51
|
Lexmond WS, Goettel JA, Sallis BF, McCann K, Rings EHHM, Jensen-Jarolim E, Nurko S, Snapper SB, Fiebiger E. Spontaneous food allergy in Was -/- mice occurs independent of FcεRI-mediated mast cell activation. Allergy 2017; 72:1916-1924. [PMID: 28600891 DOI: 10.1111/all.13219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Food allergies are a growing health problem, and the development of therapies that prevent disease onset is limited by the lack of adjuvant-free experimental animal models. We compared allergic sensitization in patients with food allergy or Wiskott-Aldrich syndrome (WAS) and defined whether spontaneous disease in Was-/- mice recapitulates the pathology of a conventional disease model and/or human food allergy. METHODS Comparative ImmunoCAP ISAC microarray was performed in patients with food allergy or WAS. Spontaneous food allergy in Was-/- mice was compared to an adjuvant-based model in wild-type mice (WT-OVA/alum). Intestinal and systemic anaphylaxis was assessed, and the role of the high-affinity IgE Fc receptor (FcεRI) in allergic sensitization was evaluated using Was-/- Fcer1a-/- mice. RESULTS Polysensitization to food was detected in both WAS and food-allergic patients which was recapitulated in the Was-/- model. Oral administration of ovalbumin (OVA) in Was-/- mice induced low titers of OVA-specific IgE compared to the WT-OVA/alum model. Irrespectively, 79% of Was-/- mice developed allergic diarrhea following oral OVA challenge. Systemic anaphylaxis occurred in Was-/- mice (95%) with a mortality rate >50%. Spontaneous sensitization and intestinal allergy occurred independent of FcεRI expression on mast cells (MCs) and basophils. CONCLUSIONS Was-/- mice provide a model of food allergy with the advantage of mimicking polysensitization and low food-antigen IgE titers as observed in humans with clinical food allergy. This model will facilitate studies on aberrant immune responses during spontaneous disease development. Our results imply that therapeutic targeting of the IgE/FcεRI activation cascade will not affect sensitization to food.
Collapse
Affiliation(s)
- W. S. Lexmond
- Department of Pediatrics; Division of Gastroenterology, Hepatology and Nutrition; Boston Children's Hospital; Boston MA USA
- Department of Medicine; Harvard Medical School; Boston MA USA
| | - J. A. Goettel
- Department of Pediatrics; Division of Gastroenterology, Hepatology and Nutrition; Boston Children's Hospital; Boston MA USA
- Department of Medicine; Harvard Medical School; Boston MA USA
| | - B. F. Sallis
- Department of Pediatrics; Division of Gastroenterology, Hepatology and Nutrition; Boston Children's Hospital; Boston MA USA
| | - K. McCann
- Department of Pediatrics; Division of Gastroenterology, Hepatology and Nutrition; Boston Children's Hospital; Boston MA USA
| | - E. H. H. M. Rings
- Departments of Pediatrics; Erasmus Medical Center; Erasmus University; Rotterdam The Netherlands
- University Medical Center Leiden; Leiden University; Leiden The Netherlands
| | - E. Jensen-Jarolim
- Center of Pathophysiology, Infectiology and Immunology; Institute of Pathophysiology and Allergy Research; Medical University of Vienna; Vienna Austria
- Comparative Medicine; The Interuniversity Messerli Research Institute; University of Veterinary Medicine Vienna, Medical University of Vienna, University of Vienna; Vienna Austria
- Allergy Care; Allergy Diagnosis and Study Center; Vienna Austria
| | - S. Nurko
- Department of Pediatrics; Division of Gastroenterology, Hepatology and Nutrition; Boston Children's Hospital; Boston MA USA
- Department of Medicine; Harvard Medical School; Boston MA USA
| | - S. B. Snapper
- Department of Pediatrics; Division of Gastroenterology, Hepatology and Nutrition; Boston Children's Hospital; Boston MA USA
- Department of Medicine; Harvard Medical School; Boston MA USA
| | - E. Fiebiger
- Department of Pediatrics; Division of Gastroenterology, Hepatology and Nutrition; Boston Children's Hospital; Boston MA USA
- Department of Medicine; Harvard Medical School; Boston MA USA
| |
Collapse
|
52
|
Khanna S, Jaiswal KS, Gupta B. Managing Rheumatoid Arthritis with Dietary Interventions. Front Nutr 2017; 4:52. [PMID: 29167795 PMCID: PMC5682732 DOI: 10.3389/fnut.2017.00052] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/10/2017] [Indexed: 12/19/2022] Open
Abstract
Self-help by means of dietary interventions can help in management of various disorders including rheumatoid arthritis (RA), a debilitating autoimmune disease. Dietary interventions necessitate a widespread appeal for both patients as well as clinicians due to factors including affordability, accessibility, and presence of scientific evidences that demonstrate substantial benefits in reducing disease symptoms such as pain, joint stiffness, swelling, tenderness and associated disability with disease progression. However, there is still an uncertainty among the community about the therapeutic benefits of dietary manipulations for RA. In the present review, we provide an account of different diets and their possible molecular mechanism of actions inducing observed therapeutic benefits for remission and management of RA. We further indicate food that can be a potential aggravating factor for the disease or may help in symptomatic relief. We thereafter summarize and thereby discuss various diets and food which help in reducing levels of inflammatory cytokines in RA patients that may play an effective role in management of RA following proper patient awareness. We thus would like to promote diet management as a tool that can both supplement and complement present treatment strategies for a better patient health and recovery.
Collapse
Affiliation(s)
- Shweta Khanna
- Disease Biology Laboratory, School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Kumar Sagar Jaiswal
- Disease Biology Laboratory, School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Bhawna Gupta
- Disease Biology Laboratory, School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| |
Collapse
|
53
|
Gamazo C, García-Azpíroz M, Souza Rebouças JD, Gastaminza G, Ferrer M, Irache JM. Oral immunotherapy using polymeric nanoparticles loaded with peanut proteins in a murine model of fatal anaphylaxis. Immunotherapy 2017; 9:1205-1217. [DOI: 10.2217/imt-2017-0111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Carlos Gamazo
- Department of Microbiology, University of Navarra, Instituto de Investigación Sanitaria de Navarra (Idisna), C/Irunlarrea, 1; 31080 - Pamplona, Spain
| | - Maddi García-Azpíroz
- Department of Microbiology, University of Navarra, Instituto de Investigación Sanitaria de Navarra (Idisna), C/Irunlarrea, 1; 31080 - Pamplona, Spain
| | - Juliana De Souza Rebouças
- Department of Microbiology, University of Navarra, Instituto de Investigación Sanitaria de Navarra (Idisna), C/Irunlarrea, 1; 31080 - Pamplona, Spain
- Laboratory of Microbiology & Immunoregulation, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - Gabriel Gastaminza
- Department of Allergology & Clinical Immunology, Clínica Universidad de Navarra, Navarra, Spain
| | - Marta Ferrer
- Department of Allergology & Clinical Immunology, Clínica Universidad de Navarra, Navarra, Spain
| | - Juan M Irache
- Department of Pharmacy & Pharmaceutical Technology, University of Navarra, Navarra, Spain
| |
Collapse
|
54
|
Abstract
The gastrointestinal tract has an abundant mucosal immune system to develop and maintain oral tolerance. The oral route of administration takes advantage of the unique set of immune cells and pathways involved in the induction of oral tolerance. Food allergy results from a loss of oral tolerance toward ingested antigens. Oral immunotherapy is thought to initiate desensitization through interaction of an allergen with mucosal dendritic cells that initiate downstream immune system modulation through regulatory T cells and effector T cells.
