51
|
Xie Z, Zhang P, Wu Z, Zhang S, Wei L, Mi L, Kuester A, Gandrass J, Ebinghaus R, Yang R, Wang Z, Mi W. Legacy and emerging organic contaminants in the polar regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155376. [PMID: 35461927 DOI: 10.1016/j.scitotenv.2022.155376] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
The presence of numerous emerging organic contaminants (EOCs) and remobilization of legacy persistent organic pollutants (POPs) in polar regions have become significant concerns of the scientific communities, public groups and stakeholders. This work reviews the occurrences of EOCs and POPs and their long-range environmental transport (LRET) processes via atmosphere and ocean currents from continental sources to polar regions. Concentrations of classic POPs have been systematically monitored in air at several Arctic stations and showed seasonal variations and declining trends. These chemicals were also the major POPs reported in the Antarctica, while their concentrations were lower than those in the Arctic, illustrating the combination of remoteness and lack of potential local sources for the Antarctica. EOCs were investigated in air, water, snow, ice and organisms in the Arctic. Data in the Antarctica are rare. Reemission of legacy POPs and EOCs accumulated in glaciers, sea ice and snow may alter the concentrations and amplify their effects in polar regions. Thus, future research will need to understand the various biogeochemical and geophysical processes under climate change and anthropogenic pressures.
Collapse
Affiliation(s)
- Zhiyong Xie
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany.
| | - Peng Zhang
- School of Environmental Science and Technology, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Zilan Wu
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Shuang Zhang
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Lijia Wei
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Lijie Mi
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
| | - Anette Kuester
- German Environment Agency (Umweltbundesamt), Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany
| | - Juergen Gandrass
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
| | - Ralf Ebinghaus
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhen Wang
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Wenying Mi
- MINJIE Institute of Environmental Science and Health Research, Geesthacht 21025, Germany
| |
Collapse
|
52
|
Xie Z, Tan J, Fang G, Ji H, Miao M, Tian Y, Hu H, Cao W, Liang H, Yuan W. Associations between prenatal exposure to perfluoroalkyl substances and neurobehavioral development in early childhood: A prospective cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113818. [PMID: 35777342 DOI: 10.1016/j.ecoenv.2022.113818] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Findings from epidemiological studies on the associations between prenatal perfluoroalkyl substances (PFASs) exposure and children's neurodevelopment were inconclusive, and most studies did not account for the co-exposure to multiple PFASs with strong inter-correlations. The present study aimed to assess the effects of prenatal multiple PFAS exposure on children's neurobehavioral development based on 614 mother-infant pairs in the Shanghai-Minhang Birth Cohort Study. Eight PFAS concentrations were measured in maternal plasma at 12-16 weeks of gestation. Children's neurobehavioral development at 2 and 4 years of age was assessed by the Child Behavior Checklist for Ages 1.5-5. In Bayesian kernel machine regression (BKMR) analyses that could address the inter-correlations between multiple PFASs, PFAS mixture appeared to be associated with fewer Somatic Complaints and more Externalizing Problems in boys, but more Somatic Complaints and Sleep Problems in girls. There were suggestive associations of PFNA and PFOS with decreased risk of Somatic Complaints and of PFUdA and PFTrDA with increased risk of Externalizing Problems in boys; trends of increased risk in girls were observed between PFUdA and Somatic Complaints and between PFTrDA and Sleep Problems. Overall, we found no clear evidence that prenatal exposure to PFASs had negative effects on neurobehavioral development in children. However, the modest associations still suggested the potential developmental neurotoxicity of prenatal PFAS exposure.
Collapse
Affiliation(s)
- Zhenzhen Xie
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Public Health, Fudan University, Shanghai 200237, China
| | - Jing Tan
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guanghong Fang
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Honglei Ji
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Maohua Miao
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Yuan Tian
- Department of Health Management, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Hui Hu
- Harvard Medical School, Brigham and Women's Hospital, Channing Division of Network Medicine, USA
| | - Wencheng Cao
- Hubei Provincial Key Laboratory of Applied Toxicology, National Reference Laboratory of Dioxin, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Hong Liang
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China.
| | - Wei Yuan
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| |
Collapse
|
53
|
McGovern M, Borgå K, Heimstad E, Ruus A, Christensen G, Evenset A. Small Arctic rivers transport legacy contaminants from thawing catchments to coastal areas in Kongsfjorden, Svalbard. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119191. [PMID: 35364186 DOI: 10.1016/j.envpol.2022.119191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Decades of atmospheric and oceanic long-range transport from lower latitudes have resulted in deposition and storage of persistent organic pollutants (POPs) in Arctic regions. With increased temperatures, melting glaciers and thawing permafrost may serve as a secondary source of these stored POPs to freshwater and marine ecosystems. Here, we present concentrations and composition of legacy POPs in glacier- and permafrost-influenced rivers and coastal waters in the high Arctic Svalbard fjord Kongsfjorden. Targeted contaminants include polychlorinated biphenyls (PCBs), hexachlorobenzene (HCB), dichlorodiphenyltrichloroethanes (DDTs), hexachlorocyclohexanes (HCHs) and chlordane pesticides. Dissolved (defined as fraction filtered through 0.7 μm GF/F filter) and particulate samples were collected from rivers and near-shore fjord stations along a gradient from the heavily glaciated inner fjord to the tundra-dominated catchments at the outer fjord. There were no differences in contaminant concentration or pattern between glacier and tundra-dominated catchments, and the general contaminant pattern reflected snow melt with some evidence of pesticides released with glacial meltwater. Rivers were a small source of chlordane pesticides, DDTs and particulate HCB to the marine system and the particle-rich glacial meltwater contained higher concentrations of particle associated contaminants compared to the fjord. This study provides rare insight into the role of small Arctic rivers in transporting legacy contaminants from thawing catchments to coastal areas. Results indicate that the spring thaw is a source of contaminants to Kongsfjorden, and that expected increases in runoff on Svalbard and elsewhere in the Arctic could have implications for the contamination of Arctic coastal food-webs.
Collapse
Affiliation(s)
- Maeve McGovern
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579, Oslo, Norway; Department of Arctic Marine Biology, UiT, The Arctic University of Norway, 9027, Tromsø, Norway.
| | - Katrine Borgå
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Eldbjørg Heimstad
- NILU-Norwegian Institute for Air Research, Fram-High North Research Centre for Climate and the Environment, 9296, Tromsø, Norway
| | - Anders Ruus
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579, Oslo, Norway; Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Guttorm Christensen
- Akvaplan-niva, Fram-High North Research Centre for Climate and the Environment, 9296, Tromsø, Norway
| | - Anita Evenset
- Department of Arctic Marine Biology, UiT, The Arctic University of Norway, 9027, Tromsø, Norway; Akvaplan-niva, Fram-High North Research Centre for Climate and the Environment, 9296, Tromsø, Norway.
| |
Collapse
|
54
|
Plante I, Winn LM, Vaillancourt C, Grigorova P, Parent L. Killing two birds with one stone: Pregnancy is a sensitive window for endocrine effects on both the mother and the fetus. ENVIRONMENTAL RESEARCH 2022; 205:112435. [PMID: 34843719 DOI: 10.1016/j.envres.2021.112435] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Pregnancy is a complex process requiring tremendous physiological changes in the mother in order to fulfill the needs of the growing fetus, and to give birth, expel the placenta and nurse the newborn. These physiological modifications are accompanied with psychological changes, as well as with variations in habits and behaviors. As a result, this period of life is considered as a sensitive window as impaired functional and physiological changes in the mother can have short- and long-term impacts on her health. In addition, dysregulation of the placenta and of mechanisms governing placentation have been linked to chronic diseases later-on in life for the fetus, in a concept known as the Developmental Origin of Health and Diseases (DOHaD). This concept stipulates that any change in the environment during the pre-conception and perinatal (in utero life and neonatal) period to puberty, can be "imprinted" in the organism, thereby impacting the health and risk of chronic diseases later in life. Pregnancy is a succession of events that is regulated, in large part, by hormones and growth factors. Therefore, small changes in hormonal balance can have important effects on both the mother and the developing fetus. An increasing number of studies demonstrate that exposure to endocrine disrupting compounds (EDCs) affect both the mother and the fetus giving rise to growing concerns surrounding these exposures. This review will give an overview of changes that happen during pregnancy with respect to the mother, the placenta, and the fetus, and of the current literature regarding the effects of EDCs during this specific sensitive window of exposure.
Collapse
Affiliation(s)
- Isabelle Plante
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada.
| | - Louise M Winn
- Queen's University, School of Environmental Studies, Department of Biomedical and Molecular Sciences, Kingston, ON, Canada
| | | | - Petya Grigorova
- Département Science et Technologie, Université TELUQ, Montreal, QC, Canada
| | - Lise Parent
- Département Science et Technologie, Université TELUQ, Montreal, QC, Canada
| |
Collapse
|
55
|
Barrett KSC, Stuart AL. Forests effects on the environmental fates of organic pollutants in a tropical watershed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152577. [PMID: 34954160 DOI: 10.1016/j.scitotenv.2021.152577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/05/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Poly-brominated diphenyl ethers (PBDEs), dioxins, furans and current-use pesticides (CUPs) are common organic pollutants that have received global scrutiny due to their association with adverse environmental and health impacts. However, there is limited previous work assessing their environmental fates in the context of tropical multi-use watersheds. The aim of this study was to estimate the effect of forests on long-term environmental fate for some PBDEs, dioxins, furans and CUPs for a case study watershed of a tropical developing country (the Rio Cobre River drainage basin, Jamaica). Specifically, a dynamic, 16-compartment environmental multimedia model, RioShed, was developed and applied to calculate compartmental concentrations, as well as some long-term environmental fate metrics. Results indicate that the presence of tropical forests, especially those that are evergreen, reduced the atmospheric concentrations, atmospheric long-range transport potential, and the overall persistence of the study pollutants. Reductions in atmospheric concentrations by tropical forests were most enhanced for the more polar CUPs. Forest parameters that notably influenced soil concentration and/or overall persistence included the canopy drip parameter, the leaf area index and the wax erosion rate. The results of this research are expected to inform land-use and environmental management of the study area and similar tropical regions.
Collapse
Affiliation(s)
- Kayon S C Barrett
- Faculty of Science and Sport, University of Technology, Jamaica, 235 Old Hope Road, Kingston 6, Jamaica.
| | - Amy L Stuart
- College of Public Health, University of South Florida, 13201 Bruce B. Downs Blvd., MDC 56, Tampa, FL 33612, USA; Department of Civil and Environmental Engineering, University of South Florida, 4202 East Fowler Ave., Tampa, FL 33620, USA
| |
Collapse
|
56
|
Takaya Y, Xiao Y, Tsunazawa Y, Córdova M, Tokoro C. Mechanochemical degradation treatment of TBBPA: A kinetic approach for predicting the degradation rate constant. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
57
|
He S, Jia M, Xiang Y, Song B, Xiong W, Cao J, Peng H, Yang Y, Wang W, Yang Z, Zeng G. Biofilm on microplastics in aqueous environment: Physicochemical properties and environmental implications. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127286. [PMID: 34879504 DOI: 10.1016/j.jhazmat.2021.127286] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 05/23/2023]
Abstract
The excellent properties of plastics make them widely used all over the world. However, when plastics enter the environmental medium, microplastics will inevitably be produced due to physical, chemical and biological factors. Studies have shown that microplastics have been detected in terrestrial, aquatic and atmospheric environments. In addition, the presence of microplastics will provide a new artificial adhesion substrate for biofilms. It has been proved that the formation of biofilms could significantly change some properties of microplastics. Some studies have found that microplastics attached with biofilms have higher environmental risks and eco-toxicity. Therefore, considering the widespread existence of microplastics and the ecological risks of microplastic biofilms, the physical and chemical properties of biofilms on microplastics and their impact on microplastics in aqueous environment are worth reviewing. In this paper, we comprehensively reviewed representative studies in this area. Firstly, this study reviews that the existence of biofilms could change the transport and deposition of microplastics. Subsequently, the presence of biofilms would enhance the ability of microplastics to accumulate pollutant, such as persistent organic pollutants, heavy metals and antibiotics. Moreover, the effect of biofilms on microplastics enrichment of harmful microorganisms is summarized. Finally, some future research needs and strategies are proposed to better understand the problem of biofilms on microplastics.
Collapse
Affiliation(s)
- Siying He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Meiying Jia
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yinping Xiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Jiao Cao
- School of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Haihao Peng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yang Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wenjun Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
58
|
Wang Z, Solanki MK, Yu ZX, Anas M, Dong DF, Xing YX, Malviya MK, Pang F, Li YR. Genome Characteristics Reveal the Biocontrol Potential of Actinobacteria Isolated From Sugarcane Rhizosphere. Front Microbiol 2022; 12:797889. [PMID: 35003029 PMCID: PMC8740303 DOI: 10.3389/fmicb.2021.797889] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
To understand the beneficial interaction of sugarcane rhizosphere actinobacteria in promoting plant growth and managing plant diseases, this study investigated the potential role of sugarcane rhizospheric actinobacteria in promoting plant growth and antagonizing plant pathogens. We isolated 58 actinobacteria from the sugarcane rhizosphere, conducted plant growth-promoting (PGP) characteristics research, and tested the pathogenic fungi in vitro. Results showed that BTU6 (Streptomyces griseorubiginosus), the most representative strain, regulates plant defense enzyme activity and significantly enhances sugarcane smut resistance by regulating stress resistance-related enzyme (substances (POD, PAL, PPO, TP) in sugarcane) activity in sugarcane. The genomic evaluation indicated that BTU6 has the ability to biosynthesize chitinase, β-1,3-glucanase, and various secondary metabolites and plays an essential role in the growth of sugarcane plants under biotic stress. Potential mechanisms of the strain in improving the disease resistance of sugarcane plants and its potential in biodegrading exogenous chemicals were also revealed. This study showed the importance of sugarcane rhizosphere actinobacteria in microbial ecology and plant growth promotion.
