioconversion efficiency, as well as a lower long-term accumulation of Cd in their liver. In contrast, fish fed the EPA-enriched diet seemed to be the most sensitive to a long-term Cd exposure, with an impaired growth performance and a decreased antioxidant capacity (lower glutathione level). Our results highlight that low, environmentally realistic aqueous concentrations of Cd can affect biological response in fish and that these effects are influenced by the dietary fatty acid composition.
Collapse
Affiliation(s)
- Aline Ferain
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud 4-5/L7.07.03, B-1348, Louvain-la-Neuve, Belgium.
| | - Eva Delbecque
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud 4-5/L7.07.03, B-1348, Louvain-la-Neuve, Belgium
| | - Ineke Neefs
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud 4-5/L7.07.03, B-1348, Louvain-la-Neuve, Belgium
| | - Hélène Dailly
- Earth and Life Institute, UCLouvain, Croix du Sud 4-5/L7.07.03, B-1348, Louvain-la-Neuve, Belgium
| | - Nancy De Saeyer
- Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Mélusine Van Larebeke
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud 4-5/L7.07.03, B-1348, Louvain-la-Neuve, Belgium
| | - Valérie Cornet
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), UNamur, rue de Bruxelles 61, B-5000, Namur, Belgium
| | - Yvan Larondelle
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud 4-5/L7.07.03, B-1348, Louvain-la-Neuve, Belgium
| | - Jean-François Rees
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud 4-5/L7.07.03, B-1348, Louvain-la-Neuve, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), UNamur, rue de Bruxelles 61, B-5000, Namur, Belgium
| | - Karel A C De Schamphelaere
- Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Cathy Debier
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud 4-5/L7.07.03, B-1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
73
|
Brzóska MM, Kozłowska M, Rogalska J, Gałażyn-Sidorczuk M, Roszczenko A, Smereczański NM. Enhanced Zinc Intake Protects against Oxidative Stress and Its Consequences in the Brain: A Study in an In Vivo Rat Model of Cadmium Exposure. Nutrients 2021; 13:nu13020478. [PMID: 33572579 PMCID: PMC7911633 DOI: 10.3390/nu13020478] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 01/24/2023] Open
Abstract
We examined, in a rat model of moderate environmental human exposure to cadmium (Cd), whether the enhanced intake of zinc (Zn) may protect against Cd-caused destroying the oxidative/antioxidative balance and its consequences in the brain. The intoxication with Cd (5 mg/L, 6 months) weakened the enzymatic (superoxide dismutase, glutathione peroxidase, catalase) and non-enzymatic (total thiol groups, reduced glutathione) antioxidative barrier decreasing the total antioxidative status and increased the concentrations of pro-oxidants (hydrogen peroxide, myeloperoxidase) in this organ and its total oxidative status. These resulted in the development of oxidative stress and oxidative modifications of lipids and proteins. The co-administration of Zn (30 and 60 mg/L enhancing this element intake by 79% and 151%, respectively) importantly protected against Cd accumulation in the brain tissue and this xenobiotic-induced development of oxidative stress and oxidative damage to lipids and proteins. Moreover, this bioelement also prevented Cd-mediated oxidative stress evaluated in the serum. The favorable effect of Zn was caused by its independent action and interaction with Cd. Concluding, the enhancement of Zn intake under oral exposure to Cd may prevent the oxidative/antioxidative imbalance and oxidative stress in the brain and thus protect against injury of cellular macromolecules in the nervous system.
Collapse
Affiliation(s)
- Małgorzata M. Brzóska
- Correspondence: (M.M.B.); (M.K.); Tel.: +48-85-7485604 (M.M.B. & M.K.); Fax: +48-85-7485834 (M.M.B. & M.K.)
| | - Magdalena Kozłowska
- Correspondence: (M.M.B.); (M.K.); Tel.: +48-85-7485604 (M.M.B. & M.K.); Fax: +48-85-7485834 (M.M.B. & M.K.)
