51
|
Sawada N, Arany Z. Metabolic Regulation of Angiogenesis in Diabetes and Aging. Physiology (Bethesda) 2018; 32:290-307. [PMID: 28615313 DOI: 10.1152/physiol.00039.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/24/2017] [Accepted: 04/05/2017] [Indexed: 12/16/2022] Open
Abstract
Impaired angiogenesis and endothelial dysfunction are hallmarks of diabetes and aging. Clinical efforts at promoting angiogenesis have largely focused on growth factor pathways, with mixed results. Recently, a new repertoire of endothelial intracellular molecules critical to endothelial metabolism has emerged as playing an important role in regulating angiogenesis. This review thus focuses on the emerging importance and therapeutic potential of these proteins and of endothelial bioenergetics in diabetes and aging.
Collapse
Affiliation(s)
- Naoki Sawada
- Department of Cell Biology and Molecular Medicine, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey.,Department of Cell Biology and Molecular Medicine, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey.,Division of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo, Japan; and
| | - Zolt Arany
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
52
|
Medina G, Vera-Lastra O, Peralta-Amaro AL, Jiménez-Arellano MP, Saavedra MA, Cruz-Domínguez MP, Jara LJ. Metabolic syndrome, autoimmunity and rheumatic diseases. Pharmacol Res 2018; 133:277-288. [DOI: 10.1016/j.phrs.2018.01.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 12/14/2022]
|
53
|
Salazar J, Bermúdez V, Olivar LC, Torres W, Palmar J, Añez R, Ordoñez MG, Rivas JR, Martínez MS, Hernández JD, Graterol M, Rojas J. Insulin resistance indices and coronary risk in adults from Maracaibo city, Venezuela: A cross sectional study. F1000Res 2018; 7:44. [PMID: 30210784 PMCID: PMC6107995 DOI: 10.12688/f1000research.13610.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/03/2018] [Indexed: 09/29/2023] Open
Abstract
Background: Insulin resistance (IR) is a metabolic disorder related to atherosclerosis. Its measurement is of great importance not only as a marker of diabetes but also for cardiovascular disease. The aim of this research study was to evaluate the relationship between various IR indices and coronary risk in an adult population from Maracaibo city, Venezuela. Methods: The Maracaibo City Metabolic Syndrome Prevalence Study is a descriptive, cross-sectional study with random and multi-stage sampling. In this sub study, 1272 individuals of both genders were selected with the measurement of basal insulin and coronary risk according to the Framingham-Wilson formula calibrated for our population. The insulin resistance indices evaluated were HOMA2-IR, triglycerides and glucose index (TyG) and triglycerides/HDL ratio (TG/HDL). The predictive capacity and association between each index and the coronary risk event in 10 years were determined. Results: Of the evaluated population, 55.2% were female, 34.8% had a coronary risk ≥5% in 10 years, with the TG/HDL and TyG indices showing the highest AUC 0.712 (0.681-0.743) and 0.707 (0.675-0.739), respectively; compared to HOMA2-IR. Both were also the indices most associated with increased coronary risk, especially TG/HDL ≥3 with a higher association [OR = 2.83 (1.74-4.61); p<0.01] after multivariable adjustment. Conclusions: TyG (≥4.5) and TG/HDL (≥3) indices showed a great predictive capacity of higher coronary risk, with being TG/HDL more associated even after adjusting for abdominal obesity and hs-CRP. Therefore, these represent useful tools for determining IR.
Collapse
Affiliation(s)
- Juan Salazar
- Endocrine and Metabolic Research Center, University of Zulia, Maracaibo, Venezuela
| | - Valmore Bermúdez
- Endocrine and Metabolic Research Center, University of Zulia, Maracaibo, Venezuela
- Grupo de Investigación Altos Estudios de Frontera (ALEF), Universidad Simón Bolívar, Cucuta, Colombia
| | - Luis Carlos Olivar
- Endocrine and Metabolic Research Center, University of Zulia, Maracaibo, Venezuela
| | - Wheeler Torres
- Endocrine and Metabolic Research Center, University of Zulia, Maracaibo, Venezuela
| | - Jim Palmar
- Endocrine and Metabolic Research Center, University of Zulia, Maracaibo, Venezuela
| | - Roberto Añez
- Endocrine and Metabolic Research Center, University of Zulia, Maracaibo, Venezuela
| | - Maria Gratzia Ordoñez
- Centro de Salud San Marcos, Ministerio de Salud Pública, Provincia de Santa Elena, Ecuador
| | - José Ramón Rivas
- Endocrine and Metabolic Research Center, University of Zulia, Maracaibo, Venezuela
| | - María Sofía Martínez
- Endocrine and Metabolic Research Center, University of Zulia, Maracaibo, Venezuela
| | - Juan Diego Hernández
- Grupo de Investigación Altos Estudios de Frontera (ALEF), Universidad Simón Bolívar, Cucuta, Colombia
| | - Modesto Graterol
- Grupo de Investigación Altos Estudios de Frontera (ALEF), Universidad Simón Bolívar, Cucuta, Colombia
| | - Joselyn Rojas
- Pulmonary and Critical Care Medicine Department, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
54
|
Salazar J, Bermúdez V, Olivar LC, Torres W, Palmar J, Añez R, Ordoñez MG, Rivas JR, Martínez MS, Hernández JD, Graterol M, Rojas J. Insulin resistance indices and coronary risk in adults from Maracaibo city, Venezuela: A cross sectional study. F1000Res 2018; 7:44. [PMID: 30210784 PMCID: PMC6107995 DOI: 10.12688/f1000research.13610.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/07/2018] [Indexed: 12/19/2022] Open
Abstract
Background: Insulin resistance (IR) is a metabolic disorder related to atherosclerosis. Its measurement is of great importance not only as a marker of diabetes but also for cardiovascular disease. The aim of this research study was to evaluate the relationship between various IR indices and coronary risk in an adult population from Maracaibo city, Venezuela. Methods: The Maracaibo City Metabolic Syndrome Prevalence Study is a descriptive, cross-sectional study with random and multi-stage sampling. In this sub study, 1272 individuals of both genders were selected with the measurement of basal insulin and coronary risk according to the Framingham-Wilson formula calibrated for our population. The insulin resistance indices evaluated were HOMA2-IR, triglycerides and glucose index (TyG) and triglycerides/HDL ratio (TG/HDL). The predictive capacity and association between each index and the coronary risk event in 10 years were determined. Results: Of the evaluated population, 55.2% were female, 34.8% had a coronary risk ≥5% in 10 years, with the TG/HDL and TyG indices showing the highest AUC 0.712 (0.681-0.743) and 0.707 (0.675-0.739), respectively; compared to HOMA2-IR. Both were also the indices most associated with increased coronary risk, especially TG/HDL ≥3 with a higher association [OR = 2.83 (1.74-4.61); p<0.01] after multivariable adjustment. Conclusions: TyG (≥4.5) and TG/HDL (≥3) indices showed a great predictive capacity of higher coronary risk, with being TG/HDL more associated even after adjusting for abdominal obesity and hs-CRP. Therefore, these represent useful tools for determining IR.
Collapse
Affiliation(s)
- Juan Salazar
- Endocrine and Metabolic Research Center, University of Zulia, Maracaibo, Venezuela
| | - Valmore Bermúdez
- Endocrine and Metabolic Research Center, University of Zulia, Maracaibo, Venezuela
- Grupo de Investigación Altos Estudios de Frontera (ALEF), Universidad Simón Bolívar, Cucuta, Colombia
| | - Luis Carlos Olivar
- Endocrine and Metabolic Research Center, University of Zulia, Maracaibo, Venezuela
| | - Wheeler Torres
- Endocrine and Metabolic Research Center, University of Zulia, Maracaibo, Venezuela
| | - Jim Palmar
- Endocrine and Metabolic Research Center, University of Zulia, Maracaibo, Venezuela
| | - Roberto Añez
- Endocrine and Metabolic Research Center, University of Zulia, Maracaibo, Venezuela
| | - Maria Gratzia Ordoñez
- Centro de Salud San Marcos, Ministerio de Salud Pública, Provincia de Santa Elena, Ecuador
| | - José Ramón Rivas
- Endocrine and Metabolic Research Center, University of Zulia, Maracaibo, Venezuela
| | - María Sofía Martínez
- Endocrine and Metabolic Research Center, University of Zulia, Maracaibo, Venezuela
| | - Juan Diego Hernández
- Grupo de Investigación Altos Estudios de Frontera (ALEF), Universidad Simón Bolívar, Cucuta, Colombia
| | - Modesto Graterol
- Grupo de Investigación Altos Estudios de Frontera (ALEF), Universidad Simón Bolívar, Cucuta, Colombia
| | - Joselyn Rojas
- Pulmonary and Critical Care Medicine Department, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
55
|
Sudhahar V, Okur MN, Bagi Z, O'Bryan JP, Hay N, Makino A, Patel VS, Phillips SA, Stepp D, Ushio-Fukai M, Fukai T. Akt2 (Protein Kinase B Beta) Stabilizes ATP7A, a Copper Transporter for Extracellular Superoxide Dismutase, in Vascular Smooth Muscle: Novel Mechanism to Limit Endothelial Dysfunction in Type 2 Diabetes Mellitus. Arterioscler Thromb Vasc Biol 2018; 38:529-541. [PMID: 29301787 DOI: 10.1161/atvbaha.117.309819] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 12/26/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Copper transporter ATP7A (copper-transporting/ATPase) is required for full activation of SOD3 (extracellular superoxide dismutase), which is secreted from vascular smooth muscle cells (VSMCs) and anchors to endothelial cell surface to preserve endothelial function by scavenging extracellular superoxide. We reported that ATP7A protein expression and SOD3 activity are decreased in insulin-deficient type 1 diabetes mellitus vessels, thereby, inducing superoxide-mediated endothelial dysfunction, which are rescued by insulin treatment. However, it is unknown regarding the mechanism by which insulin increases ATP7A expression in VSMCs and whether ATP7A downregulation is observed in T2DM (type2 diabetes mellitus) mice and human in which insulin-Akt (protein kinase B) pathway is selectively impaired. APPROACH AND RESULTS Here we show that ATP7A protein is markedly downregulated in vessels isolated from T2DM patients, as well as those from high-fat diet-induced or db/db T2DM mice. Akt2 (protein kinase B beta) activated by insulin promotes ATP7A stabilization via preventing ubiquitination/degradation as well as translocation to plasma membrane in VSMCs, which contributes to activation of SOD3 that protects against T2DM-induced endothelial dysfunction. Downregulation of ATP7A in T2DM vessels is restored by constitutive active Akt or PTP1B-/- (protein-tyrosine phosphatase 1B-deficient) T2DM mice, which enhance insulin-Akt signaling. Immunoprecipitation, in vitro kinase assay, and mass spectrometry analysis reveal that insulin stimulates Akt2 binding to ATP7A to induce phosphorylation at Ser1424/1463/1466. Furthermore, SOD3 activity is reduced in Akt2-/- vessels or VSMCs, which is rescued by ATP7A overexpression. CONCLUSION Akt2 plays a critical role in ATP7A protein stabilization and translocation to plasma membrane in VSMCs, which contributes to full activation of vascular SOD3 that protects against endothelial dysfunction in T2DM.