Collapse
Affiliation(s)
- Erik Wambre
- Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA.
| | - David Jeong
- Virginia Mason Medical Center, 1201 Terry Avenue, Seattle, WA 98101, USA
| |
Collapse
|
55
|
Lozano-Ojalvo D, López-Fandiño R. Immunomodulating peptides for food allergy prevention and treatment. Crit Rev Food Sci Nutr 2017; 58:1629-1649. [PMID: 28102702 DOI: 10.1080/10408398.2016.1275519] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Among the most promising strategies currently assayed against IgE-mediated allergic diseases stands the possibility of using immunomodulating peptides to induce oral tolerance toward offending food allergens or even to prevent allergic sensitization. This review focuses on the beneficial effects of food derived immunomodulating peptides on food allergy, which can be directly exerted in the intestinal tract or once being absorbed through the intestinal epithelial barrier to interact with immune cells. Food peptides influence intestinal homeostasis by maintaining and reinforcing barrier function or affecting intestinal cell-signalling to nearby immune cells and mucus secretion. In addition, they can stimulate cells of the innate and adaptive immune system while supressing inflammatory responses. Peptides represent an attractive alternative to whole allergens to enhance the safety and efficacy of immunotherapy treatments. The conclusions drawn from curative and preventive experiments in murine models are promising, although there is a need for more pre-clinical studies to further explore the immunomodulating strategy and its mechanisms and for a deeper knowledge of the peptide sequence and structural requirements that determine the immunoregulatory function.
Collapse
Affiliation(s)
- Daniel Lozano-Ojalvo
- a Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM) , Madrid , Spain
| | - Rosina López-Fandiño
- a Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM) , Madrid , Spain
| |
Collapse
|
56
|
Turcanu V, Brough HA, Du Toit G, Foong RX, Marrs T, Santos AF, Lack G. Immune mechanisms of food allergy and its prevention by early intervention. Curr Opin Immunol 2017; 48:92-98. [PMID: 28892729 DOI: 10.1016/j.coi.2017.08.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 07/25/2017] [Accepted: 08/16/2017] [Indexed: 12/12/2022]
Abstract
The environmental factors driving the increase in food allergies are unclear and possibly involve dual exposure to allergens, microbiome-driven effects or other mechanisms. Until they can be better understood, early intervention aiming at establishing oral tolerance provides an effective way to decrease the window-of-risk when children may develop allergic sensitisation to foods due to the absence of a protective immune response. Thus, the recent LEAP (Learning Early About Peanut allergy) and LEAP-On studies achieved a high level of peanut allergy prevention by early introduction of peanuts in the infants diet and conveyed more information regarding the evolution of IgE and IgG4 antibody responses to food antigens over time.
Collapse
Affiliation(s)
- Victor Turcanu
- Department of Paediatric Allergy, King's College London, Guy's & St Thomas' NHS Foundation Trust, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH United Kingdom
| | - Helen A Brough
- Department of Paediatric Allergy, King's College London, Guy's & St Thomas' NHS Foundation Trust, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH United Kingdom
| | - George Du Toit
- Department of Paediatric Allergy, King's College London, Guy's & St Thomas' NHS Foundation Trust, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH United Kingdom
| | - Ru-Xin Foong
- Department of Paediatric Allergy, King's College London, Guy's & St Thomas' NHS Foundation Trust, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH United Kingdom
| | - Tom Marrs
- Department of Paediatric Allergy, King's College London, Guy's & St Thomas' NHS Foundation Trust, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH United Kingdom
| | - Alexandra F Santos
- Department of Paediatric Allergy, King's College London, Guy's & St Thomas' NHS Foundation Trust, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH United Kingdom
| | - Gideon Lack
- Department of Paediatric Allergy, King's College London, Guy's & St Thomas' NHS Foundation Trust, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH United Kingdom.
| |
Collapse
|
57
|
Lickwar CR, Camp JG, Weiser M, Cocchiaro JL, Kingsley DM, Furey TS, Sheikh SZ, Rawls JF. Genomic dissection of conserved transcriptional regulation in intestinal epithelial cells. PLoS Biol 2017; 15:e2002054. [PMID: 28850571 PMCID: PMC5574553 DOI: 10.1371/journal.pbio.2002054] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/31/2017] [Indexed: 12/17/2022] Open
Abstract
The intestinal epithelium serves critical physiologic functions that are shared among all vertebrates. However, it is unknown how the transcriptional regulatory mechanisms underlying these functions have changed over the course of vertebrate evolution. We generated genome-wide mRNA and accessible chromatin data from adult intestinal epithelial cells (IECs) in zebrafish, stickleback, mouse, and human species to determine if conserved IEC functions are achieved through common transcriptional regulation. We found evidence for substantial common regulation and conservation of gene expression regionally along the length of the intestine from fish to mammals and identified a core set of genes comprising a vertebrate IEC signature. We also identified transcriptional start sites and other putative regulatory regions that are differentially accessible in IECs in all 4 species. Although these sites rarely showed sequence conservation from fish to mammals, surprisingly, they drove highly conserved IEC expression in a zebrafish reporter assay. Common putative transcription factor binding sites (TFBS) found at these sites in multiple species indicate that sequence conservation alone is insufficient to identify much of the functionally conserved IEC regulatory information. Among the rare, highly sequence-conserved, IEC-specific regulatory regions, we discovered an ancient enhancer upstream from her6/HES1 that is active in a distinct population of Notch-positive cells in the intestinal epithelium. Together, these results show how combining accessible chromatin and mRNA datasets with TFBS prediction and in vivo reporter assays can reveal tissue-specific regulatory information conserved across 420 million years of vertebrate evolution. We define an IEC transcriptional regulatory network that is shared between fish and mammals and establish an experimental platform for studying how evolutionarily distilled regulatory information commonly controls IEC development and physiology. The epithelium lining the intestine is an ancient animal tissue that serves as a primary site of nutrient absorption and interaction with microbiota. Its formation and function require complex patterns of gene transcription that vary along the intestine and in specialized intestinal epithelial cell (IEC) subtypes. However, it is unknown how the underlying transcriptional regulatory mechanisms have changed over the course of vertebrate evolution. Here, we used genome-wide profiling of mRNA levels and chromatin accessibility to identify conserved IEC genes and regulatory regions in 4 vertebrate species (zebrafish, stickleback, mouse, and human) separated from a common ancestor by 420 million years. We identified substantial similarities in genes expressed along the vertebrate intestine. These data disclosed putative conserved transcription factor binding sites (TFBS) enriched in accessible chromatin near IEC genes and in regulatory sites with accessibility restricted to IECs. Fluorescent reporter assays in transparent zebrafish showed that these regions, which frequently lacked sequence conservation, were still capable of driving conserved expression patterns. We also found a highly conserved region near mammalian and fish hes1 sufficient to drive expression in a specific population of IECs with active Notch signaling. These results establish a platform to define the conserved transcriptional networks underlying vertebrate IEC physiology.
Collapse
Affiliation(s)
- Colin R. Lickwar
- Department of Molecular Genetics and Microbiology, Center for the Genomics of Microbial Systems, Duke University, Durham, North Carolina, United States of America
- Department of Cell Biology and Physiology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - J. Gray Camp
- Department of Cell Biology and Physiology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
| | - Matthew Weiser
- Departments of Genetics and Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jordan L. Cocchiaro
- Department of Molecular Genetics and Microbiology, Center for the Genomics of Microbial Systems, Duke University, Durham, North Carolina, United States of America
- Department of Cell Biology and Physiology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - David M. Kingsley
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
| | - Terrence S. Furey
- Departments of Genetics and Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Shehzad Z. Sheikh
- Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - John F. Rawls
- Department of Molecular Genetics and Microbiology, Center for the Genomics of Microbial Systems, Duke University, Durham, North Carolina, United States of America
- Department of Cell Biology and Physiology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
58
|
Smole U, Schabussova I, Pickl WF, Wiedermann U. Murine models for mucosal tolerance in allergy. Semin Immunol 2017; 30:12-27. [PMID: 28807539 DOI: 10.1016/j.smim.2017.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/21/2017] [Indexed: 02/07/2023]
Abstract
Immunity is established by a fine balance to discriminate between self and non-self. In addition, mucosal surfaces have the unique ability to establish and maintain a state of tolerance also against non-self constituents such as those represented by the large numbers of commensals populating mucosal surfaces and food-derived or air-borne antigens. Recent years have seen a dramatic expansion in our understanding of the basic mechanisms and the involved cellular and molecular players orchestrating mucosal tolerance. As a direct outgrowth, promising prophylactic and therapeutic models for mucosal tolerance induction against usually innocuous antigens (derived from food and aeroallergen sources) have been developed. A major theme in the past years was the introduction of improved formulations and novel adjuvants into such allergy vaccines. This review article describes basic mechanisms of mucosal tolerance induction and contrasts the peculiarities but also the interdependence of the gut and respiratory tract associated lymphoid tissues in that context. Particular emphasis is put on delineating the current prophylactic and therapeutic strategies to study and improve mucosal tolerance induction in allergy.
