51
|
Bazid HAS, Marae A, Tayel N, Serag E, Selim H, Mostafa MI, Abd El Gayed E. Assessment of cytochrome P450 1A1 gene polymorphism and vitamin A serum level in psoriasis vulgaris. J Immunoassay Immunochem 2023; 44:269-282. [PMID: 36921208 DOI: 10.1080/15321819.2023.2189471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Psoriasis is characterized by cutaneous hyperproliferation, secondary to immune system dysregulation. Vitamin A regulates the immune response and sustains epithelial tissue hemostasis. The CYP1A1 gene, has many biological actions, including vitamin A metabolism. To evaluate CYP1A1 gene polymorphism and serum vitamin A level in patients with psoriasis vulgaris, a case-control study involving two groups was conducted: group 1 (45 patients with psoriasis vulgaris) served as the cased group and group 2 (45 healthy participants who were sex and age matched) acted as the control group. CYP1A1 (rs1048943) gene polymorphism and vitamin A serum level were assessed by TaqMan allelic discrimination (PCR) and ELISA, respectively. AG genotype was present only in cases (22.2%), while AA genotype was present in all controls (P=.001). Vitamin A levels were lower in cases than in controls (32.0 ± 7.41 vs. 46.2 ± 15.7 μg/ml, respectively) (P<.001). AG genotype was associated with a lower vitamin A level (P=.001). The detected genotype difference between psoriasis patients and controls, which was associated with a lower serum vitamin A level and was also lower in more severe cases, suggests a role of the CYP1A1 gene and vitamin A in disease pathogenesis and prognosis.
Collapse
Affiliation(s)
- Heba A S Bazid
- Dermatology and Andrology Department, Faculty of Medicine, Menoufia University, Egypt
| | - Alaa Marae
- Dermatology and Andrology Department, Faculty of Medicine, Menoufia University, Egypt
| | - Nermin Tayel
- Molecular Diagnostics and Therapeutics Department, Genetic Engineering and Biotechnology Research Institute, Egypt
| | - Etab Serag
- Dermatology and Andrology Department, Faculty of Medicine, Menoufia University, Egypt
| | - Hadeer Selim
- Dermatology and Andrology Department, Faculty of Medicine, Menoufia University, Egypt
| | - Mohammed I Mostafa
- Clinical Pathology Department, Medical Research Division, National Research Centre, Egypt
| | - Eman Abd El Gayed
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Egypt
| |
Collapse
|
52
|
Ávalos-Viveros M, Esquivel-García R, García-Pérez M, Torres-García E, Bartolomé-Camacho MC, Santes V, García-Pérez ME. Updated view of tars for psoriasis: what have we learned over the last decade? Int J Dermatol 2023; 62:290-301. [PMID: 35398899 DOI: 10.1111/ijd.16193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/15/2022] [Accepted: 03/20/2022] [Indexed: 12/01/2022]
Abstract
Tars are one of the most effective, unknown, and oldest therapies for psoriasis. They include coal tar (CT) and biomass-derived products. These treatments, particularly the CT, have proven to be cost-effective with long remission times compared to other systemic or topical treatments. However, they have hardly evolved in recent years, as they are not well-embraced by clinicians or patients because of concerns regarding cosmesis and safety. This review summarizes current knowledge about the chemical characterization, mechanism of action, toxicity, and clinical studies supporting the use of tars for psoriasis over the last decade. Trends within these above aspects are reviewed, and avenues of research are identified. CT is rich in polycyclic aromatic hydrocarbons, whereas biomass-derived tars are rich in phenols. While the activation of the aryl hydrocarbon receptor is involved in the antipsoriatic effect of CT, the mechanism of action of biomass-derived products remains to be elucidated. No conclusive evidence exists about the risk of cancer in psoriasis patients under CT treatment. Large, randomized, double-blind, controlled clinical trials are necessary to promote the inclusion of tars as part of modern therapies for psoriasis.
Collapse
Affiliation(s)
- Miguel Ávalos-Viveros
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Roberto Esquivel-García
- Facultad de Químico-Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Manuel García-Pérez
- Biological Systems Engineering Department, Washington State University, Pullman, USA
| | - Enelio Torres-García
- Biomass Conversion Division, Instituto Mexicano del Petróleo, Ciudad de México, Mexico
| | | | - Víctor Santes
- Departamento de Biociencias e Ingeniería, Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIEMAD), Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Martha-Estrella García-Pérez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| |
Collapse
|
53
|
Alvik K, Shao P, Hutin D, Baglole C, Grant DM, Matthews J. Increased sensitivity to chemically induced colitis in mice harboring a DNA-binding deficient aryl hydrocarbon receptor. Toxicol Sci 2023; 191:321-331. [PMID: 36519841 PMCID: PMC9936212 DOI: 10.1093/toxsci/kfac132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR), a transcription factor best known for mediating toxic responses of environmental pollutants, also integrates metabolic signals to promote anti-inflammatory responses, intestinal homeostasis, and maintain barrier integrity. AHR regulates its target genes through direct DNA-binding to aryl hydrocarbon response elements (AHREs) but also through tethering to other transcription factors in a DNA-binding independent manner. However, it is not known if AHR's anti-inflammatory role in the gut requires its ability to bind to AHREs. To test this, we determined the sensitivity of Ahrdbd/dbd mice, a genetically modified mouse line that express an AHR protein incapable of binding to AHREs, to dextran sulfate sodium (DSS)-induced colitis. Ahrdbd/dbd mice exhibited more severe symptoms of intestinal inflammation than Ahr+/+ mice. None of the Ahrdbd/dbd mice survived after the 5-day DSS followed by 7-day washout period. By day 6, the Ahrdbd/dbd mice had severe body weight loss, shortening of the colon, higher disease index scores, enlarged spleens, and increased expression of several inflammation genes, including interleukin 1b (Il-1b), Il-6, Il-17, C-x-c motif chemokine ligand 1 (Cxcl1), Cxcl2, Prostaglandin-endoperoxide synthase (Ptgs2), and lipocalin-2. Our findings show that AHR's DNA-binding domain and ability to bind to AHREs are required to reduce inflammation, maintain a healthy intestinal environment, and protect against DSS-induced colitis.
