51
|
Chen Y, Liang R, Shi X, Shen R, Liu L, Liu Y, Xue Y, Guo X, Dang J, Zeng D, Huang F, Sun J, Zhang J, Wang J, Olsen N, August A, Huang W, Pan Y, Zheng SG. Targeting kinase ITK treats autoimmune arthritis via orchestrating T cell differentiation and function. Biomed Pharmacother 2023; 169:115886. [PMID: 37992572 DOI: 10.1016/j.biopha.2023.115886] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023] Open
Abstract
IL-2 inducible T cell kinase (ITK) is critical in T helper subset differentiation and its inhibition has been suggested for the treatment of T cell-mediated inflammatory diseases. T follicular helper (Tfh), Th17 and regulatory T cells (Treg) also play important roles in the development of rheumatoid arthritis (RA), while the role of ITK in the development of RA and the intricate balance between effector T and regulatory T cells remains unclear. Here, we found that CD4+ T cells from RA patients presented with an elevated ITK activation. ITK inhibitor alleviated existing collagen-induced arthritis (CIA) and reduced antigen specific antibody production. Blocking ITK kinase activity interferes Tfh cell generation. Moreover, ITK inhibitor effectively rebalances Th17 and Treg cells by regulating Foxo1 translocation. Furthermore, we identified dihydroartemisinin (DHA) as a potential ITK inhibitor, which could inhibit PLC-γ1 phosphorylation and the progression of CIA by rebalancing Th17 and Treg cells. Out data imply that ITK activation is upregulated in RA patients, and therefore blocking ITK signal may provide an effective strategy to treat RA patients and highlight the role of ITK on the Tfh induction and RA progression.
Collapse
Affiliation(s)
- Ye Chen
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China; Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201600, China
| | - Rongzhen Liang
- Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201600, China
| | - Xiaoyi Shi
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Rong Shen
- Department of Geriatrics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, PR China
| | - Liu Liu
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, PR China
| | - Yan Liu
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Youqiu Xue
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Xinghua Guo
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Junlong Dang
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Donglan Zeng
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Feng Huang
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Jianbo Sun
- The first Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, China
| | - Jingwen Zhang
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Julie Wang
- Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201600, China
| | - Nancy Olsen
- Division of Rheumatology, Department of Medicine at the Penn State University Hershey Medical Center, Hershey, PA, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Weishan Huang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA; Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Yunfeng Pan
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China.
| | - Song Guo Zheng
- Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201600, China.
| |
Collapse
|
52
|
Guo Y, Yan S, Zhang W. Translatomics to explore dynamic differences in immunocytes in the tumor microenvironment. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102037. [PMID: 37808922 PMCID: PMC10551571 DOI: 10.1016/j.omtn.2023.102037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Protein is an essential component of all living organisms and is primarily responsible for life activities; furthermore, its synthesis depends on a highly complex and accurate translation system. For proteins, the regulation at the translation level exceeds the sum of that during transcription, mRNA degradation, and protein degradation. Therefore, it is necessary to study regulation at the translation level. Imbalance in the translation process may change the cellular landscape, which not only leads to the occurrence, maintenance, progression, invasion, and metastasis of cancer but also affects the function of immune cells and changes the tumor microenvironment. Detailed analysis of transcriptional and protein atlases is needed to better understand how gene translation occurs. However, a more rigorous direct correlation between mRNA and protein levels is needed, which somewhat limits further studies. Translatomics is a technique for capturing and sequencing ribosome-related mRNAs that can effectively identify translation changes caused by ribosome stagnation and local translation abnormalities during cancer occurrence to further understand the changes in the translation landscape of cancer cells themselves and immune cells in the tumor microenvironment, which can provide new strategies and directions for tumor treatment.
Collapse
Affiliation(s)
- Yilin Guo
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Shiqi Yan
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Wenling Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
53
|
Wang Y, Liu M, Zhang L, Liu X, Ji H, Wang Y, Gui J, Yue Y, Wen Z. Cancer CD39 drives metabolic adaption and mal-differentiation of CD4 + T cells in patients with non-small-cell lung cancer. Cell Death Dis 2023; 14:804. [PMID: 38062068 PMCID: PMC10703826 DOI: 10.1038/s41419-023-06336-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023]
Abstract
While ectonucleotidase CD39 is a cancer therapeutic target in clinical trials, its direct effect on T-cell differentiation in human non-small-cell lung cancer (NSCLC) remains unclear. Herein, we demonstrate that human NSCLC cells, including tumor cell lines and primary tumor cells from clinical patients, efficiently drive the metabolic adaption of human CD4+ T cells, instructing differentiation of regulatory T cells while inhibiting effector T cells. Of importance, NSCLC-induced T-cell mal-differentiation primarily depends on cancer CD39, as this can be fundamentally blocked by genetic depletion of CD39 in NSCLC. Mechanistically, NSCLC cells package CD39 into their exosomes and transfer such CD39-containing exosomes into interacting T cells, resulting in ATP insufficiency and AMPK hyperactivation. Such CD39-dependent NSCLC-T cell interaction holds well in patients-derived primary tumor cells and patient-derived organoids (PDOs). Accordingly, genetic depletion of CD39 alone or in combination with the anti-PD-1 immunotherapy efficiently rescues effector T cell differentiation, instigates anti-tumor T cell immunity, and inhibits tumor growth of PDOs. Together, targeting cancer CD39 can correct the mal-differentiation of CD4+ T cells in human NSCLC, providing in-depth insight into therapeutic CD39 inhibitors.
Collapse
Affiliation(s)
- Ying Wang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Mengdi Liu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Xiyu Liu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Huiyan Ji
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yan Wang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jun Gui
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Yue
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.
| | - Zhenke Wen
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
54
|
Asghari F, Karimi MH, Pourfathollah AA. mTORC1 inhibition may improve T lymphocytes affected by aging. Immunopharmacol Immunotoxicol 2023; 45:719-729. [PMID: 37581412 DOI: 10.1080/08923973.2023.2232101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/23/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Due to the increase of the elderly's population and related social and economic problems, it is very important to provide strategies on health. In this regard, induction of T lymphocytes responses, the most important cells of the immune system, may be a good approach. Among different agents considered as antiaging factors, mTORC1 pathway inhibitors are significant. So, the purpose of this study was to evaluate the effect of two mTORC1 inhibitors, Everolimus and Metformin, on age-related features of activated T cells. MATERIALS AND METHODS Optimum doses of drugs was determined with evaluating the effect of treatments on IL-2 gene expression. T cells isolated from old and young mice were treated with drugs and PHA. IL-2 production was evaluated by ELISA. Also, the expression of CD28, PD-1, and KLRG-1, proliferation, and intracellular oxidative stress were assessed by flow cytometry-based assays, phenotyping, CFSE, and DCF-DA assay respectively. RESULTS Both drugs increased IL-2 production in the T cells of old mice. Also, using drugs especially Metformin could improve age-related phenotypical markers and increase the proliferation of T cells of old mice significantly. In addition, Metformin and Everolimus reduced intracellular oxidative stress in aged cells. However, the effect of both drugs on the T cells of young mice wasn't significant or was in opposite to the results of old mice T cells. DISCUSSION In line with studies noting mTOR inhibitors as antiaging drugs, Metformin and Everolimus may improve T cells affected from aging in vitro, and a decrease in intracellular oxidative stress may be one of their mechanism of function.
Collapse
Affiliation(s)
- F Asghari
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - M H Karimi
- Larestan University of Medical Sciences, Larestan, Iran
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - A A Pourfathollah
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
55
|
Wang N, Zhou K, Liang Z, Sun R, Tang H, Yang Z, Zhao W, Peng Y, Song P, Zheng S, Xie H. RapaLink-1 outperforms rapamycin in alleviating allogeneic graft rejection by inhibiting the mTORC1-4E-BP1 pathway in mice. Int Immunopharmacol 2023; 125:111172. [PMID: 37951193 DOI: 10.1016/j.intimp.2023.111172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/13/2023]
Abstract
Inhibition of mammalian target of rapamycin (mTOR), which is a component of both mTORC1 and mTORC2, leads to clinical benefits for organ transplant recipients. Pathways to inhibit mTOR include strengthening the association of FKBP12-mTOR or competing with ATP at the active site of mTOR, which have been applied to the design of first- and second-generation mTOR inhibitors, respectively. However, the clinical efficacy of these mTOR inhibitors may be limited by side effects, compensatory activation of kinases and attenuation of feedback inhibition of receptor expression. A new generation of mTOR inhibitors possess a core structure similar to rapamycin and covalently link to mTOR kinase inhibitors, resulting in moderate selectivity and potent inhibition of mTORC1. Since the immunosuppressive potential of this class of compounds remains unknown, our goal is to examine the therapeutic efficacy of a third-generation mTOR inhibitor in organ transplantation. In this study, RapaLink-1 outperformed rapamycin in inhibiting T-cell proliferation and significantly prolonged graft survival time. Mechanistically, the ameliorated rejection induced by RapaLink-1 is associated with a reduction in p-4E-BP1 in T cells, resulting in an elevation in Treg cells alongside a decline in Th1 and Th17 cells. For the first time, these studies demonstrate the effectiveness of third-generation mTOR inhibitors in inhibiting allograft rejection, highlighting the potential of this novel class of mTOR inhibitors for further investigation.
Collapse
Affiliation(s)
- Ning Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ke Zhou
- Division of Lung Transplantation and Thoracic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhi Liang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ruiqi Sun
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hong Tang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhentao Yang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Wentao Zhao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yiyang Peng
- College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Penghong Song
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Key Laboratory of Organ Transplantation, State Key Laboratory for The Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province 310003, China.
| | - Haiyang Xie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Key Laboratory of Organ Transplantation, State Key Laboratory for The Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province 310003, China.
| |
Collapse
|
56
|
Liu D, Zhang Y, Zhang Y, Huang Q, Meng W, Gao J, Mo X, Tian H, Li S. Chloroquine Alleviates Atherosclerosis by Modulating Regulatory T Cells Through the ATM/AMPK/mTOR Signaling Pathway in ApoE -/- Mice. Exp Clin Endocrinol Diabetes 2023; 131:676-685. [PMID: 38056492 DOI: 10.1055/a-2201-8728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
BACKGROUND Clinical observation suggests the atheroprotective effect of chloroquine and its derivatives, while its mechanism remains unclear. This study aimed to observe the protective effect of chloroquine against atherosclerosis and explore the underlying mechanism. METHODS Ataxia telangiectasia mutated (ATM) wild-type or haploinsufficient apolipoprotein-E-knockout (ATM+/+ApoE-/- or ATM+/-ApoE-/-) mice were treated with different dosages of chloroquine. Anti-CD25 antibody was used to deplete natural Tregs in ATM+/+ApoE-/- mice. The atherosclerotic burden in different groups of mice was comprehensively evaluated by H&E staining and Masson staining. The effect of chloroquine on the regulatory T cells (Tregs) was assessed in vivo and in vitro by flow cytometry and immunohistochemical staining. The expression of related proteins was detected by real-time polymerase chain reaction and western blotting. RESULTS In ATM+/+ApoE-/- mice, chloroquine alleviated atherosclerotic lesions, stabilized the plaque, and increased Treg counts in the atherosclerotic lesions and spleens. However, in ATM haploinsufficient mice (ATM+/-ApoE-/-), chloroquine no longer prevented atherosclerosis or impacted Treg counts. Abolishing Treg cells using an anti-CD25 antibody in vivo abrogated the atheroprotective effect of chloroquine. In vitro, chloroquine promoted the differentiation of Tregs from naïve T cells, which was accompanied by enhanced ATM/AMP-activated protein kinase (AMPK) activity and reduced downstream mammalian target of rapamycin (mTOR) activity. DISCUSSION These findings suggest that chloroquine ameliorates atherosclerosis and stabilizes plaque by modulating Tregs differentiation through the regulation of the ATM/AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Dan Liu
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Yonggang Zhang
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Yiyi Zhang
- Department of Endocrinology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan, China
| | - Qiaorong Huang
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wentong Meng
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhang Gao
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Xianming Mo
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Haoming Tian
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Sheyu Li
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
57
|
Cui X, Li CG, Gao H, Cheng M, Jiang F. Boosting regulatory T cell-dependent immune tolerance by activation of p53. Int Immunopharmacol 2023; 125:111167. [PMID: 37931392 DOI: 10.1016/j.intimp.2023.111167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/13/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
Regulatory T cells (Tregs) have critical roles in maintaining immune hemostasis and have important anti-inflammatory functions in diseases. Recently, we identified that CX-5461 (a selective RNA polymerase I inhibitor and p53 activator) acted as a potent immunosuppressive agent, which prevented allogeneic acute rejection in animal models via a molecular mechanism distinct from all those of conventional immunosuppressive drugs. Unexpectedly, we discovered that CX-5461 could promote Treg differentiation. In this review, we have summarized the evidence for a potential role of p53 in mediating Treg differentiation and its possible mechanisms, including regulation of FoxP3 transcription, regulation of the expression of PTEN (phosphatase and tensin homolog), as well as protein-protein interaction with the transcription factor STAT5 (signal transducer and activator of transcription 5). Evidence also suggests that pharmacological p53 activators may potentially be used to boost Treg-mediated immune tolerance. Based on these data, we argue that novel p53 activators such as CX-5461 may represent a distinct class of immunosuppressants that repress conventional T cell-mediated alloimmunity with concomitant boosting of Treg-dependent immune tolerance.
