51
|
Paul S, Roychoudhury A. Effect of seed priming with spermine/spermidine on transcriptional regulation of stress-responsive genes in salt-stressed seedlings of an aromatic rice cultivar. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.plgene.2017.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
52
|
Chen L, Liu Y, Wu G, Zhang N, Shen Q, Zhang R. Beneficial Rhizobacterium Bacillus amyloliquefaciens SQR9 Induces Plant Salt Tolerance through Spermidine Production. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:423-432. [PMID: 28291380 DOI: 10.1094/mpmi-02-17-0027-r] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The inoculation of plants with plant-growth-promoting rhizobacterium has been an effective strategy for enhancing plant salt tolerance to diminish the loss of agricultural productivity caused by salt stress; however, the signal transmitted from bacteria to the plant under salt stress is poorly understood. In this study, the salt tolerance of Arabidopsis thaliana and Zea mays was enhanced by inoculation with Bacillus amyloliquefaciens SQR9. Using dialysis bags with different molecular weight cutoffs, we sorted through the molecules secreted by SQR9 and found that spermidine is responsible for enhancing plant salt tolerance. An SQR9 ΔspeB mutant deficient in spermidine production failed to induce plant salt tolerance. However, the induction of plant salt tolerance was disrupted by mutating genes involved in reduced glutathione (GSH) biosynthesis and the salt overly sensitive pathway in Arabidopsis. Using quantitative real-time polymerase chain reaction, this study demonstrated that spermidine produced by SQR9 leads to increased glutamine synthetase and glutathione reductase gene expression, leading to increased levels of GSH, which is critical for scavenging reactive oxygen species. SQR9-derived spermidine also upregulates the expression of NHX1 and NHX7, which sequesters Na+ into vacuoles and expels Na+ from the cell, thereby reducing ion toxicity.
Collapse
Affiliation(s)
- Lin Chen
- 1 Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, P.R. China; and
| | - Yunpeng Liu
- 2 Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Gengwei Wu
- 1 Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, P.R. China; and
| | - Nan Zhang
- 1 Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, P.R. China; and
| | - Qirong Shen
- 1 Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, P.R. China; and
| | - Ruifu Zhang
- 1 Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, P.R. China; and
- 2 Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| |
Collapse
|
53
|
Zarza X, Atanasov KE, Marco F, Arbona V, Carrasco P, Kopka J, Fotopoulos V, Munnik T, Gómez-Cadenas A, Tiburcio AF, Alcázar R. Polyamine oxidase 5 loss-of-function mutations in Arabidopsis thaliana trigger metabolic and transcriptional reprogramming and promote salt stress tolerance. PLANT, CELL & ENVIRONMENT 2017; 40:527-542. [PMID: 26791972 DOI: 10.1111/pce.12714] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 01/13/2016] [Accepted: 01/17/2016] [Indexed: 05/18/2023]
Abstract
The family of polyamine oxidases (PAO) in Arabidopsis (AtPAO1-5) mediates polyamine (PA) back-conversion, which reverses the PA biosynthetic pathway from spermine and its structural isomer thermospermine (tSpm) into spermidine and then putrescine. Here, we have studied the involvement of PA back-conversion in Arabidopsis salinity tolerance. AtPAO5 is the Arabidopsis PAO gene member most transcriptionally induced by salt stress. Two independent loss-of-function mutants (atpao5-2 and atpao5-3) were found to exhibit constitutively higher tSpm levels, with associated increased salt tolerance. Using global transcriptional and metabolomic analyses, the underlying mechanisms were studied. Stimulation of abscisic acid and jasmonate (JA) biosynthesis and accumulation of important compatible solutes, such as sugars, polyols and proline, as well as TCA cycle intermediates were observed in atpao5 mutants under salt stress. Expression analyses indicate that tSpm modulates the transcript levels of several target genes, including many involved in the biosynthesis and signalling of JA, some of which are already known to promote salinity tolerance. Transcriptional modulation by tSpm is isomer-dependent, thus demonstrating the specificity of this response. Overall, we conclude that tSpm triggers metabolic and transcriptional reprogramming that promotes salt stress tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Xavier Zarza
- Department of Natural Products, Plant Biology and Soil Science, Laboratory of Plant Physiology Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Kostadin E Atanasov
- Department of Natural Products, Plant Biology and Soil Science, Laboratory of Plant Physiology Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Francisco Marco
- Departamento de Biología Vegetal, Facultad de Farmacia, Universidad de Valencia, Burjassot, Spain
| | - Vicent Arbona
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Campus Riu Sec, E-12071, Castelló de la Plana, Spain
| | - Pedro Carrasco
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjassot, Spain
| | - Joachim Kopka
- Max Planck Institute for Molecular Plant Physiology, Golm, Germany
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, P.O. Box 50329, Limassol, Cyprus
| | - Teun Munnik
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Aurelio Gómez-Cadenas
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Campus Riu Sec, E-12071, Castelló de la Plana, Spain
| | - Antonio F Tiburcio
- Department of Natural Products, Plant Biology and Soil Science, Laboratory of Plant Physiology Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Rubén Alcázar
- Department of Natural Products, Plant Biology and Soil Science, Laboratory of Plant Physiology Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| |
Collapse
|
54
|
Saha J, Giri K. Molecular phylogenomic study and the role of exogenous spermidine in the metabolic adjustment of endogenous polyamine in two rice cultivars under salt stress. Gene 2017; 609:88-103. [DOI: 10.1016/j.gene.2017.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/26/2017] [Accepted: 02/01/2017] [Indexed: 10/20/2022]
|
55
|
Gémes K, Mellidou Ι, Karamanoli K, Beris D, Park KY, Matsi T, Haralampidis K, Constantinidou HI, Roubelakis-Angelakis KA. Deregulation of apoplastic polyamine oxidase affects development and salt response of tobacco plants. JOURNAL OF PLANT PHYSIOLOGY 2017; 211:1-12. [PMID: 28135604 DOI: 10.1016/j.jplph.2016.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 05/02/2023]
Abstract
Polyamine (PA) homeostasis is associated with plant development, growth and responses to biotic/abiotic stresses. Apoplastic PA oxidase (PAO) catalyzes the oxidation of PAs contributing to cellular homeostasis of reactive oxygen species (ROS) and PAs. In tobacco, PAs decrease with plant age, while apoplastic PAO activity increases. Our previous results with young transgenic tobacco plants with enhanced/reduced apoplastic PAO activity (S-ZmPAO/AS-ZmPAO, respectively) established the importance of apoplastic PAO in controlling tolerance to short-term salt stress. However, it remains unclear if the apoplastic PAO pathway is important for salt tolerance at later stages of plant development. In this work, we examined whether apoplastic PAO controls also plant development and tolerance of adult plants during long-term salt stress. The AS-ZmPAO plants contained higher Ca2+ during salt stress, showing also reduced chlorophyll content index (CCI), leaf area and biomass but taller phenotype compared to the wild-type plants during salt. On the contrary, the S-ZmPAO had more leaves with slightly greater size compared to the AS-ZmPAO and higher antioxidant genes/enzyme activities. Accumulation of proline in the roots was evident at prolonged stress and correlated negatively with PAO deregulation as did the transcripts of genes mediating ethylene biosynthesis. In contrast to the strong effect of apoplastic PAO to salt tolerance in young plants described previously, the effect it exerts at later stages of development is rather moderate. However, the different phenotypes observed in plants deregulating PAO reinforce the view that apoplastic PAO exerts multifaceted roles on plant growth and stress responses. Our data suggest that deregulation of the apoplastic PAO can be further examined as a potential approach to breed plants with enhanced/reduced tolerance to abiotic stress with minimal associated trade-offs.
Collapse
Affiliation(s)
- Katalin Gémes
- Department of Biology, University of Crete, Voutes University Campus, 70013 Heraklion, Greece; Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Temesvari krt. 62, Hungary
| | | | | | - Despoina Beris
- Department of Biology, National and Kapodistrian University of Athens, Greece
| | - Ky Young Park
- Department of Biology, Sunchon National University, 57922 Chonnam, South Korea
| | - Theodora Matsi
- School of Agriculture, Aristotle University, 54124 Thessaloniki, Greece
| | - Kosmas Haralampidis
- Department of Biology, National and Kapodistrian University of Athens, Greece
| | | | | |
Collapse
|
56
|
Metabolomics, a Powerful Tool for Agricultural Research. Int J Mol Sci 2016; 17:ijms17111871. [PMID: 27869667 PMCID: PMC5133871 DOI: 10.3390/ijms17111871] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 11/17/2022] Open
Abstract
Metabolomics, which is based mainly on nuclear magnetic resonance (NMR), gas-chromatography (GC) or liquid-chromatography (LC) coupled to mass spectrometry (MS) analytical technologies to systematically acquire the qualitative and quantitative information of low-molecular-mass endogenous metabolites, provides a direct snapshot of the physiological condition in biological samples. As complements to transcriptomics and proteomics, it has played pivotal roles in agricultural and food science research. In this review, we discuss the capacities of NMR, GC/LC-MS in the acquisition of plant metabolome, and address the potential promise and diverse applications of metabolomics, particularly lipidomics, to investigate the responses of Arabidopsis thaliana, a primary plant model for agricultural research, to environmental stressors including heat, freezing, drought, and salinity.
Collapse
|
57
|
Biosynthesis of polyamines and polyamine-containing molecules. Biochem J 2016; 473:2315-29. [DOI: 10.1042/bcj20160185] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/22/2016] [Indexed: 12/16/2022]
Abstract
Polyamines are evolutionarily ancient polycations derived from amino acids and are pervasive in all domains of life. They are essential for cell growth and proliferation in eukaryotes and are essential, important or dispensable for growth in bacteria. Polyamines present a useful scaffold to attach other moieties to, and are often incorporated into specialized metabolism. Life has evolved multiple pathways to synthesize polyamines, and structural variants of polyamines have evolved in bacteria, archaea and eukaryotes. Among the complex biosynthetic diversity, patterns of evolutionary reiteration can be distinguished, revealing evolutionary recycling of particular protein folds and enzyme chassis. The same enzyme activities have evolved from multiple protein folds, suggesting an inevitability of evolution of polyamine biosynthesis. This review discusses the different biosynthetic strategies used in life to produce diamines, triamines, tetra-amines and branched and long-chain polyamines. It also discusses the enzymes that incorporate polyamines into specialized metabolites and attempts to place polyamine biosynthesis in an evolutionary context.