Collapse
Affiliation(s)
- Zhen Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Biology and Pharmacy, Yulin Normal University, Yulin, China.,Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture, Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Nanning, China.,Agricultural College, Guangxi University, Nanning, China
| | - Manoj Kumar Solanki
- Plant Cytogenetics and Molecular Biology Group, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Zhuo-Xin Yu
- Agricultural College, Guangxi University, Nanning, China
| | - Muhammad Anas
- Agricultural College, Guangxi University, Nanning, China
| | - Deng-Feng Dong
- Agricultural College, Guangxi University, Nanning, China
| | - Yong-Xiu Xing
- Agricultural College, Guangxi University, Nanning, China
| | - Mukesh Kumar Malviya
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture, Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Fei Pang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Biology and Pharmacy, Yulin Normal University, Yulin, China
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture, Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences, Nanning, China.,Agricultural College, Guangxi University, Nanning, China
| |
Collapse
|
59
|
Wilkinson BP, Robuck AR, Lohmann R, Pickard HM, Jodice PGR. Urban proximity while breeding is not a predictor of perfluoroalkyl substance contamination in the eggs of brown pelicans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150110. [PMID: 34525704 PMCID: PMC8595685 DOI: 10.1016/j.scitotenv.2021.150110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 05/05/2023]
Abstract
Identifying sources of exposure to chemical stressors is difficult when both target organisms and stressors are highly mobile. While previous studies have demonstrated that populations of some organisms proximal to urban centers may display increased burdens of human-created chemicals compared to more distal populations, this relationship may not be universal when applied to organisms and stressors capable of transboundary movements. We examined eggs of brown pelicans (Pelecanus occidentalis), a nearshore seabird with daily movements ranging from local to 50 km and annual migrations ranging from year-round residency to 1500 km. Thirty-six eggs from three breeding colonies located at increasing distances to a major urban center (Charleston, South Carolina, USA) were analyzed for concentrations of per- and polyfluoroalkyl substances (PFAS). Areas of high use for each colony during the breeding season were also assessed via the tracking of adult pelicans from each colony using GPS-PTT satellite transmitters and overlapped with measures of relative urbanization via land cover data. We report potentially significant ∑PFAS concentrations in the eggs of pelicans (175.4 ± 120.1 ng/g w wt. SD), driven largely by linear perfluorooctane sulfonate (n-PFOS) (48-546 ng/g w wt.). Residues of the precursor compound perfluorooctane sulfonamide (FOSA) were also present in pelican eggs, suggesting continued exposure of local wildlife beyond implemented phaseouts of some PFAS. For most analytes, egg concentrations did not exhibit a significant spatial structure despite some differentiation in high-use areas unlike similar data for another regional apex predator, the bottlenose dolphin (Tursiops truncatus). We suggest that the partially migratory nature of brown pelicans during the non-breeding season, combined with daily ranges that may extend to 50 km from local point sources, may have homogenized exposure across individuals. Charleston likely remains a major source for PFAS in the overall region, however, given the high concentrations observed as well as known releases of PFAS in the nearshore environment.
Collapse
Affiliation(s)
- Bradley P Wilkinson
- Department of Forestry and Environmental Conservation, South Carolina Cooperative Fish and Wildlife Research Unit, Clemson University, Clemson, SC 29634, USA.
| | - Anna R Robuck
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
| | - Heidi M Pickard
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Patrick G R Jodice
- U.S. Geological Survey South Carolina Cooperative Fish and Wildlife Research Unit, Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
60
|
Palát J, Kukučka P, Codling GP, Price EJ, Janků P, Klánová J. Application of 96-well plate SPE method for analysis of persistent organic pollutants in low volume blood serum samples. CHEMOSPHERE 2022; 287:132300. [PMID: 34563784 DOI: 10.1016/j.chemosphere.2021.132300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Though many persistent organic pollutants (POPs) are closely regulated the human population is still exposed to these ubiquitous chemicals from the environment and diet. Safe management and human biomonitoring of POPs is necessary to understand the risk of exposure. Within human biomonitoring the mass of sample is often limited, therefore robust methods using smaller sample amounts are necessary. This study developed a 96-well plate solid phase extraction (SPE) method for determination of selected POPs: polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD) and non-persistent novel flame retardants (NFRs) in low volume blood serum. Non-destructive clean-up coupling Oasis HLB extraction plate with Phree phospholipid removal plate was employed. Extraction efficiency was determined at low and high concentrations in certified reference materials NIST SRM 1957 and 1958, respectively. Target compounds deviated from certified values on average by 15% and 21% for SRM 1957 and SRM 1958, respectively. Observed limit of detections (LODs) ranged from 0.36 pg/mL (PCB 180) to 66.07 pg/mL (δ-HCH). The applicability for real samples is demonstrated on 48 samples from pregnant women enrolled in the pilot phase of the CELSPAC: TNG study. In total, 30 target compounds were detected in at least one sample. The method developed here provides a fast and reliable analysis of human blood serum with possibility to introduce automation for the sample preparation procedure.
Collapse
Affiliation(s)
- Jiří Palát
- RECETOX Centre, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Petr Kukučka
- RECETOX Centre, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic.
| | - Garry P Codling
- RECETOX Centre, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic; Toxicology Centre, University of Saskatchewan, 44 Campus Dr, SK, S7N 5B3, Saskatoon, Canada
| | - Elliott J Price
- RECETOX Centre, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Petr Janků
- Department of Gynecology and Obstetrics, University Hospital Brno and Faculty of Medicine, Masaryk University Brno, Czech Republic; Department of Nursing and Midwifery, Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Jana Klánová
- RECETOX Centre, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| |
Collapse
|
61
|
de Souza AC, Cabral AC, da Silva J, Neto RR, Martins CC. Low levels of persistent organic pollutants in sediments of the Doce River mouth, South Atlantic, before the Fundão dam failure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149882. [PMID: 34464788 DOI: 10.1016/j.scitotenv.2021.149882] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
The Doce River mouth (DRM) was severely impacted by the rupture of the Fundão Dam in 2015, considered the greatest Brazilian environmental tragedy in terms of tailings volume released (>40 million m3) and traveled distance (~600 km until the Atlantic Ocean). Environmental monitoring has been performed since then, but background levels are scarce or absent to Persistent Organic Pollutants (POPs), making impact assessments difficult. In the current study, we presented the baseline levels, inventories, and risk assessment of the POPs polychlorinated biphenyl (PCBs) and organochlorinated pesticides (OCPs), in surface sediment of the DRM. Samples were collected in December 2010 and July 2011, i.e., four years before the Fundão dam failure. The total PCBs and the OCPs (Aldrin, HCHs, and Chlordanes) were detected in both sampling campaigns, with levels up to 9.50 and 1.64, 0.28, and 0.63 ng g-1, respectively. The decrease of the Doce River flow was the main factor contributing to seasonal variations in the spatial distribution, and to a slight decline in the levels and frequency of the analyzed POPs in sediments collected in the dry season (July 2011). Environmental risk assessment, inventories, and total mass results suggest a low potential of PCBs and OCPs accumulation before the dam failure. This is the first POPs assessment in the study area that helped identify some unexpected impacts of the Fundão dam failure and contributed to the understanding of POPs cycles in the Southern Atlantic, data that are still scarce in the region.
Collapse
Affiliation(s)
- Amanda Câmara de Souza
- Centro de Estudos do Mar, Universidade Federal do Paraná - Campus Pontal do Paraná, Caixa Postal 61, 83255-976 Pontal do Paraná, PR, Brazil
| | - Ana Caroline Cabral
- Centro de Estudos do Mar, Universidade Federal do Paraná - Campus Pontal do Paraná, Caixa Postal 61, 83255-976 Pontal do Paraná, PR, Brazil; Programa de Pós-Graduação em Sistemas Costeiros e Oceânicos (PGSISCO), Universidade Federal do Paraná, Caixa Postal 61, 83255-976 Pontal do Paraná, PR, Brazil
| | - Josilene da Silva
- Centro de Estudos do Mar, Universidade Federal do Paraná - Campus Pontal do Paraná, Caixa Postal 61, 83255-976 Pontal do Paraná, PR, Brazil; Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, 191, 05508-120 São Paulo, SP, Brazil
| | - Renato Rodrigues Neto
- Laboratório de Geoquímica Ambiental e Poluição Marinha (LabGAm), Departamento de Oceanografia e Ecologia, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, 29075-910 Vitória, Espírito Santo, Brazil
| | - César C Martins
- Centro de Estudos do Mar, Universidade Federal do Paraná - Campus Pontal do Paraná, Caixa Postal 61, 83255-976 Pontal do Paraná, PR, Brazil.
| |
Collapse
|
62
|
Zhang L, Sun D, Zhang L, Zhou S. Spatial distribution of polycyclic aromatic hydrocarbons in the Philippine Sea, Western Pacific and the impact factors analysis. MARINE POLLUTION BULLETIN 2021; 173:113083. [PMID: 34710674 DOI: 10.1016/j.marpolbul.2021.113083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Knowing the polycyclic aromatic hydrocarbons (PAHs) pollution properties in ocean is highly needed to protect the open sea. In July to August of 2020, twenty surface water samples were obtained from the East China Sea to the Philippine Sea. The ranges of Σ15PAHs concentrations were 3.188-5.29 ng L-1 in dissolved phase, 0.455-1.305 ng L-1 in particulate phase in the Philippine Sea. 3, 4-Ring PAHs were the most abundant PAHs. Their spatial differences in dissolved phase were mainly caused by human activities, the summer monsoon from the Philippine Islands and the Northern Equatorial Current, and the Kuroshio Current and Subtropical Countercurrent. The source analysis showed that PAHs in surface water in the Philippine Sea may come from coal combustion. It is the first time to analyze the occurrence and distribution of PAHs in the Philippine Sea.
Collapse
Affiliation(s)
- Linjie Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Dong Sun
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Shaohong Zhou
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| |
Collapse
|
63
|
Chierichetti MA, Scenna LB, Ondarza PM, Giorgini M, Di Giácomo E, Miglioranza KSB. Persistent organic pollutants and chlorpyrifos in the cockfish Callorhinchus callorynchus (Holocephali: Callorhynchidae) from Argentine coastal waters: Influence of sex and maturity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148761. [PMID: 34280633 DOI: 10.1016/j.scitotenv.2021.148761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/18/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Organic contaminants are of great environmental concern due to their negative impacts on coastal ecosystems, especially on highly vulnerable species as chondrichthyans. Accumulation of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and chlorpyrifos was assessed in muscle, gonads, and liver of the cockfish Callorhinchus callorynchus for both sexes and maturity stages. This species has a wide distribution in South Atlantic Ocean and it is an important resource for coastal Argentine fisheries. Pollutants were quantified by gas chromatography with electron capture detector and the distribution pattern found in C. callorynchus was the following: (∑OCPs+chlorpyrifos) > ∑PCBs>∑PBDEs. Endosulfan was predominant among OCP groups, penta-CBs and hexaCBs among PCBs and BDE 47, 66, 99, and 100 in PBDE group. The highest levels were found in liver followed by muscle and gonads. The highest percentage of lipids was also observed in the liver. Moreover, the concentrations of ∑OCPs and ∑PCBs in C. callorynchus liver varied with maturity stage, and ∑OCPs also with sexes. Females presented higher values than males, and mature individuals showed higher concentrations than immature ones, according with biological parameters such as age, sex, maturity stage, metabolic and redistribution processes and habitat use influence. These results indicate that C. callorynchus reflects a historical and recent contamination in their tissues, and therefore, especially females, becomes as a good biomonitor of these pollutants in the marine environment. To our knowledge, this work represents one of the few investigations on the occurrence of POPs and chlorpyrifos in chondrichtyans from South Atlantic Ocean; therefore more research is mandatory for an adequate management and conservation of existing fisheries and aquatic resources.
