51
|
Lu C, Tian Y, Hou X, Hou X, Jia Z, Li M, Hao M, Jiang Y, Wang Q, Pu Q, Yin Z, Li Y, Liu B, Kang X, Zhang G, Ding X, Liu Y. Multiple forms of vitamin B 6 regulate salt tolerance by balancing ROS and abscisic acid levels in maize root. STRESS BIOLOGY 2022; 2:39. [PMID: 37676445 PMCID: PMC10441934 DOI: 10.1007/s44154-022-00061-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/22/2022] [Indexed: 09/08/2023]
Abstract
Salt stress causes osmotic stress, ion toxicity and oxidative stress, inducing the accumulation of abscisic acid (ABA) and excessive reactive oxygen species (ROS) production, which further damage cell structure and inhibit the development of roots in plants. Previous study showed that vitamin B6 (VB6) plays a role in plant responses to salt stress, however, the regulatory relationship between ROS, VB6 and ABA under salt stress remains unclear yet in plants. In our study, we found that salt stress-induced ABA accumulation requires ROS production, in addition, salt stress also promoted VB6 (including pyridoxamine (PM), pyridoxal (PL), pyridoxine (PN), and pyridoxal 5'-phosphate (PLP)) accumulation, which involved in ROS scavenging and ABA biosynthesis. Furthermore, VB6-deficient maize mutant small kernel2 (smk2) heterozygous is more susceptible to salt stress, and which failed to scavenge excessive ROS effectively or induce ABA accumulation in maize root under salt stress, interestingly, which can be restored by exogenous PN and PLP, respectively. According to these results, we proposed that PN and PLP play an essential role in balancing ROS and ABA levels under salt stress, respectively, it laid a foundation for VB6 to be better applied in crop salt resistance than ABA.
Collapse
Affiliation(s)
- Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Yuan Tian
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Xuanxuan Hou
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Xin Hou
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Zichang Jia
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Min Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Mingxia Hao
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Yanke Jiang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Qingbin Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
- Shandong Pengbo Biotechnology Co., LTD, Taian, 271018, China
| | - Qiong Pu
- Shandong Agriculture and Engineering University, Jinan, 250000, Shandong, China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Baoyou Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
- Yantai Academy of Agricultural Sciences, Yantai, 265500, Shandong, China
| | - Xiaojing Kang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Guangyi Zhang
- Shandong Xinyuan Seed Industry Co., LTD, Taian, 271000, China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China.
| | - Yinggao Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China.
| |
Collapse
|
52
|
Baba AI, Mir MY, Riyazuddin R, Cséplő Á, Rigó G, Fehér A. Plants in Microgravity: Molecular and Technological Perspectives. Int J Mol Sci 2022; 23:10548. [PMID: 36142459 PMCID: PMC9505700 DOI: 10.3390/ijms231810548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 01/19/2023] Open
Abstract
Plants are vital components of our ecosystem for a balanced life here on Earth, as a source of both food and oxygen for survival. Recent space exploration has extended the field of plant biology, allowing for future studies on life support farming on distant planets. This exploration will utilize life support technologies for long-term human space flights and settlements. Such longer space missions will depend on the supply of clean air, food, and proper waste management. The ubiquitous force of gravity is known to impact plant growth and development. Despite this, we still have limited knowledge about how plants can sense and adapt to microgravity in space. Thus, the ability of plants to survive in microgravity in space settings becomes an intriguing topic to be investigated in detail. The new knowledge could be applied to provide food for astronaut missions to space and could also teach us more about how plants can adapt to unique environments. Here, we briefly review and discuss the current knowledge about plant gravity-sensing mechanisms and the experimental possibilities to research microgravity-effects on plants either on the Earth or in orbit.
Collapse
Affiliation(s)
- Abu Imran Baba
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Mohd Yaqub Mir
- Doctoral School of Neuroscience, Semmelweis University, H-1083 Budapest, Hungary
- Theoretical Neuroscience and Complex Systems Group, Department of Computational Sciences, Wigner Research Centre for Physics, H-1121 Budapest, Hungary
| | - Riyazuddin Riyazuddin
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary
| | - Ágnes Cséplő
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary
| | - Gábor Rigó
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary
| | - Attila Fehér
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary
| |
Collapse
|
53
|
Jedličková V, Ebrahimi Naghani S, Robert HS. On the trail of auxin: Reporters and sensors. THE PLANT CELL 2022; 34:3200-3213. [PMID: 35708654 PMCID: PMC9421466 DOI: 10.1093/plcell/koac179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/07/2022] [Indexed: 05/22/2023]
Abstract
The phytohormone auxin is a master regulator of plant growth and development in response to many endogenous and environmental signals. The underlying coordination of growth is mediated by the formation of auxin maxima and concentration gradients. The visualization of auxin dynamics and distribution can therefore provide essential information to increase our understanding of the mechanisms by which auxin orchestrates these growth and developmental processes. Several auxin reporters have been developed to better perceive the auxin distribution and signaling machinery in vivo. This review focuses on different types of auxin reporters and biosensors used to monitor auxin distribution and its dynamics, as well as auxin signaling, at the cellular and tissue levels in different plant species. We provide a brief history of each reporter and biosensor group and explain their principles and utilities.
Collapse
|
54
|
Pandey A, Chaudhary S, Bhat B. The Potential Role of Plastome Copy Number as a Quality Biomarker for Plant Products using Real-time Quantitative Polymerase Chain Reaction. Curr Genomics 2022; 23:289-298. [PMID: 36777877 PMCID: PMC9875542 DOI: 10.2174/1389202923666220513111643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/28/2022] [Accepted: 03/18/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Plastids are plant-specific semi-autonomous self-replicating organelles, containing circular DNA molecules called plastomes. Plastids perform crucial functions, including photosynthesis, stress perception and response, synthesis of metabolites, and storage. The plastome and plastid numbers have been shown to be modulated by developmental stage and environmental stimuli and have been used as a biomarker (identification of plant species) and biosensor (an indicator of abiotic and biotic stresses). However, the determination of plastome sequence and plastid number is a laborious process requiring sophisticated equipment. Methods: This study proposes using plastome copy number (PCN), which can be determined rapidly by real-time quantitative polymerase chain reaction (RT-qPCR) as a plant product quality biomarker. This study shows that the PCN log10 and range PCN log10 values calculated from RT-qPCR data, which was obtained for two years from leaves and lint samples of cotton and seed samples of cotton, rice, soybean, maize, and sesame can be used for assessing the quality of the samples. Results: Observation of lower range PCN log10 values for CS (0.31) and CR (0.58) indicated that the PCN showed little variance from the mean PCN log10 values for CS (3.81) and CR (3.85), suggesting that these samples might have encountered ambient environmental conditions during growth and/ or post-harvest storage and processing. This conclusion was further supported by observation of higher range PCN log10 values for RS (3.09) versus RP (0.05), where rice seeds in the RP group had protective hull covering compared to broken hull-less seeds in the RS group. To further support that PCN is affected by external factors, rice seeds treated with high temperatures and pathogens exhibited lower PCN values when compared to untreated seeds. Furthermore, the range PCN log10 values were found to be high for cotton leaf (CL) and lint (Clt) sample groups, 4.11 and 3.63, respectively, where leaf and lint samples were of different sizes, indicating that leaf samples might be of different developmental stage and lint samples might have been processed differently, supporting that the PCN is affected by both internal and external factors, respectively. Moreover, PCN log10 values were found to be plant specific, with oil containing seeds such as SeS (6.49) and MS (5.05) exhibiting high PCN log10 values compared to non-oil seeds such as SS (1.96). Conclusion: In conclusion, it was observed that PCN log10 values calculated from RT-qPCR assays were specific to plant species and the range of PCN log10 values can be directly correlated to the internal and external factors and, therefore might be used as a potential biomarker for assessing the quality of plant products.
Collapse
Affiliation(s)
- Amita Pandey
- 19 University Road, Shriram Institute for Industrial Research, Analytical Science Division - Biology, Molecular Biology Laboratory, New Delhi, India
| | - Shifa Chaudhary
- 19 University Road, Shriram Institute for Industrial Research, Analytical Science Division - Biology, Molecular Biology Laboratory, New Delhi, India
| | - Binu Bhat
- 19 University Road, Shriram Institute for Industrial Research, Analytical Science Division - Biology, Molecular Biology Laboratory, New Delhi, India
| |
Collapse
|
55
|
Wang H, Ouyang Q, Yang C, Zhang Z, Hou D, Liu H, Xu H. Mutation of OsPIN1b by CRISPR/Cas9 Reveals a Role for Auxin Transport in Modulating Rice Architecture and Root Gravitropism. Int J Mol Sci 2022; 23:ijms23168965. [PMID: 36012245 PMCID: PMC9409181 DOI: 10.3390/ijms23168965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/20/2022] Open
Abstract
The distribution and content of auxin within plant tissues affect a variety of important growth and developmental processes. Polar auxin transport (PAT), mainly mediated by auxin influx and efflux transporters, plays a vital role in determining auxin maxima and gradients in plants. The auxin efflux carrier PIN-FORMED (PIN) family is one of the major protein families involved in PAT. Rice (Oryza sativa L.) genome possesses 12 OsPIN genes. However, the detailed functions of OsPIN genes involved in regulating the rice architecture and gravity response are less well understood. In the present study, OsPIN1b was disrupted by CRISPR/Cas9 technology, and its roles in modulating rice architecture and root gravitropism were investigated. Tissue-specific analysis showed that OsPIN1b was mainly expressed in roots, stems and sheaths at the seedling stage, and the transcript abundance was progressively decreased during the seedling stages. Expression of OsPIN1b could be quickly and greatly induced by NAA, indicating that OsPIN1b played a vital role in PAT. IAA homeostasis was disturbed in ospin1b mutants, as evidenced by the changed sensitivity of shoot and root to NAA and NPA treatment, respectively. Mutation of OsPIN1b resulted in pleiotropic phenotypes, including decreased growth of shoots and primary roots, reduced adventitious root number in rice seedlings, as well as shorter and narrower leaves, increased leaf angle, more tiller number and decreased plant height and panicle length at the late developmental stage. Moreover, ospin1b mutants displayed a curly root phenotype cultured with tap water regardless of lighting conditions, while nutrient solution culture could partially rescue the curly root phenotype in light and almost completely abolish this phenotype in darkness, indicating the involvement of the integration of light and nutrient signals in root gravitropism regulation. Additionally, amyloplast sedimentation was impaired in the peripheral tiers of the ospin1b root cap columella cell, while it was not the main contributor to the abnormal root gravitropism. These data suggest that OsPIN1b not only plays a vital role in regulating rice architecture but also functions in regulating root gravitropism by the integration of light and nutrient signals.
Collapse
Affiliation(s)
- Huihui Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Qiqi Ouyang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Chong Yang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Zhuoyan Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Dianyun Hou
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Hao Liu
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Huawei Xu
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| |
Collapse
|
56
|
Zhang F, Li C, Qu X, Liu J, Yu Z, Wang J, Zhu J, Yu Y, Ding Z. A feedback regulation between ARF7-mediated auxin signaling and auxin homeostasis involving MES17 affects plant gravitropism. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1339-1351. [PMID: 35475598 DOI: 10.1111/jipb.13268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Gravitropism is an essential adaptive response of land plants. Asymmetric auxin gradients across plant organs, interpreted by multiple auxin signaling components including AUXIN RESPONSE FACTOR7 (ARF7), trigger differential growth and bending response. However, how this fundamental process is strictly maintained in nature remains unclear. Here, we report that gravity stimulates the transcription of METHYL ESTERASE17 (MES17) along the lower side of the hypocotyl via ARF7-dependent auxin signaling. The asymmetric distribution of MES17, a methyltransferase that converts auxin from its inactive form methyl indole-3-acetic acid ester (MeIAA) to its biologically active form free-IAA, enhanced the gradient of active auxin across the hypocotyl, which in turn reversely amplified the asymmetric auxin responses and differential growth that shape gravitropic bending. Taken together, our findings reveal the novel role of MES17-mediated auxin homeostasis in gravitropic responses and identify an ARF7-triggered feedback mechanism that reinforces the asymmetric distribution of active auxin and strictly controls gravitropism in plants.
