51
|
Pitsalidis C, van Niekerk D, Moysidou CM, Boys AJ, Withers A, Vallet R, Owens RM. Organic electronic transmembrane device for hosting and monitoring 3D cell cultures. SCIENCE ADVANCES 2022; 8:eabo4761. [PMID: 36112689 PMCID: PMC9481123 DOI: 10.1126/sciadv.abo4761] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
3D cell models have made strides in the past decades in response to failures of 2D cultures to translate targets during the drug discovery process. Here, we report on a novel multiwell plate bioelectronic platform, namely, the e-transmembrane, capable of supporting and monitoring complex 3D cell architectures. Scaffolds made of PEDOT:PSS [poly(3,4-ethylenedioxythiophene):polystyrene sulfonate] are microengineered to function as separating membranes for compartmentalized cell cultures, as well as electronic components for real-time in situ recordings of cell growth and function. Owing to the high surface area-to-volume ratio, the e-transmembrane allows generation of deep, stratified tissues within the porous bulk and cell polarization at the apico-basal domains. Impedance spectroscopy measurements carried out throughout the tissue growth identified signatures from different cellular systems and allowed extraction of critical functional parameters. This platform has the potential to become a universal tool for biologists for the next generation of high-throughput drug screening assays.
Collapse
Affiliation(s)
- Charalampos Pitsalidis
- Department of Physics and Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, P. O. Box 127788, Abu Dhabi, UAE
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Douglas van Niekerk
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Chrysanthi-Maria Moysidou
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Alexander J. Boys
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Aimee Withers
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | | | - Róisín M. Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| |
Collapse
|
52
|
Slawinski M, Kaeek M, Rajmiel Y, Khoury LR. Acetic Acid Enables Precise Tailoring of the Mechanical Behavior of Protein-Based Hydrogels. NANO LETTERS 2022; 22:6942-6950. [PMID: 36018622 PMCID: PMC9479135 DOI: 10.1021/acs.nanolett.2c01558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Engineering viscoelastic and biocompatible materials with tailored mechanical and microstructure properties capable of mimicking the biological stiffness (<17 kPa) or serving as bioimplants will bring protein-based hydrogels to the forefront in the biomaterials field. Here, we introduce a method that uses different concentrations of acetic acid (AA) to control the covalent tyrosine-tyrosine cross-linking interactions at the nanoscale level during protein-based hydrogel synthesis and manipulates their mechanical and microstructure properties without affecting protein concentration and (un)folding nanomechanics. We demonstrated this approach by adding AA as a precursor to the preparation buffer of a photoactivated protein-based hydrogel mixture. This strategy allowed us to synthesize hydrogels made from bovine serum albumin (BSA) and eight repeats protein L structure, with a fine-tailored wide range of stiffness (2-35 kPa). Together with protein engineering technologies, this method will open new routes in developing and investigating tunable protein-based hydrogels and extend their application toward new horizons.
Collapse
Affiliation(s)
- Marina Slawinski
- Department
of Physics, University of Wisconsin—Milwaukee, 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, United States
| | - Maria Kaeek
- Department
of Materials Science and Engineering, Technion
Israel Institute of Technology, Haifa 32000, Israel
| | - Yair Rajmiel
- Department
of Materials Science and Engineering, Technion
Israel Institute of Technology, Haifa 32000, Israel
| | - Luai R. Khoury
- Department
of Materials Science and Engineering, Technion
Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
53
|
Yoon JY, Mandakhbayar N, Hyun J, Yoon DS, Patel KD, Kang K, Shim HS, Lee HH, Lee JH, Leong KW, Kim HW. Chemically-induced osteogenic cells for bone tissue engineering and disease modeling. Biomaterials 2022; 289:121792. [PMID: 36116170 DOI: 10.1016/j.biomaterials.2022.121792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022]
Abstract
Cell reprogramming can satisfy the demands of obtaining specific cell types for applications such as tissue regeneration and disease modeling. Here we report the reprogramming of human fibroblasts to produce chemically-induced osteogenic cells (ciOG), and explore the potential uses of ciOG in bone repair and disease treatment. A chemical cocktail of RepSox, forskolin, and phenamil was used for osteogenic induction of fibroblasts by activation of RUNX2 expression. Following a maturation, the cells differentiated toward an osteoblast phenotype that produced mineralized nodules. Bulk and single-cell RNA sequencing identified a distinct ciOG population. ciOG formed mineralized tissue in an ectopic site of immunodeficiency mice, unlike the original fibroblasts. Osteogenic reprogramming was modulated under engineered culture substrates. When generated on a nanofiber substrate ciOG accelerated bone matrix formation in a calvarial defect, indicating that the engineered biomaterial promotes the osteogenic capacity of ciOG in vivo. Furthermore, the ciOG platform recapitulated the genetic bone diseases Proteus syndrome and osteogenesis imperfecta, allowing candidate drug testing. The reprogramming of human fibroblasts into osteogenic cells with a chemical cocktail thus provides a source of specialized cells for use in bone tissue engineering and disease modeling.
Collapse
Affiliation(s)
- Ji-Young Yoon
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jeongeun Hyun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Dong Suk Yoon
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kapil D Patel
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Keunsoo Kang
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, 31116, South Korea
| | - Ho-Shup Shim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Kam W Leong
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA; Department of Systems Biology, Columbia University, New York, NY, 10027, USA
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
54
|
Luo J, Walker M, Xiao Y, Donnelly H, Dalby MJ, Salmeron-Sanchez M. The influence of nanotopography on cell behaviour through interactions with the extracellular matrix – A review. Bioact Mater 2022; 15:145-159. [PMID: 35386337 PMCID: PMC8940943 DOI: 10.1016/j.bioactmat.2021.11.024] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
Nanotopography presents an effective physical approach for biomaterial cell manipulation mediated through material-extracellular matrix interactions. The extracellular matrix that exists in the cellular microenvironment is crucial for guiding cell behaviours, such as determination of integrin ligation and interaction with growth factors. These interactions with the extracellular matrix regulate downstream mechanotransductive pathways, such as rearrangements in the cytoskeleton and activation of signal cascades. Protein adsorption onto nanotopography strongly influences the conformation and distribution density of extracellular matrix and, therefore, subsequent cell responses. In this review, we first discuss the interactive mechanisms of protein physical adsorption on nanotopography. Secondly, we summarise advances in creating nanotopographical features to instruct desired cell behaviours. Lastly, we focus on the cellular mechanotransductive pathways initiated by nanotopography. This review provides an overview of the current state-of-the-art designs of nanotopography aiming to provide better biomedical materials for the future. A comprehensive overview of nanotopography fabrication, and nanotopography regulates various cell behaviours. The interactive physical adsorption between nanotopography and extracellular matrix. Nanotopography initiates the cellular mechanotransductive pathways and downstream signalling cascades.
Collapse
|
55
|
Salam N, Gibson IR. Lithium ion doped carbonated hydroxyapatite compositions: Synthesis, physicochemical characterisation and effect on osteogenic response in vitro. BIOMATERIALS ADVANCES 2022; 140:213068. [PMID: 35939955 DOI: 10.1016/j.bioadv.2022.213068] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 07/08/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Hydroxyapatite is a commonly researched biomaterial for bone regeneration applications. To augment performance, hydroxyapatite can be substituted with functional ions to promote repair. Here, co-substituted lithium ion (Li+) and carbonate ion hydroxyapatite compositions were synthesised by an aqueous precipitation method. The co-substitution of Li+ and CO32- is a novel approach that accounts for charge balance, which has been ignored in the synthesis of Li doped calcium phosphates to date. Three compositions were synthesised: Li+-free (Li 0), low Li+ (Li 0.25), and high Li+ (Li 1). Synthesised samples were sintered as microporous discs (70-75 % theoretical sintered density) prior to being ground and fractionated to produce granules and powders, which were then characterised and evaluated in vitro. Physical and chemical characterisation demonstrated that lithium incorporation in Li 0.25 and Li 1 samples approached design levels (0.25 and 1 mol%), containing 0.253 and 0.881 mol% Li+ ions, respectively. The maximum CO32- ion content was observed in the Li 1 sample, with ~8 wt% CO3, with the carbonate ions located on both phosphate and hydroxyl sites in the crystal structure. Measurement of dissolution products following incubation experiments indicated a Li+ burst release profile in DMEM, with incubation of 30 mg/ml sample resulting in a Li+ ion concentration of approximately 140 mM after 24 h. For all compositions evaluated, sintered discs allowed for favourable attachment and proliferation of C2C12 cells, human osteoblast (hOB) cells, and human mesenchymal stem cells (hMSCs). An increase in alkaline phosphatase (ALP) activity with Li+ doping was demonstrated in C2C12 cells and hMSCs seeded onto sintered discs, whilst the inverse was observed in hOB cells. Furthermore, an increase in ALP activity was observed in C2C12 cells and hMSCs in response to dissolution products from Li 1 samples which related to Li+ release. Complementary experiments to further investigate the findings from hOB cells confirmed an osteogenic role of the surface topography of the discs. This research has shown successful synthesis of Li+ doped carbonated hydroxyapatite which demonstrated cytocompatibility and enhanced osteogenesis in vitro, compared to Li+-free controls.
Collapse
Affiliation(s)
- Nasseem Salam
- Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Iain R Gibson
- Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK; Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, UK.
| |
Collapse
|
56
|
Su T, Xu M, Lu F, Chang Q. Adipogenesis or osteogenesis: destiny decision made by mechanical properties of biomaterials. RSC Adv 2022; 12:24501-24510. [PMID: 36128379 PMCID: PMC9425444 DOI: 10.1039/d2ra02841g] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/24/2022] [Indexed: 11/21/2022] Open
Abstract
Regenerative medicine affords an effective approach for restoring defect-associated diseases, and biomaterials play a pivotal role as cell niches to support the cell behavior and decide the destiny of cell differentiation. Except for chemical inducers, mechanical properties such as stiffness, pore size and topography of biomaterials play a crucial role in the regulation of cell behaviors and functions. Stiffness may determine the adipogenesis or osteogenesis of mesenchymal stem cells (MSCs) via the translocation of yes-associated protein (YAP) and the transcriptional coactivator with a PDZ-binding motif (TAZ). External forces transmit through cytoskeleton reorientation to assist nuclear deformation and molecule transport, meanwhile, signal pathways including the Hippo, FAK/RhoA/ROCK, and Wnt/β-catenin have been evidenced to participate in the mechanotransduction. Different pore sizes not only tailor the scaffold stiffness but also conform to the requirements of cell migration and vessels in-growth. Topography guides cell geometry along with mobility and determines the cell fate ascribed to micro/nano-scale contact. Herein, we highlight the recent progress in exploring the regulation mechanism by the physical properties of biomaterials, which might lead to more innovative regenerative strategies for adipose or bone tissue repair.