Collapse
Affiliation(s)
- Ursula Smole
- Institute of Immunology, Center for Pathophysiology, Infectiology, and Immunology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Irma Schabussova
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology, and Immunology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
59
|
Fu L, Wang C, Wang Y. Seafood allergen-induced hypersensitivity at the microbiota-mucosal site: Implications for prospective probiotic use in allergic response regulation. Crit Rev Food Sci Nutr 2017; 58:1512-1525. [DOI: 10.1080/10408398.2016.1269719] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Linglin Fu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Chong Wang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yanbo Wang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
60
|
Benedé S, Garrido-Arandia M, Martín-Pedraza L, Bueno C, Díaz-Perales A, Villalba M. Multifactorial Modulation of Food-Induced Anaphylaxis. Front Immunol 2017; 8:552. [PMID: 28559894 PMCID: PMC5432630 DOI: 10.3389/fimmu.2017.00552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/25/2017] [Indexed: 01/26/2023] Open
Abstract
Prevalence of food-induced anaphylaxis increases progressively and occurs in an unpredictable manner, seriously affecting the quality of life of patients. Intrinsic factors including age, physiological, and genetic features of the patient as well as extrinsic factors such as the intake of drugs and exposure to environmental agents modulate this disorder. It has been proven that diseases, such as mastocytosis, defects in HLA, or filaggrin genes, increase the risk of severe allergic episodes. Certain allergen families such as storage proteins, lipid transfer proteins, or parvalbumins have also been linked to anaphylaxis. Environmental factors such as inhaled allergens or sensitization through the skin can exacerbate or trigger acute anaphylaxis. Moreover, the effect of dietary habits such as the early introduction of certain foods in the diet, and the advantage of the breastfeeding remain as yet unresolved. Interaction of allergens with the intestinal cell barrier together with a set of effector cells represents the primary pathways of food-induced anaphylaxis. After an antigen cross-links the IgEs on the membrane of effector cells, a complex intracellular signaling cascade is initiated, which leads cells to release preformed mediators stored in their granules that are responsible for the acute symptoms of anaphylaxis. Afterward, they can also rapidly synthesize lipid compounds such as prostaglandins or leukotrienes. Cytokines or chemokines are also released, leading to the recruitment and activation of immune cells in the inflammatory microenvironment. Multiple factors that affect food-induced anaphylaxis are discussed in this review, paying special attention to dietary habits and environmental and genetic conditions.
Collapse
Affiliation(s)
- Sara Benedé
- Dpto. Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, Madrid, Spain
| | - María Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - Laura Martín-Pedraza
- Dpto. Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, Madrid, Spain
| | - Cristina Bueno
- Dpto. Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, Madrid, Spain
| | - Araceli Díaz-Perales
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - Mayte Villalba
- Dpto. Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
61
|
Reinmuth-Selzle K, Kampf CJ, Lucas K, Lang-Yona N, Fröhlich-Nowoisky J, Shiraiwa M, Lakey PSJ, Lai S, Liu F, Kunert AT, Ziegler K, Shen F, Sgarbanti R, Weber B, Bellinghausen I, Saloga J, Weller MG, Duschl A, Schuppan D, Pöschl U. Air Pollution and Climate Change Effects on Allergies in the Anthropocene: Abundance, Interaction, and Modification of Allergens and Adjuvants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4119-4141. [PMID: 28326768 PMCID: PMC5453620 DOI: 10.1021/acs.est.6b04908] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/07/2017] [Accepted: 03/22/2017] [Indexed: 05/13/2023]
Abstract
Air pollution and climate change are potential drivers for the increasing burden of allergic diseases. The molecular mechanisms by which air pollutants and climate parameters may influence allergic diseases, however, are complex and elusive. This article provides an overview of physical, chemical and biological interactions between air pollution, climate change, allergens, adjuvants and the immune system, addressing how these interactions may promote the development of allergies. We reviewed and synthesized key findings from atmospheric, climate, and biomedical research. The current state of knowledge, open questions, and future research perspectives are outlined and discussed. The Anthropocene, as the present era of globally pervasive anthropogenic influence on planet Earth and, thus, on the human environment, is characterized by a strong increase of carbon dioxide, ozone, nitrogen oxides, and combustion- or traffic-related particulate matter in the atmosphere. These environmental factors can enhance the abundance and induce chemical modifications of allergens, increase oxidative stress in the human body, and skew the immune system toward allergic reactions. In particular, air pollutants can act as adjuvants and alter the immunogenicity of allergenic proteins, while climate change affects the atmospheric abundance and human exposure to bioaerosols and aeroallergens. To fully understand and effectively mitigate the adverse effects of air pollution and climate change on allergic diseases, several challenges remain to be resolved. Among these are the identification and quantification of immunochemical reaction pathways involving allergens and adjuvants under relevant environmental and physiological conditions.
Collapse
Affiliation(s)
| | - Christopher J. Kampf
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
- Institute
of Inorganic and Analytical Chemistry, Johannes
Gutenberg University, Mainz, 55128, Germany
| | - Kurt Lucas
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Naama Lang-Yona
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | | | - Manabu Shiraiwa
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
- Department
of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Pascale S. J. Lakey
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Senchao Lai
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
- South
China University of Technology, School of
Environment and Energy, Guangzhou, 510006, China
| | - Fobang Liu
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Anna T. Kunert
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Kira Ziegler
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Fangxia Shen
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Rossella Sgarbanti
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Bettina Weber
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Iris Bellinghausen
- Department
of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, 55131, Germany
| | - Joachim Saloga
- Department
of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, 55131, Germany
| | - Michael G. Weller
- Division
1.5 Protein Analysis, Federal Institute
for Materials Research and Testing (BAM), Berlin, 12489, Germany
| | - Albert Duschl
- Department
of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Detlef Schuppan
- Institute
of Translational Immunology and Research Center for Immunotherapy,
Institute of Translational Immunology, University Medical Center, Johannes Gutenberg University, Mainz, 55131 Germany
- Division
of Gastroenterology, Beth Israel Deaconess
Medical Center and Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Ulrich Pöschl
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| |
Collapse
|
62
|
Abstract
Food allergy develops as a consequence of a failure in oral tolerance, which is a default immune response by the gut-associated lymphoid tissues to ingested antigens that is modified by the gut microbiota. Food allergy is classified on the basis of the involvement of IgE antibodies in allergic pathophysiology, either as classic IgE, mixed pathophysiology or non-IgE-mediated food allergy. Gastrointestinal manifestations of food allergy include emesis, nausea, diarrhoea, abdominal pain, dysphagia, food impaction, protein-losing enteropathy and failure to thrive. Childhood food allergy has a generally favourable prognosis, whereas natural history in adults is not as well known. Elimination of the offending foods from the diet is the current standard of care; however, future therapies focus on gradual reintroduction of foods via oral, sublingual or epicutaneous food immunotherapy. Vaccines, modified hypoallergenic foods and modification of the gut microbiota represent additional approaches to treatment of food allergy.