| | | | | | | | | |
Collapse
|
74
|
Ren X, Xu Y, Yu Z, Mu C, Liu P, Li J. The role of Nrf2 in mitigating cadmium-induced oxidative stress of Marsupenaeus japonicus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116112. [PMID: 33272803 DOI: 10.1016/j.envpol.2020.116112] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Nuclear factor-erythroid 2-related factor-2 (Nrf2) is an important modulator of cellular responses against Cd in mammalian cells. However, whether such modulation is conserved in Marsupenaeus japonicas remains unknown.In our study, the shrimps were injected with dsRNA targeting Nrf2 at 4 μg g-1 body weight (b.w.) or sulforaphane (SFN) at 5 μg g-1 b.w., and then were exposed to 40 mg L-1 CdCl2 for 48 h. After Nrf2 knockdown, the Cd content increased, but decreased in the SFN group. This suggested that Nrf2 could promote Cd excretion. A terminal deoxynulceotidyl transferase nick-end-labeling (TUNEL) assay revealed that the Nrf2 knockdown increased the number of apoptotic cells in M. japonicas, while SFN decreased the number of apoptotic cells. After Nrf2 knockdown, the total antioxidant capacity (T-AOC), superoxide dismutase (Sod) activity, and related gene expression decreased significantly, while the malondialdehyde (MDA) content increased remarkably. By contrast, SFN injection alleviated the oxidative stress, as evidenced by increased T-AOC, Sod activity, sod mRNA expression and a reduced MDA content. Similarly, detoxification related enzyme activities (ethoxyresorufin O-deethylase and glutathione-S-transferase (GST)) and their corresponding gene expressions (cyp3a (cytochrome P450 family 3 subfamily A) and gst) were suppressed in the ds-Nrf2 injection group, while they were elevated in the SFN group. In addition, ds-Nrf2 activated mitochondrial apoptotic pathway, as evidenced the mRNA and protein levels of caspase-3, Bcl2 associated X protein (Bax), and p53, while SFN treatment suppressed them. These results displayed that in M. japonicus Cd-induced cellular oxidative damage probably acts via the Nrf2 pathway.
Collapse
Affiliation(s)
- Xianyun Ren
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| | - Yao Xu
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China; Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, PR China
| | - Zhenxing Yu
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, PR China
| | - Cuimin Mu
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, PR China
| | - Ping Liu
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| | - Jian Li
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| |
Collapse
|
75
|
Buha-Đorđević A, Anđelković M, Kačavenda E, Javorac D, Antonijević-Miljaković E, Marić Đ, Baralić K, Đukić-Ćosić D, Ćurčić M, Antonijević B, Bulat Z. Cadmium levels in human breast tissue and estradiol serum levels: Is there a connection? ARHIV ZA FARMACIJU 2021. [DOI: 10.5937/arhfarm71-34280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cadmium (Cd), one of the most abundant environmental pollutants, is considered to have endocrine disrupting properties. However, data on the dose-response relationship between Cd dose and levels of hormones have been insufficiently studied, especially in human data sets. Thus, the aim of this study was to determine the possibility of analyzing data obtained from a case-control study in female patients with benign/malignant breast tumors, using the Benchmark dose (BMD) concept. The collected data on Cd levels in breast tissue and estrogen serum levels were processed in PROAST software using different variables. The dose-response relationship between the internal dose of Cd and estradiol levels in the serum was investigated and BMD intervals were calculated. The dose-response relationship between the Cd concentration in breast tissue and the estradiol serum level was shown, indicating lower estradiol serum levels as a consequence of higher Cd concentrations in breast tissue. As one of the few studies analyzing human data using the BMD approach, these findings could have a pivotal role in dose response analysis of data collected from human studies.
Collapse
|
76
|
Babczyńska A, Nowak A, Kafel A, Łozowski B, Rost-Roszkowska M, Tarnawska M, Augustyniak M, Sawadro M, Molenda A. Autophagy: a necessary defense against extreme cadmium intoxication in a multigenerational 2D experiment. Sci Rep 2020; 10:21141. [PMID: 33273657 PMCID: PMC7712871 DOI: 10.1038/s41598-020-78316-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/24/2020] [Indexed: 11/09/2022] Open
Abstract
Autophagy is a natural process that aims to eliminate malfunctioning cell parts, organelles or molecules under physiological conditions. It is also induced in response to infection, starvation or oxidative stress to provide energy in case of an energy deficit. The aim of this 2-dimensional study was to test if, and if so, how, this process depends on the concentration of cadmium in food (with Cd concentrations from 0 to 352 μg of Cd per g of food (dry weight)-D1 dimension) and the history of selection pressure (160 vs 20 generations of exposure to Cd-D2 dimension). For the study, the 5th instar larvae of a unique strain of the moth Spodoptera exigua that was selected for cadmium tolerance for 160 generations (44 μg of Cd per g of food (dry weight)), as well as 20-generation (11, 22 and 44 μg of Cd per g of food (dry weight)) and control strains, were used. Autophagy intensity was measured by means of flow cytometry and compared with life history parameters: survivability and duration of the 3rd larval stage. The highest values of autophagy markers were found in the groups exposed to the highest Cd concentration and corresponded (with a significant correlation coefficient) to an increased development duration or decreased survivorship in the respective groups. In conclusion, autophagy is probably initiated only if any other defense mechanisms, e.g., antioxidative mechanisms, are not efficient. Moreover, in individuals from pre-exposed populations, the intensity of autophagy is lower.