Collapse
Affiliation(s)
- Ting Su
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University 510515 China
| | - Mimi Xu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University 510515 China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University 510515 China
| | - Qiang Chang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University 510515 China
| |
Collapse
|
57
|
Jie J, Mao D, Cao J, Feng P, Yang P. Customized Multifunctional Peptide Hydrogel Scaffolds for CAR-T-Cell Rapid Proliferation and Solid Tumor Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37514-37527. [PMID: 35944246 DOI: 10.1021/acsami.2c10727] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
CAR-T-cell therapies must be expanded to obtain a large number of effector cells quickly, and the current technology cannot address this challenge. A longer operational time would lose or alter the function and phenotype of CAR-T cells in response to therapy, and it also causes a loss in the optimal treatment time for patients. At present, lower survival time and homing efficiency reduce the antitumor effect of CAR-T in vivo. But nobody has solved these two issues in one system, which has a similar microenvironment of lymphoid organs to activate/expand cell delivery for immunotherapy. Here, we generated artificial, customized immune cell matrix scaffolds based on a self-assembling peptide to preserve and augment the cell phenotype in light of the characteristics of CAR-T. The all-in-one nanoscale matrix scaffolds reduced the processing time of CAR-T to 3 days and resulted in over a 10-fold increase compared with the traditional protocol. The cells were combined to modulate mechanotransduction and chemical signals, and the mimic matrix scaffolds showed optimal stiffness and adhesive ligand density, thereby accelerating CAR-T-cell proliferation. Meanwhile, engineering CAR-T-secreted intrinsic PD-1 blocking single-chain variable fragments (scFv) further increased cell proliferation and cytotoxicity by resisting the self and tumor microenvironment in a paracrine and autocrine manner. Local delivery of CAR-T cells from the scaffolds significantly enabled long-term retention, suppressed tumor growth, and increased infiltration of effector T cells compared with traditional CAR-T treatment. The application of bioengineering and genetic engineering approaches has led to the development of rapid culture environments that can control matrix scaffold properties for CAR-T-cell and cancer immunotherapies.
Collapse
Affiliation(s)
- Jing Jie
- Department of Clinical Laboratory, The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, 226001 Nantong, P. R. China
| | - Duo Mao
- Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, 510080 Guangzhou, P. R. China
| | - Jie Cao
- Department of Pathology, The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, 226001 Nantong, P. R. China
| | - Panfeng Feng
- Department of Pharmacy, The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, 226001 Nantong, P. R. China
| | - Pengxiang Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, P. R. China
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin Medical University, 150081 Harbin, P. R. China
| |
Collapse
|
58
|
Flournoy J, Ashkanani S, Chen Y. Mechanical regulation of signal transduction in angiogenesis. Front Cell Dev Biol 2022; 10:933474. [PMID: 36081909 PMCID: PMC9447863 DOI: 10.3389/fcell.2022.933474] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022] Open
Abstract
Biophysical and biochemical cues work in concert to regulate angiogenesis. These cues guide angiogenesis during development and wound healing. Abnormal cues contribute to pathological angiogenesis during tumor progression. In this review, we summarize the known signaling pathways involved in mechanotransduction important to angiogenesis. We discuss how variation in the mechanical microenvironment, in terms of stiffness, ligand availability, and topography, can modulate the angiogenesis process. We also present an integrated view on how mechanical perturbations, such as stretching and fluid shearing, alter angiogenesis-related signal transduction acutely, leading to downstream gene expression. Tissue engineering-based approaches to study angiogenesis are reviewed too. Future directions to aid the efforts in unveiling the comprehensive picture of angiogenesis are proposed.
Collapse
Affiliation(s)
- Jennifer Flournoy
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
- Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD, United States
- Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD, United States
| | - Shahad Ashkanani
- Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD, United States
- Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD, United States
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Yun Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
- Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD, United States
- Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
59
|
Lemma ED, Jiang Z, Klein F, Landmann T, Weißenbruch K, Bertels S, Hippler M, Wehrle-Haller B, Bastmeyer M. Adaptation of cell spreading to varying fibronectin densities and topographies is facilitated by β1 integrins. Front Bioeng Biotechnol 2022; 10:964259. [PMID: 36032704 PMCID: PMC9399860 DOI: 10.3389/fbioe.2022.964259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
Cells mechanical behaviour in physiological environments is mediated by interactions with the extracellular matrix (ECM). In particular, cells can adapt their shape according to the availability of ECM proteins, e.g., fibronectin (FN). Several in vitro experiments usually simulate the ECM by functionalizing the surfaces on which cells grow with FN. However, the mechanisms underlying cell spreading on non-uniformly FN-coated two-dimensional substrates are not clarified yet. In this work, we studied cell spreading on variously functionalized substrates: FN was either uniformly distributed or selectively patterned on flat surfaces, to show that A549, BRL, B16 and NIH 3T3 cell lines are able to sense the overall FN binding sites independently of their spatial arrangement. Instead, only the total amount of available FN influences cells spreading area, which positively correlates to the FN density. Immunocytochemical analysis showed that β1 integrin subunits are mainly responsible for this behaviour, as further confirmed by spreading experiments with β1-deficient cells. In the latter case, indeed, cells areas do not show a dependency on the amount of available FN on the substrates. Therefore, we envision for β1 a predominant role in cells for sensing the number of ECM ligands with respect to other focal adhesion proteins.
Collapse
Affiliation(s)
- Enrico Domenico Lemma
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- *Correspondence: Enrico Domenico Lemma, ; Martin Bastmeyer,
| | - Zhongxiang Jiang
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Franziska Klein
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- DFG-Center for Functional Nanostructures (CFN), Karlsruher Institut für Technologie, Karlsruhe, Germany
| | - Tanja Landmann
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Kai Weißenbruch
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Sarah Bertels
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Marc Hippler
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | | - Martin Bastmeyer
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute of Biological and Chemical Systems—Biological Information Processing, Karlsruhe Institute of Technology, Karlsruhe, Germany
- *Correspondence: Enrico Domenico Lemma, ; Martin Bastmeyer,
| |
Collapse
|
60
|
Wang Y, Jin Y, Chen Y, Han T, Chen Y, Wang C. A preliminary study on surface bioactivation of polyaryletherketone by UV-grafting with PolyNaSS: influence on osteogenic and antibacterial activities. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1845-1865. [PMID: 35757914 DOI: 10.1080/09205063.2022.2088524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Polyaryletherketone (PAEK) has good biocompatibility and mechanical properties and thus may have great potential in the fields of reparative medicine and bone intervention. In this study, the key representative PAEKs, polyetheretherketone (PEEK) and polyetherketoneketone (PEKK), were modified by UV grafting with sodium polystyrene sulfonate (polyNaSS) to improve their biocompatibility. Toluidine blue staining and Fourier transform infrared spectroscopic analyses showed that sulfonic acid groups were successfully introduced into PAEK, and the hydrophilicity and protein adsorption capacity of the materials were enhanced in a concentration-dependent manner. The effects of the grafted polyNaSS on osteoinduction and antibacterial properties of PAEK were analyzed in detail. We found that polyNaSS enhanced the viability, alkaline phosphatase activity, calcium mineral deposition, and levels of expression of osteoblast-related genes and proteins of adherent human umbilical cord Wharton's jelly-derived mesenchymal stem cells. In addition, when Escherichia coli, Staphylococcus aureus and Porphyromonas gingivalis were incubated with the materials, bacterial colony counting revealed that grafting of polyNaSS onto PAEK led to more potent inhibition of bacterial adhesion, and polyNaSS-grafted PEKK had stronger antibacterial performance than did polyNaSS-grafted PEEK fabricated under the same grafting conditions. These data show that polyNaSS-grafted PAEK, and particularly polyNaSS-grafted PEKK, may be useful as orthopedic and dental implant materials.
Collapse
Affiliation(s)
- Yijin Wang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yabing Jin
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yiyi Chen
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Tianlei Han
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yuhong Chen
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Chen Wang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
61
|
Ramesh P, Moskwa N, Hanchon Z, Koplas A, Nelson DA, Mills KL, Castracane J, Larsen M, Sharfstein ST, Xie Y. Engineering cryoelectrospun elastin-alginate scaffolds to serve as stromal extracellular matrices. Biofabrication 2022; 14:10.1088/1758-5090/ac6b34. [PMID: 35481854 PMCID: PMC9973022 DOI: 10.1088/1758-5090/ac6b34] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/26/2022] [Indexed: 11/12/2022]
Abstract
Scaffold-based regenerative strategies that emulate physical, biochemical, and mechanical properties of the native extracellular matrix (ECM) of the region of interest can influence cell growth and function. Existing ECM-mimicking scaffolds, including nanofiber (NF) mats, sponges, hydrogels, and NF-hydrogel composites are unable to simultaneously mimic typical composition, topography, pore size, porosity, and viscoelastic properties of healthy soft-tissue ECM. In this work, we used cryoelectrospinning to fabricate 3D porous scaffolds with minimal fibrous backbone, pore size and mechanical properties similar to soft-tissue connective tissue ECM. We used salivary glands as our soft tissue model and found the decellularized adult salivary gland (DSG) matrix to have a fibrous backbone, 10-30μm pores, 120 Pa indentation modulus, and ∼200 s relaxation half time. We used elastin and alginate as natural, compliant biomaterials and water as the solvent for cryoelectrospinning scaffolds to mimic the structure and viscoelasticity of the connective tissue ECM of the DSG. Process parameters were optimized to produce scaffolds with desirable topography and compliance similar to DSG, with a high yield of >100 scaffolds/run. Using water as solvent, rather than organic solvents, was critical to generate biocompatible scaffolds with desirable topography; further, it permitted a green chemistry fabrication process. Here, we demonstrate that cryoelectrospun scaffolds (CESs) support penetration of NIH 3T3 fibroblasts 250-450µm into the scaffold, cell survival, and maintenance of a stromal cell phenotype. Thus, we demonstrate that elastin-alginate CESs mimic many structural and functional properties of ECM and have potential for future use in regenerative medicine applications.
Collapse
Affiliation(s)
- Pujhitha Ramesh
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, USA
| | - Nicholas Moskwa
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, New York 12222, USA
| | - Zachary Hanchon
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, USA
| | - Adam Koplas
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, USA
| | - Deirdre A. Nelson
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, New York 12222, USA
| | - Kristen L. Mills
- Department of Mechanical, Aerospace, and Nuclear Engineering (MANE), Center for Biotechnology and Interdisciplinary Studies (CBIS), Rensselaer Polytechnic Institute, 1623 15th Street, Troy, New York, 12180, USA
| | - James Castracane
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, USA
| | - Melinda Larsen
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, USA,Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, New York 12222, USA
| | - Susan T. Sharfstein
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, USA,Corresponding Authors: Yubing Xie, Ph.D., Professor of Nanobioscience, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, USA, , Susan Sharfstein, Ph.D., Professor of Nanobioscience, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, USA,
| | - Yubing Xie
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, USA,Corresponding Authors: Yubing Xie, Ph.D., Professor of Nanobioscience, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, USA, , Susan Sharfstein, Ph.D., Professor of Nanobioscience, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, USA,
| |
Collapse
|
62
|
Carotenuto F, Politi S, Ul Haq A, De Matteis F, Tamburri E, Terranova ML, Teodori L, Pasquo A, Di Nardo P. From Soft to Hard Biomimetic Materials: Tuning Micro/Nano-Architecture of Scaffolds for Tissue Regeneration. MICROMACHINES 2022; 13:mi13050780. [PMID: 35630247 PMCID: PMC9144100 DOI: 10.3390/mi13050780] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 03/30/2022] [Accepted: 05/13/2022] [Indexed: 11/23/2022]
Abstract
Failure of tissues and organs resulting from degenerative diseases or trauma has caused huge economic and health concerns around the world. Tissue engineering represents the only possibility to revert this scenario owing to its potential to regenerate or replace damaged tissues and organs. In a regeneration strategy, biomaterials play a key role promoting new tissue formation by providing adequate space for cell accommodation and appropriate biochemical and biophysical cues to support cell proliferation and differentiation. Among other physical cues, the architectural features of the biomaterial as a kind of instructive stimuli can influence cellular behaviors and guide cells towards a specific tissue organization. Thus, the optimization of biomaterial micro/nano architecture, through different manufacturing techniques, is a crucial strategy for a successful regenerative therapy. Over the last decades, many micro/nanostructured biomaterials have been developed to mimic the defined structure of ECM of various soft and hard tissues. This review intends to provide an overview of the relevant studies on micro/nanostructured scaffolds created for soft and hard tissue regeneration and highlights their biological effects, with a particular focus on striated muscle, cartilage, and bone tissue engineering applications.
Collapse
Affiliation(s)
- Felicia Carotenuto
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy; (S.P.); (L.T.); (A.P.)