Collapse
Affiliation(s)
- Varadarajan Sudhahar
- From the Vascular Biology Center (V.S., Z.B., D.S., M.U.-F., T.F.), Department of Pharmacology and Toxicology (V.S., T.F.), Department of Medicine (Cardiology) (Z.B., M.U.-F.), and Department of Surgery (V.S.P.), Medical College of Georgia at Augusta University; Departments of Medicine (Cardiology) and Pharmacology (V.S., T.F.), Department of Pharmacology (M.N.O., J.P.O., M.U.-F.), Center for Cardiovascular Research (V.S., J.P.O., M.U.-F., T.F.), Department of Physical Therapy (S.A.P.), and Department of Biochemistry and Molecular Genetics (N.H.), University of Illinois at Chicago; Department of Medicine and Physiology, University of Arizona, Tucson (A.M.), Jesse Brown Veterans Affairs Medical Center, Chicago, IL (V.S., T.F.); and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA (V.S., T.F.)
| | - Mustafa Nazir Okur
- From the Vascular Biology Center (V.S., Z.B., D.S., M.U.-F., T.F.), Department of Pharmacology and Toxicology (V.S., T.F.), Department of Medicine (Cardiology) (Z.B., M.U.-F.), and Department of Surgery (V.S.P.), Medical College of Georgia at Augusta University; Departments of Medicine (Cardiology) and Pharmacology (V.S., T.F.), Department of Pharmacology (M.N.O., J.P.O., M.U.-F.), Center for Cardiovascular Research (V.S., J.P.O., M.U.-F., T.F.), Department of Physical Therapy (S.A.P.), and Department of Biochemistry and Molecular Genetics (N.H.), University of Illinois at Chicago; Department of Medicine and Physiology, University of Arizona, Tucson (A.M.), Jesse Brown Veterans Affairs Medical Center, Chicago, IL (V.S., T.F.); and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA (V.S., T.F.)
| | - Zsolt Bagi
- From the Vascular Biology Center (V.S., Z.B., D.S., M.U.-F., T.F.), Department of Pharmacology and Toxicology (V.S., T.F.), Department of Medicine (Cardiology) (Z.B., M.U.-F.), and Department of Surgery (V.S.P.), Medical College of Georgia at Augusta University; Departments of Medicine (Cardiology) and Pharmacology (V.S., T.F.), Department of Pharmacology (M.N.O., J.P.O., M.U.-F.), Center for Cardiovascular Research (V.S., J.P.O., M.U.-F., T.F.), Department of Physical Therapy (S.A.P.), and Department of Biochemistry and Molecular Genetics (N.H.), University of Illinois at Chicago; Department of Medicine and Physiology, University of Arizona, Tucson (A.M.), Jesse Brown Veterans Affairs Medical Center, Chicago, IL (V.S., T.F.); and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA (V.S., T.F.)
| | - John P O'Bryan
- From the Vascular Biology Center (V.S., Z.B., D.S., M.U.-F., T.F.), Department of Pharmacology and Toxicology (V.S., T.F.), Department of Medicine (Cardiology) (Z.B., M.U.-F.), and Department of Surgery (V.S.P.), Medical College of Georgia at Augusta University; Departments of Medicine (Cardiology) and Pharmacology (V.S., T.F.), Department of Pharmacology (M.N.O., J.P.O., M.U.-F.), Center for Cardiovascular Research (V.S., J.P.O., M.U.-F., T.F.), Department of Physical Therapy (S.A.P.), and Department of Biochemistry and Molecular Genetics (N.H.), University of Illinois at Chicago; Department of Medicine and Physiology, University of Arizona, Tucson (A.M.), Jesse Brown Veterans Affairs Medical Center, Chicago, IL (V.S., T.F.); and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA (V.S., T.F.)
| | - Nissim Hay
- From the Vascular Biology Center (V.S., Z.B., D.S., M.U.-F., T.F.), Department of Pharmacology and Toxicology (V.S., T.F.), Department of Medicine (Cardiology) (Z.B., M.U.-F.), and Department of Surgery (V.S.P.), Medical College of Georgia at Augusta University; Departments of Medicine (Cardiology) and Pharmacology (V.S., T.F.), Department of Pharmacology (M.N.O., J.P.O., M.U.-F.), Center for Cardiovascular Research (V.S., J.P.O., M.U.-F., T.F.), Department of Physical Therapy (S.A.P.), and Department of Biochemistry and Molecular Genetics (N.H.), University of Illinois at Chicago; Department of Medicine and Physiology, University of Arizona, Tucson (A.M.), Jesse Brown Veterans Affairs Medical Center, Chicago, IL (V.S., T.F.); and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA (V.S., T.F.)
| | - Ayako Makino
- From the Vascular Biology Center (V.S., Z.B., D.S., M.U.-F., T.F.), Department of Pharmacology and Toxicology (V.S., T.F.), Department of Medicine (Cardiology) (Z.B., M.U.-F.), and Department of Surgery (V.S.P.), Medical College of Georgia at Augusta University; Departments of Medicine (Cardiology) and Pharmacology (V.S., T.F.), Department of Pharmacology (M.N.O., J.P.O., M.U.-F.), Center for Cardiovascular Research (V.S., J.P.O., M.U.-F., T.F.), Department of Physical Therapy (S.A.P.), and Department of Biochemistry and Molecular Genetics (N.H.), University of Illinois at Chicago; Department of Medicine and Physiology, University of Arizona, Tucson (A.M.), Jesse Brown Veterans Affairs Medical Center, Chicago, IL (V.S., T.F.); and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA (V.S., T.F.)
| | - Vijay S Patel
- From the Vascular Biology Center (V.S., Z.B., D.S., M.U.-F., T.F.), Department of Pharmacology and Toxicology (V.S., T.F.), Department of Medicine (Cardiology) (Z.B., M.U.-F.), and Department of Surgery (V.S.P.), Medical College of Georgia at Augusta University; Departments of Medicine (Cardiology) and Pharmacology (V.S., T.F.), Department of Pharmacology (M.N.O., J.P.O., M.U.-F.), Center for Cardiovascular Research (V.S., J.P.O., M.U.-F., T.F.), Department of Physical Therapy (S.A.P.), and Department of Biochemistry and Molecular Genetics (N.H.), University of Illinois at Chicago; Department of Medicine and Physiology, University of Arizona, Tucson (A.M.), Jesse Brown Veterans Affairs Medical Center, Chicago, IL (V.S., T.F.); and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA (V.S., T.F.)
| | - Shane A Phillips
- From the Vascular Biology Center (V.S., Z.B., D.S., M.U.-F., T.F.), Department of Pharmacology and Toxicology (V.S., T.F.), Department of Medicine (Cardiology) (Z.B., M.U.-F.), and Department of Surgery (V.S.P.), Medical College of Georgia at Augusta University; Departments of Medicine (Cardiology) and Pharmacology (V.S., T.F.), Department of Pharmacology (M.N.O., J.P.O., M.U.-F.), Center for Cardiovascular Research (V.S., J.P.O., M.U.-F., T.F.), Department of Physical Therapy (S.A.P.), and Department of Biochemistry and Molecular Genetics (N.H.), University of Illinois at Chicago; Department of Medicine and Physiology, University of Arizona, Tucson (A.M.), Jesse Brown Veterans Affairs Medical Center, Chicago, IL (V.S., T.F.); and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA (V.S., T.F.)
| | - David Stepp
- From the Vascular Biology Center (V.S., Z.B., D.S., M.U.-F., T.F.), Department of Pharmacology and Toxicology (V.S., T.F.), Department of Medicine (Cardiology) (Z.B., M.U.-F.), and Department of Surgery (V.S.P.), Medical College of Georgia at Augusta University; Departments of Medicine (Cardiology) and Pharmacology (V.S., T.F.), Department of Pharmacology (M.N.O., J.P.O., M.U.-F.), Center for Cardiovascular Research (V.S., J.P.O., M.U.-F., T.F.), Department of Physical Therapy (S.A.P.), and Department of Biochemistry and Molecular Genetics (N.H.), University of Illinois at Chicago; Department of Medicine and Physiology, University of Arizona, Tucson (A.M.), Jesse Brown Veterans Affairs Medical Center, Chicago, IL (V.S., T.F.); and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA (V.S., T.F.)
| | - Masuko Ushio-Fukai
- From the Vascular Biology Center (V.S., Z.B., D.S., M.U.-F., T.F.), Department of Pharmacology and Toxicology (V.S., T.F.), Department of Medicine (Cardiology) (Z.B., M.U.-F.), and Department of Surgery (V.S.P.), Medical College of Georgia at Augusta University; Departments of Medicine (Cardiology) and Pharmacology (V.S., T.F.), Department of Pharmacology (M.N.O., J.P.O., M.U.-F.), Center for Cardiovascular Research (V.S., J.P.O., M.U.-F., T.F.), Department of Physical Therapy (S.A.P.), and Department of Biochemistry and Molecular Genetics (N.H.), University of Illinois at Chicago; Department of Medicine and Physiology, University of Arizona, Tucson (A.M.), Jesse Brown Veterans Affairs Medical Center, Chicago, IL (V.S., T.F.); and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA (V.S., T.F.)
| | - Tohru Fukai
- From the Vascular Biology Center (V.S., Z.B., D.S., M.U.-F., T.F.), Department of Pharmacology and Toxicology (V.S., T.F.), Department of Medicine (Cardiology) (Z.B., M.U.-F.), and Department of Surgery (V.S.P.), Medical College of Georgia at Augusta University; Departments of Medicine (Cardiology) and Pharmacology (V.S., T.F.), Department of Pharmacology (M.N.O., J.P.O., M.U.-F.), Center for Cardiovascular Research (V.S., J.P.O., M.U.-F., T.F.), Department of Physical Therapy (S.A.P.), and Department of Biochemistry and Molecular Genetics (N.H.), University of Illinois at Chicago; Department of Medicine and Physiology, University of Arizona, Tucson (A.M.), Jesse Brown Veterans Affairs Medical Center, Chicago, IL (V.S., T.F.); and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA (V.S., T.F.).
| |
Collapse
|
56
|
Zafar MI, Mills K, Ye X, Blakely B, Min J, Kong W, Zhang N, Gou L, Regmi A, Hu SQ, Zheng J, Chen LL. Association between the expression of vascular endothelial growth factors and metabolic syndrome or its components: a systematic review and meta-analysis. Diabetol Metab Syndr 2018; 10:62. [PMID: 30087698 PMCID: PMC6076391 DOI: 10.1186/s13098-018-0363-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/30/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Several studies have linked vascular endothelial growth factors (VEGFs) with metabolic syndrome or its components. However, there has been no systematic appraisal of the findings of these studies to date. The current systematic review and meta-analysis was conducted to explore this association. METHODS PubMed, EMBASE, the Cochrane library, and clinical trials registries were used to retrieve peer-reviewed clinical studies that had evaluated the association of VEGFs with metabolic syndrome or its components without applying language and date restrictions. The final search was performed on 29 September 2017. RESULTS We included 32 studies in this systematic review and meta-analysis, of which 16 studies (19 study arms) were included in the meta-analysis and remaining studies were qualitatively assessed. Overall, VEGF-A, VEGF-B and VEGF-C were strongly associated with metabolic syndrome or its components. The components of metabolic syndrome varied in their association. Obesity was not correlated with increased VEGF-A expression (p = 0.12), whereas VEGF-B and VEGF-C expression was significantly higher in those with obesity. In contrast, hyperglycemia in type 1 diabetes was strongly associated with increased VEGF-A levels (p < 0.00001), as was type 2 diabetes (p = 0.0006). The studies included in the qualitative analysis similarly showed an increase in VEGF family expression in people with metabolic syndrome, and with its components. CONCLUSION The increased concentrations of vascular endothelial growth factors are variably associated with metabolic syndrome or its components. Each VEGF protein has a unique set of associations with the disease state.
Collapse
Affiliation(s)
- Mohammad Ishraq Zafar
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Kerry Mills
- Health Research Institute, University of Canberra, Canberra, Australia
| | - Xiaofeng Ye
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Brette Blakely
- Centre for Healthcare Resilience and Implementation Science (CHRIS), Australian Institute of Health Innovation, Macquarie University, Sydney, NSW Australia
| | - Jie Min
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Nan Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Luoning Gou
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Anita Regmi
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Sheng Qing Hu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Juan Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Lu-Lu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
57
|
|
58
|
Lee JH, Lee R, Hwang MH, Hamilton MT, Park Y. The effects of exercise on vascular endothelial function in type 2 diabetes: a systematic review and meta-analysis. Diabetol Metab Syndr 2018; 10:15. [PMID: 29541164 PMCID: PMC5840787 DOI: 10.1186/s13098-018-0316-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Vascular endothelial dysfunction induced by hyperglycemia and elevated insulin resistance is a potent risk factor for cardiovascular disease and likely contributes to multiple chronic disease complications associated with aging. The aim of this study was to systematically review and quantify the effects of exercise on endothelial function (EF) in type 2 diabetes (T2D). METHODS Five electronic databases were searched (until June 2017) for studies that met the following criteria: (i) randomized controlled trials; (ii) T2D aged ≥ 18 years; (iii) measured EF by brachial artery flow-mediated dilation (FMD); (iv) structured and supervised exercise intervention for ≥ 8 weeks. RESULTS Thirteen cohorts, selected from eight studies (306 patients, average age 59 years), met the inclusion criteria. Exercise training significantly increased FMD (mean ES = 0.41, 95% CI 0.21-0.62, P < 0.001). Low to moderate intensity subgroups and aerobic exercise (AE) subgroups significantly increased FMD more than moderate to high intensity subgroups and combined AE and resistance exercise subgroups respectively (P < 0.01, P < 0.05). The Grading of Recommendations Assessment, Development and Evaluation (GRADE) assessments reported that quality of evidence for all outcomes was moderate except shear rate showing low. Egger's test showed no significant publication bias for all outcomes. CONCLUSION Our results suggest that in patients with T2D, lower intensity exercise has physiological meaningful effects on EF, in support of the emerging concept that the lower efforts of exercise are not necessarily less cardioprotective than higher intensity training.