Collapse
Affiliation(s)
- Feng Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Cuiling Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Xingzhen Qu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Jiajia Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zipeng Yu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Junxia Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Jiayong Zhu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yongqiang Yu
- Horticulture Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
57
|
Bai J, Song MJ, Gao J, Li G. Whole genome duplication and dispersed duplication characterize the evolution of the plant PINOID gene family across plant species. Gene 2022; 829:146494. [PMID: 35447241 DOI: 10.1016/j.gene.2022.146494] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/05/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022]
Abstract
PINOID is a kinase belonging to the AGCVIII family, which regulates the polar distribution of PIN proteins and plays an important role in plant geotropism. However, the origin and evolutionary history of this gene family is not fully known. In this study, we identified 79 similar sequences across 17 plant species genomes (PINOID, D6PK, PINOID2, "hypothetical kinase"). Our results show that the AGCVIII kinase family may have originated from related "Hypothetical Kinases" that come out sister to the rest of the gene family members. These kinases differentiated their functions are found in different plant classes: D6PK in moss and PINOID and PINOID2 evolving in angiosperms including the pioneer plant Amborella trichopoda. Our study investigates the evolution of PINOID kinases from a phylogenetic perspective giving us insight into how this important plant signal transduction network switch evolved to play a fundamental and important function in plant growth and development. We highlight the importance of whole genome duplications and dispersed duplications as opposed to tandem duplications in the evolution of this gene family.
Collapse
Affiliation(s)
- Jiangshan Bai
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Michael J Song
- Department of Biology, California State University East Bay, Hayward, CA, United States of America
| | - Jian Gao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Guiting Li
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
58
|
Li L, Gallei M, Friml J. Bending to auxin: fast acid growth for tropisms. TRENDS IN PLANT SCIENCE 2022; 27:440-449. [PMID: 34848141 DOI: 10.1016/j.tplants.2021.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
The phytohormone auxin is the major growth regulator governing tropic responses including gravitropism. Auxin build-up at the lower side of stimulated shoots promotes cell expansion, whereas in roots it inhibits growth, leading to upward shoot bending and downward root bending, respectively. Yet it remains an enigma how the same signal can trigger such opposite cellular responses. In this review, we discuss several recent unexpected insights into the mechanisms underlying auxin regulation of growth, challenging several existing models. We focus on the divergent mechanisms of apoplastic pH regulation in shoots and roots revisiting the classical Acid Growth Theory and discuss coordinated involvement of multiple auxin signaling pathways. From this emerges a more comprehensive, updated picture how auxin regulates growth.
Collapse
Affiliation(s)
- Lanxin Li
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Michelle Gallei
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria.
| |
Collapse
|
59
|
Edelmann HG. Plant root development: is the classical theory for auxin-regulated root growth false? PROTOPLASMA 2022; 259:823-832. [PMID: 34515860 PMCID: PMC9010396 DOI: 10.1007/s00709-021-01697-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
One of the longest standing theories and, therein-based, regulation-model of plant root development, posits the inhibitory action of auxin (IAA, indolylacetic acid) on elongation growth of root cells. This effect, as induced by exogenously supplied IAA, served as the foundation stone for root growth regulation. For decades, auxin ruled the day and only allowed hormonal side players to be somehow involved, or in some way affected. However, this copiously reiterated, apparent cardinal role of auxin only applies in roots immersed in solutions; it vanishes as soon as IAA-supplied roots are not surrounded by liquid. When roots grow in humid air, exogenous IAA has no inhibitory effect on elongation growth of maize roots, regardless of whether it is applied basipetally from the top of the root or to the entire residual seedling immersed in IAA solution. Nevertheless, such treatment leads to pronounced root-borne ethylene emission and lateral rooting, illustrating and confirming thereby induced auxin presence and its effect on the root - yet, not on root cell elongation. Based on these findings, a new root growth regulatory model is proposed. In this model, it is not IAA, but IAA-triggered ethylene which plays the cardinal regulatory role - taking effect, or not - depending on the external circumstances. In this model, in water- or solution-incubated roots, IAA-dependent ethylene acts due to its accumulation within the root proper by inhibited/restrained diffusion into the liquid phase. In roots exposed to moist air or gas, there is no effect on cell elongation, since IAA-triggered ethylene diffuses out of the root without an impact on growth.
Collapse
Affiliation(s)
- Hans G Edelmann
- Institut für Biologiedidaktik, Universität zu Köln, Cologne, Germany.
| |
Collapse
|
60
|
Salvalaio M, Oliver N, Tiknaz D, Schwarze M, Kral N, Kim SJ, Sena G. Root electrotropism in Arabidopsis does not depend on auxin distribution but requires cytokinin biosynthesis. PLANT PHYSIOLOGY 2022; 188:1604-1616. [PMID: 34893912 PMCID: PMC8896602 DOI: 10.1093/plphys/kiab587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Efficient foraging by plant roots relies on the ability to sense multiple physical and chemical cues in soil and to reorient growth accordingly (tropism). Root tropisms range from sensing gravity (gravitropism), light (phototropism), water (hydrotropism), touch (thigmotropism), and more. Electrotropism, also known as galvanotropism, is the phenomenon of aligning growth with external electric fields and currents. Although root electrotropism has been observed in a few species since the end of the 19th century, its molecular and physical mechanisms remain elusive, limiting its comparison with the more well-defined sensing pathways in plants. Here, we provide a quantitative and molecular characterization of root electrotropism in the model system Arabidopsis (Arabidopsis thaliana), showing that it does not depend on an asymmetric distribution of the plant hormone auxin, but instead requires the biosynthesis of a second hormone, cytokinin. We also show that the dose-response kinetics of the early steps of root electrotropism follows a power law analogous to the one observed in some physiological reactions in animals. Future studies involving more extensive molecular and quantitative characterization of root electrotropism would represent a step toward a better understanding of signal integration in plants and would also serve as an independent outgroup for comparative analysis of electroreception in animals and fungi.
Collapse
Affiliation(s)
| | - Nicholas Oliver
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Deniz Tiknaz
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | | | - Nicolas Kral
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Soo-Jeong Kim
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Giovanni Sena
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
61
|
Zou Y, Zhang Y, Testerink C. Root dynamic growth strategies in response to salinity. PLANT, CELL & ENVIRONMENT 2022; 45:695-704. [PMID: 34716934 PMCID: PMC9298695 DOI: 10.1111/pce.14205] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/17/2021] [Accepted: 10/09/2021] [Indexed: 05/25/2023]
Abstract
Increasing soil salinization largely impacts crop yield worldwide. To deal with salinity stress, plants exhibit an array of responses, including root system architecture remodelling. Here, we review recent progress in physiological, developmental and cellular mechanisms of root growth responses to salinity. Most recent research in modulation of root branching, root tropisms, as well as in root cell wall modifications under salinity stress, is discussed in the context of the contribution of these responses to overall plant performance. We highlight the power of natural variation approaches revealing novel potential pathways responsible for differences in root salt stress responses. Together, these new findings promote our understanding of how salt shapes the root phenotype, which may provide potential avenues for engineering crops with better yield and survival in saline soils.
Collapse
Affiliation(s)
- Yutao Zou
- Laboratory of Plant Physiology, Plant Sciences GroupWageningen University and ResearchWageningenthe Netherlands
| | - Yanxia Zhang
- Laboratory of Plant Physiology, Plant Sciences GroupWageningen University and ResearchWageningenthe Netherlands
| | - Christa Testerink
- Laboratory of Plant Physiology, Plant Sciences GroupWageningen University and ResearchWageningenthe Netherlands
| |
Collapse
|
62
|
Gavelienė V, Jurkonienė S, Jankovska-Bortkevič E, Švegždienė D. Effects of Elevated Temperature on Root System Development of Two Lupine Species. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020192. [PMID: 35050080 PMCID: PMC8777784 DOI: 10.3390/plants11020192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 05/31/2023]
Abstract
The aim of this study was to assess the effect of elevated temperature on the growth, morphology and spatial orientation of lupine roots at the initial stages of development and on the formation of lupine root architecture at later stages. Two lupine species were studied-the invasive Lupinus polyphyllus Lindl. and the non-invasive L. luteus L. The plants were grown in climate chambers under 25 °C and simulated warming at 30 °C conditions. The angle of root curvature towards the vector of gravity was measured at the 48th hour of growth, and during a 4-h period after 90° reorientation. Root biometrical, histological measurements were carried out on 7-day-old and 30-day-old plants. The elevation of 5 °C affected root formation of the two lupine species differently. The initial roots of L. polyphyllus were characterized by worse spatial orientation, reduced growth and reduced mitotic index of root apical meristem at 30 °C compared with 25 °C. The length of primary roots of 30-day-old lupines and the number of lateral roots decreased by 14% and 16%, respectively. More intense root development and formation were observed in non-invasive L. luteus at 30 °C. Our results provide important information on the effect of elevated temperature on the formation of root architecture in two lupine species and suggest that global warming may impact the invasiveness of these species.
Collapse
|
63
|
Abstract
Tropisms are among the most important growth responses for plant adaptation to the surrounding environment. One of the most common tropisms is root gravitropism. Root gravitropism enables the plant to anchor securely to the soil enabling the absorption of water and nutrients. Most of the knowledge related to the plant gravitropism has been acquired from the flowering plants, due to limited research in non-seed plants. Limited research on non-seed plants is due in large part to the lack of standard research methods. Here, we describe the experimental methods to evaluate gravitropism in representative non-seed plant species, including the non-vascular plant moss Physcomitrium patens, the early diverging extant vascular plant lycophyte Selaginella moellendorffii and fern Ceratopteris richardii. In addition, we introduce the methods used for statistical analysis of the root gravitropism in non-seed plant species.
Collapse
Affiliation(s)
- Yuzhou Zhang
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Lanxin Li
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Jiří Friml
- Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria.
| |
Collapse
|
64
|
Barker R, Johns S, Trane R, Gilroy S. Analysis of Plant Root Gravitropism. Methods Mol Biol 2022; 2494:3-16. [PMID: 35467196 DOI: 10.1007/978-1-0716-2297-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gravity is a powerful element in shaping plant development, with gravitropism, the oriented growth response of plant organs to the direction of gravity, leading to each plant's characteristic form both above and below ground. Despite being conceptually simple to follow, monitoring a plant's directional growth responses can become complex as variation arises from both internal developmental cues as well as effects of the environment. In this protocol, we discuss approaches to gravitropism assays, focusing on automated analyses of root responses. For Arabidopsis, we recommend a simple 90° rotation using seedlings that are 5-8 days old. If images are taken at regular intervals and the environmental metadata is recorded during both seedling development and gravitropic assay, these data can be used to reveal quantitative kinetic patterns at distinct stages of the assay. The use of software that analyzes root system parameters and stores this data in the RSML format opens up the possibility for a host of root parameters to be extracted to characterize growth of the primary root and a range of lateral root phenotypes.
