51
|
Roy S, Zhang W, Biswas D, Ramakrishnan R, Rhim JW. Grapefruit Seed Extract-Added Functional Films and Coating for Active Packaging Applications: A Review. Molecules 2023; 28:molecules28020730. [PMID: 36677788 PMCID: PMC9865371 DOI: 10.3390/molecules28020730] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Recently, consumers have been increasingly inclined towards natural antimicrobials and antioxidants in food processing and packaging. Several bioactive compounds have originated from natural sources, and among them, grapefruit seed extract (GSE) is widely accepted and generally safe to use in food. GSE is a very commonly used antimicrobial in food; lately, it has also been found very effective as a coating material or in edible packaging films. A lot of recent work reports the use of GSE in food packaging applications to ensure food quality and safety; therefore, this work intended to provide an up-to-date review of GSE-based packaging. This review discusses GSE, its extraction methods, and their use in manufacturing food packaging film/coatings. Various physical and functional properties of GSE-added film were also discussed. This review also provides the food preservation application of GSE-incorporated film and coating. Lastly, the opportunities, challenges, and perspectives in the GSE-added packaging film/coating are also debated.
Collapse
Affiliation(s)
- Swarup Roy
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
- Correspondence: (S.R.); (J.-W.R.)
| | - Wanli Zhang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Deblina Biswas
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| | - Rejish Ramakrishnan
- Department of Printing Technology, College of Engineering Guindy, Anna University, Chennai 600025, India
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Correspondence: (S.R.); (J.-W.R.)
| |
Collapse
|
52
|
John A, Črešnar KP, Bikiaris DN, Zemljič LF. Colloidal Solutions as Advanced Coatings for Active Packaging Development: Focus on PLA Systems. Polymers (Basel) 2023; 15:273. [PMID: 36679154 PMCID: PMC9865051 DOI: 10.3390/polym15020273] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Due to rising consumer demand the food packaging industry is turning increasingly to packaging materials that offer active functions. This is achieved by incorporating active compounds into the basic packaging materials. However, it is currently believed that adding active compounds as a coating over the base packaging material is more beneficial than adding them in bulk or in pouches, as this helps to maintain the physicochemical properties of the base material along with higher efficiency at the interface with the food. Colloidal systems have the potential to be used as active coatings, while the application of coatings in the form of colloidal dispersions allows for prolonged and controlled release of the active ingredient and uniform distribution, due to their colloidal/nano size and large surface area ratio. The objective of this review is to analyse some of the different colloidal solutions previously used in the literature as coatings for active food packaging and their advantages. The focus is on natural bio-based substances and packaging materials such as PLA, due to consumer awareness and environmental and regulatory issues. The antiviral concept through the surface is also discussed briefly, as it is an important strategy in the context of the current pandemic crisis and cross-infection prevention.
Collapse
Affiliation(s)
- Athira John
- Laboratory for Characterization and Processing of Polymer Materials, Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia
| | - Klementina Pušnik Črešnar
- Laboratory for Characterization and Processing of Polymer Materials, Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Lidija Fras Zemljič
- Laboratory for Characterization and Processing of Polymer Materials, Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia
| |
Collapse
|
53
|
Wang Y, Zu G, Yu Y, Tang J, Han T, Zhang C. Curcumin's mechanism of action against ischemic stroke: A network pharmacology and molecular dynamics study. PLoS One 2023; 18:e0280112. [PMID: 36598916 PMCID: PMC9812305 DOI: 10.1371/journal.pone.0280112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/07/2022] [Indexed: 01/05/2023] Open
Abstract
Ischemic stroke (IS) is one of the major global causes of death and disability. Because blood clots block the neural arteries provoking ischemia and hypoxia in the brain tissue, IS results in irreversible neurological damage. Available IS treatments are currently limited. Curcumin has gained attention for many beneficial effects after IS, including neuroprotective and anti-inflammatory; however, its precise mechanism of action should be further explored. With network pharmacology, molecular docking, and molecular dynamics (MD), this study aimed to comprehensively and systematically investigate the potential targets and molecular mechanisms of curcumin on IS. We screened 1096 IS-related genes, 234 potential targets of curcumin, and 97 intersection targets. KEGG and GO enrichment analyses were performed on these intersecting targets. The findings showed that the treatment of IS using curcumin is via influencing 177 potential signaling pathways (AGE-RAGE signaling pathway, p53 signaling pathway, necroptosis, etc.) and numerous biological processes (the regulation of neuronal death, inflammatory response, etc.), and the AGE-RAGE signaling pathway had the largest degree of enrichment, indicating that it may be the core pathway. We also constructed a protein-protein interaction network and a component-target-pathway network using network pharmacology. From these, five key targets were screened: NFKB1, TP53, AKT1, STAT3, and TNF. To predict the binding conformation and intermolecular affinities of the key targets and compounds, molecular docking was used, whose results indicated that curcumin exhibited strong binding activity to the key targets. Moreover, 100 ns MD simulations further confirmed the docking findings and showed that the curcumin-protein complex could be in a stable state. In conclusion, curcumin affects multiple targets and pathways to inhibit various important pathogenic mechanisms of IS, including oxidative stress, neuronal death, and inflammatory responses. This study offers fresh perspectives on the transformation of curcumin to clinical settings and the development of IS therapeutic agents.