Collapse
|
58
|
Salo HM, Sarjala T, Jokela A, Häggman H, Vuosku J. Moderate stress responses and specific changes in polyamine metabolism characterize Scots pine somatic embryogenesis. TREE PHYSIOLOGY 2016; 36:392-402. [PMID: 26786537 PMCID: PMC4885945 DOI: 10.1093/treephys/tpv136] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 11/29/2015] [Indexed: 05/02/2023]
Abstract
Somatic embryogenesis (SE) is one of the methods with the highest potential for the vegetative propagation of commercially important coniferous species. However, many conifers, including Scots pine (Pinus sylvestris L.), are recalcitrant to SE and a better understanding of the mechanisms behind the SE process is needed. In Scots pine SE cultures, embryo production is commonly induced by the removal of auxin, addition of abscisic acid (ABA) and the desiccation of cell masses by polyethylene glycol (PEG). In the present study, we focus on the possible link between the induction of somatic embryo formation and cellular stress responses such as hydrogen peroxide protection, DNA repair, changes in polyamine (PA) metabolism and autophagy. Cellular PA contents and the expression of the PA metabolism genes arginine decarboxylase (ADC), spermidine synthase (SPDS), thermospermine synthase (ACL5) and diamine oxidase (DAO) were analyzed, as well as the expression of catalase (CAT), DNA repair genes (RAD51, KU80) and autophagy-related genes (ATG5, ATG8) throughout the induction of somatic embryo formation in Scots pine SE cultures. Among the embryo-producing SE lines, the expression of ADC, SPDS, ACL5, DAO, CAT, RAD51, KU80 and ATG8 showed consistent profiles. Furthermore, the overall low expression of the stress-related genes suggests that cells in those SE lines were not stressed but recognized the ABA+PEG treatment as a signal to trigger the embryogenic pathway. In those SE lines that were unable to produce embryos, cells seemed to experience the ABA+PEG treatment mostly as osmotic stress and activated a wide range of stress defense mechanisms. Altogether, our results suggest that the direction to the embryogenic pathway is connected with cellular stress responses in Scots pine SE cultures. Thus, the manipulation of stress response pathways may provide a way to enhance somatic embryo production in recalcitrant Scots pine SE lines.
Collapse
Affiliation(s)
- Heikki M Salo
- Genetics and Physiology Department, University of Oulu, PO Box 3000, FI-90014 Oulu, Finland
| | - Tytti Sarjala
- Natural Resources Institute Finland (Luke), Parkano Unit, FI-39700 Parkano, Finland
| | - Anne Jokela
- Genetics and Physiology Department, University of Oulu, PO Box 3000, FI-90014 Oulu, Finland
| | - Hely Häggman
- Genetics and Physiology Department, University of Oulu, PO Box 3000, FI-90014 Oulu, Finland
| | - Jaana Vuosku
- Genetics and Physiology Department, University of Oulu, PO Box 3000, FI-90014 Oulu, Finland Natural Resources Institute Finland (Luke), Rovaniemi Unit, FI-96300 Rovaniemi, Finland
| |
Collapse
|
59
|
Yin L, Wang S, Tanaka K, Fujihara S, Itai A, Den X, Zhang S. Silicon-mediated changes in polyamines participate in silicon-induced salt tolerance in Sorghum bicolor L. PLANT, CELL & ENVIRONMENT 2016; 39:245-58. [PMID: 25753986 DOI: 10.1111/pce.12521] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 01/31/2015] [Accepted: 02/05/2015] [Indexed: 05/03/2023]
Abstract
Silicon (Si) is generally considered a beneficial element for the growth of higher plants, especially under stress conditions, but the mechanisms remain unclear. Here, we tested the hypothesis that Si improves salt tolerance through mediating important metabolism processes rather than acting as a mere mechanical barrier. Seedlings of sorghum (Sorghum bicolor L.) growing in hydroponic culture were treated with NaCl (100 mm) combined with or without Si (0.83 mm). The result showed that supplemental Si enhanced sorghum salt tolerance by decreasing Na(+) accumulation. Simultaneously, polyamine (PA) levels were increased and ethylene precursor (1-aminocyclopropane-1-carboxylic acid: ACC) concentrations were decreased. Several key PA synthesis genes were up-regulated by Si under salt stress. To further confirm the role of PA in Si-mediated salt tolerance, seedlings were exposed to spermidine (Spd) or a PA synthesis inhibitor (dicyclohexylammonium sulphate, DCHA) combined with salt and Si. Exogenous Spd showed similar effects as Si under salt stress whereas exogenous DCHA eliminated Si-enhanced salt tolerance and the beneficial effect of Si in decreasing Na(+) accumulation. These results indicate that PAs and ACC are involved in Si-induced salt tolerance in sorghum and provide evidence that Si plays an active role in mediating salt tolerance.
Collapse
Affiliation(s)
- Lina Yin
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, 712100, China
- Faculty of Agriculture, Tottori University, Koyama Minami 4-101, Tottori, 680-8533, Japan
| | - Shiwen Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, 712100, China
| | - Kiyoshi Tanaka
- Faculty of Agriculture, Tottori University, Koyama Minami 4-101, Tottori, 680-8533, Japan
| | - Shinsuke Fujihara
- NARO Agricultural Research Center, Kannondai 3-1-1, Tsukuba, 305-8666, Japan
| | - Akihiro Itai
- Faculty of Agriculture, Tottori University, Koyama Minami 4-101, Tottori, 680-8533, Japan
| | - Xiping Den
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, 712100, China
| | - Suiqi Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, 712100, China
| |
Collapse
|
60
|
Sagor GHM, Zhang S, Kojima S, Simm S, Berberich T, Kusano T. Reducing Cytoplasmic Polyamine Oxidase Activity in Arabidopsis Increases Salt and Drought Tolerance by Reducing Reactive Oxygen Species Production and Increasing Defense Gene Expression. FRONTIERS IN PLANT SCIENCE 2016; 7:214. [PMID: 26973665 PMCID: PMC4770033 DOI: 10.3389/fpls.2016.00214] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/08/2016] [Indexed: 05/08/2023]
Abstract
The link between polyamine oxidases (PAOs), which function in polyamine catabolism, and stress responses remains elusive. Here, we address this issue using Arabidopsis pao mutants in which the expression of the five PAO genes is knocked-out or knocked-down. As the five single pao mutants and wild type (WT) showed similar response to salt stress, we tried to generate the mutants that have either the cytoplasmic PAO pathway (pao1 pao5) or the peroxisomal PAO pathway (pao2 pao3 pao4) silenced. However, the latter triple mutant was not obtained. Thus, in this study, we used two double mutants, pao1 pao5 and pao2 pao4. Of interest, pao1 pao5 mutant was NaCl- and drought-tolerant, whereas pao2 pao4 showed similar sensitivity to those stresses as WT. To reveal the underlying mechanism of salt tolerance, further analyses were performed. Na uptake of the mutant (pao1 pao5) decreased to 75% of WT. PAO activity of the mutant was reduced to 62% of WT. The content of reactive oxygen species (ROS) such as hydrogen peroxide, a reaction product of PAO action, and superoxide anion in the mutant became 81 and 72% of the levels in WT upon salt treatment. The mutant contained 2.8-fold higher thermospermine compared to WT. Moreover, the mutant induced the genes of salt overly sensitive-, abscisic acid (ABA)-dependent- and ABA-independent- pathways more strongly than WT upon salt treatment. The results suggest that the Arabidopsis plant silencing cytoplasmic PAOs shows salinity tolerance by reducing ROS production and strongly inducing subsets of stress-responsive genes under stress conditions.
Collapse
Affiliation(s)
- G. H. M. Sagor
- Graduate School of Life Sciences, Tohoku UniversitySendai, Japan
| | - Siyuan Zhang
- Graduate School of Life Sciences, Tohoku UniversitySendai, Japan
| | - Seiji Kojima
- Graduate School of Life Sciences, Tohoku UniversitySendai, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku UniversitySendai, Japan
| | - Stefan Simm
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe UniversityFrankfurt am Main, Germany
| | - Thomas Berberich
- Biodiversity and Climate Research Center, Laboratory CenterFrankfurt am Main, Germany
| | - Tomonobu Kusano
- Graduate School of Life Sciences, Tohoku UniversitySendai, Japan
- *Correspondence: Tomonobu Kusano,
| |
Collapse
|
61
|
Jancewicz AL, Gibbs NM, Masson PH. Cadaverine's Functional Role in Plant Development and Environmental Response. FRONTIERS IN PLANT SCIENCE 2016; 7:870. [PMID: 27446107 PMCID: PMC4914950 DOI: 10.3389/fpls.2016.00870] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/02/2016] [Indexed: 05/07/2023]
Abstract
Cadaverine derives from lysine in a pathway that is distinct from that of the other well-characterized ornithine- or arginine-derived polyamines. Despite a multitude of studies in bacterial systems, cadaverine has garnered little attention in plant research. Nonetheless, many plants have been found to synthesize it. For instance, the Leguminosae have been shown to produce cadaverine and use it as a precursor in the biosynthesis of quinolizidine alkaloids, secondary metabolites that are involved in insect defense and also display therapeutic pharmacological properties. Cadaverine is also present in the environment; it can be produced by rhizosphere and phyllosphere microbes. Markedly, exogenous cadaverine application causes alterations in root-system architecture. Previous research suggests cadaverine has a role in stress response, with groups reporting an increase in content upon exposure to heat, drought, salt, and oxidative stress. However, data regarding the role of cadaverine in stress response remains conflicted, as some plant systems show enhanced tolerance to stresses in its presence, while others show increased sensitivity to the same stresses. In this review, we summarize recent findings on the role of cadaverine in plant growth, development, and stress response. We also address the possible roles rhizosphere and phyllosphere microbes may play in the delivery of exogenous cadaverine near plant organs, and discuss our current understanding of the molecular pathways that contribute to cadaverine homeostasis and response in plants.
Collapse
Affiliation(s)
- Amy L. Jancewicz
- Program in Cellular and Molecular Biology, Laboratory of Genetics, University of Wisconsin–Madison, Madison, WIUSA
| | - Nicole M. Gibbs
- Program in Plant Breeding and Plant Genetics, Laboratory of Genetics, University of Wisconsin–Madison, Madison, WIUSA
| | - Patrick H. Masson
- Program in Cellular and Molecular Biology, Laboratory of Genetics, University of Wisconsin–Madison, Madison, WIUSA
- Program in Plant Breeding and Plant Genetics, Laboratory of Genetics, University of Wisconsin–Madison, Madison, WIUSA
- *Correspondence: Patrick H. Masson,
| |
Collapse
|
62
|
Yuan Y, Zhong M, Shu S, Du N, Sun J, Guo S. Proteomic and Physiological Analyses Reveal Putrescine Responses in Roots of Cucumber Stressed by NaCl. FRONTIERS IN PLANT SCIENCE 2016; 7:1035. [PMID: 27471514 PMCID: PMC4945654 DOI: 10.3389/fpls.2016.01035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/01/2016] [Indexed: 05/03/2023]
Abstract
Soil salinity is a major environmental constraint that threatens agricultural productivity. Different strategies have been developed to improve crop salt tolerance, among which the effects of polyamines have been well-reported. To gain a better understanding of the cucumber (Cucumis sativus L.) responses to NaCl and unravel the underlying mechanism of exogenous putrescine (Put) alleviating salt-induced damage, comparative proteomic analysis was conducted on cucumber roots treated with NaCl, and/or Put for 7 days. The results showed that exogenous Put restored the root growth inhibited by NaCl. Sixty-two differentially expressed proteins implicated in various biological processes were successfully identified by MALDI-TOF/TOF MS. The four largest categories included proteins involved in defense response (24.2%), protein metabolism (24.2%), carbohydrate metabolism (19.4%), and amino acid metabolism (14.5%). Exogenous Put up-regulated most identified proteins involved in carbohydrate metabolism, implying an enhancement in energy generation. Proteins involved in defense response and protein metabolism were differently regulated by Put, which indicated the roles of Put in stress resistance and proteome rearrangement. Put also increased the abundance of proteins involved in amino acid metabolism. Meanwhile, physiological analysis showed that Put could further up-regulated the levels of free amino acids in salt stressed-roots. In addition, Put also improved endogenous polyamines contents by regulating the transcription levels of key enzymes in polyamine metabolism. Taken together, these results suggest that Put may alleviate NaCl-induced growth inhibition through degradation of misfolded/damaged proteins, activation of stress defense, and the promotion of carbohydrate metabolism to generate more energy.