Collapse
Affiliation(s)
- Xiaopei Cui
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Chun-Guang Li
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Haiqing Gao
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Mei Cheng
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.
| | - Fan Jiang
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
58
|
Pinioti S, Sharma H, Flerin NC, Yu Q, Tzoumpa A, Cafarello ST, De Bousser E, Callewaert N, Oldenhove G, Schlenner S, Thienpont B, Garg AD, Di Matteo M, Mazzone M. A Metabolic Gene Survey Pinpoints Fucosylation as a Key Pathway Underlying the Suppressive Function of Regulatory T Cells in Cancer. Cancer Immunol Res 2023; 11:1611-1629. [PMID: 37933083 PMCID: PMC7615342 DOI: 10.1158/2326-6066.cir-22-0606] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/22/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023]
Abstract
Forkhead box P3 (Foxp3)-expressing regulatory T cells (Treg) are the guardians of controlled immune reactions and prevent the development of autoimmune diseases. However, in the tumor context, their increased number suppresses antitumor immune responses, indicating the importance of understanding the mechanisms behind their function and stability. Metabolic reprogramming can affect Foxp3 regulation and, therefore, Treg suppressive function and fitness. Here, we performed a metabolic CRISPR/Cas9 screen and pinpointed novel candidate positive and negative metabolic regulators of Foxp3. Among the positive regulators, we revealed that targeting the GDP-fucose transporter Slc35c1, and more broadly fucosylation (Fuco), in Tregs compromises their proliferation and suppressive function both in vitro and in vivo, leading to alteration of the tumor microenvironment and impaired tumor progression and protumoral immune responses. Pharmacologic inhibition of Fuco dampened tumor immunosuppression mostly by targeting Tregs, thus resulting in reduced tumor growth. In order to substantiate these findings in humans, tumoral Tregs from patients with colorectal cancer were clustered on the basis of the expression of Fuco-related genes. FucoLOW Tregs were found to exhibit a more immunogenic profile compared with FucoHIGH Tregs. Furthermore, an enrichment of a FucoLOW signature, mainly derived from Tregs, correlated with better prognosis and response to immune checkpoint blockade in melanoma patients. In conclusion, Slc35c1-dependent Fuco is able to regulate the suppressive function of Tregs, and measuring its expression in Tregs might pave the way towards a useful biomarker model for patients with cancer. See related Spotlight by Silveria and DuPage, p. 1570.
Collapse
Affiliation(s)
- Sotiria Pinioti
- laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium
- laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven B3000, Belgium
| | - Himal Sharma
- laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium
- laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven B3000, Belgium
| | - Nina C Flerin
- laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium
- laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven B3000, Belgium
| | - Qian Yu
- laboratory for Functional Epigenetics, Department of Human Genetics, KU Leuven, Leuven B3000, Belgium
| | - Amalia Tzoumpa
- laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium
- laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven B3000, Belgium
| | - Sarah Trusso Cafarello
- laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium
- laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven B3000, Belgium
| | - Elien De Bousser
- Medical Biotechnology Center, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Nico Callewaert
- Medical Biotechnology Center, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Guillaume Oldenhove
- laboratory of Immunobiology, Université Libre de Bruxelles, Gosselies, Belgium
- U-CRI (UCL Center for Research in Immunobiology), Université Libre de Bruxelles, Gosselies, Belgium
| | - Susan Schlenner
- KU Leuven-University of Leuven, Department of Microbiology, Immunology and Transplantation, Leuven B3000, Belgium
| | - Bernard Thienpont
- laboratory for Functional Epigenetics, Department of Human Genetics, KU Leuven, Leuven B3000, Belgium
| | - Abhishek D Garg
- laboratory for Cell Stress & Immunity (CSI), Department for Cellular and Molecular Medicine, KU Leuven, Leuven B3000, Belgium
| | - Mario Di Matteo
- laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium
- laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven B3000, Belgium
| | - Massimiliano Mazzone
- laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium
- laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven B3000, Belgium
| |
Collapse
|
59
|
Perpiñán E, Sanchez-Fueyo A, Safinia N. Immunoregulation: the interplay between metabolism and redox homeostasis. FRONTIERS IN TRANSPLANTATION 2023; 2:1283275. [PMID: 38993920 PMCID: PMC11235320 DOI: 10.3389/frtra.2023.1283275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/13/2023] [Indexed: 07/13/2024]
Abstract
Regulatory T cells are fundamental for the induction and maintenance of immune homeostasis, with their dysfunction resulting in uncontrolled immune responses and tissue destruction predisposing to autoimmunity, transplant rejection and several inflammatory and metabolic disorders. Recent discoveries have demonstrated that metabolic processes and mitochondrial function are critical for the appropriate functioning of these cells in health, with their metabolic adaptation, influenced by microenvironmental factors, seen in several pathological processes. Upon activation regulatory T cells rearrange their oxidation-reduction (redox) system, which in turn supports their metabolic reprogramming, adding a layer of complexity to our understanding of cellular metabolism. Here we review the literature surrounding redox homeostasis and metabolism of regulatory T cells to highlight new mechanistic insights of these interlinked pathways in immune regulation.
Collapse
Affiliation(s)
| | | | - N. Safinia
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, Institute of Liver Studies, James Black Centre, King’s College London, London, United Kingdom
| |
Collapse
|
60
|
Patel CH, Dong Y, Koleini N, Wang X, Dunkerly-Eyring BL, Wen J, Ranek MJ, Bartle LM, Henderson DB, Sagert J, Kass DA, Powell JD. TSC2 S1365A mutation potently regulates CD8+ T cell function and differentiation and improves adoptive cellular cancer therapy. JCI Insight 2023; 8:e167829. [PMID: 37788104 PMCID: PMC10721258 DOI: 10.1172/jci.insight.167829] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
MTORC1 integrates signaling from the immune microenvironment to regulate T cell activation, differentiation, and function. TSC2 in the tuberous sclerosis complex tightly regulates mTORC1 activation. CD8+ T cells lacking TSC2 have constitutively enhanced mTORC1 activity and generate robust effector T cells; however, sustained mTORC1 activation prevents generation of long-lived memory CD8+ T cells. Here we show that manipulating TSC2 at Ser1365 potently regulated activated but not basal mTORC1 signaling in CD8+ T cells. Unlike nonstimulated TSC2-KO cells, CD8+ T cells expressing a phosphosilencing mutant TSC2-S1365A (TSC2-SA) retained normal basal mTORC1 activity. PKC and T cell receptor (TCR) stimulation induced TSC2 S1365 phosphorylation, and preventing this with the SA mutation markedly increased mTORC1 activation and T cell effector function. Consequently, SA CD8+ T cells displayed greater effector responses while retaining their capacity to become long-lived memory T cells. SA CD8+ T cells also displayed enhanced effector function under hypoxic and acidic conditions. In murine and human solid-tumor models, SA CD8+ T cells used as adoptive cell therapy displayed greater antitumor immunity than WT CD8+ T cells. These findings reveal an upstream mechanism to regulate mTORC1 activity in T cells. The TSC2-SA mutation enhanced both T cell effector function and long-term persistence/memory formation, supporting an approach to engineer better CAR-T cells for treating cancer.
Collapse
Affiliation(s)
| | - Yi Dong
- Bloomberg-Kimmel Institute for Immunotherapy
| | | | - Xiaoxu Wang
- Bloomberg-Kimmel Institute for Immunotherapy
| | | | - Jiayu Wen
- Bloomberg-Kimmel Institute for Immunotherapy
| | - Mark J. Ranek
- Division of Cardiology, Department of Medicine, and
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Jason Sagert
- CRISPR Therapeutics, South Boston, Massachusetts, USA
| | - David A. Kass
- Division of Cardiology, Department of Medicine, and
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
61
|
Luo Y, Zhang Y, Yang Y, Wu S, Zhao J, Li Y, Kang X, Li Z, Chen J, Shen X, He F, Cheng R. Bifidobacterium infantis and 2'-fucosyllactose supplementation in early life may have potential long-term benefits on gut microbiota, intestinal development, and immune function in mice. J Dairy Sci 2023; 106:7461-7476. [PMID: 37641283 DOI: 10.3168/jds.2023-23367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/10/2023] [Indexed: 08/31/2023]
Abstract
The health benefits of nutritional interventions targeting the gut microbiota in early life are transient, such as probiotics, prebiotics, and synbiotics. This study sought to determine whether supplementation with Bifidobacterium infantis 79 (B79), 2'-fucosyllactose (2'-FL), or both (B79+2'FL) would lead to persistent health benefits in neonatal BALB/c mice. We found that at postnatal day (PND) 21, Ki67 and MUC2 expression increased, while total serum IgE content decreased in the B79, 2'-FL, and B79+2'-FL groups. The gut microbiota structure and composition altered as well. The levels of propionic acid, sIgA, and IL-10 increased in the 2'-FL group. Moreover, butyric acid content increased, while IL-6, IL-12p40, and tumor necrosis factor-α decreased in the B79+2'-FL group. At PND 56, Ki67 and MUC2 expression increased, whereas the gut microbiota remained altered in all 3 groups. The serum total IgG level increased only in the B79+2'-FL group. In conclusion, our study suggests that early-life supplementation with B79, 2'-FL, or their combination persistently alters the gut microbiome and promotes intestinal development; the immunomodulatory capacity of B79 and 2'-FL occurs during weaning, and their combination may persist into adulthood.
Collapse
Affiliation(s)
- Yating Luo
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Yujie Zhang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Yang Yang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Simou Wu
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Jincheng Zhao
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Yun Li
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Xiaohong Kang
- R&D Center, Inner Mongolia Meng Niu Dairy Industry (Group) Co. Ltd., 011500 Hohhot, Inner Mongolia, China
| | - Zhouyong Li
- R&D Center, Inner Mongolia Meng Niu Dairy Industry (Group) Co. Ltd., 011500 Hohhot, Inner Mongolia, China
| | - Jianguo Chen
- R&D Center, Inner Mongolia Meng Niu Dairy Industry (Group) Co. Ltd., 011500 Hohhot, Inner Mongolia, China; Beijing YuGen Pharmaceutical Co. Ltd., 102600 Beijing, China
| | - Xi Shen
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Fang He
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, Sichuan, China.
| | - Ruyue Cheng
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, Sichuan, China.
| |
Collapse
|
62
|
Zhang Y, Zhang D, Chen L, Zhou J, Ren B, Chen H. The progress of autoimmune hepatitis research and future challenges. Open Med (Wars) 2023; 18:20230823. [PMID: 38025543 PMCID: PMC10655690 DOI: 10.1515/med-2023-0823] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic liver inflammatory disease with various immune system manifestations, showing a global trend of increased prevalence. AIH is diagnosed through histological abnormalities, clinical manifestations, and biochemical indicators. The biochemical markers involve interfacial hepatitis, transaminase abnormalities, positive autoantibodies, etc. Although AIH pathogenesis is unclear, gene mutations and immunological factors could be the leading factors. AIH usually presents as a chronic liver disease and sometimes as acute hepatitis, making it challenging to distinguish it from drug-related hepatitis due to similar clinical symptoms. Normalizing transaminases and serum IgG levels is essential in assessing the remission status of AIH treatment. Glucocorticoids and azathioprine are the first-line AIH treatment, with lifelong maintenance therapy in some patients. The quality of life and survival can be improved after appropriate treatment. However, certain limitations jeopardize the quality of treatment, including long treatment cycles, side effects, poor patient compliance, and inability to inhibit liver fibrosis and cirrhosis. Accurate AIH animal models will help us understand the pathophysiology of the disease while providing fresh perspectives for avoiding and treating AIH. This review will help us understand AIH better, from the cellular and molecular causes to the clinical features, and will provide insight into new therapy techniques with fewer side effects.
Collapse
Affiliation(s)
- Yang Zhang
- Graduate Department of Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Dehe Zhang
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Ling Chen
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jing Zhou
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Binbin Ren
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Haijun Chen
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
63
|
Liu H, Zeng L, Pan M, Huang L, Li H, Liu M, Niu X, Zhang C, Wang H. Bcl-3 regulates T cell function through energy metabolism. BMC Immunol 2023; 24:35. [PMID: 37794349 PMCID: PMC10552310 DOI: 10.1186/s12865-023-00570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Bcl-3 is a member of the IκB protein family and an essential modulator of NF-κB activity. It is well established that Bcl-3 is critical for the normal development, survival and differentiation of adaptive immune cells, especially T cells. However, the regulation of immune cell function by Bcl-3 through metabolic pathways has rarely been studied. RESULTS In this study, we explored the role of Bcl-3 in the metabolism and function of T cells via the mTOR pathway. We verified that the proliferation of Bcl-3-deficient Jurkat T cells was inhibited, but their activation was promoted, and Bcl-3 depletion regulated cellular energy metabolism by reducing intracellular ATP and ROS production levels and mitochondrial membrane potential. Bcl-3 also regulates cellular energy metabolism in naive CD4+ T cells. In addition, the knockout of Bcl-3 altered the expression of mTOR, Akt, and Raptor, which are metabolism-related genes, in Jurkat cells. CONCLUSIONS This finding indicates that Bcl-3 may mediate the energy metabolism of T cells through the mTOR pathway, thereby affecting their function. Overall, we provide novel insights into the regulatory role of Bcl-3 in T-cell energy metabolism for the prevention and treatment of immune diseases.