Collapse
Affiliation(s)
- Yangyang Wang
- College of Rehabilitation Medicine, Weifang Medical University, Weifang, China
| | - Guoxiu Zu
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese, Jinan, China
| | - Ying Yu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jiqin Tang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- * E-mail: (JT); (TH)
| | - Tao Han
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese, Jinan, China
- * E-mail: (JT); (TH)
| | - Chengdong Zhang
- College of Rehabilitation Medicine, Weifang Medical University, Weifang, China
| |
Collapse
|
54
|
Zhao R, Guo H, Yan T, Li J, Xu W, Deng Y, Zhou J, Ye X, Liu D, Wang W. Fabrication of multifunctional materials based on chitosan/gelatin incorporating curcumin-clove oil emulsion for meat freshness monitoring and shelf-life extension. Int J Biol Macromol 2022; 223:837-850. [PMID: 36343838 DOI: 10.1016/j.ijbiomac.2022.10.271] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
A new multifunctional film with active and intelligent effects was developed by incorporating curcumin-clove oil emulsion into natural materials. The basic properties, functional characteristics, and pH/NH3-sensitivity of films were investigated, and then these films were applied to extend shelf-life and monitor freshness of meat. Curcumin solution and emulsion illustrated significant color variations at different pH values. The incorporation of emulsion improved the UV-vis barrier and water resistance properties of films, which blocked most of UV-light and its water contact angle reached 100.03°. Meanwhile, the films had stronger mechanical strength and higher thermal stability, with elongation at break reaching 79.18 % and the maximum degradation temperature rising to 316 °C. Moreover, emulsion made films have a slow-release effect on clove oil, which not only enhanced the antioxidant property but also significantly improved their antibacterial activity. Additionally, the multifunctional films presented a significant color response to acidic/alkaline environments over a short time interval and could be easily identified by naked eyes. Finally, the films effectively extended the shelf-life of fresh meat by 3 days at 4 °C and visually monitored freshness through color changes in real-time. This knowledge provides insights and ideas for the development of novel food packaging with both active and intelligent functions.
Collapse
Affiliation(s)
- Runan Zhao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Haocheng Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Tianyi Yan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jiaheng Li
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Weidong Xu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yong Deng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jianwei Zhou
- Zhejiang University Ningbo Institute of Technology, Ningbo 315100, China; Hainan Institute of Zhejiang University, Sanya 572025, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China.
| |
Collapse
|
55
|
Nehra A, Biswas D, Siracusa V, Roy S. Natural Gum-Based Functional Bioactive Films and Coatings: A Review. Int J Mol Sci 2022; 24:485. [PMID: 36613928 PMCID: PMC9820387 DOI: 10.3390/ijms24010485] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Edible films and coatings are a current and future food packaging trend. In the food and envi-ronmental sectors, there is a growing need to understand the role of edible packaging and sus-tainability. Gums are polysaccharides of natural origin that are frequently utilized as thickeners, clarifying agents, gelling agents, emulsifiers, and stabilizers in the food sector. Gums come in a variety of forms, including seed gums, mucilage gums, exudate gums, and so on. As a biodegradable and sustainable alternative to petrochemical-based film and coatings, gums could be a promising option. Natural plant gum-based edible packaging helps to ensure extension of shelf-life of fresh and processed foods while also reducing microbiological alteration and/or oxidation processes. In this review, the possible applications of gum-based polymers and their functional properties in development of edible films and coatings, were comprehensively dis-cussed. In the future, technology for developing natural gum-based edible films and coatings might be applied commercially to improve shelf life and preserve the quality of foods.
Collapse
Affiliation(s)
- Arushri Nehra
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| | - Deblina Biswas
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| | - Valentina Siracusa
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Swarup Roy
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| |
Collapse
|
56
|
Gandha Gogoi N, Dutta P, Saikia J, Handique JG. Antioxidant, Antibacterial, and BSA Binding Properties of Curcumin Caffeate Capped Silver Nanoparticles Prepared by Greener Method. ChemistrySelect 2022. [DOI: 10.1002/slct.202203989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nishi Gandha Gogoi
- Department of Chemistry Dibrugarh University 786004 Dibrugarh Assam India
| | - Pankaj Dutta
- Department of Physics Dibrugarh University 786004 Dibrugarh Assam India
| | - Jiban Saikia
- Department of Chemistry Dibrugarh University 786004 Dibrugarh Assam India
| | | |
Collapse
|
57
|
Intelligent colorimetric soy protein isolate-based films incorporated with curcumin through an organic solvent-free pH-driven method: Properties, molecular interactions, and application. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
58
|
Pullulan/chitosan-based functional film incorporated with curcumin-integrated chitosan nanoparticles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
59
|
Liu J, Li K, Chen Y, Ding H, Wu H, Gao Y, Huang S, Wu H, Kong D, Yang Z, Hu Y. Active and smart biomass film containing cinnamon oil and curcumin for meat preservation and freshness indicator. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
60
|
Antimicrobial Active Packaging Containing Nisin for Preservation of Products of Animal Origin: An Overview. Foods 2022; 11:foods11233820. [PMID: 36496629 PMCID: PMC9735823 DOI: 10.3390/foods11233820] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The preservation of food represents one of the greatest challenges in the food industry. Active packaging materials are obtained through the incorporation of antimicrobial and/or antioxidant compounds in order to improve their functionality. Further, these materials are used for food packaging applications for shelf-life extension and fulfilling consumer demands for minimal processed foods with great quality and safety. The incorporation of antimicrobial peptides, such as nisin, has been studied lately, with a great interest applied to the food industry. Antimicrobials can be incorporated in various matrices such as nanofibers, nanoemulsions, nanoliposomes, or nanoparticles, which are further used for packaging. Despite the widespread application of nisin as an antimicrobial by directly incorporating it into various foods, the use of nisin by incorporating it into food packaging materials is researched at a much smaller scale. The researchers in this field are still in full development, being specific to the type of product studied. The purpose of this study was to present recent results obtained as a result of using nisin as an antimicrobial agent in food packaging materials, with a focus on applications on products of animal origin. The findings showed that nisin incorporated in packaging materials led to a significant reduction in the bacterial load (the total viable count or inoculated strains), maintained product attributes (physical, chemical, and sensorial), and prolonged their shelf-life.