Collapse
Affiliation(s)
- Yinghui Yuan
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Min Zhong
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Sheng Shu
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Nanshan Du
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Jin Sun
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
- Suqian Academy of Protected Horticulture, Nanjing Agricultural UniversitySuqian, China
| | - Shirong Guo
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
- Suqian Academy of Protected Horticulture, Nanjing Agricultural UniversitySuqian, China
- *Correspondence: Shirong Guo
| |
Collapse
|
63
|
Maruri-López I, Hernández-Sánchez IE, Ferrando A, Carbonell J, Jiménez-Bremont JF. Characterization of maize spermine synthase 1 (ZmSPMS1): Evidence for dimerization and intracellular location. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 97:264-71. [PMID: 26500203 DOI: 10.1016/j.plaphy.2015.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/06/2015] [Accepted: 10/10/2015] [Indexed: 06/05/2023]
Abstract
Polyamines are ubiquitous positively charged metabolites that play an important role in wide fundamental cellular processes; because of their importance, the homeostasis of these amines is tightly regulated. Spermine synthase catalyzes the formation of polyamine spermine, which is necessary for growth and development in higher eukaryotes. Previously, we reported a stress inducible spermine synthase 1 (ZmSPMS1) gene from maize. The ZmSPMS1 enzyme differs from their dicot orthologous by a C-terminal extension, which contains a degradation PEST sequence involved in its turnover. Herein, we demonstrate that ZmSPMS1 protein interacts with itself in split yeast two-hybrid (Y2H) assays. A Bimolecular Fluorescence Complementation (BiFC) assay revealed that ZmSPMS1 homodimer has a cytoplasmic localization. In order to gain a better understanding about ZmSPMS1 interaction, two deletion constructs of ZmSPMS1 protein were obtained. The ΔN-ZmSPMS1 version, where the first 74 N-terminal amino acids were eliminated, showed reduced capability of dimer formation, whereas the ΔC-ZmSPMS1 version, lacking the last 40 C-terminal residues, dramatically abated the ZmSPMS1-ZmSPMS1 protein interaction. Recombinant protein expression in Escherichia coli of ZmSPMS1 derived versions revealed that deletion of its N-terminal domain affected the spermine biosynthesis, whereas C-terminal ZmSPMS1 truncated version fail to generate this polyamine. These data suggest that N- and C-terminal domains of ZmSPMS1 play a role in a functional homodimer.
Collapse
Affiliation(s)
- Israel Maruri-López
- Laboratorio de Estudios Moleculares de Respuesta a Estrés en Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica AC, Camino a la Presa de San José 2055, C.P. 78216, AP 3-74 Tangamanga, San Luis Potosí, San Luis Potosí, Mexico
| | - Itzell E Hernández-Sánchez
- Laboratorio de Estudios Moleculares de Respuesta a Estrés en Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica AC, Camino a la Presa de San José 2055, C.P. 78216, AP 3-74 Tangamanga, San Luis Potosí, San Luis Potosí, Mexico
| | - Alejandro Ferrando
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Avda de los Naranjos s/n, 46022, Valencia, Spain
| | - Juan Carbonell
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Avda de los Naranjos s/n, 46022, Valencia, Spain
| | - Juan Francisco Jiménez-Bremont
- Laboratorio de Estudios Moleculares de Respuesta a Estrés en Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica AC, Camino a la Presa de San José 2055, C.P. 78216, AP 3-74 Tangamanga, San Luis Potosí, San Luis Potosí, Mexico.
| |
Collapse
|
64
|
Remaining Mysteries of Molecular Biology: The Role of Polyamines in the Cell. J Mol Biol 2015; 427:3389-406. [DOI: 10.1016/j.jmb.2015.06.020] [Citation(s) in RCA: 401] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 06/12/2015] [Accepted: 06/29/2015] [Indexed: 11/23/2022]
|
65
|
Sagor GHM, Chawla P, Kim DW, Berberich T, Kojima S, Niitsu M, Kusano T. The polyamine spermine induces the unfolded protein response via the MAPK cascade in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2015; 6:687. [PMID: 26442007 PMCID: PMC4565113 DOI: 10.3389/fpls.2015.00687] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/20/2015] [Indexed: 05/19/2023]
Abstract
In Arabidopsis three basic region leucine zipper (bZIP) transcription factor genes, bZIP17, bZIP28, and bZIP60, play crucial roles in the unfolded protein response (UPR). Previously we found that bZIP60 is one of the spermine-induced genes. Consequently we further investigated the response of all the three bZIP genes to spermine. Expression of bZIP17, bZIP28, and bZIP60, and also their target genes was activated by spermine application as well as in plants with elevated endogenous spermine levels. Furthermore, spermine activated the splicing of the bZIP60 transcript mediated by the ribonuclease activity of inositol-requiring enzyme 1 and also recruited bZIP17 and bZIP60 proteins from endoplasmic reticulum to nucleus. We therefore propose that spermine is a novel UPR inducer. Moreover, induction of UPR by spermine required calcium-influx to the cytoplasm and the genes for mitogen-activated protein kinase kinase 9 (MKK9), mitogen-activated protein kinase 3 (MPK3) and MPK6. The result indicates that spermine-induced UPR is mediated by the MKK9-MPK3/MPK6 cascade in Arabidopsis.
Collapse
Affiliation(s)
- G. H. M. Sagor
- Graduate School of Life Sciences, Tohoku UniversitySendai, Japan
| | - Pratima Chawla
- Graduate School of Life Sciences, Tohoku UniversitySendai, Japan
| | - Dong W. Kim
- Graduate School of Life Sciences, Tohoku UniversitySendai, Japan
| | - Thomas Berberich
- Biodiversity and Climate Research Center, Laboratory CenterFrankfurt am Main, Germany
| | - Seiji Kojima
- Graduate School of Life Sciences, Tohoku UniversitySendai, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku UniversitySendai, Japan
| | - Masaru Niitsu
- Faculty of Pharmaceutical Sciences, Josai UniversitySakado, Japan
| | - Tomonobu Kusano
- Graduate School of Life Sciences, Tohoku UniversitySendai, Japan
| |
Collapse
|
66
|
Pál M, Szalai G, Janda T. Speculation: Polyamines are important in abiotic stress signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 237:16-23. [PMID: 26089148 DOI: 10.1016/j.plantsci.2015.05.003] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 05/18/2023]
Abstract
The main role of polyamines was originally assumed to be as direct protective compounds important under stress conditions. Although in some cases a correlation was found between the endogenous polyamine content and stress tolerance, this relationship cannot be generalized. Polyamines should no longer be considered simply as protective molecules, but rather as compounds that are involved in a complex signaling system and have a key role in the regulation of stress tolerance. The major links in polyamine signaling may be H2O2 and NO, which are not only produced in the course of the polyamine metabolism, but also transmit signals that influence gene expression via an increase in the cytoplasmic Ca(2+) level. Polyamines can also influence Ca(2+) influx independently of the H2O2- and/or NO-mediated pathways. Furthermore, these pathways may converge. In addition, several protein kinases have been shown to be influenced at the transcriptional or post-translational level by polyamines. Individual polyamines can be converted into each other in the polyamine cycle. In addition, their metabolism is linked with other hormones or signaling molecules. However, as individual polyamines trigger different transcriptional responses, other mechanisms and the existence of polyamine-responsive elements and the corresponding transacting protein factors are also involved in polyamine-related signaling pathways.
Collapse
Affiliation(s)
- Magda Pál
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, POB 19, H-2462 Martonvásár, Hungary
| | - Gabriella Szalai
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, POB 19, H-2462 Martonvásár, Hungary
| | - Tibor Janda
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, POB 19, H-2462 Martonvásár, Hungary.
| |
Collapse
|
67
|
Xie SS, Wu HJ, Zang HY, Wu LM, Zhu QQ, Gao XW. Plant growth promotion by spermidine-producing Bacillus subtilis OKB105. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:655-63. [PMID: 24678831 DOI: 10.1094/mpmi-01-14-0010-r] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The interaction between plants and plant-growth-promoting rhizobacteria (PGPR) is a complex, reciprocal process. On the one hand, plant compounds such as carbohydrates and amino acids serve as energy sources for PGPR. On the other hand, PGPR promote plant growth by synthesizing plant hormones and increasing mineral availability in the soil. Here, we evaluated the growth-promoting activity of Bacillus subtilis OKB105 and identified genes associated with this activity. The genes yecA (encoding a putative amino acid/polyamine permease) and speB (encoding agmatinase) are involved in the secretion or synthesis of polyamine in B. subtilis OKB105. Disruption of either gene abolished the growth-promoting activity of the bacterium, which was restored when polyamine synthesis was complemented. Moreover, high-performance liquid chromatography analysis of culture filtrates of OKB105 and its derivatives demonstrated that spermidine, a common polyamine, is the pivotal plant-growth-promoting compound. In addition, real-time polymerase chain reaction analysis revealed that treatment with B. subtilis OKB105 induced expansin gene (Nt-EXPA1 and Nt-EXPA2) expression and inhibited the expression of the ethylene biosynthesis gene ACO1. Furthermore, enzyme-linked immunosorbent assay analysis showed that the ethylene content in plant root cells decreased in response to spermidine produced by OKB105. Therefore, during plant interactions, OKB105 may produce and secrete spermidine, which induces expansin production and lowers ethylene levels.
Collapse
|
68
|
Guo Z, Tan J, Zhuo C, Wang C, Xiang B, Wang Z. Abscisic acid, H2O2 and nitric oxide interactions mediated cold-induced S-adenosylmethionine synthetase in Medicago sativa subsp. falcata that confers cold tolerance through up-regulating polyamine oxidation. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:601-12. [PMID: 24517136 DOI: 10.1111/pbi.12166] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/01/2013] [Accepted: 12/22/2013] [Indexed: 05/18/2023]
Abstract
S-adenosylmethionine synthetase (SAMS) is the key enzyme catalysing the formation of S-adenosylmethionine (SAM), a precursor of polyamines and ethylene. To investigate the potential role of SAMS in cold tolerance, we isolated MfSAMS1 from the cold-tolerant germplasm Medicago sativa subsp. falcata and analysed the association of SAM-derived polyamines with cold tolerance. The expression of MfSAMS1 in leaves was greatly induced by cold, abscisic acid (ABA), H2O2 and nitric oxide (NO). Our data revealed that ABA, H2O2 and NO interactions mediated the cold-induced MfSAMS1 expression and cold acclimation in falcata. SAM, putrescine, spermidine and spermine levels, ethylene production and polyamine oxidation were sequentially altered in response to cold, indicating that SAMS-derived SAM is preferentially used in polyamine synthesis and homeostasis during cold acclimation. Antioxidant enzyme activities were also induced in response to cold and showed correlation with polyamine oxidation. Overexpression of MfSAMS1 in tobacco resulted in elevated SAM levels, but polyamine levels and ethylene production in the transgenic plants were not significantly changed. Compared to the wild type, transgenic plants had increased levels of apoplastic H2O2, higher transcript levels of genes involved in polyamine synthesis and oxidation, and higher activities of polyamine oxidation and antioxidant enzymes. The results showed that overexpression of MfSAMS1 promoted polyamine synthesis and oxidation, which in turn improved H2 O2 -induced antioxidant protection, as a result enhanced tolerance to freezing and chilling stress in transgenic plants. This is the first report demonstrating that SAMS plays an important role in plant tolerance to cold via up-regulating polyamine oxidation.