Collapse
Affiliation(s)
- Richard Barker
- Department of Botany, University of Wisconsin, Madison, WI, USA
| | - Sarah Johns
- Department of Botany, University of Wisconsin, Madison, WI, USA
| | - Ralph Trane
- Department of Statistics, University of Wisconsin, Madison, WI, USA
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
65
|
Peng Y, Zhang D, Qiu Y, Xiao Z, Ji Y, Li W, Xia Y, Wang Y, Guo H. Growth asymmetry precedes differential auxin response during apical hook initiation in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:5-22. [PMID: 34786851 DOI: 10.1111/jipb.13190] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
The development of a hook-like structure at the apical part of the soil-emerging organs has fascinated botanists for centuries, but how it is initiated remains unclear. Here, we demonstrate with high-throughput infrared imaging and 2-D clinostat treatment that, when gravity-induced root bending is absent, apical hook formation still takes place. In such scenarios, hook formation begins with a de novo growth asymmetry at the apical part of a straightly elongating hypocotyl. Remarkably, such de novo asymmetric growth, but not the following hook enlargement, precedes the establishment of a detectable auxin response asymmetry, and is largely independent of auxin biosynthesis, transport and signaling. Moreover, we found that functional cortical microtubule array is essential for the following enlargement of hook curvature. When microtubule array was disrupted by oryzalin, the polar localization of PIN proteins and the formation of an auxin maximum became impaired at the to-be-hook region. Taken together, we propose a more comprehensive model for apical hook initiation, in which the microtubule-dependent polar localization of PINs may mediate the instruction of growth asymmetry that is either stochastically taking place, induced by gravitropic response, or both, to generate a significant auxin gradient that drives the full development of the apical hook.
Collapse
Affiliation(s)
- Yang Peng
- Department of Biology, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong, 999077, China
| | - Dan Zhang
- Department of Biology, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuping Qiu
- Department of Biology, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhina Xiao
- Department of Biology, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yusi Ji
- Department of Biology, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Microlens Technologies, Beijing, 100086, China
| | - Wenyang Li
- Department of Biology, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yiji Xia
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong, 999077, China
| | - Yichuan Wang
- Department of Biology, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongwei Guo
- Department of Biology, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
66
|
Ogura T, Goeschl C, Busch W. A Multiplexed, Time-Resolved Assay of Root Gravitropic Bending on Agar Plates. Methods Mol Biol 2022; 2368:61-70. [PMID: 34647248 DOI: 10.1007/978-1-0716-1677-2_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The ability of roots to orient their growth relative to the vector of gravity, root gravitropism (positive gravitropism), is observed in root systems of higher plants and is an essential part of plant growth and development. While there are various methods for quantifying root gravitropism, many methods that can efficiently measure gravitropism at a reasonable throughput do not yield temporal resolution of the process, while methods that allow for high-temporal resolution are often not suitable for an efficient measurement of multiple roots. Here, we describe a method to analyze the root gravitropism activity at an increased throughput with a fine time-resolution using Arabidopsis thaliana plants.
Collapse
Affiliation(s)
- Takehiko Ogura
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
67
|
Shtin M, Dello Ioio R, Del Bianco M. It's Time for a Change: The Role of Gibberellin in Root Meristem Development. FRONTIERS IN PLANT SCIENCE 2022; 13:882517. [PMID: 35592570 PMCID: PMC9112047 DOI: 10.3389/fpls.2022.882517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/14/2022] [Indexed: 05/21/2023]
Abstract
One of the most amazing characteristics of plants is their ability to grow and adapt their development to environmental changes. This fascinating feature is possible thanks to the activity of meristems, tissues that contain lasting self-renewal stem cells. Because of its simple and symmetric structure, the root meristem emerged as a potent system to uncover the developmental mechanisms behind the development of the meristems. The root meristem is formed during embryogenesis and sustains root growth for all the plant's lifetime. In the last decade, gibberellins have emerged as a key regulator for root meristem development. This phytohormone functions as a molecular clock for root development. This mini review discusses the latest advances in understanding the role of gibberellin in root development and highlights the central role of this hormone as developmental timer.
Collapse
Affiliation(s)
- Margaryta Shtin
- Department of Biology and Biotechnology “C. Darwin”, Laboratory of Functional Genomics and Proteomics of Model Systems, University of Rome “Sapienza”, Rome, Italy
| | - Raffaele Dello Ioio
- Department of Biology and Biotechnology “C. Darwin”, Laboratory of Functional Genomics and Proteomics of Model Systems, University of Rome “Sapienza”, Rome, Italy
- *Correspondence: Raffaele Dello Ioio,
| | | |
Collapse
|
68
|
Kruse CPS, Wyatt SE. Nitric oxide, gravity response, and a unified schematic of plant signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 314:111105. [PMID: 34895542 DOI: 10.1016/j.plantsci.2021.111105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Plant signaling components are often involved in numerous processes. Calcium, reactive oxygen species, and other signaling molecules are essential to normal biotic and abiotic responses. Yet, the summation of these components is integrated to produce a specific response despite their involvement in a myriad of response cascades. In the response to gravity, the role of many of these individual components has been studied, but a specific sequence of signals has not yet been assembled into a cohesive schematic of gravity response signaling. Herein, we provide a review of existing knowledge of gravity response and differential protein and gene regulation induced by the absence of gravity stimulus aboard the International Space Station and propose an integrated theoretical schematic of gravity response incorporating that information. Recent developments in the role of nitric oxide in gravity signaling provided some of the final contextual pillars for the assembly of the model, where nitric oxide and the role of cysteine S-nitrosation may be central to the gravity response. The proposed schematic accounts for the known responses to reorientation with respect to gravity in roots-the most well studied gravitropic plant tissue-and is supported by the extensive evolutionary conservation of regulatory amino acids within protein components of the signaling schematic. The identification of a role of nitric oxide in regulating the TIR1 auxin receptor is indicative of the broader relevance of the schematic in studying a multitude of environmental and stress responses. Finally, there are several experimental approaches that are highlighted as essential to the further study and validation of this schematic.
Collapse
Affiliation(s)
- Colin P S Kruse
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, United States; Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, United States; Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM 87545, United States(1)
| | - Sarah E Wyatt
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, United States; Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, United States.
| |
Collapse
|
69
|
Parker D, Daguerre Y, Dufil G, Mantione D, Solano E, Cloutet E, Hadziioannou G, Näsholm T, Berggren M, Pavlopoulou E, Stavrinidou E. Biohybrid plants with electronic roots via in vivo polymerization of conjugated oligomers. MATERIALS HORIZONS 2021; 8:3295-3305. [PMID: 34730593 DOI: 10.1039/d1mh01423d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plant processes, ranging from photosynthesis through production of biomaterials to environmental sensing and adaptation, can be used in technology via integration of functional materials and devices. Previously, plants with integrated organic electronic devices and circuits distributed in their vascular tissue and organs have been demonstrated. To circumvent biological barriers, and thereby access the internal tissue, plant cuttings were used, which resulted in biohybrids with limited lifetime and use. Here, we report intact plants with electronic functionality that continue to grow and develop enabling plant-biohybrid systems that fully maintain their biological processes. The biocatalytic machinery of the plant cell wall was leveraged to seamlessly integrate conductors with mixed ionic-electronic conductivity along the root system of the plants. Cell wall peroxidases catalyzed ETE-S polymerization while the plant tissue served as the template, organizing the polymer in a favorable manner. The conductivity of the resulting p(ETE-S) roots reached the order of 10 S cm-1 and remained stable over the course of 4 weeks while the roots continued to grow. The p(ETE-S) roots were used to build supercapacitors that outperform previous plant-biohybrid charge storage demonstrations. Plants were not affected by the electronic functionalization but adapted to this new hybrid state by developing a more complex root system. Biohybrid plants with electronic roots pave the way for autonomous systems with potential applications in energy, sensing and robotics.
Collapse
Affiliation(s)
- Daniela Parker
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden.
| | - Yohann Daguerre
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 90183 Umea, Sweden
| | - Gwennaël Dufil
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden.
| | - Daniele Mantione
- Université de Bordeaux, Bordeaux INP, CNRS, LCPO UMR 5629, F-33615, Pessac, France
| | - Eduardo Solano
- NCD-SWEET Beamline, ALBA Synchrotron Light Source, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Spain
| | - Eric Cloutet
- Université de Bordeaux, Bordeaux INP, CNRS, LCPO UMR 5629, F-33615, Pessac, France
| | - Georges Hadziioannou
- Université de Bordeaux, Bordeaux INP, CNRS, LCPO UMR 5629, F-33615, Pessac, France
| | - Torgny Näsholm
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 90183 Umea, Sweden
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden.
- Wallenberg Wood Science Center, Linköping University, SE-60174, Norrköping, Sweden
| | - Eleni Pavlopoulou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, P.O. Box 1527, 71110 Heraklion Crete, Greece
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden.
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 90183 Umea, Sweden
- Wallenberg Wood Science Center, Linköping University, SE-60174, Norrköping, Sweden
| |
Collapse
|
70
|
Furutani M, Morita MT. LAZY1-LIKE-mediated gravity signaling pathway in root gravitropic set-point angle control. PLANT PHYSIOLOGY 2021; 187:1087-1095. [PMID: 34734273 PMCID: PMC8566294 DOI: 10.1093/plphys/kiab219] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/10/2021] [Indexed: 06/13/2023]
Abstract
Gravity signaling components contribute to the control of root gravitropic set-point angle through protein polarization relay within columella.
Collapse
Affiliation(s)
- Masahiko Furutani
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Miyo Terao Morita
- Division of Plant Environmental Responses, National Institute for Basic Biology, Myodaiji, Okazaki 444-8556, Japan
| |
Collapse
|
71
|
Qiu D, Jian Y, Zhang Y, Xie G. Plant Gravitropism and Signal Conversion under a Stress Environment of Altered Gravity. Int J Mol Sci 2021; 22:ijms222111723. [PMID: 34769154 PMCID: PMC8583895 DOI: 10.3390/ijms222111723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/23/2022] Open
Abstract
Humans have been committed to space exploration and to find the next planet suitable for human survival. The construction of an ecosystem that adapts to the long-term survival of human beings in space stations or other planets would be the first step. The space plant cultivation system is the key component of an ecosystem, which will produce food, fiber, edible oil and oxygen for future space inhabitants. Many plant experiments have been carried out under a stimulated or real environment of altered gravity, including at microgravity (0 g), Moon gravity (0.17 g) and Mars gravity (0.38 g). How plants sense gravity and change under stress environment of altered gravity were summarized in this review. However, many challenges remain regarding human missions to the Moon or Mars. Our group conducted the first plant experiment under real Moon gravity (0.17 g) in 2019. One of the cotton seeds successfully germinated and produced a green seedling, which represents the first green leaf produced by mankind on the Moon.
Collapse
Affiliation(s)
- Dan Qiu
- Center of Space Exploration, Ministry of Education, Chongqing University, Chongqing 400044, China; (Y.J.); (Y.Z.)
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Correspondence: (D.Q.); (G.X.)
| | - Yongfei Jian
- Center of Space Exploration, Ministry of Education, Chongqing University, Chongqing 400044, China; (Y.J.); (Y.Z.)
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yuanxun Zhang
- Center of Space Exploration, Ministry of Education, Chongqing University, Chongqing 400044, China; (Y.J.); (Y.Z.)
| | - Gengxin Xie
- Center of Space Exploration, Ministry of Education, Chongqing University, Chongqing 400044, China; (Y.J.); (Y.Z.)
- Correspondence: (D.Q.); (G.X.)
| |
Collapse
|
72
|
Samakovli D, Roka L, Dimopoulou A, Plitsi PK, Žukauskait A, Georgopoulou P, Novák O, Milioni D, Hatzopoulos P. HSP90 affects root growth in Arabidopsis by regulating the polar distribution of PIN1. THE NEW PHYTOLOGIST 2021; 231:1814-1831. [PMID: 34086995 DOI: 10.1111/nph.17528] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Auxin homeostasis and signaling affect a broad range of developmental processes in plants. The interplay between HSP90 and auxin signaling is channeled through the chaperoning capacity of the HSP90 on the TIR1 auxin receptor. The sophisticated buffering capacity of the HSP90 system through the interaction with diverse signaling protein components drastically shapes genetic circuitries regulating various developmental aspects. However, the elegant networking capacity of HSP90 in the global regulation of auxin response and homeostasis has not been appreciated. Arabidopsis hsp90 mutants were screened for gravity response. Phenotypic analysis of root meristems and cotyledon veins was performed. PIN1 localization in hsp90 mutants was determined. Our results showed that HSP90 affected the asymmetrical distribution of PIN1 in plasma membranes and influenced its expression in prompt cell niches. Depletion of HSP90 distorted polar distribution of auxin, as the acropetal auxin transport was highly affected, leading to impaired root gravitropism and lateral root formation. The essential role of the HSP90 in auxin homeostasis was profoundly evident from early development, as HSP90 depletion affected embryo development and the pattern formation of veins in cotyledons. Our data suggest that the HSP90-mediated distribution of PIN1 modulates auxin distribution and thereby auxin signaling to properly promote plant development.