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
- Correspondence: (F.C.); (P.D.N.)
| | - Sara Politi
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy; (S.P.); (L.T.); (A.P.)
- Dipartimento di Scienze e Tecnologie Chimiche, Università Degli Studi di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Arsalan Ul Haq
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
| | - Fabio De Matteis
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
- Dipartimento Ingegneria Industriale, Università Degli Studi di Roma “Tor Vergata”, Via del Politecnico, 00133 Roma, Italy
| | - Emanuela Tamburri
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
- Dipartimento di Scienze e Tecnologie Chimiche, Università Degli Studi di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Maria Letizia Terranova
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
- Dipartimento di Scienze e Tecnologie Chimiche, Università Degli Studi di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Laura Teodori
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy; (S.P.); (L.T.); (A.P.)
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
| | - Alessandra Pasquo
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy; (S.P.); (L.T.); (A.P.)
| | - Paolo Di Nardo
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
- Correspondence: (F.C.); (P.D.N.)
| |
Collapse
|
63
|
Sahebalzamani M, Ziminska M, McCarthy HO, Levingstone TJ, Dunne NJ, Hamilton AR. Advancing bone tissue engineering one layer at a time: a layer-by-layer assembly approach to 3D bone scaffold materials. Biomater Sci 2022; 10:2734-2758. [PMID: 35438692 DOI: 10.1039/d1bm01756j] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The layer-by-layer (LbL) assembly technique has shown excellent potential in tissue engineering applications. The technique is mainly based on electrostatic attraction and involves the sequential adsorption of oppositely charged electrolyte complexes onto a substrate, resulting in uniform single layers that can be rapidly deposited to form nanolayer films. LbL has attracted significant attention as a coating technique due to it being a convenient and affordable fabrication method capable of achieving a wide range of biomaterial coatings while keeping the main biofunctionality of the substrate materials. One promising application is the use of nanolayer films fabricated by LbL assembly in the development of 3-dimensional (3D) bone scaffolds for bone repair and regeneration. Due to their versatility, nanoscale films offer an exciting opportunity for tailoring surface and bulk property modification of implants for osseous defect therapies. This review article discusses the state of the art of the LbL assembly technique, and the properties and functions of LbL-assembled films for engineered bone scaffold application, combination of multilayers for multifunctional coatings and recent advancements in the application of LbL assembly in bone tissue engineering. The recent decade has seen tremendous advances in the promising developments of LbL film systems and their impact on cell interaction and tissue repair. A deep understanding of the cell behaviour and biomaterial interaction for the further development of new generations of LbL films for tissue engineering are the most important targets for biomaterial research in the field. While there is still much to learn about the biological and physicochemical interactions at the interface of nano-surface coated scaffolds and biological systems, we provide a conceptual review to further progress in the LbL approach to 3D bone scaffold materials and inform the future of LbL development in bone tissue engineering.
Collapse
Affiliation(s)
- MohammadAli Sahebalzamani
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland. .,Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland.
| | - Monika Ziminska
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK.
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK. .,School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Tanya J Levingstone
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland. .,Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland. .,Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland.,Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland.,Biodesign Europe, Dublin City University, Dublin 9, Ireland
| | - Nicholas J Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland. .,Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland. .,School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK. .,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland.,Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, Ireland.,Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland.,Biodesign Europe, Dublin City University, Dublin 9, Ireland
| | - Andrew R Hamilton
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
64
|
Zeng X, Meng Z, He J, Mao M, Li X, Chen P, Fan J, Li D. Embedded bioprinting for designer 3D tissue constructs with complex structural organization. Acta Biomater 2022; 140:1-22. [PMID: 34875360 DOI: 10.1016/j.actbio.2021.11.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 01/12/2023]
Abstract
3D bioprinting has been developed as an effective and powerful technique for the fabrication of living tissue constructs in a well-controlled manner. However, most existing 3D bioprinting strategies face substantial challenges in replicating delicate and intricate tissue-specific structural organizations using mechanically weak biomaterials such as hydrogels. Embedded bioprinting is an emerging bioprinting strategy that can directly fabricate complex structures derived from soft biomaterials within a supporting matrix, which shows great promise in printing large vascularized tissues and organs. Here, we provide a state-of-the-art review on the development of embedded bioprinting including extrusion-based and light-based processes to manufacture complex tissue constructs with biomimetic architectures. The working principles, bioinks, and supporting matrices of embedded printing processes are introduced. The effect of key processing parameters on the printing resolution, shape fidelity, and biological functions of the printed tissue constructs are discussed. Recent innovations in the processes and applications of embedded bioprinting are highlighted, such as light-based volumetric bioprinting and printing of functional vascularized organ constructs. Challenges and future perspectives with regard to translating embedded bioprinting into an effective strategy for the fabrication of functional biological constructs with biomimetic structural organizations are finally discussed. STATEMENT OF SIGNIFICANCE: It is still challenging to replicate delicate and intricate tissue-specific structural organizations using mechanically-weak hydrogels for the fabrication of functional living tissue constructs. Embedded bioprinting is an emerging 3D printing strategy that enables to produce complex tissue structures directly inside a reservoir filled with supporting matrix, which largely widens the choice of bioprinting inks to ECM-like hydrogels. Here we aim to provide a comprehensive review on various embedded bioprinting techniques mainly including extrusion-based and light-based processes. Various bioinks, supporting matrices, key processing parameters as well as their effects on the structures and biological functions of resultant living tissue constructs are discussed. We expect that it can provide an important reference and generate new insights for the bioprinting of large vascularized tissues and organs with biological functions.
Collapse
|
65
|
Dynamics of Endothelial Engagement and Filopodia Formation in Complex 3D Microscaffolds. Int J Mol Sci 2022; 23:ijms23052415. [PMID: 35269558 PMCID: PMC8910162 DOI: 10.3390/ijms23052415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 11/28/2022] Open
Abstract
The understanding of endothelium–extracellular matrix interactions during the initiation of new blood vessels is of great medical importance; however, the mechanobiological principles governing endothelial protrusive behaviours in 3D microtopographies remain imperfectly understood. In blood capillaries submitted to angiogenic factors (such as vascular endothelial growth factor, VEGF), endothelial cells can transiently transdifferentiate in filopodia-rich cells, named tip cells, from which angiogenesis processes are locally initiated. This protrusive state based on filopodia dynamics contrasts with the lamellipodia-based endothelial cell migration on 2D substrates. Using two-photon polymerization, we generated 3D microstructures triggering endothelial phenotypes evocative of tip cell behaviour. Hexagonal lattices on pillars (“open”), but not “closed” hexagonal lattices, induced engagement from the endothelial monolayer with the generation of numerous filopodia. The development of image analysis tools for filopodia tracking allowed to probe the influence of the microtopography (pore size, regular vs. elongated structures, role of the pillars) on orientations, engagement and filopodia dynamics, and to identify MLCK (myosin light-chain kinase) as a key player for filopodia-based protrusive mode. Importantly, these events occurred independently of VEGF treatment, suggesting that the observed phenotype was induced through microtopography. These microstructures are proposed as a model research tool for understanding endothelial cell behaviour in 3D fibrillary networks.
Collapse
|
66
|
Mierke CT. Viscoelasticity, Like Forces, Plays a Role in Mechanotransduction. Front Cell Dev Biol 2022; 10:789841. [PMID: 35223831 PMCID: PMC8864183 DOI: 10.3389/fcell.2022.789841] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Viscoelasticity and its alteration in time and space has turned out to act as a key element in fundamental biological processes in living systems, such as morphogenesis and motility. Based on experimental and theoretical findings it can be proposed that viscoelasticity of cells, spheroids and tissues seems to be a collective characteristic that demands macromolecular, intracellular component and intercellular interactions. A major challenge is to couple the alterations in the macroscopic structural or material characteristics of cells, spheroids and tissues, such as cell and tissue phase transitions, to the microscopic interferences of their elements. Therefore, the biophysical technologies need to be improved, advanced and connected to classical biological assays. In this review, the viscoelastic nature of cytoskeletal, extracellular and cellular networks is presented and discussed. Viscoelasticity is conceptualized as a major contributor to cell migration and invasion and it is discussed whether it can serve as a biomarker for the cells' migratory capacity in several biological contexts. It can be hypothesized that the statistical mechanics of intra- and extracellular networks may be applied in the future as a powerful tool to explore quantitatively the biomechanical foundation of viscoelasticity over a broad range of time and length scales. Finally, the importance of the cellular viscoelasticity is illustrated in identifying and characterizing multiple disorders, such as cancer, tissue injuries, acute or chronic inflammations or fibrotic diseases.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| |
Collapse
|
67
|
Park R, Yoon JW, Lee JH, Hong SW, Kim JH. Phenotypic change of mesenchymal stem cells into smooth muscle cells regulated by dynamic cell-surface interactions on patterned arrays of ultrathin graphene oxide substrates. J Nanobiotechnology 2022; 20:17. [PMID: 34983551 PMCID: PMC8725258 DOI: 10.1186/s12951-021-01225-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/23/2021] [Indexed: 01/13/2023] Open
Abstract
The topographical interface of the extracellular environment has been appreciated as a principal biophysical regulator for modulating cell functions, such as adhesion, migration, proliferation, and differentiation. Despite the existed approaches that use two-dimensional nanomaterials to provide beneficial effects, opportunities evaluating their impact on stem cells remain open to elicit unprecedented cellular responses. Herein, we report an ultrathin cell-culture platform with potential-responsive nanoscale biointerfaces for monitoring mesenchymal stem cells (MSCs). We designed an intriguing nanostructured array through self-assembly of graphene oxide sheets and subsequent lithographical patterning method to produce chemophysically defined regions. MSCs cultured on anisotropic micro/nanoscale patterned substrate were spontaneously organized in a highly ordered configuration mainly due to the cell-repellent interactions. Moreover, the spatially aligned MSCs were spontaneously differentiated into smooth muscle cells upon the specific crosstalk between cells. This work provides a robust strategy for directing stem cells and differentiation, which can be utilized as a potential cell culture platform to understand cell-substrate or cell-cell interactions, further developing tissue repair and stem cell-based therapies.
Collapse
Affiliation(s)
- Rowoon Park
- Department of Cogno-Mechatronics Engineering, Pusan National University, 46241, Busan, Republic of Korea
| | - Jung Won Yoon
- Department of Physiology, School of Medicine, Pusan National University, 50612, Yangsan, Republic of Korea
| | - Jin-Ho Lee
- Department of Biomedical Convergence Engineering, Pusan National University, 50612, Yangsan, Republic of Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, Pusan National University, 46241, Busan, Republic of Korea.
| | - Jae Ho Kim
- Department of Physiology, School of Medicine, Pusan National University, 50612, Yangsan, Republic of Korea.
| |
Collapse
|
68
|
Choi J, Shin BH, Kim T, Lee JS, Kim S, Choy YB, Heo CY, Koh WG. Micro-textured silicone-based implant fabrication using electrospun fibers as a sacrificial template to suppress fibrous capsule formation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 135:112687. [DOI: 10.1016/j.msec.2022.112687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/08/2022] [Accepted: 01/22/2022] [Indexed: 11/25/2022]
|
69
|
Roncada T, Bonithon R, Blunn G, Roldo M. Soft substrates direct stem cell differentiation into the chondrogenic lineage without the use of growth factors. J Tissue Eng 2022; 13:20417314221122121. [PMID: 36199979 PMCID: PMC9528007 DOI: 10.1177/20417314221122121] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
Mesenchymal stem cells (MSCs) hold great promise for the treatment of cartilage related injuries. However, selectively promoting stem cell differentiation in vivo is still challenging. Chondrogenic differentiation of MSCs usually requires the use of growth factors that lead to the overexpression of hypertrophic markers. In this study, for the first time the effect of stiffness on MSC differentiation has been tested without the use of growth factors. Three-dimensional collagen and alginate scaffolds were developed and characterised. Stiffness significantly affected gene expression and ECM deposition. While, all hydrogels supported chondrogenic differentiation and allowed deposition of collagen type II and aggrecan, the 5.75 kPa hydrogel showed limited production of collagen type I compared to the other two formulations. These findings demonstrated for the first time that stiffness can guide MSCs differentiation without the use of growth factors within a tissue engineering scaffold suitable for the treatment of cartilage defects.