Collapse
Affiliation(s)
- Agnieszka Babczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland.
| | - Agnieszka Nowak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Alina Kafel
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Bartosz Łozowski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Magdalena Rost-Roszkowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Monika Tarnawska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Marta Sawadro
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Agnieszka Molenda
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| |
Collapse
|
77
|
Bui ATK, Duong LT, Nguyen MN. Accumulation of copper and cadmium in soil-rice systems in terrace and lowland paddies of the Red River basin, Vietnam: the possible regulatory role of silicon. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:3753-3764. [PMID: 32583130 DOI: 10.1007/s10653-020-00626-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Rice production in floodplain deltas is currently vulnerable to climate change and contamination from anthropogenic activities. The relocation of rice production to upland regions could be an option for increasing the sustainability of rice production. Our study evaluated the spatial patterning of heavy metals, i.e., copper (Cu) and cadmium (Cd), in rice along a topogradient from terrace to lowland areas in the Red River basin. The dataset obtained from the analysis of 61 farm sites throughout the whole basin indicated a large discrepancy in the Cu and Cd contents in rice grains from terrace and lowland paddies. While Cu and Cd were not found in most of the rice grain samples from the terrace paddies, the median Cu and Cd contents of the lowland paddy rice were 1.895 and 0.033 mg kg-1, respectively. Assessing the relationship of Cu and Cd in the soil-rice system to soil properties revealed possible correlations between soil available silicon (Si) and the Cu and Cd contents in rice grain. The enrichment of Si in rice plants likely reduces the translocation of Cu and Cd from soil to grain. Therefore, management of the Si supply, particularly in lowland paddies, should be highlighted as a way to reduce dietary intake of Cu and Cd.
Collapse
Affiliation(s)
- Anh T K Bui
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam
| | - Lim T Duong
- Institute of Geography, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam
| | - Minh N Nguyen
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam.
| |
Collapse
|
78
|
de Almeida Sampaio Guido Y, Fonseca G, de Farias Soares A, da Silva ECN, Gonçalves Ostanik PA, Perobelli JE. Food-triad: An index for sustainable consumption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140027. [PMID: 32563875 DOI: 10.1016/j.scitotenv.2020.140027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/16/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
This study proposes an index for food labeling in order to promote sustainable consumption. The index is calculated by ranking multiple features from the environmental, health and nutritional dimensions of the target product in relation to a pre-set reference value; the obtained scores from each dimension are plotted in a radar chart resulting in a triangular area. An increase in area represents a greater impact. As examples, tuna and the potato-based foods at three different processing levels (in natura or minimally processed, processed and ultra-processed) were analyzed. For both cases, the index increases according to the processing grades and has proved to be capable of expressing in numbers and graphically a wide range of environmental, nutritional and health issues.
Collapse
Affiliation(s)
- Yasmin de Almeida Sampaio Guido
- Universidade Federal de São Paulo, Departamento de Ciências do Mar, R. Dr. Carvalho de Mendonça, 144 - Encruzilhada, Santos, SP 11070-102, Brazil
| | - Gustavo Fonseca
- Universidade Federal de São Paulo, Departamento de Ciências do Mar, R. Dr. Carvalho de Mendonça, 144 - Encruzilhada, Santos, SP 11070-102, Brazil.