Collapse
Affiliation(s)
- Despina Samakovli
- Molecular Biology Laboratory, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, Athens, 118 55, Greece
| | - Loukia Roka
- Molecular Biology Laboratory, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, Athens, 118 55, Greece
| | - Anastasia Dimopoulou
- Molecular Biology Laboratory, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, Athens, 118 55, Greece
| | - Panagiota Konstantinia Plitsi
- Molecular Biology Laboratory, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, Athens, 118 55, Greece
| | - Asta Žukauskait
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Paraskevi Georgopoulou
- Molecular Biology Laboratory, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, Athens, 118 55, Greece
| | - Ondřej Novák
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Dimitra Milioni
- Molecular Biology Laboratory, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, Athens, 118 55, Greece
| | - Polydefkis Hatzopoulos
- Molecular Biology Laboratory, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, Athens, 118 55, Greece
| |
Collapse
|
73
|
Abstract
Early root growth is critical for plant establishment and survival. We have identified a molecular pathway required for helical root tip movement known as circumnutation. Here, we report a multiscale investigation of the regulation and function of this phenomenon. We identify key cell signaling events comprising interaction of the ethylene, cytokinin, and auxin hormone signaling pathways. We identify the gene Oryza sativa histidine kinase-1 (HK1) as well as the auxin influx carrier gene OsAUX1 as essential regulators of this process in rice. Robophysical modeling and growth challenge experiments indicate circumnutation is critical for seedling establishment in rocky soil, consistent with the long-standing hypothesis that root circumnutation facilitates growth past obstacles. Thus, the integration of robotics, physics, and biology has elucidated the functional importance of root circumnutation and uncovered the molecular mechanisms underlying its regulation.
Collapse
|
74
|
Huang L, Wang W, Zhang N, Cai Y, Liang Y, Meng X, Yuan Y, Li J, Wu D, Wang Y. LAZY2 controls rice tiller angle through regulating starch biosynthesis in gravity-sensing cells. THE NEW PHYTOLOGIST 2021; 231:1073-1087. [PMID: 34042184 DOI: 10.1111/nph.17426] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Rice (Oryza sativa) tiller angle is a key component for achieving ideal plant architecture and higher grain yield. However, the molecular mechanism underlying rice tiller angle remains elusive. We characterized a novel rice tiller angle mutant lazy2 (la2) and isolated the causative gene LA2 through map-based cloning. Biochemical, molecular and genetic studies were conducted to elucidate the LA2-involved tiller angle regulatory mechanism. The la2 mutant shows large tiller angle with impaired shoot gravitropism and defective asymmetric distribution of auxin. We found that starch granules in amyloplasts are completely lost in the gravity-sensing leaf sheath base cells of la2, whereas the seed development is not affected. LA2 encodes a novel chloroplastic protein that can interact with the starch biosynthetic enzyme Oryza sativa plastidic phosphoglucomutase (OspPGM) to regulate starch biosynthesis in rice shoot gravity-sensing cells. Genetic analysis showed that LA2 regulates shoot gravitropism and tiller angle by acting upstream of LA1 to mediate lateral auxin transport. Our studies revealed that LA2 acts as a novel regulator of rice tiller angle by specifically regulating starch biosynthesis in gravity-sensing cells, and established the framework of the starch-statolith-dependent rice tiller angle regulatory pathway, providing new insights into the rice tiller angle regulatory network.
Collapse
Affiliation(s)
- Linzhou Huang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenguang Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Ning Zhang
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture for Nuclear-Agricultural Sciences, Department of Applied Biosciences, Zhejiang University, Hangzhou, 310029, China
| | - Yueyue Cai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Liang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiangbing Meng
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yundong Yuan
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiayang Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture for Nuclear-Agricultural Sciences, Department of Applied Biosciences, Zhejiang University, Hangzhou, 310029, China
| | - Yonghong Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
75
|
Li Y, Deng Z, Kamisugi Y, Chen Z, Wang J, Han X, Wei Y, He H, Terzaghi W, Cove DJ, Cuming AC, Chen H. A minus-end directed kinesin motor directs gravitropism in Physcomitrella patens. Nat Commun 2021; 12:4470. [PMID: 34294690 PMCID: PMC8298521 DOI: 10.1038/s41467-021-24546-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 06/21/2021] [Indexed: 11/22/2022] Open
Abstract
Gravity is a critical environmental factor regulating directional growth and morphogenesis in plants, and gravitropism is the process by which plants perceive and respond to the gravity vector. The cytoskeleton is proposed to play important roles in gravitropism, but the underlying mechanisms are obscure. Here we use genetic screening in Physcomitrella patens, to identify a locus GTRC, that when mutated, reverses the direction of protonemal gravitropism. GTRC encodes a processive minus-end-directed KCHb kinesin, and its N-terminal, C-terminal and motor domains are all essential for transducing the gravity signal. Chimeric analysis between GTRC/KCHb and KCHa reveal a unique role for the N-terminus of GTRC in gravitropism. Further study shows that gravity-triggered normal asymmetric distribution of actin filaments in the tip of protonema is dependent on GTRC. Thus, our work identifies a microtubule-based cellular motor that determines the direction of plant gravitropism via mediating the asymmetric distribution of actin filaments. Gravitropism is the process by which plants perceive and respond to gravity. Here the authors identify a minus-end-directed kinesin required for gravity-triggered actin filament rearrangement and negative gravitropic response in the moss Physcomitrella patens, thus linking a microtubule-based cellular motor to gravitropism via actin.
Collapse
Affiliation(s)
- Yufan Li
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Zhaoguo Deng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | | | - Zhiren Chen
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Jiajun Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Xue Han
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Yuxiao Wei
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing, China.,Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hang He
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing, China
| | | | - David J Cove
- Centre for Plant Sciences, University of Leeds, Leeds, UK
| | | | - Haodong Chen
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China. .,Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
76
|
Zhao Y, Yin Z, Wang X, Jiang C, Aslam MM, Gao F, Pan Y, Xie J, Zhu X, Dong L, Liu Y, Zhang H, Li J, Li Z. Genetic basis and network underlying synergistic roots and shoots biomass accumulation revealed by genome-wide association studies in rice. Sci Rep 2021; 11:13769. [PMID: 34215814 PMCID: PMC8253791 DOI: 10.1038/s41598-021-93170-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 06/15/2021] [Indexed: 11/25/2022] Open
Abstract
Genetic basis and network studies underlying synergistic biomass accumulation of roots and shoots (SBA) are conducive for rational design of high-biomass rice breeding. In this study, association signals for root weight, shoot weight, and the ratio of root-to-shoot mass (R/S) were identified using 666 rice accessions by genome-wide association study, together with their sub-traits, root length, root thickness and shoot length. Most association signals for root weight and shoot weight did not show association with their sub-traits. Based on the results, we proposed a top-to-bottom model for SBA, i.e. root weight, shoot weight and R/S were determined by their highest priority in contributing to biomass in the regulatory pathway, followed by a lower priority pathway for their sub-traits. Owing to 37 enriched clusters with more than two association signals identified, the relationship among the six traits could be also involved in linkage and pleiotropy. Furthermore, a discrimination of pleiotropy and LD at sequencing level using the known gene OsPTR9 for root weight, R/S and root length was provided. The results of given moderate correlation between traits and their corresponding sub-traits, and moderate additive effects between a trait and the accumulation of excellent alleles corresponding to its sub-traits supported a bottom-to-top regulation model for SBA. This model depicted each lowest-order trait (root length, root thickness and shoot length) was determined by its own regulation loci, and competition among different traits, as well as the pleiotropy and LD. All above ensure the coordinated development of each trait and the accumulation of the total biomass, although the predominant genetic basis of SBA is still indistinguishable. The presentation of the above two models and evidence of this study shed light on dissecting the genetic architecture of SBA.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, and College of Agronomy and Biotechnology , China Agricultural University, Beijing, 100193, People's Republic of China.,State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Zhigang Yin
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, and College of Agronomy and Biotechnology , China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xueqiang Wang
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, and College of Agronomy and Biotechnology , China Agricultural University, Beijing, 100193, People's Republic of China
| | - Conghui Jiang
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, and College of Agronomy and Biotechnology , China Agricultural University, Beijing, 100193, People's Republic of China
| | - Muhammad Mahran Aslam
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, and College of Agronomy and Biotechnology , China Agricultural University, Beijing, 100193, People's Republic of China
| | - Fenghua Gao
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, and College of Agronomy and Biotechnology , China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yinghua Pan
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute of Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, People's Republic of China
| | - Jianyin Xie
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, and College of Agronomy and Biotechnology , China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xiaoyang Zhu
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, and College of Agronomy and Biotechnology , China Agricultural University, Beijing, 100193, People's Republic of China
| | - Luhao Dong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Yanhe Liu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Hongliang Zhang
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, and College of Agronomy and Biotechnology , China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jinjie Li
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, and College of Agronomy and Biotechnology , China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zichao Li
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, and College of Agronomy and Biotechnology , China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
77
|
Del Bianco M, Kepinski S. How plants get round problems: new insights into the root obstacle avoidance response. THE NEW PHYTOLOGIST 2021; 231:8-10. [PMID: 34060664 DOI: 10.1111/nph.17419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Marta Del Bianco
- Italian Space Agency, Via del Politecnico snc, Rome, 00133, Italy
| | | |
Collapse
|
78
|
Sáenz Rodríguez MN, Cassab GI. Primary Root and Mesocotyl Elongation in Maize Seedlings: Two Organs with Antagonistic Growth below the Soil Surface. PLANTS (BASEL, SWITZERLAND) 2021; 10:1274. [PMID: 34201525 PMCID: PMC8309072 DOI: 10.3390/plants10071274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022]
Abstract
Maize illustrates one of the most complex cases of embryogenesis in higher plants that results in the development of early embryo with distinctive organs such as the mesocotyl, seminal and primary roots, coleoptile, and plumule. After seed germination, the elongation of root and mesocotyl follows opposite directions in response to specific tropisms (positive and negative gravitropism and hydrotropism). Tropisms represent the differential growth of an organ directed toward several stimuli. Although the life cycle of roots and mesocotyl takes place in darkness, their growth and functions are controlled by different mechanisms. Roots ramify through the soil following the direction of the gravity vector, spreading their tips into new territories looking for water; when water availability is low, the root hydrotropic response is triggered toward the zone with higher moisture. Nonetheless, there is a high range of hydrotropic curvatures (angles) in maize. The processes that control root hydrotropism and mesocotyl elongation remain unclear; however, they are influenced by genetic and environmental cues to guide their growth for optimizing early seedling vigor. Roots and mesocotyls are crucial for the establishment, growth, and development of the plant since both help to forage water in the soil. Mesocotyl elongation is associated with an ancient agriculture practice known as deep planting. This tradition takes advantage of residual soil humidity and continues to be used in semiarid regions of Mexico and USA. Due to the genetic diversity of maize, some lines have developed long mesocotyls capable of deep planting while others are unable to do it. Hence, the genetic and phenetic interaction of maize lines with a robust hydrotropic response and higher mesocotyl elongation in response to water scarcity in time of global heating might be used for developing more resilient maize plants.