Collapse
Affiliation(s)
- Jung-Hoon Lee
- Laboratory of Human Physiology, Korea National Sport University, Seoul, Republic of Korea
| | - Ruda Lee
- Exercise & Cardiovascular Physiology Laboratory, Division of Health and Exercise Science, Incheon National University, Incheon, Republic of Korea
- Sport Science Institute, Incheon National University, Incheon, Republic of Korea
| | - Moon-Hyon Hwang
- Exercise & Cardiovascular Physiology Laboratory, Division of Health and Exercise Science, Incheon National University, Incheon, Republic of Korea
- Sport Science Institute, Incheon National University, Incheon, Republic of Korea
| | - Marc T. Hamilton
- Texas Obesity Research Center from the Division of Research, and Department of Health and Human Performance, University of Houston, Houston, TX USA
| | - Yoonjung Park
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, 3875 Holman St, Houston, TX 77204-6015 USA
| |
Collapse
|
59
|
The role of vascular endothelial growth factor-B in metabolic homoeostasis: current evidence. Biosci Rep 2017; 37:BSR20171089. [PMID: 28798193 PMCID: PMC5577206 DOI: 10.1042/bsr20171089] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 02/07/2023] Open
Abstract
It has been shown that adipose tissue and skeletal muscles in lean individuals respond to meal-induced hyperinsulinemia by increase in perfusion, the effect not observed in patients with metabolic syndrome. In conditions of hyperglycaemia and hypertriglyceridemia, this insufficient vascularization leads to the liberation of reactive oxygen species (ROS), and disruption of nitric oxide (NO) synthesis and endothelial signalling responsible for the uptake of circulating fatty acids (FAs), whose accumulation in skeletal muscles and adipose tissue is widely associated with the impairment of insulin signalling. While the angiogenic role of VEGF-A and its increased circulating concentrations in obesity have been widely confirmed, the data related to the metabolic role of VEGF-B are diverse. However, recent discoveries indicate that this growth factor may be a promising therapeutic agent in patients with metabolic syndrome. Preclinical studies agree over two crucial metabolic effects of VEGF-B: (i) regulation of FAs uptake and (ii) regulation of tissue perfusion via activation of VEGF-A/vascular endothelial growth factor receptor (VEGFR) 2 (VEGFR2) pathway. While in some preclinical high-fat diet studies, VEGF-B overexpression reverted glucose intolerance and stimulated fat burning, in others it further promoted accumulation of lipids and lipotoxicity. Data from clinical studies point out the changes in circulating or tissue expression levels of VEGF-B in obese compared with lean patients. Potentially beneficial effects of VEGF-B, achieved through enhanced blood flow (increased availability of insulin and glucose uptake in target organs) and decreased FAs uptake (prevention of lipotoxicity and improved insulin signalling), and its safety for clinical use, remain to be clarified through future translational research.
Collapse
|
60
|
Sun XJ, Kim SP, Zhang D, Sun H, Cao Q, Lu X, Ying Z, Li L, Henry RR, Ciaraldi TP, Taylor SI, Quon MJ. Deletion of interleukin 1 receptor-associated kinase 1 ( Irak1) improves glucose tolerance primarily by increasing insulin sensitivity in skeletal muscle. J Biol Chem 2017; 292:12339-12350. [PMID: 28572512 DOI: 10.1074/jbc.m117.779108] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/15/2017] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation may contribute to insulin resistance via molecular cross-talk between pathways for pro-inflammatory and insulin signaling. Interleukin 1 receptor-associated kinase 1 (IRAK-1) mediates pro-inflammatory signaling via IL-1 receptor/Toll-like receptors, which may contribute to insulin resistance, but this hypothesis is untested. Here, we used male Irak1 null (k/o) mice to investigate the metabolic role of IRAK-1. C57BL/6 wild-type (WT) and k/o mice had comparable body weights on low-fat and high-fat diets (LFD and HFD, respectively). After 12 weeks on LFD (but not HFD), k/o mice (versus WT) had substantially improved glucose tolerance (assessed by the intraperitoneal glucose tolerance test (IPGTT)). As assessed with the hyperinsulinemic euglycemic glucose clamp technique, insulin sensitivity was 30% higher in the Irak1 k/o mice on chow diet, but the Irak1 deletion did not affect IPGTT outcomes in mice on HFD, suggesting that the deletion did not overcome the impact of obesity on glucose tolerance. Moreover, insulin-stimulated glucose-disposal rates were higher in the k/o mice, but we detected no significant difference in hepatic glucose production rates (± insulin infusion). Positron emission/computed tomography scans indicated higher insulin-stimulated glucose uptake in muscle, but not liver, in Irak1 k/o mice in vivo Moreover, insulin-stimulated phosphorylation of Akt was higher in muscle, but not in liver, from Irak1 k/o mice ex vivo In conclusion, Irak1 deletion improved muscle insulin sensitivity, with the effect being most apparent in LFD mice.
Collapse
Affiliation(s)
- Xiao-Jian Sun
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland 21201; Geriatric Research Education and Clinical Center, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201.
| | - Soohyun Park Kim
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Dongming Zhang
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland 21201; Second Affiliated Hospital, Zhengzhou University, Zhengzhou 450014, China
| | - Helen Sun
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Qi Cao
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Xin Lu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Zhekang Ying
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Liwu Li
- Virginia Tech, Blacksburg, Virginia 24061
| | - Robert R Henry
- Veterans Affairs San Diego Healthcare System, San Diego, California 92166; Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Theodore P Ciaraldi
- Veterans Affairs San Diego Healthcare System, San Diego, California 92166; Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Simeon I Taylor
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Michael J Quon
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
61
|
Endothelial and Perivascular Adipose Tissue Abnormalities in Obesity-Related Vascular Dysfunction: Novel Targets for Treatment. J Cardiovasc Pharmacol 2017; 69:360-368. [DOI: 10.1097/fjc.0000000000000469] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
62
|
Brar PC, Patel P, Katz S. The relationship between insulin resistance and endothelial dysfunction in obese adolescents. J Pediatr Endocrinol Metab 2017; 30:635-642. [PMID: 28525354 DOI: 10.1515/jpem-2016-0404] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/03/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND Insulin resistance and endothelial dysfunction share a reciprocal relationship that links the metabolic and cardiovascular sequelae of obesity. We characterized the brachial artery reactivity testing (BART) and carotid artery-intima media thickness (CIMT) in adolescents categorized as obese insulin resistant (OIR) and obese not insulin resistant (ONIR). Lipoprotein particle (p) analysis and inflammatory cytokines in OIR and ONIR groups were also analyzed. METHODS Obese adolescents (n=40; mean body mass index [BMI] 35.6) were categorized as ONIR and OIR based on their homeostatic model assessment of insulin resistance (HOMA-IR) calculation (≤or> than 3.4). Ultrasound measured conduit arterial function BART, microvascular function (post-ischemic hyperemia) and conduit artery structure CIMT. RESULTS BART did not differ according to IR status (mean±SD: 7.0±4.3% vs. 5.9±3.4% in ONIR and OIR, respectively, p=0.3, but post-ischemic hyperemia was significantly greater in the ONIR group (4.5±2.2 vs. 3.5±3, p=0.04). Atherogenic lipoprotein particles; large VLDL particles and small LDL particles were higher in the OIR compared to ONIR group. CONCLUSIONS OIR adolescents demonstrate an inflamed atherogenic milieu compared to the ONIR adolescents. Microvascular function, but not conduit vessel structure or function, was impaired in association with IR.
Collapse
|
63
|
Niedzwiecki P, Naskret D, Pilacinski S, Pempera M, Uruska A, Adamska A, Zozulinska-Ziolkiewicz D. The Higher the Insulin Resistance the Lower the Cardiac Output in Men with Type 1 Diabetes During the Maximal Exercise Test. Metab Syndr Relat Disord 2017; 15:252-257. [PMID: 28394194 DOI: 10.1089/met.2017.0007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The aim of this study was to assess the hemodynamic parameters analyzed in bioimpedance cardiography during maximal exercise in patients with type 1 diabetes differing in insulin resistance. METHODS The study group consisted of 40 men with type 1 diabetes. Tissue sensitivity to insulin was assessed on the basis of the glucose disposal rate (GDR) analyzed during hyperinsulinemic-euglycemic clamp. Patients were divided into groups with GDR <4.5 mg/kg/min (G1 group-lower insulin sensitivity) and GDR ≥4.5 mg/kg/min (G2 group-higher insulin sensitivity). During the exercise test, the heart rate, systolic volume, cardiac output, cardiac index were measured by the impedance meter (PhysioFlow). RESULTS Compared with the G2 group, the G1 group had a lower cardiac output (CO): during exercise 8.6 (IQR 7.7-10.0) versus 12.8 (IQR 10.8-13.7) L/min; P < 0.0001, at the maximal effort 13.1 (IQR 12.2-16.7) versus 18.6 (IQR 16.9-20.2) L/min; P = 0.001, and during observation after exercise 8.4 (IQR 6.3-9.6) versus 11.9 (IQR 10.1-13.1) L/min; P < 0.0001. We noticed a positive correlation of GDR and cardiac output: during the exercise test (r = 0.63, P = 0.0002), at the maximal effort (Rs 0.56, P = 0.001), and during observation after the exercise test (r = 0.72, P < 0.0001). In multivariate logistic regression, cardiac output during exercise and during observation was associated with high GDR, regardless of the age and duration of diabetes [OR: 1.98 (95% CI 1.10-3.56), P = 0.02 and OR: 1.91 (95% CI 1.05-3.48), P = 0.03; respectively]. CONCLUSION In nonobese subjects with type 1 diabetes, with good metabolic control, insulin resistance is associated with cardiac hemodynamic parameters assessed during and after exercise. The higher the insulin resistance the lower the cardiac output during maximal exercise in men with type 1 diabetes.
Collapse
Affiliation(s)
- Pawel Niedzwiecki
- Department of Internal Medicine and Diabetology, Poznan University of Medical Sciences , Poznan, Poland
| | - Dariusz Naskret
- Department of Internal Medicine and Diabetology, Poznan University of Medical Sciences , Poznan, Poland
| | - Stanislaw Pilacinski
- Department of Internal Medicine and Diabetology, Poznan University of Medical Sciences , Poznan, Poland
| | - Maciej Pempera
- Department of Internal Medicine and Diabetology, Poznan University of Medical Sciences , Poznan, Poland
| | - Aleksandra Uruska
- Department of Internal Medicine and Diabetology, Poznan University of Medical Sciences , Poznan, Poland
| | - Anna Adamska
- Department of Internal Medicine and Diabetology, Poznan University of Medical Sciences , Poznan, Poland
| | | |
Collapse
|
64
|
Camargo AB, Manucha W. Potential protective role of nitric oxide and Hsp70 linked to functional foods in the atherosclerosis. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.artere.2016.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
65
|
Camargo AB, Manucha W. Potencial rol protector del óxido nítrico y Hsp70 asociado a alimentos funcionales en la aterosclerosis. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2017; 29:36-45. [DOI: 10.1016/j.arteri.2016.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 05/22/2016] [Accepted: 05/24/2016] [Indexed: 12/16/2022]
|
66
|
Cabrera L, Saavedra A, Rojas S, Cid M, Valenzuela C, Gallegos D, Careaga P, Basualto E, Haensgen A, Peña E, Rivas C, Vera JC, Gallardo V, Zúñiga L, Escudero C, Sobrevia L, Wareing M, González M. Insulin Induces Relaxation and Decreases Hydrogen Peroxide-Induced Vasoconstriction in Human Placental Vascular Bed in a Mechanism Mediated by Calcium-Activated Potassium Channels and L-Arginine/Nitric Oxide Pathways. Front Physiol 2016; 7:529. [PMID: 27920724 PMCID: PMC5118463 DOI: 10.3389/fphys.2016.00529] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/25/2016] [Indexed: 01/04/2023] Open
Abstract
HIGHLIGHTSShort-term incubation with insulin increases the L-arginine transport in HUVECs. Short-term incubation with insulin increases the NO synthesis in HUVECs. Insulin induces relaxation in human placental vascular bed. Insulin attenuates the constriction induced by hydrogen peroxide in human placenta. The relaxation induced by insulin is dependent on BKCa channels activity in human placenta.