Collapse
Affiliation(s)
- Hui Liu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Lin Zeng
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Mengmeng Pan
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Liwenhui Huang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Hanying Li
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Mengxia Liu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Xinqing Niu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Chenguang Zhang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
64
|
Kian N, Bagheri A, Salmanpour F, Soltani A, Mohajer Z, Samieefar N, Barekatain B, Kelishadi R. Breast feeding, obesity, and asthma association: clinical and molecular views. Clin Mol Allergy 2023; 21:8. [PMID: 37789370 PMCID: PMC10546753 DOI: 10.1186/s12948-023-00189-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Asthma is a chronic condition that affects children worldwide. Accumulating number of studies reported that the prevalence of pediatric obesity and asthma might be altered through breastfeeding. It has been proposed that Leptin, which exists in human milk, is oppositely associated with weight increase in newborns. It may also influence peripheral immune system by promoting TH1 responses and suppressing TH2 cytokines. Leptin influences body weight and immune responses through complex signaling pathways at molecular level. Although previous studies provide explanations for the protective role of breastfeeding against both obesity and asthma, other factors such as duration of breastfeeding, parental, and prenatal factors may confound this relationship which requires further research.
Collapse
Affiliation(s)
- Naghmeh Kian
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Alireza Bagheri
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Fardis Salmanpour
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afsaneh Soltani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Mohajer
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Noosha Samieefar
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- USERN Office, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Behzad Barekatain
- Division of Neonatology, Department of Pediatrics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Kelishadi
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
- USERN Office, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
65
|
Zhang F, Cheng T, Zhang SX. Mechanistic target of rapamycin (mTOR): a potential new therapeutic target for rheumatoid arthritis. Arthritis Res Ther 2023; 25:187. [PMID: 37784141 PMCID: PMC10544394 DOI: 10.1186/s13075-023-03181-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by systemic synovitis and bone destruction. Proinflammatory cytokines activate pathways of immune-mediated inflammation, which aggravates RA. The mechanistic target of rapamycin (mTOR) signaling pathway associated with RA connects immune and metabolic signals, which regulates immune cell proliferation and differentiation, macrophage polarization and migration, antigen presentation, and synovial cell activation. Therefore, therapy strategies targeting mTOR have become an important direction of current RA treatment research. In the current review, we summarize the biological functions of mTOR, its regulatory effects on inflammation, and the curative effects of mTOR inhibitors in RA, thus providing references for the development of RA therapeutic targets and new drugs.
Collapse
Affiliation(s)
- Fen Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Xinghualing District, Taiyuan, 030001, Shanxi Province, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Ting Cheng
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Xinghualing District, Taiyuan, 030001, Shanxi Province, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Xinghualing District, Taiyuan, 030001, Shanxi Province, China.
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China.
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China.
| |
Collapse
|
66
|
Yu J, Xu W, Dong Q, Ji Q, Cheng M, Hu D, Cai Y, Zeng Q, Yu K. Latency-associated peptide (LAP) +CD4 + regulatory T cells prevent atherosclerosis by modulating macrophage polarization. Clin Immunol 2023; 255:109767. [PMID: 37689092 DOI: 10.1016/j.clim.2023.109767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023]
Abstract
RATIONALE A persistent autoimmune and inflammatory response plays a critical role in the progression of atherosclerosis. The transcription factor forkhead box P3 (Foxp3)+CD4+ regulatory T cells (Foxp3+ Tregs) attenuate atherosclerosis. Latency-associated peptide (LAP)+CD4+ T cells are a new class of Tregs whose role in atherosclerosis is unknown. OBJECTIVE To investigate the function of CD4+LAP+ Tregs in inhibiting inflammation and preventing atherosclerosis. METHODS AND RESULTS Depletion of CD4+LAP+ Tregs results in aggravated inflammation and atherosclerotic lesions. Mechanistically, CD4+LAP+ Treg depletion was associated with decreased M2-like macrophages and increased Th1 and Th17 cells, characterized by increased unstable plaque promotion and decreased expression of inflammation-resolving factors in both arteries and immune organs. In contrast, adoptive transfer of CD4+LAP+ Tregs to ApoE-/- mice or CD4-/-ApoE-/- mice led to decreased atherosclerotic lesions. Compared with control animals, adoptive transfer of CD4+LAP+ Tregs induced M2-like macrophage differentiation within the atherosclerotic lesion and spleen, associated with increased collagen and α-SMA in plaques and decreased expression of MMP-2 and MMP-9. Mechanistic studies reveal that isolated CD4+LAP+ Tregs exhibit a tolerance phenotype, with increased expression of inhibitory cytokines and coinhibitory molecules. After coculture with CD4+LAP+ Tregs, monocytes/macrophages display typical features of M2 macrophages, including upregulated expression of CD206 and Arg-1 and decreased production of MCP-1, IL-6, IL-1β and TNF-α, which was almost abrogated by transwell and partially TGF-β1 neutralization. RNA-seq analysis showed different gene expression profiles between CD4+LAP+ Tregs and LAP-CD4+ T cells and between CD4+LAP+ Tregs of ApoE-/- mice and CD4+LAP+ Tregs of C57BL/6 mice, of which Fancd2 and IL4i1 may contribute to the powerful inhibitory properties of CD4+LAP+ Tregs. Furthermore, the number and the suppressive properties of CD4+LAP+ Tregs were impaired by oxLDL. CONCLUSIONS Our data indicate that the remaining CD4+LAP+ Tregs play a protective role in atherosclerosis by modulating monocyte/macrophage differentiation and regulatory factors, which may partly explain the protective effect of T cells tolerance in atherosclerosis. Moreover, adoptive transfer of CD4+LAP+ Tregs constitutes a novel approach to treat atherosclerosis.
Collapse
Affiliation(s)
- Jian Yu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Wenbin Xu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Qian Dong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Qingwei Ji
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Min Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Cai
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Qiutang Zeng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Kunwu Yu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
67
|
Okamoto M, Omori-Miyake M, Kuwahara M, Okabe M, Eguchi M, Yamashita M. The Inhibition of Glycolysis in T Cells by a Jak Inhibitor Ameliorates the Pathogenesis of Allergic Contact Dermatitis in Mice. J Invest Dermatol 2023; 143:1973-1982.e5. [PMID: 37028703 DOI: 10.1016/j.jid.2023.03.1667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/31/2023] [Accepted: 03/09/2023] [Indexed: 04/08/2023]
Abstract
Allergic contact dermatitis (ACD) and atopic dermatitis develop through delayed-type hypersensitivity reactions mediated by T cells. The development of immunomodulatory drugs, such as Jak inhibitors, would be useful for the long-term management of these diseases owing to their profile of favorable adverse effects. However, the efficacy of Jak inhibitors for ACD treatment has not been fully determined under a variety of settings. Therefore, we evaluated the effects of ruxolitinib, a Jak inhibitor for Jak1 and Jak2, using a mouse ACD model. As a result, the lower numbers of immune cells, including CD4+ T cells, CD8+ T cells, neutrophils, and possibly macrophages, as well as milder pathophysiological aspects have been observed in the inflamed skin of ACD with the administration of ruxolitinib. In addition, the treatment of differentiating T cells with ruxolitinib downregulated the level of IL-2-mediated glycolysis in vitro. Furthermore, symptoms of ACD did not develop in T-cell-specific Pgam1-deficient mice whose T cells had no glycolytic capacity. Taken together, our data suggest that the downregulation of glycolysis in T cells by ruxolitinib could be an important factor in the suppression of ACD development in mice.
Collapse
Affiliation(s)
- Michiko Okamoto
- Department of Pediatrics, Ehime University Graduate School of Medicine, Ehime, Japan; Department of Immunology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Miyuki Omori-Miyake
- Department of Infections and Host Defenses, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Makoto Kuwahara
- Department of Immunology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Masataka Okabe
- Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan
| | - Mariko Eguchi
- Department of Pediatrics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Masakatsu Yamashita
- Department of Immunology, Ehime University Graduate School of Medicine, Ehime, Japan; Department of Infections and Host Defenses, Ehime University Graduate School of Medicine, Ehime, Japan.
| |
Collapse
|
68
|
Lee H, Jeon JH, Kim ES. Mitochondrial dysfunctions in T cells: focus on inflammatory bowel disease. Front Immunol 2023; 14:1219422. [PMID: 37809060 PMCID: PMC10556505 DOI: 10.3389/fimmu.2023.1219422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Mitochondria has emerged as a critical ruler of metabolic reprogramming in immune responses and inflammation. In the context of colitogenic T cells and IBD, there has been increasing research interest in the metabolic pathways of glycolysis, pyruvate oxidation, and glutaminolysis. These pathways have been shown to play a crucial role in the metabolic reprogramming of colitogenic T cells, leading to increased inflammatory cytokine production and tissue damage. In addition to metabolic reprogramming, mitochondrial dysfunction has also been implicated in the pathogenesis of IBD. Studies have shown that colitogenic T cells exhibit impaired mitochondrial respiration, elevated levels of mROS, alterations in calcium homeostasis, impaired mitochondrial biogenesis, and aberrant mitochondria-associated membrane formation. Here, we discuss our current knowledge of the metabolic reprogramming and mitochondrial dysfunctions in colitogenic T cells, as well as the potential therapeutic applications for treating IBD with evidence from animal experiments.
Collapse
Affiliation(s)
- Hoyul Lee
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Han Jeon
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Eun Soo Kim
- Division of Gastroenterology, Department of Internal Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| |
Collapse
|
69
|
Toskov V, Ehl S. Autoimmune lymphoproliferative immunodeficiencies (ALPID) in childhood: breakdown of immune homeostasis and immune dysregulation. Mol Cell Pediatr 2023; 10:11. [PMID: 37702894 PMCID: PMC10499775 DOI: 10.1186/s40348-023-00167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
Many inborn errors of immunity (IEI) manifest with hallmarks of both immunodeficiency and immune dysregulation due to uncontrolled immune responses and impaired immune homeostasis. A subgroup of these disorders frequently presents with autoimmunity and lymphoproliferation (ALPID phenotype). After the initial description of the genetic basis of autoimmune lymphoproliferative syndrome (ALPS) more than 20 years ago, progress in genetics has helped to identify many more genetic conditions underlying this ALPID phenotype. Among these, the majority is caused by a group of autosomal-dominant conditions including CTLA-4 haploinsufficiency, STAT3 gain-of-function disease, activated PI3 kinase syndrome, and NF-κB1 haploinsufficiency. Even within a defined genetic condition, ALPID patients may present with staggering clinical heterogeneity, which makes diagnosis and management a challenge. In this review, we discuss the pathophysiology, clinical presentation, approaches to diagnosis, and conventional as well as targeted therapy of the most common ALPID conditions.
Collapse
Affiliation(s)
- Vasil Toskov
- Centre for Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Centre for Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
70
|
Chen G, Zeng M, Liu Z, Zhou M, Zha J, Zhang L, Chen H, Liu H. The kinetics of mTORC1 activation associates with FOXP3 expression pattern of CD4+ T cells and outcome of steroid-sensitive minimal change disease. Int Immunopharmacol 2023; 122:110589. [PMID: 37418986 DOI: 10.1016/j.intimp.2023.110589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Minimal change disease (MCD) usually responds to glucocorticoids (GCs) but relapses in most cases. Relapse pathogenesis after complete remission (CR) remains unclear. We hypothesized that FOXP3+ T regulatory cell (Treg) dysregulation may drive early relapses (ER). In this study, a cohort of 23 MCD patients were treated with a conventional GC regimen for the initial onset of nephrotic syndrome. Upon GC withdrawal, seven patients suffered from ER, while 16 patients sustained remission (SR) during the 12-month follow-up. Patients with ER had reduced FOXP3+ Treg proportions compared with healthy controls. Treg reduction, accompanied by IL-10 impairment, was ascribed to a proportional decline of FOXP3medium rather than FOXP3high cells. GC-induced CR was marked by a rise in the proportions of FOXP3+ and FOXP3medium cells compared to baseline levels. These increases declined in patients with ER. The expression level of phosphorylated ribosomal protein S6 was used to track the dynamic shifts in mTORC1 activity within CD4+ T cells of MCD patients at various stages of treatment. Baseline mTORC1 activity was inversely correlated with FOXP3+ and FOXP3medium Treg proportion. The mTORC1 activity in CD4+ T cells served as a reliable indicator for ER and demonstrated improved performance when paired with FOXP3 expression. Mechanically, targeting mTORC1 intervention by siRNAs sufficiently altered the conversion pattern of CD4+ T cell to FOXP3+ Treg. Taken together, the activity of mTORC1 in CD4+ T cells can act as a credible predictor for ER in MCD, especially when combined with FOXP3 expression, and may offer a potential therapeutic avenue for the treatment of podocytopathies.