Collapse
Affiliation(s)
- Karoline Alvik
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Peng Shao
- Department of Pharmacology and Toxicology, University of Toronto, Toronto M5S1A8, Canada
| | - David Hutin
- Department of Pharmacology and Toxicology, University of Toronto, Toronto M5S1A8, Canada
| | - Carolyn Baglole
- Department of Medicine, McGill University, Montreal H4A3J1, Canada.,Department of Pathology, McGill University, Montreal H4A3J1, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal H3G1Y6, Canada
| | - Denis M Grant
- Department of Pharmacology and Toxicology, University of Toronto, Toronto M5S1A8, Canada
| | - Jason Matthews
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Pharmacology and Toxicology, University of Toronto, Toronto M5S1A8, Canada
| |
Collapse
|
54
|
Rikken G, Smith KJ, van den Brink NJM, Smits JPH, Gowda K, Alnemri A, Kuzu GE, Murray IA, Lin JM, Smits JGA, van Vlijmen-Willems IM, Amin SG, Perdew GH, van den Bogaard EH. Lead optimization of aryl hydrocarbon receptor ligands for treatment of inflammatory skin disorders. Biochem Pharmacol 2023; 208:115400. [PMID: 36574884 DOI: 10.1016/j.bcp.2022.115400] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/26/2022]
Abstract
Therapeutic aryl hydrocarbon receptor (AHR) modulating agents gained attention in dermatology as non-steroidal anti-inflammatory drugs that improve skin barrier properties. By exploiting AHR's known ligand promiscuity, we generated novel AHR modulating agents by lead optimization of a selective AHR modulator (SAhRM; SGA360). Twenty-two newly synthesized compounds were screened yielding two novel derivatives, SGA360f and SGA388, in which agonist activity led to enhanced keratinocyte terminal differentiation. SGA388 showed the highest agonist activity with potent normalization of keratinocyte hyperproliferation, restored expression of skin barrier proteins and dampening of chemokine expression by keratinocytes upon Th2-mediated inflammation in vitro. The topical application of SGA360f and SGA388 reduced acute skin inflammation in vivo by reducing cyclooxygenase levels, resulting in less neutrophilic dermal infiltrates. The minimal induction of cytochrome P450 enzyme activity, lack of cellular toxicity and mutagenicity classifies SGA360f and SGA388 as novel potential therapeutic AHR ligands and illustrates the potential of medicinal chemistry to fine-tune AHR signaling for the development of targeted therapies in dermatology and beyond.
Collapse
Affiliation(s)
- Gijs Rikken
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Kayla J Smith
- Department of Veterinary and Biomedical Sciences, and Center for Molecular Toxicology and Carcinogenesis, Penn State University, University Park, PA, USA
| | - Noa J M van den Brink
- Department of Pharmacology, Penn State College of Medicine, Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| | - Jos P H Smits
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Krishne Gowda
- Department of Pharmacology, Penn State College of Medicine, Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| | - Angela Alnemri
- Department of Veterinary and Biomedical Sciences, and Center for Molecular Toxicology and Carcinogenesis, Penn State University, University Park, PA, USA
| | - Gulsum E Kuzu
- Department of Veterinary and Biomedical Sciences, and Center for Molecular Toxicology and Carcinogenesis, Penn State University, University Park, PA, USA
| | - Iain A Murray
- Department of Veterinary and Biomedical Sciences, and Center for Molecular Toxicology and Carcinogenesis, Penn State University, University Park, PA, USA
| | - Jyh-Ming Lin
- Metabolomics Facility, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Jos G A Smits
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Ivonne M van Vlijmen-Willems
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Shantu G Amin
- Department of Pharmacology, Penn State College of Medicine, Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| | - Gary H Perdew
- Department of Veterinary and Biomedical Sciences, and Center for Molecular Toxicology and Carcinogenesis, Penn State University, University Park, PA, USA.
| | - Ellen H van den Bogaard
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands.
| |
Collapse
|
55
|
Xue Y, Lin L, Li Q, Liu K, Hu M, Ye J, Cao J, Zhai J, Zheng F, Wang Y, Zhang T, Du L, Gao C, Wang G, Wang X, Qin J, Liao X, Kong X, Sorokin L, Shi Y, Wang Y. SCD1 Sustains Homeostasis of Bulge Niche via Maintaining Hemidesmosomes in Basal Keratinocytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2201949. [PMID: 36507562 PMCID: PMC9896058 DOI: 10.1002/advs.202201949] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/22/2022] [Indexed: 06/18/2023]
Abstract
Niche for stem cells profoundly influences their maintenance and fate during tissue homeostasis and pathological disorders; however, the underlying mechanisms and tissue-specific features remain poorly understood. Here, it is reported that fatty acid desaturation catabolized by stearoyl-coenzyme A desaturase 1 (SCD1) regulates hair follicle stem cells (HFSCs) and hair growth by maintaining the bulge, niche for HFSCs. Scd1 deletion in mice results in abnormal hair growth, an effect exerted directly on keratin K14+ keratinocytes rather than on HFSCs. Mechanistically, Scd1 deficiency impairs the level of integrin α6β4 complex and thus the assembly of hemidesmosomes (HDs). The disruption of HDs allows the aberrant activation of focal adhesion kinase and PI3K in K14+ keratinocytes and subsequently their differentiation and proliferation. The overgrowth of basal keratinocytes results in downward extension of the outer root sheath and interruption of bulge formation. Then, inhibition of PI3K signaling in Scd1-/- mice normalizes the bulge, HFSCs, and hair growth. Additionally, supplementation of oleic acid to Scd1-/- mice reestablishes HDs and the homeostasis of bulge niche, and restores hair growth. Thus, SCD1 is critical in regulating hair growth through stabilizing HDs in basal keratinocytes and thus sustaining bulge for HFSC residence and periodic activity.