Collapse
Affiliation(s)
- Mery Nair Sáenz Rodríguez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Av. Universidad 2001, Col. Chamilpa, Morelos, Cuernavaca 62210, Mexico;
| | | |
Collapse
|
79
|
Cséplő Á, Zsigmond L, Andrási N, Baba AI, Labhane NM, Pető A, Kolbert Z, Kovács HE, Steinbach G, Szabados L, Fehér A, Rigó G. The AtCRK5 Protein Kinase Is Required to Maintain the ROS NO Balance Affecting the PIN2-Mediated Root Gravitropic Response in Arabidopsis. Int J Mol Sci 2021; 22:5979. [PMID: 34205973 PMCID: PMC8197844 DOI: 10.3390/ijms22115979] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 11/18/2022] Open
Abstract
The Arabidopsis AtCRK5 protein kinase is involved in the establishment of the proper auxin gradient in many developmental processes. Among others, the Atcrk5-1 mutant was reported to exhibit a delayed gravitropic response via compromised PIN2-mediated auxin transport at the root tip. Here, we report that this phenotype correlates with lower superoxide anion (O2•-) and hydrogen peroxide (H2O2) levels but a higher nitric oxide (NO) content in the mutant root tips in comparison to the wild type (AtCol-0). The oxidative stress inducer paraquat (PQ) triggering formation of O2•- (and consequently, H2O2) was able to rescue the gravitropic response of Atcrk5-1 roots. The direct application of H2O2 had the same effect. Under gravistimulation, correct auxin distribution was restored (at least partially) by PQ or H2O2 treatment in the mutant root tips. In agreement, the redistribution of the PIN2 auxin efflux carrier was similar in the gravistimulated PQ-treated mutant and untreated wild type roots. It was also found that PQ-treatment decreased the endogenous NO level at the root tip to normal levels. Furthermore, the mutant phenotype could be reverted by direct manipulation of the endogenous NO level using an NO scavenger (cPTIO). The potential involvement of AtCRK5 protein kinase in the control of auxin-ROS-NO-PIN2-auxin regulatory loop is discussed.
Collapse
Affiliation(s)
- Ágnes Cséplő
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary; (Á.C.); (L.Z.); (N.A.); (A.I.B.); (H.E.K.); (G.S.); (L.S.); (A.F.)
| | - Laura Zsigmond
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary; (Á.C.); (L.Z.); (N.A.); (A.I.B.); (H.E.K.); (G.S.); (L.S.); (A.F.)
| | - Norbert Andrási
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary; (Á.C.); (L.Z.); (N.A.); (A.I.B.); (H.E.K.); (G.S.); (L.S.); (A.F.)
| | - Abu Imran Baba
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary; (Á.C.); (L.Z.); (N.A.); (A.I.B.); (H.E.K.); (G.S.); (L.S.); (A.F.)
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Nitin M. Labhane
- Department of Botany, Bhavan’s College Andheri West, Mumbai 400058, India;
| | - Andrea Pető
- Department of Plant Biology, University of Szeged, 52. Középfasor, H-6726 Szeged, Hungary; (A.P.); (Z.K.)
- Food Chain Safety Center Nonprofit Ltd., H-1024 Budapest, Hungary
| | - Zsuzsanna Kolbert
- Department of Plant Biology, University of Szeged, 52. Középfasor, H-6726 Szeged, Hungary; (A.P.); (Z.K.)
| | - Hajnalka E. Kovács
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary; (Á.C.); (L.Z.); (N.A.); (A.I.B.); (H.E.K.); (G.S.); (L.S.); (A.F.)
- Budapest, Kossuth Lajos Sugárút, 72/D, H-6724 Szeged, Hungary
| | - Gábor Steinbach
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary; (Á.C.); (L.Z.); (N.A.); (A.I.B.); (H.E.K.); (G.S.); (L.S.); (A.F.)
- Cellular Imaging Laboratory, Biological Research Centre, Eötvös Loránd Research Network, H-6726 Szeged, Hungary
| | - László Szabados
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary; (Á.C.); (L.Z.); (N.A.); (A.I.B.); (H.E.K.); (G.S.); (L.S.); (A.F.)
| | - Attila Fehér
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary; (Á.C.); (L.Z.); (N.A.); (A.I.B.); (H.E.K.); (G.S.); (L.S.); (A.F.)
- Department of Plant Biology, University of Szeged, 52. Középfasor, H-6726 Szeged, Hungary; (A.P.); (Z.K.)
| | - Gábor Rigó
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary; (Á.C.); (L.Z.); (N.A.); (A.I.B.); (H.E.K.); (G.S.); (L.S.); (A.F.)
| |
Collapse
|
80
|
Cheng C, Yu Q, Wang Y, Wang H, Dong Y, Ji Y, Zhou X, Li Y, Jiang CZ, Gan SS, Zhao L, Fei Z, Gao J, Ma N. Ethylene-regulated asymmetric growth of the petal base promotes flower opening in rose (Rosa hybrida). THE PLANT CELL 2021; 33:1229-1251. [PMID: 33693903 DOI: 10.1093/plcell/koab031] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/26/2021] [Indexed: 05/27/2023]
Abstract
Flowers are the core reproductive structures and key distinguishing features of angiosperms. Flower opening to expose stamens and gynoecia is important in cases where pollinators much be attracted to promote cross-pollination, which can enhance reproductive success and species preservation. The floral opening process is accompanied by the coordinated movement of various floral organs, particularly petals. However, the mechanisms underlying petal movement and flower opening are not well understood. Here, we integrated anatomical, physiological, and molecular approaches to determine the petal movement regulatory network using rose (Rosa hybrida) as a model. We found that PETAL MOVEMENT-RELATED PROTEIN1 (RhPMP1), a homeodomain transcription factor (TF) gene, is a direct target of ETHYLENE INSENSITIVE3, a TF that functions downstream of ethylene signaling. RhPMP1 expression was upregulated by ethylene and specifically activated endoreduplication of parenchyma cells on the adaxial side of the petal (ADSP) base by inducing the expression of RhAPC3b, a gene encoding the core subunit of the Anaphase-Promoting Complex. Cell expansion of the parenchyma on the ADSP base was subsequently enhanced, thus resulting in asymmetric growth of the petal base, leading to the typical epinastic movement of petals and flower opening. These findings provide insights into the pathway regulating petal movement and associated flower-opening mechanisms.�.
Collapse
Affiliation(s)
- Chenxia Cheng
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Beijing 100193, China
| | - Qin Yu
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Beijing 100193, China
| | - Yaru Wang
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Beijing 100193, China
| | - Hong Wang
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Beijing 100193, China
| | - Yuhan Dong
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Beijing 100193, China
| | - Yuqi Ji
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Beijing 100193, China
| | - Xiaofeng Zhou
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Beijing 100193, China
| | - Yonghong Li
- School of Applied Chemistry and Biotechnology, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Cai-Zhong Jiang
- United States Department of Agriculture, Crop Pathology and Genetic Research Unit, Agricultural Research Service, Davis, California 95616
- Department of Plant Sciences, University of California Davis, Davis, California 95616
| | - Su-Sheng Gan
- Plant Biology Section, School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853
| | - Liangjun Zhao
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Beijing 100193, China
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853
- USDA Robert W Holley Center for Agriculture and Health, Ithaca, New York 14853
| | - Junping Gao
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Beijing 100193, China
| | - Nan Ma
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Beijing 100193, China
| |
Collapse
|
81
|
Zanten MV, Ai H, Quint M. Plant thermotropism: an underexplored thermal engagement and avoidance strategy. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab209. [PMID: 33974686 DOI: 10.1093/jxb/erab209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Various strategies evolved in plants to adjust the position of organs relative to the prevailing temperature condition, which allows optimal plant growth and performance. Such responses are classically separated into nastic and tropic responses. During plant thermotropic responses, organs move towards (engage) or away (avoid) from a directional temperature cue. Despite thermotropism being a classic botanical concept, the underlying ecological function and molecular and biophysical mechanisms remain poorly understood to this day. This contrasts to the relatively well-studied thermonastic movements (hyponasty) of e.g., rosette leaves. In this review, we provide an update on the current knowledge on plant thermotropisms and propose directions for future research and application.
Collapse
Affiliation(s)
- Martijn van Zanten
- Martijn van Zanten, Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University. Padualaan 8, 3584CH Utrecht, the Netherlands
| | - Haiyue Ai
- Haiyue Ai, Marcel Quint, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty -Heimann-Str. 5 06120 Halle (Saale), Germany
| | - Marcel Quint
- Haiyue Ai, Marcel Quint, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty -Heimann-Str. 5 06120 Halle (Saale), Germany
| |
Collapse
|
82
|
Alaguero-Cordovilla A, Sánchez-García AB, Ibáñez S, Albacete A, Cano A, Acosta M, Pérez-Pérez JM. An auxin-mediated regulatory framework for wound-induced adventitious root formation in tomato shoot explants. PLANT, CELL & ENVIRONMENT 2021; 44:1642-1662. [PMID: 33464573 DOI: 10.1111/pce.14001] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 05/24/2023]
Abstract
Adventitious roots (ARs) are produced from non-root tissues in response to different environmental signals, such as abiotic stresses, or after wounding, in a complex developmental process that requires hormonal crosstalk. Here, we characterized AR formation in young seedlings of Solanum lycopersicum cv. 'Micro-Tom' after whole root excision by means of physiological, genetic and molecular approaches. We found that a regulated basipetal auxin transport from the shoot and local auxin biosynthesis triggered by wounding are both required for the re-establishment of internal auxin gradients within the vasculature. This promotes cell proliferation at the distal cambium near the wound in well-defined positions of the basal hypocotyl and during a narrow developmental window. In addition, a pre-established pattern of differential auxin responses along the apical-basal axis of the hypocotyl and an as of yet unknown cell-autonomous inhibitory pathway contribute to the temporal and spatial patterning of the newly formed ARs on isolated hypocotyl explants. Our work provides an experimental outline for the dissection of wound-induced AR formation in tomato, a species that is suitable for molecular identification of gene regulatory networks via forward and reverse genetics approaches.
Collapse
Affiliation(s)
| | | | - Sergio Ibáñez
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | - Alfonso Albacete
- Present address: Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), La Alberca, Spain
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario de Espinardo, Espinardo, Murcia, Spain
| | - Antonio Cano
- Departamento de Biología Vegetal, Universidad de Murcia, Murcia, Spain
| | - Manuel Acosta
- Departamento de Biología Vegetal, Universidad de Murcia, Murcia, Spain
| | | |
Collapse
|
83
|
Ding T, Zhang F, Wang J, Wang F, Liu J, Xie C, Hu Y, Shani E, Kong X, Ding Z, Tian H. Cell-type action specificity of auxin on Arabidopsis root growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:928-941. [PMID: 33609310 DOI: 10.1111/tpj.15208] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 02/05/2021] [Accepted: 02/15/2021] [Indexed: 05/09/2023]
Abstract
The plant hormone auxin plays a critical role in root growth and development; however, the contributions or specific roles of cell-type auxin signals in root growth and development are not well understood. Here, we mapped tissue and cell types that are important for auxin-mediated root growth and development by manipulating the local response and synthesis of auxin. Repressing auxin signaling in the epidermis, cortex, endodermis, pericycle or stele strongly inhibited root growth, with the largest effect observed in the endodermis. Enhancing auxin signaling in the epidermis, cortex, endodermis, pericycle or stele also caused reduced root growth, albeit to a lesser extent. Moreover, we established that root growth was inhibited by enhancement of auxin synthesis in specific cell types of the epidermis, cortex and endodermis, whereas increased auxin synthesis in the pericycle and stele had only minor effects on root growth. Our study thus establishes an association between cellular identity and cell type-specific auxin signaling that guides root growth and development.