Collapse
Affiliation(s)
- Guochun Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China; Clinical Immunology Research Center of Central South University, Changsha, China.
| | - Mengru Zeng
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiwen Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Mi Zhou
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jie Zha
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lei Zhang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Huihui Chen
- Clinical Immunology Research Center of Central South University, Changsha, China; Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
71
|
Guo Y, Wang R, Shi J, Yang C, Ma P, Min J, Zhao T, Hua L, Song Y, Li J, Su H. Machine learning-based integration develops a metabolism-derived consensus model for improving immunotherapy in pancreatic cancer. J Immunother Cancer 2023; 11:e007466. [PMID: 37739440 PMCID: PMC10533800 DOI: 10.1136/jitc-2023-007466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Pancreatic cancer (PAC) is one of the most malignant cancer types and immunotherapy has emerged as a promising treatment option. PAC cells undergo metabolic reprogramming, which is thought to modulate the tumor microenvironment (TME) and affect immunotherapy outcomes. However, the metabolic landscape of PAC and its association with the TME remains largely unexplored. METHODS We characterized the metabolic landscape of PAC based on 112 metabolic pathways and constructed a novel metabolism-related signature (MBS) using data from 1,188 patients with PAC. We evaluated the predictive performance of MBS for immunotherapy outcomes in 11 immunotherapy cohorts from both bulk-RNA and single-cell perspectives. We validated our results using immunohistochemistry, western blotting, colony-formation assays, and an in-house cohort. RESULTS MBS was found to be negatively associated with antitumor immunity, while positively correlated with cancer stemness, intratumoral heterogeneity, and immune resistant pathways. Notably, MBS outperformed other acknowledged signatures for predicting immunotherapy response in multiple immunotherapy cohorts. Additionally, MBS was a powerful and robust biomarker for predicting prognosis compared with 66 published signatures. Further, we identified dasatinib and epothilone B as potential therapeutic options for MBS-high patients, which were validated through experiments. CONCLUSIONS Our study provides insights into the mechanisms of immunotherapy resistance in PAC and introduces MBS as a robust metabolism-based indicator for predicting response to immunotherapy and prognosis in patients with PAC. These findings have significant implications for the development of personalized treatment strategies in patients with PAC and highlight the importance of considering metabolic pathways and immune infiltration in TME regulation.
Collapse
Affiliation(s)
- Yongdong Guo
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Ronglin Wang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Jingjie Shi
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Cheng Yang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Peixiang Ma
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Jie Min
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Ting Zhao
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Lei Hua
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yang Song
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Junqiang Li
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Haichuan Su
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
72
|
Chen H, Liu Z, Zha J, Zeng L, Tang R, Tang C, Cai J, Tan C, Liu H, Dong Z, Chen G. Glucocorticoid regulation of the mTORC1 pathway modulates CD4 + T cell responses during infection. Clin Transl Immunology 2023; 12:e1464. [PMID: 37649974 PMCID: PMC10463561 DOI: 10.1002/cti2.1464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/29/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
Objectives Conventional glucocorticoid (GC) treatment poses significant risks for opportunistic infections due to its suppressive impact on CD4+ T cells. This study aimed to explore the mechanisms by which GCs modulate the functionality of CD4+ T cells during infection. Methods We consistently measured FOXP3, inflammatory cytokines and phospho-S6 ribosomal protein levels in CD4+ T cells from patients undergoing conventional GC treatment. Using Foxp3EGFP animals, we investigated the dynamic activation of the mechanistic target of rapamycin complex 1 (mTORC1) pathway and its correlation with the immunoregulatory function of CD4+ T cells under the influence of GCs. Results GCs dynamically altered the expression pattern of FOXP3 in CD4+ T cells, promoting their acquisition of an active T regulatory (Treg) cell phenotype upon stimulation. Mechanistically, GCs undermined the kinetics of the mTORC1 pathway, which was closely correlated with phenotype conversion and functional properties of CD4+ T cells. Dynamic activation of the mTORC1 signaling modified the GC-dampened immunoregulatory capacity of CD4+ T cells by phenotypically and functionally bolstering the FOXP3+ Treg cells. Interventions targeting the mTORC1 pathway effectively modulated the GC-dampened immunoregulatory capacity of CD4+ T cells. Conclusion These findings highlight a novel mTORC1-mediated mechanism underlying CD4+ T cell immunity in the context of conventional GC treatment.
Collapse
Affiliation(s)
- Huihui Chen
- Department of Ophthalmologythe Second Xiangya Hospital of Central South UniversityChangshaChina
- Clinical Immunology Research Center of Central South UniversityChangshaChina
| | - Zhiwen Liu
- Department of Nephrologythe Second Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Kidney Disease and Blood Purificationthe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Jie Zha
- Department of Nephrologythe Second Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Kidney Disease and Blood Purificationthe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Li Zeng
- Department of Nephrologythe Second Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Kidney Disease and Blood Purificationthe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Runyan Tang
- Department of Nephrologythe Second Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Kidney Disease and Blood Purificationthe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Chengyuan Tang
- Department of Nephrologythe Second Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Kidney Disease and Blood Purificationthe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Juan Cai
- Department of Nephrologythe Second Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Kidney Disease and Blood Purificationthe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Chongqing Tan
- Department of Pharmacythe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Hong Liu
- Department of Nephrologythe Second Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Kidney Disease and Blood Purificationthe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Zheng Dong
- Department of Cellular Biology and AnatomyMedical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical CenterAugustaGAUSA
| | - Guochun Chen
- Clinical Immunology Research Center of Central South UniversityChangshaChina
- Department of Nephrologythe Second Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Kidney Disease and Blood Purificationthe Second Xiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
73
|
Parker M, Zheng Z, Lasarev M, Alexandridis RA, Newton MA, Shelef MA, McCoy SS. Novel autoantibodies help diagnose anti-SSA antibody negative Sjögren's disease and predict abnormal labial salivary gland pathology. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.29.23294775. [PMID: 37693588 PMCID: PMC10491389 DOI: 10.1101/2023.08.29.23294775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Objectives Sj□gren's disease (SjD) diagnosis requires either positive anti-SSA antibodies or a labial salivary gland biopsy with a positive focus score (FS). One-third of SjD patients lack anti-SSA antibodies (SSA-), requiring a positive FS for diagnosis. Our objective was to identify novel autoantibodies to diagnose 'seronegative' SjD. Methods IgG binding to a high density whole human peptidome array was quantified using sera from SSA- SjD cases and matched non-autoimmune controls. We identified the highest bound peptides using empirical Bayesian statistical filters, which we confirmed in an independent cohort comprising SSA- SjD (n=76), sicca controls without autoimmunity (n=75), and autoimmune controls (SjD features but not meeting SjD criteria; n=41). In this external validation, we used non-parametric methods for peptide abundance and controlled false discovery rate in group comparisons. For predictive modeling, we used logistic regression, model selection methods, and cross-validation to identify clinical and peptide variables that predict SSA- SjD and FS positivity. Results IgG against a peptide from D-aminoacyl-tRNA deacylase (DTD2) was bound more in SSA- SjD than sicca controls (p=.004) and more than combined controls (sicca and autoimmune controls combined; p=0.003). IgG against peptides from retroelement silencing factor-1 (RESF1) and DTD2, were bound more in FS-positive than FS-negative participants (p=.010; p=0.012). A predictive model incorporating clinical variables showed good discrimination between SjD versus control (AUC 74%) and between FS-positive versus FS-negative (AUC 72%). Conclusion We present novel autoantibodies in SSA- SjD that have good predictive value for SSA- SjD and FS-positivity. KEY MESSAGES What is already known on this topic - Seronegative (anti-SSA antibody negative [SSA-]) Sjögren's disease (SjD) requires a labial salivary gland biopsy for diagnosis, which is challenging to obtain and interpret. What this study adds - We identified novel autoantibodies in SSA- SjD that, when combined with readily available clinical variables, provide good predictive ability to discriminate 1) SSA- SjD from control participants and 2) abnormal salivary gland biopsies from normal salivary gland biopsies. How this study might affect research, practice or policy - This study provides novel diagnostic antibodies addressing the critical need for improvement of SSA- SjD diagnostic tools.
Collapse
|
74
|
Lee JY, Lee JH, Lim HJ, Kim E, Kim DK, Choi JK. Aminooxy acetic acid suppresses Th17-mediated psoriasis-like skin inflammation by inhibiting serine metabolism. Front Pharmacol 2023; 14:1215861. [PMID: 37649889 PMCID: PMC10464615 DOI: 10.3389/fphar.2023.1215861] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023] Open
Abstract
Background: Psoriasis is a common chronic inflammatory skin disease characterized by an external red rash that is caused by abnormal proliferation and differentiation of keratinocytes and immune T cells. This study aimed to elucidate the role of aminooxy acetic acid (AOA) in alleviating psoriasis from the perspective of immunology and metabolomics. Therefore, contributing to the development of new drugs as candidates for psoriasis treatment. Methods: To investigate the symptom-alleviating effects and the related mechanisms of AOA on the treatment of psoriasis, we used a 12-O-tetradecanoylphorbol-13-acetate-induced psoriasis-like skin mouse model and interleukin (IL)-17-stimulated human keratinocytes. Results: The results showed that AOA ameliorated psoriasis-related symptoms and decreased inflammation-associated antimicrobial peptides and T-helper 17 (Th17)-associated cytokines in a mouse model of psoriasis. Furthermore, AOA inhibited the activation of mechanistic target of rapamycin (mTOR) by suppressing serine metabolism-related genes. Importantly, mTOR inhibition ameliorated psoriatic disease by affecting the differentiation of various T cells and normalizing the Th17/regulatory T (Treg) cell balance. In addition, IL-17-stimulated human keratinocytes showed the same results as in the in vivo experiments. Conclusion: Taken together, these results suggest that targeting the serine metabolism pathway in the treatment of psoriasis is a novel strategy, and that AOA could be utilized as a novel biologic to treat psoriasis.
Collapse
Affiliation(s)
- Jong Yeong Lee
- Department of Immunology, Jeonbuk National University Medical School, Jeonju-si, Republic of Korea
| | - Ji-Hyun Lee
- Department of Immunology, Jeonbuk National University Medical School, Jeonju-si, Republic of Korea
| | - Hyo Jung Lim
- Department of Immunology, Jeonbuk National University Medical School, Jeonju-si, Republic of Korea
| | - Eonho Kim
- Department of Physical Education, Dongguk University, Seoul, Republic of Korea
| | - Dae-Ki Kim
- Department of Immunology, Jeonbuk National University Medical School, Jeonju-si, Republic of Korea
| | - Jin Kyeong Choi
- Department of Immunology, Jeonbuk National University Medical School, Jeonju-si, Republic of Korea
| |
Collapse
|
75
|
Gedaly R, Orozco G, Ancheta AP, Donoho M, Desai SN, Chapelin F, Khurana A, Lewis LJ, Zhang C, Marti F. Metabolic Disruption Induced by mTOR Signaling Pathway Inhibition in Regulatory T-Cell Expansion for Clinical Application. Cells 2023; 12:2066. [PMID: 37626877 PMCID: PMC10453008 DOI: 10.3390/cells12162066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Regulatory T cell (Treg) therapy is considered an alternative approach to induce tolerance in transplantation. If successful, this therapy may have implications on immunosuppression minimization/withdrawal to reduce drug-induced toxicity in patients. The aim of this study was to assess the efficacy of the mTORC1/C2 inhibitor, AZD8055, in the manufacturing of clinically competent Treg cells and compare the effects with those induced by rapamycin (RAPA), another mTOR inhibitor commonly used in Treg expansion protocols. METHODS Primary human Treg cells were isolated from leukapheresis product. Cell viability, expansion rates, suppressive function, autophagy, mitochondrial unfolded protein response (mitoUPR), and cell metabolic profile were assessed. RESULTS We observed a stronger inhibition of the mTORC2 signaling pathway and downstream events triggered by Interleukin 2 (IL2)-receptor in AZD8055-treated cells compared with those treated with RAPA. AZD8055 induced progressive metabolic changes in mitochondrial respiration and glycolytic pathways that disrupted the long-term expansion and suppressive function of Tregs. Unlike RAPA, AZD8055 treatment impaired autophagy and enhanced the mitoUPR cell stress response pathway. CONCLUSIONS A distinct pattern of mTOR inhibition by AZD, compared with RAPA, induced mitochondrial stress response and dysfunction, impaired autophagy, and disrupted cellular bioenergetics, resulting in the loss of proliferative potential and suppressive function of Treg cells.
Collapse
Affiliation(s)
- Roberto Gedaly
- Transplant Division, Department of Surgery, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (R.G.); (G.O.); (A.P.A.); (M.D.); (S.N.D.); (L.J.L.)
- Lucillle Parker Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (F.C.); (A.K.)
- Division of Transplantation, Section for Quality and Biostatistics, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Alliance Research Initiative (TILT Alliance), College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Gabriel Orozco
- Transplant Division, Department of Surgery, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (R.G.); (G.O.); (A.P.A.); (M.D.); (S.N.D.); (L.J.L.)
| | - Alexandre P. Ancheta
- Transplant Division, Department of Surgery, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (R.G.); (G.O.); (A.P.A.); (M.D.); (S.N.D.); (L.J.L.)
- Alliance Research Initiative (TILT Alliance), College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Mackenzie Donoho
- Transplant Division, Department of Surgery, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (R.G.); (G.O.); (A.P.A.); (M.D.); (S.N.D.); (L.J.L.)
| | - Siddharth N. Desai
- Transplant Division, Department of Surgery, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (R.G.); (G.O.); (A.P.A.); (M.D.); (S.N.D.); (L.J.L.)
- Alliance Research Initiative (TILT Alliance), College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Fanny Chapelin
- Lucillle Parker Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (F.C.); (A.K.)
- Alliance Research Initiative (TILT Alliance), College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Biomedical Engineering, College of Medicine, University of Kentucky, Lexington, KY 40506, USA
| | - Aman Khurana
- Lucillle Parker Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (F.C.); (A.K.)
- Alliance Research Initiative (TILT Alliance), College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Radiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Lillie J. Lewis
- Transplant Division, Department of Surgery, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (R.G.); (G.O.); (A.P.A.); (M.D.); (S.N.D.); (L.J.L.)
| | - Cuiping Zhang
- Flow Cytometry & Immune Monitoring Core Facility, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
| | - Francesc Marti
- Transplant Division, Department of Surgery, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (R.G.); (G.O.); (A.P.A.); (M.D.); (S.N.D.); (L.J.L.)