Collapse
Affiliation(s)
- Melisa A Chierichetti
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Mar del Plata 7600, Argentina; Instituto de Investigaciones Marinas y Costeras, (IIMyC) (UNMdP-CONICET), Argentina
| | - Lorena B Scenna
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Mar del Plata 7600, Argentina; Instituto de Investigaciones Marinas y Costeras, (IIMyC) (UNMdP-CONICET), Argentina.
| | - Paola M Ondarza
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Mar del Plata 7600, Argentina; Instituto de Investigaciones Marinas y Costeras, (IIMyC) (UNMdP-CONICET), Argentina
| | - Micaela Giorgini
- Instituto de Investigaciones Marinas y Costeras, (IIMyC) (UNMdP-CONICET), Argentina; Laboratorio de Ecología, UNMdP, Funes 3350, Mar del Plata 7600, Argentina
| | - Edgardo Di Giácomo
- Grupo CONDROS, Laboratorio de Recursos Icticos, Instituto de Biología Marina y Pesquera "Almirante Storni", Universidad Nacional del Comahue, Güemes 1030, R8520CXV San Antonio Oeste, Argentina
| | - Karina S B Miglioranza
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Mar del Plata 7600, Argentina; Instituto de Investigaciones Marinas y Costeras, (IIMyC) (UNMdP-CONICET), Argentina
| |
Collapse
|
64
|
Crane JL, Bijak AL, Maier MA, Nord MA. Development of current ambient background threshold values for sediment quality parameters in U.S. lakes on a regional and statewide basis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148630. [PMID: 34328994 DOI: 10.1016/j.scitotenv.2021.148630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
For the first time, background threshold values have been developed for a large suite of sediment quality parameters from 969 lakes spanning the conterminous United States (U.S.). These values provide a statistical basis for estimating current ambient background, which refers to chemical and physical (e.g., grain size) concentrations derived from natural and/or widespread diffuse anthropogenic sources (e.g., nonpoint sources like atmospheric deposition and land runoff). Surficial sediment quality data, collected based on the randomized, probability-based sampling design of the 2017 National Lakes Assessment (NLA) study, were utilized for this effort. These data included 16 metal(loid)s, 25 polycyclic aromatic hydrocarbons (PAHs), 53 polychlorinated biphenyl (PCB) congeners, 27 legacy organochlorine pesticides and metabolites, total organic carbon (TOC), and grain size parameters. The data were analyzed based on different geographic areas, including: 10 U.S. Environmental Protection Agency (EPA) Regions, two major ecoregions bisecting the State of Minnesota (i.e., Temperate Plains and Upper Midwest), and for Minnesota. Hypothesis testing of 47 sediment quality parameters was performed on three geographic areas bisecting Minnesota, and there were many statistically significant (p < 0.05) differences between geographic pairs that included Minnesota. Background threshold values were calculated for parameters with >20% detects using 95% one-sided upper tolerance limit (UTL) with 95% coverage (UTL95-95) values. The UTL95-95 represents the value below which 95% of the population values are expected to fall with 95% confidence. These values were compared to matching sediment quality guidelines for the protection of benthic organisms, both with and without potential outliers removed. Applications and limitations of the UTL95-95 values are discussed. Jurisdictions within the continental U.S. could use these same publicly available sediment quality data to calculate UTL95-95 values for specific geographic areas, and other countries could design similar probabilistic field studies to determine current ambient background of sediment quality parameters in lake sediments.
Collapse
Affiliation(s)
- Judy L Crane
- Minnesota Pollution Control Agency, 520 Lafayette Road North, St. Paul, MN 55155-4194, USA.
| | - Alexandra L Bijak
- ORISE Research Participant, Office of Water, Office of Wetlands, Oceans and Watersheds, U.S. Environmental Protection Agency, 1301 Constitution Avenue Northwest, Washington, DC 20460, USA.
| | - Michelle A Maier
- U.S. Environmental Protection Agency, 1301 Constitution Avenue Northwest, Washington, DC 20460, USA.
| | - Mari A Nord
- Region 5, U.S. Environmental Protection Agency, 77 West Jackson Boulevard, Chicago, IL 60604, USA.
| |
Collapse
|
65
|
Merhabi F, Gomez E, Amine H, Rosain D, Halwani J, Fenet H. Occurrence, distribution, and ecological risk assessment of emerging and legacy contaminants in the Kadicha river in Lebanon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62499-62518. [PMID: 34212327 DOI: 10.1007/s11356-021-15049-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
The Kadicha river basin in Northern Lebanon is an illustrative example of multiple pressures encountered in the Mediterranean region: it is a small coastal river affected by rapid urbanization, population growth (drastically impacted by the influx of Syrian refugees), and a chronic default of wastewater treatment. In this context, multiple classes of contaminants may attain the river accumulating in sediment. However, very little information is available in the literature on the contamination status in such stressed Mediterranean contexts. This study proposed a first contamination evaluation of a small Mediterranean river submitted to multiple pressures. Two sediment sampling campaigns along sites impacted by increasing urban gradient within the Kadicha river basin were performed to determine the occurrence and the environmental risks of both emerging and legacy contaminants. The results revealed the detection of the 41 studied compounds. The highest concentrations were attained by PAHs and polycyclic musks (up to 311.79, 94.22, and 81.13 ng/g of dry weight for PAH, cashmeran, and galaxolide, respectively). The discontinuous urbanized upstream area and the estuary were the most contaminated areas of the river. An environmental risk assessment showed a hazard quotient (HQ) higher than 1 for both legacy and emerging compounds (EHMC and 4-MBC), indicating a potential risk to benthic species. Monitoring campaigns and implementation of wastewater treatment plants should be encouraged as the anthropogenic pressure on small Mediterranean rivers will increase over the years.
Collapse
Affiliation(s)
- Fatmé Merhabi
- Hydrosciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France.
- Water & Environment Science Laboratory, Faculty of Public Health (FSP III), Lebanese University, Tripoli, Lebanon.
| | - Elena Gomez
- Hydrosciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Helmieh Amine
- Water & Environment Science Laboratory, Faculty of Public Health (FSP III), Lebanese University, Tripoli, Lebanon
| | - David Rosain
- Hydrosciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Jalal Halwani
- Water & Environment Science Laboratory, Faculty of Public Health (FSP III), Lebanese University, Tripoli, Lebanon
| | - Hélène Fenet
- Hydrosciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| |
Collapse
|
66
|
Wang P, Zhu X, Henkelmann B, Schramm KW. The Variability of the Concentrations of PAHs and PCBs in the Urban Air of Dalian with Ambient Temperature by Semipermeable Membrane Devices Monitoring. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1987933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Pengyuan Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China
| | - Xiuhua Zhu
- School of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian, China
| | - Bernhard Henkelmann
- Molecular EXposomics (MEX), Helmholtz Center Munich-German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Karl-Werner Schramm
- Molecular EXposomics (MEX), Helmholtz Center Munich-German Research Center for Environmental Health (GmbH), Munich, Germany
| |
Collapse
|
67
|
Jain KR, Desai C, van Hullebusch ED, Madamwar D. Editorial: Advanced Bioremediation Technologies and Processes for the Treatment of Synthetic Organic Compounds. Front Bioeng Biotechnol 2021; 9:721319. [PMID: 34660551 PMCID: PMC8514016 DOI: 10.3389/fbioe.2021.721319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kunal R Jain
- Post Graduate Department of Biosciences, Sardar Patel University, Anand, India
| | - Chirayu Desai
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, India
| | | | - Datta Madamwar
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, India
| |
Collapse
|
68
|
Casas G, Martinez-Varela A, Vila-Costa M, Jiménez B, Dachs J. Rain Amplification of Persistent Organic Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12961-12972. [PMID: 34553911 PMCID: PMC8495897 DOI: 10.1021/acs.est.1c03295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/02/2021] [Accepted: 08/17/2021] [Indexed: 05/28/2023]
Abstract
Scavenging of gas- and aerosol-phase organic pollutants by rain is an efficient wet deposition mechanism of organic pollutants. However, whereas snow has been identified as a key amplification mechanism of fugacities in cold environments, rain has received less attention in terms of amplification of organic pollutants. In this work, we provide new measurements of concentrations of perfluoroalkyl substances (PFAS), organophosphate esters (OPEs), and polycyclic aromatic hydrocarbons (PAHs) in rain from Antarctica, showing high scavenging ratios. Furthermore, a meta-analysis of previously published concentrations in air and rain was performed, with 46 works covering different climatic regions and a wide range of chemical classes, including PFAS, OPEs, PAHs, polychlorinated biphenyls and organochlorine compounds, polybromodiphenyl ethers, and dioxins. The rain-aerosol (KRP) and rain-gas (KRG) partition constants averaged 105.5 and 104.1, respectively, but showed large variability. The high field-derived values of KRG are consistent with adsorption onto the raindrops as a scavenging mechanism, in addition to gas-water absorption. The amplification of fugacities by rain deposition was up to 3 orders of magnitude for all chemical classes and was comparable to that due to snow. The amplification of concentrations and fugacities by rain underscores its relevance, explaining the occurrence of organic pollutants in environments across different climatic regions.
Collapse
Affiliation(s)
- Gemma Casas
- Institute
of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), Barcelona, Catalonia 08034, Spain
- Department
of Instrumental Analysis and Environmental Chemistry, Institute of
Organic Chemistry, Spanish National Research
Council (IQOG-CSIC), Madrid 28006, Spain
| | - Alícia Martinez-Varela
- Institute
of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), Barcelona, Catalonia 08034, Spain
| | - Maria Vila-Costa
- Institute
of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), Barcelona, Catalonia 08034, Spain
| | - Begoña Jiménez
- Department
of Instrumental Analysis and Environmental Chemistry, Institute of
Organic Chemistry, Spanish National Research
Council (IQOG-CSIC), Madrid 28006, Spain
| | - Jordi Dachs
- Institute
of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), Barcelona, Catalonia 08034, Spain
| |
Collapse
|
69
|
Sustainable Application of Biosorption and Bioaccumulation of Persistent Pollutants in Wastewater Treatment: Current Practice. Processes (Basel) 2021. [DOI: 10.3390/pr9101696] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Persistent toxic substances including persistent organic pollutants and heavy metals have been released in high quantities in surface waters by industrial activities. Their presence in environmental compartments is causing harmful effects both on the environment and human health. It was shown that their removal from wastewaters using conventional methods and adsorbents is not always a sustainable process. In this circumstance, the use of microorganisms for pollutants uptake can be seen as being an environmentally-friendly and cost-effective strategy for the treatment of industrial effluents. However, in spite of their confirmed potential in the remediation of persistent pollutants, microorganisms are not yet applied at industrial scale. Thus, the current paper aims to synthesize and analyze the available data from literature to support the upscaling of microbial-based biosorption and bioaccumulation processes. The industrial sources of persistent pollutants, the microbial mechanisms for pollutant uptake and the significant results revealed so far in the scientific literature are identified and covered in this review. Moreover, the influence of different parameters affecting the performance of the discussed systems and also very important in designing of treatment processes are highly considered. The analysis performed in the paper offers an important perspective in making decisions for scaling-up and efficient operation, from the life cycle assessment point of view of wastewater microbial bioremediation. This is significant since the sustainability of the microbial-based remediation processes through standardized methodologies such as life cycle analysis (LCA), hasn’t been analyzed yet in the scientific literature.
Collapse
|
70
|
Sarkis N, Meymy C, Geffard O, Souchon Y, Chandesris A, Ferréol M, Valette L, Recoura-Massaquant R, Piffady J, Chaumot A, Villeneuve B. Quantification of multi-scale links of anthropogenic pressures with PAH and PCB bioavailable contamination in French freshwaters. WATER RESEARCH 2021; 203:117546. [PMID: 34419920 DOI: 10.1016/j.watres.2021.117546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/22/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Aquatic ecosystems are exposed to multiple environmental pressures including chemical contamination. Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs) known as preoccupying substances for the environment. Active biomonitoring (ABM) is a surveillance method for polluted aquatic ecosystems measuring bioavailable contamination. In this work, the aim was to quantify the total links between environmental pressures and bioavailable contamination (for PAHs and PCBs) at the French national scale. Based on 245 sites experimented by ABM from 2017 to 2019, environmental pressures (anthropogenic pressures and environmental parameters) were defined (point source landfill density, point source urban density, point source industry density, point source road density, nonpoint source industry density, nonpoint source road density, nonpoint source urban density, nutrients and organic matter, slope, dams, straightness, coarse sediment, summer precipitation, hydrographic network density and watershed size) and characterized by one or a combination of measures called stressor indicators. The links between environmental pressures and bioavailable POPs contamination (ABM measure) at a large spatial scale were defined and quantified via structural equation modeling. Point source urban density, nutrients and organic matter, summer precipitation, straightness and point source industry density are correlated positively with PAH bioavailable contamination. In contrast, nonpoint source urban density, nonpoint source industry density, nonpoint source road density and watershed size are positively correlated with PCB bioavailable contamination. The dominant pressures linked to PAHs and PCBs were different, respectively local and large-scale pressures were linked to PAH bioavailable contamination, and only large-scale pressures were linked to PCB bioavailable contamination.
Collapse
Affiliation(s)
- Noëlle Sarkis
- INRAE, UR RiverLy, EcoFlowS, Villeurbanne F-69625, France
| | - Chloé Meymy
- INRAE, UR RiverLy, EcoFlowS, Villeurbanne F-69625, France
| | - Olivier Geffard
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, Villeurbanne F-69625, France
| | - Yves Souchon
- INRAE, UR RiverLy, EcoFlowS, Villeurbanne F-69625, France
| | | | | | | | | | - Jérémy Piffady
- INRAE, UR RiverLy, EcoFlowS, Villeurbanne F-69625, France
| | - Arnaud Chaumot
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, Villeurbanne F-69625, France
| | | |
Collapse
|
71
|
Ivanova A, Wiberg K, Ahrens L, Zubcov E, Dahlberg AK. Spatial distribution of legacy pesticides in river sediment from the Republic of Moldova. CHEMOSPHERE 2021; 279:130923. [PMID: 34134442 DOI: 10.1016/j.chemosphere.2021.130923] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Historical use of organochlorine pesticides (OCPs) in the Republic of Moldova could pose a potential risk for the aquatic environment due to the persistence, bioaccumulation and toxic properties of these environmental pollutants. However, knowledge on environmental concentrations of legacy OCPs in Moldova is limited. In this study, surface sediment from the two main rivers; Dniester (8 sites, n = 15) and Prut (6 sites, n = 12), and two tributary rivers; Bîc (11 sites, n = 11) and Răut (6 sites, n = 6), were collected during 2017-2018 and analyzed for hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs) and their transformation products (DDDs and DDEs) using gas chromatography coupled to mass spectrometry (GC-MS/MS). Sediment concentrations of Ʃ6DDX (1.9-140 ng g-1 dry weight (dw)) and Ʃ4HCHs (n.d-2.5 ng g-1 dw) were found. In the big rivers, the average Ʃ6DDX concentration (18 ng g-1 dw) were 35 times higher than Ʃ4HCHs (0.51 ng g-1 dw). Whereas, in the small rivers the average Ʃ6DDX concentration (32 ng g-1 dw) was approximately 41 times higher than Ʃ4HCHs (0.77 ng g-1 dw). Compared to previous studies from Eastern Europe, the sediment levels were generally similar as found in Moldova's neighboring countries (Romania and Ukraine). Overall, the contamination profile indicates long-term ageing of OCPs used in the past in the agricultural sector. Less than half of the sites (45%) had levels that pose a potential risk for benthic organisms. Hence, further work is needed to determine the bioaccumulation of OCPs in the aquatic food web in this region and the associated risks to ecosystems and human health.