Collapse
Affiliation(s)
- Tingting Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Feng Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Junxia Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Fengxia Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Jiajia Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Chuantian Xie
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Yangjie Hu
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Eilon Shani
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Xiangpei Kong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Huiyu Tian
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
84
|
Xu S, Wang Q, Liu Y, Liu Z, Zhao R, Sheng X. Latrunculin B facilitates gravitropic curvature of Arabidopsis root by inhibiting cell elongation, especially the cells in the lower flanks of the transition and elongation zones. PLANT SIGNALING & BEHAVIOR 2021; 16:1876348. [PMID: 33576719 PMCID: PMC7971231 DOI: 10.1080/15592324.2021.1876348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 05/29/2023]
Abstract
Gravitropism plays a critical role in the growth and development of plants. Previous reports proposed that the disruption of the actin cytoskeleton resulted in enhanced gravitropism; however, the mechanism underlying these phenomena is still unclear. In the present study, real-time observation on the effect of Latrunculin B (Lat B), a depolymerizing agent of microfilament cytoskeleton, on gravitropism of the primary root of Arabidopsis was undertaken using a vertical stage microscope. The results indicated that Lat B treatment prevented the growth of root, and the growth rates of upper and lower flanks of the horizontally placed root were asymmetrically inhibited. The growth of the lower flank was influenced by Lat B more seriously, resulting in an increased differential growth rate between the upper and lower flanks of the root. Further analysis indicated that Lat B affected cell growth mainly in the transition and elongation zones. Briefly, the current data revealed that Lat B treatment inhibited cell elongation, especially the cells in the lower flanks of the transition and elongation zones, which finally manifested as the facilitation of gravitropic curvature of the primary root.
Collapse
Affiliation(s)
- Shi Xu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Qianqian Wang
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Yue Liu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Zonghao Liu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Ruoxin Zhao
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Xianyong Sheng
- College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
85
|
Herud-Sikimić O, Stiel AC, Kolb M, Shanmugaratnam S, Berendzen KW, Feldhaus C, Höcker B, Jürgens G. A biosensor for the direct visualization of auxin. Nature 2021; 592:768-772. [PMID: 33828298 PMCID: PMC8081663 DOI: 10.1038/s41586-021-03425-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/05/2021] [Indexed: 01/03/2023]
Abstract
One of the most important regulatory small molecules in plants is indole-3-acetic acid, also known as auxin. Its dynamic redistribution has an essential role in almost every aspect of plant life, ranging from cell shape and division to organogenesis and responses to light and gravity1,2. So far, it has not been possible to directly determine the spatial and temporal distribution of auxin at a cellular resolution. Instead it is inferred from the visualization of irreversible processes that involve the endogenous auxin-response machinery3-7; however, such a system cannot detect transient changes. Here we report a genetically encoded biosensor for the quantitative in vivo visualization of auxin distribution. The sensor is based on the Escherichia coli tryptophan repressor8, the binding pocket of which is engineered to be specific to auxin. Coupling of the auxin-binding moiety with selected fluorescent proteins enables the use of a fluorescence resonance energy transfer signal as a readout. Unlike previous systems, this sensor enables direct monitoring of the rapid uptake and clearance of auxin by individual cells and within cell compartments in planta. By responding to the graded spatial distribution along the root axis and its perturbation by transport inhibitors-as well as the rapid and reversible redistribution of endogenous auxin in response to changes in gravity vectors-our sensor enables real-time monitoring of auxin concentrations at a (sub)cellular resolution and their spatial and temporal changes during the lifespan of a plant.
Collapse
Affiliation(s)
| | - Andre C Stiel
- Max Planck Institute for Developmental Biology, Tübingen, Germany
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Munich, Germany
| | - Martina Kolb
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Sooruban Shanmugaratnam
- Max Planck Institute for Developmental Biology, Tübingen, Germany
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Kenneth W Berendzen
- Centre for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | | | - Birte Höcker
- Max Planck Institute for Developmental Biology, Tübingen, Germany.
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany.
| | - Gerd Jürgens
- Max Planck Institute for Developmental Biology, Tübingen, Germany.
| |
Collapse
|
86
|
Agostinelli D, DeSimone A, Noselli G. Nutations in Plant Shoots: Endogenous and Exogenous Factors in the Presence of Mechanical Deformations. FRONTIERS IN PLANT SCIENCE 2021; 12:608005. [PMID: 33833768 PMCID: PMC8023405 DOI: 10.3389/fpls.2021.608005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
We present a three-dimensional morphoelastic rod model capable to describe the morphogenesis of growing plant shoots driven by differential growth. We discuss the evolution laws for endogenous oscillators, straightening mechanisms, and reorientations to directional cues, such as gravitropic reactions governed by the avalanche dynamics of statoliths. We use this model to investigate the role of elastic deflections due to gravity loading in circumnutating plant shoots. We show that, in the absence of endogenous cues, pendular and circular oscillations arise as a critical length is attained, thus suggesting the occurrence of an instability triggered by exogenous factors. When also oscillations due to endogenous cues are present, their weight relative to those associated with the instability varies in time as the shoot length and other biomechanical properties change. Thanks to the simultaneous occurrence of these two oscillatory mechanisms, we are able to reproduce a variety of complex behaviors, including trochoid-like patterns, which evolve into circular orbits as the shoot length increases, and the amplitude of the exogenous oscillations becomes dominant.
Collapse
Affiliation(s)
| | - Antonio DeSimone
- SISSA–International School for Advanced Studies, Trieste, Italy
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | | |
Collapse
|
87
|
An Implanted Vestibular Prosthesis Improves Spatial Orientation in Animals with Severe Vestibular Damage. J Neurosci 2021; 41:3879-3888. [PMID: 33731447 DOI: 10.1523/jneurosci.2204-20.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 02/10/2021] [Accepted: 03/08/2021] [Indexed: 11/21/2022] Open
Abstract
Gravity is a pervasive environmental stimulus, and accurate graviception is required for optimal spatial orientation and postural stability. The primary graviceptors are the vestibular organs, which include angular velocity (semicircular canals) and linear acceleration (otolith organs) sensors. Graviception is degraded in patients with vestibular damage, resulting in spatial misperception and imbalance. Since minimal therapy is available for these patients, substantial effort has focused on developing a vestibular prosthesis or vestibular implant (VI) that reproduces information normally provided by the canals (since reproducing otolith function is very challenging technically). Prior studies demonstrated that angular eye velocity responses could be driven by canal VI-mediated angular head velocity information, but it remains unknown whether a canal VI could improve spatial perception and posture since these behaviors require accurate estimates of angular head position in space relative to gravity. Here, we tested the hypothesis that a canal VI that transduces angular head velocity and provides this information to the brain via motion-modulated electrical stimulation of canal afferent nerves could improve the perception of angular head position relative to gravity in monkeys with severe vestibular damage. Using a subjective visual vertical task, we found that normal female monkeys accurately sensed the orientation of the head relative to gravity during dynamic tilts, that this ability was degraded following bilateral vestibular damage, and improved when the canal VI was used. These results demonstrate that a canal VI can improve graviception in vestibulopathic animals, suggesting that it could reduce the disabling perceptual and postural deficits experienced by patients with severe vestibular damage.SIGNIFICANCE STATEMENT Patients with vestibular damage experience impaired vision, spatial perception, and balance, symptoms that could potentially respond to a vestibular implant (VI). Anatomic features facilitate semicircular canal (angular velocity) prosthetics but inhibit approaches with the otolith (linear acceleration) organs, and canal VIs that sense angular head velocity can generate compensatory eye velocity responses in vestibulopathic subjects. Can the brain use canal VI head velocity information to improve estimates of head orientation (e.g., head position relative to gravity), which is a prerequisite for accurate spatial perception and posture? Here we show that a canal VI can improve the perception of head orientation in vestibulopathic monkeys, results that are highly significant because they suggest that VIs mimicking canal function can improve spatial orientation and balance in vestibulopathic patients.
Collapse
|
88
|
Konstantinova N, Korbei B, Luschnig C. Auxin and Root Gravitropism: Addressing Basic Cellular Processes by Exploiting a Defined Growth Response. Int J Mol Sci 2021; 22:2749. [PMID: 33803128 PMCID: PMC7963156 DOI: 10.3390/ijms22052749] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 12/14/2022] Open
Abstract
Root architecture and growth are decisive for crop performance and yield, and thus a highly topical research field in plant sciences. The root system of the model plant Arabidopsis thaliana is the ideal system to obtain insights into fundamental key parameters and molecular players involved in underlying regulatory circuits of root growth, particularly in responses to environmental stimuli. Root gravitropism, directional growth along the gravity, in particular represents a highly sensitive readout, suitable to study adjustments in polar auxin transport and to identify molecular determinants involved. This review strives to summarize and give an overview into the function of PIN-FORMED auxin transport proteins, emphasizing on their sorting and polarity control. As there already is an abundance of information, the focus lies in integrating this wealth of information on mechanisms and pathways. This overview of a highly dynamic and complex field highlights recent developments in understanding the role of auxin in higher plants. Specifically, it exemplifies, how analysis of a single, defined growth response contributes to our understanding of basic cellular processes in general.
Collapse
Affiliation(s)
| | | | - Christian Luschnig
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Wien, Austria; (N.K.); (B.K.)
| |
Collapse
|
89
|
Hao S, Su W, Li QQ. Adaptive roots of mangrove Avicennia marina: Structure and gene expressions analyses of pneumatophores. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143994. [PMID: 33316524 DOI: 10.1016/j.scitotenv.2020.143994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/15/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
The Avicennia marina is a mangrove species widely distributed throughout the tropical and subtropical intertidal wetlands. To adapt to adverse tidal waves and hypoxia environments, A. marina has evolved a sophisticated root system to better secure itself on the muddy soil with downward-grown anchor roots and upward-grown aerial roots, called pneumatophores. However, the process behind the development of a negative-gravitropic pneumatophore is not understood. Paraffin sections reveal anatomical differences among the shoots, anchor roots, and gas exchanging pneumatophores, clearly reflecting their functional diversions. The pneumatophore, in particular, contains abundant aerenchyma tissues and a thin cap structure at the tip. Transcriptomic analyses of both anchor roots and pneumatophores were performed to elucidate gene expression dynamics during the formation of pneumatophores. The results show that the plant hormone auxin regulates multiple different root initiations. The auxin related gene IAA19 plays a key role in pneumatophore development while the interaction of ethylene and abscisic acid is important for aerenchyma formation. Moreover, the molecular mechanisms behind pneumatophore anti-gravitropic growth may be regulated by the reduced strength of the statolith formation signaling pathway. These results shed light on the mechanistic understanding of pneumatophore formation in mangrove plants.
Collapse
Affiliation(s)
- Saiqi Hao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Wenyue Su
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China; Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China; Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
90
|
Gelová Z, Gallei M, Pernisová M, Brunoud G, Zhang X, Glanc M, Li L, Michalko J, Pavlovičová Z, Verstraeten I, Han H, Hajný J, Hauschild R, Čovanová M, Zwiewka M, Hoermayer L, Fendrych M, Xu T, Vernoux T, Friml J. Developmental roles of Auxin Binding Protein 1 in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110750. [PMID: 33487339 DOI: 10.1016/j.plantsci.2020.110750] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
Auxin is a major plant growth regulator, but current models on auxin perception and signaling cannot explain the whole plethora of auxin effects, in particular those associated with rapid responses. A possible candidate for a component of additional auxin perception mechanisms is the AUXIN BINDING PROTEIN 1 (ABP1), whose function in planta remains unclear. Here we combined expression analysis with gain- and loss-of-function approaches to analyze the role of ABP1 in plant development. ABP1 shows a broad expression largely overlapping with, but not regulated by, transcriptional auxin response activity. Furthermore, ABP1 activity is not essential for the transcriptional auxin signaling. Genetic in planta analysis revealed that abp1 loss-of-function mutants show largely normal development with minor defects in bolting. On the other hand, ABP1 gain-of-function alleles show a broad range of growth and developmental defects, including root and hypocotyl growth and bending, lateral root and leaf development, bolting, as well as response to heat stress. At the cellular level, ABP1 gain-of-function leads to impaired auxin effect on PIN polar distribution and affects BFA-sensitive PIN intracellular aggregation. The gain-of-function analysis suggests a broad, but still mechanistically unclear involvement of ABP1 in plant development, possibly masked in abp1 loss-of-function mutants by a functional redundancy.
