51
|
Wnt signaling regulates hepatocyte cell division by a transcriptional repressor cascade. Proc Natl Acad Sci U S A 2022; 119:e2203849119. [PMID: 35867815 PMCID: PMC9335208 DOI: 10.1073/pnas.2203849119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
As a general model for cell cycle control, repressors keep cells quiescent until growth signals remove the inhibition. For S phase, this is exemplified by the Retinoblastoma (RB) protein and its inactivation. It was unknown whether similar mechanisms operate in the M phase. The Wnt signaling pathway is an important regulator of cell proliferation. Here, we find that Wnt induces expression of the transcription factor Tbx3, which in turn represses mitotic inhibitors E2f7 and E2f8 to permit mitotic progression. Such a cascade of transcriptional repressors may be a general mechanism for cell division control. These findings have implications for tissue homeostasis and disease, as the function for Wnt signaling in mitosis is relevant to its widespread role in stem cells and cancer. Cell proliferation is tightly controlled by inhibitors that block cell cycle progression until growth signals relieve this inhibition, allowing cells to divide. In several tissues, including the liver, cell proliferation is inhibited at mitosis by the transcriptional repressors E2F7 and E2F8, leading to formation of polyploid cells. Whether growth factors promote mitosis and cell cycle progression by relieving the E2F7/E2F8-mediated inhibition is unknown. We report here on a mechanism of cell division control in the postnatal liver, in which Wnt/β-catenin signaling maintains active hepatocyte cell division through Tbx3, a Wnt target gene. The TBX3 protein directly represses transcription of E2f7 and E2f8, thereby promoting mitosis. This cascade of sequential transcriptional repressors, initiated by Wnt signals, provides a paradigm for exploring how commonly active developmental signals impact cell cycle completion.
Collapse
|
52
|
Huang R, Zhang X, Gracia-Sancho J, Xie WF. Liver regeneration: Cellular origin and molecular mechanisms. Liver Int 2022; 42:1486-1495. [PMID: 35107210 DOI: 10.1111/liv.15174] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/16/2021] [Accepted: 01/12/2022] [Indexed: 01/11/2023]
Abstract
The liver is known as an organ with high proliferation potential. Clarifying the cellular origin and deepening the understanding of liver regeneration mechanisms will help provide new directions for the treatment of liver disease. With the development and application of lineage tracing technology, the specific distribution and dynamic changes of hepatocyte subpopulations in homeostasis and liver injury have been illustrated. Self-replication of hepatocytes is responsible for the maintenance of liver function and mass under homeostasis. The compensatory proliferation of remaining hepatocytes is the main mechanism of liver regeneration following acute and chronic liver injury. Transdifferentiation between hepatocytes and cholangiocytes has been recognized upon severe chronic liver injury. Wnt/β-catenin, Hippo/YAP and Notch signalling play essential roles in the maintenance of homeostatic liver and hepatocyte-to-cholangiocyte conversion under liver injury. In this review, we summarized the recent studies on cell origin of newly generated hepatocytes and the underlying mechanisms of liver regeneration in homeostasis and liver injury.
Collapse
Affiliation(s)
- Ru Huang
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Zhang
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Unit, IDIBAPS, CIBEREHD, Barcelona, Spain
| | - Wei-Fen Xie
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
53
|
Stavropoulos A, Divolis G, Manioudaki M, Gavriil A, Kloukina I, Perrea DN, Sountoulidis A, Ford E, Doulou A, Apostolidou A, Katsantoni E, Ritvos O, Germanidis G, Xilouri M, Sideras P. Coordinated activation of TGF-β and BMP pathways promotes autophagy and limits liver injury after acetaminophen intoxication. Sci Signal 2022; 15:eabn4395. [PMID: 35763560 DOI: 10.1126/scisignal.abn4395] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Ligands of the transforming growth factor-β (TGF-β) superfamily, including TGF-βs, activins, and bone morphogenetic proteins (BMPs), have been implicated in hepatic development, homeostasis, and pathophysiology. We explored the mechanisms by which hepatocytes decode and integrate injury-induced signaling from TGF-βs and activins (TGF-β/Activin) and BMPs. We mapped the spatiotemporal patterns of pathway activation during liver injury induced by acetaminophen (APAP) in dual reporter mice carrying a fluorescent reporter of TGF-β/Activin signaling and a fluorescent reporter of BMP signaling. APAP intoxication induced the expression of both reporters in a zone of cells near areas of tissue damage, which showed an increase in autophagy and demarcated the borders between healthy and injured tissues. Inhibition of TGF-β superfamily signaling by overexpressing the inhibitor Smad7 exacerbated acute liver histopathology but eventually accelerated tissue recovery. Transcriptomic analysis identified autophagy as a process stimulated by TGF-β1 and BMP4 in hepatocytes, with Trp53inp2, which encodes a rate-limiting factor for autophagy initiation, as the most highly induced autophagy-related gene. Collectively, these findings illustrate the functional interconnectivity of the TGF-β superfamily signaling system, implicate the coordinated activation of TGF-β/Activin and BMP pathways in balancing tissue reparatory and regenerative processes upon APAP-induced hepatotoxicity, and highlight opportunities and potential risks associated with targeting this signaling system for treating hepatic diseases.
Collapse
Affiliation(s)
- Athanasios Stavropoulos
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Georgios Divolis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Maria Manioudaki
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Ariana Gavriil
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Ismini Kloukina
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Despina N Perrea
- Laboratory of Experimental Surgery and Surgical Research N.S. Christeas, Athens University Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandros Sountoulidis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Ethan Ford
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Athanasia Doulou
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Anastasia Apostolidou
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Elena Katsantoni
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Olli Ritvos
- Department of Bacteriology and Immunology and Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Georgios Germanidis
- First Department of Internal Medicine, AHEPA Hospital, Aristotle University of Thessaloniki, School of Medicine, Thessaloniki, Greece
| | - Maria Xilouri
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Paschalis Sideras
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
54
|
Yu S, Gao J, Wang H, Liu L, Liu X, Xu Y, Shi J, Guo W, Zhang S. Significance of Liver Zonation in Hepatocellular Carcinoma. Front Cell Dev Biol 2022; 10:806408. [PMID: 35813194 PMCID: PMC9260020 DOI: 10.3389/fcell.2022.806408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Liver zonation is fundamental to normal liver function, and numerous studies have investigated the microstructure of normal liver lobules. However, only a few studies have explored the zonation signature in hepatocellular carcinoma (HCC). In this study, we investigated the significance of liver zonation in HCC with the help of single-cell RNA sequencing (scRNA-seq) and multicolor immunofluorescence staining. Liver zonation-related genes were extracted from the literature, and a three-gene model was established for HCC prognosis. The model reliability was validated using bulk RNA and single-cell RNA-level data, and the underlying biological mechanism was revealed by a functional enrichment analysis. The results showed that the signaling pathways of high-risk groups were similar to those of perivenous zones in the normal liver, indicating the possible regulating role of hypoxia in HCC zonation. Furthermore, the co-staining results showed that the low-grade tumors lost their zonation features whereas the high-grade tumors lost the expression of zonation-related genes, which supported the results obtained from the sequencing data.
Collapse
Affiliation(s)
- Shizhe Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, China
- Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
| | - Jie Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, China
- Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
| | - Haoren Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, China
- Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
| | - Xudong Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, China
- Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
| | - Yuantong Xu
- Department of Hepatopancreatobiliary Surgery, The First People’s Hospital of Kunming, Calmette Hospital, Kunming, China
| | - Jihua Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, China
- Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, China
- Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, China
- Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- *Correspondence: Shuijun Zhang,
| |
Collapse
|
55
|
DiProspero TJ, Brown LG, Fachko TD, Lockett MR. HepaRG cells adopt zonal-like drug-metabolizing phenotypes under physiologically relevant oxygen tensions and Wnt/β-catenin signaling. Drug Metab Dispos 2022; 50:DMD-AR-2022-000870. [PMID: 35701181 PMCID: PMC9341261 DOI: 10.1124/dmd.122.000870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 11/22/2022] Open
Abstract
The cellular microenvironment plays an important role in liver zonation, the spatial distribution of metabolic tasks amongst hepatocytes lining the sinusoid. Standard tissue culture practices provide an excess of oxygen and a lack of signaling molecules typically found in the liver. We hypothesized that incorporating physiologically relevant environments would promote post-differentiation patterning of hepatocytes and result in zonal-like characteristics. To test this hypothesis, we evaluated the transcriptional regulation and activity of drug-metabolizing enzymes in HepaRG cells exposed to three different oxygen tensions, in the presence or absence of Wnt/β-catenin signaling. The drug-metabolizing activity of cells exposed to representative periportal (11% O2) or perivenous (5% O2) oxygen tensions were significantly less than cells exposed to ambient oxygen. A comparison of cytochrome P450 (CYP) 1A2, 2D6, and 3A4 activity at PP and PV oxygen tensions showed significant increases at the lower oxygen tension. The activation of the Wnt/β-catenin pathway only modestly impacted CYP activity at PV oxygen tension, despite a significant increase in CYP expression under this condition. Our results suggest oxygen tension is the major contributor to zonal patterning in HepaRG cells, with the Wnt/β-catenin signaling pathway playing a lesser albeit important role. Our datasets also highlight the importance of including activity-based assays, as transcript data alone does not provide an accurate picture of metabolic competence. Significance Statement This work investigates the post-differentiation patterning of HepaRG cells cultured at physiologically relevant oxygen tensions, in the presence and absence of Wnt/β-catenin signaling. HepaRG cells exposed to periportal (11% O2) or perivenous (5% O2) oxygen tensions display zonation-like patterning of both cytochrome P450 (CYP) and glucuronosyltransferase (UGT) enzymes. These datasets also suggest that oxygen is a primary regulator of post-differentiation patterning, with Wnt/β-catenin having a lesser effect on activity but a significant effect on transcriptional regulation of these enzymes.
Collapse
Affiliation(s)
| | - Lauren G Brown
- Chemistry, Univeristy of North Carolina at Chapel Hill, United States
| | - Trevor D Fachko
- Chemistry, University of North Carolina at Chapel Hill, United States
| | - Matthew R Lockett
- Chemistry, University of North Carolina at Chapel Hill, United States
| |
Collapse
|
56
|
Ben-Moshe S, Veg T, Manco R, Dan S, Papinutti D, Lifshitz A, Kolodziejczyk AA, Bahar Halpern K, Elinav E, Itzkovitz S. The spatiotemporal program of zonal liver regeneration following acute injury. Cell Stem Cell 2022; 29:973-989.e10. [DOI: 10.1016/j.stem.2022.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/28/2022] [Accepted: 04/12/2022] [Indexed: 12/19/2022]
|
57
|
Chen Y, Gao WK, Shu YY, Ye J. Mechanisms of ductular reaction in non-alcoholic steatohepatitis. World J Gastroenterol 2022; 28:2088-2099. [PMID: 35664038 PMCID: PMC9134136 DOI: 10.3748/wjg.v28.i19.2088] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/18/2022] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a disease spectrum caused in part by insulin resistance and genetic predisposition. This disease is primarily characterized by excessive lipid accumulation in hepatocytes in the absence of alcohol abuse and other causes of liver damage. Histologically, NAFLD is divided into several periods: simple steatosis, non-alcoholic steatohepatitis (NASH), hepatic fibrosis, cirrhosis, and hepatocellular carcinoma. With the increasing prevalence of obesity and hyperlipidemia, NAFLD has become the main cause of chronic liver disease worldwide. As a result, the pathogenesis of this disease is drawing increasing attention. Ductular reaction (DR) is a reactive bile duct hyperplasia caused by liver injury that involves hepatocytes, cholangiocytes, and hepatic progenitor cells. Recently, DR is shown to play a pivotal role in simple steatosis progression to NASH or liver fibrosis, providing new research and treatment options. This study reviews several DR signaling pathways, including Notch, Hippo/YAP-TAZ, Wnt/β-catenin, Hedgehog, HGF/c-Met, and TWEAK/Fn14, and their role in the occurrence and development of NASH.