Collapse
Affiliation(s)
- Tosca Roncada
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Roxane Bonithon
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Marta Roldo
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
- Marta Roldo, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth, PO1 2DT, UK.
| |
Collapse
|
70
|
The Role of Substrate Topography and Stiffness on MSC Cells Functions: Key Material Properties for Biomimetic Bone Tissue Engineering. Biomimetics (Basel) 2021; 7:biomimetics7010007. [PMID: 35076475 PMCID: PMC8788532 DOI: 10.3390/biomimetics7010007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
The hypothesis of the present research is that by altering the substrate topography and/or stiffness to make it biomimetic, we can modulate cells behavior. Substrates with similar surface chemistry and varying stiffnesses and topographies were prepared. Bulk PCL and CNTs-reinforced PCL composites were manufactured by solvent casting method and electrospinning and further processed to obtain tunable moduli of elasticity in the range of few MPa. To ensure the same chemical profile for the substrates, a protein coating was added. Substrate topography and properties were investigated. Further on, the feedback of Wharton’s Jelly Umbilical Cord Mesenchymal Stem Cells to substrates characteristics was investigated. Solvent casting scaffolds displayed superior mechanical properties compared to the corresponding electrospun films. However, the biomimetic fibrous texture of the electrospun substrates induced improved feedback of the cells with respect to their viability and proliferation. Cells’ adhesion and differentiation was remarkably pronounced on solvent casting substrates compared to the electrospun substrates. Soft substates improved cells multiplication and migration, while stiff substrates induced differentiation into bone cells. Aspects related to the key factors and the ideal properties of substrates and microenvironments were clarified, aiming towards the deep understanding of the required optimum biomimetic features of biomaterials.
Collapse
|
71
|
Wei Q, Wang S, Han F, Wang H, Zhang W, Yu Q, Liu C, Ding L, Wang J, Yu L, Zhu C, Li B, Bl, Cz, Cz, Cz, Qw, Sw, Fh, Hw, Wz, Qy, Cl, Ld, Jw, Ly, Cz, Qw. Cellular modulation by the mechanical cues from biomaterials for tissue engineering. BIOMATERIALS TRANSLATIONAL 2021; 2:323-342. [PMID: 35837415 PMCID: PMC9255801 DOI: 10.12336/biomatertransl.2021.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/13/2021] [Accepted: 07/10/2021] [Indexed: 01/17/2023]
Abstract
Mechanical cues from the extracellular matrix (ECM) microenvironment are known to be significant in modulating the fate of stem cells to guide developmental processes and maintain bodily homeostasis. Tissue engineering has provided a promising approach to the repair or regeneration of damaged tissues. Scaffolds are fundamental in cell-based regenerative therapies. Developing artificial ECM that mimics the mechanical properties of native ECM would greatly help to guide cell functions and thus promote tissue regeneration. In this review, we introduce various mechanical cues provided by the ECM including elasticity, viscoelasticity, topography, and external stimuli, and their effects on cell behaviours. Meanwhile, we discuss the underlying principles and strategies to develop natural or synthetic biomaterials with different mechanical properties for cellular modulation, and explore the mechanism by which the mechanical cues from biomaterials regulate cell function toward tissue regeneration. We also discuss the challenges in multimodal mechanical modulation of cell behaviours and the interplay between mechanical cues and other microenvironmental factors.
Collapse
Affiliation(s)
- Qiang Wei
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Shenghao Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Feng Han
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Huan Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Qifan Yu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Changjiang Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Luguang Ding
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Jiayuan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Lili Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Caihong Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China,Corresponding authors: Caihong Zhu, ; Bin Li,
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China,College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China,China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang Province, China,Corresponding authors: Caihong Zhu, ; Bin Li,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Spiaggia G, Taladriz-Blanco P, Septiadi D, Ortuso RD, Lee A, Trappe V, Rothen-Rutishauser B, Petri-Fink A. Aligned and Oriented Collagen Nanocomposite Fibers as Substrates to Activate Fibroblasts. ACS APPLIED BIO MATERIALS 2021; 4:8316-8324. [PMID: 35005948 DOI: 10.1021/acsabm.1c00844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Purified collagen possesses weak mechanical properties, hindering its broad application in tissue engineering. Strategies based on manipulating the hydrogel to induce fiber formation or incorporate nanomaterials have been proposed to overcome this issue. Herein, we use a microfluidic device to fabricate, for the first time, collagen hydrogels with aligned and oriented fibers doped with gold nanoparticles and carbon nanotubes. Results based on rheology, atomic force microscopy, and scanning electron microscopy reveal the formation of aligned and oriented collagen fibers possessing greater rigidity and stiffness on the doped hydrogels in comparison with native collagen. The mechanical properties of the hydrogels increased with the nanomaterial loading percentage and the stiffest formulations were those prepared in the presence of carbon nanotubes. We further evaluate the in vitro response of NIH-3T3 fibroblasts to the change in stiffness. The cells were found to be viable on all substrates with directional cell growth observed for the carbon nanotube-doped collagen fibers. No significant differences in the cell area, aspect ratio, and intensification of focal adhesions driven by the increase in stiffness were noted. Nonetheless, fibroblast proliferation and secretion of TGF-β1 were greater on the hydrogels doped with carbon nanotubes. This nanomaterial-collagen composite provides unique features for cell and tissue substrate applications.
Collapse
Affiliation(s)
- Giovanni Spiaggia
- Adolphe Merkle Institute, Université de Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Patricia Taladriz-Blanco
- Adolphe Merkle Institute, Université de Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Dedy Septiadi
- Adolphe Merkle Institute, Université de Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Roberto Diego Ortuso
- Adolphe Merkle Institute, Université de Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Aaron Lee
- Adolphe Merkle Institute, Université de Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Veronique Trappe
- Department of Physics, University of Fribourg, Chemin du Musée 3, 1700 Fribourg, Switzerland
| | | | - Alke Petri-Fink
- Adolphe Merkle Institute, Université de Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.,Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| |
Collapse
|
73
|
Hu X, Zhang Y. Developing biomaterials to mediate the spatial distribution of integrins. BIOPHYSICS REVIEWS 2021; 2:041302. [PMID: 38504718 PMCID: PMC10903404 DOI: 10.1063/5.0055746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 10/21/2021] [Indexed: 03/21/2024]
Abstract
Innovation in material design to regulate cell behavior and function is one of the primary tasks in materials science. Integrins, a family of cell surface-adhesion receptors that mechanically connect the extracellular matrix (ECM) to the intracellular cytoskeleton, have long served as primary targets for the design of biomaterials because their activity is not only critical to a wide range of cell and tissue functions but also subject to very tight and complex regulations from the outside environment. To review the recent progress of material innovations targeting the spatial distribution of integrins, we first introduce the interaction mechanisms between cells and the ECM by highlighting integrin-based cell adhesions, describing how integrins respond to environmental stimuli, including variations in ligand presentation, mechanical cues, and topographical variations. Then, we overview the current development of soft materials in guiding cell behaviors and functions via spatial regulation of integrins. Finally, we discuss the current limitations of these technologies and the advances that may be achieved in the future. Undoubtedly, synthetic soft materials that mediate the spatial distribution of integrins play an important role in biomaterial innovations for advancing biomedical applications and addressing fundamental biological questions.
Collapse
Affiliation(s)
- Xunwu Hu
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Ye Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
74
|
Harris AF, Lacombe J, Zenhausern F. The Emerging Role of Decellularized Plant-Based Scaffolds as a New Biomaterial. Int J Mol Sci 2021; 22:12347. [PMID: 34830229 PMCID: PMC8625747 DOI: 10.3390/ijms222212347] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/30/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
The decellularization of plant-based biomaterials to generate tissue-engineered substitutes or in vitro cellular models has significantly increased in recent years. These vegetal tissues can be sourced from plant leaves and stems or fruits and vegetables, making them a low-cost, accessible, and sustainable resource from which to generate three-dimensional scaffolds. Each construct is distinct, representing a wide range of architectural and mechanical properties as well as innate vasculature networks. Based on the rapid rise in interest, this review aims to detail the current state of the art and presents the future challenges and perspectives of these unique biomaterials. First, we consider the different existing decellularization techniques, including chemical, detergent-free, enzymatic, and supercritical fluid approaches that are used to generate such scaffolds and examine how these protocols can be selected based on plant cellularity. We next examine strategies for cell seeding onto the plant-derived constructs and the importance of the different functionalization methods used to assist in cell adhesion and promote cell viability. Finally, we discuss how their structural features, such as inherent vasculature, porosity, morphology, and mechanical properties (i.e., stiffness, elasticity, etc.) position plant-based scaffolds as a unique biomaterial and drive their use for specific downstream applications. The main challenges in the field are presented throughout the discussion, and future directions are proposed to help improve the development and use of vegetal constructs in biomedical research.
Collapse
Affiliation(s)
- Ashlee F. Harris
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, AZ 85004, USA;
| | - Jerome Lacombe
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, AZ 85004, USA;
- Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, AZ 85004, USA
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, AZ 85004, USA;
- Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, 475 North 5th Street, Phoenix, AZ 85004, USA
- Department of Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
75
|
Wu C, Chin CSM, Huang Q, Chan HY, Yu X, Roy VAL, Li WJ. Rapid nanomolding of nanotopography on flexible substrates to control muscle cell growth with enhanced maturation. MICROSYSTEMS & NANOENGINEERING 2021; 7:89. [PMID: 34754504 PMCID: PMC8571286 DOI: 10.1038/s41378-021-00316-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/20/2021] [Accepted: 09/13/2021] [Indexed: 05/11/2023]
Abstract
In vivo, multiple biophysical cues provided by highly ordered connective tissues of the extracellular matrix regulate skeletal muscle cells to align in parallel with one another. However, in routine in vitro cell culture environments, these key factors are often missing, which leads to changes in cell behavior. Here, we present a simple strategy for using optical media discs with nanogrooves and other polymer-based substrates nanomolded from the discs to directly culture muscle cells to study their response to the effect of biophysical cues such as nanotopography and substrate stiffness. We extend the range of study of biophysical cues for myoblasts by showing that they can sense ripple sizes as small as a 100 nm width and a 20 nm depth for myotube alignment, which has not been reported previously. The results revealed that nanotopography and substrate stiffness regulated myoblast proliferation and morphology independently, with nanotopographical cues showing a higher effect. These biophysical cues also worked synergistically, and their individual effects on cells were additive; i.e., by comparing cells grown on different polymer-based substrates (with and without nanogrooves), the cell proliferation rate could be reduced by as much as ~29%, and the elongation rate could be increased as much as ~116%. Moreover, during myogenesis, muscle cells actively responded to nanotopography and consistently showed increases in fusion and maturation indices of ~28% and ~21%, respectively. Finally, under electrical stimulation, the contraction amplitude of well-aligned myotubes was found to be almost 3 times greater than that for the cells on a smooth surface, regardless of the substrate stiffness.