Collapse
|
63
|
Huang YJ, Marsland BJ, Bunyavanich S, O'Mahony L, Leung DYM, Muraro A, Fleisher TA. The microbiome in allergic disease: Current understanding and future opportunities-2017 PRACTALL document of the American Academy of Allergy, Asthma & Immunology and the European Academy of Allergy and Clinical Immunology. J Allergy Clin Immunol 2017; 139:1099-1110. [PMID: 28257972 PMCID: PMC5899886 DOI: 10.1016/j.jaci.2017.02.007] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/02/2017] [Accepted: 02/07/2017] [Indexed: 12/15/2022]
Abstract
PRACTALL is a joint initiative of the American Academy of Allergy, Asthma & Immunology and the European Academy of Allergy and Clinical Immunology to provide shared evidence-based recommendations on cutting-edge topics in the field of allergy and immunology. PRACTALL 2017 is focused on what has been established regarding the role of the microbiome in patients with asthma, atopic dermatitis, and food allergy. This is complemented by outlining important knowledge gaps regarding its role in allergic disease and delineating strategies necessary to fill these gaps. In addition, a review of progress in approaches used to manipulate the microbiome will be addressed, identifying what has and has not worked to serve as a baseline for future directions to intervene in allergic disease development, progression, or both.
Collapse
Affiliation(s)
- Yvonne J Huang
- Division of Pulmonary and Critical Care, Department of Internal Medicine, University of Michigan, Ann Arbor, Mich
| | - Benjamin J Marsland
- Service de Pneumologie, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Supinda Bunyavanich
- Division of Allergy and Immunology, Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Liam O'Mahony
- Molecular Immunology, Swiss Institute of Allergy and Asthma Research, University of Zurich, Davos, Switzerland
| | - Donald Y M Leung
- Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Antonella Muraro
- Food Allergy Referral Centre Veneto Region, Department of Women and Child Health, Padua General University Hospital, Padua, Italy
| | - Thomas A Fleisher
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
64
|
[Immunological background and pathomechanisms of food allergies]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2017; 59:723-31. [PMID: 27177897 DOI: 10.1007/s00103-016-2346-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Recent advances in immunology have greatly improved our understanding of the pathomechanisms of food allergies. Food allergies are caused and maintained by complex interactions of the innate and adaptive immune system involving antigen-presenting cells (APC), T cells, group 2 innate lymphoid cells (ILC2), epithelial cells (EC) and effectors cells. Additionally, epigenetic factors, the intestinal microbiome and nutritional factors modulating the gastrointestinal lymphatic tissue probably have a significant impact on allergy development. However, why certain individuals develop tolerance while others mount allergic responses, the factors defining the allergenicity of food proteins, as well as the immunological mechanisms triggering allergy development have yet to be analyzed in detail.
Collapse
|
65
|
Critical role of intestinal interleukin-4 modulating regulatory T cells for desensitization, tolerance, and inflammation of food allergy. PLoS One 2017; 12:e0172795. [PMID: 28234975 PMCID: PMC5325285 DOI: 10.1371/journal.pone.0172795] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 02/07/2017] [Indexed: 11/19/2022] Open
Abstract
Background and objective The mechanism inducing either inflammation or tolerance to orally administered food allergens remains unclear. To investigate this we analyzed mouse models of food allergy (OVA23-3) and tolerance (DO11.10 [D10]), both of which express ovalbumin (OVA)-specific T-cell receptors. Methods OVA23-3, recombination activating gene (RAG)-2-deficient OVA23-3 (R23-3), D10, and RAG-2-deficient D10 (RD10) mice consumed a diet containing egg white (EW diet) for 2–28 days. Interleukin (IL)-4 production by CD4+ T cells was measured as a causative factor of enteropathy, and anti-IL-4 antibody was used to reveal the role of Foxp3+ OVA-specific Tregs (aiTreg) in this process. Results Unlike OVA23-3 and R23-3 mice, D10 and RD10 mice did not develop enteropathy and weight loss on the EW diet. On days 7–10, in EW-fed D10 and RD10 mice, splenic CD4+ T cells produced significantly more IL-4 than did those in the mesenteric lymph nodes (MLNs); this is in contrast to the excessive IL-4 response in the MLNs of EW-fed OVA23-3 and R23-3 mice. EW-fed R23-3 mice had few aiTregs, whereas EW-fed RD10 mice had them in both tissues. Intravenous injections of anti-IL-4 antibody recovered the percentage of aiTregs in the MLNs of R23-3 mice. On day 28, in EW-fed OVA23-3 and R23-3 mice, expression of Foxp3 on CD4+ T cells corresponded with recovery from inflammation, but recurrence of weight loss was observed on restarting the EW diet after receiving the control-diet for 1 month. No recurrence developed in D10 mice. Conclusions Excessive IL-4 levels in the MLNs directly inhibited the induction of aiTregs and caused enteropathy. The aiTregs generated in the attenuation of T cell-dependent food allergic enteropathy may function differently than aiTregs induced in a tolerance model. Comparing the two models enables to investigate their aiTreg functions and to clarify differences between inflammation with subsequent desensitization versus tolerance.
Collapse
|
66
|
Abstract
Food allergy is a pathological, potentially deadly, immune reaction triggered by normally innocuous food protein antigens. The prevalence of food allergies is rising and the standard of care is not optimal, consisting of food-allergen avoidance and treatment of allergen-induced systemic reactions with adrenaline. Thus, accurate diagnosis, prevention and treatment are pressing needs, research into which has been catalysed by technological advances that are enabling a mechanistic understanding of food allergy at the cellular and molecular levels. We discuss the diagnosis and treatment of IgE-mediated food allergy in the context of the immune mechanisms associated with healthy tolerance to common foods, the inflammatory response underlying most food allergies, and immunotherapy-induced desensitization. We highlight promising research advances, therapeutic innovations and the challenges that remain.
Collapse
Affiliation(s)
- Wong Yu
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California 94305, USA
| | - Deborah M Hussey Freeland
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
67
|
Food Allergy: What We Know Now. Am J Med Sci 2016; 353:353-366. [PMID: 28317623 DOI: 10.1016/j.amjms.2016.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 12/25/2022]
Abstract
Food allergy is an adverse immune reaction that occurs reproducibly on exposure to a given food. Prevalence rates of food allergy continue to increase worldwide, sparking continual research efforts in finding a suitable and safe cure. Food avoidance, the current standard of care, can be difficult to achieve. This review aims to provide a broad overview of immunoglobulin E-mediated food allergy, highlighting its epidemiology, masqueraders, immunopathophysiology, clinical presentation, diagnostic work-up and available preventative and treatment strategies. This review also discusses novel, investigative therapies that offer promising therapeutic options, yet require continued research efforts to determine safety effects. Inducing tolerance, whether by immunotherapy or by the administration of monoclonal antibodies, allows us to move toward a cure for food allergy, which could vastly change this field of allergic diseases in the coming decades.