Collapse
Affiliation(s)
- Anastasia Ivanova
- Laboratory of Hydrobiology and Ecotoxicology, Institute of Zoology, Academiei 1 str., MD, 2028, Chișinău, Moldavia
| | - Karin Wiberg
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden
| | - Elena Zubcov
- Laboratory of Hydrobiology and Ecotoxicology, Institute of Zoology, Academiei 1 str., MD, 2028, Chișinău, Moldavia
| | - Anna-Karin Dahlberg
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden.
| |
Collapse
|
72
|
Spataro F, Patrolecco L, Ademollo N, Præbel K, Rauseo J, Pescatore T, Corsolini S. Multiple exposure of the Boreogadus saida from bessel fjord (NE Greenland) to legacy and emerging pollutants. CHEMOSPHERE 2021; 279:130477. [PMID: 33857648 DOI: 10.1016/j.chemosphere.2021.130477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
This work investigates the occurrence of OCPs, such as hexachlorocyclohexane (α-, β-, γ- and δ-HCH) isomers, dichlorodiphenyltrichloroethane (p,p'-DDT) and its metabolite dichlorodiphenyldichloroethylene (p,p'-DDE), endosulfan (α- and β-EDS) isomers, chlorpyrifos (CPF), dacthal (DAC) and phenolic compounds, such as 4-nonylphenol (4-NP) and its precursors nonylphenol polyethoxylates (NP1EO and NP2EO) and bisphenol A (BPA), in polar cod sampled in and outside Bessel Fjord (NE Greenland). Linear regressions between target contaminants and morphological parameters (age, length, weight, gonad- and hepato-somatic indices and Fulton K) have been also evaluated. Polar cod collected at shelf had higher average concentrations of BPA, NP1EO, NP2EO and 4-NP (muscle: 6.2, 13.2, 8.9 and 1.9 ng/g w.w., respectively; liver: 5.8, 7.5, 5.2 and 0.9 ng/g w.w. respectively), than fjord's specimens (muscle: 3.5, 9.1, 3.9 and 1.0 ng/g w.w., respectively; liver: 2.4, 5.3, 2.9 and 1.1 ng/g w.w. respectively). ΣHCHs, ΣEDSs, ΣDDTs, CPF and DAC, were more accumulated in the polar cod from the fjord (average amount in muscle: 9.1, 4.8, 7.9, 3.8 and 2.8 ng/g w.w., respectively; average amount in the liver: 11.2, 9.0, 3.8, 5.9 and 4.9 ng/g w.w., respectively) than shelf's ones (average amount in muscle 3.9, 4.5, 4.2, 0.9 and 1.2 ng/g w.w., respectively; average amount in liver 7.8, 6.3, 2.1, 3.4 and 2.5 ng/g w.w., respectively). The comparison between the concentration of target contaminants and morphologic parameters suggested a different exposure of polar cod occupying the fjord and shelf habitats, due to a combination of genetic and dietary differences, climate change effects and increased human activities.
Collapse
Affiliation(s)
- F Spataro
- Institute of Polar Sciences-National Research Council (ISP-CNR), Strada Provinciale 35d, Km 0,700, 00010, Montelibretti, Rome, Italy
| | - L Patrolecco
- Institute of Polar Sciences-National Research Council (ISP-CNR), Strada Provinciale 35d, Km 0,700, 00010, Montelibretti, Rome, Italy
| | - N Ademollo
- Institute of Polar Sciences-National Research Council (ISP-CNR), Strada Provinciale 35d, Km 0,700, 00010, Montelibretti, Rome, Italy.
| | - K Præbel
- Norwegian College of Fishery Science, UiT the Arctic University of Norway, 9037, Tromsø, Norway; Department of Forestry and Wildlife Management, Campus Evenstad, Inland Norway University of Applied Science, 2418, Elverum, Norway
| | - J Rauseo
- Institute of Polar Sciences-National Research Council (ISP-CNR), Strada Provinciale 35d, Km 0,700, 00010, Montelibretti, Rome, Italy
| | - T Pescatore
- Water Research Institute- National Research Council (IRSA-CNR), Strada Provinciale 35d, Km 0,700, 00010, Montelibretti, Rome, Italy; Department of Ecological and Biological Science, Tuscia University, 01100, Viterbo, Italy
| | - S Corsolini
- Institute of Polar Sciences-National Research Council (ISP-CNR), Strada Provinciale 35d, Km 0,700, 00010, Montelibretti, Rome, Italy; Department of Physical, Earth and Environmental Sciences, Via P.A. Mattioli 4, 53100, Siena, Italy
| |
Collapse
|
73
|
Adams JK, Dean BY, Athey SN, Jantunen LM, Bernstein S, Stern G, Diamond ML, Finkelstein SA. Anthropogenic particles (including microfibers and microplastics) in marine sediments of the Canadian Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147155. [PMID: 34088044 DOI: 10.1016/j.scitotenv.2021.147155] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 05/06/2023]
Abstract
We report the first Canadian Arctic-wide study of anthropogenic particles (APs, >125 μm), including microfibers (synthetic, semi-synthetic and anthropogenically modified cellulose) and microplastics, in marine sediments from 14 sites. Samples from across the Canadian Arctic were collected between 2014 and 2017 from onboard the CCGS Amundsen. Samples were processed using density separation with calcium chloride (CaCl2). APs >125 μm were identified and a subset (22%) were characterized using Raman spectroscopy. Following blank-correction, microfiber numbers were corrected using Raman data in a novel approach to subtract possible "natural" cellulose microfibers with no anthropogenic signal via Raman spectroscopy, to estimate the proportion of cellulose microfibers that are of confirmed anthropogenic origin. Of all microfibers examined by Raman spectroscopy, 51% were anthropogenic cellulose, 11% were synthetic polymers, and 7% were extruded fibers emitting a dye signal. The remaining 31% of microfibers were identified as cellulosic but could not be confirmed as anthropogenic and thus were excluded from the final concentrations. Concentrations of confirmed APs in sediments ranged from 0.6 to 4.7 particles g-1 dry weight (dw). Microfibers comprised 82% of all APs, followed by fragments at 15%. Total microfiber concentrations ranged from 0.4 to 3.2 microfibers g-1 dw, while microplastic (fragments, foams, films and spheres) concentrations ranged from 0 to 1.6 microplastics g-1 dw. These concentrations may exceed those recorded in urban areas near point sources of plastic pollution, and indicate that the Canadian Arctic is a sink for APs, including anthropogenic cellulose fibers. Overall, we provide an important benchmark of AP contamination in Canadian Arctic marine sediments against which to measure temporal trends, including the effects of source reduction strategies and climate change, both of which will likely alter patterns of accumulation of anthropogenic particles.
Collapse
Affiliation(s)
- Jennifer K Adams
- Department of Earth Sciences, University of Toronto, 22 Ursula Franklin Street, Toronto, Ontario M5S 3B1, Canada
| | - Bethany Y Dean
- Air Quality Processes Research Section, Environment and Climate Change Canada, 6248 Eighth Line, Egbert, ON L0L1N0, Canada
| | - Samantha N Athey
- Department of Earth Sciences, University of Toronto, 22 Ursula Franklin Street, Toronto, Ontario M5S 3B1, Canada
| | - Liisa M Jantunen
- Department of Earth Sciences, University of Toronto, 22 Ursula Franklin Street, Toronto, Ontario M5S 3B1, Canada; Air Quality Processes Research Section, Environment and Climate Change Canada, 6248 Eighth Line, Egbert, ON L0L1N0, Canada
| | - Sarah Bernstein
- Air Quality Processes Research Section, Environment and Climate Change Canada, 6248 Eighth Line, Egbert, ON L0L1N0, Canada
| | - Gary Stern
- University of Manitoba, 586 Wallace Bld, 125 Dysart Rd. Winnipeg, Manitoba R3T 2N2, Canada
| | - Miriam L Diamond
- Department of Earth Sciences, University of Toronto, 22 Ursula Franklin Street, Toronto, Ontario M5S 3B1, Canada; School of the Environment, University of Toronto, 33 Willcocks St., Toronto, Ontario M5S 3E8, Canada
| | - Sarah A Finkelstein
- Department of Earth Sciences, University of Toronto, 22 Ursula Franklin Street, Toronto, Ontario M5S 3B1, Canada.
| |
Collapse
|
74
|
Martinez-Varela A, Cerro-Gálvez E, Auladell A, Sharma S, Moran MA, Kiene RP, Piña B, Dachs J, Vila-Costa M. Bacterial responses to background organic pollutants in the northeast subarctic Pacific Ocean. Environ Microbiol 2021; 23:4532-4546. [PMID: 34169620 DOI: 10.1111/1462-2920.15646] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 06/16/2021] [Indexed: 12/13/2022]
Abstract
Thousands of man-made synthetic chemicals are released to oceans and compose the anthropogenic dissolved organic carbon (ADOC). Little is known about the effects of this chronic pollution on marine microbiome activities. In this study, we measured the pollution level at three sites in the Northeast Subarctic Pacific Ocean (NESAP) and investigated how mixtures of three model families of ADOC at different environmentally relevant concentrations affected naturally occurring marine bacterioplankton communities' structure and metabolic functioning. The offshore northernmost site (North) had the lowest concentrations of hydrocarbons, as well as organophosphate ester plasticizers, contrasting with the two other continental shelf sites, the southern coastal site (South) being the most contaminated. At North, ADOC stimulated bacterial growth and promoted an increase in the contribution of some Gammaproteobacteria groups (e.g. Alteromonadales) to the 16 rRNA pool. These groups are described as fast responders after oil spills. In contrast, minor changes in South microbiome activities were observed. Gene expression profiles at Central showed the coexistence of ADOC degradation and stress-response strategies to cope with ADOC toxicities. These results show that marine microbial communities at three distinct domains in NESAP are influenced by background concentrations of ADOC, expanding previous assessments for polar and temperate waters.
Collapse
Affiliation(s)
- Alícia Martinez-Varela
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, Spain
| | - Elena Cerro-Gálvez
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, Spain
| | - Adrià Auladell
- Department of Marine Biology and Oceanography, Marine Science Institute, ICM-CSIC, Barcelona, Catalunya, Spain
| | - Shalabh Sharma
- Department of Marine Sciences, University of Georgia, Marine Sciences Building, Athens, GA, USA
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Marine Sciences Building, Athens, GA, USA
| | - Ronald P Kiene
- Department of Marine Sciences, University of South Alabama, Mobile, AL, USA
| | - Benjamí Piña
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, Spain
| | - Jordi Dachs
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, Spain
| | - Maria Vila-Costa
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, Spain
| |
Collapse
|
75
|
Elliott JE, Drever MC, Studholme KR, Silverthorn V, Miller AA, Elliott KH, Lee SL, Drouillard KG, Porter E, Idrissi AM, Crossin GT, Hipfner JM. Exposure to persistent organic pollutants is linked to over-wintering latitude in a Pacific seabird, the rhinoceros auklet, Cerorhinca monocerata. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116928. [PMID: 33774363 DOI: 10.1016/j.envpol.2021.116928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Seabirds are wide-ranging organisms often used to track marine pollution, yet the effect of migration on exposure over the annual cycle is often unclear. We used solar geolocation loggers and stable isotope analysis to study the effects of post breeding dispersal and diet on persistent organic pollutant (POP) and mercury (Hg) burdens in rhinoceros auklets, Cerorhinca monocerata, breeding on islands along the Pacific Coast of Canada. Hg and four classes of POPs were measured in auklet eggs: organochlorine insecticides (OCs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and perfluoralkyl substances (PFASs). Stable isotope values of adult breast feathers grown during winter were used in conjunction with geolocation to elucidate adult wintering latitude. Wintering latitude was the most consistent and significant predictor of some POP and of Hg concentrations in eggs. The magnitude and pattern of exposure varied by contaminant, with ∑PCBs, ∑PBDEs and DDE decreasing with wintering latitude, and mirex, perfluoro-n-tridecanoic acid, and Hg increasing with latitude. We suggest that concentrations of these contaminants in rhinoceros auklet eggs are influenced by variation in uptake at adult wintering locations related to anthropogenic inputs and oceanic and atmospheric transport.