Collapse
|
61
|
Roy S, Ezati P, Priyadarshi R, Biswas D, Rhim JW. Recent advances in metal sulfide nanoparticle-added bionanocomposite films for food packaging applications. Crit Rev Food Sci Nutr 2022; 64:4660-4673. [PMID: 36368310 DOI: 10.1080/10408398.2022.2144794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Metal sulfide nanoparticles have recently attracted much attention due to their unique physical and functional properties. Metal sulfide nanoparticles used as optoelectronic and biomedical materials in the past decades are promising for making functional nanocomposite films due to their low toxicity and strong antibacterial activity. Recently, copper sulfide and zinc sulfide nanomaterials have been used to produce food packaging films for active packaging. Metal sulfide nanoparticles added as nanofillers are attracting attention in packaging applications due to their excellent potential to improve mechanical, barrier properties, and antibacterial activity. This review covers the fabrication process and important applications of metal sulfide nanoparticles. The development of metal sulfides reinforcing mainly copper sulfide and zinc sulfide nanomaterials as multifunctional nanofillers in bio-based films for active packaging applications has been comprehensively reviewed. As the recognition of metal sulfide nanoparticles as a functional filler increases, the development and application potential of active packaging films using them is expected to increase.
Collapse
Affiliation(s)
- Swarup Roy
- School of Bioengineering and Food Technology, Shoolini University, Solan, Himachal Pradesh, India
| | - Parya Ezati
- Department of Food and Nutrition, BioNanocomposite Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Ruchir Priyadarshi
- Department of Food and Nutrition, BioNanocomposite Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Deblina Biswas
- School of Bioengineering and Food Technology, Shoolini University, Solan, Himachal Pradesh, India
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Institute, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
62
|
Zhang T, Zhang W, Deng Y, Chu Y, Zhong Y, Wang G, Xiong Y, Liu X, Chen L, Li H. Curcumin-based waterborne polyurethane-gelatin composite bioactive films for effective UV shielding and inhibition of oil oxidation. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
63
|
Applications of natural polysaccharide-based pH-sensitive films in food packaging: Current research and future trends. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
64
|
Shen C, Chen W, Li C, Chen X, Cui H, Lin L. 4D printing system stimulated by curcumin/whey protein isolate nanoparticles: A comparative study of sensitive color change and post-processing. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
65
|
Dong H, Wang P, Yang Z, Li R, Xu X, Shen J. Dual improvement in curcumin encapsulation efficiency and lyophilized complex dispersibility through ultrasound regulation of curcumin-protein assembly. ULTRASONICS SONOCHEMISTRY 2022; 90:106188. [PMID: 36209635 PMCID: PMC9562415 DOI: 10.1016/j.ultsonch.2022.106188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Ultrasound has a recognized ability to modulate the structure and function of proteins. Discovering the influential mechanism of ultrasound on the intramolecular interactions of egg-white protein isolate-curcumin (EPI-Cur) nanoparticles and their intermolecular interaction during freeze drying and redispersion is meaningful. In this study, under the extension of pre-sonication time, the protein solubility, surface hydrophobicity, and curcumin encapsulation rate showed an increasing trend, reaching the highest value at 12 min of treatment. However, the values decreased under the followed extension of ultrasound time. After freeze drying and redispersion were applied, the EPI-Cur sample under 12 min of ultrasound treatment exhibited minimal aggregation degree and loss of curcumin. The retention and loading rates of curcumin in the lyophilized powder reached 96 % and 33.60 mg/g EPI, respectively. However, under excessive ultrasound of >12 min, scanning electron microscopy showed distinct blocky aggregates. Overexposure of the hydrophobic region of the protein triggered protein-mediated hydrophobic aggregation after freeze drying. X-ray diffraction patterns showed the highest crystallinity, indicating that the free curcumin-mediated hydrophobic aggregation during freeze drying was enhanced by the concentration effect and intensified the formation of larger aggregates. This work has practical significance for developing the delivery of hydrophobic active substances. It provides theoretical value for the dynamic dispersity change in protein-hydrophobic active substances during freeze drying and redissolving.
Collapse
Affiliation(s)
- Hualin Dong
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Peng Wang
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| | - Zongyun Yang
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Ru Li
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Xinglian Xu
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Juan Shen
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
66
|
Roy S, Ezati P, Biswas D, Rhim JW. Shikonin Functionalized Packaging Film for Monitoring the Freshness of Shrimp. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15196615. [PMID: 36233953 PMCID: PMC9572350 DOI: 10.3390/ma15196615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 06/12/2023]
Abstract
A shikonin embedded smart and active food packaging film was produced using a binary mixture of gelatin and cellulose nanofiber (CNF). Shikonin is an alcohol-soluble natural pigment extracted from Lithospermum erythrorhizon root. The fabricated film showed good pH-responsive color changes and volatile gas sensing properties. Moreover, the film exhibited excellent antioxidant and antibacterial activity against foodborne pathogens. The shikonin incorporated gelatin/CNF-based film showed excellent UV-light barrier properties (>95%) and high tensile strength (>80 MPa), which is useful for food packaging. The hydrodynamic properties of the film were also slightly changed in the presence of shikonin, but the thermal stability and water vapor permeability remained unaffected. Thus, the inclusion of shikonin in the gelatin/CNF-based film improves not only the physical properties but also the functional properties. The film’s color indicator properties also clearly show shrimp’s freshness and spoilage during storage for 48 h. The shikonin-based functional film is expected to be a promising tool for multi-purpose smart and active food packaging applications.