- Lucillle Parker Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (F.C.); (A.K.)
- Division of Transplantation, Section for Quality and Biostatistics, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Alliance Research Initiative (TILT Alliance), College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
76
|
Fallone L, Walzer T, Marçais A. Signaling Pathways Leading to mTOR Activation Downstream Cytokine Receptors in Lymphocytes in Health and Disease. Int J Mol Sci 2023; 24:12736. [PMID: 37628917 PMCID: PMC10454121 DOI: 10.3390/ijms241612736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
CD8+ T cells and Natural Killer (NK) cells are cytotoxic lymphocytes important in the response to intracellular pathogens and cancer. Their activity depends on the integration of a large set of intracellular and environmental cues, including antigenic signals, cytokine stimulation and nutrient availability. This integration is achieved by signaling hubs, such as the mechanistic target of rapamycin (mTOR). mTOR is a conserved protein kinase that controls cellular growth and metabolism in eukaryotic cells and, therefore, is essential for lymphocyte development and maturation. However, our current understanding of mTOR signaling comes mostly from studies performed in transformed cell lines, which constitute a poor model for comprehending metabolic pathway regulation. Therefore, it is only quite recently that the regulation of mTOR in primary cells has been assessed. Here, we review the signaling pathways leading to mTOR activation in CD8+ T and NK cells, focusing on activation by cytokines. We also discuss how this knowledge can contribute to immunotherapy development, particularly for cancer treatment.
Collapse
Affiliation(s)
| | | | - Antoine Marçais
- CIRI—Centre International de Recherche en Infectiologie (Team Lyacts), Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France; (L.F.); (T.W.)
| |
Collapse
|
77
|
Korn T. Foxp3 + regulatory T cells in the central nervous system and other nonlymphoid tissues. Eur J Immunol 2023; 53:e2250227. [PMID: 37143298 DOI: 10.1002/eji.202250227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 05/02/2023] [Indexed: 05/06/2023]
Abstract
Foxp3+ regulatory T (Treg) cells are indispensable for the maintenance of immunologic self-tolerance as well as for the confinement of autoimmune inflammation after the breach of self-tolerance. In order to fulfill these tasks, Treg cells operate in secondary lymphoid tissues and nonlymphoid tissues. The conditions for Treg cell stability and for their modes of action are different according to their compartment of residence. In addition, Treg cells initiate residency programs to inhabit niches in nonlympoid tissues (NLT) in steady state and after re-establishment of previously deflected homeostasis for extended periods of time. These NLT Treg cells are different from lymphoid tissue residing Treg cells and are functionally specialized to subserve not only immune functions but support intrinsic functions of their tissue of residence. This review will highlight current ideas about the functional specialization of NLT Treg cells in particular in the central nervous system (CNS) and discuss challenges that we are facing in an effort to exploit the power of NLT Treg cells for maintenance of tissue homeostasis and perhaps also tissue regeneration.
Collapse
Affiliation(s)
- Thomas Korn
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine, Munich, Germany
- Department of Neurology, Technical University of Munich School of Medicine, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
78
|
Liew MY, Mathews JI, Li A, Singh R, Jaramillo SA, Weiss ZF, Bowman K, Ankomah PO, Ghantous F, Lewis GD, Neuringer I, Bitar N, Lipiner T, Dighe AS, Kotton CN, Seaman MS, Lemieux JE, Goldberg MB. Delayed and Attenuated Antibody Responses to Coronavirus Disease 2019 Vaccination With Poor Cross-Variant Neutralization in Solid-Organ Transplant Recipients-A Prospective Longitudinal Study. Open Forum Infect Dis 2023; 10:ofad369. [PMID: 37577118 PMCID: PMC10414143 DOI: 10.1093/ofid/ofad369] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Background Therapeutically immunosuppressed transplant recipients exhibit attenuated responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines. To elucidate the kinetics and variant cross-protection of vaccine-induced antibodies in this population, we conducted a prospective longitudinal study in heart and lung transplant recipients receiving the SARS-CoV-2 messenger RNA (mRNA) 3-dose vaccination series. Methods We measured longitudinal serum antibody and neutralization responses against the ancestral and major variants of SARS-CoV-2 in SARS-CoV-2-uninfected lung (n = 18) and heart (n = 17) transplant recipients, non-lung-transplanted patients with cystic fibrosis (n = 7), and healthy controls (n = 12) before, during, and after the primary mRNA vaccination series. Results Among healthy controls, strong anti-spike responses arose immediately following vaccination and displayed cross-neutralization against all variants. In contrast, among transplant recipients, after the first 2 vaccine doses, increases in antibody concentrations occurred gradually, and cross-neutralization was completely absent against the Omicron B.1.1.529 variant. However, most (73%) of the transplant recipients had a significant response to the third vaccine dose, reaching levels comparable to those of healthy controls, with improved but attenuated neutralization of immune evasive variants, particularly Beta, Gamma, and Omicron. Responses in non-lung-transplanted patients with cystic fibrosis paralleled those in healthy controls. Conclusions In this prospective, longitudinal analysis of variant-specific antibody responses, lung and heart transplant recipients display delayed and defective responses to the first 2 SARS-CoV-2 vaccine doses but significantly augmented responses to a third dose. Gaps in antibody-mediated immunity among transplant recipients are compounded by decreased neutralization against Omicron variants, leaving many patients with substantially weakened immunity against currently circulating variants.
Collapse
Affiliation(s)
- May Y Liew
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Josh I Mathews
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Amy Li
- Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Rohan Singh
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Salvador A Jaramillo
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Zoe F Weiss
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kathryn Bowman
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Pierre O Ankomah
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Fadi Ghantous
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Gregory D Lewis
- Heart Transplant Program, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Isabel Neuringer
- Pulmonary and Critical Care, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Natasha Bitar
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Taryn Lipiner
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Anand S Dighe
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Camille N Kotton
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jacob E Lemieux
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Infectious Disease and Microbiome Program, The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marcia B Goldberg
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Infectious Disease and Microbiome Program, The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
79
|
Kučan D, Oršolić N, Odeh D, Ramić S, Jakopović B, Knežević J, Jazvinšćak Jembrek M. The Role of Hyperthermia in Potentiation of Anti-Angiogenic Effect of Cisplatin and Resveratrol in Mice Bearing Solid Form of Ehrlich Ascites Tumour. Int J Mol Sci 2023; 24:11073. [PMID: 37446252 DOI: 10.3390/ijms241311073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of this study was to investigate the therapeutic potential of resveratrol in combination with cisplatin on the inhibition of tumour angiogenesis, growth, and macrophage polarization in mice bearing the solid form of an Ehrlich ascites tumour (EAT) that were exposed to whole-body hyperthermia treatment. In addition, we investigated whether a multimodal approach with hyperthermia and resveratrol could abolish cisplatin resistance in tumour cells through the modulation of histone deacetylase (HDAC) activity and levels of heat shock proteins (HSP70/HSP90) and contribute to the direct toxicity of cisplatin on tumour cells. The tumour was induced by injecting 1 × 106 EAT cells subcutaneously (sc) into the thighs of Balb/c mice. The mice were treated with resveratrol per os for five consecutive days beginning on day 2 after tumour injection and/or by injecting cisplatin intraperitoneally (ip) at a dose of 2.5 mg/kg on days 10 and 12 and at a dose of 5 mg/kg on day 15. Immediately thereafter, the mice were exposed to systemic hyperthermia for 15 min at a temperature of 41 °C. The obtained results showed that the administration of resveratrol did not significantly contribute to the antitumour effect of cisplatin and hyperthermia, but it partially contributed to the immunomodulatory effect and to the reduction of cisplatin toxicity and to a slight increase in animal survival. This treatment schedule did not affect microvessel density, but it inhibited tumour growth and modulated macrophage polarization to the M1 phenotype. Furthermore, it abolished the resistance of tumour cells to cisplatin by modulating HDAC activity and the concentration of HSP70 and HSP90 chaperones, contributing to the increased lifespan of mice. However, the precise mechanism of the interaction between resveratrol, cisplatin, and hyperthermia needs to be investigated further.
Collapse
Affiliation(s)
- Darko Kučan
- Division of Abdominal Surgery and Organ Transplantation, Department of Surgery, University Hospital Merkur, Zajčeva 19, 10000 Zagreb, Croatia
| | - Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Dyana Odeh
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Snježana Ramić
- Department of Pathology, University Cancer Hospital, Sestre Milosrdnice University Hospital Centre, Ilica 197, 10000 Zagreb, Croatia
| | - Boris Jakopović
- Dr Myko San-Health from Mushrooms Co., Miramarska Cesta 109, 10000 Zagreb, Croatia
| | - Jelena Knežević
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
| |
Collapse
|
80
|
Stieg DC, Parris JLD, Yang THL, Mirji G, Reiser SK, Murali N, Werts M, Barnoud T, Lu DY, Shinde R, Murphy ME, Claiborne DT. The African-centric P47S Variant of TP53 Confers Immune Dysregulation and Impaired Response to Immune Checkpoint Inhibition. CANCER RESEARCH COMMUNICATIONS 2023; 3:1200-1211. [PMID: 37441266 PMCID: PMC10335007 DOI: 10.1158/2767-9764.crc-23-0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/18/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023]
Abstract
The tumor suppressor TP53 is the most frequently mutated gene in cancer and is mutationally inactivated in 50% of sporadic tumors. Inactivating mutations in TP53 also occur in Li Fraumeni syndrome (LFS). In addition to germline mutations in TP53 in LFS that completely inactivate this protein, there are many more germline mutant forms of TP53 in human populations that partially inactivate this protein: we call these partially inactivating mutations "hypomorphs." One of these hypomorphs is a SNP that exists in 6%-10% of Africans and 1%-2% of African Americans, which changes proline at amino acid 47 to serine (Pro47Ser; P47S). We previously showed that the P47S variant of p53 is intrinsically impaired for tumor suppressor function, and that this SNP is associated with increased cancer risk in mice and humans. Here we show that this SNP also influences the tumor microenvironment, and the immune microenvironment profile in P47S mice is more protumorigenic. At basal levels, P47S mice show impaired memory T-cell formation and function, along with increased anti-inflammatory (so-called "M2") macrophages. We show that in tumor-bearing P47S mice, there is an increase in immunosuppressive myeloid-derived suppressor cells and decreased numbers of activated dendritic cells, macrophages, and B cells, along with evidence for increased T-cell exhaustion in the tumor microenvironment. Finally, we show that P47S mice demonstrate an incomplete response to anti-PD-L1 therapy. Our combined data suggest that the African-centric P47S variant leads to both intrinsic and extrinsic defects in tumor suppression. Significance Findings presented here show that the P47S variant of TP53 influences the immune microenvironment, and the immune response to cancer. This is the first time that a naturally occurring genetic variant of TP53 has been shown to negatively impact the immune microenvironment and the response to immunotherapy.
Collapse
Affiliation(s)
- David C. Stieg
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Joshua L. D. Parris
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Tyler Hong Loong Yang
- Program in Immunology, Microenvironment, and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Gauri Mirji
- Program in Immunology, Microenvironment, and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Sarah Kim Reiser
- Program in Immunology, Microenvironment, and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Nivitha Murali
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Madison Werts
- Program in Immunology, Microenvironment, and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Thibaut Barnoud
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - David Y. Lu
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Rahul Shinde
- Program in Immunology, Microenvironment, and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Maureen E. Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Daniel T. Claiborne
- Program in Immunology, Microenvironment, and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania
| |
Collapse
|
81
|
Wu H, Huang H, Zhao Y. Interplay between metabolic reprogramming and post-translational modifications: from glycolysis to lactylation. Front Immunol 2023; 14:1211221. [PMID: 37457701 PMCID: PMC10338923 DOI: 10.3389/fimmu.2023.1211221] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Cellular metabolism plays a critical role in determining the fate and function of cells. Metabolic reprogramming and its byproducts have a complex impact on cellular activities. In quiescent T cells, oxidative phosphorylation (OXPHOS) is the primary pathway for survival. However, upon antigen activation, T cells undergo rapid metabolic reprogramming, characterized by an elevation in both glycolysis and OXPHOS. While both pathways are induced, the balance predominantly shifts towards glycolysis, enabling T cells to rapidly proliferate and enhance their functionality, representing the most distinctive signature during activation. Metabolic processes generate various small molecules resulting from enzyme-catalyzed reactions, which also modulate protein function and exert regulatory control. Notably, recent studies have revealed the direct modification of histones, known as lactylation, by lactate derived from glycolysis. This lactylation process influences gene transcription and adds a novel variable to the regulation of gene expression. Protein lactylation has been identified as an essential mechanism by which lactate exerts its diverse functions, contributing to crucial biological processes such as uterine remodeling, tumor proliferation, neural system regulation, and metabolic regulation. This review focuses on the metabolic reprogramming of T cells, explores the interplay between lactate and the immune system, highlights the impact of lactylation on cellular function, and elucidates the intersection of metabolic reprogramming and epigenetics.