Collapse
Affiliation(s)
- Yue Chen
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Wen-Kang Gao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Yan-Yun Shu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Jin Ye
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
58
|
Paulusma CC, Lamers W, Broer S, van de Graaf SFJ. Amino acid metabolism, transport and signalling in the liver revisited. Biochem Pharmacol 2022; 201:115074. [PMID: 35568239 DOI: 10.1016/j.bcp.2022.115074] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/02/2022]
Abstract
The liver controls the systemic exposure of amino acids entering via the gastro-intestinal tract. For most amino acids except branched chain amino acids, hepatic uptake is very efficient. This implies that the liver orchestrates amino acid metabolism and also controls systemic amino acid exposure. Although many amino acid transporters have been identified, cloned and investigated with respect to substrate specificity, transport mechanism, and zonal distribution, which of these players are involved in hepatocellular amino acid transport remains unclear. Here, we aim to provide a review of current insight into the molecular machinery of hepatic amino acid transport. Furthermore, we place this information in a comprehensive overview of amino acid transport, signalling and metabolism.
Collapse
Affiliation(s)
- Coen C Paulusma
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Wouter Lamers
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, Netherlands; Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Stefan Broer
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, Netherlands; Research School of Biology, Australian National University, Canberra, Australia
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands; Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
59
|
Selvaggi F, Catalano T, Cotellese R, Aceto GM. Targeting Wnt/β-Catenin Pathways in Primary Liver Tumours: From Microenvironment Signaling to Therapeutic Agents. Cancers (Basel) 2022; 14:cancers14081912. [PMID: 35454818 PMCID: PMC9024538 DOI: 10.3390/cancers14081912] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 12/17/2022] Open
Abstract
Primary liver cancers (PLCs) are steadily increasing in incidence and mortality in the world. They have a poor prognosis due to their silent nature, late discovery and resistance to common chemotherapy. At present, there are limited treatment alternatives, and the understanding of PLC molecular aspects is essential to develop more efficient drugs and therapeutic surgical and loco-regional strategies. A clear causal link with liver damage, inflammation, and regeneration has been found in the occurrence of PLC over the last few decades. Physiologically, Wingless/It (Wnt)-β-catenin signaling plays a key role in liver development, metabolic zonation and regeneration. Loss of functional homeostasis of this pathway appears to be a major driver of carcinogenesis in the liver parenchyma. In the hepatic microenvironment, molecular deregulations that exceed the Wnt signaling biological capacity can induce tumor initiation and progression. Indeed, somatic mutations are identified in key components of canonical and non-canonical Wnt signaling and in PLCs and precancerous lesions. In this review, the altered functions of Wnt/β-catenin signaling are considered in human PLCs, with emphasis on hepatocellular carcinomas (HCC), cholangiocarcinomas (CCA) and hepatoblastomas (HB). Based on recent literature, we also focused on liver cancerogenesis through Wnt deregulation. An overview of preclinical and clinical studies on approved and experimental drugs, targeting the Wnt/β-catenin cascade in PLCs, is proposed. In addition, the clinical implication of molecule inhibitors that have been shown to possess activity against the Wnt pathway in association with conventional surgical and loco-regional therapies are reviewed.
Collapse
Affiliation(s)
- Federico Selvaggi
- Unit of General Surgery, Ospedale Floraspe Renzetti, 66034 Lanciano, Chieti, Italy;
| | - Teresa Catalano
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Roberto Cotellese
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
- Villa Serena Foundation for Research, 65013 Città Sant’Angelo, Pescara, Italy
| | - Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
- Correspondence:
| |
Collapse
|
60
|
Heart-of-Glass: A Regulator at the Heart of Liver Morphogenesis and Metabolic Zonation. Cell Mol Gastroenterol Hepatol 2022; 13:1847-1848. [PMID: 35378065 PMCID: PMC9123557 DOI: 10.1016/j.jcmgh.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/10/2022]
|
61
|
Ota N, Shiojiri N. Comparative study on a novel lobule structure of the zebrafish liver and that of the mammalian liver. Cell Tissue Res 2022; 388:287-299. [PMID: 35258713 DOI: 10.1007/s00441-022-03607-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 02/24/2022] [Indexed: 11/25/2022]
Abstract
The mammalian liver has a lobule structure with a portal triad consisting of the portal vein, hepatic artery, and bile duct, which exhibits zonal gene expression, whereas those of teleosts do not have a portal triad. It remains to be demonstrated what kind of the unit structures they have, including their gene expression patterns. The aims of the present study were to demonstrate the unit structure of the teleost liver and discuss it in terms of evolution and adaptation in vertebrates and the use of teleosts as an alternative model for human disease. The zebrafish liver was examined as a representative of teleosts with respect to its morphological architecture and gene expression. A novel, polygonal lobule structure was detected in the zebrafish liver. In it, portal veins and central veins were distributed at the periphery and center, respectively. Sinusoids connected both veins. Anxa4-positive preductules were incorporated into the tubular lumen of two rows of hepatocytes in sections. Intrahepatic bile ducts resided randomly in the liver lobule. Zebrafish livers did not have zonal gene expression for metabolic pathways examined. The lobules of the zebrafish liver with preductules located in the tubular lumina of hepatocytes may resemble the oval cell reaction of injured livers of mammals and might convey bile to the intestine more safely than mammalian livers. The gene expression pattern in liver lobules and our liver lobule model of the zebrafish may be important to discuss data obtained in experiments using this animal as an alternative model for human disease.
Collapse
Affiliation(s)
- Noriaki Ota
- Graduate School of Science and Technology, Shizuoka University, Oya 836, Suruga-ku, Shizuoka City, Shizuoka, 422-8529, Japan
| | - Nobuyoshi Shiojiri
- Department of Biology, Faculty of Science, Shizuoka University, Oya 836, Suruga-ku, Shizuoka City, Shizuoka, 422-8529, Japan.
| |
Collapse
|
62
|
Zhu S, Rao X, Qian Y, Chen J, Song R, Yan H, Yang X, Hu J, Wang X, Han Z, Zhu Y, Liu R, Jong-Leong Wong J, McCaughan GW, Zheng X. Liver Endothelial Heg Regulates Vascular/Biliary Network Patterning and Metabolic Zonation Via Wnt Signaling. Cell Mol Gastroenterol Hepatol 2022; 13:1757-1783. [PMID: 35202885 PMCID: PMC9059100 DOI: 10.1016/j.jcmgh.2022.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS The liver has complex interconnecting blood vessel and biliary networks; however, how the vascular and biliary network form and regulate each other and liver function are not well-understood. We aimed to examine the role of Heg in mammalian liver development and functional maintenance. METHODS Global (Heg-/-) or liver endothelial cell (EC)-specific deletion of Heg (Lyve1-Cre;Hegfl/fl ) mice were used to study the in vivo function of Heg in the liver. Carbon-ink anterograde and retrograde injection were used to visualize the 3-dimensional patterning of liver portal and biliary networks, respectively. RNA sequencing, histology, and molecular and biochemical assays were used to assess liver gene expression, protein distribution, liver injury response, and function. RESULTS Heg deficiency in liver ECs led to a sparse liver vascular and biliary network. This network paucity does not compromise liver function under baseline conditions but did alter liver zonation. Molecular analysis revealed that endothelial Heg deficiency decreased expression of Wnt ligands/agonists including Wnt2, Wnt9b, and Rspo3 in ECs, which limits Axin2 mediated canonical Wnt signaling and the expression of cytochrome P450 enzymes in hepatocytes. Under chemical-induced stressed conditions, Heg-deficiency in liver ECs protected mice from drug-induced liver injuries. CONCLUSION Our study found that endothelial Heg is essential for the 3-D patterning of the liver vascular and indirectly regulates biliary networks and proper liver zonation via its regulation of Wnt ligand production in liver endothelial cells. The endothelial Heg-initiated changes of the liver metabolic zonation and metabolic enzyme expression in hepatocytes was functionally relevant to xenobiotic metabolism and drug induced liver toxicity.
Collapse
Affiliation(s)
- Shichao Zhu
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiyun Rao
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yude Qian
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jinbiao Chen
- Liver Injury and Cancer Program Centenary Institute and Sydney Medical School, The University of Sydney, A.W Morrow Gastroenterology and Liver Center, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Renhua Song
- Epigenetics and RNA Biology Program Centenary Institute and Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Huili Yan
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xi Yang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Junhao Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Xiaohong Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhiming Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yi Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Renjing Liu
- Vascular Epigenetics Laboratory, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Justin Jong-Leong Wong
- Epigenetics and RNA Biology Program Centenary Institute and Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Geoffrey W. McCaughan
- Liver Injury and Cancer Program Centenary Institute and Sydney Medical School, The University of Sydney, A.W Morrow Gastroenterology and Liver Center, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Xiangjian Zheng
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China,Correspondence Address correspondence to: Dr Xiangjian Zheng, Pharmacology, Tianjin Medical University, No 22 Qi Xiang Tai Rd, Tianjin 300070, China. tel: 86-22-8333-6835.
| |
Collapse
|
63
|
Xu C, Xu Z, Zhang Y, Evert M, Calvisi DF, Chen X. β-Catenin signaling in hepatocellular carcinoma. J Clin Invest 2022; 132:154515. [PMID: 35166233 PMCID: PMC8843739 DOI: 10.1172/jci154515] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Deregulated Wnt/β-catenin signaling is one of the main genetic alterations in human hepatocellular carcinoma (HCC). Comprehensive genomic analyses have revealed that gain-of-function mutation of CTNNB1, which encodes β-catenin, and loss-of-function mutation of AXIN1 occur in approximately 35% of human HCC samples. Human HCCs with activation of the Wnt/β-catenin pathway demonstrate unique gene expression patterns and pathological features. Activated Wnt/β-catenin synergizes with multiple signaling cascades to drive HCC formation, and it functions through its downstream effectors. Therefore, strategies targeting Wnt/β-catenin have been pursued as possible therapeutics against HCC. Here, we review the genetic alterations and oncogenic roles of aberrant Wnt/β-catenin signaling during hepatocarcinogenesis. In addition, we discuss the implication of this pathway in HCC diagnosis, classification, and personalized treatment.
Collapse
Affiliation(s)
- Chuanrui Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhong Xu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, UCSF, San Francisco, California, USA
| |
Collapse
|
64
|
Panday R, Monckton CP, Khetani SR. The Role of Liver Zonation in Physiology, Regeneration, and Disease. Semin Liver Dis 2022; 42:1-16. [PMID: 35120381 DOI: 10.1055/s-0041-1742279] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
As blood flows from the portal triad to the central vein, cell-mediated depletion establishes gradients of soluble factors such as oxygen, nutrients, and hormones, which act through molecular pathways (e.g., Wnt/β-catenin, hedgehog) to spatially regulate hepatocyte functions along the sinusoid. Such "zonation" can lead to the compartmentalized initiation of several liver diseases, including alcoholic/non-alcoholic fatty liver diseases, chemical/drug-induced toxicity, and hepatocellular carcinoma, and can also modulate liver regeneration. Transgenic rodent models provide valuable information on the key molecular regulators of zonation, while in vitro models allow for subjecting cells to precisely controlled factor gradients and elucidating species-specific differences in zonation. Here, we discuss the latest advances in both in vivo and in vitro models of liver zonation and pending questions to be addressed moving forward. Ultimately, obtaining a deeper understanding of zonation can lead to the development of more effective therapeutics for liver diseases, microphysiological systems, and scalable cell-based therapies.
Collapse
Affiliation(s)
- Regeant Panday
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois
| | - Chase P Monckton
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois
| | - Salman R Khetani
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
65
|
RNF43/ZNRF3 loss predisposes to hepatocellular-carcinoma by impairing liver regeneration and altering the liver lipid metabolic ground-state. Nat Commun 2022; 13:334. [PMID: 35039505 PMCID: PMC8764073 DOI: 10.1038/s41467-021-27923-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
RNF43/ZNRF3 negatively regulate WNT signalling. Both genes are mutated in several types of cancers, however, their contribution to liver disease is unknown. Here we describe that hepatocyte-specific loss of Rnf43/Znrf3 results in steatohepatitis and in increase in unsaturated lipids, in the absence of dietary fat supplementation. Upon injury, Rnf43/Znrf3 deletion results in defective hepatocyte regeneration and liver cancer, caused by an imbalance between differentiation/proliferation. Using hepatocyte-, hepatoblast- and ductal cell-derived organoids we demonstrate that the differentiation defects and lipid alterations are, in part, cell-autonomous. Interestingly, ZNRF3 mutant liver cancer patients present poorer prognosis, altered hepatic lipid metabolism and steatohepatitis/NASH signatures. Our results imply that RNF43/ZNRF3 predispose to liver cancer by controlling the proliferative/differentiation and lipid metabolic state of hepatocytes. Both mechanisms combined facilitate the progression towards malignancy. Our findings might aid on the management of those RNF43/ZNRF3 mutated individuals at risk of developing fatty liver and/or liver cancer.