Collapse
Affiliation(s)
- Swarup Roy
- Department of Food and Nutrition, BioNanocomposite Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
- School of Bioengineering and Food Technology, Shoolini University, Bajhol 173229, India
| | - Parya Ezati
- Department of Food and Nutrition, BioNanocomposite Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Deblina Biswas
- School of Bioengineering and Food Technology, Shoolini University, Bajhol 173229, India
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
67
|
Advances and Challenges in Biopolymer-Based Films. Polymers (Basel) 2022; 14:polym14183920. [PMID: 36146065 PMCID: PMC9500674 DOI: 10.3390/polym14183920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
|
68
|
Chandel V, Biswas D, Roy S, Vaidya D, Verma A, Gupta A. Current Advancements in Pectin: Extraction, Properties and Multifunctional Applications. Foods 2022; 11:2683. [PMID: 36076865 PMCID: PMC9455162 DOI: 10.3390/foods11172683] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/12/2022] [Accepted: 08/31/2022] [Indexed: 12/18/2022] Open
Abstract
Pectin is a heterogeneous hydrocolloid present in the primary cell wall and middle lamella in all dicotyledonous plants, more commonly in the outer fruit coat or peel as compared to the inner matrix. Presently, citrus fruits and apple fruits are the main sources for commercial extraction of pectin, but ongoing research on pectin extraction from alternate fruit sources and fruit wastes from processing industries will be of great help in waste product reduction and enhancing the production of pectin. Pectin shows multifunctional applications including in the food industry, the health and pharmaceutical sector, and in packaging regimes. Pectin is commonly utilized in the food industry as an additive in foods such as jams, jellies, low calorie foods, stabilizing acidified milk products, thickener and emulsifier. Pectin is widely used in the pharmaceutical industry for the preparation of medicines that reduce blood cholesterol level and cure gastrointestinal disorders, as well as in cancer treatment. Pectin also finds use in numerous other industries, such as in the preparation of edible films and coatings, paper substitutes and foams. Due to these varied uses of pectin in different applications, there is a great necessity to explore other non-conventional sources or modify existing sources to obtain pectin with desired quality attributes to some extent by rational modifications of pectin with chemical and enzymatic treatments.
Collapse
Affiliation(s)
- Vinay Chandel
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| | - Deblina Biswas
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| | - Swarup Roy
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| | - Devina Vaidya
- Department of Food Science and Technology, Dr. Yashwant Singh Parmar University of Horticulture & Forestry, Solan 173230, India
| | - Anil Verma
- Department of Food Science and Technology, Dr. Yashwant Singh Parmar University of Horticulture & Forestry, Solan 173230, India
| | - Anil Gupta
- Department of Food Science and Technology, Dr. Yashwant Singh Parmar University of Horticulture & Forestry, Solan 173230, India
| |
Collapse
|
69
|
Liu Y, Liu M, Zhang L, Cao W, Wang H, Chen G, Wang S. Preparation and properties of biodegradable films made of cationic potato-peel starch and loaded with curcumin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107690] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
70
|
Development of polylactic acid based functional films reinforced with ginger essential oil and curcumin for food packaging applications. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
71
|
Duan A, Yang J, Wu L, Wang T, Liu Q, Liu Y. Preparation, physicochemical and application evaluation of raspberry anthocyanin and curcumin based on chitosan/starch/gelatin film. Int J Biol Macromol 2022; 220:147-158. [PMID: 35963358 DOI: 10.1016/j.ijbiomac.2022.08.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/30/2022] [Accepted: 08/06/2022] [Indexed: 01/20/2023]
Abstract
Raspberry anthocyanin (RA) from Rubus idaeus L. (Rosaceae) and curcumin (Cur) from Curcuma longa L. (Zingiberaceae) can effectively improve the physicochemical properties of composite films, and as bioactive pigment components, they can impart pH-responsive properties to the film. In this study, RA and Cur were added to chitosan/starch/gelatin composite film (CSG) to prepare CSG-RA, CSG-Cur, CSG-RA/Cur82 and CSG-RA/Cur73 color films by solution casting method. The color films could change color under different pH conditions and had higher antioxidant activities using ABTS (2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)) assay. The results from fourier transform infrared spectroscopy and scanning electron microscopy showed that RA and Cur were well dispersed in the CSG matrix and improved the structure of the composite films. The hydrophobic Cur increased the tensile strength from 6 Mpa (CSG) to 14 Mpa (CSG-Cur), but reduced the elongation at break from 55 % (CSG) to 40 % (CSG-Cur). These color films had a good fresh-keeping effect and freshness monitoring, in particular, CSG-RA/Cur73, had the better opacity, water solubility, thickness, moisture content and water vapor permeability than the other films. Briefly, binary pigment films had the potential to become a pH-sensitive indicator/packing film.