Insulin induces relaxation in umbilical veins, increasing the expression of human amino acid transporter 1 (hCAT-1) and nitric oxide synthesis (NO) in human umbilical vein endothelial cells (HUVECs). Short-term effects of insulin on vasculature have been reported in healthy subjects and cell cultures; however, its mechanisms remain unknown. The aim of this study was to characterize the effect of acute incubation with insulin on the regulation of vascular tone of placental vasculature. HUVECs and chorionic vein rings were isolated from normal pregnancies. The effect of insulin on NO synthesis, L-arginine transport, and hCAT-1 abundance was measured in HUVECs. Isometric tension induced by U46619 (thromboxane A2 analog) or hydrogen peroxide (H2O2) were measured in vessels previously incubated 30 min with insulin and/or the following pharmacological inhibitors: tetraethylammonium (KCa channels), iberiotoxin (BKCa channels), genistein (tyrosine kinases), and wortmannin (phosphatidylinositol 3-kinase). Insulin increases L-arginine transport and NO synthesis in HUVECs. In the placenta, this hormone caused relaxation of the chorionic vein, and reduced perfusion pressure in placental cotyledons. In vessels pre-incubated with insulin, the constriction evoked by H2O2 and U46619 was attenuated and the effect on H2O2-induced constriction was blocked with tetraethylammonium and iberiotoxin, but not with genistein, or wortmannin. Insulin rapidly dilates the placental vasculature through a mechanism involving activity of BKCa channels and L-arginine/NO pathway in endothelial cells. This phenomenon is related to quick increases of hCAT-1 abundance and higher capacity of endothelial cells to take up L-arginine and generate NO.
Collapse
Affiliation(s)
- Lissette Cabrera
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de ConcepciónConcepción, Chile; Department of Morphophysiology, Faculty of Medicine, Universidad Diego PortalesSantiago, Chile
| | - Andrea Saavedra
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Susana Rojas
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Marcela Cid
- Department of Obstetrics and Childcare, Faculty of Medicine, Universidad de Concepción Concepción, Chile
| | - Cristina Valenzuela
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - David Gallegos
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Pamela Careaga
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Emerita Basualto
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Astrid Haensgen
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Eduardo Peña
- Department of Pathophysiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Coralia Rivas
- Department of Pathophysiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Juan Carlos Vera
- Department of Pathophysiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Victoria Gallardo
- Department of Pathophysiology, Faculty of Biological Sciences, Universidad de ConcepciónConcepción, Chile; Group of Research and Innovation in Vascular Health (GRIVAS Health)Chillán, Chile
| | - Leandro Zúñiga
- Centro de Investigaciones Médicas (CIM), School of Medicine, Universidad de Talca Talca, Chile
| | - Carlos Escudero
- Group of Research and Innovation in Vascular Health (GRIVAS Health)Chillán, Chile; Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis (GIANT), Department of Basic Sciences, Universidad del BiobíoChillán, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de ChileSantiago, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de SevillaSeville, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of QueenslandHerston, QLD, Australia
| | - Mark Wareing
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of ManchesterManchester, UK; Maternal and Fetal Health Research Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science CentreManchester, UK
| | - Marcelo González
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de ConcepciónConcepción, Chile; Group of Research and Innovation in Vascular Health (GRIVAS Health)Chillán, Chile
| |
Collapse
|
67
|
Abstract
Insulin resistance is a systemic disorder that affects many organs and insulin-regulated pathways. The disorder is characterized by a reduced action of insulin despite increased insulin concentrations (hyperinsulinaemia). The effects of insulin on the kidney and vasculature differ in part from the effects on classical insulin target organs. Insulin causes vasodilation by enhancing endothelial nitric oxide production through activation of the phosphatidylinositol 3-kinase pathway. In insulin-resistant states, this pathway is impaired and the mitogen-activated protein kinase pathway stimulates vasoconstriction. The action of insulin on perivascular fat tissue and the subsequent effects on the vascular wall are not fully understood, but the hepatokine fetuin-A, which is released by fatty liver, might promote the proinflammatory effects of perivascular fat. The strong association of salt-sensitive arterial hypertension with insulin resistance indicates an involvement of the kidney in the insulin resistance syndrome. The insulin receptor is expressed on renal tubular cells and podocytes and insulin signalling has important roles in podocyte viability and tubular function. Renal sodium transport is preserved in insulin resistance and contributes to the salt-sensitivity of blood pressure in hyperinsulinaemia. Therapeutically, renal and vascular insulin resistance can be improved by an integrated holistic approach aimed at restoring overall insulin sensitivity and improving insulin signalling.
Collapse
|
68
|
Perales-Torres AL, Castillo-Ruíz O, Castañeda Licón MT, Alemán-Castillo SE, Jiménez Andrade JM. [Diabetes and type of diet as determinant factor in the progression of atherosclerosis]. ARCHIVOS DE CARDIOLOGIA DE MEXICO 2016; 86:326-334. [PMID: 26775035 DOI: 10.1016/j.acmx.2015.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 12/02/2015] [Accepted: 12/02/2015] [Indexed: 11/30/2022] Open
Abstract
The purpose of this review is to analyze the biochemical progression of atherosclerotic plaque and its association with diet and diabetes. This study shows the scientific evidence of demonstrating that diabetic patients present high levels of fatty acids like palmitic acid and linoleic acid in their atheroma plaques in comparison with non-diabetic patients. This study also establishes how patients with diabetes mellitus have a higher prevalence of atherosclerotic heart diseases in the form of Coronary Thrombosis and have different anatomopathological appearance like higher necrotic core and thin fibrotic layer than the general population. Furthermore this review describes the different anatomopathological appearance and cellular changes involved in the formation of these plaques and how diet can affect the development of these plaques.
Collapse
Affiliation(s)
| | - Octelina Castillo-Ruíz
- Departamento de Nutrición y Alimentos, Universidad Autónoma de Tamaulipas, Reynosa, Tamaulipas, México.
| | | | | | | |
Collapse
|
69
|
Mori Y, Chiang S, Bendeck MP, Giacca A. Insulin decreases atherosclerotic plaque burden and increases plaque stability via nitric oxide synthase in apolipoprotein E-null mice. Am J Physiol Endocrinol Metab 2016; 311:E335-45. [PMID: 27221119 DOI: 10.1152/ajpendo.00320.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 05/19/2016] [Indexed: 11/22/2022]
Abstract
It has been argued whether insulin accelerates or prevents atherosclerosis. Although results from in vitro studies have been conflicting, recent in vivo mice studies demonstrated antiatherogenic effects of insulin. Insulin is a known activator of endothelial nitric oxide synthase (NOS), leading to increased production of NO, which has potent antiatherogenic effects. We aimed to examine the role of NOS in the protective effects of insulin against atherosclerosis. Male apolipoprotein E-null mice (8 wk old) fed a high-cholesterol diet (1.25% cholesterol) were assigned to the following 12-wk treatments: control, insulin (0.05 U/day via subcutaneous pellet), N(ω)-nitro-l-arginine methyl ester hydrochloride (l-NAME, via drinking water at 100 mg/l), and insulin plus l-NAME. Insulin reduced atherosclerotic plaque burden in the descending aorta by 42% compared with control (plaque area/aorta lumen area: control, 16.5 ± 1.9%; insulin, 9.6 ± 1.3%, P < 0.05). Although insulin did not decrease plaque burden in the aortic sinus, macrophage accumulation in the plaque was decreased by insulin. Furthermore, insulin increased smooth muscle actin and collagen content and decreased plaque necrosis, consistent with increased plaque stability. In addition, insulin treatment increased plasma NO levels, decreased inducible NOS staining, and tended to increase phosphorylated vasodilator-stimulated phosphoprotein staining in the plaques of the aortic sinus. All these effects of insulin were abolished by coadministration of l-NAME, whereas l-NAME alone showed no effect. Insulin also tended to increase phosphorylated endothelial NOS and total neuronal NOS staining, effects not modified by l-NAME. In conclusion, we demonstrate that insulin treatment decreases atherosclerotic plaque burden and increases plaque stability through NOS-dependent mechanisms.
Collapse
Affiliation(s)
- Yusaku Mori
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Simon Chiang
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michelle P Bendeck
- Department of Laboratory Medicine and Pathobiology, Ted Rogers Centre for Heart Research TBEP/ University of Toronto, Ontario, Canada; and
| | - Adria Giacca
- Department of Physiology and Medicine, Institute of Medical Science, Banting and Best Diabetes Centre, Toronto, Ontario, Canada
| |
Collapse
|
70
|
Pankow JS, Decker PA, Berardi C, Hanson NQ, Sale M, Tang W, Kanaya AM, Larson NB, Tsai MY, Wassel CL, Bielinski SJ. Circulating cellular adhesion molecules and risk of diabetes: the Multi-Ethnic Study of Atherosclerosis (MESA). Diabet Med 2016; 33:985-91. [PMID: 26937608 PMCID: PMC4914403 DOI: 10.1111/dme.13108] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2016] [Indexed: 12/15/2022]
Abstract
AIMS To test the hypothesis that soluble cellular adhesion molecules would be positively and independently associated with risk of diabetes. METHODS Soluble levels of six cellular adhesion molecules (ICAM-1, E-selectin, VCAM-1, E-cadherin, L-selectin and P-selectin) were measured in participants in the Multi-Ethnic Study of Atherosclerosis, a prospective cohort study. Participants were then followed for up to 10 years to ascertain incident diabetes. RESULTS Sample sizes ranged from 826 to 2185. After adjusting for age, sex, race/ethnicity, BMI and fasting glucose or HbA1c , four cellular adhesion molecules (ICAM-1, E-selectin, VCAM-1 and E-cadherin) were positively associated with incident diabetes and there was a statistically significant trend across quartiles. Comparing the incidence of diabetes in the highest and lowest quartiles of each cellular adhesion molecule, the magnitude of association was largest for E-selectin (hazard ratio 2.49; 95% CI 1.26-4.93) and ICAM-1 (hazard ratio 1.76; 95% CI 1.22-2.55) in fully adjusted models. Tests of effect modification by racial/ethnic group and sex were not statistically significant for any of the cellular adhesion molecules (P > 0.05). CONCLUSIONS The finding of significant associations between multiple cellular adhesion molecules and incident diabetes may lend further support to the hypothesis that microvascular endothelial dysfunction contributes to risk of diabetes.
Collapse
Affiliation(s)
- J S Pankow
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN
| | - P A Decker
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - C Berardi
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY
| | - N Q Hanson
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, MN
| | - M Sale
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | - W Tang
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN
| | - A M Kanaya
- Department of Medicine, University of California, San Francisco, CA
| | - N B Larson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - M Y Tsai
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, MN
| | - C L Wassel
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Colchester, VT, USA
| | - S J Bielinski
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| |
Collapse
|
71
|
Abstract
AbstractThe endothelium, a thin single sheet of endothelial cells, is a metabolically active layer that coats the inner surface of blood vessels and acts as an interface between the circulating blood and the vessel wall. The endothelium through the secretion of vasodilators and vasoconstrictors serves as a critical mediator of vascular homeostasis. During the development of the vascular system, it regulates cellular adhesion and vessel wall inflammation in addition to maintaining vasculogenesis and angiogenesis. A shift in the functions of the endothelium towards vasoconstriction, proinflammatory and prothrombic states characterise improper functioning of these cells, leading to endothelial dysfunction (ED), implicated in the pathogenesis of many diseases including diabetes. Major mechanisms of ED include the down-regulation of endothelial nitric oxide synthase levels, differential expression of vascular endothelial growth factor, endoplasmic reticulum stress, inflammatory pathways and oxidative stress. ED tends to be the initial event in macrovascular complications such as coronary artery disease, peripheral arterial disease, stroke and microvascular complications such as nephropathy, neuropathy and retinopathy. Numerous strategies have been developed to protect endothelial cells against various stimuli, of which the role of polyphenolic compounds in modulating the differentially regulated pathways and thus maintaining vascular homeostasis has been proven to be beneficial. This review addresses the factors stimulating ED in diabetes and the molecular mechanisms of natural polyphenol antioxidants in maintaining vascular homeostasis.