Collapse
|
66
|
Ayers M, Liu S, Singhi AD, Kosar K, Cornuet P, Nejak-Bowen K. Changes in beta-catenin expression and activation during progression of primary sclerosing cholangitis predict disease recurrence. Sci Rep 2022; 12:206. [PMID: 34997170 PMCID: PMC8741932 DOI: 10.1038/s41598-021-04358-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/14/2021] [Indexed: 01/26/2023] Open
Abstract
Primary sclerosing cholangitis (PSC) is a rare, chronic, cholestatic liver disease characterized by progressive inflammation and fibrosis of the bile ducts. We have previously demonstrated the importance of Wnt/β-catenin signaling in mouse models of PSC. In this study, we wished to determine the clinical relevance of β-catenin localization in patient samples. In livers explanted from patients diagnosed with PSC, the majority (12/16; 75%) lacked β-catenin protein expression. Biopsies from patients post-transplant were classified as recurrent or non-recurrent based on pathology reports and then scored for β-catenin activation as a function of immunohistochemical localization. Despite lack of statistical significance, patients with recurrent primary disease (n = 11) had a greater percentage of samples with nuclear, transcriptionally active β-catenin (average 58.8%) than those with no recurrence (n = 10; 40.53%), while non-recurrence is correlated with β-catenin staining at the cell surface (average 52.63% for non-recurrent vs. 27.34% for recurrent), as determined by three different methods of analysis. β-catenin score and years-to-endpoint are both strongly associated with recurrence status (p = 0.017 and p = 0.00063, respectively). Finally, there was significant association between higher β-catenin score and increased alkaline phosphatase, a marker of biliary injury and disease progression. Thus, β-catenin expression and activation changes during the progression of PSC, and its localization may be a useful prognostic tool for predicting recurrence of this disease.
Collapse
Affiliation(s)
- Mary Ayers
- grid.239553.b0000 0000 9753 0008Children’s Hospital of Pittsburgh, Pittsburgh, PA USA
| | - Silvia Liu
- grid.21925.3d0000 0004 1936 9000Department of Pathology, School of Medicine, University of Pittsburgh, S405A-BST, 200 Lothrop Street, Pittsburgh, PA 15261 USA ,grid.21925.3d0000 0004 1936 9000Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA USA
| | - Aatur D. Singhi
- grid.21925.3d0000 0004 1936 9000Department of Pathology, School of Medicine, University of Pittsburgh, S405A-BST, 200 Lothrop Street, Pittsburgh, PA 15261 USA ,grid.21925.3d0000 0004 1936 9000Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA USA
| | - Karis Kosar
- grid.21925.3d0000 0004 1936 9000Department of Pathology, School of Medicine, University of Pittsburgh, S405A-BST, 200 Lothrop Street, Pittsburgh, PA 15261 USA
| | - Pamela Cornuet
- grid.21925.3d0000 0004 1936 9000Department of Pathology, School of Medicine, University of Pittsburgh, S405A-BST, 200 Lothrop Street, Pittsburgh, PA 15261 USA
| | - Kari Nejak-Bowen
- Department of Pathology, School of Medicine, University of Pittsburgh, S405A-BST, 200 Lothrop Street, Pittsburgh, PA, 15261, USA. .,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
67
|
Pu W, Zhou B. Hepatocyte generation in liver homeostasis, repair, and regeneration. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:2. [PMID: 34989894 PMCID: PMC8739411 DOI: 10.1186/s13619-021-00101-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/22/2021] [Indexed: 12/29/2022]
Abstract
The liver has remarkable capability to regenerate, employing mechanism to ensure the stable liver-to-bodyweight ratio for body homeostasis. The source of this regenerative capacity has received great attention over the past decade yet still remained controversial currently. Deciphering the sources for hepatocytes provides the basis for understanding tissue regeneration and repair, and also illustrates new potential therapeutic targets for treating liver diseases. In this review, we describe recent advances in genetic lineage tracing studies over liver stem cells, hepatocyte proliferation, and cell lineage conversions or cellular reprogramming. This review will also evaluate the technical strengths and limitations of methods used for studies on hepatocyte generation and cell fate plasticity in liver homeostasis, repair and regeneration.
Collapse
Affiliation(s)
- Wenjuan Pu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
68
|
Goel C, Monga SP, Nejak-Bowen K. Role and Regulation of Wnt/β-Catenin in Hepatic Perivenous Zonation and Physiological Homeostasis. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:4-17. [PMID: 34924168 PMCID: PMC8747012 DOI: 10.1016/j.ajpath.2021.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/02/2021] [Accepted: 09/22/2021] [Indexed: 01/03/2023]
Abstract
Metabolic heterogeneity or functional zonation is a key characteristic of the liver that allows different metabolic pathways to be spatially regulated within the hepatic system and together contribute to whole body homeostasis. These metabolic pathways are segregated along the portocentral axis of the liver lobule into three hepatic zones: periportal, intermediate or midzonal, and perivenous. The liver performs complementary or opposing metabolic functions within different hepatic zones while synergistic functions are regulated by overlapping zones, thereby maintaining the overall physiological stability. The Wnt/β-catenin signaling pathway is well known for its role in liver growth, development, and regeneration. In addition, the Wnt/β-catenin pathway plays a fundamental and dominant role in hepatic zonation and signals to orchestrate various functions of liver metabolism and pathophysiology. The β-catenin protein is the central player in the Wnt/β-catenin signaling cascade, and its activation is crucial for metabolic patterning of the liver. However, dysregulation of Wnt/β-catenin signaling is also implicated in different liver pathologies, including those associated with metabolic syndrome. β-Catenin is preferentially localized in the central region of the hepatic lobule surrounding the central vein and regulates multiple functions of this region. This review outlines the role of Wnt/β-catenin signaling pathway in controlling the different metabolic processes surrounding the central vein and its relation to liver homeostasis and dysfunction.
Collapse
Affiliation(s)
- Chhavi Goel
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Satdarshan P Monga
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania; Department of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Kari Nejak-Bowen
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
69
|
Perret C. Axel Kahn et la carcinogenèse digestive : de l’oncogenèse ciblée à l’aventure de la β-caténine. Med Sci (Paris) 2021; 37 Hors série n° 2:35-37. [PMID: 34895461 DOI: 10.1051/medsci/2021227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
70
|
Yang Y, Filipovic D, Bhattacharya S. A Negative Feedback Loop and Transcription Factor Cooperation Regulate Zonal Gene Induction by 2, 3, 7, 8-Tetrachlorodibenzo-p-Dioxin in the Mouse Liver. Hepatol Commun 2021; 6:750-764. [PMID: 34726355 PMCID: PMC8948569 DOI: 10.1002/hep4.1848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 10/02/2021] [Accepted: 10/10/2021] [Indexed: 01/04/2023] Open
Abstract
The cytochrome P450 (Cyp) proteins Cyp1A1 and Cyp1A2 are strongly induced in the mouse liver by the potent environmental toxicant 2, 3, 7, 8‐tetrachlorodibenzo‐p‐dioxin (TCDD), acting through the aryl hydrocarbon receptor (AHR). The induction of Cyp1A1 is localized within the centrilobular regions of the mouse liver at low doses of TCDD, progressing to pan‐lobular induction at higher doses. Even without chemical perturbation, metabolic functions and associated genes are basally zonated in the liver lobule along the central‐to‐portal axis. To investigate the mechanistic basis of spatially restricted gene induction by TCDD, we have developed a multiscale computational model of the mouse liver lobule with single‐cell resolution. The spatial location of individual hepatocytes in the model was calibrated from previously published high‐resolution images. A systems biology model of the network of biochemical signaling pathways underlying Cyp1A1 and Cyp1A2 induction was then incorporated into each hepatocyte in the model. Model simulations showed that a negative feedback loop formed by binding of the induced Cyp1A2 protein to TCDD, together with cooperative gene induction by the β‐catenin/AHR/TCDD transcription factor complex and β‐catenin, help produce the spatially localized induction pattern of Cyp1A1. Although endogenous WNT regulates the metabolic zonation of many genes, it was not a driver of zonal Cyp1A1 induction in our model. Conclusion: In this work, we used data‐driven computational modeling to identify the mechanistic basis of zonally restricted gene expression induced by the potent and persistent environmental pollutant TCDD. The multiscale model and derived results clarify the mechanisms of dose‐dependent hepatic gene induction responses to TCDD. Additionally, this work contributes to our broader understanding of spatial gene regulation along the liver lobule.
Collapse
Affiliation(s)
- Yongliang Yang
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA.,Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, USA
| | - David Filipovic
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA.,Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, USA.,Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Sudin Bhattacharya
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA.,Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, USA.,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
71
|
Peng WC, Kraaier LJ, Kluiver TA. Hepatocyte organoids and cell transplantation: What the future holds. Exp Mol Med 2021; 53:1512-1528. [PMID: 34663941 PMCID: PMC8568948 DOI: 10.1038/s12276-021-00579-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/29/2022] Open
Abstract
Historically, primary hepatocytes have been difficult to expand or maintain in vitro. In this review, we will focus on recent advances in establishing hepatocyte organoids and their potential applications in regenerative medicine. First, we provide a background on the renewal of hepatocytes in the homeostatic as well as the injured liver. Next, we describe strategies for establishing primary hepatocyte organoids derived from either adult or fetal liver based on insights from signaling pathways regulating hepatocyte renewal in vivo. The characteristics of these organoids will be described herein. Notably, hepatocyte organoids can adopt either a proliferative or a metabolic state, depending on the culture conditions. Furthermore, the metabolic gene expression profile can be modulated based on the principles that govern liver zonation. Finally, we discuss the suitability of cell replacement therapy to treat different types of liver diseases and the current state of cell transplantation of in vitro-expanded hepatocytes in mouse models. In addition, we provide insights into how the regenerative microenvironment in the injured host liver may facilitate donor hepatocyte repopulation. In summary, transplantation of in vitro-expanded hepatocytes holds great potential for large-scale clinical application to treat liver diseases.
Collapse
Affiliation(s)
- Weng Chuan Peng
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
| | - Lianne J Kraaier
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Thomas A Kluiver
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| |
Collapse
|
72
|
Cunningham RP, Porat-Shliom N. Liver Zonation - Revisiting Old Questions With New Technologies. Front Physiol 2021; 12:732929. [PMID: 34566696 PMCID: PMC8458816 DOI: 10.3389/fphys.2021.732929] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the ever-increasing prevalence of non-alcoholic fatty liver disease (NAFLD), the etiology and pathogenesis remain poorly understood. This is due, in part, to the liver's complex physiology and architecture. The liver maintains glucose and lipid homeostasis by coordinating numerous metabolic processes with great efficiency. This is made possible by the spatial compartmentalization of metabolic pathways a phenomenon known as liver zonation. Despite the importance of zonation to normal liver function, it is unresolved if and how perturbations to liver zonation can drive hepatic pathophysiology and NAFLD development. While hepatocyte heterogeneity has been identified over a century ago, its examination had been severely hindered due to technological limitations. Recent advances in single cell analysis and imaging technologies now permit further characterization of cells across the liver lobule. This review summarizes the advances in examining liver zonation and elucidating its regulatory role in liver physiology and pathology. Understanding the spatial organization of metabolism is vital to further our knowledge of liver disease and to provide targeted therapeutic avenues.