Collapse
Affiliation(s)
- Zhenfei Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
69
|
Pottosin I, Shabala S. Polyamines control of cation transport across plant membranes: implications for ion homeostasis and abiotic stress signaling. FRONTIERS IN PLANT SCIENCE 2014; 5:154. [PMID: 24795739 PMCID: PMC4006063 DOI: 10.3389/fpls.2014.00154] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/02/2014] [Indexed: 05/18/2023]
Abstract
Polyamines are unique polycationic metabolites, controlling a variety of vital functions in plants, including growth and stress responses. Over the last two decades a bulk of data was accumulated providing explicit evidence that polyamines play an essential role in regulating plant membrane transport. The most straightforward example is a blockage of the two major vacuolar cation channels, namely slow (SV) and fast (FV) activating ones, by the micromolar concentrations of polyamines. This effect is direct and fully reversible, with a potency descending in a sequence Spm(4+) > Spd(3+) > Put(2+). On the contrary, effects of polyamines on the plasma membrane (PM) cation and K(+)-selective channels are hardly dependent on polyamine species, display a relatively low affinity, and are likely to be indirect. Polyamines also affect vacuolar and PM H(+) pumps and Ca(2+) pump of the PM. On the other hand, catabolization of polyamines generates H2O2 and other reactive oxygen species (ROS), including hydroxyl radicals. Export of polyamines to the apoplast and their oxidation there by available amine oxidases results in the induction of a novel ion conductance and confers Ca(2+) influx across the PM. This mechanism, initially established for plant responses to pathogen attack (including a hypersensitive response), has been recently shown to mediate plant responses to a variety of abiotic stresses. In this review we summarize the effects of polyamines and their catabolites on cation transport in plants and discuss the implications of these effects for ion homeostasis, signaling, and plant adaptive responses to environment.
Collapse
Affiliation(s)
- Igor Pottosin
- Biomedical Centre, Centro Universitario de Investigaciones Biomédicas, University of ColimaColima, Mexico
- School of Land and Food, University of TasmaniaHobart, TAS, Australia
| | - Sergey Shabala
- School of Land and Food, University of TasmaniaHobart, TAS, Australia
| |
Collapse
|
70
|
Gupta B, Huang B. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics 2014; 2014:701596. [PMID: 24804192 PMCID: PMC3996477 DOI: 10.1155/2014/701596] [Citation(s) in RCA: 555] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/16/2014] [Accepted: 02/20/2014] [Indexed: 01/30/2023] Open
Abstract
Salinity is a major abiotic stress limiting growth and productivity of plants in many areas of the world due to increasing use of poor quality of water for irrigation and soil salinization. Plant adaptation or tolerance to salinity stress involves complex physiological traits, metabolic pathways, and molecular or gene networks. A comprehensive understanding on how plants respond to salinity stress at different levels and an integrated approach of combining molecular tools with physiological and biochemical techniques are imperative for the development of salt-tolerant varieties of plants in salt-affected areas. Recent research has identified various adaptive responses to salinity stress at molecular, cellular, metabolic, and physiological levels, although mechanisms underlying salinity tolerance are far from being completely understood. This paper provides a comprehensive review of major research advances on biochemical, physiological, and molecular mechanisms regulating plant adaptation and tolerance to salinity stress.
Collapse
Affiliation(s)
- Bhaskar Gupta
- Department of Biological Sciences (Section Biotechnology), Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
71
|
Liu T, Dobashi H, Kim DW, Sagor GHM, Niitsu M, Berberich T, Kusano T. Arabidopsis mutant plants with diverse defects in polyamine metabolism show unequal sensitivity to exogenous cadaverine probably based on their spermine content. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2014; 20:151-9. [PMID: 24757319 PMCID: PMC3988325 DOI: 10.1007/s12298-014-0227-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/20/2014] [Accepted: 02/23/2014] [Indexed: 05/02/2023]
Abstract
Arabidopsis plants do not synthesize the polyamine cadaverine, a five carbon-chain diamine and structural analog of putrescine. Mutants defective in polyamine metabolic genes were exposed to exogenous cadaverine. Spermine-deficient spms mutant grew well while a T-DNA insertion mutant (pao4-1) of polyamine oxidase (PAO) 4 was severely inhibited in root growth compared to wild type (WT) or other pao loss-of-function mutants. To understand the molecular basis of this phenomenon, polyamine contents of WT, spms and pao4-1 plants treated with cadaverine were analyzed. Putrescine contents increased in all the three plants, and spermidine contents decreased in WT and pao4-1 but not in spms. Spermine contents increased in WT and pao4-1. As there were good correlations between putrescine (or spermine) contents and the degree of root growth inhibition, effects of exogenously added putrescine and spermine were examined. Spermine mimicked the original phenomenon, whereas high levels of putrescine evenly inhibited root growth, suggesting that cadaverine-induced spermine accumulation may explain the phenomenon. We also tested growth response of cadaverine-treated WT and pao4-1 plants to NaCl and found that spermine-accumulated pao4-1 plant was not NaCl tolerant. Based on the results, the effect of cadaverine on Arabidopsis growth and the role of PAO during NaCl stress are discussed.
Collapse
Affiliation(s)
- Taibo Liu
- />Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577 Japan
| | - Hayato Dobashi
- />Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577 Japan
| | - Dong Wook Kim
- />Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577 Japan
| | - G. H. M. Sagor
- />Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577 Japan
| | - Masaru Niitsu
- />Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama 350-0295 Japan
| | - Thomas Berberich
- />Biodiversity and Climate Research Center (BiK-F), Bio Campus-Westend, 60323 Frankfurt am Main, Germany
| | - Tomonobu Kusano
- />Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577 Japan
| |
Collapse
|
72
|
Valdés-Santiago L, Ruiz-Herrera J. Stress and polyamine metabolism in fungi. Front Chem 2014; 1:42. [PMID: 24790970 PMCID: PMC3982577 DOI: 10.3389/fchem.2013.00042] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 12/24/2013] [Indexed: 12/13/2022] Open
Abstract
Fungi, as well as the rest of living organisms must deal with environmental challenges such as stressful stimuli. Fungi are excellent models to study the general mechanisms of the response to stress, because of their simple, but conserved, signal-transduction and metabolic pathways that are often equivalent to those present in other eukaryotic systems. A factor that has been demonstrated to be involved in these responses is polyamine metabolism, essentially of the three most common polyamines: putrescine, spermidine and spermine. The gathered evidences on this subject suggest that polyamines are able to control cellular signal transduction, as well as to modulate protein-protein interactions. In the present review, we will address the recent advances on the study of fungal metabolism of polyamines, ranging from mutant characterization to potential mechanism of action during different kinds of stress in selected fungal models.
Collapse
Affiliation(s)
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuato, México
| |
Collapse
|
73
|
Minocha R, Majumdar R, Minocha SC. Polyamines and abiotic stress in plants: a complex relationship. FRONTIERS IN PLANT SCIENCE 2014; 5:175. [PMID: 24847338 PMCID: PMC4017135 DOI: 10.3389/fpls.2014.00175] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/11/2014] [Indexed: 05/18/2023]
Abstract
The physiological relationship between abiotic stress in plants and polyamines was reported more than 40 years ago. Ever since there has been a debate as to whether increased polyamines protect plants against abiotic stress (e.g., due to their ability to deal with oxidative radicals) or cause damage to them (perhaps due to hydrogen peroxide produced by their catabolism). The observation that cellular polyamines are typically elevated in plants under both short-term as well as long-term abiotic stress conditions is consistent with the possibility of their dual effects, i.e., being protectors from as well as perpetrators of stress damage to the cells. The observed increase in tolerance of plants to abiotic stress when their cellular contents are elevated by either exogenous treatment with polyamines or through genetic engineering with genes encoding polyamine biosynthetic enzymes is indicative of a protective role for them. However, through their catabolic production of hydrogen peroxide and acrolein, both strong oxidizers, they can potentially be the cause of cellular harm during stress. In fact, somewhat enigmatic but strong positive relationship between abiotic stress and foliar polyamines has been proposed as a potential biochemical marker of persistent environmental stress in forest trees in which phenotypic symptoms of stress are not yet visible. Such markers may help forewarn forest managers to undertake amelioration strategies before the appearance of visual symptoms of stress and damage at which stage it is often too late for implementing strategies for stress remediation and reversal of damage. This review provides a comprehensive and critical evaluation of the published literature on interactions between abiotic stress and polyamines in plants, and examines the experimental strategies used to understand the functional significance of this relationship with the aim of improving plant productivity, especially under conditions of abiotic stress.
Collapse
Affiliation(s)
- Rakesh Minocha
- US Forest Service, Northern Research StationDurham, NH, USA
| | - Rajtilak Majumdar
- U.S. Department of Agriculture, Agricultural Research ServiceGeneva, NY, USA
| | - Subhash C. Minocha
- Department of Biological Sciences, University of New HampshireDurham, NH, USA
- *Correspondence: Subhash C. Minocha, Department of Biological Sciences, University of New Hampshire, Rudman Hall, 46 College Road, Durham, NH 03824, USA e-mail:
| |
Collapse
|
74
|
Li LC, Hsu YT, Chang HL, Wu TM, Sung MS, Cho CL, Lee TM. Polyamine effects on protein disulfide isomerase expression and implications for hypersalinity stress in the marine alga Ulva lactuca Linnaeus(1). JOURNAL OF PHYCOLOGY 2013; 49:1181-1191. [PMID: 27007636 DOI: 10.1111/jpy.12129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 08/19/2013] [Indexed: 06/05/2023]
Abstract
Full-length protein disulfide isomerase (UfPDI) cDNA was cloned from the intertidal macroalga Ulva lactuca Linnaeus. Modulation of UfPDI expression by stresses and polyamines (PA) was studied. UfPDI transcription and enzyme activity were increased by hypersalinity (90) or high light illumination (1,200 μmol photons · m(-2) · s(-1) ), decreased by the addition of 100 μM CuSO4 . An exposure to a salinity of 90 decreased PA contents. Treating with PA biosynthetic inhibitors, D-arginine (D-Arg) or α-methyl ornithine (α-MO), led to a further decrease and also inhibited UfPDI expression and recovery of the growth rate. These results suggest that PAs are required to activate UfPDI expression with hypersalinity, even PA contents are decreased at a salinity of 90. The induction of UfPDI expression by hypersalinity of 90 and tolerance to hypersalinity could be enhanced if internal PA contents rise. Sung et al. (2011b) showed that PA contents could be increased by pretreating with putrescine (Put, 1 mM), spermidine (Spd, 1 mM), or spermine (Spm, 1 mM) at a salinity of 30. Therefore, PA pretreatment effect on UfPDI expression was examined. Pretreatment with Spd and Spm, but not with Put, enhanced UfPDI expression after transferred to a salinity of 90 and restored the growth rate. In conclusion, induction of UfPDI expression by Spd or Spm before exposure to hypersaline conditions and continuous up-regulation after hypersalinity exposure are required for the acquisition of hypersalinity tolerance in the intertidal green macroalga U. lactuca.