Collapse
|
72
|
Withaferin A protects against palmitic acid-induced endothelial insulin resistance and dysfunction through suppression of oxidative stress and inflammation. Sci Rep 2016; 6:27236. [PMID: 27250532 PMCID: PMC4890118 DOI: 10.1038/srep27236] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/13/2016] [Indexed: 01/01/2023] Open
Abstract
Activation of inflammatory pathways via reactive oxygen species (ROS) by free fatty acids (FFA) in obesity gives rise to insulin resistance and endothelial dysfunction. Withaferin A (WA), possesses both antioxidant and anti-inflammatory properties and therefore would be a good strategy to suppress palmitic acid (PA)-induced oxidative stress and inflammation and hence, insulin resistance and dysfunction in the endothelium. Effect of WA on PA-induced insulin resistance in human umbilical vein endothelial cells (HUVECs) was determined by evaluating insulin signaling mechanisms whilst effect of this drug on PA-induced endothelial dysfunction was determined in acetylcholine-mediated relaxation in isolated rat aortic preparations. WA significantly inhibited ROS production and inflammation induced by PA. Furthermore, WA significantly decreased TNF-α and IL-6 production in endothelial cells by specifically suppressing IKKβ/NF-κβ phosphorylation. WA inhibited inflammation-stimulated IRS-1 serine phosphorylation and improved the impaired insulin PI3-K signaling, and restored the decreased nitric oxide (NO) production triggered by PA. WA also decreased endothelin-1 and plasminogen activator inhibitor type-1 levels, and restored the impaired endothelium-mediated vasodilation in isolated aortic preparations. These findings suggest that WA inhibited both ROS production and inflammation to restore impaired insulin resistance in cultured endothelial cells and improve endothelial dysfunction in rat aortic rings.
Collapse
|
73
|
Effects of Buddhist walking meditation on glycemic control and vascular function in patients with type 2 diabetes. Complement Ther Med 2016; 26:92-7. [PMID: 27261988 DOI: 10.1016/j.ctim.2016.03.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 02/21/2016] [Accepted: 03/07/2016] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE To investigate and compare the effects of Buddhist walking meditation and traditional walking on glycemic control and vascular function in patients with type 2 diabetes mellitus. METHODS Twenty three patients with type 2 diabetes (50-75 years) were randomly allocated into traditional walking exercise (WE; n=11) or Buddhism-based walking meditation exercise (WM; n=12). Both groups performed a 12-week exercise program that consisted of walking on the treadmill at exercise intensity of 50-70% maximum heart rate for 30min/session, 3 times/week. In the WM training program, the participants performed walking on the treadmill while concentrated on foot stepping by voiced "Budd" and "Dha" with each foot step that contacted the floor to practice mindfulness while walking. RESULTS After 12 weeks, maximal oxygen consumption increased and fasting blood glucose level decreased significantly in both groups (p<0.05). Significant decrease in HbA1c and both systolic and diastolic blood pressure were observed only in the WM group. Flow-mediated dilatation increased significantly (p<0.05) in both exercise groups but arterial stiffness was improved only in the WM group. Blood cortisol level was reduced (p<0.05) only in the WM group. CONCLUSION Buddhist walking meditation exercise produced a multitude of favorable effects, often superior to traditional walking program, in patients with type 2 diabetes.
Collapse
|
74
|
Lower Working Memory Performance in Overweight and Obese Adolescents Is Mediated by White Matter Microstructure. J Int Neuropsychol Soc 2016; 22:281-92. [PMID: 26708324 PMCID: PMC5642274 DOI: 10.1017/s1355617715001265] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Elevated body mass index (BMI) is associated with deficits in working memory, reduced gray matter volume in frontal and parietal lobes, as well as changes in white matter (WM) microstructure. The current study examined whether BMI was related to working memory performance and blood oxygen level dependent (BOLD) activity, as well as WM microstructure during adolescence. METHODS Linear regressions with BMI and (1) verbal working memory BOLD signal, (2) spatial working memory BOLD signal, and (3) fractional anisotropy (FA), a measure of WM microstructure, were conducted in a sample of 152 healthy adolescents ranging in BMI. RESULTS BMI was inversely related to IQ and verbal and spatial working memory accuracy; however, there was no significant relationship between BMI and BOLD response for either verbal or spatial working memory. Furthermore, BMI was negatively correlated with FA in the left superior longitudinal fasciculus (SLF) and left inferior longitudinal fasciculus (ILF). ILF FA and IQ significantly mediated the relationship between BMI and verbal working memory performance, whereas SLF FA, but not IQ, significantly mediated the relationship between BMI and accuracy of both verbal and spatial working memory. CONCLUSIONS These findings indicate that higher BMI is associated with decreased FA in WM fibers connecting brain regions that support working memory, and that WM microstructural deficits may underlie inferior working memory performance in youth with higher BMI. Of interest, BMI did not show the same relationship with working memory BOLD activity, which may indicate that changes in brain structure precede changes in function.
Collapse
|
75
|
Lopes HF, Corrêa-Giannella ML, Consolim-Colombo FM, Egan BM. Visceral adiposity syndrome. Diabetol Metab Syndr 2016; 8:40. [PMID: 27437032 PMCID: PMC4950710 DOI: 10.1186/s13098-016-0156-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/10/2016] [Indexed: 02/08/2023] Open
Abstract
The association of anthropometric (waist circumference) and hemodynamic (blood pressure) changes with abnormalities in glucose and lipid metabolism has been motivation for a lot of discussions in the last 30 years. Nowadays, blood pressure, body mass index/abdominal circumference, glycemia, triglyceridemia, and HDL-cholesterol concentrations are considered in the definition of Metabolic syndrome, referred as Visceral adiposity syndrome (VAS) in the present review. However, more than 250 years ago an association between visceral and mediastinal obesity with hypertension, gout, and obstructive apnea had already been recognized. Expansion of visceral adipose tissue secondary to chronic over-consumption of calories stimulates the recruitment of macrophages, which assume an inflammatory phenotype and produce cytokines that directly interfere with insulin signaling, resulting in insulin resistance. In turn, insulin resistance (IR) manifests itself in various tissues, contributing to the overall phenotype of VAS. For example, in white adipose tissue, IR results in lipolysis, increased free fatty acids release and worsening of inflammation, since fatty acids can bind to Toll-like receptors. In the liver, IR results in increased hepatic glucose production, contributing to hyperglycemia; in the vascular endothelium and kidney, IR results in vasoconstriction, sodium retention and, consequently, arterial hypertension. Other players have been recognized in the development of VAS, such as genetic predisposition, epigenetic factors associated with exposure to an unfavourable intrauterine environment and the gut microbiota. More recently, experimental and clinical studies have shown the autonomic nervous system participates in modulating visceral adipose tissue. The sympathetic nervous system is related to adipose tissue function and differentiation through beta1, beta2, beta3, alpha1, and alpha2 adrenergic receptors. The relation is bidirectional: sympathetic denervation of adipose tissue blocks lipolysis to a variety of lipolytic stimuli and adipose tissue send inputs to the brain. An imbalance of sympathetic/parasympathetic and alpha2 adrenergic/beta3 receptor is related to visceral adipose tissue storage and insulin sensitivity. Thus, in addition to the well-known factors classically associated with VAS, abnormal autonomic activity also emerges as an important factor regulating white adipose tissue, which highlights complex role of adipose tissue in the VAS.
Collapse
Affiliation(s)
- Heno F. Lopes
- />Universidade Nove de Julho-UNINOVE, Rua Vergueiro 235/249, 2 subsolo, Liberdade, São Paulo, CEP: 01504-001 Brazil
- />Instituto do Coração do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Maria Lúcia Corrêa-Giannella
- />Laboratório de Investigação Médica (LIM-18) e Centro de Terapia Celular e Molecular (NUCEL/NETCEM) da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP Brazil
| | - Fernanda M. Consolim-Colombo
- />Universidade Nove de Julho-UNINOVE, Rua Vergueiro 235/249, 2 subsolo, Liberdade, São Paulo, CEP: 01504-001 Brazil
- />Instituto do Coração do Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Brent M. Egan
- />Greenville Health System and Department of Medicine, Care Coordination Institute, University of South Carolina-Greenville, Greenville, SC USA
| |
Collapse
|
76
|
Geragotou T, Jainandunsing S, Özcan B, de Rooij FWM, Kokkinos A, Tentolouris N, Sijbrands EJG. The Relationship of Metabolic Syndrome Traits with Beta-Cell Function and Insulin Sensitivity by Oral Minimal Model Assessment in South Asian and European Families Residing in the Netherlands. J Diabetes Res 2016; 2016:9286303. [PMID: 27597980 PMCID: PMC4997024 DOI: 10.1155/2016/9286303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/12/2016] [Indexed: 11/17/2022] Open
Abstract
Background. There are different metabolic syndrome traits among patients with different ethnicities. Methods. We investigated this by studying 44 South Asians and 54 Europeans and classified them in three groups according to the occurrence of metabolic syndrome (MetS) and Type 2 Diabetes (T2D). Insulin sensitivity index (ISI), static, dynamic, and total beta-cell responsivity indices (Φ), and disposition indices (DIs) were calculated with the use of oral minimal model (OMM). Results. In both ethnicities, ISI was lower in the subgroup with MetS and T2D as compared to the subgroup without MetS nor T2D (P < 0.004). South Asians without MetS were more insulin resistant than Europeans without MetS (P = 0.033). In the South Asians, ISI, dynamic DI, and static DI were associated significantly (P < 0.006) with high-density lipoprotein cholesterol and triglycerides. In the Europeans, ISI was associated with waist-to-hip ratio (P = 0.005) and systolic and diastolic blood pressure (P < 0.005), while static DI was related to the systolic blood pressure (P = 0.005). Conclusions. MetS was linked with insulin resistance and reduced capacity to handle glucose regardless of ethnicity. ISI and DIs were associated with lipid traits in South Asians and with blood pressure in Europeans suggesting that insulin resistance enhances different metabolic syndrome traits among different ethnicities.
Collapse
Affiliation(s)
- Thekla Geragotou
- Department of Internal Medicine, Erasmus MC-University Medical Center Rotterdam, 3015 CE Rotterdam, Netherlands
- First Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian of Athens, Laiko General Hospital, 11527 Athens, Greece
- *Thekla Geragotou:
| | - Sjaam Jainandunsing
- Department of Internal Medicine, Erasmus MC-University Medical Center Rotterdam, 3015 CE Rotterdam, Netherlands
| | - Behiye Özcan
- Department of Internal Medicine, Erasmus MC-University Medical Center Rotterdam, 3015 CE Rotterdam, Netherlands
| | - Felix W. M. de Rooij
- Department of Internal Medicine, Erasmus MC-University Medical Center Rotterdam, 3015 CE Rotterdam, Netherlands
| | - Alexander Kokkinos
- Department of Internal Medicine, Erasmus MC-University Medical Center Rotterdam, 3015 CE Rotterdam, Netherlands
| | - Nicholas Tentolouris
- First Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian of Athens, Laiko General Hospital, 11527 Athens, Greece
| | - Eric J. G. Sijbrands
- Department of Internal Medicine, Erasmus MC-University Medical Center Rotterdam, 3015 CE Rotterdam, Netherlands
| |
Collapse
|
77
|
Molina MN, Ferder L, Manucha W. Emerging Role of Nitric Oxide and Heat Shock Proteins in Insulin Resistance. Curr Hypertens Rep 2015; 18:1. [DOI: 10.1007/s11906-015-0615-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
78
|
Grassi D, Desideri G, Mai F, Martella L, De Feo M, Soddu D, Fellini E, Veneri M, Stamerra CA, Ferri C. Cocoa, glucose tolerance, and insulin signaling: cardiometabolic protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9919-9926. [PMID: 26126077 DOI: 10.1021/acs.jafc.5b00913] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Experimental and clinical evidence reported that some polyphenol-rich natural products may offer opportunities for the prevention and treatment of type 2 diabetes, due to their biological properties. Natural products have been suggested to modulate carbohydrate metabolism by various mechanisms, such as restoring β-cell integrity and physiology and enhancing insulin-releasing activity and glucose uptake. Endothelium is fundamental in regulating arterial function, whereas insulin resistance plays a pivotal role in pathophysiological mechanisms of prediabetic and diabetic states. Glucose and insulin actions in the skeletal muscle are improved by insulin-dependent production of nitric oxide, favoring capillary recruitment, vasodilatation, and increased blood flow. Endothelial dysfunction, with decreased nitric oxide bioavailability, is a critical step in the development of atherosclerosis. Furthermore, insulin resistance has been described, at least in part, to negatively affect endothelial function. Consistent with this, conditions of insulin resistance are usually linked to endothelial dysfunction, and the exposure of the endothelial cells to cardiovascular risk factors such as hypertension, dyslipidemia, and hyperglycemia is associated with reduced nitric oxide bioavailability, resulting in impaired endothelial-dependent vasodilatation. Moreover, endothelial dysfunction has been described as an independent predictor of cardiovascular risk and events. Cocoa and cocoa flavonoids may positively affect the pathophysiological mechanisms involved in insulin resistance and endothelial dysfunction with possible benefits in the prevention of cardiometabolic diseases.