| | - Alvaro de Farias Soares
- Universidade Federal de São Paulo, Departamento de Ciências do Mar, R. Dr. Carvalho de Mendonça, 144 - Encruzilhada, Santos, SP 11070-102, Brazil
| | - Esther Cecília Nunes da Silva
- Universidade Federal de São Paulo, Departamento de Ciências do Mar, R. Dr. Carvalho de Mendonça, 144 - Encruzilhada, Santos, SP 11070-102, Brazil
| | - Pedro Augusto Gonçalves Ostanik
- Universidade Federal de São Paulo, Departamento de Ciências do Mar, R. Dr. Carvalho de Mendonça, 144 - Encruzilhada, Santos, SP 11070-102, Brazil
| | - Juliana Elaine Perobelli
- Universidade Federal de São Paulo, Departamento de Ciências do Mar, R. Dr. Carvalho de Mendonça, 144 - Encruzilhada, Santos, SP 11070-102, Brazil
| |
Collapse
|
79
|
Li G, Li Q, Wang L, Zhang D. Cadmium tolerance and detoxification in Myriophyllum aquaticum: physiological responses, chemical forms, and subcellular distribution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:37733-37744. [PMID: 32607997 DOI: 10.1007/s11356-020-09872-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Submerged macrophytes have been found to be promising in removing cadmium (Cd) from aquatic ecosystems; however, the mechanism of Cd detoxification in these plants is still poorly understood. In the present study, Cd chemical forms and subcellular distributing behaviors in Myriophyllum aquaticum and the physiological mechanism underlying M. aquaticum in response to Cd stress were explored. During the study, M. aquaticum was grown in a hydroponic system and was treated under different concentrations of Cd (0, 0.01, 0.05, 0.25, and 1.25 mg/L) for 14 days. The differential centrifugation suggested that most Cd was split in the soluble fraction (57.40-66.25%) and bound to the cell wall (24.92-38.57%). Furthermore, Cd in M. aquaticum was primarily present in NaCl-extractable Cd (51.76-91.15% in leaves and 58.71-84.76% in stems), followed by acetic acid-extractable Cd (5.17-22.42% in leaves and 9.54-16.56% in stems) and HCl-extractable Cd (0.80-12.23% in leaves and 3.56-18.87% in stems). The malondialdehyde (MDA) and hydrogen peroxide (H2O2) concentrations in M. aquaticum were noticeably increased under each Cd concentration. The activities of catalase (CAT), guaiacol peroxidase (POD), and superoxide dismutase (SOD) in leaves were initially increased under relatively low concentrations of Cd but were decreased further with the increasing concentrations of Cd. The ascorbate (AsA), glutathione (GSH), and nitric oxide (NO) concentrations in stems increased with increasing Cd concentrations. Taken together, our results indicate that M. aquaticum can be used successfully for phytoremediation of Cd-contaminated water, and the detoxification mechanisms in M. aquaticum include enzymatic and non-enzymatic antioxidants, subcellular partitioning, and the formation of different chemical forms of Cd.
Collapse
Affiliation(s)
- Guoxin Li
- College of Environmental Sciences and Engineering, Xiamen University of Technology, Xiamen, China.
| | - Qingsong Li
- College of Environmental Sciences and Engineering, Xiamen University of Technology, Xiamen, China
| | - Lei Wang
- College of Environmental Sciences and Engineering, Xiamen University of Technology, Xiamen, China
| | - Dandan Zhang
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
80
|
Diab KA, Ibrahim NE, Fahmy MA, Hassan EM, Omara EA. Inhibitory activity of flaxseed oil against CdCl 2 induced liver and kidney damage: Histopathology, genotoxicity, and gene expression study. Toxicol Rep 2020; 7:1127-1137. [PMID: 32963966 PMCID: PMC7490469 DOI: 10.1016/j.toxrep.2020.08.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 02/06/2023] Open
Abstract
The present work evaluated the effect of flaxseed oil (FO) against toxicity induced by cadmium chloride (CdCl2) in the mouse liver and kidney. Male Swiss albino mice were treated with CdCl2 (4.5 mg/kg, intraperitoneally) with or without FO at three concentrations (4, 8, 12 mL/kg, orally) for two consecutive weeks. To analyze the effects of FO, we used the following techniques: (1) histopathological examination; (2) comet assay; (3) RT-PCR gene expression analysis of tumor necrosis factor (TNF-α) and tumor suppressor protein (p53); and (4) immunohistochemical analysis of caspase-9 protein expression. The gas chromatography-mass spectrometry results showed that FO had a high content of unsaturated fatty acids including, oleic acid, linolenic acid, and linoleic acid. Oral supplementation with FO (12 mL/kg) resulted in a normal histological appearance without alteration in the DNA integrity and gene expression of TNF-α, p53, and caspase-9 in liver and kidney tissues. As expected, CdCl2 remarkably induced loss of histological integrity, increased DNA comet formation, increased TNF-α and p53 mRNA expression levels and increased the immunoreactivity of caspase-9 expression. When FO was given before administration of CdCl2, these histopathological defects were reversed; necrosis, degeneration, inflammatory cell infiltration, hemorrhage, Kupffer cells, and pyknotic cells were all reduced. These histological improvements induced by FO were accompanied by reduced DNA breakage, downregulated mRNA expression of TNF-α and p53, and downregulated immunohistochemical expression of caspase-9 protein. In conclusion, FO and its constituents may act as signaling molecules and modify the expression of genes involved in proinflammatory cytokine production (TNF-α), cell cycle arrest (p53), and apoptosis (caspase-9), thereby improving biological activities and health.