Collapse
Affiliation(s)
- John E Elliott
- Wildlife and Landscape Science, Environment and Climate Change Canada, Delta, BC, Canada.
| | - Mark C Drever
- Wildlife and Landscape Science, Environment and Climate Change Canada, Delta, BC, Canada
| | | | - Veronica Silverthorn
- Wildlife and Landscape Science, Environment and Climate Change Canada, Delta, BC, Canada
| | - Aroha A Miller
- Wildlife and Landscape Science, Environment and Climate Change Canada, Delta, BC, Canada
| | - Kyle H Elliott
- Department of Natural Resource Sciences, McGill University, Montreal, QC, Canada
| | - Sandi L Lee
- Wildlife and Landscape Science, Environment and Climate Change Canada, Delta, BC, Canada
| | | | - Emily Porter
- Wildlife and Landscape Science, Environment and Climate Change Canada, Ottawa, ON, Canada
| | - Abde Miftah Idrissi
- Wildlife and Landscape Science, Environment and Climate Change Canada, Ottawa, ON, Canada
| | | | - J Mark Hipfner
- Wildlife and Landscape Science, Environment and Climate Change Canada, Delta, BC, Canada
| |
Collapse
|
76
|
Deng Q, Wei Y, Huang W, Li Y, Peng C, Zhao Y, Yang J, Xu Z, Wang X, Liang W. Sedimentary evolution of PAHs, POPs and ECs: Historical sedimentary deposition and evolution of persistent and emerging organic pollutants in sediments in a typical karstic river basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:144765. [PMID: 33940703 DOI: 10.1016/j.scitotenv.2020.144765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Knowledge on the occurrence and distributions of organic compounds, especially PAHs, POPs and ECs, in karstic river basins is limited. This study aims to determine the depositional history and sources of PAHs, PCBs, OCPs, antibiotics, EDCs and phenolic compounds and the ecological risk they have in the Panyang River Basin, an area with a typical karstic landscape and a high-longevity population. Sediment core analysis was adopted, correlation and principal component analyses were conducted to analyze pollution sources, and lead isotope technology was implemented for dating analysis. The sediment core covered 108 years. PCBs were detected with concentrations ranging from 3.80 to 16.18 μg/kg in the core with two concentration peaks in 1950 and 2005 that were related to anthropogenic effects. Eight of the 20 targeted phenolic compounds were detected, with concentrations ranging from 0.42 to 1.10 mg/kg. All PAHs were detected in the cores, with concentrations from 12.91 to 37.80 μg/kg. They were mainly related to natural diagenetic processes and domestic and agricultural sources. The concentrations of different OCP compounds ranged from undetected to 213.43 μg/kg and were mainly related to agricultural activities and long-range transportation. These key findings can assist environmental planning and management in this river basin.
Collapse
Affiliation(s)
- Qucheng Deng
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; School of Earth and Environmental Sciences, the University of Queensland, Brisbane 4072, Australia
| | - Yongping Wei
- School of Earth and Environmental Sciences, the University of Queensland, Brisbane 4072, Australia
| | | | - Yonghua Li
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Chong Peng
- Guangxi Zhuang Autonomous Region Radiation Environmental Supervision and Management Station, 530028, China
| | - Yinjun Zhao
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning 530001, China
| | - Jiahuan Yang
- Guangxi Zhuang Autonomous Region Marine Environment Monitoring Center Station, 536000, China
| | - Zecheng Xu
- Guangxi Zhuang Autonomous Region Radiation Environmental Supervision and Management Station, 530028, China
| | - Xiaofei Wang
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China
| | - Wei Liang
- Guangxi Environmental Information Center, Nanning 536000, China
| |
Collapse
|
77
|
Jeon HL, Hong S, Choi K, Lee C, Yoo J. First nationwide exposure profile of major persistent organic pollutants among Korean adults and their determinants: Korean National Environmental Health Survey Cycle 3 (2015-2017). Int J Hyg Environ Health 2021; 236:113779. [PMID: 34119853 DOI: 10.1016/j.ijheh.2021.113779] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/21/2021] [Accepted: 05/27/2021] [Indexed: 11/18/2022]
Abstract
Since 2009, Korea has measured the exposure levels of major environmental chemicals and heavy metals among representative adult populations through the Korean National Environmental Health Survey (KoNEHS). However, exposure to persistent organic pollutants (POPs) has never been assessed. This study reports the serum concentrations of twenty-four POPs and their influencing factors for Korean adults (n = 1295) who participated in the KoNEHS Cycle 3 (2015-2017). The POPs included seven organochlorine pesticides (OCPs), eleven polychlorinated biphenyls (PCBs), and six polybrominated diphenyl ethers (PBDEs). Among them, three OCPs (i.e., hexachlorobenzene (HCB), p,p'-dichlorodiphenyltrichloroethane (p,p'-DDT), and p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE)) and five PCBs (i.e., PCB52, PCB118, PCB138, PCB153, and PCB180) were detected in over 60% of the samples. PBDEs were not detected at a detection frequency of 60% or above. The most frequently detected POPs were p,p'-DDE (99.8%, geometric mean of 128.47 ng/g lipid), followed by PCB180 (98.8%, 8.49 ng/g lipid), PCB153 (98.8%, 13.14 ng/g lipid), HCB (96.2%, 67.08 ng/g lipid), PCB138 (95.2%, 8.84 ng/g lipid), PCB118 (89.6%, 2.66 ng/g lipid), p,p'-DDT (80.5%, 6.68 ng/g lipid), and PCB52 (71.2%, 1.57 ng/g lipid). The concentrations of most POPs were lower than or similar to concentrations reported in national-scale biomonitoring surveys. The only exception was HCB, whose concentration was up to seven-fold higher than the concentration reported by the Canadian Health Measures Survey. Excluding HCB and PCB52, most POPs showed increasing serum levels among older adults, adults with higher body mass index, adults living in coastal areas, and more frequent fish consumption. Relatively higher POP concentrations were observed in menopausal women. This study provides the first data on POP exposure levels among the representative adult population in Korea, and the results highlight the need to integrate POPs in the national biomonitoring program.
Collapse
Affiliation(s)
- Hye Li Jeon
- Environmental Health Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon, Republic of Korea
| | - Sooyeon Hong
- Environmental Health Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon, Republic of Korea
| | - Kyungho Choi
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Chulwoo Lee
- Environmental Health Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon, Republic of Korea
| | - Jiyoung Yoo
- Environmental Health Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon, Republic of Korea.
| |
Collapse
|
78
|
Latorre-Padilla N, Meynard A, Oyarzun FX, Contreras-Porcia L. Ingestion of contaminated kelps by the herbivore Tetrapygus niger: Negative effects on food intake, growth, fertility, and early development. MARINE POLLUTION BULLETIN 2021; 167:112365. [PMID: 33882333 DOI: 10.1016/j.marpolbul.2021.112365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
Macrocystis pyrifera reaches distant areas after detachment, accumulate heavy metals, and serve as trophic subsidy. In this context, effects on both adults and larvae of Tetrapygus niger fed with polluted kelps were determined by assessing growth, fertility, and early larval development. Results revealed that sea urchins fed with polluted kelps from highly impacted zone (HIZ) showed a lower growth (3.6% gained weight) and gamete release (358 cells mL-1) than those fed with non-impacted kelps (NIZ) (19.3% and 945 cells mL-1). The HIZ treatment showed a developmental delay in comparison to NIZ, accounted mainly by the abundance of malformed 2-arm pluteus larvae (10-15%) during most of the culture. Malformed 4-arm pluteus larvae showed a constant increase, reaching 37% at the end of the culture. Thus, the pollutants ingested by sea urchins can be transferred to their offspring and cause negative effects in their early development, categorizing M. pyrifera as a pollutant carrier.
Collapse
Affiliation(s)
- Nicolás Latorre-Padilla
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Quintay, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile; Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago, Chile
| | - Andrés Meynard
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Quintay, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile; Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago, Chile
| | - Fernanda X Oyarzun
- Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago, Chile; Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Chile
| | - Loretto Contreras-Porcia
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Quintay, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile; Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago, Chile.
| |
Collapse
|
79
|
Lèche A, Gismondi E, Martella MB, Navarro JL. First assessment of persistent organic pollutants in the Greater rhea (Rhea americana), a near-threatened flightless herbivorous bird of the Pampas grasslands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:27681-27693. [PMID: 33515150 DOI: 10.1007/s11356-021-12614-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Persistent organic pollutants (POPs) are still globally distributed and can exert different effects on ecosystems. Little is known about the occurrence of these contaminants in terrestrial birds from South America. In this study, POPs were assessed for the first time in a flightless herbivorous species from the Pampas grasslands, the Greater rhea (Rhea americana). Concentrations of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and organochlorine pesticides (OCPs) were determined in 18 samples of feathers from free-ranging and captive individuals inhabiting four sites with different land uses in central Argentina. Among the 16 POPs tested in those feathers, 6 PCBs (28, 52, 101, 138, 153, and 180) and 8 OCPs (α-HCH, β-HCH, γ-HCH, p,p'-DDE, p,p'-DDD, o,p'-DDT, p,p'-DDT, and HCB) were quantified. No PBDEs were detected. The total concentration of POPs was higher in populations living in an intensive crop production area (agriculture 159 ng g -1 and farm: 97.53 ng g-1) compared with the population in an urban area (zoo 45.86 ng g-1) and an agroecosystem with extensive rearing of livestock (cattle rearing 36.77 ng g-1). PCBs were the most abundant pollutants in all the populations studied. Lower chlorinated CB 52 and CB 101 were the principal PCB congeners detected, representing at least 70% of the total quantified. All populations studied showed a DDE + DDD/DDT ratio > 1, indicating a historical application of this insecticide. This study provides a new contribution to the scarce data on POP concentrations in South American bird species. Further investigations are needed to evaluate their potential effects on the health of individuals and populations.
Collapse
Affiliation(s)
- Alvina Lèche
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Centro de Zoología Aplicada, Rondeau 798, CP 5000, Córdoba, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Rondeau 798, 5000, Cordoba, CP, Argentina.
| | - Eric Gismondi
- Laboratory of Animal Ecology and Ecotoxicology (LEAE) - Freshwater and OceaniC sciences Unit of reSearch (FOCUS), Chemistry Institute, University of Liège, Bât. B6C, 11 allée du 6 Août, B-4000 Sart-Tilman, Liège, Belgium
| | - Mónica B Martella
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Centro de Zoología Aplicada, Rondeau 798, CP 5000, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Rondeau 798, 5000, Cordoba, CP, Argentina
| | - Joaquín L Navarro
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Centro de Zoología Aplicada, Rondeau 798, CP 5000, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Rondeau 798, 5000, Cordoba, CP, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Diversidad Biológica y Ecología, Cátedra de Problemática Ambiental, Cordoba, Argentina
| |
Collapse
|
80
|
Pouch A, Zaborska A, Mazurkiewicz M, Winogradow A, Pazdro K. PCBs, HCB and PAHs in the seawater of Arctic fjords - Distribution, sources and risk assessment. MARINE POLLUTION BULLETIN 2021; 164:111980. [PMID: 33486131 DOI: 10.1016/j.marpolbul.2021.111980] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
In the present study, we examine contamination with PCBs, HCB and PAHs in the seawater of Arctic fjords (Hornsund, Kongsfjorden and Adventfjorden) which differ in environmental conditions and are particularly sensitive to climate change. We also investigate how the melting glaciers and ocean currents may affect the distribution and fate of target compounds in the seawater column in the fjords. The ∑7 PCB, HCB and ∑12 PAH concentrations in seawater ranged from, respectively: 0.002 to 41.2 ng/L; from LOQ to 233 ng/L; and from 0.196 to 311 ng/L. The research indicates that the concentrations of contaminants detected in Arctic fjords depend on the physicochemical properties of these compounds, local human activity and occurrence of glacier meltwaters. Detected HCB and PAH concentrations in most of the seawater samples were at levels classified as harmless, however in 30 out of 80 analysed suspended particulate matter samples some compounds were present at toxic levels.
Collapse
Affiliation(s)
- Anna Pouch
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland.
| | - Agata Zaborska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Mikołaj Mazurkiewicz
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Aleksandra Winogradow
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Ksenia Pazdro
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| |
Collapse
|
81
|
Quadri-Adrogué A, Seco Pon JP, García GO, Castano MV, Copello S, Favero M, Beatriz Miglioranza KS. Chlorpyrifos and persistent organic pollutants in feathers of the near threatened Olrog's Gull in southeastern Buenos Aires Province, Argentina. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115918. [PMID: 33143978 DOI: 10.1016/j.envpol.2020.115918] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
The use of bird feathers to assess environmental contamination has steadily increased in ecotoxicological monitoring programs over the past decade. The Olrog's Gull (Larus atlanticus) is a species endemic to the Atlantic coast of southern South America, constituting one of the three threatened gull species listed in the entire American continent. The aim of this study was to assess the exposure to Persistent Organic Pollutants (POPs) and chlorpyrifos in the Near Threatened Olrog's Gull through the analysis of body feathers sampled at the Mar Chiquita coastal lagoon, the main wintering area of the species in Argentina, controlling for sex and age class. Chlorpyrifos showed the highest concentrations among all contaminants and groups of individuals (X¯ = 263 ng g-1), while among POPs the concentration of organochlorine pesticides was higher than polychlorinated biphenyls and polybrominated diphenyl ethers, likely indicating the current use of these agricultural contaminant in the region. The highest values of total POP concentrations (males X¯ = 280 ng g-1, females X¯ = 301 ng g-1) were found in juvenile gulls, likely as a consequence of the incorporation of pollutants during the breeding season. Subadult and adult birds showed difference between sexes in the concentration of contaminants, with higher levels in males than females. The results highlight the need to include birds of different sex and age classes in order to better understand the variation in pollutants loads. The present study provides relevant information to improve the conservation status of the Olrog's Gull and new insights about the environmental health of the Mar Chiquita coastal lagoon, Argentina, a MAB-UNESCO World Biosphere Reserve. However, there is a continued need for long-term monitoring programs focusing on this threatened species to understand the effects of pollutants on its population.