Collapse
Affiliation(s)
- Cong Wu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Chriss S. M. Chin
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Qingyun Huang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Ho-Yin Chan
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | | | - Wen J. Li
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
76
|
Dieterle MP, Husari A, Rolauffs B, Steinberg T, Tomakidi P. Integrins, cadherins and channels in cartilage mechanotransduction: perspectives for future regeneration strategies. Expert Rev Mol Med 2021; 23:e14. [PMID: 34702419 PMCID: PMC8724267 DOI: 10.1017/erm.2021.16] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
Articular cartilage consists of hyaline cartilage, is a major constituent of the human musculoskeletal system and has critical functions in frictionless joint movement and articular homoeostasis. Osteoarthritis (OA) is an inflammatory disease of articular cartilage, which promotes joint degeneration. Although it affects millions of people, there are no satisfying therapies that address this disease at the molecular level. Therefore, tissue regeneration approaches aim at modifying chondrocyte biology to mitigate the consequences of OA. This requires appropriate biochemical and biophysical stimulation of cells. Regarding the latter, mechanotransduction of chondrocytes and their precursor cells has become increasingly important over the last few decades. Mechanotransduction is the transformation of external biophysical stimuli into intracellular biochemical signals, involving sensor molecules at the cell surface and intracellular signalling molecules, so-called mechano-sensors and -transducers. These signalling events determine cell behaviour. Mechanotransducing ion channels and gap junctions additionally govern chondrocyte physiology. It is of great scientific and medical interest to induce a specific cell behaviour by controlling these mechanotransduction pathways and to translate this knowledge into regenerative clinical therapies. This review therefore focuses on the mechanotransduction properties of integrins, cadherins and ion channels in cartilaginous tissues to provide perspectives for cartilage regeneration.
Collapse
Affiliation(s)
- Martin Philipp Dieterle
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Ayman Husari
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
- Department of Orthodontics, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Bernd Rolauffs
- Department of Orthopedics and Trauma Surgery, G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Medical Center – Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79085Freiburg im Breisgau, Germany
| | - Thorsten Steinberg
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Pascal Tomakidi
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| |
Collapse
|
77
|
Zhang Y, Wang X, Zhang Y, Liu Y, Wang D, Yu X, Wang H, Bai Z, Jiang YC, Li X, Zheng W, Li Q. Endothelial Cell Migration Regulated by Surface Topography of Poly(ε-caprolactone) Nanofibers. ACS Biomater Sci Eng 2021; 7:4959-4970. [PMID: 34543012 DOI: 10.1021/acsbiomaterials.1c00951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The study of cell migration on biomaterials is of great significance in tissue engineering and regenerative medicine. In recent years, there has been increasing evidence that the physical properties of the extracellular matrix (ECM), such as surface topography, affect various cellular behaviors such as proliferation, adhesion, and migration. However, the biological mechanism of surface topography influencing cellular behavior is still unclear. In this study, we prepared polycaprolactone (PCL) fibrous materials with different surface microstructures by solvent casting, electrospinning, and self-induced crystallization. The corresponding topographical structure obtained is a two-dimensional (2D) flat surface, 2.5-dimensional (2.5D) fibers, and three-dimensional (3D) fibers with a multilevel microstructure. We then investigated the effects of the complex topographical structure on endothelial cell migration. Our study demonstrates that cells can sense the changes of micro- and nanomorphology on the surface of materials, adapt to the physical environment through biochemical reactions, and regulate actin polymerization and directional migration through Rac1 and Cdc42. The cells on the nanofibers are elongated spindles, and the positive feedback of cell adhesion and actin polymerization along the fiber direction makes the plasma membrane continue to protrude, promoting cell polarization and directional migration. This study might provide new insights into the biomaterial design, especially those used for artificial vascular grafts.
Collapse
Affiliation(s)
- Yang Zhang
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaofeng Wang
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yan Zhang
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yajing Liu
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Dongfang Wang
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xueke Yu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Haonan Wang
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Zhiyuan Bai
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yong-Chao Jiang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Li
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Wei Zheng
- Engineering and Technology Department, University of Wisconsin-STOUT, Menomonie, Wisconsin 54751, United States
| | - Qian Li
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
78
|
Perrone E, Cesaria M, Zizzari A, Bianco M, Ferrara F, Raia L, Guarino V, Cuscunà M, Mazzeo M, Gigli G, Moroni L, Arima V. Potential of CO 2-laser processing of quartz for fast prototyping of microfluidic reactors and templates for 3D cell assembly over large scale. Mater Today Bio 2021; 12:100163. [PMID: 34901818 PMCID: PMC8637645 DOI: 10.1016/j.mtbio.2021.100163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/25/2021] [Accepted: 11/18/2021] [Indexed: 01/02/2023] Open
Abstract
Carbon dioxide (CO2)-laser processing of glasses is a versatile maskless writing technique to engrave micro-structures with flexible control on shape and size. In this study, we present the fabrication of hundreds of microns quartz micro-channels and micro-holes by pulsed CO2-laser ablation with a focus on the great potential of the technique in microfluidics and biomedical applications. After discussing the impact of the laser processing parameters on the design process, we illustrate specific applications. First, we demonstrate the use of a serpentine microfluidic reactor prepared by combining CO2-laser ablation and post-ablation wet etching to remove surface features stemming from laser-texturing that are undesirable for channel sealing. Then, cyclic olefin copolymer micro-pillars are fabricated using laser-processed micro-holes as molds with high detail replication. The hundreds of microns conical and square pyramidal shaped pillars are used as templates to drive 3D cell assembly. Human Umbilical Vein Endothelial Cells are found to assemble in a compact and wrapping way around the micro-pillars forming a tight junction network. These applications are interesting for both Lab-on-a-Chip and Organ-on-a-Chip devices.
Collapse
Affiliation(s)
- Elisabetta Perrone
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
| | - Maura Cesaria
- University of Salento, Department of Mathematics and Physics “E. De Giorgi”, Lecce, Italy
| | - Alessandra Zizzari
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
| | - Monica Bianco
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
| | - Francesco Ferrara
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
- STMicroelectronics S.r.l, Lecce, Italy
| | - Lillo Raia
- STMicroelectronics S.r.l, Agrate Brianza, Monza Brianza, Italy
| | - Vita Guarino
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
- University of Salento, Department of Mathematics and Physics “E. De Giorgi”, Lecce, Italy
| | - Massimo Cuscunà
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
| | - Marco Mazzeo
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
- University of Salento, Department of Mathematics and Physics “E. De Giorgi”, Lecce, Italy
| | - Giuseppe Gigli
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
- University of Salento, Department of Mathematics and Physics “E. De Giorgi”, Lecce, Italy
| | - Lorenzo Moroni
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, department of complex tissue regeneration, Maastricht, the Netherlands
| | - Valentina Arima
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
| |
Collapse
|
79
|
Ryan C, Pugliese E, Shologu N, Gaspar D, Rooney P, Islam MN, O'Riordan A, Biggs M, Griffin M, Zeugolis D. A combined physicochemical approach towards human tenocyte phenotype maintenance. Mater Today Bio 2021; 12:100130. [PMID: 34632361 PMCID: PMC8488312 DOI: 10.1016/j.mtbio.2021.100130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 02/08/2023] Open
Abstract
During in vitro culture, bereft of their optimal tissue context, tenocytes lose their phenotype and function. Considering that tenocytes in their native tissue milieu are exposed simultaneously to manifold signals, combination approaches (e.g. growth factor supplementation and mechanical stimulation) are continuously gaining pace to control cell fate during in vitro expansion, albeit with limited success due to the literally infinite number of possible permutations. In this work, we assessed the potential of scalable and potent physicochemical approaches that control cell fate (substrate stiffness, anisotropic surface topography, collagen type I coating) and enhance extracellular matrix deposition (macromolecular crowding) in maintaining human tenocyte phenotype in culture. Cell morphology was primarily responsive to surface topography. The tissue culture plastic induced the largest nuclei area, the lowest aspect ratio, and the highest focal adhesion kinase. Collagen type I coating increased cell number and metabolic activity. Cell viability was not affected by any of the variables assessed. Macromolecular crowding intensely enhanced and accelerated native extracellular matrix deposition, albeit not in an aligned fashion, even on the grooved substrates. Gene analysis at day 14 revealed that the 130 kPa grooved substrate without collagen type I coating and under macromolecular crowding conditions positively regulated human tenocyte phenotype. Collectively, this work illustrates the beneficial effects of combined physicochemical approaches in controlling cell fate during in vitro expansion.
Collapse
Affiliation(s)
- C.N.M. Ryan
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - E. Pugliese
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - N. Shologu
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - D. Gaspar
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - P. Rooney
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Md N. Islam
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Regenerative Medicine Institute (REMEDI), School of Medicine, Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Discipline of Biochemistry, School of Natural Sciences, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - A. O'Riordan
- Tyndall National Institute, University College Cork (UCC), Cork, Ireland
| | - M.J. Biggs
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - M.D. Griffin
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Regenerative Medicine Institute (REMEDI), School of Medicine, Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - D.I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
80
|
Li H, Luo Q, Shan W, Cai S, Tie R, Xu Y, Lin Y, Qian P, Huang H. Biomechanical cues as master regulators of hematopoietic stem cell fate. Cell Mol Life Sci 2021; 78:5881-5902. [PMID: 34232331 PMCID: PMC8316214 DOI: 10.1007/s00018-021-03882-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 06/02/2021] [Accepted: 06/15/2021] [Indexed: 01/09/2023]
Abstract
Hematopoietic stem cells (HSCs) perceive both soluble signals and biomechanical inputs from their microenvironment and cells themselves. Emerging as critical regulators of the blood program, biomechanical cues such as extracellular matrix stiffness, fluid mechanical stress, confined adhesiveness, and cell-intrinsic forces modulate multiple capacities of HSCs through mechanotransduction. In recent years, research has furthered the scientific community's perception of mechano-based signaling networks in the regulation of several cellular processes. However, the underlying molecular details of the biomechanical regulatory paradigm in HSCs remain poorly elucidated and researchers are still lacking in the ability to produce bona fide HSCs ex vivo for clinical use. This review presents an overview of the mechanical control of both embryonic and adult HSCs, discusses some recent insights into the mechanisms of mechanosensing and mechanotransduction, and highlights the application of mechanical cues aiming at HSC expansion or differentiation.
Collapse
Affiliation(s)
- Honghu Li
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Qian Luo
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Wei Shan
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Shuyang Cai
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Yulin Xu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Yu Lin
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Pengxu Qian
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310012, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310012, China.
| |
Collapse
|
81
|
Nouri-Goushki M, Angeloni L, Modaresifar K, Minneboo M, Boukany PE, Mirzaali MJ, Ghatkesar MK, Fratila-Apachitei LE, Zadpoor AA. 3D-Printed Submicron Patterns Reveal the Interrelation between Cell Adhesion, Cell Mechanics, and Osteogenesis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33767-33781. [PMID: 34250808 PMCID: PMC8323101 DOI: 10.1021/acsami.1c03687] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The surface topography of implantable devices is of crucial importance for guiding the cascade of events that starts from the initial contact of the cells with the surface and continues until the complete integration of the device in its immediate environment. There is, however, limited quantitative information available regarding the relationships between the different stages of such cascade(s) and how the design of surface topography influences them. We, therefore, used direct laser writing to 3D-print submicron pillars with precisely controlled dimensions and spatial arrangements to perform a systematic study of such relationships. Using single-cell force spectroscopy, we measured the adhesion force and the work of adhesion of the preosteoblast cells residing on the different types of surfaces. Not only the adhesion parameters (after 2-60 s) but also the formation of focal adhesions was strongly dependent on the geometry and arrangement of the pillars: sufficiently tall and dense pillars enhanced both adhesion parameters and the formation of focal adhesions. Our morphological study of the cells (after 24 h) showed that those enhancements were associated with a specific way of cell settlement onto the surface (i.e., "top state"). The cells interacting with tall and dense pillars were also characterized by numerous thick actin stress fibers in the perinuclear region and possibly high internal stresses. Furthermore, living cells with highly organized cytoskeletal networks exhibited greater values of the elastic modulus. The early responses of the cells predicted their late response including matrix mineralization: tall and dense submicron pillars significantly upregulated the expression of osteopontin after 21 days of culture under both osteogenic and nonosteogenic conditions. Our findings paint a detailed picture of at least one possible cascade of events that starts from initial cell adhesion and continues to subsequent cellular functions and eventual matrix mineralization. These observations could inform the future developments of instructive surfaces for medical devices based on physical surface cues and early markers.