Collapse
Affiliation(s)
- Yueqing Xue
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Liangyu Lin
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Qing Li
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Keli Liu
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Mingyuan Hu
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Jiayin Ye
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Jianchang Cao
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Jingjie Zhai
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Fanjun Zheng
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Yu Wang
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Tao Zhang
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Liming Du
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Cheng Gao
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Guan Wang
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Xuefeng Wang
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Xinhua Liao
- School of Life SciencesShanghai UniversityShanghai200444China
| | - Xiangyin Kong
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Lydia Sorokin
- Institute of Physiological Chemistry and PathobiochemistryCells in Motion Interfaculty Centre (CIMIC)University of MünsterD‐48149MünsterGermany
| | - Yufang Shi
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
- The Third Affiliated Hospital of Soochow UniversityState Key Laboratory of Radiation Medicine and Protection, Institutes for Translational MedicineSoochow University Medical CollegeSuzhouJiangsu215123China
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| |
Collapse
|
56
|
Pracht K, Wittner J, Kagerer F, Jäck HM, Schuh W. The intestine: A highly dynamic microenvironment for IgA plasma cells. Front Immunol 2023; 14:1114348. [PMID: 36875083 PMCID: PMC9977823 DOI: 10.3389/fimmu.2023.1114348] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
To achieve longevity, IgA plasma cells require a sophisticated anatomical microenvironment that provides cytokines, cell-cell contacts, and nutrients as well as metabolites. The intestinal epithelium harbors cells with distinct functions and represents an important defense line. Anti-microbial peptide-producing paneth cells, mucus-secreting goblet cells and antigen-transporting microfold (M) cells cooperate to build a protective barrier against pathogens. In addition, intestinal epithelial cells are instrumental in the transcytosis of IgA to the gut lumen, and support plasma cell survival by producing the cytokines APRIL and BAFF. Moreover, nutrients are sensed through specialized receptors such as the aryl hydrocarbon receptor (AhR) by both, intestinal epithelial cells and immune cells. However, the intestinal epithelium is highly dynamic with a high cellular turn-over rate and exposure to changing microbiota and nutritional factors. In this review, we discuss the spatial interplay of the intestinal epithelium with plasma cells and its potential contribution to IgA plasma cell generation, homing, and longevity. Moreover, we describe the impact of nutritional AhR ligands on intestinal epithelial cell-IgA plasma cell interaction. Finally, we introduce spatial transcriptomics as a new technology to address open questions in intestinal IgA plasma cell biology.
Collapse
Affiliation(s)
- Katharina Pracht
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jens Wittner
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fritz Kagerer
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Schuh
- Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Center, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
57
|
Riaz F, Pan F, Wei P. Aryl hydrocarbon receptor: The master regulator of immune responses in allergic diseases. Front Immunol 2022; 13:1057555. [PMID: 36601108 PMCID: PMC9806217 DOI: 10.3389/fimmu.2022.1057555] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a widely studied ligand-activated cytosolic transcriptional factor that has been associated with the initiation and progression of various diseases, including autoimmune diseases, cancers, metabolic syndromes, and allergies. Generally, AhR responds and binds to environmental toxins/ligands, dietary ligands, and allergens to regulate toxicological, biological, cellular responses. In a canonical signaling manner, activation of AhR is responsible for the increase in cytochrome P450 enzymes which help individuals to degrade and metabolize these environmental toxins and ligands. However, canonical signaling cannot be applied to all the effects mediated by AhR. Recent findings indicate that activation of AhR signaling also interacts with some non-canonical factors like Kruppel-like-factor-6 (KLF6) or estrogen-receptor-alpha (Erα) to affect the expression of downstream genes. Meanwhile, enormous research has been conducted to evaluate the effect of AhR signaling on innate and adaptive immunity. It has been shown that AhR exerts numerous effects on mast cells, B cells, macrophages, antigen-presenting cells (APCs), Th1/Th2 cell balance, Th17, and regulatory T cells, thus, playing a significant role in allergens-induced diseases. This review discussed how AhR mediates immune responses in allergic diseases. Meanwhile, we believe that understanding the role of AhR in immune responses will enhance our knowledge of AhR-mediated immune regulation in allergic diseases. Also, it will help researchers to understand the role of AhR in regulating immune responses in autoimmune diseases, cancers, metabolic syndromes, and infectious diseases.