Collapse
Affiliation(s)
- Agustina Quadri-Adrogué
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Universidad Nacional de Mar del Plata, Funes, 3350, Mar del Plata (7600), Argentina; Laboratorio de Vertebrados, Universidad Nacional de Mar del Plata, Funes, 3350, Mar del Plata (7600), Argentina
| | - Juan Pablo Seco Pon
- Laboratorio de Vertebrados, Universidad Nacional de Mar del Plata, Funes, 3350, Mar del Plata (7600), Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC) (UNMDP-CONICET), Argentina.
| | - Germán Oscar García
- Laboratorio de Vertebrados, Universidad Nacional de Mar del Plata, Funes, 3350, Mar del Plata (7600), Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC) (UNMDP-CONICET), Argentina
| | - Melina Vanesa Castano
- Laboratorio de Vertebrados, Universidad Nacional de Mar del Plata, Funes, 3350, Mar del Plata (7600), Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC) (UNMDP-CONICET), Argentina
| | - Sofia Copello
- Laboratorio de Vertebrados, Universidad Nacional de Mar del Plata, Funes, 3350, Mar del Plata (7600), Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC) (UNMDP-CONICET), Argentina
| | - Marco Favero
- Laboratorio de Vertebrados, Universidad Nacional de Mar del Plata, Funes, 3350, Mar del Plata (7600), Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC) (UNMDP-CONICET), Argentina
| | - Karina Silvia Beatriz Miglioranza
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Universidad Nacional de Mar del Plata, Funes, 3350, Mar del Plata (7600), Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC) (UNMDP-CONICET), Argentina
| |
Collapse
|
82
|
Ademollo N, Spataro F, Rauseo J, Pescatore T, Fattorini N, Valsecchi S, Polesello S, Patrolecco L. Occurrence, distribution and pollution pattern of legacy and emerging organic pollutants in surface water of the Kongsfjorden (Svalbard, Norway): Environmental contamination, seasonal trend and climate change. MARINE POLLUTION BULLETIN 2021; 163:111900. [PMID: 33340906 DOI: 10.1016/j.marpolbul.2020.111900] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/10/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
This work aimed to investigate the contamination pattern in Kongsfjorden marine environment (Svalbard, 79°N 12°E) and to disentangle primary and secondary emissions. Surface seawater, sampled in two seasons, was analysed by GC-MS and LC-MS/MS to detect polychlorobiphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), nonylphenols (NPs), bisphenol A (BPA) and perfluoroalkyl and polyfluoroalkyl substances (PFASs). In summer, average ΣPAHs, BPA, ΣNPs, ΣPFASs and ΣPCBs concentrations were 17.3 ± 11.1 ng/L, 0.9 ± 0.3 ng/L, 10.0 ± 6.9 ng/L, 0.4 ± 0.7 ng/L and 1.8 ± 1.3 pg/L, respectively; while in winter, they were 13.6 ± 10.1 ng/L, 0.5 ± 0.2 ng/L, 6.8 ± 3.3 ng/L, <LOD and 0.6 ± 0.4 pg/L, respectively. The application of generalized linear models (GLMs) highlighted that: PFAS pattern agrees their predominant long-range hydrospheric transport; the additive effect of the distance to glacier and harbour affected PAH, NP and BPA distributions; the additive effect of season and distance from the glacier, but not their interaction, influenced PCBs distribution, indicating melting glaciers as potential secondary POP sources.
Collapse
Affiliation(s)
- Nicoletta Ademollo
- Institute of Polar Sciences - National Research Council (ISP-CNR), Rome, Italy
| | - Francesca Spataro
- Institute of Polar Sciences - National Research Council (ISP-CNR), Rome, Italy.
| | - Jasmin Rauseo
- Institute of Polar Sciences - National Research Council (ISP-CNR), Rome, Italy
| | - Tanita Pescatore
- Institute of Polar Sciences - National Research Council (ISP-CNR), Rome, Italy; Department of Ecological and Biological Science, Tuscia University, Italy
| | - Niccolò Fattorini
- Department of Environmental Science and Policy, University of Milano, Via Celoria 26, 20133 Milano, Italy
| | - Sara Valsecchi
- Water Research Institute- National Research Council (IRSA-CNR), Brugherio, MB, Italy
| | - Stefano Polesello
- Water Research Institute- National Research Council (IRSA-CNR), Brugherio, MB, Italy
| | - Luisa Patrolecco
- Institute of Polar Sciences - National Research Council (ISP-CNR), Rome, Italy
| |
Collapse
|
83
|
Pandelova M, Henkelmann B, Lalah JO, Norf H, Schramm KW. Spatial, temporal, and inter-compartmental environmental monitoring of lipophilic pollutants by virtual organisms. CHEMOSPHERE 2021; 264:128546. [PMID: 33049510 DOI: 10.1016/j.chemosphere.2020.128546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Sampling points belonging to the Harz National Park river system, Germany, were selected between the period of 2014 and 2017 for monitoring polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in water, air, and sediment. Triolein-containing Virtual Organisms (VO) were employed to assess the levels of chemicals in water, air and triolein as surrogate for natural fat. To avoid overestimation of the concentrations 20 performance reference compounds (PRCs)-16 PRCs-PAHs and 4 PRCs-PCBs were covering the range of properties of native compounds. Results manifested the highest concentration of individual PAH as follows: 31 ng fluoranthene/L water, 3600 ng pyrene/g fat, 62 ng phenanthrene/m3 air and 2800 ng fluoranthene/g dw sediment. All PCBs and OCPs values were below above mentioned PAH concentrations and far below EU-limit levels. Environmental partition of chemicals was investigated by calculating fugacity, suggesting a mass transport from water to air. Only quite volatile compounds such as hexachlorobutadiene showed higher fugacity in air. Ratios of sediment/water concentrations and log Kow within individual sampling periods at Holtemme River exhibited strong linear relationships. Interestingly, during summer months of the years water and fat contents well correlate to the flow rates of Holtemme River. Our results show that VO can be successfully used as a tool for ongoing exposure assessment studies and predictions of worst case levels in food and nutrition.
Collapse
Affiliation(s)
- Marchela Pandelova
- HelmholtzZentrum Muenchen, German National Research Centre for Environmental Health (GmbH), Molecular EXposomics (MEX), Ingolstaedter Landstrasse 1, Neuherberg, Munich, Germany.
| | - Bernhard Henkelmann
- HelmholtzZentrum Muenchen, German National Research Centre for Environmental Health (GmbH), Molecular EXposomics (MEX), Ingolstaedter Landstrasse 1, Neuherberg, Munich, Germany
| | - Joseph O Lalah
- Department of Geochemistry and Environmental Chemistry, School of Chemistry and Material Science, Technical University of Kenya, P.O. Box 52428-00200, Nairobi, Kenya
| | - Helge Norf
- State Office for Criminal Investigations Saxony-Anhalt, Lübecker Str. 54-64, 39024, Magdeburg, Germany
| | - Karl-Werner Schramm
- HelmholtzZentrum Muenchen, German National Research Centre for Environmental Health (GmbH), Molecular EXposomics (MEX), Ingolstaedter Landstrasse 1, Neuherberg, Munich, Germany; TUM, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Department für Biowissenschaftliche Grundlagen, Weihenstephaner Steig 23, 85350, Freising, Germany
| |
Collapse
|
84
|
Chen CY, Chen WH, Hung CH. Combustion performance and emissions from torrefied and water washed biomass using a kg-scale burner. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123468. [PMID: 32712360 DOI: 10.1016/j.jhazmat.2020.123468] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/28/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
This study investigates wastes and biomass as alternative fuels in a kg-scale burner in terms of combustion characteristics and emissions. Water washing, torrefaction, and their combination are used to improve the properties of the wastes and biomass. The air pollutants in the exhaust of the burner are also analyzed. It could be concluded that the reactivity and average heat supply from the pretreatment are improved significantly. The improvement ratio of average heat supply can be up to 103.5 %, stemming from water-soluble ash removal during water washing. Torrefaction can lift the average heat supply due to the increment of fixed carbon content in the fuels, but it reduces the reactivity owing to the decrement of volatile matters. Most of the raw or pretreated materials can be directly combusted, as a result of lower regulated air pollutants (e.g., NOx, SO2, CO) from them than from coal. Water washing can successfully remove chlorine in the wastes by dissolution since most of the chlorine in the wastes are in salt form. The chlorine reduction significantly reduces the HCl concentration (55-58 % reduction efficiency) and the toxicity concentration of polychlorinated dibenzo-p-dioxins and dibenzofurans (78-84 %), while torrefaction increases the toxicity concentration owing to the de novo synthesis.
Collapse
Affiliation(s)
- Chia-Yang Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
| | - Chung-Hsien Hung
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 83347, Taiwan; Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 83347, Taiwan
| |
Collapse
|
85
|
Chen A, Wu X, Simonich SLM, Kang H, Xie Z. Volatilization of polycyclic aromatic hydrocarbons (PAHs) over the North Pacific and adjacent Arctic Ocean: The impact of offshore oil drilling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115963. [PMID: 33162218 DOI: 10.1016/j.envpol.2020.115963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/15/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Air and seawater samples were collected in 2016 over the North Pacific Ocean (NPO) and adjacent Arctic Ocean (AO), and Polycyclic Aromatic Hydrocarbons (PAHs) were quantified in them. Atmospheric concentrations of ∑15 PAHs (gas + particle phase) were 0.44-7.0 ng m-3 (mean = 2.3 ng m-3), and concentrations of aqueous ∑15 PAHs (dissolved phase) were 0.82-3.7 ng L-1 (mean = 1.9 ng L-1). Decreasing latitudinal trends were observed for atmospheric and aqueous PAHs. Results of diagnostic ratios suggested that gaseous and aqueous PAHs were most likely to be related to the pyrogenic and petrogenic sources, respectively. Three sources, volatilization, coal and fuel oil combustion, and biomass burning, were determined by the PMF model for gaseous PAHs, with percent contributions of 10%, 44%, and 46%, respectively. The 4- ring PAHs underwent net deposition during the cruise, while some 3- ring PAHs were strongly dominated by net volatilization, even in the high latitude Arctic region. Offshore oil/gas production activities might result in the sustained input of low molecular weight 3- ring PAHs to the survey region, and further lead to the volatilization of them. Compared to the gaseous exchange fluxes, fluxes of atmospheric dry deposition and gaseous degradation were negligible. According to the extrapolated results, the gaseous exchange of semivolatile aromatic-like compounds (SALCs) may have a significant influence on the carbon cycling in the low latitude oceans, but not for the high latitude oceans.
Collapse
Affiliation(s)
- Afeng Chen
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241002, PR China
| | - Xiaoguo Wu
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241002, PR China; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, USA.
| | - Staci L Massey Simonich
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, USA
| | - Hui Kang
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Zhouqing Xie
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| |
Collapse
|
86
|
Guo J, Tian P, Xu Z, Zhang H. Introduction to Environmental Harmful Factors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1300:3-19. [PMID: 33523427 DOI: 10.1007/978-981-33-4187-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this Chapter, we systematically and comprehensively described various environmental harmful factors. They were classified into four aspects: physical factors, chemical factors, biological factors, and physiological and psychological stress factors. Their classification, modes of presence, toxicity and carcinogenicity, routes of exposure to human and toxic effects on the female reproductive health were introduced. It is expected that the exposure routes could be controlled and eliminated, and the pathogenic mechanism of environmental harmful factors should be investigated and explained to protect female reproductive health.
Collapse
Affiliation(s)
- Jiarong Guo
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health, Sichuan University, Chengdu, China
| | - Peng Tian
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health, Sichuan University, Chengdu, China
| | - Zhongyan Xu
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health, Sichuan University, Chengdu, China
| | - Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health, Sichuan University, Chengdu, China.
| |
Collapse
|
87
|
Gao Y, Zheng H, Xia Y, Cai M. Global scale distribution, seasonal changes and long-range transport potentiality of endosulfan in the surface seawater and air. CHEMOSPHERE 2020; 260:127634. [PMID: 32683032 DOI: 10.1016/j.chemosphere.2020.127634] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/01/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
Endosulfan I, II, and sulfate were detected in the atmosphere and surface seawater on a global scale during three Chinese National Arctic-Antarctic Research Expeditions in 2016 and 2017. Concentrations of the three species displayed seasonal variations in seawater in the Northern Hemisphere but remained steadily low on Antarctic coasts. Endosulfan sulfate was predominant in the Northern Hemisphere, whereas isomer I was more abundant in the Southern Hemisphere. Endosulfan was detected in the atmosphere over the western Pacific Ocean but rarely in the central Arctic and North Atlantic oceans. Its concentration in seawater increased with increasing latitude in the Southern Ocean. Although fugacity ratios indicate a strong potential for deposition of endosulfan, air-seawater exchange may be slow, as suggested by the large differences between atmospheric and seawater concentrations. Ocean current endosulfan loads varied markedly between seasons. Three-day backward trajectories indicate that Northeast Asia is the major source of atmospheric endosulfan in the western Pacific Ocean, whereas the central Arctic and North Atlantic oceans are affected more by local air masses.