Collapse
Affiliation(s)
- Mahdiyeh Nouri-Goushki
- Department
of Biomechanical Engineering, Faculty of Mechanical, Maritime, and
Materials Engineering, Delft University
of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
- ,
| | - Livia Angeloni
- Department
of Biomechanical Engineering, Faculty of Mechanical, Maritime, and
Materials Engineering, Delft University
of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
- Department
of Precision and Microsystems Engineering, Faculty of Mechanical,
Maritime, and Materials Engineering, Delft
University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
- . Phone: +31-152786980
| | - Khashayar Modaresifar
- Department
of Biomechanical Engineering, Faculty of Mechanical, Maritime, and
Materials Engineering, Delft University
of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Michelle Minneboo
- Department
of Biomechanical Engineering, Faculty of Mechanical, Maritime, and
Materials Engineering, Delft University
of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Pouyan E. Boukany
- Department
of Chemical Engineering, Delft University
of Technology (TU Delft), van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Mohammad J. Mirzaali
- Department
of Biomechanical Engineering, Faculty of Mechanical, Maritime, and
Materials Engineering, Delft University
of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Murali K. Ghatkesar
- Department
of Precision and Microsystems Engineering, Faculty of Mechanical,
Maritime, and Materials Engineering, Delft
University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Lidy E. Fratila-Apachitei
- Department
of Biomechanical Engineering, Faculty of Mechanical, Maritime, and
Materials Engineering, Delft University
of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Amir A. Zadpoor
- Department
of Biomechanical Engineering, Faculty of Mechanical, Maritime, and
Materials Engineering, Delft University
of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| |
Collapse
|
82
|
Mimiroglu D, Yanik T, Ercan B. Nanophase surface arrays on poly (lactic-co-glycolic acid) upregulate neural cell functions. J Biomed Mater Res A 2021; 110:64-75. [PMID: 34245100 DOI: 10.1002/jbm.a.37266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/14/2021] [Accepted: 06/29/2021] [Indexed: 01/07/2023]
Abstract
Nerve guidance channels (NGCs) promote cell-extracellular matrix (ECM) interactions occurring within the nanoscale. However, studies focusing on the effects of nanophase topography on neural cell functions are limited, and mostly concentrated on the sub-micron level (>100 nm) surface topography. Therefore, the aim of this study was to fabricate <100 nm sized structures on poly lactic-co-glycolic acid (PLGA) films used in NGC applications to assess the effects of nanophase topography on neural cell functions. For this purpose, nanopit surface arrays were fabricated on PLGA surfaces via replica molding method. The results showed that neural cell proliferation increased up to 65% and c-fos protein expression increased up to 76% on PLGA surfaces having nanophase surface arrays compared to the control samples. It was observed that neural cells spread to a greater extend and formed more neurite extensions on the nanoarrayed surfaces compared to the control samples. These results were correlated with increased hydrophilicity and roughness of the nanophase PLGA surfaces, and point toward the promise of using nanoarrayed surfaces in NGC applications.
Collapse
Affiliation(s)
- Didem Mimiroglu
- Biochemistry, Graduate School of Natural and Applied Science, Middle East Technical University, Ankara, Turkey.,Biochemistry, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Tulin Yanik
- Biochemistry, Graduate School of Natural and Applied Science, Middle East Technical University, Ankara, Turkey.,Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Batur Ercan
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, Turkey.,BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
83
|
Kim SHJ, Hammer DA. Integrin cross-talk modulates stiffness-independent motility of CD4+ T lymphocytes. Mol Biol Cell 2021; 32:1749-1757. [PMID: 34232700 PMCID: PMC8684734 DOI: 10.1091/mbc.e21-03-0131] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To carry out their physiological responsibilities, CD4+ T lymphocytes interact with various tissues of different mechanical properties. Recent studies suggest that T cells migrate upstream on surfaces expressing intracellular adhesion molecule-1 (ICAM-1) through interaction with leukocyte function-associated antigen-1 (αLβ2) (LFA-1) integrins. LFA-1 likely behaves as a mechanosensor, and thus we hypothesized that substrate mechanics might affect the ability of LFA-1 to support upstream migration of T cells under flow. Here we measured motility of CD4+ T lymphocytes on polyacrylamide gels with predetermined stiffnesses containing ICAM-1, vascular cell adhesion molecule-1 (VCAM-1), or a 1:1 mixture of VCAM-1/ICAM-1. Under static conditions, we found that CD4+ T cells exhibit an increase in motility on ICAM-1, but not on VCAM-1 or VCAM-1/ICAM-1 mixed, surfaces as a function of matrix stiffness. The mechanosensitivity of T-cell motility on ICAM-1 is overcome when VLA-4 (very late antigen-4 [α4β1]) is ligated with soluble VCAM-1. Last, we observed that CD4+ T cells migrate upstream under flow on ICAM-1-functionalized hydrogels, independent of substrate stiffness. In summary, we show that CD4+ T cells under no flow respond to matrix stiffness through LFA-1, and that the cross-talk of VLA-4 and LFA-1 can compensate for deformable substrates. Interestingly, CD4+ T lymphocytes migrated upstream on ICAM-1 regardless of the substrate stiffness, suggesting that flow can compensate for substrate stiffness.
Collapse
Affiliation(s)
- Sarah Hyun Ji Kim
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Daniel A Hammer
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
84
|
Chen S, Wang H, Mainardi VL, Talò G, McCarthy A, John JV, Teusink MJ, Hong L, Xie J. Biomaterials with structural hierarchy and controlled 3D nanotopography guide endogenous bone regeneration. SCIENCE ADVANCES 2021; 7:eabg3089. [PMID: 34321208 PMCID: PMC8318363 DOI: 10.1126/sciadv.abg3089] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/11/2021] [Indexed: 05/08/2023]
Abstract
Biomaterials without exogenous cells or therapeutic agents often fail to achieve rapid endogenous bone regeneration with high quality. Here, we reported a class of three-dimensional (3D) nanofiber scaffolds with hierarchical structure and controlled alignment for effective endogenous cranial bone regeneration. 3D scaffolds consisting of radially aligned nanofibers guided and promoted the migration of bone marrow stem cells from the surrounding region to the center in vitro. These scaffolds showed the highest new bone volume, surface coverage, and mineral density among the tested groups in vivo. The regenerated bone exhibited a radially aligned fashion, closely recapitulating the scaffold's architecture. The organic phase in regenerated bone showed an aligned, layered, and densely packed structure, while the inorganic mineral phase showed a uniform distribution with smaller pore size and an even distribution of stress upon the simulated compression. We expect that this study will inspire the design of next-generation biomaterials for effective endogenous bone regeneration with desired quality.
Collapse
Affiliation(s)
- Shixuan Chen
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hongjun Wang
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Valerio Luca Mainardi
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale (EOC), via Tesserete 46, 6900, Lugano, Switzerland
- Laboratory of Biological Structures Mechanics (LaBS), Department of Chemistry, Material and Chemical Engineering "Giulio Natta", Politecnico di Milano, 20133, Milan, Italy
| | - Giuseppe Talò
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, via Galeazzi, 4, 20161, Milan, Italy
| | - Alec McCarthy
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Johnson V John
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Matthew J Teusink
- Department of Orthaepedic Surgery and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Liu Hong
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA 52242, USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA.
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
85
|
Bennet TJ, Randhawa A, Hua J, Cheung KC. Airway-On-A-Chip: Designs and Applications for Lung Repair and Disease. Cells 2021; 10:1602. [PMID: 34206722 PMCID: PMC8304815 DOI: 10.3390/cells10071602] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022] Open
Abstract
The lungs are affected by illnesses including asthma, chronic obstructive pulmonary disease, and infections such as influenza and SARS-CoV-2. Physiologically relevant models for respiratory conditions will be essential for new drug development. The composition and structure of the lung extracellular matrix (ECM) plays a major role in the function of the lung tissue and cells. Lung-on-chip models have been developed to address some of the limitations of current two-dimensional in vitro models. In this review, we describe various ECM substitutes utilized for modeling the respiratory system. We explore the application of lung-on-chip models to the study of cigarette smoke and electronic cigarette vapor. We discuss the challenges and opportunities related to model characterization with an emphasis on in situ characterization methods, both established and emerging. We discuss how further advancements in the field, through the incorporation of interstitial cells and ECM, have the potential to provide an effective tool for interrogating lung biology and disease, especially the mechanisms that involve the interstitial elements.
Collapse
Affiliation(s)
- Tanya J. Bennet
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.J.B.); (A.R.); (J.H.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Avineet Randhawa
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.J.B.); (A.R.); (J.H.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jessica Hua
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.J.B.); (A.R.); (J.H.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Karen C. Cheung
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.J.B.); (A.R.); (J.H.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Electrical & Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
86
|
Oyama TG, Oyama K, Kimura A, Yoshida F, Ishida R, Yamazaki M, Miyoshi H, Taguchi M. Collagen hydrogels with controllable combined cues of elasticity and topography to regulate cellular processes. Biomed Mater 2021; 16. [PMID: 34030146 DOI: 10.1088/1748-605x/ac0452] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 05/24/2021] [Indexed: 12/13/2022]
Abstract
The elasticity, topography, and chemical composition of cell culture substrates influence cell behavior. However, the cellular responses toin vivoextracellular matrix (ECM), a hydrogel of proteins (mainly collagen) and polysaccharides, remain unknown as there is no substrate that preserves the key features of native ECM. This study introduces novel collagen hydrogels that can combine elasticity, topography, and composition and reproduce the correlation between collagen concentration (C) and elastic modulus (E) in native ECM. A simple reagent-free method based on radiation-cross-linking altered ECM-derived collagen I and hydrolyzed collagen (gelatin or collagen peptide) solutions into hydrogels with tunable elastic moduli covering a broad range of soft tissues (E= 1-236 kPa) originating from the final collagen density in the hydrogels (C= 0.3%-14%) and precise microtopographies (⩾1 μm). The amino acid composition ratio was almost unchanged by this method, and the obtained collagen hydrogels maintained enzyme-mediated degradability. These collagen hydrogels enabled investigation of the responses of cell lines (fibroblasts, epithelial cells, and myoblasts) and primary cells (rat cardiomyocytes) to soft topographic cues such as thosein vivounder the positive correlation betweenCandE. These cells adhered directly to the collagen hydrogels and chose to stay atop or spontaneously migrate into them depending onE, that is, the density of the collagen network,C. We revealed that the cell morphology and actin cytoskeleton organization conformed to the topographic cues, even when they are as soft asin vivoECM. The stiffer microgrooves on collagen hydrogels aligned cells more effectively, except HeLa cells that underwent drastic changes in cell morphology. These collagen hydrogels may not only reducein vivoandin vitrocell behavioral disparity but also facilitate artificial ECM design to control cell function and fate for applications in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Tomoko G Oyama
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), 1233 Watanukimachi, Takasaki-shi, Gunma 370-1292, Japan
| | - Kotaro Oyama
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), 1233 Watanukimachi, Takasaki-shi, Gunma 370-1292, Japan.,PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Atsushi Kimura
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), 1233 Watanukimachi, Takasaki-shi, Gunma 370-1292, Japan
| | - Fumiya Yoshida
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), 1233 Watanukimachi, Takasaki-shi, Gunma 370-1292, Japan.,Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma 376-0052, Japan
| | - Ryo Ishida
- Graduate School of Systems Design, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0397, Japan
| | - Masashi Yamazaki
- Graduate School of Systems Design, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0397, Japan
| | - Hiromi Miyoshi
- Graduate School of Systems Design, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0397, Japan
| | - Mitsumasa Taguchi
- Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), 1233 Watanukimachi, Takasaki-shi, Gunma 370-1292, Japan
| |
Collapse
|
87
|
Raj V, Jagadish C, Gautam V. Understanding, engineering, and modulating the growth of neural networks: An interdisciplinary approach. BIOPHYSICS REVIEWS 2021; 2:021303. [PMID: 38505122 PMCID: PMC10903502 DOI: 10.1063/5.0043014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/25/2021] [Indexed: 03/21/2024]
Abstract
A deeper understanding of the brain and its function remains one of the most significant scientific challenges. It not only is required to find cures for a plethora of brain-related diseases and injuries but also opens up possibilities for achieving technological wonders, such as brain-machine interface and highly energy-efficient computing devices. Central to the brain's function is its basic functioning unit (i.e., the neuron). There has been a tremendous effort to understand the underlying mechanisms of neuronal growth on both biochemical and biophysical levels. In the past decade, this increased understanding has led to the possibility of controlling and modulating neuronal growth in vitro through external chemical and physical methods. We provide a detailed overview of the most fundamental aspects of neuronal growth and discuss how researchers are using interdisciplinary ideas to engineer neuronal networks in vitro. We first discuss the biochemical and biophysical mechanisms of neuronal growth as we stress the fact that the biochemical or biophysical processes during neuronal growth are not independent of each other but, rather, are complementary. Next, we discuss how utilizing these fundamental mechanisms can enable control over neuronal growth for advanced neuroengineering and biomedical applications. At the end of this review, we discuss some of the open questions and our perspectives on the challenges and possibilities related to controlling and engineering the growth of neuronal networks, specifically in relation to the materials, substrates, model systems, modulation techniques, data science, and artificial intelligence.