Collapse
Affiliation(s)
- Hengwei Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, People's Government of Zhejiang Province, Hangzhou, Zhejiang, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, People's Government of Zhejiang Province, Hangzhou, Zhejiang, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, People's Government of Zhejiang Province, Hangzhou, Zhejiang, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| |
Collapse
|
82
|
Motz KM, Lina IA, Samad I, Murphy MK, Duvvuri M, Davis RJ, Gelbard A, Chung L, Chan-Li Y, Collins S, Powell JD, Elisseeff JH, Horton MR, Hillel AT. Sirolimus-eluting airway stent reduces profibrotic Th17 cells and inhibits laryngotracheal stenosis. JCI Insight 2023; 8:e158456. [PMID: 37159282 PMCID: PMC10393235 DOI: 10.1172/jci.insight.158456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/28/2023] [Indexed: 05/10/2023] Open
Abstract
Laryngotracheal stenosis (LTS) is pathologic fibrotic narrowing of the larynx and trachea characterized by hypermetabolic fibroblasts and CD4+ T cell-mediated inflammation. However, the role of CD4+ T cells in promoting LTS fibrosis is unknown. The mTOR signaling pathways have been shown to regulate the T cell phenotype. Here we investigated the influence of mTOR signaling in CD4+ T cells on LTS pathogenesis. In this study, human LTS specimens revealed a higher population of CD4+ T cells expressing the activated isoform of mTOR. In a murine LTS model, targeting mTOR with systemic sirolimus and a sirolimus-eluting airway stent reduced fibrosis and Th17 cells. Selective deletion of mTOR in CD4+ cells reduced Th17 cells and attenuated fibrosis, demonstrating CD4+ T cells' pathologic role in LTS. Multispectral immunofluorescence of human LTS revealed increased Th17 cells. In vitro, Th17 cells increased collagen-1 production by LTS fibroblasts, which was prevented with sirolimus pretreatment of Th17 cells. Collectively, mTOR signaling drove pathologic CD4+ T cell phenotypes in LTS, and targeting mTOR with sirolimus was effective at treating LTS through inhibition of profibrotic Th17 cells. Finally, sirolimus may be delivered locally with a drug-eluting stent, transforming clinical therapy for LTS.
Collapse
Affiliation(s)
- Kevin M. Motz
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ioan A. Lina
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Idris Samad
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California, USA
| | - Michael K. Murphy
- Department of Otolaryngology, State University of New York, Upstate Medical University, Syracuse, New York, USA
| | - Madhavi Duvvuri
- Department of Radiology, University of California, San Francisco, San Francisco, California, USA
| | - Ruth J. Davis
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Alexander Gelbard
- Department of Otolaryngology Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Liam Chung
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering
| | - Yee Chan-Li
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Samuel Collins
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | - Jennifer H. Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering
| | - Maureen R. Horton
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alexander T. Hillel
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
83
|
Arwood ML, Sun IH, Patel CH, Sun IM, Oh MH, Bettencourt IA, Claiborne MD, Chan-Li Y, Zhao L, Waickman AT, Mavrothalassitis O, Wen J, Aja S, Powell JD. Serendipitous Discovery of T Cell-Produced KLK1b22 as a Regulator of Systemic Metabolism. Immunohorizons 2023; 7:493-507. [PMID: 37358498 PMCID: PMC10580127 DOI: 10.4049/immunohorizons.2300016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/05/2023] [Indexed: 06/27/2023] Open
Abstract
In order to study mechanistic/mammalian target of rapamycin's role in T cell differentiation, we generated mice in which Rheb is selectively deleted in T cells (T-Rheb-/- C57BL/6J background). During these studies, we noted that T-Rheb-/- mice were consistently heavier but had improved glucose tolerance and insulin sensitivity as well as a marked increase in beige fat. Microarray analysis of Rheb-/- T cells revealed a marked increase in expression of kallikrein 1-related peptidase b22 (Klk1b22). Overexpression of KLK1b22 in vitro enhanced insulin receptor signaling, and systemic overexpression of KLK1b22 in C57BL/6J mice also enhances glucose tolerance. Although KLK1B22 expression was markedly elevated in the T-Rheb-/- T cells, we never observed any expression in wild-type T cells. Interestingly, in querying the mouse Immunologic Genome Project, we found that Klk1b22 expression was also increased in wild-type 129S1/SVLMJ and C3HEJ mice. Indeed, both strains of mice demonstrate exceptionally improved glucose tolerance. This prompted us to employ CRISPR-mediated knockout of KLK1b22 in 129S1/SVLMJ mice, which in fact led to reduced glucose tolerance. Overall, our studies reveal (to our knowledge) a novel role for KLK1b22 in regulating systemic metabolism and demonstrate the ability of T cell-derived KLK1b22 to regulate systemic metabolism. Notably, however, further studies have revealed that this is a serendipitous finding unrelated to Rheb.
Collapse
Affiliation(s)
- Matthew L. Arwood
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Im-Hong Sun
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Chirag H. Patel
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Im-Meng Sun
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Min-Hee Oh
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ian A. Bettencourt
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Michael D. Claiborne
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Yee Chan-Li
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Liang Zhao
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Adam T. Waickman
- State University of New York Upstate Medical University, Syracuse, NY
| | - Orestes Mavrothalassitis
- Department of Anesthesia, University of California, San Francisco School of Medicine, San Francisco, CA
| | - Jiayu Wen
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins Medicine, Baltimore, MD
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jonathan D. Powell
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney-Kimmel Comprehensive Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
84
|
Kumar V, Stewart JH. Immunometabolic reprogramming, another cancer hallmark. Front Immunol 2023; 14:1125874. [PMID: 37275901 PMCID: PMC10235624 DOI: 10.3389/fimmu.2023.1125874] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Molecular carcinogenesis is a multistep process that involves acquired abnormalities in key biological processes. The complexity of cancer pathogenesis is best illustrated in the six hallmarks of the cancer: (1) the development of self-sufficient growth signals, (2) the emergence of clones that are resistant to apoptosis, (3) resistance to the antigrowth signals, (4) neo-angiogenesis, (5) the invasion of normal tissue or spread to the distant organs, and (6) limitless replicative potential. It also appears that non-resolving inflammation leads to the dysregulation of immune cell metabolism and subsequent cancer progression. The present article delineates immunometabolic reprogramming as a critical hallmark of cancer by linking chronic inflammation and immunosuppression to cancer growth and metastasis. We propose that targeting tumor immunometabolic reprogramming will lead to the design of novel immunotherapeutic approaches to cancer.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, United States
| | - John H. Stewart
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, United States
- Louisiana State University- Louisiana Children’s Medical Center, Stanley S. Scott, School of Medicine, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, United States
| |
Collapse
|
85
|
Dou X, Chen R, Yang J, Dai M, Long J, Sun S, Lin Y. The potential role of T-cell metabolism-related molecules in chronic neuropathic pain after nerve injury: a narrative review. Front Immunol 2023; 14:1107298. [PMID: 37266437 PMCID: PMC10229812 DOI: 10.3389/fimmu.2023.1107298] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/27/2023] [Indexed: 06/03/2023] Open
Abstract
Neuropathic pain is a common type of chronic pain, primarily caused by peripheral nerve injury. Different T-cell subtypes play various roles in neuropathic pain caused by peripheral nerve damage. Peripheral nerve damage can lead to co-infiltration of neurons and other inflammatory cells, thereby altering the cellular microenvironment and affecting cellular metabolism. By elaborating on the above, we first relate chronic pain to T-cell energy metabolism. Then we summarize the molecules that have affected T-cell energy metabolism in the past five years and divide them into two categories. The first category could play a role in neuropathic pain, and we explain their roles in T-cell function and chronic pain, respectively. The second category has not yet been involved in neuropathic pain, and we focus on how they affect T-cell function by influencing T-cell metabolism. By discussing the above content, this review provides a reference for studying the direct relationship between chronic pain and T-cell metabolism and searching for potential therapeutic targets for the treatment of chronic pain on the level of T-cell energy metabolism.
Collapse
Affiliation(s)
- Xiaoke Dou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juexi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Maosha Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junhao Long
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shujun Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
86
|
Roy S, Batra L. Protein Phosphatase 2A: Role in T Cells and Diseases. J Immunol Res 2023; 2023:4522053. [PMID: 37234102 PMCID: PMC10208765 DOI: 10.1155/2023/4522053] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Protein phosphatase 2A (PP2A) is a serine-threonine phosphatase that plays an important role in the regulation of cell proliferation and signal transduction. The catalytic activity of PP2A is integral in the maintenance of physiological functions which gets severely impaired in its absence. PP2A plays an essential role in the activation, differentiation, and functions of T cells. PP2A suppresses Th1 cell differentiation while promoting Th2 cell differentiation. PP2A fosters Th17 cell differentiation which contributes to the pathogenesis of systemic lupus erythematosus (SLE) by enhancing the transactivation of the Il17 gene. Genetic deletion of PP2A in Tregs disrupts Foxp3 expression due to hyperactivation of mTORC1 signaling which impairs the development and immunosuppressive functions of Tregs. PP2A is important in the induction of Th9 cells and promotes their antitumor functions. PP2A activation has shown to reduce neuroinflammation in a mouse model of experimental autoimmune encephalomyelitis (EAE) and is now used to treat multiple sclerosis (MS) clinically. In this review, we will discuss the structure and functions of PP2A in T cell differentiation and diseases and therapeutic applications of PP2A-mediated immunotherapy.
Collapse
Affiliation(s)
- Suyasha Roy
- Immuno-Biology Laboratory, Translational Health Science and Technology Institute, Faridabad, India
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lalit Batra
- Regional Biocontainment Laboratory, Center for Predictive Medicine, University of Louisville, Louisville, KY, USA
| |
Collapse
|
87
|
Saadh MJ, Kazemi K, Khorramdelazad H, Mousavi MJ, Noroozi N, Masoumi M, Karami J. Role of T cells in the pathogenesis of systemic lupus erythematous: Focus on immunometabolism dysfunctions. Int Immunopharmacol 2023; 119:110246. [PMID: 37148769 DOI: 10.1016/j.intimp.2023.110246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/08/2023]
Abstract
Evidence demonstrates that T cells are implicated in developing SLE, and each of them dominantly uses distinct metabolic pathways. Indeed, intracellular enzymes and availability of specific nutrients orchestrate fate of T cells and lead to differentiation of regulatory T cells (Treg), memory T cells, helper T cells, and effector T cells. The function of T cells in inflammatory and autoimmune responses is determined by metabolic processes and activity of their enzymes. Several studies were conducted to determine metabolic abnormalities in SLE patients and clarify how these modifications could control the functions of the involved T cells. Metabolic pathways such as glycolysis, mitochondrial pathways, oxidative stress, mTOR pathway, fatty acid and amino acid metabolisms are dysregulated in SLE T cells. Moreover, immunosuppressive drugs used in treating autoimmune diseases, including SLE, could affect immunometabolism. Developing drugs to regulate autoreactive T cell metabolism could be a promising therapeutic approach for SLE treatment. Accordingly, increased knowledge about metabolic processes paves the way to understanding SLE pathogenesis better and introduces novel therapeutic options for SLE treatment. Although monotherapy with metabolic pathways modulators might not be sufficient to prevent autoimmune disease, they may be an ideal adjuvant to reduce administration doses of immunosuppressive drugs, thus reducing drug-associated adverse effects. This review summarized emerging data about T cells that are involved in SLE pathogenesis, focusing on immunometabolism dysregulation and how these modifications could affect the disease development.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Department of Basic Sciences, Faculty of Pharmacy, Middle East University, Amman, Jordan; Applied Science Private University, Amman, Jordan
| | | | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Mousavi
- Department of Hematology, School of Para-Medicine, Bushehr University of Medical Sciences, Bushehr, Iran; Student Research and Technology Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Negar Noroozi
- Student Research and Technology Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Maryam Masoumi
- Clinical Research Development Center, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran.
| | - Jafar Karami
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran.
| |
Collapse
|
88
|
Dong Y, Gao L, Sun Q, Jia L, Liu D. Increased levels of IL-17 and autoantibodies following Bisphenol A exposure were associated with activation of PI3K/AKT/mTOR pathway and abnormal autophagy in MRL/lpr mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114788. [PMID: 36948005 DOI: 10.1016/j.ecoenv.2023.114788] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Bisphenol A (BPA) is a common environmental endocrine disruptor which mimic the effect of estrogen. The immunotoxicity of BPA has attracted widespread attention in recent years. However, the effects and mechanism of BPA on autoimmune disease were rarely reported. Systemic lupus erythematosus (SLE) is a typical autoimmune disease, and its etiology and mechanism are complex and unclear. Currently, inflammation and the production of autoantibodies are considered to be important pathological mechanisms of SLE, and estrogen contributes to the occurrence and development of SLE. Therefore, in order to explore whether BPA exposure can affect the development of SLE and its possible mechanism, we used MRL/lpr (lupus-prone mice) and C57/BL6 female mice exposed to 0.1 and 0.2 µg/mL BPA for 6 weeks. We discovered that BPA exposure increased the concentration of serum anti-dsDNA antibody and IL-17, and the level of RORγt protein (the transcription factor of Th17 cells). Moreover, there were higher expression of p-PI3K, p-AKT, p-mTOR, ULK, Rubicon, P62, Becline1 and LC3 protein in spleen tissue of BPA exposed MRL/lpr mice compared with the control. However, there were no significant changes in the expression of IL-17, RORγt or mTOR in C57 mice exposed to BPA at the same dose. Our study implied that BPA exposure induced the development of SLE, which might be related to the up-regulation of PI3K/AKT/mTOR signaling pathway and abnormal autophagy. Our study indicated that lupus mice were more susceptible to BPA, and provided a new insight into the mechanism by which BPA exacerbated SLE. Therefore, our study suggested that autoimmune patients and susceptible population should be considered when setting thresholds for environmental BPA exposure.