Collapse
Affiliation(s)
- Zuzana Gelová
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Michelle Gallei
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Markéta Pernisová
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342 Lyon, France; Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Géraldine Brunoud
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342 Lyon, France
| | - Xixi Zhang
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria; Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Matouš Glanc
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria; Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Prague, Czech Republic
| | - Lanxin Li
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Jaroslav Michalko
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Zlata Pavlovičová
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Inge Verstraeten
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Huibin Han
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Jakub Hajný
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria; Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Robert Hauschild
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Milada Čovanová
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 02 Praha 6, Czech Republic
| | - Marta Zwiewka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Lukas Hoermayer
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Matyáš Fendrych
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Tongda Xu
- FAFU-Joint Centre, Horticulture and Metabolic Biology Centre, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian, People's Republic of China
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342 Lyon, France
| | - Jiří Friml
- Institute of Science and Technology (IST), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
91
|
Ötvös K, Marconi M, Vega A, O’Brien J, Johnson A, Abualia R, Antonielli L, Montesinos JC, Zhang Y, Tan S, Cuesta C, Artner C, Bouguyon E, Gojon A, Friml J, Gutiérrez RA, Wabnik K, Benková E. Modulation of plant root growth by nitrogen source-defined regulation of polar auxin transport. EMBO J 2021; 40:e106862. [PMID: 33399250 PMCID: PMC7849315 DOI: 10.15252/embj.2020106862] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/27/2020] [Accepted: 11/06/2020] [Indexed: 01/01/2023] Open
Abstract
Availability of the essential macronutrient nitrogen in soil plays a critical role in plant growth, development, and impacts agricultural productivity. Plants have evolved different strategies for sensing and responding to heterogeneous nitrogen distribution. Modulation of root system architecture, including primary root growth and branching, is among the most essential plant adaptions to ensure adequate nitrogen acquisition. However, the immediate molecular pathways coordinating the adjustment of root growth in response to distinct nitrogen sources, such as nitrate or ammonium, are poorly understood. Here, we show that growth as manifested by cell division and elongation is synchronized by coordinated auxin flux between two adjacent outer tissue layers of the root. This coordination is achieved by nitrate-dependent dephosphorylation of the PIN2 auxin efflux carrier at a previously uncharacterized phosphorylation site, leading to subsequent PIN2 lateralization and thereby regulating auxin flow between adjacent tissues. A dynamic computer model based on our experimental data successfully recapitulates experimental observations. Our study provides mechanistic insights broadening our understanding of root growth mechanisms in dynamic environments.
Collapse
Affiliation(s)
- Krisztina Ötvös
- Institute of Science and Technology (IST) AustriaKlosterneuburgAustria
- Bioresources UnitCenter for Health & BioresourcesAIT Austrian Institute of Technology GmbHTullnAustria
| | - Marco Marconi
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM‐INIA) Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)MadridSpain
| | - Andrea Vega
- Pontifical Catholic University of ChileSantiagoChile
| | - Jose O’Brien
- Pontifical Catholic University of ChileSantiagoChile
| | - Alexander Johnson
- Institute of Science and Technology (IST) AustriaKlosterneuburgAustria
| | - Rashed Abualia
- Institute of Science and Technology (IST) AustriaKlosterneuburgAustria
| | - Livio Antonielli
- Bioresources UnitCenter for Health & BioresourcesAIT Austrian Institute of Technology GmbHTullnAustria
| | | | - Yuzhou Zhang
- Institute of Science and Technology (IST) AustriaKlosterneuburgAustria
| | - Shutang Tan
- Institute of Science and Technology (IST) AustriaKlosterneuburgAustria
| | - Candela Cuesta
- Institute of Science and Technology (IST) AustriaKlosterneuburgAustria
| | - Christina Artner
- Institute of Science and Technology (IST) AustriaKlosterneuburgAustria
| | | | - Alain Gojon
- BPMPCNRSINRAEInstitut AgroUniv MontpellierMontpellierFrance
| | - Jirí Friml
- Institute of Science and Technology (IST) AustriaKlosterneuburgAustria
| | | | - Krzysztof Wabnik
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM‐INIA) Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)MadridSpain
| | - Eva Benková
- Institute of Science and Technology (IST) AustriaKlosterneuburgAustria
| |
Collapse
|
92
|
Eljebbawi A, Guerrero YDCR, Dunand C, Estevez JM. Highlighting reactive oxygen species as multitaskers in root development. iScience 2021; 24:101978. [PMID: 33490891 PMCID: PMC7808913 DOI: 10.1016/j.isci.2020.101978] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Reactive oxygen species (ROS) are naturally produced by several redox reactions during plant regular metabolism such as photosynthesis and respiration. Due to their chemical properties and high reactivity, ROS were initially described as detrimental for cells during oxidative stress. However, they have been further recognized as key players in numerous developmental and physiological processes throughout the plant life cycle. Recent studies report the important role of ROS as growth regulators during plant root developmental processes such as in meristem maintenance, in root elongation, and in lateral root, root hair, endodermis, and vascular tissue differentiation. All involve multifaceted interplays between steady-state levels of ROS with transcriptional regulators, phytohormones, and nutrients. In this review, we attempt to summarize recent findings about how ROS are involved in multiple stages of plant root development during cell proliferation, elongation, and differentiation.
Collapse
Affiliation(s)
- Ali Eljebbawi
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 31326 Castanet Tolosan, France
| | | | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPS, Université de Toulouse, 31326 Castanet Tolosan, France
| | - José Manuel Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, Buenos Aires, CP C1405BWE, Argentina
- Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida (FCsV), Universidad Andres Bello and Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|
93
|
Jiao Z, Du H, Chen S, Huang W, Ge L. LAZY Gene Family in Plant Gravitropism. FRONTIERS IN PLANT SCIENCE 2021; 11:606241. [PMID: 33613583 PMCID: PMC7893674 DOI: 10.3389/fpls.2020.606241] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/01/2020] [Indexed: 05/26/2023]
Abstract
Adapting to the omnipresent gravitational field was a fundamental basis driving the flourishing of terrestrial plants on the Earth. Plants have evolved a remarkable capability that not only allows them to live and develop within the Earth's gravity field, but it also enables them to use the gravity vector to guide the growth of roots and shoots, in a process known as gravitropism. Triggered by gravistimulation, plant gravitropism is a highly complex, multistep process that requires many organelles and players to function in an intricate coordinated way. Although this process has been studied for several 100 years, much remains unclear, particularly the early events that trigger the relocation of the auxin efflux carrier PIN-FORMED (PIN) proteins, which presumably leads to the asymmetrical redistribution of auxin. In the past decade, the LAZY gene family has been identified as a crucial player that ensures the proper redistribution of auxin and a normal tropic response for both roots and shoots upon gravistimulation. LAZY proteins appear to be participating in the early steps of gravity signaling, as the mutation of LAZY genes consistently leads to altered auxin redistribution in multiple plant species. The identification and characterization of the LAZY gene family have significantly advanced our understanding of plant gravitropism, and opened new frontiers of investigation into the novel molecular details of the early events of gravitropism. Here we review current knowledge of the LAZY gene family and the mechanism modulated by LAZY proteins for controlling both roots and shoots gravitropism. We also discuss the evolutionary significance and conservation of the LAZY gene family in plants.
Collapse
Affiliation(s)
- Zhicheng Jiao
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Huan Du
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Shu Chen
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Wei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Liangfa Ge
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
94
|
Fang X, Liu B, Shao Q, Huang X, Li J, Luan S, He K. AtPiezo Plays an Important Role in Root Cap Mechanotransduction. Int J Mol Sci 2021; 22:E467. [PMID: 33466520 PMCID: PMC7796506 DOI: 10.3390/ijms22010467] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/18/2020] [Accepted: 12/30/2020] [Indexed: 01/29/2023] Open
Abstract
Plants encounter a variety of mechanical stimuli during their growth and development. It is currently believed that mechanosensitive ion channels play an essential role in the initial perception of mechanical force in plants. Over the past decade, the study of Piezo, a mechanosensitive ion channel in animals, has made significant progress. It has been proved that the perception of mechanical force in various physiological processes of animals is indispensable. However, little is still known about the function of its homologs in plants. In this study, by investigating the function of the AtPiezo gene in the model plant Arabidopsis thaliana, we found that AtPiezo plays a role in the perception of mechanical force in plant root cap and the flow of Ca2+ is involved in this process. These findings allow us to understand the function of AtPiezo from the perspective of plants and provide new insights into the mechanism of plant root cap in response to mechanical stimuli.
Collapse
Affiliation(s)
- Xianming Fang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (X.F.); (B.L.); (Q.S.); (X.H.); (J.L.)
| | - Beibei Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (X.F.); (B.L.); (Q.S.); (X.H.); (J.L.)
| | - Qianshuo Shao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (X.F.); (B.L.); (Q.S.); (X.H.); (J.L.)
| | - Xuemei Huang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (X.F.); (B.L.); (Q.S.); (X.H.); (J.L.)
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (X.F.); (B.L.); (Q.S.); (X.H.); (J.L.)
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Kai He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (X.F.); (B.L.); (Q.S.); (X.H.); (J.L.)
| |
Collapse
|
95
|
García-González J, van Gelderen K. Bundling up the Role of the Actin Cytoskeleton in Primary Root Growth. FRONTIERS IN PLANT SCIENCE 2021; 12:777119. [PMID: 34975959 PMCID: PMC8716943 DOI: 10.3389/fpls.2021.777119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/11/2021] [Indexed: 05/19/2023]
Abstract
Primary root growth is required by the plant to anchor in the soil and reach out for nutrients and water, while dealing with obstacles. Efficient root elongation and bending depends upon the coordinated action of environmental sensing, signal transduction, and growth responses. The actin cytoskeleton is a highly plastic network that constitutes a point of integration for environmental stimuli and hormonal pathways. In this review, we present a detailed compilation highlighting the importance of the actin cytoskeleton during primary root growth and we describe how actin-binding proteins, plant hormones, and actin-disrupting drugs affect root growth and root actin. We also discuss the feedback loop between actin and root responses to light and gravity. Actin affects cell division and elongation through the control of its own organization. We remark upon the importance of longitudinally oriented actin bundles as a hallmark of cell elongation as well as the role of the actin cytoskeleton in protein trafficking and vacuolar reshaping during this process. The actin network is shaped by a plethora of actin-binding proteins; however, there is still a large gap in connecting the molecular function of these proteins with their developmental effects. Here, we summarize their function and known effects on primary root growth with a focus on their high level of specialization. Light and gravity are key factors that help us understand root growth directionality. The response of the root to gravity relies on hormonal, particularly auxin, homeostasis, and the actin cytoskeleton. Actin is necessary for the perception of the gravity stimulus via the repositioning of sedimenting statoliths, but it is also involved in mediating the growth response via the trafficking of auxin transporters and cell elongation. Furthermore, auxin and auxin analogs can affect the composition of the actin network, indicating a potential feedback loop. Light, in its turn, affects actin organization and hence, root growth, although its precise role remains largely unknown. Recently, fundamental studies with the latest techniques have given us more in-depth knowledge of the role and organization of actin in the coordination of root growth; however, there remains a lot to discover, especially in how actin organization helps cell shaping, and therefore root growth.