Collapse
Affiliation(s)
- Vidur Raj
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | | | - Vini Gautam
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
88
|
Cheng Y, Zhu S, Pang SW. Directing osteoblastic cell migration on arrays of nanopillars and nanoholes with different aspect ratios. LAB ON A CHIP 2021; 21:2206-2216. [PMID: 33876172 DOI: 10.1039/d1lc00104c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To realize highly directional guidance for cell migration, both micro- and nano-scale topographies were studied to better understand and mimic the complex extracellular matrix environment. Polydimethylsiloxane-based platforms with micro- and nano-topographies were developed to systematically study their guidance effects on cell migration behaviors. Compared to microtopography such as flat surface or grating, nanotopographies such as nanoholes and nanopillars could promote the generation of filopodia and extension of long protrusions with increased migration speed for MC3T3-E1 cells. Although cells on the grating structures showed lower migration speed, more directional cell migration was achieved due to their anisotropic topography compared to nanohole or nanopillar arrays with isotropic structures. To further enhance the cell migration directionality, the nanotopographies were patterned in grating arrangements and the results showed that both nanoholes and nanopillars in grating arrangements introduced more directional cell migration compared to gratings. The effects of physical dimensions of the nanotopographies on cell migration were studied and the results showed that there was less cell elongation and less directional migration of the nanoholes in grating arrangements with increasing depth of nanoholes. However, the nanopillars in grating arrangements showed more cell elongation, more directional migration, and higher migration speed with increasing height of the nanopillars. Platforms with nanopillars in grating arrangements and large height could be used to control cell migration speed and directionality, which could potentially lead to cell sorting and screening.
Collapse
Affiliation(s)
- Yijun Cheng
- Department of Electrical Engineering, Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong, China.
| | - Shuyan Zhu
- Department of Electrical Engineering, Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong, China.
| | - Stella W Pang
- Department of Electrical Engineering, Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|
89
|
Muzzio N, Moya S, Romero G. Multifunctional Scaffolds and Synergistic Strategies in Tissue Engineering and Regenerative Medicine. Pharmaceutics 2021; 13:792. [PMID: 34073311 PMCID: PMC8230126 DOI: 10.3390/pharmaceutics13060792] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/20/2022] Open
Abstract
The increasing demand for organ replacements in a growing world with an aging population as well as the loss of tissues and organs due to congenital defects, trauma and diseases has resulted in rapidly evolving new approaches for tissue engineering and regenerative medicine (TERM). The extracellular matrix (ECM) is a crucial component in tissues and organs that surrounds and acts as a physical environment for cells. Thus, ECM has become a model guide for the design and fabrication of scaffolds and biomaterials in TERM. However, the fabrication of a tissue/organ replacement or its regeneration is a very complex process and often requires the combination of several strategies such as the development of scaffolds with multiple functionalities and the simultaneous delivery of growth factors, biochemical signals, cells, genes, immunomodulatory agents, and external stimuli. Although the development of multifunctional scaffolds and biomaterials is one of the most studied approaches for TERM, all these strategies can be combined among them to develop novel synergistic approaches for tissue regeneration. In this review we discuss recent advances in which multifunctional scaffolds alone or combined with other strategies have been employed for TERM purposes.
Collapse
Affiliation(s)
- Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA;
| | - Sergio Moya
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182 C, 20014 Donostia-San Sebastian, Spain;
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA;
| |
Collapse
|
90
|
A spatial model of YAP/TAZ signaling reveals how stiffness, dimensionality, and shape contribute to emergent outcomes. Proc Natl Acad Sci U S A 2021; 118:2021571118. [PMID: 33990464 DOI: 10.1073/pnas.2021571118] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
YAP/TAZ is a master regulator of mechanotransduction whose functions rely on translocation from the cytoplasm to the nucleus in response to diverse physical cues. Substrate stiffness, substrate dimensionality, and cell shape are all input signals for YAP/TAZ, and through this pathway, regulate critical cellular functions and tissue homeostasis. Yet, the relative contributions of each biophysical signal and the mechanisms by which they synergistically regulate YAP/TAZ in realistic tissue microenvironments that provide multiplexed input signals remain unclear. For example, in simple two-dimensional culture, YAP/TAZ nuclear localization correlates strongly with substrate stiffness, while in three-dimensional (3D) environments, YAP/TAZ translocation can increase with stiffness, decrease with stiffness, or remain unchanged. Here, we develop a spatial model of YAP/TAZ translocation to enable quantitative analysis of the relationships between substrate stiffness, substrate dimensionality, and cell shape. Our model couples cytosolic stiffness to nuclear mechanics to replicate existing experimental trends, and extends beyond current data to predict that increasing substrate activation area through changes in culture dimensionality, while conserving cell volume, forces distinct shape changes that result in nonlinear effect on YAP/TAZ nuclear localization. Moreover, differences in substrate activation area versus total membrane area can account for counterintuitive trends in YAP/TAZ nuclear localization in 3D culture. Based on this multiscale investigation of the different system features of YAP/TAZ nuclear translocation, we predict that how a cell reads its environment is a complex information transfer function of multiple mechanical and biochemical factors. These predictions reveal a few design principles of cellular and tissue engineering for YAP/TAZ mechanotransduction.
Collapse
|
91
|
Li M, Xi N, Liu L. Peak force tapping atomic force microscopy for advancing cell and molecular biology. NANOSCALE 2021; 13:8358-8375. [PMID: 33913463 DOI: 10.1039/d1nr01303c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The advent of atomic force microscopy (AFM) provides an exciting tool to detect molecular and cellular behaviors under aqueous conditions. AFM is able to not only visualize the surface topography of the specimens, but also can quantify the mechanical properties of the specimens by force spectroscopy assay. Nevertheless, integrating AFM topographic imaging with force spectroscopy assay has long been limited due to the low spatiotemporal resolution. In recent years, the appearance of a new AFM imaging mode called peak force tapping (PFT) has shattered this limit. PFT allows AFM to simultaneously acquire the topography and mechanical properties of biological samples with unprecedented spatiotemporal resolution. The practical applications of PFT in the field of life sciences in the past decade have demonstrated the excellent capabilities of PFT in characterizing the fine structures and mechanics of living biological systems in their native states, offering novel possibilities to reveal the underlying mechanisms guiding physiological/pathological activities. In this paper, the recent progress in cell and molecular biology that has been made with the utilization of PFT is summarized, and future perspectives for further progression and biomedical applications of PFT are provided.
Collapse
Affiliation(s)
- Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China and Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China and University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ning Xi
- Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China and Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China and University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
92
|
Le MCN, Xu K, Wang Z, Beverung S, Steward RL, Florczyk SJ. Evaluation of the effect of 3D porous Chitosan-alginate scaffold stiffness on breast cancer proliferation and migration. J Biomed Mater Res A 2021; 109:1990-2000. [PMID: 33811775 DOI: 10.1002/jbm.a.37191] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/09/2021] [Accepted: 03/24/2021] [Indexed: 11/11/2022]
Abstract
Breast cancer (BCa) is one of the most common cancers for women and metastatic BCa causes the majority of deaths. The extracellular matrix (ECM) stiffens during cancer progression and provides biophysical signals to modulate proliferation, morphology, and metastasis. Cells utilize mechanotransduction and integrins to sense and respond to ECM stiffness. Chitosan-alginate (CA) scaffolds have been used for 3D culture, but lack integrin binding ligands, resulting in round cell morphology and limited cell-material interaction. In this study, 2, 4, and 6 wt% CA scaffolds were produced to mimic the stages of BCa progression and evaluate the BCa response to CA scaffold stiffness. All three CA scaffold compositions highly porous with interconnected pores and scaffold stiffness increased with increasing polymer concentration. MDA-MB-231 (231) cells were cultured in CA scaffolds and 2D cultures for 7 d. All CA scaffold cultures had similar cell numbers at 7 d and the 231 cells formed clusters that increased in size during the culture. The 2 wt% CA had the largest clusters throughout the 7 d culture compared with the 4 and 6 wt% CA. The 231 cell migration was evaluated on 2D surfaces after 7 d culture. The 6 wt% CA cultured cells had the greatest migration speed, followed by 4 wt% CA, 2D cultures, and 2 wt% CA. These results suggest that 231 cells sensed the stiffness of CA scaffolds without the presence of focal adhesions. This indicates that a non-integrin-based mechanism may explain the observed mechanotransduction response.
Collapse
Affiliation(s)
- Minh-Chau N Le
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA.,Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida, USA
| | - Kailei Xu
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Zi Wang
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Sean Beverung
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida, USA
| | - Robert L Steward
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida, USA.,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Stephanie J Florczyk
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA.,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
93
|
Tupone MG, d'Angelo M, Castelli V, Catanesi M, Benedetti E, Cimini A. A State-of-the-Art of Functional Scaffolds for 3D Nervous Tissue Regeneration. Front Bioeng Biotechnol 2021; 9:639765. [PMID: 33816451 PMCID: PMC8012845 DOI: 10.3389/fbioe.2021.639765] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/26/2021] [Indexed: 12/15/2022] Open
Abstract
Exploring and developing multifunctional intelligent biomaterials is crucial to improve next-generation therapies in tissue engineering and regenerative medicine. Recent findings show how distinct characteristics of in situ microenvironment can be mimicked by using different biomaterials. In vivo tissue architecture is characterized by the interconnection between cells and specific components of the extracellular matrix (ECM). Last evidence shows the importance of the structure and composition of the ECM in the development of cellular and molecular techniques, to achieve the best biodegradable and bioactive biomaterial compatible to human physiology. Such biomaterials provide specialized bioactive signals to regulate the surrounding biological habitat, through the progression of wound healing and biomaterial integration. The connection between stem cells and biomaterials stimulate the occurrence of specific modifications in terms of cell properties and fate, influencing then processes such as self-renewal, cell adhesion and differentiation. Recent studies in the field of tissue engineering and regenerative medicine have shown to deal with a broad area of applications, offering the most efficient and suitable strategies to neural repair and regeneration, drawing attention towards the potential use of biomaterials as 3D tools for in vitro neurodevelopment of tissue models, both in physiological and pathological conditions. In this direction, there are several tools supporting cell regeneration, which associate cytokines and other soluble factors delivery through the scaffold, and different approaches considering the features of the biomaterials, for an increased functionalization of the scaffold and for a better promotion of neural proliferation and cells-ECM interplay. In fact, 3D scaffolds need to ensure a progressive and regular delivery of cytokines, growth factors, or biomolecules, and moreover they should serve as a guide and support for injured tissues. It is also possible to create scaffolds with different layers, each one possessing different physical and biochemical aspects, able to provide at the same time organization, support and maintenance of the specific cell phenotype and diversified ECM morphogenesis. Our review summarizes the most recent advancements in functional materials, which are crucial to achieve the best performance and at the same time, to overcome the current limitations in tissue engineering and nervous tissue regeneration.