Collapse
Affiliation(s)
- Farooq Riaz
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Fan Pan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China,*Correspondence: Ping Wei, ; Fan Pan,
| | - Ping Wei
- Department of Otolaryngology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China,*Correspondence: Ping Wei, ; Fan Pan,
| |
Collapse
|
58
|
Kim HB, Choi MG, Chung BY, Um JY, Kim JC, Park CW, Kim HO. Particulate matter 2.5 induces the skin barrier dysfunction and cutaneous inflammation via AhR- and T helper 17 cell-related genes in human skin tissue as identified via transcriptome analysis. Exp Dermatol 2022; 32:547-554. [PMID: 36471583 DOI: 10.1111/exd.14724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Particulate matter (PM2.5) is an environmental pollutant causing skin inflammatory diseases via epidermal barrier damage. However, the mechanism and related gene expression induced by PM2.5 remains unclear. Our aim was to determine the effect of PM2.5 on human skin tissue ex vivo, and elucidate the mechanism of T helper 17 cell-related inflammatory cytokine and skin barrier function. We verified the expression levels of gene in PM2.5-treated human skin tissue using Quantseq (3' mRNA-Seq), and Gene Ontology (GO) terms and protein-protein interaction (PPI) networks were performed. The PM2.5 treatment significantly enhanced the expression of Th 1, 2, 17 and 22 cell-related genes (cut-off value: │1.2 │ > fold change and p < 0.05). Most of all, Th17 cell-related genes are upregulated and those genes are associated with skin epidermal barrier function and Aryl hydrocarbon receptor (AhR), a xenobiotic receptor, pathway. In human keratinocyte cell lines, AhR-regulated genes (e.g. AhRR, CYP1A1, IL6 and IL36G), Th17 cell-related genes (e.g. IL17C) and epidermal barrier-related genes (e.g. SPRR2A and KRT71) are significantly increased after PM2.5. In the protein level, the secretion of IL-6 and IL-36G was increased in human skin tissue following PM2.5 treatment, and the expression of SPRR2A and KRT71 was significantly increased. PM2.5 exposure could ruin the skin epidermal barrier function via AhR- and Th17 cell-related inflammatory pathway.
Collapse
Affiliation(s)
- Han Bi Kim
- Department of Dermatology, College of Medicine, Hallym University, Kangnam Sacred Heart Hospital, Seoul, Korea
| | - Min Gyu Choi
- Department of Computer Science, Kwangwoon University, Seoul, Korea
| | - Bo Young Chung
- Department of Dermatology, College of Medicine, Hallym University, Kangnam Sacred Heart Hospital, Seoul, Korea
| | - Ji Young Um
- Department of Dermatology, College of Medicine, Hallym University, Kangnam Sacred Heart Hospital, Seoul, Korea
| | - Jin Cheol Kim
- Department of Dermatology, College of Medicine, Hallym University, Kangnam Sacred Heart Hospital, Seoul, Korea
| | - Chun Wook Park
- Department of Dermatology, College of Medicine, Hallym University, Kangnam Sacred Heart Hospital, Seoul, Korea
| | - Hye One Kim
- Department of Dermatology, College of Medicine, Hallym University, Kangnam Sacred Heart Hospital, Seoul, Korea
| |
Collapse
|
59
|
Nogueira S, Rodrigues MA, Vender R, Torres T. Tapinarof for the treatment of psoriasis. Dermatol Ther 2022; 35:e15931. [PMID: 36226669 PMCID: PMC10078538 DOI: 10.1111/dth.15931] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/25/2022] [Accepted: 10/11/2022] [Indexed: 12/31/2022]
Abstract
Although topical drugs are the mainstay of treatment for patients with mild-to-moderate psoriasis, the developments observed in this field in the last two decades have been limited. The most commonly used drugs are still vitamin D analogues and corticosteroids, both with several limitations. The aryl hydrocarbon receptor (AhR) plays a role in the pathogenesis of psoriasis, and tapinarof, a novel, first-in-class, small molecule topical therapeutic AhR-modulating agent has been recently approved by the FDA for the topical treatment of plaque psoriasis in adults. Two large, 12-week, phase III trials, PSOARING 1 and 2, showed that 35.4%-40.2% of patients in the tapinarof 1% cream arm achieved the primary endpoint (Physician's Global Assessment [PGA] score of 0 or 1 and a decrease of ≥2-5 points at week 12) compared with 6.0%-6.3% for vehicle arm, respectively. The most common adverse effects were folliculitis, contact dermatitis, headache and pruritus. In the open label, 40-week, extension trial, PSOARING 3, the efficacy and safety results were similar, with 40.9% of patients achieving a PGA = 0 at least one time during the trial and 58.2% of patients with PGA≥2 achieved PGA = 0/1 at least once during the trial, without tachyphylaxis. There were no new safety signals, with most frequent adverse events being folliculitis, contact dermatitis, and upper respiratory tract infection. Tapinarof 1% cream has shown to be effective and to have a favorable safety profile in the treatment of psoriatic patients, representing an alternative to the current therapeutic options, increasing our armamentarium in the topical treatment of psoriasis.
Collapse
Affiliation(s)
- Sofia Nogueira
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | | | - Ron Vender
- Dermatrials Research Inc, Hamilton, Canada
- McMaster University, Hamilton, Canada
| | - Tiago Torres
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
- Department of Dermatology, Centro Hospitalar do Porto, Porto, Portugal
| |
Collapse
|
60
|
Deng J, Leijten E, Nordkamp MO, Zheng G, Pouw J, Tao W, Hartgring S, Balak D, Rijken R, Huang R, Radstake T, Lu C, Pandit A. Multi-omics integration reveals a core network involved in host defence and hyperkeratinization in psoriasis. Clin Transl Med 2022; 12:e976. [PMID: 36536476 PMCID: PMC9763538 DOI: 10.1002/ctm2.976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES The precise pathogenesis of psoriasis remains incompletely explored. We aimed to better understand the underlying mechanisms of psoriasis, using a systems biology approach based on transcriptomics and microbiome profiling. METHODS We collected the skin tissue biopsies and swabs in both lesional and non-lesional skin of 13 patients with psoriasis, 15 patients with psoriatic arthritis and healthy skin from 12 patients with ankylosing spondylitis. To study the similarities and differences in the molecular profiles between these three conditions, and the associations between the host defence and microbiota composition, we performed high-throughput RNA-sequencing to quantify the gene expression profile in tissues. The metagenomic composition of 16S on local skin sites was quantified by clustering amplicon sequences and counted into operational taxonomic units. We further analysed associations between the transcriptome and microbiome profiling. RESULTS We found that lesional and non-lesional samples were remarkably different in terms of their transcriptome profiles. The functional annotation of differentially expressed genes showed a major enrichment in neutrophil activation. By using co-expression gene networks, we identified a gene module that was associated with local psoriasis severity at the site of biopsy. From this module, we found a 'core' set of genes that was functionally involved in neutrophil activation, epidermal cell differentiation and response to bacteria. Skin microbiome analysis revealed that the abundances of Enhydrobacter, Micrococcus and Leptotrichia were significantly correlated with the genes in core network. CONCLUSIONS We identified a core gene network that associated with local disease severity and microbiome composition, involved in the inflammation and hyperkeratinization in psoriatic skin.