Collapse
Affiliation(s)
- Anbang Duan
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China.
| | - Jing Yang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China; Shanxi Jingxi Biotechnology Co., Ltd, Taiyuan, Shanxi, 030051, China.
| | - Liyang Wu
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China.
| | - Tao Wang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China.
| | - Qingye Liu
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China.
| | - Yongping Liu
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China.
| |
Collapse
|
72
|
Advanced Coatings with Antioxidant and Antibacterial Activity for Kumquat Preservation. Foods 2022; 11:foods11152363. [PMID: 35954129 PMCID: PMC9367912 DOI: 10.3390/foods11152363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
An active coating is one of the best ways to maintain the good quality and sensory properties of fruits. A new active coating was prepared by incorporating curcumin and phloretin into the konjac glucomannan matrix (KGM-Cur-Phl). The fourier infrared spectroscopy, rheology and differential scanning calorimetry confirmed the successful fabrication of this coating. This coating showed excellent antioxidant activity revealed by the 95.03% of ABTS radicals scavenging ratio and 99.67% of DPPH radicals scavenging ratio. The result of bacteria growth curves showed that it could effectively inhibit the growth of Staphylococcus aureus, Escherichia coli, Listeria monocytogenes and Salmonella typhimurium. The results of firmness, titratable acid and pH showed that it effectively prolonged the shelf life of kumquat. A novel konjac glucomannan-based active coating was provided.
Collapse
|
73
|
Song T, Qian S, Lan T, Wu Y, Liu J, Zhang H. Recent Advances in Bio-Based Smart Active Packaging Materials. Foods 2022; 11:foods11152228. [PMID: 35892814 PMCID: PMC9331990 DOI: 10.3390/foods11152228] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 01/07/2023] Open
Abstract
The shortage of oil resources is currently a global problem. The use of renewable resources instead of non-renewable ones has become a hot topic of research in the eyes of scientists. In the food industry, there is a lot of interest in bio-based smart active packaging that meets the concept of sustainability and ensures safety. The packaging has antibacterial and antioxidant properties that extend the shelf life of food. Its ability to monitor the freshness of food in real time is also beneficial to consumers’ judgement of food safety. This paper summarises the main raw materials for the preparation of bio-based smart active packaging, including proteins, polysaccharides and composite materials. The current status of the preparation method of bio-based smart active packaging and its application in food preservation is summarised. The future development trend in the field of food packaging is foreseen, so as to provide a reference for the improvement of bio-based smart active packaging materials.
Collapse
Affiliation(s)
| | | | | | | | | | - Hao Zhang
- Correspondence: ; Tel.: +86-43184533321
| |
Collapse
|
74
|
Sun Y, Bai Y, Yang W, Bu K, Tanveer SK, Hai J. Global Trends in Natural Biopolymers in the 21st Century: A Scientometric Review. Front Chem 2022; 10:915648. [PMID: 35873047 PMCID: PMC9302608 DOI: 10.3389/fchem.2022.915648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Since the 21st century, natural biopolymers have played an indispensable role in long-term global development strategies, and their research has shown a positive growth trend. However, these substantive scientific results are not conducive to our quick grasp of hotspots and insight into future directions and to understanding which local changes have occurred and which trend areas deserve more attention. Therefore, this study provides a new data-driven bibliometric analysis strategy and framework for mining the core content of massive bibliographic data, based on mathematical models VOS Viewer and CiteSpace software, aiming to understand the research prospects and opportunities of natural biopolymers. The United States is reported to be the most important contributor to research in this field, with numerous publications and active institutions; polymer science is the most popular subject category, but the further emphasis should be placed on interdisciplinary teamwork; mainstream research in this field is divided into five clusters of knowledge structures; since the explosion in the number of articles in 2018, researchers are mainly engaged in three fields: “medical field,” “biochemistry field,” and “food science fields.” Through an in-depth analysis of natural biopolymer research, this article provides a better understanding of trends emerging in the field over the past 22 years and can also serve as a reference for future research.
Collapse
Affiliation(s)
- Yitao Sun
- College of Agronomy, Northwest A&F University, Xianyan, China
| | - Yinping Bai
- College of Life Sciences and Engineering, The Southwest University of Science and Technology, Mianyang, China
| | - Wenlong Yang
- College of Agronomy, Northwest A&F University, Xianyan, China
| | - Kangmin Bu
- College of Agronomy, Northwest A&F University, Xianyan, China
| | | | - Jiangbo Hai
- College of Agronomy, Northwest A&F University, Xianyan, China
- *Correspondence: Jiangbo Hai,
| |
Collapse
|
75
|
Wu Y, Ma Y, Gao Y, Liu Y, Gao C. Poly (lactic acid)-based pH responsive membrane combined with chitosan and alizarin for food packaging. Int J Biol Macromol 2022; 214:348-359. [PMID: 35716790 DOI: 10.1016/j.ijbiomac.2022.06.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/05/2022]
Abstract
A poly (lactic acid) (PLA) -based functional partition composite membrane (PLA/CA) containing chitosan (CS) and alizarin (AL) was designed by solution casting method. The PLA/CA membrane contains the antibacterial zone of the edge part (PLA/CS) and the pH response detection zone of the central part (PLA/AL). At the same time, the environmentally friendly plasticizer tributyl citrate (TBC) was added to make the prepared PLA/CA composite membrane have good flexibility and high transparency. The results of FE-SEM and FTIR showed that CS and AL were uniformly dispersed in PLA matrix and had good compatibility with PLA. The antioxidant activities of PLA/CS and PLA/AL composite films were 43.3 % and 72.8 %, respectively. At the same time, the inhibitory rates of PLA/CS membrane against Escherichia coli and Staphylococcus aureus were as high as 87.91 % and 75.17 %, respectively. PLA/AL films exhibit excellent UV barrier properties. When the environmental pH (ammonia and acetic acid vapor) changed repeatedly, the PLA/AL membrane showed reversible color change of yellow under acidic condition and purple under alkaline condition. During the packaging and storage of chicken breast meat, the freshness of chicken breast meat can be detected by the color change of functional PLA/CA composite membrane.