Collapse
Affiliation(s)
- Rory P Cunningham
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Natalie Porat-Shliom
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| |
Collapse
|
73
|
Abou Azar F, Lim GE. Metabolic Contributions of Wnt Signaling: More Than Controlling Flight. Front Cell Dev Biol 2021; 9:709823. [PMID: 34568323 PMCID: PMC8458764 DOI: 10.3389/fcell.2021.709823] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
The canonical Wnt signaling pathway is ubiquitous throughout the body and influences a diverse array of physiological processes. Following the initial discovery of the Wnt signaling pathway during wing development in Drosophila melanogaster, it is now widely appreciated that active Wnt signaling in mammals is necessary for the development and growth of various tissues involved in whole-body metabolism, such as brain, liver, pancreas, muscle, and adipose. Moreover, elegant gain- and loss-of-function studies have dissected the tissue-specific roles of various downstream effector molecules in the regulation of energy homeostasis. This review attempts to highlight and summarize the contributions of the Wnt signaling pathway and its downstream effectors on whole-body metabolism and their influence on the development of metabolic diseases, such as diabetes and obesity. A better understanding of the Wnt signaling pathway in these tissues may aid in guiding the development of future therapeutics to treat metabolic diseases.
Collapse
Affiliation(s)
- Frederic Abou Azar
- Department of Medicine, Université de Montréal, Montreal, QC, Canada.,Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Gareth E Lim
- Department of Medicine, Université de Montréal, Montreal, QC, Canada.,Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| |
Collapse
|
74
|
Savall M, Senni N, Lagoutte I, Sohier P, Dentin R, Romagnolo B, Perret C, Bossard P. Cooperation Between the NRF2 Pathway and Oncogenic β-catenin During HCC Tumorigenesis. Hepatol Commun 2021; 5:1490-1506. [PMID: 34510835 PMCID: PMC8435276 DOI: 10.1002/hep4.1746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 02/04/2023] Open
Abstract
CTNNB1 (catenin beta 1)-mutated hepatocellular carcinomas (HCCs) account for a large proportion of human HCCs. They display high levels of respiratory chain activity. As metabolism and redox balance are closely linked, tumor cells must maintain their redox status during these metabolic alterations. We investigated the redox balance of these HCCs and the feasibility of targeting this balance as an avenue for targeted therapy. We assessed the expression of the nuclear erythroid 2 p45-related factor 2 (NRF2) detoxification pathway in an annotated human HCC data set and reported an enrichment of the NRF2 program in human HCCs with CTNNB1 mutations, largely independent of NFE2L2 (nuclear factor, erythroid 2 like 2) or KEAP1 (Kelch-like ECH-associated protein 1) mutations. We then used mice with hepatocyte-specific oncogenic β-catenin activation to evaluate the redox status associated with β-catenin activation in preneoplastic livers and tumors. We challenged them with various oxidative stressors and observed that the β-catenin pathway activation increased transcription of Nfe2l2, which protects β-catenin-activated hepatocytes from oxidative damage and supports tumor development. Moreover, outside of its effects on reactive oxygen species scavenging, we found out that Nrf2 itself contributes to the metabolic activity of β-catenin-activated cells. We then challenged β-catenin activated tumors pharmacologically to create a redox imbalance and found that pharmacological inactivation of Nrf2 was sufficient to considerably decrease the progression of β-catenin-dependent HCC development. Conclusion: These results demonstrate cooperation between oncogenic β-catenin signaling and the NRF2 pathway in CTNNB1-mediated HCC tumorigenesis, and we provide evidence for the relevance of redox balance targeting as a therapeutic strategy in CTNNB1-mutated HCC.
Collapse
Affiliation(s)
| | - Nadia Senni
- Université de ParisInstitut CochinINSERMCNRSParisFrance
| | | | - Pierre Sohier
- Department of PathologyHôpital CochinAP-HPCentre-Université de ParisParisFrance
| | - Renaud Dentin
- Université de ParisInstitut CochinINSERMCNRSParisFrance
| | | | | | | |
Collapse
|
75
|
Long-Term Normothermic Machine Preservation of Partial Livers: First Experience With 21 Human Hemi-Livers. Ann Surg 2021; 274:836-842. [PMID: 34334640 DOI: 10.1097/sla.0000000000005102] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this study was to maintain long-term full function and viability of partial livers perfused ex situ for sufficient duration to enable ex situ treatment, repair, and regeneration. BACKGROUND Organ shortage remains the single most important factor limiting the success of transplantation. Autotransplantation in patients with nonresectable liver tumors is rarely feasible due to insufficient tumor-free remnant tissue. This limitation could be solved by the availability of long-term preservation of partial livers that enables functional regeneration and subsequent transplantation. METHODS Partial swine livers were perfused with autologous blood after being procured from healthy pigs following 70% in-vivo resection, leaving only the right lateral lobe. Partial human livers were recovered from patients undergoing anatomic right or left hepatectomies and perfused with a blood based perfusate together with various medical additives. Assessment of physiologic function during perfusion was based on markers of hepatocyte, cholangiocyte, vascular and immune compartments,, as well as histology. RESULTS Following the development phase with partial swine livers, 21 partial human livers (14 right and 7 left hemi-livers) were perfused, eventually reaching the targeted perfusion duration of 1 week with the final protocol. These partial livers disclosed a stable perfusion with normal hepatic function including bile production (5-10 mL/h), lactate clearance, and maintenance of energy exhibited by normal of adenosine triphosphate (ATP) and glycogen levels, and preserved liver architecture for up to 1 week. CONCLUSION This pioneering research presents the inaugural evidence for long-term machine perfusion of partial livers and provides a pathway for innovative and relevant clinical applications to increase the availability of organs and provide novel approaches in hepatic oncology.
Collapse
|
76
|
Zhuang Z, Qu H, Yang W, Liu J, Wang F, Liu Y, Ding J, Shi J. Comparing hepatic steatosis distribution patterns between non-alcoholic fatty liver disease and fatty liver disease with chronic hepatitis B by second-harmonic generation/two-photon excited fluorescence method. Ann Hepatol 2021; 19:313-319. [PMID: 31870745 DOI: 10.1016/j.aohep.2019.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/16/2019] [Accepted: 11/20/2019] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Hepatitis B virus (HBV) might be an etiological factor modulating fat distribution in steatotic livers. We aim to compare hepatic steatosis distribution patterns between NAFLD and FL&CHB patients with second-harmonic generation (SHG)/two-photon excited fluorescence (TPEF) method. PATIENTS AND METHODS 42 patients with NAFLD, 46 with FL&CHB and 55 without steatosis were enrolled in the study. Overall and regional steatosis in liver sections were quantified by SHG/TPEF method. The accuracy of which was validated by pathologist evaluation and magnetic resonance spectroscopy (MRS). Difference in degree of overall and regional steatosis between NAFLD and FL&CHB groups was analyzed by Mann-Whitney U test. Multivariable linear regression analysis was used to model factors contributing to steatosis distribution. RESULTS The hepatic steatosis measured by SHG/TPEF method was highly correlated with pathologist grading (r=0.83, p<0.001) and MRS measurement (r=0.82, p<0.001). The level of overall steatosis in FL&CHB group is significantly lower than that in NAFLD group (p<0.001). In NAFLD group, periportal region has significantly lower steatosis percentage than lobule region and overall region (p<0.001); while in FL&CHB group there is no difference among regions. The ratio of steatosis at periportal region to lobule region is significantly higher in FL&CHB group than that in NAFLD group (p<0.05). Multivariable linear regression analysis shows that HBV infection is the major contributing factor (β=0.322, p<0.01). CONCLUSIONS SHG/TPEF method is an accurate and objective method in hepatic steatosis quantification. By quantifying steatosis in different histological regions, we found steatosis distribution patterns are different between FL&CHB and NAFLD patients.
Collapse
Affiliation(s)
- Zhenjie Zhuang
- Center for Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, 126 Wenzhou Road, Building 18, Floor 5, Hangzhou 310015, Zhejiang Province, China
| | - Huanjia Qu
- Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, 126 Wenzhou Road, Building 6, Floor 6, Hangzhou 310015, Zhejiang Province, China
| | - Wenjun Yang
- Department of Pathology, The Affiliated Hospital of Hangzhou Normal University, 126 Wenzhou Road, Building 18, Floor 3, Hangzhou 310015, Zhejiang Province, China
| | - Juan Liu
- Department of Pathology, The Affiliated Hospital of Hangzhou Normal University, 126 Wenzhou Road, Building 18, Floor 3, Hangzhou 310015, Zhejiang Province, China
| | - Fuyan Wang
- Department of Medical Imaging, The Affiliated Hospital of Hangzhou Normal University, 126 Wenzhou Road, Building 1, Floor 3, Hangzhou 310015, Zhejiang Province, China
| | - Yinlan Liu
- Center for Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, 126 Wenzhou Road, Building 18, Floor 5, Hangzhou 310015, Zhejiang Province, China
| | - Jianping Ding
- Department of Medical Imaging, The Affiliated Hospital of Hangzhou Normal University, 126 Wenzhou Road, Building 1, Floor 3, Hangzhou 310015, Zhejiang Province, China
| | - Junping Shi
- Center for Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, 126 Wenzhou Road, Building 18, Floor 5, Hangzhou 310015, Zhejiang Province, China; Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, 126 Wenzhou Road, Building 6, Floor 6, Hangzhou 310015, Zhejiang Province, China.
| |
Collapse
|
77
|
ZNRF3 and RNF43 cooperate to safeguard metabolic liver zonation and hepatocyte proliferation. Cell Stem Cell 2021; 28:1822-1837.e10. [PMID: 34129813 DOI: 10.1016/j.stem.2021.05.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/02/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022]
Abstract
AXIN2 and LGR5 mark intestinal stem cells (ISCs) that require WNT/β-Catenin signaling for constant homeostatic proliferation. In contrast, AXIN2/LGR5+ pericentral hepatocytes show low proliferation rates despite a WNT/β-Catenin activity gradient required for metabolic liver zonation. The mechanisms restricting proliferation in AXIN2+ hepatocytes and metabolic gene expression in AXIN2+ ISCs remained elusive. We now show that restricted chromatin accessibility in ISCs prevents the expression of β-Catenin-regulated metabolic enzymes, whereas fine-tuning of WNT/β-Catenin activity by ZNRF3 and RNF43 restricts proliferation in chromatin-permissive AXIN2+ hepatocytes, while preserving metabolic function. ZNRF3 deletion promotes hepatocyte proliferation, which in turn becomes limited by RNF43 upregulation. Concomitant deletion of RNF43 in ZNRF3 mutant mice results in metabolic reprogramming of periportal hepatocytes and induces clonal expansion in a subset of hepatocytes, ultimately promoting liver tumors. Together, ZNRF3 and RNF43 cooperate to safeguard liver homeostasis by spatially and temporally restricting WNT/β-Catenin activity, balancing metabolic function and hepatocyte proliferation.
Collapse
|
78
|
Cadoux M, Caruso S, Pham S, Gougelet A, Pophillat C, Riou R, Loesch R, Colnot S, Nguyen CT, Calderaro J, Celton-Morizur S, Guerra N, Zucman-Rossi J, Desdouets C, Couty JP. Expression of NKG2D ligands is downregulated by β-catenin signalling and associates with HCC aggressiveness. J Hepatol 2021; 74:1386-1397. [PMID: 33484773 DOI: 10.1016/j.jhep.2021.01.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The NKG2D system is a potent immunosurveillance mechanism in cancer, wherein the activating NK cell receptor (NKG2D) on immune cells recognises its cognate ligands on tumour cells. Herein, we evaluated the expression of NKG2D ligands in hepatocellular carcinoma (HCC), in both humans and mice, taking the genomic features of HCC tumours into account. METHODS The expression of NKG2D ligands (MICA, MICB, ULBP1 and ULBP2) was analysed in large human HCC datasets by Fluidigm TaqMan and RNA-seq methods, and in 2 mouse models (mRNA and protein levels) reproducing the features of both major groups of human tumours. RESULTS We provide compelling evidence that expression of the MICA and MICB ligands in human HCC is associated with tumour aggressiveness and poor patient outcome. We also found that the expression of ULBP1 and ULBP2 was associated with poor patient outcome, and was downregulated in CTNNB1-mutated HCCs displaying low levels of inflammation and associated with a better prognosis. We also found an inverse correlation between ULBP1/2 expression levels and the expression of β-catenin target genes in patients with HCC, suggesting a role for β-catenin signalling in inhibiting expression. We showed in HCC mouse models that β-catenin signalling downregulated the expression of Rae-1 NKG2D ligands, orthologs of ULBPs, through TCF4 binding. CONCLUSIONS We demonstrate that the expression of NKG2D ligands is associated with aggressive liver tumorigenesis and that the downregulation of these ligands by β-catenin signalling may account for the less aggressive phenotype of CTNNB1-mutated HCC tumours. LAY SUMMARY The NKG2D system is a potent immunosurveillance mechanism in cancer. However, its role in hepatocellular carcinoma development has not been widely investigated. Herein, we should that the expression of NKG2D ligands by tumour cells is associated with a more aggressive tumour subtype.