Collapse
Affiliation(s)
- Youdan Dong
- Department of Rheumatology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Liang Gao
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Qi Sun
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Lihong Jia
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Dongmei Liu
- Department of Rheumatology, Shengjing Hospital of China Medical University, Shenyang 110022, China.
| |
Collapse
|
89
|
Lu S, Wei X, Zhu H, Hu Z, Zheng M, Wu J, Zhao C, Yang S, Feng D, Jia S, Zhao H, Zhao M. m 6A methyltransferase METTL3 programs CD4 + T-cell activation and effector T-cell differentiation in systemic lupus erythematosus. Mol Med 2023; 29:46. [PMID: 37013484 PMCID: PMC10068720 DOI: 10.1186/s10020-023-00643-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is an autoimmune disorder in which excessive CD4+ T-cell activation and imbalanced effector T-cell differentiation play critical roles. Recent studies have implied a potential association between posttranscriptional N6-methyladenosine (m6A) modification and CD4+ T-cell-mediated humoral immunity. However, how this biological process contributes to lupus is not well understood. In this work, we investigated the role of the m6A methyltransferase like 3 (METTL3) in CD4+ T-cell activation, differentiation, and SLE pathogenesis both in vitro and in vivo. METHODS The expression of METTL3 was knocked down and METTL3 enzyme activity was inhibited using siRNA and catalytic inhibitor, respectively. In vivo evaluation of METTL3 inhibition on CD4+ T-cell activation, effector T-cell differentiation, and SLE pathogenesis was achieved using a sheep red blood cell (SRBC)-immunized mouse model and a chronic graft versus host disease (cGVHD) mouse model. RNA-seq was performed to identify pathways and gene signatures targeted by METTL3. m6A RNA-immunoprecipitation qPCR was applied to confirm the m6A modification of METTL3 targets. RESULTS METTL3 was defective in the CD4+ T cells of SLE patients. METTL3 expression varied following CD4+ T-cell activation and effector T-cell differentiation in vitro. Pharmacological inhibition of METTL3 promoted the activation of CD4+ T cells and influenced the differentiation of effector T cells, predominantly Treg cells, in vivo. Moreover, METTL3 inhibition increased antibody production and aggravated the lupus-like phenotype in cGVHD mice. Further investigation revealed that catalytic inhibition of METTL3 reduced Foxp3 expression by enhancing Foxp3 mRNA decay in a m6A-dependent manner, hence suppressing Treg cell differentiation. CONCLUSION In summary, our findings demonstrated that METTL3 was required for stabilizing Foxp3 mRNA via m6A modification to maintain the Treg differentiation program. METTL3 inhibition contributed to the pathogenesis of SLE by participating in the activation of CD4+ T cells and imbalance of effector T-cell differentiation, which could serve as a potential target for therapeutic intervention in SLE.
Collapse
Affiliation(s)
- Shuang Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Xingyu Wei
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Huan Zhu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhi Hu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Meiling Zheng
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Jiali Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Cheng Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Shuang Yang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Delong Feng
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Sujie Jia
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Hongjun Zhao
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
| |
Collapse
|
90
|
Fu W, Wu G. Targeting mTOR for Anti-Aging and Anti-Cancer Therapy. Molecules 2023; 28:molecules28073157. [PMID: 37049920 PMCID: PMC10095787 DOI: 10.3390/molecules28073157] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
The balance between anabolism and catabolism is disrupted with aging, with the rate of anabolism being faster than that of catabolism. Therefore, mTOR, whose major function is to enhance anabolism and inhibit catabolism, has become a potential target of inhibition for anti-aging therapy. Interestingly, it was found that the downregulation of the mTOR signaling pathway had a lifespan-extending effect resembling calorie restriction. In addition, the mTOR signaling pathway promotes cell proliferation and has been regarded as a potential anti-cancer target. Rapamycin and rapalogs, such as everolimus, have proven to be effective in preventing certain tumor growth. Here, we reviewed the basic knowledge of mTOR signaling, including both mTORC1 and mTORC2. Then, for anti-aging, we cited a lot of evidence to discuss the role of targeting mTOR and its anti-aging mechanism. For cancer therapy, we also discussed the role of mTOR signaling in different types of cancers, including idiopathic pulmonary fibrosis, tumor immunity, etc. In short, we discussed the research progress and both the advantages and disadvantages of targeting mTOR in anti-aging and anti-cancer therapy. Hopefully, this review may promote more ideas to be generated for developing inhibitors of mTOR signaling to fight cancer and extend lifespan.
Collapse
Affiliation(s)
- Wencheng Fu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, the Joint International Research Laboratory of Metabolic & Developmental Sciences MOE, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, the Joint International Research Laboratory of Metabolic & Developmental Sciences MOE, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
91
|
Meyer A, Sienes RE, Nijim W, Zanotti B, Umar S, Volin MV, Van Raemdonck K, Lewis M, Pitzalis C, Arami S, Al-Awqati M, Chang HJ, Jetanalin P, Schett G, Sweiss N, Shahrara S. Syntenin-1-mediated arthritogenicity is advanced by reprogramming RA metabolic macrophages and Th1 cells. Ann Rheum Dis 2023; 82:483-495. [PMID: 36593091 PMCID: PMC10314955 DOI: 10.1136/ard-2022-223284] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/14/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Syntenin-1, a novel endogenous ligand, was discovered to be enriched in rheumatoid arthritis (RA) specimens compared with osteoarthritis synovial fluid and normal synovial tissue (ST). However, the cellular origin, immunoregulation and molecular mechanism of syntenin-1 are undescribed in RA. METHODS RA patient myeloid and lymphoid cells, as well as preclinical models, were used to investigate the impact of syntenin-1/syndecan-1 on the inflammatory and metabolic landscape. RESULTS Syntenin-1 and syndecan-1 (SDC-1) co-localise on RA ST macrophages (MΦs) and endothelial cells. Intriguingly, blood syntenin-1 and ST SDC-1 transcriptome are linked to cyclic citrullinated peptide, erythrocyte sedimentation rate, ST thickness and bone erosion. Metabolic CD14+CD86+GLUT1+MΦs reprogrammed by syntenin-1 exhibit a wide range of proinflammatory interferon transcription factors, monokines and glycolytic factors, along with reduced oxidative intermediates that are downregulated by blockade of SDC-1, glucose uptake and/or mTOR signalling. Inversely, IL-5R and PDZ1 inhibition are ineffective on RA MΦs-reprogrammed by syntenin-1. In syntenin-1-induced arthritis, F4/80+iNOS+RAPTOR+MΦs represent glycolytic RA MΦs, by amplifying the inflammatory and glycolytic networks. Those networks are abrogated in SDC-1-/- animals, while joint prorepair monokines are unaffected and the oxidative metabolites are moderately replenished. In RA cells and/or preclinical model, syntenin-1-induced arthritogenicity is dependent on mTOR-activated MΦ remodelling and its ability to cross-regulate Th1 cells via IL-12 and IL-18 induction. Moreover, RA and joint myeloid cells exposed to Syntenin-1 are primed to transform into osteoclasts via SDC-1 ligation and RANK, CTSK and NFATc1 transcriptional upregulation. CONCLUSION The syntenin-1/SDC-1 pathway plays a critical role in the inflammatory and metabolic landscape of RA through glycolytic MΦ and Th1 cell cross-regulation (graphical abstract).
Collapse
Affiliation(s)
- Anja Meyer
- Jesse Brown VA Medical Center, Chicago, Illinois, USA
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Ryan E Sienes
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Wes Nijim
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Brian Zanotti
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, Illinois, USA
| | - Sadiq Umar
- Jesse Brown VA Medical Center, Chicago, Illinois, USA
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Michael V Volin
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, Illinois, USA
| | - Katrien Van Raemdonck
- Jesse Brown VA Medical Center, Chicago, Illinois, USA
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Myles Lewis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, UK
- Centre for Translational Bioinformatics, Queen Mary University of London William Harvey Research Institute, London, UK
| | - Costantino Pitzalis
- Experimental Medicine and Rheumatology, William Harvey Research Institute, London, UK
| | - Shiva Arami
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Mina Al-Awqati
- Jesse Brown VA Medical Center, Chicago, Illinois, USA
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Huan J Chang
- Jesse Brown VA Medical Center, Chicago, Illinois, USA
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Pim Jetanalin
- Jesse Brown VA Medical Center, Chicago, Illinois, USA
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nadera Sweiss
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Shiva Shahrara
- Jesse Brown VA Medical Center, Chicago, Illinois, USA
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
92
|
Fehrenbach DJ, Nguyen B, Alexander MR, Madhur MS. Modulating T Cell Phenotype and Function to Treat Hypertension. KIDNEY360 2023; 4:e534-e543. [PMID: 36951464 PMCID: PMC10278787 DOI: 10.34067/kid.0000000000000090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 01/25/2023] [Indexed: 03/24/2023]
Abstract
Hypertension is the leading modifiable risk factor of worldwide morbidity and mortality because of its effects on cardiovascular and renal end-organ damage. Unfortunately, BP control is not sufficient to fully reduce the risks of hypertension, underscoring the need for novel therapies that address end-organ damage in hypertension. Over the past several decades, the link between immune activation and hypertension has been well established, but there are still no therapies for hypertension that specifically target the immune system. In this review, we describe the critical role played by T cells in hypertension and hypertensive end-organ damage and outline potential therapeutic targets to modulate T-cell phenotype and function in hypertension without causing global immunosuppression.
Collapse
Affiliation(s)
- Daniel J. Fehrenbach
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee
| | - Bianca Nguyen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Matthew R. Alexander
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, Tennessee
| | - Meena S. Madhur
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, Tennessee
| |
Collapse
|
93
|
Chen H, Tan C, Wang Z, Zha J, Liu H, Dong Z, Chen G. Long-term glucocorticoid exposure persistently impairs CD4+ T cell biology by epigenetically modulating the mTORC1 pathway. Biochem Pharmacol 2023; 211:115503. [PMID: 36924904 DOI: 10.1016/j.bcp.2023.115503] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023]
Abstract
Conventional glucocorticoid (GC) treatment has a long-term influence on T-cell immunity, resulting in an increased risk of opportunistic infection after drug withdrawal. The underlying mechanisms remain ambiguous. This study demonstrated that long-term GC treatment induced persistent lymphopenia in patients with primary glomerular disease. GCs continuously suppressed the proportion of CD4+ T cells even after the daily dose was tapered down to the physiologic equivalences, leading to a significant decline of the CD4/CD8 ratio. Meanwhile, GCs impaired CD4+ T cell biology, leading to enhanced apoptotic cell death, reduced proliferative capacity, downregulated pro-inflammatory genes, and upregulated immunoregulatory genes. Specifically, GCs altered FOXP3 expression pattern in CD4+ T cells and favored their acquisition of an active T regulatory (Treg) cell phenotype with enhanced IL-10 production upon stimulation. Mechanistically, GCs tampered with the transcriptional regulation of mechanistic target of rapamycin complex 1 (mTORC1) pathway, resulting in an inhibitory impact on the signaling activity. Targeting mTORC1 signaling by siRNAs could sufficiently modify the viability of GC-exposed CD4+ T cells. By high-throughput sequencing of genome-wide DNA methylation and mRNA, we further uncovered a causal relationship between the altered DNA methylation level and transcription activity in a subset of mTORC1 pathway genes in long-term GC exposure. Taken together, this study reveals a novel regulation of mTORC1 signaling, which might dominate the long-term influence of GC on CD4+ T cell biology in a dose-independent manner.
Collapse
Affiliation(s)
- Huihui Chen
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China; Clinical Immunology Research Center of Central South University, Changsha, China
| | - Chongqing Tan
- Department of Pharmacy, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiruo Wang
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Jie Zha
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Hong Liu
- Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
| | - Guochun Chen
- Clinical Immunology Research Center of Central South University, Changsha, China; Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, the Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
94
|
de Salles ÉM, Raeder PL, Angeli CB, Santiago VF, de Souza CN, Ramalho T, Câmara NOS, Palmisano G, Álvarez JM, D'Império Lima MR. P2RX7 signaling drives the differentiation of Th1 cells through metabolic reprogramming for aerobic glycolysis. Front Immunol 2023; 14:1140426. [PMID: 36993971 PMCID: PMC10040773 DOI: 10.3389/fimmu.2023.1140426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Introduction This study provides evidence of how Th1 cell metabolism is modulated by the purinergic receptor P2X7 (P2RX7), a cation cannel activated by high extracellular concentrations of adenosine triphosphate (ATP). Methods In vivo analysis was performed in the Plasmodium chabaudi model of malaria in view of the great relevance of this infectious disease for human health, as well as the availability of data concerning Th1/Tfh differentiation. Results We show that P2RX7 induces T-bet expression and aerobic glycolysis in splenic CD4+ T cells that respond to malaria, at a time prior to Th1/Tfh polarization. Cell-intrinsic P2RX7 signaling sustains the glycolytic pathway and causes bioenergetic mitochondrial stress in activated CD4+ T cells. We also show in vitro the phenotypic similarities of Th1-conditioned CD4+ T cells that do not express P2RX7 and those in which the glycolytic pathway is pharmacologically inhibited. In addition, in vitro ATP synthase blockade and the consequent inhibition of oxidative phosphorylation, which drives cellular metabolism for aerobic glycolysis, is sufficient to promote rapid CD4+ T cell proliferation and polarization to the Th1 profile in the absence of P2RX7. Conclusion These data demonstrate that P2RX7-mediated metabolic reprograming for aerobic glycolysis is a key event for Th1 differentiation and suggest that ATP synthase inhibition is a downstream effect of P2RX7 signaling that potentiates the Th1 response.