Collapse
Affiliation(s)
- Maria Grazia Tupone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Center for Microscopy, University of L'Aquila, L'Aquila, Italy
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA, United States
| |
Collapse
|
94
|
Kchaou M, Alquraish M, Abuhasel K, Abdullah A, Ali AA. Electrospun Nanofibrous Scaffolds: Review of Current Progress in the Properties and Manufacturing Process, and Possible Applications for COVID-19. Polymers (Basel) 2021; 13:916. [PMID: 33809662 PMCID: PMC8002202 DOI: 10.3390/polym13060916] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
Over the last twenty years, researchers have focused on the potential applications of electrospinning, especially its scalability and versatility. Specifically, electrospun nanofiber scaffolds are considered an emergent technology and a promising approach that can be applied to biosensing, drug delivery, soft and hard tissue repair and regeneration, and wound healing. Several parameters control the functional scaffolds, such as fiber geometrical characteristics and alignment, architecture, etc. As it is based on nanotechnology, the concept of this approach has shown a strong evolution in terms of the forms of the materials used (aerogels, microspheres, etc.), the incorporated microorganisms used to treat diseases (cells, proteins, nuclei acids, etc.), and the manufacturing process in relation to the control of adhesion, proliferation, and differentiation of the mimetic nanofibers. However, several difficulties are still considered as huge challenges for scientists to overcome in relation to scaffolds design and properties (hydrophilicity, biodegradability, and biocompatibility) but also in relation to transferring biological nanofibers products into practical industrial use by way of a highly efficient bio-solution. In this article, the authors review current progress in the materials and processes used by the electrospinning technique to develop novel fibrous scaffolds with suitable design and that more closely mimic structure. A specific interest will be given to the use of this approach as an emergent technology for the treatment of bacteria and viruses such as COVID-19.
Collapse
Affiliation(s)
- Mohamed Kchaou
- Department of Mechanical Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 67714, Saudi Arabia; (M.A.); (K.A.); (A.A.A.)
| | - Mohammed Alquraish
- Department of Mechanical Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 67714, Saudi Arabia; (M.A.); (K.A.); (A.A.A.)
| | - Khaled Abuhasel
- Department of Mechanical Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 67714, Saudi Arabia; (M.A.); (K.A.); (A.A.A.)
| | - Ahmad Abdullah
- Department of Civil Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 67714, Saudi Arabia;
- Department of Civil Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt
| | - Ashraf A. Ali
- Department of Mechanical Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 67714, Saudi Arabia; (M.A.); (K.A.); (A.A.A.)
| |
Collapse
|
95
|
Kyriakides TR, Raj A, Tseng TH, Xiao H, Nguyen R, Mohammed FS, Halder S, Xu M, Wu MJ, Bao S, Sheu WC. Biocompatibility of nanomaterials and their immunological properties. Biomed Mater 2021; 16:10.1088/1748-605X/abe5fa. [PMID: 33578402 PMCID: PMC8357854 DOI: 10.1088/1748-605x/abe5fa] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/12/2021] [Indexed: 12/16/2022]
Abstract
Nanomaterials (NMs) have revolutionized multiple aspects of medicine by enabling novel sensing, diagnostic, and therapeutic approaches. Advancements in processing and fabrication have also allowed significant expansion in the applications of the major classes of NMs based on polymer, metal/metal oxide, carbon, liposome, or multi-scale macro-nano bulk materials. Concomitantly, concerns regarding the nanotoxicity and overall biocompatibility of NMs have been raised. These involve putative negative effects on both patients and those subjected to occupational exposure during manufacturing. In this review, we describe the current state of testing of NMs including those that are in clinical use, in clinical trials, or under development. We also discuss the cellular and molecular interactions that dictate their toxicity and biocompatibility. Specifically, we focus on the reciprocal interactions between NMs and host proteins, lipids, and sugars and how these induce responses in immune and other cell types leading to topical and/or systemic effects.
Collapse
Affiliation(s)
- Themis R Kyriakides
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
- Department of Pathology, Yale University, New Haven, CT 06405, United States of America
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06405, United States of America
| | - Arindam Raj
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06405, United States of America
| | - Tiffany H Tseng
- Department of Pathology, Yale University, New Haven, CT 06405, United States of America
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06405, United States of America
| | - Hugh Xiao
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
| | - Ryan Nguyen
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
| | - Farrah S Mohammed
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
| | - Saiti Halder
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
| | - Mengqing Xu
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06405, United States of America
| | - Michelle J Wu
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
| | - Shuozhen Bao
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06405, United States of America
| | - Wendy C Sheu
- Department of Biomedical Engineering, Yale University, New Haven, CT 06405, United States of America
| |
Collapse
|
96
|
Modulating the physico-mechanical properties of polyacrylamide/gelatin hydrogels for tissue engineering application. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03592-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
97
|
Gunasinghe SD, Peres NG, Goyette J, Gaus K. Biomechanics of T Cell Dysfunctions in Chronic Diseases. Front Immunol 2021; 12:600829. [PMID: 33717081 PMCID: PMC7948521 DOI: 10.3389/fimmu.2021.600829] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding the mechanisms behind T cell dysfunctions during chronic diseases is critical in developing effective immunotherapies. As demonstrated by several animal models and human studies, T cell dysfunctions are induced during chronic diseases, spanning from infections to cancer. Although factors governing the onset and the extent of the functional impairment of T cells can differ during infections and cancer, most dysfunctional phenotypes share common phenotypic traits in their immune receptor and biophysical landscape. Through the latest developments in biophysical techniques applied to explore cell membrane and receptor-ligand dynamics, we are able to dissect and gain further insights into the driving mechanisms behind T cell dysfunctions. These insights may prove useful in developing immunotherapies aimed at reinvigorating our immune system to fight off infections and malignancies more effectively. The recent success with checkpoint inhibitors in treating cancer opens new avenues to develop more effective, targeted immunotherapies. Here, we highlight the studies focused on the transformation of the biophysical landscape during infections and cancer, and how T cell biomechanics shaped the immunopathology associated with chronic diseases.
Collapse
Affiliation(s)
- Sachith D Gunasinghe
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Newton G Peres
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Jesse Goyette
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
98
|
Yin B, Ho LWC, Liu S, Hong H, Tian XY, Li H, Choi CHJ. Sub-10 nm Substrate Roughness Promotes the Cellular Uptake of Nanoparticles by Upregulating Endocytosis-Related Genes. NANO LETTERS 2021; 21:1839-1847. [PMID: 33586442 DOI: 10.1021/acs.nanolett.0c04932] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanosubstrate engineering is an established approach for modulating cellular responses, but it remains infrequently exploited to facilitate the intracellular delivery of nanoparticles (NPs). We report nanoscale roughness of the extracellular environment as a critical parameter for regulating the cellular uptake of NPs. After seeding cells atop a substrate that contains randomly immobilized gold NPs (termed AuNP-S) with sub-10 nm surface roughness, we demonstrate that such cells internalize up to ∼100-fold more poly(ethylene glycol)-coated AuNPs (Au@PEG NPs) than those cells seeded on a conventional flat culture plate. Our result is generalizable to 4 different cell types and Au@PEG NPs modified with 13 different hydrocarbyl functional groups. Conditioning cells to AuNP-S not only leads to upregulation of clathrin- and integrin-related genes, but also supports elevated uptake of Au@PEG NPs via clathrin-mediated endocytosis. Our data suggest a simple and robust method for boosting the intracellular delivery of nanomedicines by nanosubstrate engineering.
Collapse
|
99
|
Antonova OY, Kochetkova OY, Shlyapnikov YM. ECM-Mimetic Nylon Nanofiber Scaffolds for Neurite Growth Guidance. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:516. [PMID: 33670540 PMCID: PMC7922859 DOI: 10.3390/nano11020516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/19/2022]
Abstract
Numerous nanostructured synthetic scaffolds mimicking the architecture of the natural extracellular matrix (ECM) have been described, but the polymeric nanofibers comprising the scaffold were substantially thicker than the natural collagen nanofibers of neural ECM. Here, we report neuron growth on electrospun scaffolds of nylon-4,6 fibers with an average diameter of 60 nm, which closely matches the diameter of collagen nanofibers of neural ECM, and compare their properties with the scaffolds of thicker 300 nm nanofibers. Previously unmodified nylon was not regarded as an independent nanostructured matrix for guided growth of neural cells; however, it is particularly useful for ultrathin nanofiber production. We demonstrate that, while both types of fibers stimulate directed growth of neuronal processes, ultrathin fibers are more efficient in promoting and accelerating neurite elongation. Both types of scaffolds also improved synaptogenesis and the formation of connections between hippocampal neurons; however, the mechanisms of interaction of neurites with the scaffolds were substantially different. While ultrathin fibers formed numerous weak immature β1-integrin-positive focal contacts localized over the entire cell surface, scaffolds of submicron fibers formed β1-integrin focal adhesions only on the cell soma. This indicates that the scaffold nanotopology can influence focal adhesion assembly involving various integrin subunits. The fabricated nanostructured scaffolds demonstrated high stability and resistance to biodegradation, as well as absence of toxic compound release after 1 month of incubation with live cells in vitro. Our results demonstrate the high potential of this novel type of nanofibers for clinical application as substrates facilitating regeneration of nervous tissue.
Collapse
Affiliation(s)
- Olga Y. Antonova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (O.Y.K.); (Y.M.S.)
| | | | | |
Collapse
|
100
|
Patil VA, Masters KS. Engineered Collagen Matrices. Bioengineering (Basel) 2020; 7:E163. [PMID: 33339157 PMCID: PMC7765577 DOI: 10.3390/bioengineering7040163] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 01/10/2023] Open
Abstract
Collagen is the most abundant protein in mammals, accounting for approximately one-third of the total protein in the human body. Thus, it is a logical choice for the creation of biomimetic environments, and there is a long history of using collagen matrices for various tissue engineering applications. However, from a biomaterial perspective, the use of collagen-only scaffolds is associated with many challenges. Namely, the mechanical properties of collagen matrices can be difficult to tune across a wide range of values, and collagen itself is not highly amenable to direct chemical modification without affecting its architecture or bioactivity. Thus, many approaches have been pursued to design scaffold environments that display critical features of collagen but enable improved tunability of physical and biological characteristics. This paper provides a brief overview of approaches that have been employed to create such engineered collagen matrices. Specifically, these approaches include blending of collagen with other natural or synthetic polymers, chemical modifications of denatured collagen, de novo creation of collagen-mimetic chains, and reductionist methods to incorporate collagen moieties into other materials. These advancements in the creation of tunable, engineered collagen matrices will continue to enable the interrogation of novel and increasingly complex biological questions.
Collapse
Affiliation(s)
| | - Kristyn S. Masters
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA;
| |
Collapse
|