Collapse
Affiliation(s)
- Mathilde Cadoux
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Team Proliferation Stress and Liver Physiopathology, F-75006 Paris, France
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Functional genomics of solid tumors Team, Labex Immuno-Oncology, Paris, France
| | - Sandrine Pham
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Team Proliferation Stress and Liver Physiopathology, F-75006 Paris, France
| | - Angélique Gougelet
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Oncogenic functions of β-catenin signalling in the liver team F-75006 Paris, France
| | - Céline Pophillat
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Team Proliferation Stress and Liver Physiopathology, F-75006 Paris, France
| | - Rozenn Riou
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Oncogenic functions of β-catenin signalling in the liver team F-75006 Paris, France
| | - Robin Loesch
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Oncogenic functions of β-catenin signalling in the liver team F-75006 Paris, France
| | - Sabine Colnot
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Oncogenic functions of β-catenin signalling in the liver team F-75006 Paris, France
| | - Công Trung Nguyen
- Institut Mondor de Recherche Biomédicale, INSERM U955, Créteil, France
| | - Julien Calderaro
- Institut Mondor de Recherche Biomédicale, INSERM U955, Créteil, France
| | - Séverine Celton-Morizur
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Team Proliferation Stress and Liver Physiopathology, F-75006 Paris, France
| | - Nadia Guerra
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Functional genomics of solid tumors Team, Labex Immuno-Oncology, Paris, France
| | - Chantal Desdouets
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Team Proliferation Stress and Liver Physiopathology, F-75006 Paris, France
| | - Jean-Pierre Couty
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Team Proliferation Stress and Liver Physiopathology, F-75006 Paris, France.
| |
Collapse
|
79
|
Kubota N, Kubota T, Kadowaki T. Midlobular zone 2 hepatocytes: A gatekeeper of liver homeostasis. Cell Metab 2021; 33:855-856. [PMID: 33951471 DOI: 10.1016/j.cmet.2021.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The liver consists of different zones that vary in function depending on their lobular localization. It remained unclear which zone serves as a source of repopulating/regenerating hepatocytes; however, experiments by Wei et al. (2021) in 11 CreER knockin murine strains revealed a vital role for zone 2 hepatocytes in liver homeostasis.
Collapse
Affiliation(s)
- Naoto Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuya Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Division of Diabetes and Metabolism, The Institute for Medical Science Asahi Life Foundation, Tokyo, Japan; Department of Clinical Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Tokyo, Japan; Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Toranomon Hospital, Tokyo, Japan.
| |
Collapse
|
80
|
Koirala S, Klein J, Zheng Y, Glenn NO, Eisemann T, Fon Tacer K, Miller DJ, Kulak O, Lu M, Finkelstein DB, Neale G, Tillman H, Vogel P, Strand DW, Lum L, Brautigam CA, Pascal JM, Clements WK, Potts PR. Tissue-Specific Regulation of the Wnt/β-Catenin Pathway by PAGE4 Inhibition of Tankyrase. Cell Rep 2021; 32:107922. [PMID: 32698014 DOI: 10.1016/j.celrep.2020.107922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/30/2020] [Accepted: 06/26/2020] [Indexed: 01/10/2023] Open
Abstract
Spatiotemporal control of Wnt/β-catenin signaling is critical for organism development and homeostasis. The poly-(ADP)-ribose polymerase Tankyrase (TNKS1) promotes Wnt/β-catenin signaling through PARylation-mediated degradation of AXIN1, a component of the β-catenin destruction complex. Although Wnt/β-catenin is a niche-restricted signaling program, tissue-specific factors that regulate TNKS1 are not known. Here, we report prostate-associated gene 4 (PAGE4) as a tissue-specific TNKS1 inhibitor that robustly represses canonical Wnt/β-catenin signaling in human cells, zebrafish, and mice. Structural and biochemical studies reveal that PAGE4 acts as an optimal substrate decoy that potently hijacks substrate binding sites on TNKS1 to prevent AXIN1 PARylation and degradation. Consistently, transgenic expression of PAGE4 in mice phenocopies TNKS1 knockout. Physiologically, PAGE4 is selectively expressed in stromal prostate fibroblasts and functions to establish a proper Wnt/β-catenin signaling niche through suppression of autocrine signaling. Our findings reveal a non-canonical mechanism for TNKS1 inhibition that functions to establish tissue-specific control of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Sajjan Koirala
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jonathon Klein
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yumei Zheng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nicole O Glenn
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA; Department of Biology, Belmont University, Nashville, TN, USA
| | - Travis Eisemann
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Klementina Fon Tacer
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Darcie J Miller
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ozlem Kulak
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Meifen Lu
- Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David B Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Geoffrey Neale
- Hartwell Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Heather Tillman
- Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peter Vogel
- Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Douglas W Strand
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lawrence Lum
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Pfizer, La Jolla, CA, USA
| | - Chad A Brautigam
- Departments of Biophysics and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John M Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Wilson K Clements
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Patrick Ryan Potts
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
81
|
β-Catenin Activation in Hepatocellular Cancer: Implications in Biology and Therapy. Cancers (Basel) 2021; 13:cancers13081830. [PMID: 33921282 PMCID: PMC8069637 DOI: 10.3390/cancers13081830] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Liver cancer is a dreadful tumor which has gradually increased in incidence all around the world. One major driver of liver cancer is the Wnt–β-catenin pathway which is active in a subset of these tumors. While this pathway is normally important in liver development, regeneration and homeostasis, it’s excessive activation due to mutations, is detrimental and leads to tumor cell growth, making it an important therapeutic target. There are also some unique characteristics of this pathway activation in liver cancer. It makes the tumor addicted to specific amino acids and in turn to mTOR signaling, which can be treated by certain existing therapies. In addition, activation of the Wnt–β-catenin in liver cancer appears to alter the immune cell landscape making it less likely to respond to the new immuno-oncology treatments. Thus, Wnt–β-catenin active tumors may need to be treated differently than non-Wnt–β-catenin active tumors. Abstract Hepatocellular cancer (HCC), the most common primary liver tumor, has been gradually growing in incidence globally. The whole-genome and whole-exome sequencing of HCC has led to an improved understanding of the molecular drivers of this tumor type. Activation of the Wnt signaling pathway, mostly due to stabilizing missense mutations in its downstream effector β-catenin (encoded by CTNNB1) or loss-of-function mutations in AXIN1 (the gene which encodes for Axin-1, an essential protein for β-catenin degradation), are seen in a major subset of HCC. Because of the important role of β-catenin in liver pathobiology, its role in HCC has been extensively investigated. In fact, CTNNB1 mutations have been shown to have a trunk role. β-Catenin has been shown to play an important role in regulating tumor cell proliferation and survival and in tumor angiogenesis, due to a host of target genes regulated by the β-catenin transactivation of its transcriptional factor TCF. Proof-of-concept preclinical studies have shown β-catenin to be a highly relevant therapeutic target in CTNNB1-mutated HCCs. More recently, studies have revealed a unique role of β-catenin activation in regulating both tumor metabolism as well as the tumor immune microenvironment. Both these roles have notable implications for the development of novel therapies for HCC. Thus, β-catenin has a pertinent role in driving HCC development and maintenance of this tumor-type, and could be a highly relevant therapeutic target in a subset of HCC cases.
Collapse
|
82
|
Angiodiversity and organotypic functions of sinusoidal endothelial cells. Angiogenesis 2021; 24:289-310. [PMID: 33745018 PMCID: PMC7982081 DOI: 10.1007/s10456-021-09780-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/04/2021] [Indexed: 02/08/2023]
Abstract
‘Angiodiversity’ refers to the structural and functional heterogeneity of endothelial cells (EC) along the segments of the vascular tree and especially within the microvascular beds of different organs. Organotypically differentiated EC ranging from continuous, barrier-forming endothelium to discontinuous, fenestrated endothelium perform organ-specific functions such as the maintenance of the tightly sealed blood–brain barrier or the clearance of macromolecular waste products from the peripheral blood by liver EC-expressed scavenger receptors. The microvascular bed of the liver, composed of discontinuous, fenestrated liver sinusoidal endothelial cells (LSEC), is a prime example of organ-specific angiodiversity. Anatomy and development of LSEC have been extensively studied by electron microscopy as well as linage-tracing experiments. Recent advances in cell isolation and bulk transcriptomics or single-cell RNA sequencing techniques allowed the identification of distinct LSEC molecular programs and have led to the identification of LSEC subpopulations. LSEC execute homeostatic functions such as fine tuning the vascular tone, clearing noxious substances from the circulation, and modulating immunoregulatory mechanisms. In recent years, the identification and functional analysis of LSEC-derived angiocrine signals, which control liver homeostasis and disease pathogenesis in an instructive manner, marks a major change of paradigm in the understanding of liver function in health and disease. This review summarizes recent advances in the understanding of liver vascular angiodiversity and the functional consequences resulting thereof.
Collapse
|
83
|
Boonekamp KE, Heo I, Artegiani B, Asra P, van Son G, de Ligt J, Clevers H. Identification of novel human Wnt target genes using adult endodermal tissue-derived organoids. Dev Biol 2021; 474:37-47. [PMID: 33571486 DOI: 10.1016/j.ydbio.2021.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 01/10/2023]
Abstract
Canonical Wnt signaling plays a key role during organ development, homeostasis and regeneration and these processes are conserved between invertebrates and vertebrates. Mutations in Wnt pathway components are commonly found in various types of cancer. Upon activation of canonical Wnt signaling, β-catenin binds in the nucleus to members of the TCF-LEF family and activates the transcription of target genes. Multiple Wnt target genes, including Lgr5/LGR5 and Axin2/AXIN2, have been identified in mouse models and human cancer cell lines. Here we set out to identify the transcriptional targets of Wnt signaling in five human tissues using organoid technology. Organoids are derived from adult stem cells and recapitulate the functionality as well as the structure of the original tissue. Since the Wnt pathway is critical to maintain the organoids from the human intestine, colon, liver, pancreas and stomach, organoid technology allows us to assess Wnt target gene expression in a human wildtype situation. We performed bulk mRNA sequencing of organoids immediately after inhibition of Wnt pathway and identified 41 genes as commonly regulated genes in these tissues. We also identified large numbers of target genes specific to each tissue. One of the shared target genes is TEAD4, a transcription factor driving expression of YAP/TAZ signaling target genes. In addition to TEAD4, we identified a variety of genes which encode for proteins that are involved in Wnt-independent pathways, implicating the possibility of direct crosstalk between Wnt signaling and other pathways. Collectively, this study identified tissue-specific and common Wnt target gene signatures and provides evidence for a conserved role for these Wnt targets in different tissues.
Collapse
Affiliation(s)
- Kim Elisabeth Boonekamp
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, Utrecht, the Netherlands
| | - Inha Heo
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, Utrecht, the Netherlands
| | - Benedetta Artegiani
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, Utrecht, the Netherlands
| | - Priyanca Asra
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, Utrecht, the Netherlands
| | - Gijs van Son
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, Utrecht, the Netherlands
| | - Joep de Ligt
- University Medical Centre (UMC) Utrecht, Utrecht, the Netherlands
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, Utrecht, the Netherlands; Princess Máxima Centre for Paediatric Oncology, Utrecht, the Netherlands.
| |
Collapse
|
84
|
Springer MZ, Poole LP, Drake LE, Bock-Hughes A, Boland ML, Smith AG, Hart J, Chourasia AH, Liu I, Bozek G, Macleod KF. BNIP3-dependent mitophagy promotes cytosolic localization of LC3B and metabolic homeostasis in the liver. Autophagy 2021; 17:3530-3546. [PMID: 33459136 DOI: 10.1080/15548627.2021.1877469] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitophagy formed the basis of the original description of autophagy by Christian de Duve when he demonstrated that GCG (glucagon) induced macroautophagic/autophagic turnover of mitochondria in the liver. However, the molecular basis of liver-specific activation of mitophagy by GCG, or its significance for metabolic stress responses in the liver is not understood. Here we show that BNIP3 is required for GCG-induced mitophagy in the liver through interaction with processed LC3B; an interaction that is also necessary to localize LC3B out of the nucleus to cytosolic mitophagosomes in response to nutrient deprivation. Loss of BNIP3-dependent mitophagy caused excess mitochondria to accumulate in the liver, disrupting metabolic zonation within the liver parenchyma, with expansion of zone 1 metabolism at the expense of zone 3 metabolism. These results identify BNIP3 as a regulator of metabolic homeostasis in the liver through its effect on mitophagy and mitochondrial mass distribution.