Collapse
Affiliation(s)
- Jingwen Deng
- Guangdong Provincial Hospital of Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouChina
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Emmerik Leijten
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
- Department of Rheumatology and Clinical ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Michel Olde Nordkamp
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Guangjuan Zheng
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Juliëtte Pouw
- Department of Rheumatology and Clinical ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Weiyang Tao
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Sarita Hartgring
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
- Department of Rheumatology and Clinical ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Deepak Balak
- Department of DermatologyLangeLand HospitalZoetermeerThe Netherlands
| | - Rianne Rijken
- Department of Rheumatology and Clinical ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Runyue Huang
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Timothy Radstake
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
- Department of Rheumatology and Clinical ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Chuanjian Lu
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Aridaman Pandit
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
61
|
An overview of aryl hydrocarbon receptor ligands in the Last two decades (2002–2022): A medicinal chemistry perspective. Eur J Med Chem 2022; 244:114845. [DOI: 10.1016/j.ejmech.2022.114845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 11/21/2022]
|
62
|
Wang X, Niu L, Kang A, Pang Y, Zhang Y, Wang W, Zhang Y, Huang X, Liu Q, Geng Z, He L, Niu Y, Zhang R. Effects of ambient PM 2.5 on development of psoriasiform inflammation through KRT17-dependent activation of AKT/mTOR/HIF-1α pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:114008. [PMID: 36029575 DOI: 10.1016/j.ecoenv.2022.114008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Exposure to fine particulate matter (PM2.5) has significant effects on human skin health, mainly disrupting skin homeostasis and accelerating aging. To date, the effects of PM2.5 on psoriasis (PSO) have not been elucidated. An ambient particulate matter exposed and well characterized imiquimod (IMQ)-induced psoriasis mouse model was established. Thirty male C57BL/6 mice aged 8 weeks were randomly divided into three groups: filtered air (FA) group (Control group), PSO+ FA group and PSO + PM2.5 group. A KRT17 knockdown (KRT17-KD) mouse model was simultaneously established by subcutaneously injecting KRT17-KD lentivirus. Forty male C57BL/6 mice were randomly divided into four groups: PSO + FA + KRT17-RNAi negative control lentivirus (KRT17-NC) group, PSO+ FA+ KRT17-KD group, PSO + PM2.5 + KRT17-NC group and PSO + PM2.5 + KRT17-KD group. PM2.5 exposure continued for 8 weeks. Psoriasis was induced by topically applying IMQ on the dorsal skin of the mice for 6 days during week 8. Morphometric and histological analyses were performed to investigate the changes in psoriatic lesions. Differentially expressed genes and enriched pathways were explored using bioinformatics analysis and showed that KRT17 gene and the vascular endothelial growth factor receptor signaling pathway were associated with psoriasis. HaCaT cells were stimulated with interleukin-17A and infected with KRT17-KD lentivirus to establish an in vitro KRT17 knockdown psoriasis cell model. Notably, PM2.5 exposure increased the expression of KRT17 protein and activated AKT/mTOR/HIF-1α signaling pathway in vivo. Moreover, specific agonist of AKT (740Y-P) reversed the decreased neovascularization induced by KRT17 knockdown through AKT/mTOR/HIF-1α signaling pathway in vitro. Consequently, PM2.5 exposure could promote the development and progression of psoriasis through KRT17-dependent activation of AKT/mTOR/HIF-1α signaling pathway.
Collapse
Affiliation(s)
- Xueliang Wang
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, People's Republic of China; Department of Dermatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, People's Republic of China
| | - Linpeng Niu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, People's Republic of China
| | - Aijuan Kang
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Yaxian Pang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Yaling Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Wenqing Wang
- Department of Dermatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, People's Republic of China
| | - Yan Zhang
- Department of Dermatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, People's Republic of China
| | - Xiaoyan Huang
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Qingping Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Zihan Geng
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Liyi He
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Yujie Niu
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, People's Republic of China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, People's Republic of China.
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, People's Republic of China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, People's Republic of China.