Collapse
|
68
|
Affiliation(s)
- A Nowak-Węgrzyn
- Jaffe Food Allergy Institute, Division of Pediatric Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
69
|
Tunis MC, Dawod B, Carson KR, Veinotte LL, Marshall JS. Toll-like receptor 2 activators modulate oral tolerance in mice. Clin Exp Allergy 2016; 45:1690-702. [PMID: 26242919 PMCID: PMC5019435 DOI: 10.1111/cea.12605] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 06/18/2015] [Accepted: 07/03/2015] [Indexed: 01/29/2023]
Abstract
BACKGROUND Toll-like receptor 2 (TLR2) is a widely expressed pattern recognition receptor critical for innate immunity. TLR2 is also a key regulator of mucosal immunity implicated in the development of allergic disease. TLR2 activators are found in many common foods, but the role of TLR2 in oral tolerance and allergic sensitization to foods is not well understood. OBJECTIVE The purpose of this study was to evaluate the impacts of TLR2 expression and TLR2 activation on oral tolerance to food antigens in a murine model. METHODS Mice were fed ovalbumin (OVA) or peanut butter with or without the addition of low doses of TLR2 activators Pam3 CSK4 or FSL-1. Oral tolerance was assessed by analysing antibody responses after a systemic antigen challenge. OVA-specific Tregs were assessed in the Peyer's patches, mesenteric lymph nodes, and spleen in wild-type and TLR2(-/-) mice. Low-dose Pam3 CSK4 was also tested as an oral adjuvant. RESULTS Oral tolerance was successfully induced in both wild-type and TLR2(-/-) recipient mice, with an associated regulatory T-cell response. Oral TLR2 activation, with low-dose Pam3 CSK4 or FSL-1, during oral antigen exposure was found to alter oral tolerance and was associated with the development of substantial IgE and IgA responses to foods upon systemic challenge. Low-dose oral Pam3 CSK4 treatment also selectively enhanced antigen-specific IgA responses to oral antigen exposure. CONCLUSIONS AND CLINICAL RELEVANCE TLR2 is not necessary for oral tolerance induction, but oral TLR2 activation modulates humoral IgE and IgA responses during tolerance development. Low-dose Pam3 CSK4 is also an effective oral adjuvant that selectively enhances IgA production. These observations are pertinent to the optimization of oral allergen immunotherapy and oral vaccine development.
Collapse
Affiliation(s)
- M C Tunis
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Dalhousie Inflammation Group, Dalhousie University, Halifax, NS, Canada
| | - B Dawod
- Dalhousie Inflammation Group, Dalhousie University, Halifax, NS, Canada.,Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - K R Carson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Dalhousie Inflammation Group, Dalhousie University, Halifax, NS, Canada
| | - L L Veinotte
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Dalhousie Inflammation Group, Dalhousie University, Halifax, NS, Canada
| | - J S Marshall
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Dalhousie Inflammation Group, Dalhousie University, Halifax, NS, Canada.,Department of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
70
|
Gregory JA, Shepley-McTaggart A, Umpierrez M, Hurlburt BK, Maleki SJ, Sampson HA, Mayfield SP, Berin MC. Immunotherapy using algal-produced Ara h 1 core domain suppresses peanut allergy in mice. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1541-50. [PMID: 26801740 PMCID: PMC5066676 DOI: 10.1111/pbi.12515] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 05/26/2023]
Abstract
Peanut allergy is an IgE-mediated adverse reaction to a subset of proteins found in peanuts. Immunotherapy aims to desensitize allergic patients through repeated and escalating exposures for several months to years using extracts or flours. The complex mix of proteins and variability between preparations complicates immunotherapy studies. Moreover, peanut immunotherapy is associated with frequent negative side effects and patients are often at risk of allergic reactions once immunotherapy is discontinued. Allergen-specific approaches using recombinant proteins are an attractive alternative because they allow more precise dosing and the opportunity to engineer proteins with improved safety profiles. We tested whether Ara h 1 and Ara h 2, two major peanut allergens, could be produced using chloroplast of the unicellular eukaryotic alga, Chlamydomonas reinhardtii. C. reinhardtii is novel host for producing allergens that is genetically tractable, inexpensive and easy to grow, and is able to produce more complex proteins than bacterial hosts. Compared to the native proteins, algal-produced Ara h 1 core domain and Ara h 2 have a reduced affinity for IgE from peanut-allergic patients. We further found that immunotherapy using algal-produced Ara h 1 core domain confers protection from peanut-induced anaphylaxis in a murine model of peanut allergy.
Collapse
Affiliation(s)
- James A Gregory
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ariel Shepley-McTaggart
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michelle Umpierrez
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Barry K Hurlburt
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, USA
| | - Soheila J Maleki
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, USA
| | - Hugh A Sampson
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen P Mayfield
- Department of Biology, University of California San Diego, La Jolla, CA, USA
| | - M Cecilia Berin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
71
|
Abstract
Food allergy is receiving increased attention in recent years. Because there is currently no known cure for food allergy, avoiding the offending food is the best defense for sensitive individuals. Type I food allergy is mediated by food proteins, and thus, theoretically, any food protein is a potential allergen. Variability of an individual's immune system further complicates attempts to understand allergen-antibody interaction. In this article, we briefly review food allergy occurrence, prevalence, mechanisms, and detection. Efforts aimed at reducing/eliminating allergens through food processing are discussed. Future research needs are addressed.
Collapse
Affiliation(s)
- Shridhar K Sathe
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, Florida 30306-1493;
| | - Changqi Liu
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, Florida 30306-1493;
| | - Valerie D Zaffran
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, Florida 30306-1493;
| |
Collapse
|
72
|
Bunyavanich S, Shen N, Grishin A, Wood R, Burks W, Dawson P, Jones SM, Leung DYM, Sampson H, Sicherer S, Clemente JC. Early-life gut microbiome composition and milk allergy resolution. J Allergy Clin Immunol 2016; 138:1122-1130. [PMID: 27292825 DOI: 10.1016/j.jaci.2016.03.041] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/24/2016] [Accepted: 03/22/2016] [Indexed: 01/14/2023]
Abstract
BACKGROUND Gut microbiota may play a role in the natural history of cow's milk allergy. OBJECTIVE We sought to examine the association between early-life gut microbiota and the resolution of cow's milk allergy. METHODS We studied 226 children with milk allergy who were enrolled at infancy in the Consortium of Food Allergy observational study of food allergy. Fecal samples were collected at age 3 to 16 months, and the children were followed longitudinally with clinical evaluation, milk-specific IgE levels, and milk skin prick test performed at enrollment, 6 months, 12 months, and yearly thereafter up until age 8 years. Gut microbiome was profiled by 16s rRNA sequencing and microbiome analyses performed using Quantitative Insights into Microbial Ecology (QIIME), Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt), and Statistical Analysis of Metagenomic Profiles (STAMP). RESULTS Milk allergy resolved by age 8 years in 128 (56.6%) of the 226 children. Gut microbiome composition at age 3 to 6 months was associated with milk allergy resolution by age 8 years (PERMANOVA P = .047), with enrichment of Clostridia and Firmicutes in the infant gut microbiome of subjects whose milk allergy resolved. Metagenome functional prediction supported decreased fatty acid metabolism in the gut microbiome of subjects whose milk allergy resolved (η2 = 0.43; ANOVA P = .034). CONCLUSIONS Early infancy is a window during which gut microbiota may shape food allergy outcomes in childhood. Bacterial taxa within Clostridia and Firmicutes could be studied as probiotic candidates for milk allergy therapy.