Collapse
Affiliation(s)
- Kawthar A. Diab
- Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Centre (NRC), 33 El-Bohouth Street, Dokki, Cairo, P.O. 12622, Egypt
| | - Noha E. Ibrahim
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Division, National Research Centre (NRC), 33 El-Bohouth Street, Dokki, Cairo, P.O. 12622, Egypt
| | - Maha A. Fahmy
- Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Centre (NRC), 33 El-Bohouth Street, Dokki, Cairo, P.O. 12622, Egypt
| | - Emad M. Hassan
- Medicinal and Aromatic Plants Research Department, Pharmaceutical Industries Research Division, National Research Centre (NRC), 33 El-Bohouth St, Dokki, Cairo, P.O. 12622, Egypt
| | - Enayat A. Omara
- Pathology Department, Medical Research Division, National Research Centre (NRC), 33 El-Bohouth Street, Dokki, Cairo, P.O. 12622, Egypt
| |
Collapse
|
81
|
Buha A, Đukić-Ćosić D, Ćurčić M, Bulat Z, Antonijević B, Moulis JM, Goumenou M, Wallace D. Emerging Links between Cadmium Exposure and Insulin Resistance: Human, Animal, and Cell Study Data. TOXICS 2020; 8:E63. [PMID: 32867022 PMCID: PMC7560347 DOI: 10.3390/toxics8030063] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
Recent research has helped clarify the role of cadmium (Cd) in various pathological states. We have demonstrated Cd involvement in pancreatic cancer, as well as the bioaccumulation of Cd in the pancreas. Bioaccumulation and increased toxicity suggest that Cd may also be involved in other pancreas-mediated diseases, like diabetes. Cd falls into the category of "hyperglycemic" metals, i.e., metals that increase blood glucose levels, which could be due to increased gluconeogenesis, damage to β-cells leading to reduced insulin production, or insulin resistance at target tissue resulting in a lack of glucose uptake. This review addresses the current evidence for the role of Cd, leading to insulin resistance from human, animal, and in vitro studies. Available data have shown that Cd may affect normal insulin function through multiple pathways. There is evidence that Cd exposure results in the perturbation of the enzymes and modulatory proteins involved in insulin signal transduction at the target tissue and mutations of the insulin receptor. Cd, through well-described mechanisms of oxidative stress, inflammation, and mitochondrial damage, may also alter insulin production in β-cells. More work is necessary to elucidate the mechanisms associated with Cd-mediated insulin resistance.
Collapse
Affiliation(s)
- Aleksandra Buha
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia; (D.Đ.-Ć.); (M.Ć.); (Z.B.); (B.A.)
| | - Danijela Đukić-Ćosić
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia; (D.Đ.-Ć.); (M.Ć.); (Z.B.); (B.A.)
| | - Marijana Ćurčić
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia; (D.Đ.-Ć.); (M.Ć.); (Z.B.); (B.A.)
| | - Zorica Bulat
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia; (D.Đ.-Ć.); (M.Ć.); (Z.B.); (B.A.)
| | - Biljana Antonijević
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia; (D.Đ.-Ć.); (M.Ć.); (Z.B.); (B.A.)
| | - Jean-Marc Moulis
- Alternative Energies and Atomic Energy Commission—Fundamental Research Division—Interdisciplinary Research Institute of Grenoble (CEA-IRIG), University of Grenoble Alpes, F-38000 Grenoble, France;
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), University of Grenoble Alpes, Inserm U1055, F-38000 Grenoble, France
| | - Marina Goumenou
- Centre of Toxicology and Forensic Sciences, Medicine School, University of Crete, 70013 Heraklion, Greece;
- General Chemical State Laboratory of Greek Republic, 71202 Heraklion, Greece
| | - David Wallace
- Department of Pharmacology & Toxicology, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107, USA;
| |
Collapse
|