Collapse
Affiliation(s)
- Davide Grassi
- Department of Life, Health & Environmental Sciences, University of L'Aquila , Coppito, Italy
| | - Giovambattista Desideri
- Department of Life, Health & Environmental Sciences, University of L'Aquila , Coppito, Italy
| | - Francesca Mai
- Department of Life, Health & Environmental Sciences, University of L'Aquila , Coppito, Italy
| | - Letizia Martella
- Department of Life, Health & Environmental Sciences, University of L'Aquila , Coppito, Italy
| | - Martina De Feo
- Department of Life, Health & Environmental Sciences, University of L'Aquila , Coppito, Italy
| | - Daniele Soddu
- Department of Life, Health & Environmental Sciences, University of L'Aquila , Coppito, Italy
| | - Emanuela Fellini
- Department of Life, Health & Environmental Sciences, University of L'Aquila , Coppito, Italy
| | - Mariangela Veneri
- Department of Life, Health & Environmental Sciences, University of L'Aquila , Coppito, Italy
| | - Cosimo A Stamerra
- Department of Life, Health & Environmental Sciences, University of L'Aquila , Coppito, Italy
| | - Claudio Ferri
- Department of Life, Health & Environmental Sciences, University of L'Aquila , Coppito, Italy
| |
Collapse
|
79
|
Bedinger DH, Adams SH. Metabolic, anabolic, and mitogenic insulin responses: A tissue-specific perspective for insulin receptor activators. Mol Cell Endocrinol 2015; 415:143-56. [PMID: 26277398 DOI: 10.1016/j.mce.2015.08.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/05/2015] [Accepted: 08/09/2015] [Indexed: 12/17/2022]
Abstract
Insulin acts as the major regulator of the fasting-to-fed metabolic transition by altering substrate metabolism, promoting energy storage, and helping activate protein synthesis. In addition to its glucoregulatory and other metabolic properties, insulin can also act as a growth factor. The metabolic and mitogenic responses to insulin are regulated by divergent post-receptor signaling mechanisms downstream from the activated insulin receptor (IR). However, the anabolic and growth-promoting properties of insulin require tissue-specific inter-relationships between the two pathways, and the nature and scope of insulin-regulated processes vary greatly across tissues. Understanding the nuances of this interplay between metabolic and growth-regulating properties of insulin would have important implications for development of novel insulin and IR modulator therapies that stimulate insulin receptor activation in both pathway- and tissue-specific manners. This review will provide a unique perspective focusing on the roles of "metabolic" and "mitogenic" actions of insulin signaling in various tissues, and how these networks should be considered when evaluating selective pharmacologic approaches to prevent or treat metabolic disease.
Collapse
Affiliation(s)
| | - Sean H Adams
- Arkansas Children's Nutrition Center and University of Arkansas for Medical Sciences, Department of Pediatrics, Little Rock, AR, USA
| |
Collapse
|
80
|
Xiang L, Mittwede PN, Clemmer JS. Glucose Homeostasis and Cardiovascular Alterations in Diabetes. Compr Physiol 2015; 5:1815-39. [PMID: 26426468 DOI: 10.1002/cphy.c150001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
81
|
Yongming P, Zhaowei C, Yichao M, Keyan Z, Liang C, Fangming C, Xiaoping X, Quanxin M, Minli C. Involvement of peroxisome proliferator-activated receptors in cardiac and vascular remodeling in a novel minipig model of insulin resistance and atherosclerosis induced by consumption of a high-fat/cholesterol diet. Cardiovasc Diabetol 2015; 14:6. [PMID: 25592139 PMCID: PMC4300051 DOI: 10.1186/s12933-014-0165-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/27/2014] [Indexed: 11/10/2022] Open
Abstract
Background A long-term high-fat/cholesterol (HFC) diet leads to insulin resistance (IR), which is associated with inflammation, atherosclerosis (AS), cardiac sympathovagal imbalance, and cardiac dysfunction. Peroxisome proliferator-activated receptors (PPARs) and nuclear factor ĸB (NF-κB) are involved in the development of IR-AS. Thus, we elucidated the pathological molecular mechanism of IR-AS by feeding an HFC diet to Tibetan minipigs to induce IR and AS. Methods Male Tibetan minipigs were fed either a normal diet or an HFC diet for 24 weeks. Thereafter, the minipigs were tested for physiological and biochemical blood indices, blood pressure, cardiac function, glucose tolerance, heart rate variability (HRV), and PPAR-associated gene and protein expression levels. Results HFC-fed minipigs exhibited IR through increased body weight, fasting blood glucose levels, plasma cholesterol and its composition, and insulin and free fatty acid (FFA) levels; decreased insulin sensitivity; impaired glucose tolerance; and hypertension. Increased C-reactive protein (CRP) levels, cardiac dysfunction, depressed HRV, and the up-regulation of PPAR expression in the abdominal aorta concomitant with down-regulation in the heart tissue were observed in HFC-fed minipigs. Furthermore, the levels of NF-κBp65, IL-1β, TNF-α, MCP-1, VCAM-1, ICAM-1, MMP-9, and CRP proteins were also significantly increased. Conclusions These data suggest that HFC-fed Tibetan minipigs develop IR and AS and that PPARs are involved in cardiovascular remodeling and impaired function.
Collapse
Affiliation(s)
- Pan Yongming
- Experimental Animal Research Center, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China.
| | - Cai Zhaowei
- Experimental Animal Research Center, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China.
| | - Ma Yichao
- Experimental Animal Research Center, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China.
| | - Zhu Keyan
- Experimental Animal Research Center, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China.
| | - Chen Liang
- Experimental Animal Research Center, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China.
| | - Chen Fangming
- Experimental Animal Research Center, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China.
| | - Xu Xiaoping
- Experimental Animal Research Center, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China.
| | - Ma Quanxin
- Experimental Animal Research Center, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China.
| | - Chen Minli
- Experimental Animal Research Center, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China.
| |
Collapse
|
82
|
Abstract
OBJECTIVES The purposes of this article are to highlight what is currently known about the mechanisms of obesity-related cognitive impairment and weight loss-related cognitive improvement, and to discuss the benefits and drawbacks of available treatments. METHODS The article is based on a live debate, presenting the main advantages and disadvantages of exercise interventions and bariatric surgery as related to cognitive functioning. The live debate took place during a 1-day conference, Diabetes, Obesity and the Brain, sponsored by the American Psychosomatic Society in October 2013. RESULTS Although it is well established that bariatric surgery tends to lead to greater weight loss, better glycemic control, and cognitive improvement (effect sizes ranging between 0.61 and 0.78) during the first 1 to 2 years postintervention compared with nonsurgical treatments, medical complications are possible, and follow-up data beyond 5 years are limited. In contrast, nonsurgical therapies have been extensively studied in a variety of clinical settings and have proved that they can sustain positive health outcomes up to 10 years later, but their cognitive benefits tend to be more modest (effect sizes ranging from 0.18 to 0.69) and long-term regimen compliance, especially in obese individuals, is uncertain. CONCLUSIONS Rather than focusing on debating whether surgical or no-surgical interventions for obesity are better, additional research is needed to identify the most efficient and practical combination of approaches to ensure sustained positive health outcomes for the largest number of patients possible.
Collapse
|
83
|
Mihai BM, Petriş AO, Ungureanu DA, Lăcătuşu CM. Insulin resistance and adipokine levels correlate with early atherosclerosis - a study in prediabetic patients. Open Med (Wars) 2014; 10:14-24. [PMID: 28352672 PMCID: PMC5152953 DOI: 10.1515/med-2015-0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 07/21/2014] [Indexed: 11/22/2022] Open
Abstract
Cardiovascular risk of prediabetes is still subject to controversies. We analyzed the associations between insulin resistance, adipokines and incipient atherosclerosis estimated by intima-media thickness (IMT) in a cross-sectional study on 122 prediabetic subjects without clinical signs of atherosclerotic disease. Homeostasis model assessment of insulin resistance (HOMA-IR, calculated as fasting insulin × fasting plasma glucose / 22.5), adiponectin, leptin, leptin-to-adiponectin ratio, carotid and femoral IMT were evaluated. We also assessed other parameters related to insulin resistance and adipokines (HbA1c, anthropometric and lipid parameters), as they may also influence atherosclerosis. Carotid IMT was correlated to adiponectin and leptin-to-adiponectin ratio (all p < 0.05), but not with HOMA-IR or leptin, while femoral IMT showed no relationship with these factors. After adjusting for leptin, leptin-to-adiponectin ratio, triglycerides, HDL-cholesterol, cholesterol-to-HDL ratio, triglycerides-to-HDL ratio and HbA1c, IMT values became correlated with HOMA-IR. Adjustment for HOMA-IR induced the appearance of new correlations between adipokines and both IMT values. In conclusion, insulin resistance and adipokines seem related to IMT in prediabetic subjects without clinical signs of arterial obstruction.
Collapse
Affiliation(s)
- Bogdan Mircea Mihai
- Discipline of Diabetes, Nutrition and Metabolic Diseases, First Medical Department, University of Medicine and Pharmacy "Grigore T. Popa", 16th Universităţii Street, 700115, Iaşi, Romania
| | - Antoniu Octavian Petriş
- Discipline of Internal Medicine and Cardiology, First Medical Department, University of Medicine and Pharmacy "Grigore T. Popa", 16th Universităţii Street, 700115, Iaşi, Romania
| | - Didona Anca Ungureanu
- Discipline of Biochemistry, Morpho-Functional Sciences Department, University of Medicine and Pharmacy "Grigore T. Popa", 16th Universităţii Street, 700115, Iaşi, Romania
| | - Cristina Mihaela Lăcătuşu
- Discipline of Diabetes, Nutrition and Metabolic Diseases, First Medical Department, University of Medicine and Pharmacy "Grigore T. Popa", 16th Universităţii Street, 700115, Iaşi, Romania
| |
Collapse
|
84
|
Bariatric Surgery and Microvascular Complications of Type 2 Diabetes Mellitus. Curr Atheroscler Rep 2014; 16:453. [DOI: 10.1007/s11883-014-0453-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
85
|
Ertelt A, Barton AK, Schmitz RR, Gehlen H. Metabolic syndrome: is equine disease comparable to what we know in humans? Endocr Connect 2014; 3:R81-93. [PMID: 24894908 PMCID: PMC4068110 DOI: 10.1530/ec-14-0038] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review summarizes similarities and differences between the metabolic syndromes in humans and equines, concerning the anatomy, symptoms, and pathophysiological mechanisms. In particular, it discusses the structure and distribution of adipose tissue and its specific metabolic pathways. Furthermore, this article provides insights and focuses on issues concerning laminitis in horses and cardiovascular diseases in humans, as well as their overlap.