Collapse
Affiliation(s)
- Yumin Wu
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ying Ma
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yiliang Gao
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yuetao Liu
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chuanhui Gao
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
76
|
Design and Practical Considerations for Active Polymeric Films in Food Packaging. Int J Mol Sci 2022; 23:ijms23116295. [PMID: 35682975 PMCID: PMC9181398 DOI: 10.3390/ijms23116295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 12/07/2022] Open
Abstract
Polymeric films for active food packaging have been playing an important role in food preservation due to favorable properties including high structural flexibility and high property tunability. Over the years, different polymeric active packaging films have been developed. Many of them have found real applications in food production. This article reviews, using a practical perspective, the principles of designing polymeric active packaging films. Different factors to be considered during materials selection and film generation are delineated. Practical considerations for the use of the generated polymeric films in active food packaging are also discussed. It is hoped that this article cannot only present a snapshot of latest advances in the design and optimization of polymeric active food packaging films, but insights into film development to achieve more effective active food packaging can be attained for future research.
Collapse
|
77
|
Yang C, Lu JH, Xu MT, Shi XC, Song ZW, Chen TM, Herrera-Balandrano DD, Zhang YJ, Laborda P, Shahriar M, Wang SY. Evaluation of chitosan coatings enriched with turmeric and green tea extracts on postharvest preservation of strawberries. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
78
|
Huang J, Hu Z, Li G, Hu L, Chen J, Hu Y. Make your packaging colorful and multifunctional: The molecular interaction and properties characterization of natural colorant-based films and their applications in food industry. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
79
|
Roy S, Rhim JW. Genipin-Crosslinked Gelatin/Chitosan-Based Functional Films Incorporated with Rosemary Essential Oil and Quercetin. MATERIALS 2022; 15:ma15113769. [PMID: 35683069 PMCID: PMC9181465 DOI: 10.3390/ma15113769] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 12/30/2022]
Abstract
Functional food packaging films were prepared using a binary mixture of chitosan and gelatin through crosslinking with genipin and hybridization with rosemary essential oil and quercetin. The mixture of chitosan and gelatin produced the compatible film, and the added fillers also showed good compatibility. The physical properties of the chitosan/gelatin film were not greatly affected by crosslinking with genipin, and the functionality of the composite film was increased by the addition of rosemary essential oil and quercetin. The bioactive additives did not significantly affect the hydrophobicity and water vapor barrier properties of the chitosan/gelatin film but significantly changed the color, while the mechanical and thermal properties were slightly affected. The addition of these functional fillers significantly improved the UV protection, antioxidant, and antibacterial properties of the chitosan/gelatin film. Therefore, the novel chitosan/gelatin film with genipin crosslinking and the integration of rosemary essential oil and quercetin is considered to have high potential for applications in active food packaging.
Collapse
Affiliation(s)
- Swarup Roy
- Department of Food and Nutrition, BioNanocomposite Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
- Correspondence:
| |
Collapse
|
80
|
Edible Bioactive Film with Curcumin: A Potential "Functional" Packaging? Int J Mol Sci 2022; 23:ijms23105638. [PMID: 35628450 PMCID: PMC9147907 DOI: 10.3390/ijms23105638] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Edible packaging has been developed as a biodegradable and non-toxic alternative to traditional petroleum-based food packaging. Biopolymeric edible films, in addition to their passive protective function, may also play a bioactive role as vehicles for bioactive compounds of importance to human health. In recent years, a new generation of edible food packaging has been developed to incorporate ingredients with functional potential that have beneficial effects on consumer health. Curcumin, a bioactive compound widely used as a natural dye obtained from turmeric rhizomes (Curcuma longa L.), has a broad spectrum of beneficial properties for human health, such as anti-inflammatory, anti-hypertensive, antioxidant, anti-cancer, and other activities. To demonstrate these properties, curcumin has been explored as a bioactive agent for the development of bioactive packaging, which can be referred to as functional packaging and used in food. The aim of this review was to describe the current and potential research on the development of functional-edible-films incorporating curcumin for applications such as food packaging.
Collapse
|
81
|
Tavassoli M, Alizadeh Sani M, Khezerlou A, Ehsani A, Jahed-Khaniki G, McClements DJ. Smart Biopolymer-Based Nanocomposite Materials Containing pH-Sensing Colorimetric Indicators for Food Freshness Monitoring. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103168. [PMID: 35630645 PMCID: PMC9143397 DOI: 10.3390/molecules27103168] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022]
Abstract
Nanocomposite biopolymer materials containing colorimetric pH-responsive indicators were prepared from gelatin and chitosan nanofibers. Plant-based extracts from barberry and saffron, which both contained anthocyanins, were used as pH indicators. Incorporation of the anthocyanins into the biopolymer films increased their mechanical, water-barrier, and light-screening properties. Infrared spectroscopy and scanning electron microscopy analysis indicated that a uniform biopolymer matrix was formed, with the anthocyanins distributed evenly throughout them. The anthocyanins in the composite films changed color in response to alterations in pH or ammonia gas levels, which was used to monitor changes in the freshness of packaged fish during storage. The anthocyanins also exhibited antioxidant and antimicrobial activity, which meant that they could also be used to slow down the degradation of the fish. Thus, natural anthocyanins could be used as both freshness indicators and preservatives in biopolymer-based nanocomposite packaging materials. These novel materials may therefore be useful alternatives to synthetic plastics for some food packaging applications, thereby improving the environmental friendliness and sustainability of the food supply.