| |
Collapse
|
63
|
Wang J, Zhao Y, Zhang X, Tu W, Wan R, Shen Y, Zhang Y, Trivedi R, Gao P. Type II alveolar epithelial cell aryl hydrocarbon receptor protects against allergic airway inflammation through controlling cell autophagy. Front Immunol 2022; 13:964575. [PMID: 35935956 PMCID: PMC9355649 DOI: 10.3389/fimmu.2022.964575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Rationale Aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, has been considered as an important regulator for immune diseases. We have previously shown that AhR protects against allergic airway inflammation. The underlying mechanism, however, remains undetermined. Objectives We sought to determine whether AhR specifically in type II alveolar epithelial cells (AT2) modulates allergic airway inflammation and its underlying mechanisms. Methods The role of AhR in AT2 cells in airway inflammation was investigated in a mouse model of asthma with AhR conditional knockout mice in AT2 cells (Sftpc-Cre;AhRf/f ). The effect of AhR on allergen-induced autophagy was examined by both in vivo and in vitro analyses. The involvement of autophagy in airway inflammation was analyzed by using autophagy inhibitor chloroquine. The AhR-regulated gene profiling in AT2 cells was also investigated by RNA sequencing (RNA-seq) analysis. Results Sftpc-Cre;AhRf/f mice showed exacerbation of allergen-induced airway hyperresponsiveness and airway inflammation with elevated Th2 cytokines in bronchoalveolar lavage fluid (BALF). Notably, an increased allergen-induced autophagy was observed in the lung tissues of Sftpc-Cre;AhRf/f mice when compared with wild-type mice. Further analyses suggested a functional axis of AhR-TGF-β1 that is critical in driving allergic airway inflammation through regulating allergen-induced cellular autophagy. Furthermore, inhibition of autophagy with autophagy inhibitor chloroquine significantly suppressed cockroach allergen-induced airway inflammation, Th2 cytokines in BALFs, and expression of autophagy-related genes LC3 and Atg5 in the lung tissues. In addition, RNA-seq analysis suggests that autophagy is one of the major pathways and that CALCOCO2/NDP52 and S1009 are major autophagy-associated genes in AT2 cells that may contribute to the AhR-mediated cockroach allergen-induced airway inflammation and, subsequently, allergic asthma. Conclusion These results suggest that AhR in AT2 cells functions as a protective mechanism against allergic airway inflammation through controlling cell autophagy.
Collapse
Affiliation(s)
- Ji Wang
- Division of Allergy and Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States,Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China,Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, China
| | - Yilin Zhao
- Division of Allergy and Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States,Department of Respiratory Medicine, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xin Zhang
- Division of Allergy and Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States,Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Tu
- Division of Allergy and Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States,Department of Respirology and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Rongjun Wan
- Division of Allergy and Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States,Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yingchun Shen
- Division of Allergy and Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Yan Zhang
- Division of Allergy and Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States,Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ruchik Trivedi
- Division of Allergy and Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Peisong Gao
- Division of Allergy and Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, MD, United States,*Correspondence: Peisong Gao,
| |
Collapse
|
64
|
Effects of Air Pollution on Cellular Senescence and Skin Aging. Cells 2022; 11:cells11142220. [PMID: 35883663 PMCID: PMC9320051 DOI: 10.3390/cells11142220] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 12/13/2022] Open
Abstract
The human skin is exposed daily to different environmental factors such as air pollutants and ultraviolet (UV) light. Air pollution is considered a harmful environmental risk to human skin and is known to promote aging and inflammation of this tissue, leading to the onset of skin disorders and to the appearance of wrinkles and pigmentation issues. Besides this, components of air pollution can interact synergistically with ultraviolet light and increase the impact of damage to the skin. However, little is known about the modulation of air pollution on cellular senescence in skin cells and how this can contribute to skin aging. In this review, we are summarizing the current state of knowledge about air pollution components, their involvement in the processes of cellular senescence and skin aging, as well as the current therapeutic and cosmetic interventions proposed to prevent or mitigate the effects of air pollution in the skin.
Collapse
|
65
|
Peng G, Tsukamoto S, Ikutama R, Le Thanh Nguyen H, Umehara Y, Trujillo-Paez JV, Yue H, Takahashi M, Ogawa T, Kishi R, Tominaga M, Takamori K, Kitaura J, Kageyama S, Komatsu M, Okumura K, Ogawa H, Ikeda S, Niyonsaba F. Human-β-defensin-3 attenuates atopic dermatitis-like inflammation through autophagy activation and the aryl hydrocarbon receptor signaling pathway. J Clin Invest 2022; 132:156501. [PMID: 35834333 PMCID: PMC9435650 DOI: 10.1172/jci156501] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 07/12/2022] [Indexed: 01/18/2023] Open
Abstract
Human β-defensin-3 (hBD-3) exhibits antimicrobial and immunomodulatory activities; however, its contribution to autophagy regulation remains unclear, and the role of autophagy in the regulation of the epidermal barrier in atopic dermatitis (AD) is poorly understood. Here, keratinocyte autophagy was restrained in the skin lesions of patients with AD and murine models of AD. Interestingly, hBD-3 alleviated the IL-4– and IL-13–mediated impairment of the tight junction (TJ) barrier through keratinocyte autophagy activation, which involved aryl hydrocarbon receptor (AhR) signaling. While autophagy deficiency impaired the epidermal barrier and exacerbated inflammation, hBD-3 attenuated skin inflammation and enhanced the TJ barrier in AD. Importantly, hBD-3–mediated improvement of the TJ barrier was abolished in autophagy-deficient AD mice and in AhR-suppressed AD mice, suggesting a role for hBD-3–mediated autophagy in the regulation of the epidermal barrier and inflammation in AD. Thus, autophagy contributes to the pathogenesis of AD, and hBD-3 could be used for therapeutic purposes.
Collapse
Affiliation(s)
- Ge Peng
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Saya Tsukamoto
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Risa Ikutama
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hai Le Thanh Nguyen
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshie Umehara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Juan V Trujillo-Paez
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hainan Yue
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Miho Takahashi
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takasuke Ogawa
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryoma Kishi
- Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Mitsutoshi Tominaga
- Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Kenji Takamori
- Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Jiro Kitaura
- Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shun Kageyama
- Department of Physiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masaaki Komatsu
- Department of Physiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigaku Ikeda
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
66
|
Molecular and cellular regulation of psoriatic inflammation. Clin Sci (Lond) 2022; 136:935-952. [PMID: 35730381 DOI: 10.1042/cs20210916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023]
Abstract
This review highlights the molecular and cellular mechanisms underlying psoriatic inflammation with an emphasis on recent developments which may impact on treatment approaches for this chronic disease. We consider both the skin and the musculoskeletal compartment and how different manifestations of psoriatic inflammation are linked. This review brings a focus to the importance of inflammatory feedback loops that exist in the initiation and chronic stages of the condition, and how close interaction between the epidermis and both innate and adaptive immune compartments drives psoriatic inflammation. Furthermore, we highlight work done on biomarkers to predict the outcome of therapy as well as the transition from psoriasis to psoriatic arthritis.