Collapse
Affiliation(s)
- Judith García-González
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
- *Correspondence: Judith García-González,
| | - Kasper van Gelderen
- Plant Ecophysiology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Kasper van Gelderen,
| |
Collapse
|
96
|
Xie Q, Essemine J, Pang X, Chen H, Jin J, Cai W. Abscisic Acid Regulates the Root Growth Trajectory by Reducing Auxin Transporter PIN2 Protein Levels in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:632676. [PMID: 33763094 PMCID: PMC7982918 DOI: 10.3389/fpls.2021.632676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/15/2021] [Indexed: 05/03/2023]
Abstract
The root is in direct contact with soil. Modulation of root growth in response to alterations in soil conditions is pivotal for plant adaptation. Extensive research has been conducted concerning the adjustment of root elongation and architecture in response to environmental factors. However, little is known about the modulation of the root growth trajectory, as well as its hormonal mechanism. Here we report that abscisic acid (ABA) participated in controlling root growth trajectory. The roots upon ABA treatment or from ABA-accumulation double mutant cyp707a1,3 exhibit agravitropism-like growth pattern (wavy growth trajectory). The agravitropism-like phenotype is mainly ascribed to the compromised shootward transportation of auxin since we detected a reduced fluorescence intensity of auxin reporter DR5:VENUS in the root epidermis upon exogenous ABA application or in the endogenous ABA-accumulation double mutant cyp707a1,3. We then tried to decipher the mechanism by which ABA suppressed shootward auxin transport. The membrane abundance of PIN2, a facilitator of shootward auxin transport, was significantly reduced following ABA treatment and in cyp707a1,3. Finally, we revealed that ABA reduced the membrane PIN2 intensity through suppressing the PIN2 expression rather than accelerating PIN2 degradation. Ultimately, our results suggest a pivotal role for ABA in the root growth trajectory and the hormonal interactions orchestrating this process.
Collapse
Affiliation(s)
- Qijun Xie
- Laboratory of Photosynthesis and Environment, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
- Qijun Xie,
| | - Jemaa Essemine
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaochen Pang
- Laboratory of Photosynthesis and Environment, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Haiying Chen
- Laboratory of Photosynthesis and Environment, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jing Jin
- Laboratory of Photosynthesis and Environment, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Weiming Cai
- Laboratory of Photosynthesis and Environment, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Weiming Cai, ;
| |
Collapse
|
97
|
Li Y, Yuan W, Li L, Dai H, Dang X, Miao R, Baluška F, Kronzucker HJ, Lu C, Zhang J, Xu W. Comparative analysis reveals gravity is involved in the MIZ1-regulated root hydrotropism. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7316-7330. [PMID: 32905588 DOI: 10.1093/jxb/eraa409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Hydrotropism is the directed growth of roots toward the water found in the soil. However, mechanisms governing interactions between hydrotropism and gravitropism remain largely unclear. In this study, we found that an air system and an agar-sorbitol system induced only oblique water-potential gradients; an agar-glycerol system induced only vertical water-potential gradients; and a sand system established both oblique and vertical water-potential gradients. We employed obliquely oriented and vertically oriented experimental systems to study hydrotropism in Arabidopsis and tomato plants. Comparative analyses using different hydrotropic systems showed that gravity hindered the ability of roots to search for obliquely oriented water, whilst facilitating roots' search for vertically oriented water. We found that the gravitropism-deficient mutant aux1 showed enhanced hydrotropism in the oblique orientation but impaired root elongation towards water in the vertical orientation. The miz1 mutant exhibited deficient hydrotropism in the oblique orientation but normal root elongation towards water in the vertical orientation. Importantly, in contrast to miz1, the miz1/aux1 double mutant exhibited hydrotropic bending in the oblique orientation and attenuated root elongation towards water in the vertical orientation. Our results suggest that gravitropism is required for MIZ1-regulated root hydrotropism in both the oblique orientation and the vertical orientation, providing further insight into the role of gravity in root hydrotropism.
Collapse
Affiliation(s)
- Ying Li
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and college of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, China
| | - Wei Yuan
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and college of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, China
| | - Luocheng Li
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and college of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, China
| | - Hui Dai
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and college of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, China
| | - Xiaolin Dang
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and college of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, China
| | - Rui Miao
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and college of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, China
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Herbert J Kronzucker
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada
| | - Congming Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Stake Key Laboratory of Agrobiotechnology and Chinese University of Hong Kong, Hong Kong
| | - Weifeng Xu
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and college of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, China
| |
Collapse
|
98
|
Zheng C, Shen F, Wang Y, Wu T, Xu X, Zhang X, Han Z. Intricate genetic variation networks control the adventitious root growth angle in apple. BMC Genomics 2020; 21:852. [PMID: 33261554 PMCID: PMC7709433 DOI: 10.1186/s12864-020-07257-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022] Open
Abstract
Background The root growth angle (RGA) typically determines plant rooting depth, which is significant for plant anchorage and abiotic stress tolerance. Several quantitative trait loci (QTLs) for RGA have been identified in crops. However, the underlying mechanisms of the RGA remain poorly understood, especially in apple rootstocks. The objective of this study was to identify QTLs, validate genetic variation networks, and develop molecular markers for the RGA in apple rootstock. Results Bulked segregant analysis by sequencing (BSA-seq) identified 25 QTLs for RGA using 1955 hybrids of the apple rootstock cultivars ‘Baleng Crab’ (Malus robusta Rehd., large RGA) and ‘M9’ (M. pumila Mill., small RGA). With RNA sequencing (RNA-seq) and parental resequencing, six major functional genes were identified and constituted two genetic variation networks for the RGA. Two single nucleotide polymorphisms (SNPs) of the MdLAZY1 promoter damaged the binding sites of MdDREB2A and MdHSFB3, while one SNP of MdDREB2A and MdIAA1 affected the interactions of MdDREB2A/MdHSFB3 and MdIAA1/MdLAZY1, respectively. A SNP within the MdNPR5 promoter damaged the interaction between MdNPR5 and MdLBD41, while one SNP of MdLBD41 interrupted the MdLBD41/MdbHLH48 interaction that affected the binding ability of MdLBD41 on the MdNPR5 promoter. Twenty six SNP markers were designed on candidate genes in each QTL interval, and the marker effects varied from 0.22°-26.11°. Conclusions Six diagnostic markers, SNP592, G122, b13, Z312, S1272, and S1288, were used to identify two intricate genetic variation networks that control the RGA and may provide new insights into the accuracy of the molecular markers. The QTLs and SNP markers can potentially be used to select deep-rooted apple rootstocks.
Collapse
Affiliation(s)
- Caixia Zheng
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Fei Shen
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
99
|
Alaguero-Cordovilla A, Gran-Gómez FJ, Jadczak P, Mhimdi M, Ibáñez S, Bres C, Just D, Rothan C, Pérez-Pérez JM. A quick protocol for the identification and characterization of early growth mutants in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110673. [PMID: 33218638 DOI: 10.1016/j.plantsci.2020.110673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Root system architecture (RSA) manipulation may improve water and nutrient capture by plants under normal and extreme climate conditions. With the aim of initiating the genetic dissection of RSA in tomato, we established a defined ontology that allowed the curated annotation of the observed phenotypes on 12 traits at four consecutive growth stages. In addition, we established a quick approach for the molecular identification of the mutations associated with the trait-of-interest by using a whole-genome sequencing approach that does not require the building of an additional mapping population. As a proof-of-concept, we screened 4543 seedlings from 300 tomato M3 lines (Solanum lycopersicum L. cv. Micro-Tom) generated by chemical mutagenesis with ethyl methanesulfonate. We studied the growth and early development of both the root system (primary and lateral roots) and the aerial part of the seedlings as well as the wound-induced adventitious roots emerging from the hypocotyl. We identified 659 individuals (belonging to 203 M3 lines) whose early seedling and RSA phenotypes differed from those of their reference background. We confirmed the genetic segregation of the mutant phenotypes affecting primary root length, seedling viability and early RSA in 31 M4 families derived from 15 M3 lines selected in our screen. Finally, we identified a missense mutation in the SlCESA3 gene causing a seedling-lethal phenotype with short roots. Our results validated the experimental approach used for the identification of tomato mutants during early growth, which will allow the molecular identification of the genes involved.
Collapse
Affiliation(s)
| | | | - Paula Jadczak
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202, Elche, Alicante, Spain.
| | - Mariem Mhimdi
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202, Elche, Alicante, Spain.
| | - Sergio Ibáñez
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202, Elche, Alicante, Spain.
| | - Cécile Bres
- INRAE and University of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, France.
| | - Daniel Just
- INRAE and University of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, France.
| | - Christophe Rothan
- INRAE and University of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, France.
| | | |
Collapse
|
100
|
Marquès-Bueno MM, Armengot L, Noack LC, Bareille J, Rodriguez L, Platre MP, Bayle V, Liu M, Opdenacker D, Vanneste S, Möller BK, Nimchuk ZL, Beeckman T, Caño-Delgado AI, Friml J, Jaillais Y. Auxin-Regulated Reversible Inhibition of TMK1 Signaling by MAKR2 Modulates the Dynamics of Root Gravitropism. Curr Biol 2020; 31:228-237.e10. [PMID: 33157019 PMCID: PMC7809621 DOI: 10.1016/j.cub.2020.10.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/04/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022]
Abstract
Plants are able to orient their growth according to gravity, which ultimately controls both shoot and root architecture.1 Gravitropism is a dynamic process whereby gravistimulation induces the asymmetric distribution of the plant hormone auxin, leading to asymmetric growth, organ bending, and subsequent reset of auxin distribution back to the original pre-gravistimulation situation.1, 2, 3 Differential auxin accumulation during the gravitropic response depends on the activity of polarly localized PIN-FORMED (PIN) auxin-efflux carriers.1, 2, 3, 4 In particular, the timing of this dynamic response is regulated by PIN2,5,6 but the underlying molecular mechanisms are poorly understood. Here, we show that MEMBRANE ASSOCIATED KINASE REGULATOR2 (MAKR2) controls the pace of the root gravitropic response. We found that MAKR2 is required for the PIN2 asymmetry during gravitropism by acting as a negative regulator of the cell-surface signaling mediated by the receptor-like kinase TRANSMEMBRANE KINASE1 (TMK1).2,7, 8, 9, 10 Furthermore, we show that the MAKR2 inhibitory effect on TMK1 signaling is antagonized by auxin itself, which triggers rapid MAKR2 membrane dissociation in a TMK1-dependent manner. Our findings suggest that the timing of the root gravitropic response is orchestrated by the reversible inhibition of the TMK1 signaling pathway at the cell surface. MAKR2 is co-expressed with PIN2 and regulates the pace of root gravitropism MAKR2 controls PIN2 asymmetric accumulation at the root level during gravitropism MAKR2 binds to and is a negative regulator of the TMK1 receptor kinase Auxin antagonizes the MAKR2 inhibition of TMK1 by delocalizing MAKR2 in the cytosol
Collapse
Affiliation(s)
- Maria Mar Marquès-Bueno
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France; Department of Molecular Genetics, Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - Laia Armengot
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| | - Lise C Noack
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| | - Joseph Bareille
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| | - Lesia Rodriguez
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Matthieu Pierre Platre
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| | - Vincent Bayle
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| | - Mengying Liu
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| | - Davy Opdenacker
- Center for Plant Systems Biology, VIB, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| | - Steffen Vanneste
- Center for Plant Systems Biology, VIB, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; Lab of Plant Growth Analysis, Ghent University Global Campus, Songdomunhwa-Ro, 119, Yeonsu-gu, Incheon 21985, Republic of Korea
| | - Barbara K Möller
- Center for Plant Systems Biology, VIB, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| | - Zachary L Nimchuk
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tom Beeckman
- Center for Plant Systems Biology, VIB, Technologiepark 71, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| | - Ana I Caño-Delgado
- Department of Molecular Genetics, Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France.
| |
Collapse
|