Collapse
Affiliation(s)
- Maya Z Springer
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, W-338 the University of Chicago, Chicago, IL, USA.,The Committee on Cancer Biology, The University of Chicago, Chicago, IL, USA
| | - Logan P Poole
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, W-338 the University of Chicago, Chicago, IL, USA.,The Committee on Cancer Biology, The University of Chicago, Chicago, IL, USA
| | - Lauren E Drake
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, W-338 the University of Chicago, Chicago, IL, USA
| | - Althea Bock-Hughes
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, W-338 the University of Chicago, Chicago, IL, USA.,The University of Chicago, Chicago, IL, USA
| | - Michelle L Boland
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, W-338 the University of Chicago, Chicago, IL, USA.,The University of Chicago, Chicago, IL, USA
| | - Alexandra G Smith
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, W-338 the University of Chicago, Chicago, IL, USA.,The Committee on Cancer Biology, The University of Chicago, Chicago, IL, USA
| | - John Hart
- Department of Pathology, University of Chicago, Chicago, USA
| | - Aparajita H Chourasia
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, W-338 the University of Chicago, Chicago, IL, USA.,The Committee on Cancer Biology, The University of Chicago, Chicago, IL, USA
| | - Ivan Liu
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, W-338 the University of Chicago, Chicago, IL, USA
| | - Grazyna Bozek
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, W-338 the University of Chicago, Chicago, IL, USA
| | - Kay F Macleod
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, W-338 the University of Chicago, Chicago, IL, USA.,The Committee on Cancer Biology, The University of Chicago, Chicago, IL, USA.,The University of Chicago, Chicago, IL, USA
| |
Collapse
|
85
|
Jung YS, Stratton SA, Lee SH, Kim MJ, Jun S, Zhang J, Zheng B, Cervantes CL, Cha JH, Barton MC, Park JI. TMEM9-v-ATPase Activates Wnt/β-Catenin Signaling Via APC Lysosomal Degradation for Liver Regeneration and Tumorigenesis. Hepatology 2021; 73:776-794. [PMID: 32380568 PMCID: PMC7647947 DOI: 10.1002/hep.31305] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS How Wnt signaling is orchestrated in liver regeneration and tumorigenesis remains elusive. Recently, we identified transmembrane protein 9 (TMEM9) as a Wnt signaling amplifier. APPROACH AND RESULTS TMEM9 facilitates v-ATPase assembly for vesicular acidification and lysosomal protein degradation. TMEM9 is highly expressed in regenerating liver and hepatocellular carcinoma (HCC) cells. TMEM9 expression is enriched in the hepatocytes around the central vein and acutely induced by injury. In mice, Tmem9 knockout impairs hepatic regeneration with aberrantly increased adenomatosis polyposis coli (Apc) and reduced Wnt signaling. Mechanistically, TMEM9 down-regulates APC through lysosomal protein degradation through v-ATPase. In HCC, TMEM9 is overexpressed and necessary to maintain β-catenin hyperactivation. TMEM9-up-regulated APC binds to and inhibits nuclear translocation of β-catenin, independent of HCC-associated β-catenin mutations. Pharmacological blockade of TMEM9-v-ATPase or lysosomal degradation suppresses Wnt/β-catenin through APC stabilization and β-catenin cytosolic retention. CONCLUSIONS Our results reveal that TMEM9 hyperactivates Wnt signaling for liver regeneration and tumorigenesis through lysosomal degradation of APC.
Collapse
Affiliation(s)
- Youn-Sang Jung
- Department of Experimental Radiation OncologyDivision of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX.,Department of Life ScienceChung-Ang UniversitySeoulSouth Korea
| | - Sabrina A Stratton
- Department of Epigenetics and Molecular CarcinogenesisThe University of Texas MD Anderson Cancer CenterHoustonTX
| | - Sung Ho Lee
- Department of Experimental Radiation OncologyDivision of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX
| | - Moon-Jong Kim
- Department of Experimental Radiation OncologyDivision of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX
| | - Sohee Jun
- Department of Experimental Radiation OncologyDivision of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX
| | - Jie Zhang
- Department of Experimental Radiation OncologyDivision of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX
| | - Biyun Zheng
- Department of Experimental Radiation OncologyDivision of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX
| | - Christopher L Cervantes
- Department of Experimental Radiation OncologyDivision of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX
| | - Jong-Ho Cha
- Department of Biomedical SciencesCollege of MedicineInha UniversityIncheonSouth Korea
| | - Michelle C Barton
- Department of Epigenetics and Molecular CarcinogenesisThe University of Texas MD Anderson Cancer CenterHoustonTX.,Graduate School of Biomedical SciencesThe University of Texas MD Anderson Cancer CenterHoustonTX
| | - Jae-Il Park
- Department of Experimental Radiation OncologyDivision of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX.,Graduate School of Biomedical SciencesThe University of Texas MD Anderson Cancer CenterHoustonTX.,Program in Genetics and EpigeneticsThe University of Texas MD Anderson Cancer CenterHoustonTX
| |
Collapse
|
86
|
Maladaptive regeneration - the reawakening of developmental pathways in NASH and fibrosis. Nat Rev Gastroenterol Hepatol 2021; 18:131-142. [PMID: 33051603 PMCID: PMC7854502 DOI: 10.1038/s41575-020-00365-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/28/2020] [Indexed: 02/06/2023]
Abstract
With the rapid expansion of the obesity epidemic, nonalcoholic fatty liver disease is now the most common chronic liver disease, with almost 25% global prevalence. Nonalcoholic fatty liver disease ranges in severity from simple steatosis, a benign 'pre-disease' state, to the liver injury and inflammation that characterize nonalcoholic steatohepatitis (NASH), which in turn predisposes individuals to liver fibrosis. Fibrosis is the major determinant of clinical outcomes in patients with NASH and is associated with increased risks of cirrhosis and hepatocellular carcinoma. NASH has no approved therapies, and liver fibrosis shows poor response to existing pharmacotherapy, in part due to an incomplete understanding of the underlying pathophysiology. Patient and mouse data have shown that NASH is associated with the activation of developmental pathways: Notch, Hedgehog and Hippo-YAP-TAZ. Although these evolutionarily conserved fundamental signals are known to determine liver morphogenesis during development, new data have shown a coordinated and causal role for these pathways in the liver injury response, which becomes maladaptive during obesity-associated chronic liver disease. In this Review, we discuss the aetiology of this reactivation of developmental pathways and review the cell-autonomous and cell-non-autonomous mechanisms by which developmental pathways influence disease progression. Finally, we discuss the potential prognostic and therapeutic implications of these data for NASH and liver fibrosis.
Collapse
|
87
|
Ölander M, Wegler C, Flörkemeier I, Treyer A, Handin N, Pedersen JM, Vildhede A, Mateus A, LeCluyse EL, Urdzik J, Artursson P. Hepatocyte size fractionation allows dissection of human liver zonation. J Cell Physiol 2021; 236:5885-5894. [PMID: 33452735 DOI: 10.1002/jcp.30273] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 11/08/2022]
Abstract
Human hepatocytes show marked differences in cell size, gene expression, and function throughout the liver lobules, an arrangement termed liver zonation. However, it is not clear if these zonal size differences, and the associated phenotypic differences, are retained in isolated human hepatocytes, the "gold standard" for in vitro studies of human liver function. Here, we therefore explored size differences among isolated human hepatocytes and investigated whether separation by size can be used to study liver zonation in vitro. We used counterflow centrifugal elutriation to separate cells into different size fractions and analyzed them with label-free quantitative proteomics, which revealed an enrichment of 151 and 758 proteins (out of 5163) in small and large hepatocytes, respectively. Further analysis showed that protein abundances in different hepatocyte size fractions recapitulated the in vivo expression patterns of previously described zonal markers and biological processes. We also found that the expression of zone-specific cytochrome P450 enzymes correlated with their metabolic activity in the different fractions. In summary, our results show that differences in hepatocyte size matches zonal expression patterns, and that our size fractionation approach can be used to study zone-specific liver functions in vitro.
Collapse
Affiliation(s)
- Magnus Ölander
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Christine Wegler
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.,DMPK, Research and Early Development Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Andrea Treyer
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Niklas Handin
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | | | - Anna Vildhede
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - André Mateus
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | | | - Jozef Urdzik
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
88
|
Van Treeck BJ, Mounajjed T, Moreira RK, Orujov M, Allende DS, Bellizzi AM, Lagana SM, Davila JI, Jessen E, Graham RP. Transcriptomic and Proteomic Analysis of Steatohepatitic Hepatocellular Carcinoma Reveals Novel Distinct Biologic Features. Am J Clin Pathol 2021; 155:87-96. [PMID: 32885245 DOI: 10.1093/ajcp/aqaa114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Steatohepatitic hepatocellular carcinoma is a distinct variant of hepatocellular carcinoma strongly associated with underlying nonalcoholic steatohepatitis. The molecular biology of steatohepatitic hepatocellular carcinoma is not fully elucidated, and thus we aimed to investigate the molecular underpinnings of this entity. METHODS Transcriptomic analysis using RNAseq was performed on eight tumor-nonneoplastic pairs of steatohepatitic hepatocellular carcinoma with comparison to conventional hepatocellular carcinoma transcriptomes curated in The Cancer Genome Atlas. Immunohistochemistry was used to validate key RNA-level findings. RESULTS Steatohepatitic hepatocellular carcinoma demonstrated a distinctive differential gene expression profile compared with The Cancer Genome Atlas curated conventional hepatocellular carcinomas (n = 360 cases), indicating the distinctive steatohepatitic hepatocellular carcinoma morphology is associated with a unique gene expression profile. Pathway analysis comparing tumor-nonneoplastic pairs revealed significant upregulation of the hedgehog pathway based on GLI1 overexpression and significant downregulation of carnitine palmitoyltransferase 2 transcript. Glutamine synthetase transcript was significantly upregulated, and fatty acid binding protein 1 transcript was significantly downregulated and immunohistochemically confirmed, indicating steatohepatitic hepatocellular carcinoma tumor cells display a zone 3 phenotype. CONCLUSIONS Steatohepatitic hepatocellular carcinoma demonstrates a distinctive morphology and gene expression profile, phenotype of zone 3 hepatocytes, and activation of the hedgehog pathway and repression of carnitine palmitoyltransferase 2, which may be important in tumorigenesis.