Collapse
|
67
|
Grishanova AY, Perepechaeva ML. Aryl Hydrocarbon Receptor in Oxidative Stress as a Double Agent and Its Biological and Therapeutic Significance. Int J Mol Sci 2022; 23:6719. [PMID: 35743162 PMCID: PMC9224361 DOI: 10.3390/ijms23126719] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/02/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) has long been implicated in the induction of a battery of genes involved in the metabolism of xenobiotics and endogenous compounds. AhR is a ligand-activated transcription factor necessary for the launch of transcriptional responses important in health and disease. In past decades, evidence has accumulated that AhR is associated with the cellular response to oxidative stress, and this property of AhR must be taken into account during investigations into a mechanism of action of xenobiotics that is able to activate AhR or that is susceptible to metabolic activation by enzymes encoded by the genes that are under the control of AhR. In this review, we examine various mechanisms by which AhR takes part in the oxidative-stress response, including antioxidant and prooxidant enzymes and cytochrome P450. We also show that AhR, as a participant in the redox balance and as a modulator of redox signals, is being increasingly studied as a target for a new class of therapeutic compounds and as an explanation for the pathogenesis of some disorders.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Federal Research Center of Fundamental and Translational Medicine, Institute of Molecular Biology and Biophysics, Timakova Str. 2, 630117 Novosibirsk, Russia;
| |
Collapse
|
68
|
Gargaro M, Scalisi G, Manni G, Briseño CG, Bagadia P, Durai V, Theisen DJ, Kim S, Castelli M, Xu CA, zu Hörste GM, Servillo G, Della Fazia MA, Mencarelli G, Ricciuti D, Padiglioni E, Giacchè N, Colliva C, Pellicciari R, Calvitti M, Zelante T, Fuchs D, Orabona C, Boon L, Bessede A, Colonna M, Puccetti P, Murphy TL, Murphy KM, Fallarino F. Indoleamine 2,3-dioxygenase 1 activation in mature cDC1 promotes tolerogenic education of inflammatory cDC2 via metabolic communication. Immunity 2022; 55:1032-1050.e14. [PMID: 35704993 PMCID: PMC9220322 DOI: 10.1016/j.immuni.2022.05.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/07/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022]
Abstract
Conventional dendritic cells (cDCs), cDC1 and cDC2, act both to initiate immunity and maintain self-tolerance. The tryptophan metabolic enzyme indoleamine 2,3-dioxygenase 1 (IDO1) is used by cDCs in maintaining tolerance, but its role in different subsets remains unclear. At homeostasis, only mature CCR7+ cDC1 expressed IDO1 that was dependent on IRF8. Lipopolysaccharide treatment induced maturation and IDO1-dependent tolerogenic activity in isolated immature cDC1, but not isolated cDC2. However, both human and mouse cDC2 could induce IDO1 and acquire tolerogenic function when co-cultured with mature cDC1 through the action of cDC1-derived l-kynurenine. Accordingly, cDC1-specific inactivation of IDO1 in vivo exacerbated disease in experimental autoimmune encephalomyelitis. This study identifies a previously unrecognized metabolic communication in which IDO1-expressing cDC1 cells extend their immunoregulatory capacity to the cDC2 subset through their production of tryptophan metabolite l-kynurenine. This metabolic axis represents a potential therapeutic target in treating autoimmune demyelinating diseases.
Collapse
Affiliation(s)
- Marco Gargaro
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy,Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Giulia Scalisi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giorgia Manni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Carlos G. Briseño
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Prachi Bagadia
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Vivek Durai
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Derek J. Theisen
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Sunkyung Kim
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Marilena Castelli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Chenling A. Xu
- Department of Electrical Engineering & Computer Science, Center for Computational Biology, University of California, Berkeley, CA, USA
| | - Gerd Meyer zu Hörste
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Giuseppe Servillo
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy,University research center in functional genomics (c.u.r.ge.f.), University of Perugia, Perugia, Italy
| | | | - Giulia Mencarelli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Doriana Ricciuti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | | | | | | | - Mario Calvitti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Teresa Zelante
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Ciriana Orabona
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | | | - Marco Colonna
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Paolo Puccetti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy,University research center in functional genomics (c.u.r.ge.f.), University of Perugia, Perugia, Italy
| | - Theresa L. Murphy
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Kenneth M. Murphy
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA,Howard Hughes Medical Institute, Washington University in St. Louis School of Medicine, St. Louis, MO, USA,Corresponding author
| | - Francesca Fallarino
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy; University research center in functional genomics (c.u.r.ge.f.), University of Perugia, Perugia, Italy.
| |
Collapse
|
69
|
Alessandrini F, de Jong R, Wimmer M, Maier AM, Fernandez I, Hils M, Buters JT, Biedermann T, Zissler UM, Hoffmann C, Esser-von-Bieren J, Schmidt-Weber CB, Ohnmacht C. Lung Epithelial CYP1 Activity Regulates Aryl Hydrocarbon Receptor Dependent Allergic Airway Inflammation. Front Immunol 2022; 13:901194. [PMID: 35734174 PMCID: PMC9207268 DOI: 10.3389/fimmu.2022.901194] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/04/2022] [Indexed: 11/23/2022] Open
Abstract
The lung epithelial barrier serves as a guardian towards environmental insults and responds to allergen encounter with a cascade of immune reactions that can possibly lead to inflammation. Whether the environmental sensor aryl hydrocarbon receptor (AhR) together with its downstream targets cytochrome P450 (CYP1) family members contribute to the regulation of allergic airway inflammation remains unexplored. By employing knockout mice for AhR and for single CYP1 family members, we found that AhR-/- and CYP1B1-/- but not CYP1A1-/- or CYP1A2-/- animals display enhanced allergic airway inflammation compared to WT. Expression analysis, immunofluorescence staining of murine and human lung sections and bone marrow chimeras suggest an important role of CYP1B1 in non-hematopoietic lung epithelial cells to prevent exacerbation of allergic airway inflammation. Transcriptional analysis of murine and human lung epithelial cells indicates a functional link of AhR to barrier protection/inflammatory mediator signaling upon allergen challenge. In contrast, CYP1B1 deficiency leads to enhanced expression and activity of CYP1A1 in lung epithelial cells and to an increased availability of the AhR ligand kynurenic acid following allergen challenge. Thus, differential CYP1 family member expression and signaling via the AhR in epithelial cells represents an immunoregulatory layer protecting the lung from exacerbation of allergic airway inflammation.