Collapse
Affiliation(s)
- Yuan Gao
- Ministry of Natural Resources of the People's Republic of China Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, 200136, China
| | - Hongyuan Zheng
- Ministry of Natural Resources of the People's Republic of China Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, 200136, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yinyue Xia
- Ministry of Natural Resources of the People's Republic of China Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, 200136, China
| | - Minghong Cai
- Ministry of Natural Resources of the People's Republic of China Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, 200136, China.
| |
Collapse
|
88
|
Shin ES, Jeong Y, Barghi M, Seo SH, Kwon SY, Chang YS. Internal distribution and fate of persistent organic contaminants (PCDD/Fs, DL-PCBs, HBCDs, TBBPA, and PFASs) in a Bos Taurus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115306. [PMID: 32858435 DOI: 10.1016/j.envpol.2020.115306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/08/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
While terrestrial organisms such as livestock are consumed regularly, studies of internal distribution and bioaccumulation of persistent organic pollutants (POPs) have been focused more on aquatic organisms. In this study, we have assessed the internal distribution and fate of legacy (PCDD/Fs and PCBs) and emerging POPs (HBCDs and PFASs), and TBBPA in 42 tissues of a Bos Taurus. PCDD/Fs, DL-PCBs, and HBCDs were found 3, 4, and 4-fold higher in the lipid-rich organs (subcutaneous fat, visceral fat, large intestine) compared to the remaining organs and muscles, owing to their hydrophobic properties. The TBBPA concentration in the excrement was 36-fold higher compared to the average tissues, suggesting a short internal half-life of TBBPA. Among PFASs, PFUnDA displayed 98% contribution from all ionic PFASs in the tissues due to its strong binding affinity, high exposure via feed and water, and increasing emergence of PFUnDA and its precursors in the Southeast Asian countries. While our study suggests that, at the moment, there is no significant health risks to the general Korean population, the future changes in environmental exposure as well as the internal dynamics and fate of various POPs species should be kept in mind when consuming various parts of livestock.
Collapse
Affiliation(s)
- Eun-Su Shin
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, 37673, Republic of Korea
| | - Yuna Jeong
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, 37673, Republic of Korea
| | - Mandana Barghi
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, 37673, Republic of Korea
| | - Sung-Hee Seo
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, 37673, Republic of Korea
| | - Sae Yun Kwon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, 37673, Republic of Korea
| | - Yoon-Seok Chang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, 37673, Republic of Korea.
| |
Collapse
|
89
|
Bianchi S, Bernardi S, Belli M, Varvara G, Macchiarelli G. Exposure to persistent organic pollutants during tooth formation: molecular mechanisms and clinical findings. REVIEWS ON ENVIRONMENTAL HEALTH 2020; 35:303-310. [PMID: 32304316 DOI: 10.1515/reveh-2019-0093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
Persistent organic pollutants (POPs) constitute a relevant part of environmental pollution. POPs are chemical compounds that persist for a long time in the environment, bio-accumulate in the human body and determine significant adverse consequences to human health. The characteristics of these substances are lipo-affinity, semi-volatility and resistance to the degradation processes. Results deriving from several different studies attest that exposure to the main classes of POPs results in multiple toxic effects on humans and experimental animal models. Among the various alterations caused by exposition to and bio-accumulation of POPs, there are abnormalities in tooth formation and related hard dental tissue structure, especially enamel. This review aimed to describe the close association between the exposure of these compounds during the development of the tooth germ and the occurrence of tooth structural anomalies. Indeed, structural defects of the enamel have as possible consequences higher susceptibility of the tooth to caries disease and higher fragility of the crown to the occlusal trauma.
Collapse
Affiliation(s)
- Serena Bianchi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Sara Bernardi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
- Microscopy Centre, Universiyt of L'Aquila, L'Aquila, Italy
| | - Manuel Belli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giuseppe Varvara
- Department of Medical, Oral and Biotechnological Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
90
|
Ma Y, Sun Y, Li Y, Zheng H, Mi W. Polycyclic aromatic hydrocarbons in benthos of the northern Bering Sea Shelf and Chukchi Sea Shelf. J Environ Sci (China) 2020; 97:194-199. [PMID: 32933736 DOI: 10.1016/j.jes.2020.04.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Eighteen polycyclic aromatic hydrocarbons (PAHs) were detected in benthos collected onboard the 'Snow Dragon' in the Northern Bering Sea Shelf and Chukchi Sea Shelf during the 6th Chinese National Arctic Research Expedition (CHINARE 2014). Σ18PAHs for all biota samples ranged from 34.2 to 128.1 ng/g dry weight (dw), with the highest concentration observed in fish muscle (Boreogadus saida) samples close to St. Lawrence Island. The PAH composition pattern was dominated by the presence of lighter 3 ring (57%) and 2 ring (28%) PAHs, indicating oil-related or petrogenic sources as important origins of PAH contamination. Concentrations of alkyl-PAHs (1-methylnaphthalene and 2-methylnaphthalene) were lower than their parent PAH (naphthalene) in all biological tissue, and their percentage also decreased significantly (p<0.05) compared with those in the corresponding sediment. There were no significant relationships between PAH concentrations and trophic levels, which is possibly due to the combined results of the complex benthic foodweb in the subarctic/Arctic shelf region, as well as a low assimilation/effective metabolism for PAHs. According to toxic potency evaluation results from TCDD toxic equivalents (TEQs) and BaP-equivalent (BaPE) values, whelk (Neptunea heros) and starfish (Ctenodiscus crispatus) are two macroinvertebrate species showing relatively higher dioxin-like toxicity and carcinogenic risk.
Collapse
Affiliation(s)
- Yuxin Ma
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Yurong Sun
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Yunkai Li
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Hongyuan Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wenying Mi
- MINJIE Institute of Environmental Science and Health Research, Max-Plank Street 2, Geesthacht 21502, Germany
| |
Collapse
|
91
|
Sun B, Li Q, Zheng M, Su G, Lin S, Wu M, Li C, Wang Q, Tao Y, Dai L, Qin Y, Meng B. Recent advances in the removal of persistent organic pollutants (POPs) using multifunctional materials:a review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114908. [PMID: 32540566 DOI: 10.1016/j.envpol.2020.114908] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 04/30/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Persistent organic pollutants (POPs) have gained heightened attentions in recent years owing to their persistent property and hazard influence on wild life and human beings. Removal of POPs using varieties of multifunctional materials have shown a promising prospect compared with conventional treatments. Herein, three main categories, including thermal degradation, electrochemical remediation, as well as photocatalytic degradation with the use of diverse catalytic materials, especially the recently developed prominent ones were comprehensively reviewed. Kinetic analysis and underlying mechanism for various POPs degradation processes were addressed in detail. The review also systematically documented how catalytic performance was dramatically affected by the nature of the material itself, the structure of target pollutants, reaction conditions and treatment techniques. Moreover, the future challenges and prospects of POPs degradation by means of multiple multifunctional materials were outlined accordingly. Knowing this is of immense significance to enhance our understanding of POPs remediation procedures and promote the development of novel multifunctional materials.
Collapse
Affiliation(s)
- Bohua Sun
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghui Zheng
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shijing Lin
- College of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, PR China
| | - Mingge Wu
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuanqi Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingliang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuming Tao
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingwen Dai
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Qin
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bowen Meng
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
92
|
Li Y, Lohmann R, Zou X, Wang C, Zhang L. Air-water exchange and distribution pattern of organochlorine pesticides in the atmosphere and surface water of the open Pacific ocean. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114956. [PMID: 32806399 DOI: 10.1016/j.envpol.2020.114956] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/25/2020] [Accepted: 06/03/2020] [Indexed: 05/14/2023]
Abstract
Surface seawater and lower atmosphere gas samples were collected simultaneously between 18°N and 40°S in the open Pacific Ocean in 2006-2007. Samples were analyzed for organochlorine pesticides (OCPs) to assess their distribution patterns, the role of ocean in the long-range transport (LRT), and the air-water exchange directions in the open Pacific Ocean. Such open ocean studies can yield useful information such as establishing temporal and spatial trends and assessing primary vs secondary emissions of legacy OCPs. Target compounds included hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs) and its derivatives, and chlordane compounds. Concentrations for α-HCH, γ-HCH, trans-chlordane (TC), and cis-chlordane (CC) were higher in the Northern Hemisphere (NH) than the Southern Hemisphere (SH) in both gaseous and dissolved phases, while the distribution patterns of DDTs and heptachlor exo-epoxide (HEPX) showed a reversed pattern. In the N Pacific, concentrations of α-HCH and γ-HCH in the present work were lower by 63 and 16 times than those observed in 1989-1990. The distribution patterns of DDT suggested there was usage in the SH around 2006. Calculated fugacity ratios suggested that γ-HCH was volatilizing from surface water to the atmosphere, and the air-water exchange fluxes were 0.3-11.1 ng m-2 day-1. This is the first field study that reported the open Pacific Ocean has become the secondary source for γ-HCH and implied that ocean could affect LRT of OCPs by supplying these compounds via air-sea exchange.
Collapse
Affiliation(s)
- Yali Li
- School of Marine Sciences, Sun Yat-sun University, Zhuhai, 519082, China; Ministry of Education Key Laboratory for Coastal and Island Development, Nanjing University, Nanjing, 210093, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519080, China; Department of Physical and Environmental Science, Texas A&M University Corpus Christi, 78412, USA
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, 02882, USA
| | - Xinqing Zou
- Ministry of Education Key Laboratory for Coastal and Island Development, Nanjing University, Nanjing, 210093, China
| | - Chenglong Wang
- Ministry of Education Key Laboratory for Coastal and Island Development, Nanjing University, Nanjing, 210093, China
| | - Lin Zhang
- Department of Physical and Environmental Science, Texas A&M University Corpus Christi, 78412, USA.
| |
Collapse
|
93
|
Munschy C, Bely N, Héas-Moisan K, Olivier N, Pollono C, Hollanda S, Bodin N. Tissue-specific bioaccumulation of a wide range of legacy and emerging persistent organic contaminants in swordfish (Xiphias gladius) from Seychelles, Western Indian Ocean. MARINE POLLUTION BULLETIN 2020; 158:111436. [PMID: 32753219 DOI: 10.1016/j.marpolbul.2020.111436] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Swordfish (Xiphias gladius) is a major marine resource of high economic value to industrial and artisanal fisheries. As a top predator with a long lifespan, it is prone to accumulate high levels of contaminants. The bioaccumulation of a wide range of both legacy and emerging persistent organic contaminants was investigated in the muscle, liver and gonads of swordfish collected from the Seychelles, western Indian Ocean. The detection of all target contaminants, some at frequencies above 80%, highlights their widespread occurrence, albeit at low levels. Mean concentrations in muscle were 5637, 491 and 331 pg g-1 ww for organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and perfluoroalkyl substances (PFASs), respectively. ∑BFR mean concentrations were far below, i.e. 47 pg g-1 ww. The data are among the first obtained for such a high diversity of contaminants in an oceanic top predator worldwide and constitute a benchmark of the contamination of Indian Ocean ecosystems.
Collapse
Affiliation(s)
- C Munschy
- IFREMER (French Research Institute for Exploitation of the Sea), Laboratory of Biogeochemistry of Organic Contaminants, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 3, France.
| | - N Bely
- IFREMER (French Research Institute for Exploitation of the Sea), Laboratory of Biogeochemistry of Organic Contaminants, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 3, France
| | - K Héas-Moisan
- IFREMER (French Research Institute for Exploitation of the Sea), Laboratory of Biogeochemistry of Organic Contaminants, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 3, France
| | - N Olivier
- IFREMER (French Research Institute for Exploitation of the Sea), Laboratory of Biogeochemistry of Organic Contaminants, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 3, France
| | - C Pollono
- IFREMER (French Research Institute for Exploitation of the Sea), Laboratory of Biogeochemistry of Organic Contaminants, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 3, France
| | - S Hollanda
- SFA (Seychelles Fishing Authority), Fishing Port, Victoria, Mahé, Seychelles
| | - N Bodin
- SFA (Seychelles Fishing Authority), Fishing Port, Victoria, Mahé, Seychelles; IRD (French Research Institute for Sustainable Development), Fishing Port, Victoria, Mahé, Seychelles
| |
Collapse
|
94
|
Munschy C, Vigneau E, Bely N, Héas-Moisan K, Olivier N, Pollono C, Hollanda S, Bodin N. Legacy and emerging organic contaminants: Levels and profiles in top predator fish from the western Indian Ocean in relation to their trophic ecology. ENVIRONMENTAL RESEARCH 2020; 188:109761. [PMID: 32562947 DOI: 10.1016/j.envres.2020.109761] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/07/2020] [Accepted: 05/28/2020] [Indexed: 05/24/2023]
Abstract
Tuna and billfish are large pelagic fish of ecological importance in open oceans. As top predators with a long lifespan, they are prone to exposure to various contaminants such as persistent organic pollutants (POPs) and contaminants of emerging concern. In this study, three pollutant families were investigated, including polychlorinated biphenyls (PCBs), organochlorinated pesticides (OCPs) and perfluoroalkyl substances (PFASs), including perfluorooctane sulfonate (PFOS) and perfluorocarboxylic acids (PFCAs). Contamination was investigated in individuals from three tropical tuna species, namely bigeye (Thunnus obesus), skipjack (Katsuwonus pelamis) and yellowfin (Thunnusalbacares) tunas and the billfish swordfish (Xiphias gladius), collected from various areas of the western Indian Ocean (WIO) in 2013-2014. Contamination levels and profiles were examined in fish muscle, together with biological parameters (fish length / age, sex, lipid content) and ecological tracers (carbon and nitrogen stable isotopes). POP levels were low in all species in comparison to other locations worldwide, revealing a low impact of anthropogenic organic contaminants in the WIO. A predominance of OCPs (especially DDTs) versus PCBs was highlighted in all species; PFASs were predominant over chlorinated POPs in tunas. Among the studied PFASs, long-chain PFCAs were found to prevail over PFOS in all species. Organic contaminant profiles differed across species according to their foraging habitat; swordfish and bigeye tuna, which both feed in deep oceanic layers, showed similarities in their contaminant profiles. Geographically, the distinct DDT profiles of fish from the Mozambique Channel suggested an exposure to different DDT sources, in line with regional use of this insecticide and coupled with an extended residence time of fish in the Channel. To our knowledge, the data presented here are among the first obtained for legacy and emerging organic contaminants in various species of large pelagic predators from the WIO.