Collapse
Affiliation(s)
| | - Taofic Mounajjed
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Roger K Moreira
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Mushfig Orujov
- Department of Pathology, Cleveland Clinic, Cleveland, OH
| | | | | | | | - Jaime I Davila
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | - Erik Jessen
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | - Rondell P Graham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| |
Collapse
|
89
|
Lähde M, Heino S, Högström J, Kaijalainen S, Anisimov A, Flanagan D, Kallio P, Leppänen VM, Ristimäki A, Ritvos O, Wu K, Tammela T, Hodder M, Sansom OJ, Alitalo K. Expression of R-Spondin 1 in Apc Min/+ Mice Suppresses Growth of Intestinal Adenomas by Altering Wnt and Transforming Growth Factor Beta Signaling. Gastroenterology 2021; 160:245-259. [PMID: 32941878 DOI: 10.1053/j.gastro.2020.09.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND & AIMS Mutations in the APC gene and other genes in the Wnt signaling pathway contribute to development of colorectal carcinomas. R-spondins (RSPOs) are secreted proteins that amplify Wnt signaling in intestinal stem cells. Alterations in RSPO genes have been identified in human colorectal tumors. We studied the effects of RSPO1 overexpression in ApcMin/+ mutant mice. METHODS An adeno associated viral vector encoding RSPO1-Fc fusion protein, or control vector, was injected into ApcMin/+mice. Their intestinal crypts were isolated and cultured as organoids. which were incubated with or without RSPO1-Fc and an inhibitor of transforming growth factor beta receptor (TGFBR). Livers were collected from mice and analyzed by immunohistochemistry. Organoids and adenomas were analyzed by quantitative reverse-transcription PCR, single cell RNA sequencing, and immunohistochemistry. RESULTS Intestines from Apc+/+ mice injected with the vector encoding RSPO1-Fc had significantly deeper crypts, longer villi, with increased EdU labeling, indicating increased proliferation of epithelial cells, in comparison to mice given control vector. AAV-RSPO1-Fc-transduced ApcMin/+ mice also developed fewer and smaller intestinal tumors and had significantly longer survival times. Adenomas of ApcMin/+ mice injected with the RSPO1-Fc vector showed a rapid increase in apoptosis and in the expression of Wnt target genes, followed by reduced expression of messenger RNAs and proteins regulated by the Wnt pathway, reduced cell proliferation, and less crypt branching than adenomas of mice given the control vector. Addition of RSPO1 reduced the number of adenoma organoids derived from ApcMin/+ mice and suppressed expression of Wnt target genes but increased phosphorylation of SMAD2 and transcription of genes regulated by SMAD. Inhibition of TGFBR signaling in organoids stimulated with RSPO1-Fc restored organoid formation and expression of genes regulated by Wnt. The TGFBR inhibitor restored apoptosis in adenomas from ApcMin/+ mice expressing RSPO1-Fc back to the same level as in the adenomas from mice given the control vector. CONCLUSIONS Expression of RSPO1 in ApcMin/+ mice increases apoptosis and reduces proliferation and Wnt signaling in adenoma cells, resulting in development of fewer and smaller intestinal tumors and longer mouse survival. Addition of RSPO1 to organoids derived from adenomas inhibits their growth and promotes proliferation of intestinal stem cells that retain the APC protein; these effects are reversed by TGFB inhibitor. Strategies to increase the expression of RSPO1 might be developed for the treatment of intestinal adenomas.
Collapse
Affiliation(s)
- Marianne Lähde
- Translational Cancer Medicine Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sarika Heino
- Translational Cancer Medicine Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jenny Högström
- Translational Cancer Medicine Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Seppo Kaijalainen
- Translational Cancer Medicine Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Andrey Anisimov
- Translational Cancer Medicine Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Dustin Flanagan
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Pauliina Kallio
- Translational Cancer Medicine Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Veli-Matti Leppänen
- Translational Cancer Medicine Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
| | - Ari Ristimäki
- Department of Pathology, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital; Medicum and Applied Tumor Genomics, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Katherine Wu
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Tuomas Tammela
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York; Cell and Developmental Biology, Weill-Cornell Medical College, New York, New York
| | - Michael Hodder
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom; Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom; Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kari Alitalo
- Translational Cancer Medicine Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland.
| |
Collapse
|
90
|
Commensal-driven immune zonation of the liver promotes host defence. Nature 2020; 589:131-136. [PMID: 33239787 DOI: 10.1038/s41586-020-2977-2] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/11/2020] [Indexed: 12/21/2022]
Abstract
The liver connects the intestinal portal vasculature with the general circulation, using a diverse array of immune cells to protect from pathogens that translocate from the gut1. In liver lobules, blood flows from portal triads that are situated in periportal lobular regions to the central vein via a polarized sinusoidal network. Despite this asymmetry, resident immune cells in the liver are considered to be broadly dispersed across the lobule. This differs from lymphoid organs, in which immune cells adopt spatially biased positions to promote effective host defence2,3. Here we used quantitative multiplex imaging, genetic perturbations, transcriptomics, infection-based assays and mathematical modelling to reassess the relationship between the localization of immune cells in the liver and host protection. We found that myeloid and lymphoid resident immune cells concentrate around periportal regions. This asymmetric localization was not developmentally controlled, but resulted from sustained MYD88-dependent signalling induced by commensal bacteria in liver sinusoidal endothelial cells, which in turn regulated the composition of the pericellular matrix involved in the formation of chemokine gradients. In vivo experiments and modelling showed that this immune spatial polarization was more efficient than a uniform distribution in protecting against systemic bacterial dissemination. Together, these data reveal that liver sinusoidal endothelial cells sense the microbiome, actively orchestrating the localization of immune cells, to optimize host defence.
Collapse
|
91
|
Walesky CM, Kolb KE, Winston CL, Henderson J, Kruft B, Fleming I, Ko S, Monga SP, Mueller F, Apte U, Shalek AK, Goessling W. Functional compensation precedes recovery of tissue mass following acute liver injury. Nat Commun 2020; 11:5785. [PMID: 33214549 PMCID: PMC7677389 DOI: 10.1038/s41467-020-19558-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
The liver plays a central role in metabolism, protein synthesis and detoxification. It possesses unique regenerative capacity upon injury. While many factors regulating cellular proliferation during liver repair have been identified, the mechanisms by which the injured liver maintains vital functions prior to tissue recovery are unknown. Here, we identify a new phase of functional compensation following acute liver injury that occurs prior to cellular proliferation. By coupling single-cell RNA-seq with in situ transcriptional analyses in two independent murine liver injury models, we discover adaptive reprogramming to ensure expression of both injury response and core liver function genes dependent on macrophage-derived WNT/β-catenin signaling. Interestingly, transcriptional compensation is most prominent in non-proliferating cells, clearly delineating two temporally distinct phases of liver recovery. Overall, our work describes a mechanism by which the liver maintains essential physiological functions prior to cellular reconstitution and characterizes macrophage-derived WNT signals required for this compensation. The liver possesses the ability to regenerate following sudden injury. Here, the authors use single-cell RNA-sequencing and in situ transcriptional analyses to identify a new phase of liver regeneration in mice aimed at maintaining essential functions throughout the regenerative process.
Collapse
Affiliation(s)
- Chad M Walesky
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kellie E Kolb
- Institute of Medical Engineering & Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Carolyn L Winston
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jake Henderson
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Benjamin Kruft
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ira Fleming
- Institute of Medical Engineering & Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Sungjin Ko
- Department of Pathology, University of Pittsburgh, School of Medicine; and Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, 15261, USA
| | - Satdarshan P Monga
- Department of Pathology, University of Pittsburgh, School of Medicine; and Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, 15261, USA
| | - Florian Mueller
- Imaging and Modeling Unit, Institut Pasteur, UMR 3691CNRS, C3BI USR 3756 IP CNRS, Paris, France
| | - Udayan Apte
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Alex K Shalek
- Institute of Medical Engineering & Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA. .,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA. .,Harvard-MIT Division of Health Sciences and Technology, Boston, MA, 02115, USA.
| | - Wolfram Goessling
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA. .,Harvard-MIT Division of Health Sciences and Technology, Boston, MA, 02115, USA. .,Dana-Farber Cancer Institute, Boston, MA, 02215, USA. .,Harvard Stem Cell Institute, Cambridge, MA, 02134, USA. .,Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
92
|
Tchorz JS. The Conundrum of the Pericentral Hepatic Niche: WNT/-Catenin Signaling, Metabolic Zonation, and Many Open Questions. Gene Expr 2020; 20:119-124. [PMID: 32962796 PMCID: PMC7650010 DOI: 10.3727/105221620x16007982788168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
WNT/-catenin signaling promotes stemness, proliferation, and cell fate decisions in various tissue stem cell compartments, which maintain organs with a high turnover of cells (e.g., skin, stomach, and gut). Thus, the -catenin target genes AXIN2 and LGR5 are widely considered as tissue stem cell markers. In contrast, AXIN2 and LGR5 are expressed in pericentral hepatocytes, which do not show overt proliferation during liver homeostasis. Given the low hepatocyte turnover, the liver does not require constant high rates of proliferation, whereas WNT/-catenin signaling is critical for metabolic zonation. Yet, WNT/-catenin pathway upregulation, including AXIN2 and LGR5 induction in hepatocytes throughout the liver, enables hepatocyte regeneration in response to various injuries. In this brief review, I discuss the role of WNT/-catenin signaling in controlling metabolic zonation and the conundrum around pericentral hepatocytes that have been proposed as liver stem cells.
Collapse
Affiliation(s)
- Jan S. Tchorz
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
93
|
Daujat-Chavanieu M, Gerbal-Chaloin S. Regulation of CAR and PXR Expression in Health and Disease. Cells 2020; 9:E2395. [PMID: 33142929 PMCID: PMC7692647 DOI: 10.3390/cells9112395] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Pregnane X receptor (PXR, NR1I2) and constitutive androstane receptor (CAR, NR1I3) are members of the nuclear receptor superfamily that mainly act as ligand-activated transcription factors. Their functions have long been associated with the regulation of drug metabolism and disposition, and it is now well established that they are implicated in physiological and pathological conditions. Considerable efforts have been made to understand the regulation of their activity by their cognate ligand; however, additional regulatory mechanisms, among which the regulation of their expression, modulate their pleiotropic effects. This review summarizes the current knowledge on CAR and PXR expression during development and adult life; tissue distribution; spatial, temporal, and metabolic regulations; as well as in pathological situations, including chronic diseases and cancers. The expression of CAR and PXR is modulated by complex regulatory mechanisms that involve the interplay of transcription factors and also post-transcriptional and epigenetic modifications. Moreover, many environmental stimuli affect CAR and PXR expression through mechanisms that have not been elucidated.
Collapse
Affiliation(s)
| | - Sabine Gerbal-Chaloin
- IRMB, University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France;
| |
Collapse
|
94
|
Wang N, Kong R, Han W, Lu J. Wnt/β-catenin signalling controls bile duct regeneration by regulating differentiation of ductular reaction cells. J Cell Mol Med 2020; 24:14050-14058. [PMID: 33124779 PMCID: PMC7754022 DOI: 10.1111/jcmm.16017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/27/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
Recently, the incidence of bile duct‐related diseases continues to increase, and there is no effective drug treatment except liver transplantation. However, due to the limited liver source and expensive donations, clinical application is often limited. Although current studies have shown that ductular reaction cells (DRCs) reside in the vicinity of peribiliary glands can differentiate into cholangiocytes and would be an effective alternative to liver transplantation, the role and mechanism of DRCs in cholangiole physiology and bile duct injury remain unclear. A 3,5‐diethoxycarbonyl‐1,4‐dihydrocollidine (DDC)‐enriched diet was used to stimulate DRCs proliferation. Our research suggests DRCs are a type of intermediate stem cells with proliferative potential that exist in the bile duct injury. Meanwhile, DRCs have bidirectional differentiation potential, which can differentiate into hepatocytes and cholangiocytes. Furthermore, we found DRCs highly express Lgr5, and Lgr5 is a molecular marker for neonatal DRCs (P < .05). Finally, we confirmed Wnt/β‐catenin signalling achieves bile duct regeneration by regulating the expression of Lgr5 genes in DRCs (P < .05). We described the regenerative potential of DRCs and reveal opportunities and source for the treatment of cholestatic liver diseases.
Collapse
Affiliation(s)
- Nan Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Rui Kong
- Department of Gastroenterology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Wei Han
- Department of Gastroenterology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Jie Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
95
|
Braeuning A, Pavek P. β-catenin signaling, the constitutive androstane receptor and their mutual interactions. Arch Toxicol 2020; 94:3983-3991. [PMID: 33097968 PMCID: PMC7655584 DOI: 10.1007/s00204-020-02935-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/08/2020] [Indexed: 12/24/2022]
Abstract
Aberrant signaling through β-catenin is an important determinant of tumorigenesis in rodents as well as in humans. In mice, xenobiotic activators of the constitutive androstane receptor (CAR), a chemo-sensing nuclear receptor, promote liver tumor growth by means of a non-genotoxic mechanism and, under certain conditions, select for hepatocellular tumors which contain activated β-catenin. In normal hepatocytes, interactions of β-catenin and CAR have been demonstrated with respect to the induction of proliferation and drug metabolism-related gene expression. The molecular details of these interactions are still not well understood. Recently it has been hypothesized that CAR might activate β-catenin signaling, thus providing a possible explanation for some of the observed phenomena. Nonetheless, many aspects of the molecular interplay of the two regulators have still not been elucidated. This review briefly summarizes our current knowledge about the interplay of CAR and β-catenin. By taking into account data and observations obtained with different mouse models and employing different experimental approaches, it is shown that published data also contain substantial evidence that xenobiotic activators of CAR do not activate, or do even inhibit signaling through the β-catenin pathway. The review highlights new aspects of possible ways of interaction between the two signaling cascades and will help to stimulate scientific discussion about the crosstalk of β-catenin signaling and the nuclear receptor CAR.