Collapse
Affiliation(s)
- Lu-Chuan Li
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Yuan-Ting Hsu
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Hsueh-Ling Chang
- Institute of Marine Biology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
- The Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Tzure-Meng Wu
- Institute of Marine Biology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Ming-Shiuan Sung
- Institute of Marine Biology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Chung-Lung Cho
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Tse-Min Lee
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
- Institute of Marine Biology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| |
Collapse
|
75
|
Mao G, Seebeck T, Schrenker D, Yu O. CYP709B3, a cytochrome P450 monooxygenase gene involved in salt tolerance in Arabidopsis thaliana. BMC PLANT BIOLOGY 2013; 13:169. [PMID: 24164720 PMCID: PMC3819737 DOI: 10.1186/1471-2229-13-169] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 08/28/2013] [Indexed: 05/03/2023]
Abstract
BACKGROUND Within the Arabidopsis genome, there are 272 cytochrome P450 monooxygenase (P450) genes. However, the biological functions of the majority of these P450s remain unknown. The CYP709B family of P450s includes three gene members, CYP709B1, CYP709B2 and CYP709B3, which have high amino acid sequence similarity and lack reports elucidating biological functions. RESULTS We identified T-DNA insertion-based null mutants of the CYP709B subfamily of genes. No obvious morphological phenotypes were exhibited under normal growth conditions. When the responses to ABA and salt stress were studied in these mutants, only the cyp709b3 mutant showed sensitivity to ABA and salt during germination. Under moderate salt treatment (150 mM NaCl), cyp709b3 showed a higher percentage of damaged seedlings, indicating a lower tolerance to salt stress. CYP709B3 was highly expressed in all analyzed tissues and especially high in seedlings and leaves. In contrast, CYP709B1 and CYP709B2 were highly expressed in siliques, but were at very low levels in other tissues. Under salt stress condition, CYP709B3 gene expression was induced after 24 hr and remained at high expression level. Expression of the wild type CYP709B3 gene in the cyp709b3 mutant fully complemented the salt intolerant phenotype. Furthermore, metabolite profiling analysis revealed some differences between wild type and cyp709b3 mutant plants, supporting the salt intolerance phenotype of the cyp709b3 mutant. CONCLUSIONS These results suggest that CYP709B3 plays a role in ABA and salt stress response and provides evidence to support the functions of cytochrome P450 enzymes in plant stress response.
Collapse
Affiliation(s)
- Guohong Mao
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
- Present address: Conagen Inc., 1005 North Warson Road, St., Louis, MO 63132, USA
| | - Timothy Seebeck
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
- Present address: Conagen Inc., 1005 North Warson Road, St., Louis, MO 63132, USA
| | - Denyse Schrenker
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
- Present address: The Pennsylvania State University, 115 Agricultural Sciences and Industries Building, University Park, PA 16802, USA
| | - Oliver Yu
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
- Present address: Conagen Inc., 1005 North Warson Road, St., Louis, MO 63132, USA
| |
Collapse
|
76
|
Sagor GHM, Liu T, Takahashi H, Niitsu M, Berberich T, Kusano T. Longer uncommon polyamines have a stronger defense gene-induction activity and a higher suppressing activity of Cucumber mosaic virus multiplication compared to that of spermine in Arabidopsis thaliana. PLANT CELL REPORTS 2013; 32:1477-88. [PMID: 23700086 DOI: 10.1007/s00299-013-1459-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/10/2013] [Accepted: 05/14/2013] [Indexed: 06/02/2023]
Abstract
KEY MESSAGE Our work suggests that long chain polyamines and their derivatives are potential chemicals to control viral pathogens for crop production. Previously we showed that two tetraamines, spermine (Spm) and thermospermine (T-Spm), induce the expression of a subset of defense-related genes and repress proliferation of Cucumber mosaic virus (CMV) in Arabidopsis. Here we tested whether the longer uncommon polyamines (LUPAs) such as caldopentamine, caldohexamine, homocaldopentamine and homocaldohexamine have such the activity. LUPAs had higher gene induction activity than Spm and T-Spm. Interestingly the genes induced by LUPAs could be classified into two groups: the one group was most responsive to caldohexamine while the other one was most responsive to homocaldopentamine. In both the cases, the inducing activity was dose-dependent. LUPAs caused local cell death and repressed CMV multiplication more efficiently as compared to Spm. LUPAs inhibited the viral multiplication of not only avirulent CMV but also of virulent CMV in a dose-dependent manner. Furthermore, LUPAs can activate the systemic acquired resistance against CMV more efficiently as compared to Spm. When Arabidopsis leaves were incubated with LUPAs, the putative polyamine oxidase (PAO)-mediated catabolites were detected even though the conversion rate was very low. In addition, we found that LUPAs induced the expression of three NADPH oxidase genes (rbohC, rbohE and rbohH) among ten isoforms. Taken together, we propose that LUPAs activate two alternative reactive oxygen species evoked pathways, a PAO-mediated one and an NADPH-oxidase-mediated one, which lead to induce defense-related genes and restrict CMV multiplication.
Collapse
Affiliation(s)
- G H M Sagor
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| | | | | | | | | | | |
Collapse
|
77
|
Milhinhos A, Prestele J, Bollhöner B, Matos A, Vera-Sirera F, Rambla JL, Ljung K, Carbonell J, Blázquez MA, Tuominen H, Miguel CM. Thermospermine levels are controlled by an auxin-dependent feedback loop mechanism in Populus xylem. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:685-98. [PMID: 23647338 DOI: 10.1111/tpj.12231] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 04/29/2013] [Accepted: 05/01/2013] [Indexed: 05/03/2023]
Abstract
Polyamines are small polycationic amines that are widespread in living organisms. Thermospermine, synthesized by thermospermine synthase ACAULIS5 (ACL5), was recently shown to be an endogenous plant polyamine. Thermospermine is critical for proper vascular development and xylem cell specification, but it is not known how thermospermine homeostasis is controlled in the xylem. We present data in the Populus model system supporting the existence of a negative feedback control of thermospermine levels in stem xylem tissues, the main site of thermospermine biosynthesis. While over-expression of the ACL5 homologue in Populus, POPACAULIS5, resulted in strong up-regulation of ACL5 expression and thermospermine accumulation in leaves, the corresponding levels in the secondary xylem tissues of the stem were similar or lower than those in the wild-type. POPACAULIS5 over-expression had a negative effect on accumulation of indole-3-acetic acid, while exogenous auxin had a positive effect on POPACAULIS5 expression, thus promoting thermospermine accumulation. Further, over-expression of POPACAULIS5 negatively affected expression of the class III homeodomain leucine zipper (HD-Zip III) transcription factor gene PttHB8, a homologue of AtHB8, while up-regulation of PttHB8 positively affected POPACAULIS5 expression. These results indicate that excessive accumulation of thermospermine is prevented by a negative feedback control of POPACAULIS5 transcript levels through suppression of indole-3-acetic acid levels, and that PttHB8 is involved in the control of POPACAULIS5 expression. We propose that this negative feedback loop functions to maintain steady-state levels of thermospermine, which is required for proper xylem development, and that it is dependent on the presence of high concentrations of endogenous indole-3-acetic acid, such as those present in the secondary xylem tissues.
Collapse
Affiliation(s)
- Ana Milhinhos
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Shi HT, Chan ZL. In vivo role of Arabidopsis arginase in arginine metabolism and abiotic stress response. PLANT SIGNALING & BEHAVIOR 2013; 8:e24138. [PMID: 23470718 PMCID: PMC3907415 DOI: 10.4161/psb.24138] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nitric oxide (NO) and polyamines play essential roles in many developmental processes and abiotic stress responses in plants. NO and polyamines are metabolized from arginine through NO synthase (NOS) and arginine decarboxylase (ADC), respectively. Function of arginase, another important enzyme involved in arginine metabolism, in abiotic stress remains largely unknown. In the recent study, we have dissected the impact of arginase on arginine metabolism and abiotic stress responses through manipulating AtARGAHs expression. The results suggested that manipulation of arginase expression modulated accumulation of arginine and direct downstream products of arginine catabolism. AtARGAHs knockout lines exhibited increased accumulation of polyamines and NO and enhanced abiotic stress tolerance, while AtARGAHs overexpressing lines displayed the opposite results. Notably, we highlighted that Arabidopsis arginase plays distinctive and dual roles in the crosstalk between polyamines and NO signaling during abiotic stress responses, mediating both arginine metabolism and reactive oxygen species (ROS) accumulation. It is likely that accumulation of both NO and polyamines might activate abiotic stress responses in the plant.
Collapse
|
79
|
The polyamine spermine protects Arabidopsis from heat stress-induced damage by increasing expression of heat shock-related genes. Transgenic Res 2012; 22:595-605. [DOI: 10.1007/s11248-012-9666-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/10/2012] [Indexed: 01/08/2023]
|
80
|
Polyamines under Abiotic Stress: Metabolic Crossroads and Hormonal Crosstalks in Plants. Metabolites 2012; 2:516-28. [PMID: 24957645 PMCID: PMC3901213 DOI: 10.3390/metabo2030516] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/06/2012] [Accepted: 08/10/2012] [Indexed: 12/30/2022] Open
Abstract
Polyamines are essential compounds for cell survival and have key roles in plant stress protection. Current evidence points to the occurrence of intricate cross-talks between polyamines, stress hormones and other metabolic pathways required for their function. In this review we integrate the polyamine metabolic pathway in the context of its immediate metabolic network which is required to understand the multiple ways by which polyamines can maintain their homeostasis and participate in plant stress responses.
Collapse
|
81
|
Sagor GHM, Takahashi H, Niitsu M, Takahashi Y, Berberich T, Kusano T. Exogenous thermospermine has an activity to induce a subset of the defense genes and restrict cucumber mosaic virus multiplication in Arabidopsis thaliana. PLANT CELL REPORTS 2012; 31:1227-32. [PMID: 22371256 DOI: 10.1007/s00299-012-1243-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/09/2012] [Accepted: 02/17/2012] [Indexed: 05/08/2023]
Abstract
UNLABELLED We previously proposed the defensive role of a signal pathway triggered by the polyamine spermine (Spm) in the reaction against avirulent viral pathogens in Nicotiana tabacum and Arabidopsis thaliana. In this study, we showed that thermospermine (T-Spm), an isomer of Spm, is also active in inducing the expression of the genes involved in the Spm-signal pathway at a similar dose as Spm. Furthermore, we found that T-Spm enhances the expression of a subset of pathogenesis-related genes whose expression is induced during cucumber mosaic virus (CMV)-triggered hypersensitive response. In consistent with the above observation, we further showed that exogenous T-Spm can repress CMV multiplication with same efficiency as Spm. KEY MESSAGE Polyamine thermospermine, an isomer of spermine, is able to induce a subset of hypersensitive response-related defense genes and can suppress cucumber mosaic virus multiplication in Arabidopsis thaliana.