Collapse
Affiliation(s)
- Supinda Bunyavanich
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY; Division of Pediatric Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Nan Shen
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alexander Grishin
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Robert Wood
- Department of Pediatrics, Johns Hopkins University, Baltimore, Md
| | - Wesley Burks
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC
| | | | - Stacie M Jones
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, Ark
| | | | - Hugh Sampson
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Scott Sicherer
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jose C Clemente
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Medicine, Division of Clinical Immunology and Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
73
|
Chung MY, Shin HS, Choi DW, Shon DH. Citrus Tachibana
Leaf Extract Mitigates Symptoms of Food Allergy by Inhibiting Th2-Associated Responses. J Food Sci 2016; 81:H1537-45. [DOI: 10.1111/1750-3841.13315] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/25/2016] [Accepted: 03/24/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Min-Yu Chung
- Div. of Creative Food Science for Health; Korea Food Research Inst; Seongnam 463-746 Republic of Korea
| | - Hee Soon Shin
- Food Biotechnology Program; Korea Univ. of Science and Technology; Daejeon 305-350 Republic of Korea
| | - Dae Woon Choi
- Div. of Creative Food Science for Health; Korea Food Research Inst; Seongnam 463-746 Republic of Korea
| | - Dong-Hwa Shon
- Food Biotechnology Program; Korea Univ. of Science and Technology; Daejeon 305-350 Republic of Korea
| |
Collapse
|
74
|
Lozano-Ojalvo D, Molina E, López-Fandiño R. Regulation of Exacerbated Immune Responses in Human Peripheral Blood Cells by Hydrolysed Egg White Proteins. PLoS One 2016; 11:e0151813. [PMID: 27007699 PMCID: PMC4805267 DOI: 10.1371/journal.pone.0151813] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/05/2016] [Indexed: 12/05/2022] Open
Abstract
The anti-allergic potential of egg white protein hydrolysates (from ovalbumin, lysozyme and ovomucoid) was evaluated as their ability to hinder cytokine and IgE production by Th2-skewed human peripheral blood mononuclear cells (PBMCs), as well as the release of pro-inflammatory factors and generation of reactive oxygen species from Th1-stimulated peripheral blood leukocytes (PBLs). The binding to IgE of egg allergic patients was determined and the peptides present in the hydrolysates were identified. The hydrolysates with alcalase down-regulated the production of Th2-biased cytokines and the secretion of IgE to the culture media of Th2-skewed PBMCs, and they significantly neutralized oxidative stress in PBLs. The hydrolysates of ovalbumin and ovomucoid with pepsin helped to re-establish the Th1/Th2 balance in Th2-biased PBMCs, while they also inhibited the release of pro-inflammatory mediators and reduced oxidative stress in PBLs treated with inflammatory stimuli. The hydrolysates with alcalase, in addition to equilibrating Th2 differentiation, exhibited a low IgE-binding. Therefore, they would elicit mild allergic reactions while retaining T cell-stimulating abilities, which might correlate with an anti-allergic benefit.
Collapse
Affiliation(s)
- Daniel Lozano-Ojalvo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Elena Molina
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Rosina López-Fandiño
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera 9, 28049, Madrid, Spain
- * E-mail:
| |
Collapse
|
75
|
Pablos-Tanarro A, López-Expósito I, Lozano-Ojalvo D, López-Fandiño R, Molina E. Antibody Production, Anaphylactic Signs, and T-Cell Responses Induced by Oral Sensitization With Ovalbumin in BALB/c and C3H/HeOuJ Mice. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2016; 8:239-45. [PMID: 26922934 PMCID: PMC4773212 DOI: 10.4168/aair.2016.8.3.239] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/30/2015] [Accepted: 07/24/2015] [Indexed: 12/17/2022]
Abstract
Purpose Two mouse strains, BALB/c and C3H/HeOuJ, broadly used in the field of food allergy, were compared for the evaluation of the allergenic potential of ovalbumin (OVA). Methods Sensitization was made by administering 2 different OVA doses (1 and 5 mg), with cholera toxin as Th2-polarizing adjuvant. Antibody levels, severity of anaphylaxis, and Th1 and Th2 responses induced by the allergen were assessed. In addition, because the mice selected had functional toll-like receptor 4, the influence of contamination with lipopolysaccharide (LPS) on the immunostimulating capacity of OVA on spleen cells was also evaluated. Results Both strains exhibited similar susceptibility to OVA sensitization. The 2 protein doses generated similar OVA-specific IgE and IgG1 levels in both strains, whereas C3H/HeOuJ mice produced significantly more IgG2a. Oral challenge provoked more severe manifestations in C3H/HeOuJ mice as indicated by the drop in body temperature and the severity of the anaphylactic scores. Stimulation of splenocytes with OVA led to significantly higher levels of Th2 and Th1 cytokines in BALB/c, and these were less affected by protein contamination with LPS. Conclusions The antibody and cytokine levels induced by OVA in BALB/c mice and the observation that BALB/c spleen cell cultures were more resistant than those of C3H/HeOuJ mice to the stimulus of LPS make this strain prone to exhibit Th2-mediated food allergic reactions and very adequate for the study of the features of OVA that make it allergenic.
Collapse
Affiliation(s)
- Alba Pablos-Tanarro
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera, Madrid, Spain
| | - Ivan López-Expósito
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera, Madrid, Spain
| | - Daniel Lozano-Ojalvo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera, Madrid, Spain
| | - Rosina López-Fandiño
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera, Madrid, Spain
| | - Elena Molina
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera, Madrid, Spain.
| |
Collapse
|
76
|
Benedé S, López-Expósito I, Molina E, López-Fandiño R. Egg proteins as allergens and the effects of the food matrix and processing. Food Funct 2016; 6:694-713. [PMID: 25598200 DOI: 10.1039/c4fo01104j] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hen eggs are an important and inexpensive source of high-quality proteins in the human diet. Egg, either as a whole or its constituents (egg yolk and white), is a key ingredient in many food products by virtue of its nutritional value and unique functional properties, such as emulsifying, foaming, and gelling. Nevertheless, egg is also known because of its allergenic potential and, in fact, it is the second most frequent source of allergic reactions, particularly in children. This review deals with the structural or functional properties of egg proteins that make them strong allergens. Their ability to sensitize and/or elicit allergic reactions is linked to their resistance to gastroduodenal digestion, which ultimately allows them to interact with the intestinal mucosa where absorption occurs. The factors that affect protein digestibility, whether increasing it, decreasing it, or inducing a different proteolysis pattern, and their influence on their capacity to induce or trigger an allergic reaction are discussed. Special attention is paid to the effect of the food matrix and the processing practices on the capacity of egg proteins to modulate the immune response.
Collapse
Affiliation(s)
- S Benedé
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
77
|
Seeds—Health Benefits, Barriers to Incorporation, and Strategies for Practitioners in Supporting Consumption Among Consumers. ACTA ACUST UNITED AC 2016. [DOI: 10.1097/nt.0000000000000135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
78
|
Abstract
Food allergy is a growing public health problem that is estimated to affect 4% to 8% of children and 5% of adults. In this review, we discuss our current understanding of the pathophysiology of food allergy, from oral tolerance, to sensitization, and lastly the elicitation of an allergic response. As much of the existing evidence for the mechanisms of food allergy is derived from animal models, we include these studies where relevant. In addition, whenever possible, we review similar evidence involved in human disease and provide applications for consideration in clinical practice.
Collapse
|
79
|
Nowak-Węgrzyn A, Albin S. Oral immunotherapy for food allergy: mechanisms and role in management. Clin Exp Allergy 2015; 45:368-83. [PMID: 25077670 DOI: 10.1111/cea.12382] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the emergence of food allergy as an important public health problem, it has become clear that there is an unmet need in regard to treatment. In particular, IgE-mediated food allergy that is associated with risk of fatal anaphylaxis has been the subject of multiple studies in the past decade. The growing body of evidence derived from multiple centres and various study designs indicates that for IgE-mediated food allergy, immunomodulation through food immunotherapy is possible; however, the extent of protection afforded by such treatment is highly variable. At this time, the capacity for food immunotherapy to restore permanent tolerance to food has not been demonstrated conclusively. This review will discuss these topics as they apply to the most important studies of food oral immunotherapy.