Collapse
Affiliation(s)
- Érika Machado de Salles
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo Lisboa Raeder
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Claudia Blanes Angeli
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Verônica Feijoli Santiago
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Cristiane Naffah de Souza
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Theresa Ramalho
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - José Maria Álvarez
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
95
|
Tomaszewicz M, Ronowska A, Zieliński M, Jankowska-Kulawy A, Trzonkowski P. T regulatory cells metabolism: The influence on functional properties and treatment potential. Front Immunol 2023; 14:1122063. [PMID: 37033990 PMCID: PMC10081158 DOI: 10.3389/fimmu.2023.1122063] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
CD4+CD25highFoxP3+ regulatory T cells (Tregs) constitute a small but substantial fraction of lymphocytes in the immune system. Tregs control inflammation associated with infections but also when it is improperly directed against its tissues or cells. The ability of Tregs to suppress (inhibit) the immune system is possible due to direct interactions with other cells but also in a paracrine fashion via the secretion of suppressive compounds. Today, attempts are made to use Tregs to treat autoimmune diseases, allergies, and rejection after bone marrow or organ transplantation. There is strong evidence that the metabolic program of Tregs is connected with the phenotype and function of these cells. A modulation towards a particular metabolic stage of Tregs may improve or weaken cells’ stability and function. This may be an essential tool to drive the immune system keeping it activated during infections or suppressed when autoimmunity occurs.
Collapse
Affiliation(s)
- Martyna Tomaszewicz
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Gdanísk, Poland
- Poltreg S.A., Gdanísk, Poland
- *Correspondence: Martyna Tomaszewicz,
| | - Anna Ronowska
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdanísk, Poland
| | - Maciej Zieliński
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Gdanísk, Poland
- Poltreg S.A., Gdanísk, Poland
| | | | - Piotr Trzonkowski
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Gdanísk, Poland
- Poltreg S.A., Gdanísk, Poland
| |
Collapse
|
96
|
Lin C, Traets JJH, Vredevoogd DW, Visser NL, Peeper DS. TSC2 regulates tumor susceptibility to TRAIL-mediated T-cell killing by orchestrating mTOR signaling. EMBO J 2023; 42:e111614. [PMID: 36715448 PMCID: PMC9975943 DOI: 10.15252/embj.2022111614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 01/31/2023] Open
Abstract
Resistance to cancer immunotherapy continues to impair common clinical benefit. Here, we use whole-genome CRISPR-Cas9 knockout data to uncover an important role for Tuberous Sclerosis Complex 2 (TSC2) in determining tumor susceptibility to cytotoxic T lymphocyte (CTL) killing in human melanoma cells. TSC2-depleted tumor cells had disrupted mTOR regulation following CTL attack, which was associated with enhanced cell death. Wild-type tumor cells adapted to CTL attack by shifting their mTOR signaling balance toward increased mTORC2 activity, circumventing apoptosis, and necroptosis. TSC2 ablation strongly augmented tumor cell sensitivity to CTL attack in vitro and in vivo, suggesting one of its functions is to critically protect tumor cells. Mechanistically, TSC2 inactivation caused elevation of TRAIL receptor expression, cooperating with mTORC1-S6 signaling to induce tumor cell death. Clinically, we found a negative correlation between TSC2 expression and TRAIL signaling in TCGA patient cohorts. Moreover, a lower TSC2 immune response signature was observed in melanomas from patients responding to immune checkpoint blockade. Our study uncovers a pivotal role for TSC2 in the cancer immune response by governing crosstalk between TSC2-mTOR and TRAIL signaling, aiding future therapeutic exploration of this pathway in immuno-oncology.
Collapse
Affiliation(s)
- Chun‐Pu Lin
- Division of Molecular Oncology and ImmunologyOncode Institute, The Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Joleen J H Traets
- Division of Molecular Oncology and ImmunologyOncode Institute, The Netherlands Cancer InstituteAmsterdamThe Netherlands
- Division of Tumor Biology and ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - David W Vredevoogd
- Division of Molecular Oncology and ImmunologyOncode Institute, The Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Nils L Visser
- Division of Molecular Oncology and ImmunologyOncode Institute, The Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Daniel S Peeper
- Division of Molecular Oncology and ImmunologyOncode Institute, The Netherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
97
|
Soriano-Baguet L, Grusdat M, Kurniawan H, Benzarti M, Binsfeld C, Ewen A, Longworth J, Bonetti L, Guerra L, Franchina DG, Kobayashi T, Horkova V, Verschueren C, Helgueta S, Gérard D, More TH, Henne A, Dostert C, Farinelle S, Lesur A, Gérardy JJ, Jäger C, Mittelbronn M, Sinkkonen L, Hiller K, Meiser J, Brenner D. Pyruvate dehydrogenase fuels a critical citrate pool that is essential for Th17 cell effector functions. Cell Rep 2023; 42:112153. [PMID: 36848289 DOI: 10.1016/j.celrep.2023.112153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 12/05/2022] [Accepted: 02/07/2023] [Indexed: 02/27/2023] Open
Abstract
Pyruvate dehydrogenase (PDH) is the central enzyme connecting glycolysis and the tricarboxylic acid (TCA) cycle. The importance of PDH function in T helper 17 (Th17) cells still remains to be studied. Here, we show that PDH is essential for the generation of a glucose-derived citrate pool needed for Th17 cell proliferation, survival, and effector function. In vivo, mice harboring a T cell-specific deletion of PDH are less susceptible to developing experimental autoimmune encephalomyelitis. Mechanistically, the absence of PDH in Th17 cells increases glutaminolysis, glycolysis, and lipid uptake in a mammalian target of rapamycin (mTOR)-dependent manner. However, cellular citrate remains critically low in mutant Th17 cells, which interferes with oxidative phosphorylation (OXPHOS), lipid synthesis, and histone acetylation, crucial for transcription of Th17 signature genes. Increasing cellular citrate in PDH-deficient Th17 cells restores their metabolism and function, identifying a metabolic feedback loop within the central carbon metabolism that may offer possibilities for therapeutically targeting Th17 cell-driven autoimmunity.
Collapse
Affiliation(s)
- Leticia Soriano-Baguet
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Melanie Grusdat
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Henry Kurniawan
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Mohaned Benzarti
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg; Faculty of Science, Technology, and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Carole Binsfeld
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Anouk Ewen
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Joseph Longworth
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Lynn Bonetti
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Luana Guerra
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Davide G Franchina
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Takumi Kobayashi
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Veronika Horkova
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Charlène Verschueren
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Sergio Helgueta
- Luxembourg Center of Neuropathology, 3555 Dudelange, Luxembourg; Epigenetics Team, Systems Biology Group, Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Deborah Gérard
- Epigenetics Team, Systems Biology Group, Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Tushar H More
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Center of Systems Biology, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Antonia Henne
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Center of Systems Biology, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Catherine Dostert
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Sophie Farinelle
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg
| | - Antoine Lesur
- Metabolomics Platform, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Jean-Jacques Gérardy
- Luxembourg Center of Neuropathology, 3555 Dudelange, Luxembourg; National Center of Pathology, Laboratoire National de Santé (LNS), Dudelange, Luxembourg
| | - Christian Jäger
- Luxembourg Center for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Michel Mittelbronn
- Faculty of Science, Technology, and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg; Luxembourg Center of Neuropathology, 3555 Dudelange, Luxembourg; National Center of Pathology, Laboratoire National de Santé (LNS), Dudelange, Luxembourg; Luxembourg Center for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg; Department of Cancer Research, Luxembourg Institute of Health, 1526 Luxembourg, Luxembourg
| | - Lasse Sinkkonen
- Epigenetics Team, Systems Biology Group, Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Center of Systems Biology, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Johannes Meiser
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg; Metabolomics Platform, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Dirk Brenner
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
98
|
Albokhari D, Pritchard AB, Beil A, Muss C, Bupp C, Grange DK, Delplancq G, Heeley J, Zuteck M, Morrow MM, Kuentz P, Palculict TB, Hoover-Fong JE. TELO2-related syndrome (You-Hoover-Fong syndrome): Description of 14 new affected individuals and review of the literature. Am J Med Genet A 2023; 191:1261-1272. [PMID: 36797513 DOI: 10.1002/ajmg.a.63142] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/18/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023]
Abstract
You-Hoover-Fong syndrome (YHFS) is an autosomal recessive condition caused by pathogenic variants in the TELO2 gene. Affected individuals were reported to have global developmental delay, intellectual disability, microcephaly, dysmorphic facial features, ocular involvement including cortical visual impairment, strabismus, cataract and rotatory nystagmus, movement disorder, hypertonia and spasticity, balance disturbance and ataxia, and abnormal sleep pattern. Other features reported include poor growth, cleft palate, cardiac malformations, epilepsy, scoliosis, and hearing loss. To date, 12 individuals with YHFS have been reported in the literature. Here we describe 14 new individuals with YHFS from 10 families. Their clinical presentation provides additional support of the phenotype recognized previously and delineates the clinical spectrum associated with YHFS syndrome. In addition, we present a review of the literature including follow-up data on four previously reported individuals with YHFS.
Collapse
Affiliation(s)
- Daniah Albokhari
- Department of Pediatrics, Taibah University College of Medicine, Medina, Saudi Arabia.,Mckusick-Nathan Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Amanda Barone Pritchard
- Division of Pediatric Genetics, Metabolism, and Genomic Medicine, Department of Pediatrics, C.S. Mott Children's Hospital, University of Michigan, Ann Arbor, Michigan, USA
| | - Adelyn Beil
- Division of Pediatric Genetics, Metabolism, and Genomic Medicine, Department of Pediatrics, C.S. Mott Children's Hospital, University of Michigan, Ann Arbor, Michigan, USA
| | - Candace Muss
- Department of Genetics, Nemours Children's Hospital, Wilmington, Delaware, USA
| | - Caleb Bupp
- Spectrum Health, Helen Devos Children's Hospital, Medical Genetics and Genomics, Grand Rapids, Michigan, USA
| | - Dorothy K Grange
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Geoffroy Delplancq
- Oncobiologie Génétique Bioinformatique, PCBio, Centre Hospitalier Universitaire de Besançon, Besançon, France.,Service de Neuropédiatrie, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Jennifer Heeley
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Melissa Zuteck
- Spectrum Health, Helen Devos Children's Hospital, Medical Genetics and Genomics, Grand Rapids, Michigan, USA
| | | | - Paul Kuentz
- Oncobiologie Génétique Bioinformatique, PCBio, Centre Hospitalier Universitaire de Besançon, Besançon, France.,INSERM - Université de Bourgogne Franche-Comté, UMR 1231 Equipe GAD, Génétique des Anomalies du Développement, FHU TRANSLAD, Centre Hospitalier Universitaire Dijon Bourgogne, Dijon, France
| | | | - Julie E Hoover-Fong
- Mckusick-Nathan Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
99
|
Lee GR. Molecular Mechanisms of T Helper Cell Differentiation and Functional Specialization. Immune Netw 2023; 23:e4. [PMID: 36911803 PMCID: PMC9995992 DOI: 10.4110/in.2023.23.e4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 03/07/2023] Open
Abstract
Th cells, which orchestrate immune responses to various pathogens, differentiate from naïve CD4 T cells into several subsets that stimulate and regulate immune responses against various types of pathogens, as well as a variety of immune-related diseases. Decades of research have revealed that the fate decision processes are controlled by cytokines, cytokine receptor signaling, and master transcription factors that drive the differentiation programs. Since the Th1 and Th2 paradigm was proposed, many subsets have been added to the list. In this review, I will summarize these events, including the fate decision processes, subset functions, transcriptional regulation, metabolic regulation, and plasticity and heterogeneity. I will also introduce current topics of interest.
Collapse
Affiliation(s)
- Gap Ryol Lee
- Department of Life Science, Sogang University, Seoul 04107, Korea
| |
Collapse
|
100
|
Meitei HT, Lal G. T cell receptor signaling in the differentiation and plasticity of CD4 + T cells. Cytokine Growth Factor Rev 2023; 69:14-27. [PMID: 36028461 DOI: 10.1016/j.cytogfr.2022.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/17/2022] [Indexed: 02/07/2023]
Abstract
CD4+ T cells are critical components of the adaptive immune system. The T cell receptor (TCR) and co-receptor signaling cascades shape the phenotype and functions of CD4+ T cells. TCR signaling plays a crucial role in T cell development, antigen recognition, activation, and differentiation upon recognition of foreign- or auto-antigens. In specific autoimmune conditions, altered TCR repertoire is reported and can predispose autoimmunity with organ-specific inflammation and tissue damage. TCR signaling modulates various signaling cascades and regulates epigenetic and transcriptional regulation during homeostasis and disease conditions. Understanding the mechanism by which coreceptors and cytokine signals control the magnitude of TCR signal amplification will aid in developing therapeutic strategies to treat inflammation and autoimmune diseases. This review focuses on the role of the TCR signaling cascade and its components in the activation, differentiation, and plasticity of various CD4+ T cell subsets.
Collapse
Affiliation(s)
| | - Girdhari Lal
- National Centre for Cell Science, SPPU campus, Ganeshkhind, Pune, MH 411007, India.
| |
Collapse
|