Collapse
|
86
|
Frismantiene A, Pfaff D, Frachet A, Coen M, Joshi MB, Maslova K, Bochaton-Piallat ML, Erne P, Resink TJ, Philippova M. Regulation of contractile signaling and matrix remodeling by T-cadherin in vascular smooth muscle cells: Constitutive and insulin-dependent effects. Cell Signal 2014; 26:1897-908. [DOI: 10.1016/j.cellsig.2014.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 04/29/2014] [Accepted: 05/02/2014] [Indexed: 12/29/2022]
|
87
|
Nigro C, Raciti GA, Leone A, Fleming TH, Longo M, Prevenzano I, Fiory F, Mirra P, D'Esposito V, Ulianich L, Nawroth PP, Formisano P, Beguinot F, Miele C. Methylglyoxal impairs endothelial insulin sensitivity both in vitro and in vivo. Diabetologia 2014; 57:1485-94. [PMID: 24759959 DOI: 10.1007/s00125-014-3243-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
Abstract
AIMS/HYPOTHESIS Insulin exerts a direct action on vascular cells, thereby affecting the outcome and progression of diabetic vascular complications. However, the mechanism through which insulin signalling is impaired in the endothelium of diabetic individuals remains unclear. In this work, we have evaluated the role of the AGE precursor methylglyoxal (MGO) in generating endothelial insulin resistance both in cells and in animal models. METHODS Time course experiments were performed on mouse aortic endothelial cells (MAECs) incubated with 500 μmol/l MGO. The glyoxalase-1 inhibitor S-p-bromobenzylglutathione-cyclopentyl-diester (SpBrBzGSHCp2) was used to increase the endogenous levels of MGO. For the in vivo study, an MGO solution was administrated i.p. to C57BL/6 mice for 7 weeks. RESULTS MGO prevented the insulin-dependent activation of the IRS1/protein kinase Akt/endothelial nitric oxide synthase (eNOS) pathway, thereby blunting nitric oxide (NO) production, while extracellular signal-regulated kinase (ERK1/2) activation and endothelin-1 (ET-1) release were increased by MGO in MAECs. Similar results were obtained in MAECs treated with SpBrBzGSHCp2. In MGO- and SpBrBzGSHCp2-exposed cells, inhibition of ERK1/2 decreased IRS1 phosphorylation on S616 and rescued insulin-dependent Akt activation and NO generation, indicating that MGO inhibition of the IRS1/Akt/eNOS pathway is mediated, at least in part, by ERK1/2. Chronic administration of MGO to C57BL/6 mice impaired whole-body insulin sensitivity and induced endothelial insulin resistance. CONCLUSIONS/INTERPRETATION MGO impairs the action of insulin on the endothelium both in vitro and in vivo, at least in part through an ERK1/2-mediated mechanism. These findings may be instrumental in developing novel strategies for preserving endothelial function in diabetes.
Collapse
Affiliation(s)
- Cecilia Nigro
- Institute of Experimental Endocrinology and Oncology 'G. Salvatore', National Council of Research, Via Pansini 5, 80131, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
|
89
|
Abstract
Vascular endothelium has important regulatory functions in the cardiovascular system and a pivotal role in the maintenance of vascular health and metabolic homeostasis. It has long been recognized that endothelial dysfunction participates in the pathogenesis of atherosclerosis from early, preclinical lesions to advanced, thrombotic complications. In addition, endothelial dysfunction has been recently implicated in the development of insulin resistance and type 2 diabetes mellitus (T2DM). Considering that states of insulin resistance (eg, metabolic syndrome, impaired fasting glucose, impaired glucose tolerance, and T2DM) represent the most prevalent metabolic disorders and risk factors for atherosclerosis, it is of considerable scientific and clinical interest that both metabolic and vascular disorders have endothelial dysfunction as a common background. Importantly, endothelial dysfunction has been associated with adverse outcomes in patients with established cardiovascular disease, and a growing body of evidence indicates that endothelial dysfunction also imparts adverse prognosis in states of insulin resistance. In this review, we discuss the association of insulin resistance and T2DM with endothelial dysfunction and vascular disease, with a focus on the underlying mechanisms and prognostic implications of the endothelial dysfunction in metabolic and vascular disorders. We also address current therapeutic strategies for the improvement of endothelial dysfunction.
Collapse
|
90
|
Sanches PL, de Piano A, Campos RM, Carnier J, de Mello MT, Elias N, Fonseca FA, Masquio DC, da Silva PL, Corgosinho FC, Tock L, Oyama LM, Tufik S, Dâmaso AR. Association of nonalcoholic fatty liver disease with cardiovascular risk factors in obese adolescents: The role of interdisciplinary therapy. J Clin Lipidol 2014; 8:265-72. [DOI: 10.1016/j.jacl.2014.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 12/11/2022]
|
91
|
Adamska A, Karczewska-Kupczewska M, Nikołajuk A, Otziomek E, Górska M, Kowalska I, Strączkowski M. Relationships of serum soluble E-selectin concentration with insulin sensitivity and metabolic flexibility in lean and obese women. Endocrine 2014; 45:422-9. [PMID: 23934358 PMCID: PMC3951956 DOI: 10.1007/s12020-013-0025-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 07/25/2013] [Indexed: 01/27/2023]
Abstract
The markers of endothelial dysfunction, including soluble E-selectin (sE-selectin), are related to insulin resistance, which is associated with metabolic inflexibility, i.e., impaired stimulation of carbohydrate oxidation and impaired inhibition of lipid oxidation by insulin. Endothelial dysfunction may also be important in the metabolic syndrome. The aim of our study was to analyze the association of sE-selectin with insulin sensitivity and metabolic flexibility in lean and obese women. We examined 22 lean women (BMI < 25 kg m(-2)) and 26 overweight or obese women (BMI > 25 kg m(-2)) with normal glucose tolerance. A hyperinsulinemic euglycemic clamp and indirect calorimetry were performed. An increase in the respiratory exchange ratio in response to insulin was used as a measure of metabolic flexibility. Obese women had lower insulin sensitivity (P < 0.01), higher plasma sE-selectin (P = 0.007), and higher the metabolic syndrome total Z-score (MS Z-score) (P < 0.0001). Insulin sensitivity was negatively correlated with sE-selectin level (r = -0.24, P = 0.04). sE-selectin was associated with the rate of carbohydrate oxidation at the baseline state (r = 0.31, P = 0.007) and was negatively correlated with metabolic flexibility (r = -0.34, P = 0.003). MS Z-score correlated positively with sE-selectin level and negatively with metabolic flexibility and insulin sensitivity (r = 0.49, P < 0.0001, r = -0.29, P = 0.04, r = -0.51, P < 0.0001, respectively). In multiple regression analysis we observed that the relationship between metabolic flexibility and sE-selectin (β = -0.36; P = 0.004) was independent of the other evaluated factors. Our data suggest that endothelial dysfunction as assessed by plasma sE-selectin is associated with metabolic flexibility, inversely and independently of the other estimated factors.
Collapse
Affiliation(s)
- Agnieszka Adamska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M.C. Sklodowskiej 24a, 15-276 Bialystok, Poland
| | - Monika Karczewska-Kupczewska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M.C. Sklodowskiej 24a, 15-276 Bialystok, Poland
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Agnieszka Nikołajuk
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Elżbieta Otziomek
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M.C. Sklodowskiej 24a, 15-276 Bialystok, Poland
| | - Maria Górska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M.C. Sklodowskiej 24a, 15-276 Bialystok, Poland
| | - Irina Kowalska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M.C. Sklodowskiej 24a, 15-276 Bialystok, Poland
| | - Marek Strączkowski
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M.C. Sklodowskiej 24a, 15-276 Bialystok, Poland
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
92
|
Roux-en-Y Esophagojejunostomy Reduces Serum and Aortic Inflammatory Biomarkers in Type 2 Diabetic Rats. Obes Surg 2014; 24:916-26. [DOI: 10.1007/s11695-014-1195-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
93
|
Guo S. Insulin signaling, resistance, and the metabolic syndrome: insights from mouse models into disease mechanisms. J Endocrinol 2014; 220:T1-T23. [PMID: 24281010 PMCID: PMC4087161 DOI: 10.1530/joe-13-0327] [Citation(s) in RCA: 338] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insulin resistance is a major underlying mechanism responsible for the 'metabolic syndrome', which is also known as insulin resistance syndrome. The incidence of the metabolic syndrome is increasing at an alarming rate, becoming a major public and clinical problem worldwide. The metabolic syndrome is represented by a group of interrelated disorders, including obesity, hyperglycemia, hyperlipidemia, and hypertension. It is also a significant risk factor for cardiovascular disease and increased morbidity and mortality. Animal studies have demonstrated that insulin and its signaling cascade normally control cell growth, metabolism, and survival through the activation of MAPKs and activation of phosphatidylinositide-3-kinase (PI3K), in which the activation of PI3K associated with insulin receptor substrate 1 (IRS1) and IRS2 and subsequent Akt→Foxo1 phosphorylation cascade has a central role in the control of nutrient homeostasis and organ survival. The inactivation of Akt and activation of Foxo1, through the suppression IRS1 and IRS2 in different organs following hyperinsulinemia, metabolic inflammation, and overnutrition, may act as the underlying mechanisms for the metabolic syndrome in humans. Targeting the IRS→Akt→Foxo1 signaling cascade will probably provide a strategy for therapeutic intervention in the treatment of type 2 diabetes and its complications. This review discusses the basis of insulin signaling, insulin resistance in different mouse models, and how a deficiency of insulin signaling components in different organs contributes to the features of the metabolic syndrome. Emphasis is placed on the role of IRS1, IRS2, and associated signaling pathways that are coupled to Akt and the forkhead/winged helix transcription factor Foxo1.
Collapse
Affiliation(s)
- Shaodong Guo
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M University Health Science Center, Scott & White, Central Texas Veterans Health Care System, 1901 South 1st Street, Bldg. 205, Temple, Texas 76504, USA
| |
Collapse
|
94
|
Pienaar PR, Micklesfield LK, Levitt NS, Gooding K, Shore AC, Goedecke JH, Gill JMR, Lambert EV. Insulin resistance is associated with lower acetylcholine-induced microvascular reactivity in nondiabetic women. Metab Syndr Relat Disord 2014; 12:178-84. [PMID: 24460367 DOI: 10.1089/met.2013.0126] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The association between insulin resistance and microvascular dysfunction is well established in obese individuals with type 2 diabetes. It is unclear whether this relationship is dependent on obesity and body fat in insulin-resistant persons. This study investigated acetylcholine (ACh)-induced microvascular reactivity in apparently healthy women (n=37, 20-45 years), with and without insulin resistance. METHODS Body fat mass (dual X-ray absorptiometry), waist circumference (WC), blood pressure, fasting glucose, insulin, and free fatty acid concentrations were measured. Insulin resistance was estimated using homeostasis model assessment of insulin resistance (HOMA-IR), and subjects were divided into insulin-resistant (IR, n=16) and insulin-sensitive (IS, n=21) groups. ACh-induced forearm microvascular reactivity was measured by laser Doppler imagery using iontophoresis of ACh and compared between groups adjusting for WC and skin resistance (SR). RESULTS The IR group had a higher body mass index (BMI) (30.7 ± 6.4 vs. 22.9 ± 7.3 kg/m(2), P < 0.01), fat mass (34.7 ± 11.9 vs. 19.7 ± 9.6 kg, P < 0.01), WC (89.9 ± 13.6 vs. 74.4 ± 9.7 cm, P < 0.01), and a lower SR (0.24 ± 0.08 vs. 0.32 ± 0.08 Ω, P < 0.05) than the IS group. Microvascular reactivity, expressed as percentage increase in perfusion from baseline, was significantly lower in IR subjects after adjusting for differences in WC and SR (420.9 ± 166.5 vs. 511.6 ± 214.8%, P < 0.05). There were associations between microvascular reactivity and SR (r=-0.34, P < 0.05) and systolic blood pressure (r=-0.36, P < 0.05), but not BMI, body fat mass, WC, or HOMA-IR. CONCLUSION ACh-induced microvascular reactivity was different between IR and IS apparently healthy, nondiabetic women once differences in WC and SR were accounted for.