Collapse
Affiliation(s)
- A Nowak-Węgrzyn
- Pediatric Allergy and Immunology, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, Kravis Children's Hospital, New York, NY, USA
| | | |
Collapse
|
80
|
Dietary ω3 fatty acid exerts anti-allergic effect through the conversion to 17,18-epoxyeicosatetraenoic acid in the gut. Sci Rep 2015; 5:9750. [PMID: 26065911 PMCID: PMC4464255 DOI: 10.1038/srep09750] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/16/2015] [Indexed: 01/01/2023] Open
Abstract
ω3 polyunsaturated fatty acids (PUFAs) have anti-allergic and anti-inflammatory properties, but the immune-metabolic progression from dietary oil remains to be investigated. Here we identified 17,18-epoxyeicostetraenoic acid (17,18-EpETE) as an anti-allergic metabolite generated in the gut from dietary ω3 α-linolenic acid (ALA). Biochemical and imaging mass spectrometry analyses revealed increased ALA and its metabolites, especially eicosapentaenoic acid (EPA), in the intestines of mice receiving ALA-rich linseed oil (Lin-mice). In murine food allergy model, the decreased incidence of allergic diarrhea in Lin-mice was due to impairment of mast cell degranulation without affecting allergen-specific serum IgE. Liquid chromatography–tandem mass spectrometry-based mediator lipidomics identified 17,18-EpETE as a major ω3 EPA-derived metabolite generated from dietary ALA in the gut, and 17,18-EpETE exhibits anti-allergic function when administered in vivo. These findings suggest that metabolizing dietary ω3 PUFAs generates 17,18-EpETE, which is an endogenous anti-allergic metabolite and potentially is a therapeutic target to control intestinal allergies.
Collapse
|
81
|
Holmkvist P, Roepstorff K, Uronen-Hansson H, Sandén C, Gudjonsson S, Patschan O, Grip O, Marsal J, Schmidtchen A, Hornum L, Erjefält JS, Håkansson K, Agace WW. A major population of mucosal memory CD4+ T cells, coexpressing IL-18Rα and DR3, display innate lymphocyte functionality. Mucosal Immunol 2015; 8:545-58. [PMID: 25269704 PMCID: PMC4424383 DOI: 10.1038/mi.2014.87] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/18/2014] [Indexed: 02/04/2023]
Abstract
Mucosal tissues contain large numbers of memory CD4(+) T cells that, through T-cell receptor-dependent interactions with antigen-presenting cells, are believed to have a key role in barrier defense and maintenance of tissue integrity. Here we identify a major subset of memory CD4(+) T cells at barrier surfaces that coexpress interleukin-18 receptor alpha (IL-18Rα) and death receptor-3 (DR3), and display innate lymphocyte functionality. The cytokines IL-15 or the DR3 ligand tumor necrosis factor (TNF)-like cytokine 1A (TL1a) induced memory IL-18Rα(+)DR3(+)CD4(+) T cells to produce interferon-γ, TNF-α, IL-6, IL-5, IL-13, granulocyte-macrophage colony-stimulating factor (GM-CSF), and IL-22 in the presence of IL-12/IL-18. TL1a synergized with IL-15 to enhance this response, while suppressing IL-15-induced IL-10 production. TL1a- and IL-15-mediated cytokine induction required the presence of IL-18, whereas induction of IL-5, IL-13, GM-CSF, and IL-22 was IL-12 independent. IL-18Rα(+)DR3(+)CD4(+) T cells with similar functionality were present in human skin, nasal polyps, and, in particular, the intestine, where in chronic inflammation they localized with IL-18-producing cells in lymphoid aggregates. Collectively, these results suggest that human memory IL-18Rα(+)DR3(+) CD4(+) T cells may contribute to antigen-independent innate responses at barrier surfaces.
Collapse
Affiliation(s)
- P Holmkvist
- Immunology Section, Lund University, Lund, Sweden
- Biopharmaceuticals Research Unit, Novo Nordisk A/S, Måløv, Denmark
| | - K Roepstorff
- Biopharmaceuticals Research Unit, Novo Nordisk A/S, Måløv, Denmark
| | | | - C Sandén
- Unit of Airway Inflammation and Immunology, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - S Gudjonsson
- Department of Urology, Skåne University Hospital, Malmö, Sweden
| | - O Patschan
- Department of Urology, Skåne University Hospital, Malmö, Sweden
| | - O Grip
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - J Marsal
- Department of Gastroenterology, Skåne University Hospital, Lund, Sweden
| | - A Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden
- LKC Medicine, Nanyang Technological University, Singapore, Singapore
| | - L Hornum
- Biopharmaceuticals Research Unit, Novo Nordisk A/S, Måløv, Denmark
| | - J S Erjefält
- Unit of Airway Inflammation and Immunology, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - K Håkansson
- Biopharmaceuticals Research Unit, Novo Nordisk A/S, Måløv, Denmark
| | - W W Agace
- Immunology Section, Lund University, Lund, Sweden
- Section of Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Frederiksberg, Denmark
| |
Collapse
|
82
|
Effect of a protein-free diet in the development of food allergy and oral tolerance in BALB/c mice. Br J Nutr 2015; 113:935-43. [PMID: 25759975 DOI: 10.1017/s0007114515000173] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The aim of the present study was to investigate the effect of a protein-free diet in the induction of food allergy and oral tolerance in BALB/c mice. The experimental model used was mice that were fed, since weaning up to adulthood, a balanced diet in which all dietary proteins were replaced by amino acid diet (Aa). The absence of dietary proteins did not prevent the development of food allergy to ovalbumin (OVA) in these mice. However, Aa-fed mice produced lower levels of IgE, secretory IgA and cytokines. In addition, when compared with mice from control group, Aa-fed mice had a milder aversive reaction to the allergen measured by consumption of OVA-containing solution and weight loss during food allergy development. In addition, mice that did not have dietary proteins in their diets were less susceptible to induction of oral tolerance. One single oral administration was not enough to suppress specific serum Ig and IgG1 levels in the Aa-fed group, although it was efficient to induce suppression in the control group. The present results indicate that the stimulation by dietary proteins alters both inflammatory reactivity and regulatory immune reactivity in mice probably due to their effect in the maturation of the immune system.
Collapse
|
83
|
Catrina AI, Deane KD, Scher JU. Gene, environment, microbiome and mucosal immune tolerance in rheumatoid arthritis. Rheumatology (Oxford) 2014; 55:391-402. [PMID: 25539828 DOI: 10.1093/rheumatology/keu469] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Indexed: 12/20/2022] Open
Abstract
RA is a complex multifactorial chronic disease that transitions through several stages. Multiple studies now support that there is a prolonged phase in early RA development during which there is serum elevation of RA-related autoantibodies including RF and ACPAs in the absence of clinically evident synovitis. This suggests that RA pathogenesis might originate in an extra-articular location, which we hypothesize is a mucosal site. In discussing this hypothesis, we will present herein the current understanding of mucosal immunology, including a discussion about the generation of autoimmune responses at these surfaces. We will also examine how other factors such as genes, microbes and other environmental toxins (including tobacco smoke) could influence the triggering of autoimmunity at mucosal sites and eventually systemic organ disease. We will also propose a research agenda to improve our understanding of the role of mucosal inflammation in the development of RA.