Collapse
Affiliation(s)
- Albert Braeuning
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy, Heyrovskeho 1203, Hradec Kralove, 500 05, Prague, Czech Republic
| |
Collapse
|
96
|
Riou R, Ladli M, Gerbal-Chaloin S, Bossard P, Gougelet A, Godard C, Loesch R, Lagoutte I, Lager F, Calderaro J, Dos Santos A, Wang Z, Verdier F, Colnot S. ARID1A loss in adult hepatocytes activates β-catenin-mediated erythropoietin transcription. eLife 2020; 9:53550. [PMID: 33084574 PMCID: PMC7641585 DOI: 10.7554/elife.53550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Erythropoietin (EPO) is a key regulator of erythropoiesis. The embryonic liver is the main site of erythropoietin synthesis, after which the kidney takes over. The adult liver retains the ability to express EPO, and we discovered here new players of this transcription, distinct from the classical hypoxia-inducible factor pathway. In mice, genetically invalidated in hepatocytes for the chromatin remodeler Arid1a, and for Apc, the major silencer of Wnt pathway, chromatin was more accessible and histone marks turned into active ones at the Epo downstream enhancer. Activating β-catenin signaling increased binding of Tcf4/β-catenin complex and upregulated its enhancer function. The loss of Arid1a together with β-catenin signaling, resulted in cell-autonomous EPO transcription in mouse and human hepatocytes. In mice with Apc-Arid1a gene invalidations in single hepatocytes, Epo de novo synthesis led to its secretion, to splenic erythropoiesis and to dramatic erythrocytosis. Thus, we identified new hepatic EPO regulation mechanism stimulating erythropoiesis.
Collapse
Affiliation(s)
- Rozenn Riou
- INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers (CRC), Paris, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France.,INSERM, CNRS, Institut COCHIN, Paris, France
| | | | - Sabine Gerbal-Chaloin
- INSERM U1183, Université Montpellier, Institute for Regenerative Medicine & Biotherapy (IRMB), Montpellier, France
| | - Pascale Bossard
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France.,INSERM, CNRS, Institut COCHIN, Paris, France
| | - Angélique Gougelet
- INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers (CRC), Paris, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France.,INSERM, CNRS, Institut COCHIN, Paris, France
| | - Cécile Godard
- INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers (CRC), Paris, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France.,INSERM, CNRS, Institut COCHIN, Paris, France
| | - Robin Loesch
- INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers (CRC), Paris, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France.,INSERM, CNRS, Institut COCHIN, Paris, France
| | - Isabelle Lagoutte
- INSERM, CNRS, Institut COCHIN, Paris, France.,Plateforme d'Imageries du Vivant de l'Université de Paris, Paris, France
| | - Franck Lager
- INSERM, CNRS, Institut COCHIN, Paris, France.,Plateforme d'Imageries du Vivant de l'Université de Paris, Paris, France
| | - Julien Calderaro
- INSERM, Université Paris-Est UPEC, Créteil, France.,Department of Pathology, Henri Mondor Hospital, Créteil, France
| | - Alexandre Dos Santos
- INSERM, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
| | - Zhong Wang
- Department of Cardiac Surgery Cardiovascular Research Center, University of Michigan, Ann Arbor, United States
| | | | - Sabine Colnot
- INSERM, Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers (CRC), Paris, France.,Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France.,INSERM, CNRS, Institut COCHIN, Paris, France
| |
Collapse
|
97
|
Hagiwara R, Oki Y, Matsumaru T, Ibayashi S, Kano K. Generation of metabolically functional hepatocyte-like cells from dedifferentiated fat cells by Foxa2, Hnf4a and Sall1 transduction. Genes Cells 2020; 25:811-824. [PMID: 33064855 PMCID: PMC7894465 DOI: 10.1111/gtc.12814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/10/2020] [Accepted: 10/10/2020] [Indexed: 01/17/2023]
Abstract
Mature adipocyte-derived dedifferentiated fat (DFAT) cells have been identified to possess similar multipotency to mesenchymal stem cells, but a method for converting DFAT cells into hepatocytes was previously unknown. Here, using comprehensive analysis of gene expression profiles, we have extracted three transcription factors, namely Foxa2, Hnf4a and Sall1 (FHS), that can convert DFAT cells into hepatocytes. Hepatogenic induction has converted FHS-infected DFAT cells into an epithelial-like morphological state and promoted the expression of hepatocyte-specific features. Furthermore, the DFAT-derived hepatocyte-like (D-Hep) cells catalyzed the detoxification of several compounds. These results indicate that the transduction of DFAT cells with three genes, which were extracted by comprehensive gene expression analysis, efficiently generated D-Hep cells with detoxification abilities similar to those of primary hepatocytes. Thus, D-Hep cells may be useful as a new cell source for surrogate hepatocytes and may be applied to drug discovery studies, such as hepatotoxicity screening and drug metabolism tests.
Collapse
Affiliation(s)
- Reiko Hagiwara
- Laboratory of Cell and Tissue Biology, Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Yoshinao Oki
- Laboratory of Cell and Tissue Biology, Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Takashi Matsumaru
- Laboratory of Cell and Tissue Biology, Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Shiho Ibayashi
- Laboratory of Cell and Tissue Biology, Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Japan
| |
Collapse
|
98
|
Wild SL, Elghajiji A, Grimaldos Rodriguez C, Weston SD, Burke ZD, Tosh D. The Canonical Wnt Pathway as a Key Regulator in Liver Development, Differentiation and Homeostatic Renewal. Genes (Basel) 2020; 11:genes11101163. [PMID: 33008122 PMCID: PMC7599793 DOI: 10.3390/genes11101163] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023] Open
Abstract
The canonical Wnt (Wnt/β-catenin) signalling pathway is highly conserved and plays a critical role in regulating cellular processes both during development and in adult tissue homeostasis. The Wnt/β-catenin signalling pathway is vital for correct body patterning and is involved in fate specification of the gut tube, the primitive precursor of liver. In adults, the Wnt/β-catenin pathway is increasingly recognised as an important regulator of metabolic zonation, homeostatic renewal and regeneration in response to injury throughout the liver. Herein, we review recent developments relating to the key role of the pathway in the patterning and fate specification of the liver, in the directed differentiation of pluripotent stem cells into hepatocytes and in governing proliferation and zonation in the adult liver. We pay particular attention to recent contributions to the controversy surrounding homeostatic renewal and proliferation in response to injury. Furthermore, we discuss how crosstalk between the Wnt/β-catenin and Hedgehog (Hh) and hypoxia inducible factor (HIF) pathways works to maintain liver homeostasis. Advancing our understanding of this pathway will benefit our ability to model disease, screen drugs and generate tissue and organ replacements for regenerative medicine.
Collapse
|
99
|
Pek NMQ, Liu KJ, Nichane M, Ang LT. Controversies Surrounding the Origin of Hepatocytes in Adult Livers and the in Vitro Generation or Propagation of Hepatocytes. Cell Mol Gastroenterol Hepatol 2020; 11:273-290. [PMID: 32992051 PMCID: PMC7695885 DOI: 10.1016/j.jcmgh.2020.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/21/2022]
Abstract
Epithelial cells in the liver (known as hepatocytes) are high-performance engines of myriad metabolic functions and versatile responders to liver injury. As hepatocytes metabolize amino acids, alcohol, drugs, and other substrates, they produce and are exposed to a milieu of toxins and harmful byproducts that can damage themselves. In the healthy liver, hepatocytes generally divide slowly. However, after liver injury, hepatocytes can ramp up proliferation to regenerate the liver. Yet, on extensive injury, regeneration falters, and liver failure ensues. It is therefore critical to understand the mechanisms underlying liver regeneration and, in particular, which liver cells are mobilized during liver maintenance and repair. Controversies continue to surround the very existence of hepatic stem cells and, if they exist, their spatial location, multipotency, degree of contribution to regeneration, ploidy, and susceptibility to tumorigenesis. This review discusses these controversies. Finally, we highlight how insights into hepatocyte regeneration and biology in vivo can inform in vitro studies to propagate primary hepatocytes with liver regeneration-associated signals and to generate hepatocytes de novo from pluripotent stem cells.
Collapse
Affiliation(s)
| | | | | | - Lay Teng Ang
- Correspondence Address correspondence to: Lay Teng Ang, PhD, Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford-UC Berkeley Siebel Stem Cell Institute, Stanford University School of Medicine, Stanford, California 94305.
| |
Collapse
|
100
|
Kolbe E, Aleithe S, Rennert C, Spormann L, Ott F, Meierhofer D, Gajowski R, Stöpel C, Hoehme S, Kücken M, Brusch L, Seifert M, von Schoenfels W, Schafmayer C, Brosch M, Hofmann U, Damm G, Seehofer D, Hampe J, Gebhardt R, Matz-Soja M. Mutual Zonated Interactions of Wnt and Hh Signaling Are Orchestrating the Metabolism of the Adult Liver in Mice and Human. Cell Rep 2020; 29:4553-4567.e7. [PMID: 31875560 DOI: 10.1016/j.celrep.2019.11.104] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/14/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
The Hedgehog (Hh) and Wnt/β-Catenin (Wnt) cascades are morphogen pathways whose pronounced influence on adult liver metabolism has been identified in recent years. How both pathways communicate and control liver metabolic functions are largely unknown. Detecting core components of Wnt and Hh signaling and mathematical modeling showed that both pathways in healthy liver act largely complementary to each other in the pericentral (Wnt) and the periportal zone (Hh) and communicate mainly by mutual repression. The Wnt/Hh module inversely controls the spatiotemporal operation of various liver metabolic pathways, as revealed by transcriptome, proteome, and metabolome analyses. Shifting the balance to Wnt (activation) or Hh (inhibition) causes pericentralization and periportalization of liver functions, respectively. Thus, homeostasis of the Wnt/Hh module is essential for maintaining proper liver metabolism and to avoid the development of certain metabolic diseases. With caution due to minor species-specific differences, these conclusions may hold for human liver as well.
Collapse
Affiliation(s)
- Erik Kolbe
- Rudolf-Schönheimer-Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Susanne Aleithe
- Department of Neurology, Leipzig University, Leipzig 04103, Germany
| | - Christiane Rennert
- Rudolf-Schönheimer-Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany; Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig 04103, Germany
| | - Luise Spormann
- Rudolf-Schönheimer-Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Fritzi Ott
- Rudolf-Schönheimer-Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Mass Spectrometry Faculty, Berlin 14195, Germany
| | - Robert Gajowski
- Max Planck Institute for Molecular Genetics, Mass Spectrometry Faculty, Berlin 14195, Germany
| | - Claus Stöpel
- Institute for Computer Science, Leipzig University, Leipzig 04103, Germany
| | - Stefan Hoehme
- Institute for Computer Science, Leipzig University, Leipzig 04103, Germany
| | - Michael Kücken
- Center for Information Services and High Performance Computing, Technische Universität Dresden, Dresden 01069, Germany
| | - Lutz Brusch
- Center for Information Services and High Performance Computing, Technische Universität Dresden, Dresden 01069, Germany
| | - Michael Seifert
- Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden 01307, Germany
| | - Witigo von Schoenfels
- Department of General Surgery and Thoracic Surgery, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Clemens Schafmayer
- Department of General Surgery and Thoracic Surgery, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Mario Brosch
- Medical Department 1, University Hospital Dresden, Technical University Dresden, Dresden 01069, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, University of Tübingen, Stuttgart 70376, Germany
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig 04103, Germany
| | - Daniel Seehofer
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig 04103, Germany
| | - Jochen Hampe
- Medical Department 1, University Hospital Dresden, Technical University Dresden, Dresden 01069, Germany
| | - Rolf Gebhardt
- Rudolf-Schönheimer-Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Madlen Matz-Soja
- Rudolf-Schönheimer-Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany.
| |
Collapse
|