Collapse
Affiliation(s)
- Milad Tavassoli
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166614711, Iran; (M.T.); (A.K.)
- Nutrition Research Center, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz 516615731, Iran
| | - Mahmood Alizadeh Sani
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran 1417614411, Iran; (M.A.S.); (G.J.-K.)
| | - Arezou Khezerlou
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166614711, Iran; (M.T.); (A.K.)
- Nutrition Research Center, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz 516615731, Iran
| | - Ali Ehsani
- Nutrition Research Center, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz 516615731, Iran
- Correspondence: (A.E.); (D.J.M.)
| | - Gholamreza Jahed-Khaniki
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran 1417614411, Iran; (M.A.S.); (G.J.-K.)
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Correspondence: (A.E.); (D.J.M.)
| |
Collapse
|
82
|
Antiviral Biodegradable Food Packaging and Edible Coating Materials in the COVID-19 Era: A Mini-Review. COATINGS 2022. [DOI: 10.3390/coatings12050577] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
With the onset of the COVID-19 pandemic in late 2019, and the catastrophe faced by the world in 2020, the food industry was one of the most affected industries. On the one hand, the pandemic-induced fear and lockdown in several countries increased the online delivery of food products, resulting in a drastic increase in single-use plastic packaging waste. On the other hand, several reports revealed the spread of the viral infection through food products and packaging. This significantly affected consumer behavior, which directly influenced the market dynamics of the food industry. Still, a complete recovery from this situation seems a while away, and there is a need to focus on a potential solution that can address both of these issues. Several biomaterials that possess antiviral activities, in addition to being natural and biodegradable, are being studied for food packaging applications. However, the research community has been ignorant of this aspect, as the focus has mainly been on antibacterial and antifungal activities for the enhancement of food shelf life. This review aims to cover the different perspectives of antiviral food packaging materials using established technology. It focuses on the basic principles of antiviral activity and its mechanisms. Furthermore, the antiviral activities of several nanomaterials, biopolymers, natural oils and extracts, polyphenolic compounds, etc., are discussed.
Collapse
|
83
|
A Facile In Situ Synthesis of Resorcinol-Mediated Silver Nanoparticles and the Fabrication of Agar-Based Functional Nanocomposite Films. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6050124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The in situ synthesis of silver nanoparticles (AgNPs) was performed using resorcinol and agar to produce agar-based antioxidant and antimicrobial films. AgNPs were regularly dispersed on the film matrix, and their presence improved the thermal stability of films. Additionally, the addition of AgNPs slightly increased the agar-based film’s tensile strength (~10%), hydrophobicity (~40%), and water vapor barrier properties (~20%) at 1.5 wt% of AgNP concentration. The resorcinol also imparted UV-barrier and antioxidant activity to the agar-based film. In particular, the agar-based film containing a higher quantity of AgNPs (>1.0 wt%) was highly effective against the foodborne pathogenic bacteria L. monocytogenes and E. coli. Therefore, agar-based composite films with improved physicochemical and functional properties may be promising for active packaging.
Collapse
|
84
|
Fu YS, Ho WY, Kang N, Tsai MJ, Wu J, Huang L, Weng CF. Pharmaceutical Prospects of Curcuminoids for the Remedy of COVID-19: Truth or Myth. Front Pharmacol 2022; 13:863082. [PMID: 35496320 PMCID: PMC9047796 DOI: 10.3389/fphar.2022.863082] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/01/2022] [Indexed: 01/09/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is a positive-strand RNA virus, and has rapidly spread worldwide as a pandemic. The vaccines, repurposed drugs, and specific treatments have led to a surge of novel therapies and guidelines nowadays; however, the epidemic of COVID-19 is not yet fully combated and is still in a vital crisis. In repositioning drugs, natural products are gaining attention because of the large therapeutic window and potent antiviral, immunomodulatory, anti-inflammatory, and antioxidant properties. Of note, the predominant curcumoid extracted from turmeric (Curcuma longa L.) including phenolic curcumin influences multiple signaling pathways and has demonstrated to possess anti-inflammatory, antioxidant, antimicrobial, hypoglycemic, wound healing, chemopreventive, chemosensitizing, and radiosensitizing spectrums. In this review, all pieces of current information related to curcumin-used for the treatment and prevention of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection through in vitro, in vivo, and in silico studies, clinical trials, and new formulation designs are retrieved to re-evaluate the applications based on the pharmaceutical efficacy of clinical therapy and to provide deep insights into knowledge and strategy about the curcumin's role as an immune booster, inflammatory modulator, and therapeutic agent against COVID-19. Moreover, this study will also afford a favorable application or approach with evidence based on the drug discovery and development, pharmacology, functional foods, and nutraceuticals for effectively fighting the COVID-19 pandemic.