Collapse
Affiliation(s)
- G H M Sagor
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| | | | | | | | | | | |
Collapse
|
82
|
Krasensky J, Jonak C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1593-608. [PMID: 22291134 PMCID: PMC4359903 DOI: 10.1093/jxb/err460] [Citation(s) in RCA: 985] [Impact Index Per Article: 82.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants regularly face adverse growth conditions, such as drought, salinity, chilling, freezing, and high temperatures. These stresses can delay growth and development, reduce productivity, and, in extreme cases, cause plant death. Plant stress responses are dynamic and involve complex cross-talk between different regulatory levels, including adjustment of metabolism and gene expression for physiological and morphological adaptation. In this review, information about metabolic regulation in response to drought, extreme temperature, and salinity stress is summarized and the signalling events involved in mediating stress-induced metabolic changes are presented.
Collapse
Affiliation(s)
- Julia Krasensky
- GMI–Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Claudia Jonak
- GMI–Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
83
|
Alet AI, Sánchez DH, Cuevas JC, Marina M, Carrasco P, Altabella T, Tiburcio AF, Ruiz OA. New insights into the role of spermine in Arabidopsis thaliana under long-term salt stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 182:94-100. [PMID: 22118620 DOI: 10.1016/j.plantsci.2011.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 03/17/2011] [Accepted: 03/22/2011] [Indexed: 05/08/2023]
Abstract
Polyamines (putrescine, spermidine and spermine) are traditionally implicated in the response of plants to environmental cues. Free spermine accumulation has been suggested as a particular feature of long-term salt stress, and in the model plant Arabidopsis thaliana the spermine synthase gene (AtSPMS) has been reported as inducible by abscisic acid (ABA) and acute salt stress treatments. With the aim to unravel the physiological role of free spermine during salinity, we analyzed polyamine metabolism in A. thaliana salt-hypersensitive sos mutants (salt overlay sensitive; sos1-1, sos2-1 and sos3-1), and studied the salt stress tolerance of the mutants in spermine and thermospermine synthesis (acl5-1, spms-1 and acl5-1/spms-1). Results presented here indicate that induction in polyamine metabolism is a SOS-independent response to salinity and is globally over-induced in a sensitive background. In addition, under long-term salinity, the mutants in the synthesis of spermine and thermospermine (acl5-1, spms-1 and double acl5-1/spms-1) accumulated more Na(+) and performed worst than WT in survival experiments. Therefore, support is given to a role for these higher polyamines in salt tolerance mechanisms.
Collapse
Affiliation(s)
- Analía I Alet
- Unidad de Biotecnología 1, Instituto Tecnológico de Chascomús (IIB-INTECH/UNSAM-CONICET), Camino Circunvalación Laguna, Km. 6 CC164, (B7130IWA) Chascomús, Pcia. de Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Wimalasekera R, Tebartz F, Scherer GFE. Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:593-603. [PMID: 21893256 DOI: 10.1016/j.plantsci.2011.04.002] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 04/01/2011] [Accepted: 04/05/2011] [Indexed: 05/03/2023]
Abstract
Nitric oxide (NO), polyamines (PAs), diamine oxidases (DAO) and polyamine oxidases (PAO) play important roles in wide spectrum of physiological processes such as germination, root development, flowering and senescence and in defence responses against abiotic and biotic stress conditions. This functional overlapping suggests interaction of NO and PA in signalling cascades. Exogenous application of PAs putrescine, spermidine and spermine to Arabidopsis seedlings induced NO production as observed by fluorimetry and fluorescence microscopy using the NO-binding fluorophores DAF-2 and DAR-4M. The observed NO release induced by 1 mM spermine treatment in the Arabidopsis seedlings was very rapid without apparent lag phase. These observations pave a new insight into PA-mediated signalling and NO as a potential mediator of PA actions. When comparing the functions of NO and PA in plant development and abiotic and biotic stresses common to both signalling components it can be speculated that NO may be a link between PA-mediated stress responses filing a gap between many known physiological effects of PAs and amelioration of stresses. NO production indicated by PAs could be mediated either by H(2)O(2), one reaction product of oxidation of PAs by DAO and PAO, or by unknown mechanisms involving PAs, DAO and PAO.
Collapse
Affiliation(s)
- Rinukshi Wimalasekera
- Leibniz University of Hannover, Institute of Floriculture and Wood Science, Section of Molecular Developmental Physiology, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | | | | |
Collapse
|
85
|
Marco F, Alcázar R, Tiburcio AF, Carrasco P. Interactions between polyamines and abiotic stress pathway responses unraveled by transcriptome analysis of polyamine overproducers. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 15:775-81. [PMID: 22011340 DOI: 10.1089/omi.2011.0084] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Plant development and productivity are negatively regulated by adverse environmental conditions. The identification of stress-regulatory genes, networks, and signaling molecules should allow the development of novel strategies to obtain tolerant plants. Polyamines (PAs) are polycationic compounds with a recognized role in plant growth and development, as well as in abiotic and biotic stress responses. During the last years, knowledge on PA functions has been achieved using genetically modified plants with altered PA levels. In this review, we combine the information obtained from global transcriptome analyses in transgenic Arabidopsis plants with altered putrescine or spermine levels. Comparison of common and specific gene networks affected by elevation of endogenous PAs, support the view that these compounds actively participate in stress signaling through intricate crosstalks with abscisic acid (ABA), Ca(2+) signaling and other hormonal pathways in plant defense and development.
Collapse
Affiliation(s)
- Francisco Marco
- Departament de Biologia Vegetal, Universitat de València, Facultat de Farmàcia, València, Spain
| | | | | | | |
Collapse
|
86
|
Profiling the aminopropyltransferases in plants: their structure, expression and manipulation. Amino Acids 2011; 42:813-30. [PMID: 21861167 DOI: 10.1007/s00726-011-0998-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 06/28/2011] [Indexed: 10/17/2022]
Abstract
Polyamines are organic polycations that are involved in a wide range of cellular activities related to growth, development, and stress response in plants. Higher polyamines spermidine and spermine are synthesized in plants and animals by a class of enzymes called aminopropyltransferases that transfer aminopropyl moieties (derived from decarboxylated S-adenosylmethionine) to putrescine and spermidine to produce spermidine and spermine, respectively. The higher polyamines show a much tighter homeostatic regulation of their metabolism than the diamine putrescine in most plants; therefore, the aminopropyltransferases are of high significance. We present here a comprehensive summary of the current literature on plant aminopropyltransferases including their distribution, biochemical properties, genomic organization, pattern of expression during development, and their responses to abiotic stresses, and manipulation of their cellular activity through chemical inhibitors, mutations, and genetic engineering. This minireview complements several recent reviews on the overall biosynthetic pathway of polyamines and their physiological roles in plants and animals. It is concluded that (1) plants often have two copies of the common aminopropyltransferase genes which exhibit redundancy of function, (2) their genomic organization is highly conserved, (3) direct enzyme activity data on biochemical properties of these enzymes are scant, (4) often there is a poor correlation among transcripts, enzyme activity and cellular contents of the respective polyamine, and (5) transgenic work mostly confirms the tight regulation of cellular contents of spermidine and spermine. An understanding of expression and regulation of aminopropyltransferases at the metabolic level will help us in effective use of genetic engineering approaches for the improvement in nutritional value and stress responses of plants.
Collapse
|
87
|
Xianjun P, Xingyong M, Weihong F, Man S, Liqin C, Alam I, Lee BH, Dongmei Q, Shihua S, Gongshe L. Improved drought and salt tolerance of Arabidopsis thaliana by transgenic expression of a novel DREB gene from Leymus chinensis. PLANT CELL REPORTS 2011; 30:1493-502. [PMID: 21509473 DOI: 10.1007/s00299-011-1058-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 02/21/2011] [Accepted: 03/10/2011] [Indexed: 05/19/2023]
Abstract
Dehydration-responsive element-binding (DREB) proteins are important transcription factors in plant stress responses and signal transduction. Based on high-throughput sequencing results, a new cDNA sequence encoding an LcDREB3a transcription factor from the drought-resistant forage grass, Leymus chinensis, was isolated by RACE PCR. Sequence similarity analysis indicates that the gene product is active in the ABA-responsive pathway, and real-time PCR-based expression analysis shows the transcript accumulates in response to a variety of stress treatments. These results indicate that LcDREB3a is involved in both ABA-dependent and -independent signal transduction in the stress-responsive process of L. chinensis. The identity of the gene product as a DREB transcription factor is supported by observations of its nuclear localization when transiently expressed as a GFP fusion in onion epidermal cells. Furthermore, LcDREB3a is able to activate reporter gene expression, and the protein is shown to specifically bind to the conserved DRE element in a yeast one-hybrid assay. The transgenic expression of LcDREB3a in Arabidopsis causes no growth retardation and induces the increased expression of stress tolerance genes compared to control, resulting in improved drought and salt stress tolerance. Thus, LcDREB3a, encoding a stress-inducible DREB transcription factor, could enhance the abiotic stress tolerance of plants.
Collapse
Affiliation(s)
- Peng Xianjun
- Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Sung MS, Chow TJ, Lee TM. POLYAMINE ACCLIMATION ALLEVIATES HYPERSALINITY-INDUCED OXIDATIVE STRESS IN A MARINE GREEN MACROALGA, ULVA FASCIATA, BY MODULATION OF ANTIOXIDATIVE ENZYME GENE EXPRESSION 1. JOURNAL OF PHYCOLOGY 2011; 47:538-547. [PMID: 27021983 DOI: 10.1111/j.1529-8817.2011.00999.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Transcripts and enzyme activities of antioxidative enzymes were increased by hypersalinity (90‰) in a marine macroalga, Ulva fasciata Delile (Lu et al. 2006, Sung et al. 2009). This study examined the effects of polyamines (PAs) on the induction of hypersalinity tolerance through the modulation of expression of antioxidative defense enzymes. Incubation of U. fasciata grown under 30‰ in the presence of putrescine (Put), spermidine (Spd), or spermine (Spm) (1 mM) for 12 h increased internal PA contents prior to 90‰ treatment. Spd or Spm pretreatments reduced H2 O2 accumulation and lipid peroxidation during 90‰ treatment and improved the recovery growth rate after transfer from 90‰ to 30‰. Increases in iron superoxide dismutase (FeSOD; EC 1.15.1.1) activity and transcript levels observed under 90‰ were further increased by Spd and Spm pretreatments, while Put pretreatment had no effect. Increases in MnSOD activity and transcript levels observed under 90‰ were enhanced by Spd and Put pretreatment. An observed increase in catalase (CAT; EC 1.11.1.6) activity and transcript levels under 90‰ was not affected by Spd and Spm pretreatments but was inhibited by Put pretreatment. Observed increases in ascorbate peroxidase (APX; EC 1.11.1.11) activity and transcript levels under 90‰ were inhibited by Put, Spd, and Spm pretreatments. In conclusion, Spd and Spm treatment affords U. fasciata protection against hypersalinity through the up-regulation of FeSOD gene expression, thereby alleviating oxidative damage.