Collapse
Affiliation(s)
- Anca I Catrina
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital and Institutet, Stockholm, Sweden,
| | - Kevin D Deane
- Division of Rheumatology, University of Colorado, School of Medicine, Aurora, CO and
| | - Jose U Scher
- Division of Rheumatology, Department of Medicine, New York University School of Medicine and Hospital for Joint Diseases, New York, NY, USA
| |
Collapse
|
84
|
Kerperien J, Jeurink PV, Wehkamp T, van der Veer A, van de Kant HJG, Hofman GA, van Esch ECAM, Garssen J, Willemsen LEM, Knippels LMJ. Non-digestible oligosaccharides modulate intestinal immune activation and suppress cow's milk allergic symptoms. Pediatr Allergy Immunol 2014; 25:747-54. [PMID: 25410019 DOI: 10.1111/pai.12311] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/14/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Cow's milk allergy is a common food allergy in childhood and no effective preventive or curative treatment is available. This study aimed at comparing single short-chain galacto- (scGOS), long-chain fructo- (lcFOS) or pectin-derived acidic oligosaccharides (pAOS) and/or mixtures of scGOS/lcFOS (GF) or scGOS/lcFOS/pAOS (GFA) to prevent or treat food allergy. METHODS In the preventive protocol, C3H/HeOuJ mice were fed diets containing single oligosaccharides or mixtures GF or GFA throughout the study protocol. In the treatment protocol, GF or GFA was provided for 4 wk starting after the last sensitization. The allergic skin response and anaphylaxis scores were determined, after oral challenge whey-specific immunoglobulins were measured, and qPCR for T-cell markers and Foxp3 counts using immunohistochemistry were performed on the small intestine and colon. RESULTS Only in the preventive setting, the GF or GFA mixture, but not the single oligosaccharides, reduced the allergic skin response and whey-IgG(1) levels in whey-sensitized mice, compared to the control diet. Both GF and GFA increased the number of Foxp3+ cells in the proximal small intestine of whey - compared to sham-sensitized mice. Expression of Th2 and Th17 mRNA markers increased in the middle part of the small intestine of whey-sensitized mice, which was prevented by GF. By contrast, GFA enhanced Tbet (Th1), IL-10 and TGF-β mRNA expression compared to GF which was maintained in the distal small intestine and/or colon. CONCLUSIONS Dietary supplementation with scGOS/lcFOS or scGOS/lcFOS/pAOS during sensitization, both effectively reduce allergic symptoms but differentially affect mucosal immune activation in whey-sensitized mice.
Collapse
Affiliation(s)
- J Kerperien
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Abstract
Immediately following birth, the gastrointestinal tract is colonized with a complex community of bacteria, which helps shape the immune system. Under conditions of health, the immune system is able to differentiate between innocuous antigens, including food protein and commensals, and harmful antigens such as pathogens. However, patients with celiac disease (CD) develop an intolerance to gluten proteins which results in a pro-inflammatory T-cell mediated immune response with production of anti-gluten and anti-tissue transglutaminase antibodies. This adaptive immune response, in conjunction with activation of innate inflammatory cells, lead to destruction of the small intestinal mucosa. Overall 30% of the global population has genetic risk to develop CD. However, only a small proportion develop CD, suggesting that additional environmental factors must play a role in disease pathogenesis. Alterations in small intestinal microbial composition have recently been associated with active CD, indicating a possible role for the microbiota in CD. However, studies demonstrating causality are lacking. This review will highlight the recent data on the potential role of the microbiota in CD pathogenesis, the potential mechanisms, and discuss future research directions.
Collapse
Key Words
- CD, celiac disease
- CTL, cytotoxic T lymphocytes
- DC, dendritic cell
- EC, epithelial cell.
- FISH, fluorescence in situ hybridization
- GALT, gut associated lymphoid tissue
- GFD, gluten-free diet
- GRD, gluten related disorders
- IBD, inflammatory bowel disease
- IEL, intraepithelial lymphocyte
- MLN, mesenteric lymph node
- PBMC, peripheral blood mononuclear cell
- SCFA, short chain fatty acids
- SFB, segmented filamentous bacteria
- TG2, tissue transglutaminase
- Tregs, regulatory T cells
- WT, wild-type
- celiac disease
- gluten related disorders
- immune homeostasis
- microbiota
- oral tolerance
Collapse
Affiliation(s)
- Heather J Galipeau
- Farncombe Family Digestive Health Research Institute; McMaster
University; Hamilton, Canada
| | - Elena F Verdu
- Farncombe Family Digestive Health Research Institute; McMaster
University; Hamilton, Canada,Correspondence to: Elena F
Verdu;
| |
Collapse
|
86
|
Johnston LK, Chien KB, Bryce PJ. The immunology of food allergy. THE JOURNAL OF IMMUNOLOGY 2014; 192:2529-34. [PMID: 24610821 DOI: 10.4049/jimmunol.1303026] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Food allergies represent an increasingly prevalent human health problem, and therapeutic options remain limited, with avoidance being mainstay, despite its adverse effects on quality of life. A better understanding of the key immunological mechanisms involved in such responses likely will be vital for development of new therapies. This review outlines the current understanding of how the immune system is thought to contribute to prevention or development of food allergies. Drawing from animal studies, as well as clinical data when available, the importance of oral tolerance in sustaining immunological nonresponsiveness to food Ags, our current understanding of why oral tolerance may fail and sensitization may occur, and the knowledge of pathways that may lead to anaphylaxis and food allergy-associated responses are addressed.
Collapse
Affiliation(s)
- Laura K Johnston
- Division of Allergy-Immunology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago IL 60611
| | | | | |
Collapse
|
87
|
Sicherer SH, Sampson HA. Food allergy: Epidemiology, pathogenesis, diagnosis, and treatment. J Allergy Clin Immunol 2013; 133:291-307; quiz 308. [PMID: 24388012 DOI: 10.1016/j.jaci.2013.11.020] [Citation(s) in RCA: 855] [Impact Index Per Article: 77.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 01/04/2023]
Abstract
This review focuses on advances and updates in the epidemiology, pathogenesis, diagnosis, and treatment of food allergy over the past 3 years since our last comprehensive review. On the basis of numerous studies, food allergy likely affects nearly 5% of adults and 8% of children, with growing evidence of an increase in prevalence. Potentially rectifiable risk factors include vitamin D insufficiency, unhealthful dietary fat, obesity, increased hygiene, and the timing of exposure to foods, but genetics and other lifestyle issues play a role as well. Interesting clinical insights into pathogenesis include discoveries regarding gene-environment interactions and an increasing understanding of the role of nonoral sensitizing exposures causing food allergy, such as delayed allergic reactions to carbohydrate moieties in mammalian meats caused by sensitization from homologous substances transferred during tick bites. Component-resolved diagnosis is being rapidly incorporated into clinical use, and sophisticated diagnostic tests that indicate severity and prognosis are on the horizon. Current management relies heavily on avoidance and emergency preparedness, and recent studies, guidelines, and resources provide insight into improving the safety and well-being of patients and their families. Incorporation of extensively heated (heat-denatured) forms of milk and egg into the diets of children who tolerate these foods, rather than strict avoidance, represents a significant shift in clinical approach. Recommendations about the prevention of food allergy and atopic disease through diet have changed radically, with rescinding of many recommendations about extensive and prolonged allergen avoidance. Numerous therapies have reached clinical trials, with some showing promise to dramatically alter treatment. Ongoing studies will elucidate improved prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Scott H Sicherer
- Elliot and Roslyn Jaffe Food Allergy Institute, Division of Allergy and Immunology, Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Hugh A Sampson
- Elliot and Roslyn Jaffe Food Allergy Institute, Division of Allergy and Immunology, Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
88
|
Fernandez A, Mills E, Lovik M, Spoek A, Germini A, Mikalsen A, Wal J. Endogenous allergens and compositional analysis in the allergenicity assessment of genetically modified plants. Food Chem Toxicol 2013; 62:1-6. [DOI: 10.1016/j.fct.2013.08.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 08/06/2013] [Accepted: 08/11/2013] [Indexed: 11/26/2022]
|
89
|
Radosavljevic J, Nordlund E, Mihajlovic L, Krstic M, Bohn T, Buchert J, Velickovic TC, Smit J. Sensitizing potential of enzymatically cross-linked peanut proteins in a mouse model of peanut allergy. Mol Nutr Food Res 2013; 58:635-46. [DOI: 10.1002/mnfr.201300403] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/22/2013] [Accepted: 07/30/2013] [Indexed: 01/01/2023]
Affiliation(s)
| | | | - Luka Mihajlovic
- University of Belgrade; Faculty of Chemistry; Belgrade Serbia
| | - Maja Krstic
- University of Belgrade; Faculty of Chemistry; Belgrade Serbia
| | - Torsten Bohn
- Centre de Recherche Public - Gabriel Lippmann; Belvaux Luxembourg
| | | | | | - Joost Smit
- Institute for Risk Assessment Sciences; Utrecht University; Utrecht The Netherlands
| |
Collapse
|