Collapse
Affiliation(s)
- Paula R Pienaar
- 1 UCT/MRC Research Unit for Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| | | | | | | | | | | | | | | |
Collapse
|
95
|
The therapy of insulin resistance in other diseases besides type 2 diabetes. Eat Weight Disord 2014; 19:275-83. [PMID: 25069836 PMCID: PMC4143609 DOI: 10.1007/s40519-014-0139-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 06/30/2014] [Indexed: 02/08/2023] Open
Abstract
Insulin resistance is a clinical condition shared by many diseases besides type 2 diabetes (T2DM) such as obesity, polycystic ovary syndrome (PCOS) and non-alcoholic fatty liver disease (NAFLD). Experimental evidence, produced over the years, suggests that metformin has many benefits in the treatment of these diseases. Metformin is a first-line drug in the treatment of overweight and obese type 2 diabetic patients, offering a selective pathophysiological approach by its effect on insulin resistance. Moreover, a number of studies have established the favorable effect of metformin on body weight, not only when evaluating BMI, but also if body mass composition is considered, through the reduction of fat mass. In addition, it reduces insulin resistance, hyperinsulinemia, lipid parameters, arterial hypertension and endothelial dysfunction. In particular, a new formulation of metformin extended-release (ER) is now available with different formulation in different countries. Metformin ER delivers the active drug through hydrated polymers which expand safe uptake of fluid, prolonging gastric transit and delaying drug absorption in the upper gastrointestinal tract. In addition, Metformin ER causes a small, but statistically significant decrease in BMI, when added to a lifestyle intervention program in obese adolescents. Because of the suggested benefits for the treatment of insulin resistance in many clinical conditions, besides type 2 diabetes, the prospective exists that more indications for metformin treatment are becoming a reality.
Collapse
|
96
|
Chen S, Wu R, Huang Y, Zheng F, Ou Y, Tu X, Zhang Y, Gao Y, Chen X, Zheng T, Yang Q, Wan Z, Zhang Y, Sun X, Liu G, Deng C. Insulin resistance is an independent determinate of ED in young adult men. PLoS One 2013; 8:e83951. [PMID: 24391852 PMCID: PMC3877124 DOI: 10.1371/journal.pone.0083951] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 11/11/2013] [Indexed: 01/25/2023] Open
Abstract
Background Insulin resistance (IR) triggers endothelial dysfunction, which contributes to erectile dysfunction (ED) and cardiovascular disease. Aim To evaluate whether IR was related to ED in young adult patients. Methods A total of 283 consecutive men complaining of ED at least six months were enrolled, with a full medical history, physical examination, and laboratory tests collected. Quantitative Insulin Sensitivity Check Index (QUICKI) was used to determine IR. The severity of ED was assessed by IIEF-5 questionnaire. Endothelial function was assessed by ultrasonographic examination of brachial artery flow mediated dilation (FMD). Results IR was detected in 52% patients. Subjects with IR had significant higher total cholesterol, triglycerides, low density lipoprotein-cholesterol (LDL-c), glycated haemoglobin (HBA1c), high sensitivity C-reactive protein (hs-CRP) and body mass index (BMI), but showed significant lower IIEF-5 score, FMD%, high density lipoprotein -cholesterol (HDL-c), testosterone, sex hormone binding globulin (SHBG) levels than patients without IR. Multiple regression analysis showed QUICKI and testosterone were independent predictors of IIEF-5 score. Furthermore, the incidence of IR was correlated with the severity of ED. Conclusions Compared with other CVFs, IR was found as the most prevalent in our subjects. Besides, IR was independently associated with ED and its severity, suggesting an adverse effect of insulin resistance on erectile function.
Collapse
Affiliation(s)
- Shengfu Chen
- Department of Urology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Rongpei Wu
- Department of Urology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yanping Huang
- Department of Urology, Shanghai Institute of Andrology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fufu Zheng
- Department of Urology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yangbin Ou
- Department of Urology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Xiangan Tu
- Department of Urology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yadong Zhang
- Department of Urology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yong Gao
- Department of Urology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Xin Chen
- Department of Urology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Tao Zheng
- Department of Urology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Qiyun Yang
- Department of Urology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Zi Wan
- Department of Urology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yuanyuan Zhang
- Wake Forest University, Institute for Regenerative Medicine, Winston-Salem, North Carolina, United States of America
| | - Xiangzhou Sun
- Department of Urology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
- * E-mail: (XS); (GL); (CD)
| | - Guihua Liu
- Department of Urology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
- Wake Forest University, Institute for Regenerative Medicine, Winston-Salem, North Carolina, United States of America
- * E-mail: (XS); (GL); (CD)
| | - Chunhua Deng
- Department of Urology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
- * E-mail: (XS); (GL); (CD)
| |
Collapse
|
97
|
Fontes MT, Silva TLBT, Mota MM, Barreto AS, Rossoni LV, Santos MRV. Resistance exercise acutely enhances mesenteric artery insulin-induced relaxation in healthy rats. Life Sci 2013; 94:24-9. [PMID: 24316143 DOI: 10.1016/j.lfs.2013.11.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 11/11/2013] [Accepted: 11/21/2013] [Indexed: 12/20/2022]
Abstract
AIMS We evaluated the mechanisms involved in insulin-induced vasodilatation after acute resistance exercise in healthy rats. MAIN METHODS Wistar rats were divided into 3 groups: control (CT), electrically stimulated (ES) and resistance exercise (RE). Immediately after acute RE (15 sets with 10 repetitions at 70% of maximal intensity), the animals were sacrificed and rings of mesenteric artery were mounted in an isometric system. After this, concentration-response curves to insulin were performed in control condition and in the presence of LY294002 (PI3K inhibitor), L-NAME (NOS inhibitor), L-NAME+TEA (K(+) channels inhibitor), LY294002+BQ123 (ET-A antagonist) or ouabain (Na(+)/K(+) ATPase inhibitor). KEY FINDINGS Acute RE increased insulin-induced vasorelaxation as compared to control (CT: Rmax=7.3 ± 0.4% and RE: Rmax=15.8 ± 0.8%; p<0.001). NOS inhibition reduced (p<0.001) this vasorelaxation from both groups (CT: Rmax=2.0 ± 0.3%, and RE: Rmax=-1.2 ± 0.1%), while PI3K inhibition abolished the vasorelaxation in CT (Rmax=-0.1±0.3%, p<0.001), and caused vasoconstriction in RE (Rmax=-6.5 ± 0.6%). That insulin-induced vasoconstriction on PI3K inhibition was abolished (p<0.001) by the ET-A antagonist (Rmax=2.9 ± 0.4%). Additionally, acute RE enhanced (p<0.001) the functional activity of the ouabain-sensitive Na(+)/K(+) ATPase activity (Rmax=10.7 ± 0.4%) and of the K(+) channels (Rmax=-6.1±0.5%; p<0.001) in the insulin-induced vasorelaxation as compared to CT. SIGNIFICANCE Such results suggest that acute RE promotes enhanced insulin-induced vasodilatation, which could act as a fine tuning to vascular tone.
Collapse
Affiliation(s)
- M T Fontes
- Department of Physiology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - T L B T Silva
- Department of Physiology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - M M Mota
- Department of Physiology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - A S Barreto
- Department of Physiology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - L V Rossoni
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, 05508-900, São Paulo, SP, Brazil
| | - M R V Santos
- Department of Physiology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil.
| |
Collapse
|
98
|
Abstract
Abnormalities of insulin metabolism include hyperinsulinaemia and insulin resistance, and these problems are collectively referred to as insulin dysregulation in this review. Insulin dysregulation is a key component of equine metabolic syndrome: a collection of endocrine and metabolic abnormalities associated with the development of laminitis in horses, ponies and donkeys. Insulin dysregulation can also accompany prematurity and systemic illness in foals. Causes of insulin resistance are discussed, including pathological conditions of obesity, systemic inflammation and pituitary pars intermedia dysfunction, as well as the physiological responses to stress and pregnancy. Most of the discussion of insulin dysregulation to date has focused on insulin resistance, but there is increasing interest in hyperinsulinaemia itself and insulin responses to feeding. An oral sugar test or in-feed oral glucose tolerance test can be performed to assess insulin responses to dietary carbohydrates, and these tests are now recommended for use in clinical practice. Incretin hormones are likely to play an important role in postprandial hyperinsulinaemia and are the subject of current research. Insulin resistance exacerbates hyperinsulinaemia, and insulin sensitivity can be measured by performing a combined glucose-insulin test or i.v. insulin tolerance test. In both of these tests, exogenous insulin is administered and the rate of glucose uptake into tissues measured. Diagnosis and management of hyperinsulinaemia is recommended to reduce the risk of laminitis. The term insulin dysregulation is introduced here to refer collectively to excessive insulin responses to sugars, fasting hyperinsulinaemia and insulin resistance, which are all components of equine metabolic syndrome.
Collapse
Affiliation(s)
- N Frank
- Department of Clinical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, USA; Division of Veterinary Medicine, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, UK
| | | |
Collapse
|
99
|
Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G, Nishigaki I. The vascular endothelium and human diseases. Int J Biol Sci 2013; 9:1057-69. [PMID: 24250251 PMCID: PMC3831119 DOI: 10.7150/ijbs.7502] [Citation(s) in RCA: 977] [Impact Index Per Article: 81.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/07/2013] [Indexed: 02/07/2023] Open
Abstract
Alterations of endothelial cells and the vasculature play a central role in the pathogenesis of a broad spectrum of the most dreadful of human diseases, as endothelial cells have the key function of participating in the maintenance of patent and functional capillaries. The endothelium is directly involved in peripheral vascular disease, stroke, heart disease, diabetes, insulin resistance, chronic kidney failure, tumor growth, metastasis, venous thrombosis, and severe viral infectious diseases. Dysfunction of the vascular endothelium is thus a hallmark of human diseases. In this review the main endothelial abnormalities found in various human diseases such as cancer, diabetes mellitus, atherosclerosis, and viral infections are addressed.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- 1. NPO-International Laboratory of Biochemistry,1-166, Uchide, Nakagawa-ku, Nagoya 454-0926, Japan
| | | | - Jayakumar Thangavel
- 2. Department of Pharmacology and Center of Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Yutaka Nishigaki
- 1. NPO-International Laboratory of Biochemistry,1-166, Uchide, Nakagawa-ku, Nagoya 454-0926, Japan
| | - Dhanapal Sakthisekaran
- 3. Department of Medical Biochemistry, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India 600 113
| | - Gautam Sethi
- 4. Department of Pharmacology,Yong Loo Lin School of Medicine,National University Health System, 10 Medical Drive, MD11, #05-09, Clinical Research Centre, Singapore 117597
| | - Ikuo Nishigaki
- 1. NPO-International Laboratory of Biochemistry,1-166, Uchide, Nakagawa-ku, Nagoya 454-0926, Japan
| |
Collapse
|
100
|
Munir KM, Chandrasekaran S, Gao F, Quon MJ. Mechanisms for food polyphenols to ameliorate insulin resistance and endothelial dysfunction: therapeutic implications for diabetes and its cardiovascular complications. Am J Physiol Endocrinol Metab 2013; 305:E679-86. [PMID: 23900418 PMCID: PMC4073986 DOI: 10.1152/ajpendo.00377.2013] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The rising epidemic of diabetes is a pressing issue in clinical medicine worldwide from both healthcare and economic perspectives. This is fueled by overwhelming increases in the incidence and prevalence of obesity. Obesity and diabetes are characterized by both insulin resistance and endothelial dysfunction that lead to substantial increases in cardiovascular morbidity and mortality. Reciprocal relationships between insulin resistance and endothelial dysfunction tightly link metabolic diseases including obesity and diabetes with their cardiovascular complications. Therefore, therapeutic approaches that target either insulin resistance or endothelial dysfunction alone are likely to simultaneously improve both metabolic and cardiovascular pathophysiology and disease outcomes. Moreover, combination therapies with agents targeting distinct mechanisms are likely to have additive or synergistic benefits. Conventional therapies for diabetes and its cardiovascular complications that are both safe and effective are insufficient to meet rising demand. Large, robust, epidemiologic studies demonstrate beneficial metabolic and cardiovascular health effects for many functional foods containing various polyphenols. However, precise molecular mechanisms of action for food polyphenols are largely unknown. Moreover, translation of these insights into effective clinical therapies has not been fully realized. Nevertheless, some functional foods are likely sources for safe and effective therapies and preventative strategies for metabolic diseases and their cardiovascular complications. In this review, we emphasize recent progress in elucidating molecular, cellular, and physiological actions of polyphenols from green tea (EGCG), cocoa (ECG), and citrus fruits (hesperedin) that are related to improving metabolic and cardiovascular pathophysiology. We also discuss a rigorous comprehensive approach to studying functional foods that is essential for developing novel, effective, and safe medications derived from functional foods that will complement existing conventional drugs.
Collapse
Affiliation(s)
- Kashif M Munir
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland; and
| | | | | | | |
Collapse
|