Collapse
Affiliation(s)
- Ming-Shiuan Sung
- Institute of Marine Biology, National Sun Yat-sen University, Kaohsiung 804, TaiwanDepartment of Biotechnology, Fooyin University, Kaohsiung 831, TaiwanInstitute of Marine Biology, National Sun Yat-sen University, Kaohsiung 804, Taiwan Doctor Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 804, Taiwan The Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Te-Jin Chow
- Institute of Marine Biology, National Sun Yat-sen University, Kaohsiung 804, TaiwanDepartment of Biotechnology, Fooyin University, Kaohsiung 831, TaiwanInstitute of Marine Biology, National Sun Yat-sen University, Kaohsiung 804, Taiwan Doctor Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 804, Taiwan The Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Tse-Min Lee
- Institute of Marine Biology, National Sun Yat-sen University, Kaohsiung 804, TaiwanDepartment of Biotechnology, Fooyin University, Kaohsiung 831, TaiwanInstitute of Marine Biology, National Sun Yat-sen University, Kaohsiung 804, Taiwan Doctor Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 804, Taiwan The Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
89
|
Pommerrenig B, Feussner K, Zierer W, Rabinovych V, Klebl F, Feussner I, Sauer N. Phloem-specific expression of Yang cycle genes and identification of novel Yang cycle enzymes in Plantago and Arabidopsis. THE PLANT CELL 2011; 23:1904-19. [PMID: 21540433 PMCID: PMC3123959 DOI: 10.1105/tpc.110.079657] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 03/14/2011] [Accepted: 04/15/2011] [Indexed: 05/19/2023]
Abstract
The 5-methylthioadenosine (MTA) or Yang cycle is a set of reactions that recycle MTA to Met. In plants, MTA is a byproduct of polyamine, ethylene, and nicotianamine biosynthesis. Vascular transcriptome analyses revealed phloem-specific expression of the Yang cycle gene 5-METHYLTHIORIBOSE KINASE1 (MTK1) in Plantago major and Arabidopsis thaliana. As Arabidopsis has only a single MTK gene, we hypothesized that the expression of other Yang cycle genes might also be vascular specific. Reporter gene studies and quantitative analyses of mRNA levels for all Yang cycle genes confirmed this hypothesis for Arabidopsis and Plantago. This includes the Yang cycle genes 5-METHYLTHIORIBOSE-1-PHOSPHATE ISOMERASE1 and DEHYDRATASE-ENOLASE-PHOSPHATASE-COMPLEX1. We show that these two enzymes are sufficient for the conversion of methylthioribose-1-phosphate to 1,2-dihydroxy-3-keto-5-methylthiopentene. In bacteria, fungi, and animals, the same conversion is catalyzed in three to four separate enzymatic steps. Furthermore, comparative analyses of vascular and nonvascular metabolites identified Met, S-adenosyl Met, and MTA preferentially or almost exclusively in the vascular tissue. Our data represent a comprehensive characterization of the Yang cycle in higher plants and demonstrate that the Yang cycle works primarily in the vasculature. Finally, expression analyses of polyamine biosynthetic genes suggest that the Yang cycle in leaves recycles MTA derived primarily from polyamine biosynthesis.
Collapse
Affiliation(s)
- Benjamin Pommerrenig
- Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
- Erlangen Center of Plant Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - Kirstin Feussner
- Abteilung Biochemie der Pflanze, Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, 37077 Gottingen, Germany
| | - Wolfgang Zierer
- Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - Valentyna Rabinovych
- Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - Franz Klebl
- Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - Ivo Feussner
- Abteilung Biochemie der Pflanze, Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen, 37077 Gottingen, Germany
| | - Norbert Sauer
- Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
- Erlangen Center of Plant Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| |
Collapse
|
90
|
Roychoudhury A, Basu S, Sengupta DN. Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of indica rice differing in their level of salt tolerance. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:317-28. [PMID: 20728960 DOI: 10.1016/j.jplph.2010.07.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 07/23/2010] [Accepted: 07/23/2010] [Indexed: 05/02/2023]
Abstract
We present here the comparative protective potentiality of exogenously applied polyamines (PAs), namely spermidine (Spd) and spermine (Spm), in mitigating NaCl toxicity and inducing short-term salinity tolerance in three indica rice varieties, namely M-1-48 (salt-sensitive), Nonabokra (salt-tolerant) and Gobindobhog (highly sensitive). The retardation in root length or shoot length and toxic Na(+) accumulation or K(+) loss, the considerable increment in malondialdehyde/H(2)O(2) accumulation or lipoxygenase activity, all of which were particularly noteworthy in M-1-48 and Gobindobhog during salinity stress, was appreciably reduced by co-treatment with Spd or Spm. Both the PAs also inhibited the extent of salt-induced protein carbonylation in all the varieties and enhanced protease activity, especially in Gobindobhog. The prevention of chlorophyll degradation was better with Spd in Nonabokra and Gobindobhog. While the salt-induced increase in anthocyanin or reducing sugar level was further prompted by Spd or Spm in all the varieties, the proline content was elevated by Spd particularly in Gobindobhog. During salinity stress, both the PAs were effective in lowering the putrescine accumulation in M-1-48 and Gobindobhog, and strikingly increasing the Spm level in all the varieties, the highest being in Gobindobhog. In addition, they enhanced the activity of peroxidases and compensated for the decreased catalase activity in all the varieties. Thus the two PAs could recuperate all the three varieties from salt-induced damages to different degrees. The salt injuries, encountered in M-1-48 and Gobindobhog, both of which showed greater susceptibility to salinity stress, were more pronouncedly alleviated and counteracted by the PAs, than the salt-tolerant Nonabokra. The reversal of inhibitory effect of salinity stress was conferred by preventing growth inhibition or various forms of cellular damages, maintaining proper K(+)/Na(+) balance or triggering the level of osmolytes and activity of antioxidant enzymes. Our communication offers a referenced evidence for an understanding of the mechanism by which higher PAs relieve the damages particularly in salt-sensitive rice varieties.
Collapse
Affiliation(s)
- Aryadeep Roychoudhury
- Post Graduate Department of Biotechnology, St. Xavier's College, 30 Mother Teresa Sarani, Park Street, Kolkata, West Bengal, India
| | | | | |
Collapse
|
91
|
Rodriguez-Uribe L, Higbie SM, Stewart JM, Wilkins T, Lindemann W, Sengupta-Gopalan C, Zhang J. Identification of salt responsive genes using comparative microarray analysis in Upland cotton (Gossypium hirsutum L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:461-9. [PMID: 21421393 DOI: 10.1016/j.plantsci.2010.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 09/30/2010] [Accepted: 10/17/2010] [Indexed: 05/08/2023]
Abstract
Salinity negatively impacts plant growth and productivity, and little is known about salt responsive genes in cotton. In this study, an intra-specific backcross population of cotton (Gossypium hirsutum L.) was treated with 200 mM NaCl after which differentially expressed genes were identified by comparison between salt tolerant and susceptible segregant bulks using comparative microarray analysis. Microarray analysis identified 720 salt-responsive genes, of which 695 were down-regulated and only 25 were up-regulated in the salt tolerant bulk. Gene ontology of annotated genes revealed that at least some of the identified salt responsive transcripts belong to pathways known to be associated with salt stress including osmolyte and lipid metabolism, cell wall structure, and membrane synthesis. About 48% of all salt-responsive genes were functionally unknown. Quantitative RT-PCR was used to validate 17 selected salt responsive genes. This work represents the first study in employing microarray to investigate the possible mechanisms of the salt response in cotton. Further analysis of salt-responsive genes associated with salt tolerance in cotton will assist in laying a foundation for molecular manipulation in development of new cultivars with improved salt tolerance.
Collapse
Affiliation(s)
- Laura Rodriguez-Uribe
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA
| | | | | | | | | | | | | |
Collapse
|
92
|
Comparative functional genomics of salt stress in related model and cultivated plants identifies and overcomes limitations to translational genomics. PLoS One 2011; 6:e17094. [PMID: 21347266 PMCID: PMC3038935 DOI: 10.1371/journal.pone.0017094] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 01/19/2011] [Indexed: 11/28/2022] Open
Abstract
One of the objectives of plant translational genomics is to use knowledge and genes discovered in model species to improve crops. However, the value of translational genomics to plant breeding, especially for complex traits like abiotic stress tolerance, remains uncertain. Using comparative genomics (ionomics, transcriptomics and metabolomics) we analyzed the responses to salinity of three model and three cultivated species of the legume genus Lotus. At physiological and ionomic levels, models responded to salinity in a similar way to crop species, and changes in the concentration of shoot Cl− correlated well with tolerance. Metabolic changes were partially conserved, but divergence was observed amongst the genotypes. Transcriptome analysis showed that about 60% of expressed genes were responsive to salt treatment in one or more species, but less than 1% was responsive in all. Therefore, genotype-specific transcriptional and metabolic changes overshadowed conserved responses to salinity and represent an impediment to simple translational genomics. However, ‘triangulation’ from multiple genotypes enabled the identification of conserved and tolerant-specific responses that may provide durable tolerance across species.
Collapse
|
93
|
Alet AI, Sánchez DH, Ferrando A, Tiburcio AF, Alcazar R, Cuevas JC, Altabella T, Pico FM, Carrasco-Sorli P, Menéndez AB, Ruiz OA. Homeostatic control of polyamine levels under long-term salt stress in Arabidopsis: changes in putrescine content do not alleviate ionic toxicity. PLANT SIGNALING & BEHAVIOR 2011; 6:237-42. [PMID: 21330788 PMCID: PMC3121984 DOI: 10.4161/psb.6.2.14214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 11/16/2010] [Indexed: 05/08/2023]
Abstract
Salt stress has been frequently studied in its first osmotic phase. Very often, data regarding the second ionic phase is missing. It has also been suggested that Putrescine or/and Spermine could be responsible for salt resistance. In order to test this hypothesis under long-term salt stress, we obtained Arabidopsis thaliana transgenic plants harboring pRD29A::oatADC or pRD29A::GUS construction. Although Putrescine was the only polyamine significantly increased after salt acclimation in pRD29A::oatADC transgenic lines, this rendered in no advantage to this kind of stress. The higher Spermine levels found in WT and transgenic lines when compared to control conditions along with no increment on Putrescine levels in WT plants under salt acclimation, leads us to analyze Spermine effect on pADC1 and pADC2 expression. Increasing levels of this polyamine inhibits these promoters expression while enhances pRD29A expression, making Spermine the polyamine responsible for salt acclimation, and the transgenic lines developed in this work suitable for studying Putrescine roles in conditions where its biosynthesis would be inhibited in the WT genotype.