Collapse
Affiliation(s)
- C Munschy
- IFREMER (French Research Institute for Exploitation of the Sea), Laboratory of Biogeochemistry of Organic Contaminants, Rue de L'Ile D'Yeu, BP 21105, 44311, Nantes Cedex 3, France.
| | - E Vigneau
- StatSC, ONIRIS, INRA, 44322, Nantes, France
| | - N Bely
- IFREMER (French Research Institute for Exploitation of the Sea), Laboratory of Biogeochemistry of Organic Contaminants, Rue de L'Ile D'Yeu, BP 21105, 44311, Nantes Cedex 3, France
| | - K Héas-Moisan
- IFREMER (French Research Institute for Exploitation of the Sea), Laboratory of Biogeochemistry of Organic Contaminants, Rue de L'Ile D'Yeu, BP 21105, 44311, Nantes Cedex 3, France
| | - N Olivier
- IFREMER (French Research Institute for Exploitation of the Sea), Laboratory of Biogeochemistry of Organic Contaminants, Rue de L'Ile D'Yeu, BP 21105, 44311, Nantes Cedex 3, France
| | - C Pollono
- IFREMER (French Research Institute for Exploitation of the Sea), Laboratory of Biogeochemistry of Organic Contaminants, Rue de L'Ile D'Yeu, BP 21105, 44311, Nantes Cedex 3, France
| | - S Hollanda
- SFA (Seychelles Fishing Authority), Fishing Port, Victoria, Mahé, Seychelles
| | - N Bodin
- SFA (Seychelles Fishing Authority), Fishing Port, Victoria, Mahé, Seychelles; Research Institute for Sustainable Development (IRD), UMR MARBEC, Fishing Port, Victoria, Mahé, Seychelles
| |
Collapse
|
95
|
Lee JE, Oh HB, Im H, Han SB, Kim KH. Multiresidue analysis of 85 persistent organic pollutants in small human serum samples by modified QuEChERS preparation with different ionization sources in mass spectrometry. J Chromatogr A 2020; 1623:461170. [PMID: 32505276 DOI: 10.1016/j.chroma.2020.461170] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 01/25/2023]
Abstract
In this study, a multiresidue analytical method was developed, validated, and applied for quantifying 85 persistent organic pollutants (POPs), including 38 polychlorinated biphenyls (PCBs), 23 polybrominated diphenyl ethers (PBDEs), and 24 organochlorine pesticides (OCPs) from 200 μL of human serum. A modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) method was applied to minimize the required sample amount and optimize various conditions including the extraction solvent and the number of extractions. The extraction efficiency was optimized using double extraction with an ethyl acetate/hexane/acetone mixture. Gas chromatography coupled with triple-quadrupole mass spectrometry was used for analysis, and two different ionization sources, electron impact ionization (EI) and atmospheric pressure chemical ionization (APCI), were used to compare their sensitivity. The APCI source employed soft ionization at atmospheric pressure, producing abundant molecular ion formation with minimal fragmentation, in contrast to extensive fragmentation caused by EI. Of the 85 POPs analyzed, 59 target compounds (69.4%) showed lower limits of detection that were two- to fifty-fold lower in APCI than those determined using EI. The developed method was validated for its detection limit (0.5-10 pg/mL for PCBs, 2-20 pg/mL for PBDEs, and 2-40 pg/mL for OCPs), precision (0.8%-34.3% of coefficient of variation), recovery (49.6%-77.1%), matrix effect (46.7%-156.9%), and accuracy (81.2%-113.1% for PCBs, 85.8%-112.2% for PBDEs, and 55.2%-113.9% for OCPs). Its linearity was R2 > 0.99 for 84 compounds, and 96% average accuracy (for APCI) was obtained using the National Institute of Standards and Technology (NIST) standard reference materials (NIST 1957 and 1958). These ionization methods were compared by analyzing 25 real human serum samples. The observed species were 1.1-24.6 pg/mL of 28 PCBs, 2.5 pg/mL of BDE-47, and 6.5-195.1 pg/mL of 6 organochlorine pesticides (median concentration for each species), and only 11 compounds were detected with APCI owing to its enhanced sensitivity.
Collapse
Affiliation(s)
- Joo Eun Lee
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Korea; Department of Chemistry, Sogang University, Seoul, 04107, Korea
| | - Han Bin Oh
- Department of Chemistry, Sogang University, Seoul, 04107, Korea
| | - Hosub Im
- Institute for Life & Environmental Technology, Smartive Corporation, Dobong-ro 110na-gil, Dobong-gu, Seoul, 01454, Korea
| | - Sang Beom Han
- Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea
| | - Ki Hun Kim
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Korea.
| |
Collapse
|
96
|
Argiriadis E, Martino M, Segnana M, Poto L, Vecchiato M, Battistel D, Gambaro A, Barbante C. Multi-proxy biomarker determination in peat: Optimized extraction and cleanup method for paleoenvironmental application. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
97
|
Wang J, Hoondert RPJ, Thunnissen NW, van de Meent D, Hendriks AJ. Chemical fate of persistent organic pollutants in the arctic: Evaluation of simplebox. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137579. [PMID: 32135281 DOI: 10.1016/j.scitotenv.2020.137579] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/03/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Persistent organic pollutants (POPs) are of great concern for decades due to their persistence, bioaccumulation and long-range transport potential. Multimedia fate models are useful scientific and decision-support tools for predicting the chemical fate in the environment. The SimpleBox multimedia fate model (v4.0) was used in this study to estimate the impact of POP emissions from the European and North American mainland on POP contamination in the Arctic. The purpose of the study was to evaluate the performance of SimpleBox by comparing estimations to measurements. Model performance for the air compartment was reasonable as estimated concentrations were generally within a factor of five of measured concentrations. SimpleBox suggested higher POP concentrations in Arctic oceans than in temperate oceans, contrary to the few measured data. Discrepancies between estimations and measurements may be attributed to the variability in emission estimates and degradation rates of POPs, representativeness of monitoring data, and a missing snow and ice environmental compartment in SimpleBox. Emission rates and degradation rate constants were the most influential input parameters in SimpleBox based on sensitivity analysis. Suggestions for improvements of SimpleBox refining POP risk assessment are provided.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands.
| | - Renske P J Hoondert
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands
| | - Naomi W Thunnissen
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands
| | - Dik van de Meent
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands
| | - A Jan Hendriks
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands
| |
Collapse
|
98
|
Puskic PS, Lavers JL, Adams LR, Bond AL. Ingested plastic and trace element concentrations in Short-tailed Shearwaters (Ardenna tenuirostris). MARINE POLLUTION BULLETIN 2020; 155:111143. [PMID: 32469768 DOI: 10.1016/j.marpolbul.2020.111143] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Pollution of marine environments is concerning for complex trophic systems. Two anthropogenic stresses associated with marine pollution are the introduction of marine plastic and their associated chemicals (e.g., trace elements) which, when ingested, may cause harm to wildlife. Here we explore the relationship between plastic ingestion and trace element burden in the breast muscle of Short-tailed Shearwaters (Ardenna tenuirostris). We found no relationship between the amount of plastic ingested and trace element concentration in the birds' tissues. Though the mass and number of plastic items ingested by birds during 1969-2017 did not change significantly, trace element concentrations of some elements (Cu, Zn, As, Rb, Sr and Cd), appeared to have increased in birds sampled in 2017 compared to limited data from prior studies. We encourage policy which considers the data gleaned from this sentinel species to monitor the anthropogenic alteration of the marine environment.
Collapse
Affiliation(s)
- Peter S Puskic
- Institute for Marine and Antarctic Studies, University of Tasmania, School Road, Newnham, Tasmania 7250, Australia
| | - Jennifer L Lavers
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Tasmania 7004, Australia.
| | - Louise R Adams
- Institute for Marine and Antarctic Studies, University of Tasmania, School Road, Newnham, Tasmania 7250, Australia
| | - Alexander L Bond
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Tasmania 7004, Australia; Bird Group, Department of Life Sciences, The Natural History Museum, Akeman Street, Tring, Hertfordshire HP23 6AP, United Kingdom
| |
Collapse
|
99
|
Tartu S, Fisk AT, Götsch A, Kovacs KM, Lydersen C, Routti H. First assessment of pollutant exposure in two balaenopterid whale populations sampled in the Svalbard Archipelago, Norway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137327. [PMID: 32097839 DOI: 10.1016/j.scitotenv.2020.137327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
Pollutant concentrations are poorly known for the largest animals on Earth, blue whales Balaenoptera musculus and fin whales Balaenoptera physalus. In this study, concentrations of persistent organic pollutants (POPs) were determined in blubber biopsies and stable isotope values for nitrogen (δ15N) and carbon (δ13C) were measured using skin biopsies for 18 blue whales and 12 fin whales sampled in waters surrounding the Svalbard Archipelago, Norway. The samples were collected in summer during the period 2014-2018. POPs were dominated by DDTs, PCBs and toxaphenes, with median concentrations in blue/fin whales being 208/341, 127/275 and 133/233 ng/g lipid weight, respectively. Linear models indicated that pollutant concentrations were 1.6-3 times higher in fin whales than in blue whales, which is likely related to the higher trophic positions of fin whales, as indicated by their higher δ15N. Lower δ13C in fin whales suggests that they feed at higher latitudes than blue whales; these values were not correlated with pollutant concentrations. Pollutant levels were approximately twice as high in males compared to females (intraspecifically), which indicates that females of these species offload pollutants to their offspring during gestation and lactation, similar to many other mammalian species. Pollutant concentrations in balaenopterid whales from Svalbard waters were generally much lower than in conspecific whales from the Mediterranean Sea or the Gulf of California, but higher than those in conspecifics from the Antarctic Peninsula.
Collapse
Affiliation(s)
- Sabrina Tartu
- Norwegian Polar Institute, Fram Centre, Tromsø N-9296, Norway
| | - Aaron T Fisk
- School of the Environment, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Arntraut Götsch
- Norwegian Institute for Air Research (NILU), Fram Centre, Tromsø N-9296, Norway
| | - Kit M Kovacs
- Norwegian Polar Institute, Fram Centre, Tromsø N-9296, Norway
| | | | - Heli Routti
- Norwegian Polar Institute, Fram Centre, Tromsø N-9296, Norway.
| |
Collapse
|
100
|
Ravindra K, Dirtu AC, Mor S, Wauters E, Van Grieken R. Source apportionment and seasonal variation in particulate PAHs levels at a coastal site in Belgium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:14933-14943. [PMID: 32060836 DOI: 10.1007/s11356-020-07881-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
In the present study, estimation of the atmospheric polycyclic aromatic hydrocarbons (PAHs) was done in particulate samples collected from De Haan, Belgium, during different seasons. The sampling site was situated very close to the north sea and far from the influence of local or industrial activities. The levels of PAHs depicted a distinct seasonal trend, being highest during the spring season. The observations of the study indicated a mean value of 2.6 ng m-3 for concentration of all the 16 US EPA PAHs, thus being significantly lower when compared to results of previous studies focused on other sites. The dominating PAHs species reported were naphthalene, fluoranthene, benzo[a]anthracene, chrysene, and indeno[1,2,3c,d] pyrene. Assessment of the seasonal variation of the PAH levels was also done with respect to diagnostic ratio-based source identification, analysis of back trajectories, and principle component analysis. Burning of fossil fuels was observed to be the prominent source of atmospheric PAHs in the study area. Further, lifetime cancer risk assessment was performed to assess the detrimental health impacts on humans on being exposed to atmospheric PAHs. Particulate PAHs present in the ambient air of Belgium shows no carcinogenic health impacts. However, considering the industrial expansion in the region, efforts are required to prevent the environmental contamination of PAHs. Graphical abstract.
Collapse
Affiliation(s)
- Khaiwal Ravindra
- Department of Community Medicine and School of Public Health, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Alin C Dirtu
- Department of Chemistry, Micro and Trace Analysis Center, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
- Department of Chemistry, "Alexandru Ioan Cuza" University of Iasi, 11 Carol I Blvd, 700506, Iasi, Romania
| | - Suman Mor
- Department of Environment Studies, Panjab University, Chandigarh, 160012, India
| | - Eric Wauters
- Department of Chemistry, Micro and Trace Analysis Center, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | - Rene Van Grieken
- Department of Chemistry, Micro and Trace Analysis Center, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| |
Collapse
|