Collapse
Affiliation(s)
- Yaw-Syan Fu
- Department of Basic Medical Science, Anatomy and Functional Physiology Section, Xiamen Medical College, Xiamen, China,Department of Basic Medical Science, Institute of Respiratory Disease, Xiamen Medical College, Xiamen, China
| | - Wan-Yi Ho
- Department of Anatomy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ning Kang
- Department of Otorhinolaryngology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - May-Jywan Tsai
- Department of Neurosurgery, Neurological Institute, Neurological Institute, Taipei, Taiwan
| | - Jingyi Wu
- Department of Basic Medical Science, Anatomy and Functional Physiology Section, Xiamen Medical College, Xiamen, China
| | - Liyue Huang
- Department of Basic Medical Science, Anatomy and Functional Physiology Section, Xiamen Medical College, Xiamen, China
| | - Ching-Feng Weng
- Department of Basic Medical Science, Anatomy and Functional Physiology Section, Xiamen Medical College, Xiamen, China,Department of Basic Medical Science, Institute of Respiratory Disease, Xiamen Medical College, Xiamen, China,*Correspondence: Ching-Feng Weng, ,
| |
Collapse
|
85
|
Zhou J, Wang M, Carrillo C, Hassoun A, Collado MC, Barba FJ. Application of omics in food color. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
86
|
A Concise Review on Taro Mucilage: Extraction Techniques, Chemical Composition, Characterization, Applications, and Health Attributes. Polymers (Basel) 2022; 14:polym14061163. [PMID: 35335495 PMCID: PMC8949670 DOI: 10.3390/polym14061163] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
Taro (Colocasia esculenta) is an important source of carbohydrates as an energy source and is used as a staple food throughout the world. It is rich in mucilage and starch granules, making it a highly digestible ingredient. Mucilage can act as a matrix and a thickening, binding, emulsifying, or foaming agent in food, pharmaceutical, and several other fields of research. Moreover, mucilage can be extracted from several living organisms and has excellent functional properties, such as water-holding, oil-holding, and swelling capacities. Therefore, these remarkable functional properties make mucilage a promising ingredient with possible industrial applications. Furthermore, several extraction techniques, including enzyme-assisted, ultrasonication, microwave-assisted, aquatic, and solvent extraction methods, are used to obtain quantitative amounts of taro mucilage. Coldwater extraction with ethanol precipitation can be considered an effective and cost-effective technique to obtain high-quality mucilage with suitable industrial applications, whereas the ultrasonication method is more expensive but results in a higher amount of mucilage than other emerging techniques. Mucilage can also be used as a fat replacer or reducer, dye remover, coating agent, and antioxidating agent. Therefore, in this review, we detail the key properties related to the extraction techniques, chemical composition, and characterization of taro mucilage, along with its suitable applications and health benefits.
Collapse
|
87
|
Development of an intelligent packaging by incorporating curcumin into pistachio green hull pectin/poly vinyl alcohol (PVA) films. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01318-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
88
|
Sharma M, Inbaraj BS, Dikkala PK, Sridhar K, Mude AN, Narsaiah K. Preparation of Curcumin Hydrogel Beads for the Development of Functional Kulfi: A Tailoring Delivery System. Foods 2022; 11:foods11020182. [PMID: 35053917 PMCID: PMC8774899 DOI: 10.3390/foods11020182] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/01/2022] [Accepted: 01/08/2022] [Indexed: 02/01/2023] Open
Abstract
Curcumin has been demonstrated to have biological activities and its fortification in food products is an important strategy to deliver bioactive ingredients at target sites. However, studies have documented a curcumin low bioavailability and low intake. Hence, combining functional ingredients with food should be needed to prevent widespread nutrient intake shortfalls and associated deficiencies. Thus, curcumin was encapsulated in calcium-alginate and their characteristics as well as in vitro release behavior of curcumin hydrogel beads (CHBs) was studied. Moreover, CHBs were fortified in development of functional Kulfi and their quality characteristics were studied. The encapsulation efficiency was up to 95.04%, indicating that most of the curcumin was entrapped. FTIR shifts in the bands were due to the replacement of sodium ions to the calcium ions. In vitro release (%) for CHBs was found to be 67.15% after 2 h, which increased slightly up to 67.88% after 4 h. The average swelling index of CHBs was found to be 10.21 to 37.92 from 2 to 12 h in PBS (pH 7.40). Control and Kulfi fortified with CHBs showed no significant difference (p > 0.05) in colour (L = 73.03 and 75.88) and the melting rate (0.88 mL/min and 0.63 mL/min), respectively. Standard plate count was reduced in the Kulfi fortified with CHBs (13.77 × 104 CFU/mL) with high sensory score for overall acceptability (8.56) compared to the control (154.70 × 104 CFU/mL). These findings suggested the feasibility of developing CHBs to mask the bitterness, enhance the solubility, and increase the bioavailability in gastrointestinal conditions. Additionally, Kulfi could be a suitable dairy delivery system for curcumin bioactive compounds.
Collapse
Affiliation(s)
- Minaxi Sharma
- Central Institute of Post-Harvest Engineering and Technology, Ludhiana 141 004, India; (M.S.); (P.K.D.); (A.N.M.)
| | | | - Praveen Kumar Dikkala
- Central Institute of Post-Harvest Engineering and Technology, Ludhiana 141 004, India; (M.S.); (P.K.D.); (A.N.M.)
| | - Kandi Sridhar
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242 05, Taiwan; or
- Correspondence: or (K.S.); (K.N.)
| | - Arjun Naik Mude
- Central Institute of Post-Harvest Engineering and Technology, Ludhiana 141 004, India; (M.S.); (P.K.D.); (A.N.M.)
| | - Kairam Narsaiah
- Central Institute of Post-Harvest Engineering and Technology, Ludhiana 141 004, India; (M.S.); (P.K.D.); (A.N.M.)
- Correspondence: or (K.S.); (K.N.)
| |
Collapse
|