Collapse
Affiliation(s)
- Analía I Alet
- Unidad de Biotecnología, IIB-INTECH (UNSAM-CONICET), Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Hussain SS, Ali M, Ahmad M, Siddique KHM. Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv 2011; 29:300-11. [PMID: 21241790 DOI: 10.1016/j.biotechadv.2011.01.003] [Citation(s) in RCA: 229] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 01/07/2011] [Accepted: 01/07/2011] [Indexed: 12/26/2022]
Abstract
Polyamines (PAs) are ubiquitous biogenic amines that have been implicated in diverse cellular functions in widely distributed organisms. In plants, mutant and transgenic plants with altered activity pointed to their involvement with different abiotic and biotic stresses. Furthermore, microarray, transcriptomic and proteomic approaches have elucidated key functions of different PAs in signaling networks in plants subjected to abiotic and biotic stresses, however the exact molecular mechanism remains enigmatic. Here, we argue that PAs should not be taken only as a protective molecule but rather like a double-faced molecule that likely serves as a major area for further research efforts. This review summarizes recent advances in plant polyamine research ranging from transgenic and mutant characterization to potential mechanisms of action during environmental stresses and diseases.
Collapse
Affiliation(s)
- Syed Sarfraz Hussain
- Australian Centre for Plant Functional Genomics (ACPFG), University of Adelaide, PMB1, Glen Osmond, SA5064, Australia.
| | | | | | | |
Collapse
|
95
|
Nambeesan S, Datsenka T, Ferruzzi MG, Malladi A, Mattoo AK, Handa AK. Overexpression of yeast spermidine synthase impacts ripening, senescence and decay symptoms in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:836-47. [PMID: 20584149 DOI: 10.1111/j.1365-313x.2010.04286.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Polyamines (PAs) are ubiquitous, polycationic biogenic amines that are implicated in many biological processes, including plant growth and development, but their precise roles remain to be determined. Most of the previous studies have involved three biogenic amines: putrescine (Put), spermidine (Spd) and spermine (Spm), and their derivatives. We have expressed a yeast spermidine synthase (ySpdSyn) gene under constitutive (CaMV35S) and fruit-ripening specific (E8) promoters in Solanum lycopersicum (tomato), and determined alterations in tomato vegetative and fruit physiology in transformed lines compared with the control. Constitutive expression of ySpdSyn enhanced intracellular levels of Spd in the leaf, and transiently during fruit development, whereas E8-ySpdSyn expression led to Spd accumulation early and transiently during fruit ripening. The ySpdSyn transgenic fruits had a longer shelf life, reduced shriveling and delayed decay symptom development in comparison with the wild-type (WT) fruits. An increase in shelf life of ySpdSyn transgenic fruits was not facilitated by changes in the rate of water loss or ethylene evolution. Additionally, the expression of several cell wall and membrane degradation-related genes in ySpdSyn transgenic fruits was not correlated with an extension of shelf life, indicating that the Spd-mediated increase in fruit shelf life is independent of the above factors. Crop maturity, indicated by the percentage of ripening fruits on the vine, was delayed in a CaMV35S-ySpdSyn genotype, with fruits accumulating higher levels of the antioxidant lycopene. Notably, whole-plant senescence in the transgenic plants was also delayed compared with WT plants. Together, these results provide evidence for a role of PAs, particularly Spd, in increasing fruit shelf life, probably by reducing post-harvest senescence and decay.
Collapse
Affiliation(s)
- Savithri Nambeesan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | |
Collapse
|
96
|
Jantaro S, Pothipongsa A, Khanthasuwan S, Incharoensakdi A. Short-term UV-B and UV-C radiations preferentially decrease spermidine contents and arginine decarboxylase transcript levels of Synechocystis sp. PCC 6803. Curr Microbiol 2010; 62:420-6. [PMID: 20680281 DOI: 10.1007/s00284-010-9724-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 07/20/2010] [Indexed: 10/19/2022]
Abstract
To investigate the short term effect of ultraviolet (UV) radiations on changes in pigments and polyamine contents, Synechocystis sp. PCC 6803 cells after exposure to UV-radiation were extracted by dimethylformamide and perchloric acid for pigments and polyamines determination, respectively. Cell growth was slightly decreased after 1 h exposure to UV-A and UV-B radiations. UV-C had little effect on cell growth despite the decrease of photosynthetic rate by about 18%. UV-A and UV-B decreased the contents of chlorophyll a and carotenoids whereas UV-C decreased chlorophyll a but had no effect on carotenoids. Spermidine contents were unaffected by UV-A, in contrast to the reduction of 25 and 50% by UV-B and UV-C, respectively. All three types of UV-radiation particularly reduced perchloric acid-insoluble spermidine. Importantly, putrescine and spermine which accounted for less than 1% of intracellular polyamines were increased by about three- to eight-fold by UV-B and UV-C, respectively. The changes in polyamines contents by UV-B and UV-C were consistent with the changes in transcript levels of arginine decarboxylase mRNA, but not with the protein levels. The decrease in the transcripts of adc2 but not adc1 was observed with UV-B and UV-C treatments.
Collapse
Affiliation(s)
- Saowarath Jantaro
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | | | | |
Collapse
|
97
|
Naka Y, Watanabe K, Sagor GHM, Niitsu M, Pillai MA, Kusano T, Takahashi Y. Quantitative analysis of plant polyamines including thermospermine during growth and salinity stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:527-33. [PMID: 20137962 DOI: 10.1016/j.plaphy.2010.01.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 11/21/2009] [Accepted: 01/14/2010] [Indexed: 05/18/2023]
Abstract
Arabidopsis thaliana was thought to contain two spermine synthase genes, ACAULIS 5 (ACL5) and SPMS. Recent investigations, however, revealed that the ACL5 gene encodes thermospermine synthase. In this study, we have established a simple method to separate two isomers of tetraamine, spermine and thermospermine, in extracts from plant tissues of less than 500 mg. Polyamines (PAs) extracted from plant tissues were benzoylated, and the derivatives were completely resolved by high-performance liquid chromatography on a C18 reverse-phase column, by eluting with 42% (v/v) acetonitrile in water in an isocratic manner at 30 degrees C and monitoring at 254 nm. The relevance of the method was confirmed by co-chromatography with respective PAs and by the PA analysis of the single- and double-mutants of acl5 and spms, which could not synthesize thermospermine and/or spermine, respectively. Furthermore, with this method, we monitored the thermospermine contents in various tissues of A. thaliana and found that stems and flowers contain two- to three-fold more thermospermine compared to whole seedlings and mature leaves. The presence of thermospermine was confirmed in Oryza sativa and Lycopersicon pesculentum. Finally we addressed whether salinity stress changes the contents of PAs including thermospermine in Arabidopsis.
Collapse
Affiliation(s)
- Yukie Naka
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
98
|
Vera-Sirera F, Minguet EG, Singh SK, Ljung K, Tuominen H, Blázquez MA, Carbonell J. Role of polyamines in plant vascular development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:534-9. [PMID: 20137964 DOI: 10.1016/j.plaphy.2010.01.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 12/21/2009] [Accepted: 01/14/2010] [Indexed: 05/03/2023]
Abstract
Several pieces of evidence suggest a role for polyamines in the regulation of plant vascular development. For instance, polyamine oxidase gene expression has been shown to be associated with lignification, and downregulation of S-adenosylmethionine decarboxylase causes dwarfism and enlargement of the vasculature. Recent evidence from Arabidopsis thaliana also suggests that the active polyamine in the regulation of vascular development is the tetraamine thermospermine. Thermospermine biosynthesis is catalyzed by the aminopropyl transferase encoded by ACAULIS5, which is specifically expressed in xylem vessel elements. Both genetic and molecular evidence support a fundamental role for thermospermine in preventing premature maturation and death of the xylem vessel elements. This safeguard action of thermospermine has significant impact on xylem cell morphology, cell wall patterning and cell death as well as on plant growth in general. This manuscript reviews recent reports on polyamine function and places polyamines in the context of the known regulatory mechanisms that govern vascular development.
Collapse
Affiliation(s)
- Francisco Vera-Sirera
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022 Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
99
|
Handa AK, Mattoo AK. Differential and functional interactions emphasize the multiple roles of polyamines in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:540-6. [PMID: 20227284 DOI: 10.1016/j.plaphy.2010.02.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 01/28/2010] [Accepted: 02/11/2010] [Indexed: 05/04/2023]
Abstract
Biogenic amines putrescine, spermidine and spermine are ubiquitous in nature and have interested researchers because they are essential for cell division and viability, and due to a large body of their pharmacological effects on growth and development in most living cells. The genes and enzymes involved in their biosynthetic pathways are now established and characterized. In recent years, molecular aspects of polyamine action have also begun to emerge. Our model is the ripening tomato fruit in which processes of cell division, cell expansion and cell growth have ceased, and yet the cells are responsive at biochemical and molecular levels to genetically manipulated concentrations of putrescine (Put), spermidine (Spd) and spermine (Spm). Thus, transcriptome, limited protein profiling, and metabolome studies of transgenic tomato fruit have yielded significant new information on cellular processes impacted by polyamine manipulation. We have used these datasets to determine the linear correlation coefficients between the endogenous levels of Put, Spd and Spm with several parameters. Results of our analysis presented here show that effects of the diamine Put generally contrast those with polyamines Spd and Spm, emphasizing that individual biogenic amines should be considered to have defined action in plant biology and that they differentially affect growth and development. A multiple function model of polyamine action is discussed to explain the role of polyamines in most organisms, in general, and ripening fruit, in particular.
Collapse
Affiliation(s)
- Avtar K Handa
- Department of Horticulture & Landscape Architecture, Purdue University, W. Lafayette, IN, USA.
| | | |
Collapse
|
100
|
Fuell C, Elliott KA, Hanfrey CC, Franceschetti M, Michael AJ. Polyamine biosynthetic diversity in plants and algae. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:513-20. [PMID: 20227886 DOI: 10.1016/j.plaphy.2010.02.008] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Revised: 02/09/2010] [Accepted: 02/11/2010] [Indexed: 05/04/2023]
Abstract
Polyamine biosynthesis in plants differs from other eukaryotes because of the contribution of genes from the cyanobacterial ancestor of the chloroplast. Plants possess an additional biosynthetic route for putrescine formation from arginine, consisting of the enzymes arginine decarboxylase, agmatine iminohydrolase and N-carbamoylputrescine amidohydrolase, derived from the cyanobacterial ancestor. They also synthesize an unusual tetraamine, thermospermine, that has important developmental roles and which is evolutionarily more ancient than spermine in plants and algae. Single-celled green algae have lost the arginine route and are dependent, like other eukaryotes, on putrescine biosynthesis from the ornithine. Some plants like Arabidopsis thaliana and the moss Physcomitrella patens have lost ornithine decarboxylase and are thus dependent on the arginine route. With its dependence on the arginine route, and the pivotal role of thermospermine in growth and development, Arabidopsis represents the most specifically plant mode of polyamine biosynthesis amongst eukaryotes. A number of plants and algae are also able to synthesize unusual polyamines such as norspermidine, norspermine and longer polyamines, and biosynthesis of these amines likely depends on novel aminopropyltransferases similar to thermospermine synthase, with relaxed substrate specificity. Plants have a rich repertoire of polyamine-based secondary metabolites, including alkaloids and hydroxycinnamic amides, and a number of polyamine-acylating enzymes have been recently characterised. With the genetic tools available for Arabidopsis and other model plants and algae, and the increasing capabilities of comparative genomics, the biological roles of polyamines can now be addressed across the plant evolutionary lineage.
Collapse
Affiliation(s)
- Christine Fuell
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR47UA, UK
| | | | | | | | | |
Collapse
|