Collapse
Affiliation(s)
- Francesca Alessandrini
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Renske de Jong
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Maria Wimmer
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Ann-Marie Maier
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Isis Fernandez
- Member of the German Center of Lung Research (DZL), Partner Site, Munich, Germany
- Department of Internal Medicine V, Ludwig-Maximilians-University of Munich (LMU), Munich, Germany
- Comprehensive Pneumology Centre, Helmholtz Center Munich, Munich, Germany
| | - Miriam Hils
- Department of Dermatology and Allergology Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jeroen T. Buters
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergology Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
- Clinical Unit Allergology, Helmholtz Center Munich, Munich, Germany
| | - Ulrich M. Zissler
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
- Member of the German Center of Lung Research (DZL), Partner Site, Munich, Germany
| | - Christian Hoffmann
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
- Food Research Center (FoRC), Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Julia Esser-von-Bieren
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Carsten B. Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
- Member of the German Center of Lung Research (DZL), Partner Site, Munich, Germany
| | - Caspar Ohnmacht
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
- *Correspondence: Caspar Ohnmacht,
| |
Collapse
|
70
|
Aryl hydrocarbon receptor-targeted therapy for CD4+ T cell-mediated idiopathic pneumonia syndrome in mice. Blood 2022; 139:3325-3339. [PMID: 35226727 DOI: 10.1182/blood.2021013849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/10/2022] [Indexed: 12/15/2022] Open
Abstract
We previously demonstrated that interferon γ (IFN-γ) derived from donor T cells co-opts the indoleamine 2,3-dioxygenase 1 (IDO1) → aryl hydrocarbon receptor (AHR) axis to suppress idiopathic pneumonia syndrome (IPS). Here we report that the dysregulated expression of AP-1 family genes in Ahr-/- lung epithelial cells exacerbated IPS in allogeneic bone marrow transplantation settings. AHR repressed transcription of Jund by preventing STAT1 from binding to its promoter. As a consequence, decreased interleukin-6 impaired the differentiation of CD4+ T cells toward Th17 cells. IFN-γ- and IDO1-independent induction of Ahr expression indicated that the AHR agonist might be a better therapeutic target for IPS than the IDO1 activator. We developed a novel synthetic AHR agonist (referred to here as PB502) that potently inhibits Jund expression. PB502 was highly effective at inducing AHR activation and ameliorating IPS. Notably, PB502 was by far superior to the endogenous AHR ligand, L-kynurenine, in promoting the differentiation of both mouse and human FoxP3+ regulatory CD4+ T cells. Our results suggest that the IDO1-AHR axis in lung epithelial cells is associated with IPS repression. A specific AHR agonist may exhibit therapeutic activity against inflammatory and autoimmune diseases by promoting regulatory T-cell differentiation.
Collapse
|
71
|
Aryl Hydrocarbon Receptors: Evidence of Therapeutic Targets in Chronic Inflammatory Skin Diseases. Biomedicines 2022; 10:biomedicines10051087. [PMID: 35625824 PMCID: PMC9139118 DOI: 10.3390/biomedicines10051087] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 02/04/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, is important for xenobiotic metabolism and binds to various endogenous and exogenous ligands present in the skin. AhR is known to be associated with diseases in various organs; however, its functions in chronic inflammatory skin diseases, such as atopic dermatitis (AD) and psoriasis (PS), have recently been elucidated. Here, we discuss the molecular mechanisms of AhR related to chronic inflammatory skin diseases, such as AD and PS, and the mechanisms of action of AhR on the skin immune system. The importance of AhR molecular biological pathways, clinical features in animal models, and AhR ligands in skin diseases need to be investigated. In conclusion, the therapeutic effects of AhR ligands are demonstrated based on the relationship between AhR and skin diseases. Nevertheless, further studies are required to elucidate the detailed roles of AhR in chronic inflammatory skin diseases.
Collapse
|
72
|
Rosmarinus officinalis L. Leaf Extracts and Their Metabolites Inhibit the Aryl Hydrocarbon Receptor (AhR) Activation In Vitro and in Human Keratinocytes: Potential Impact on Inflammatory Skin Diseases and Skin Cancer. Molecules 2022; 27:molecules27082499. [PMID: 35458697 PMCID: PMC9029298 DOI: 10.3390/molecules27082499] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/10/2022] [Indexed: 12/02/2022] Open
Abstract
Aryl hydrocarbon receptor (AhR) activation by environmental agents and microbial metabolites is potentially implicated in a series of skin diseases. Hence, it would be very important to identify natural compounds that could inhibit the AhR activation by ligands of microbial origin as 6-formylindolo[3,2-b]carbazole (FICZ), indirubin (IND) and pityriazepin (PZ) or the prototype ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Five different dry Rosmarinus officinalis L. extracts (ROEs) were assayed for their activities as antagonists of AhR ligand binding with guinea pig cytosol in the presence of [3H]TCDD. The methanolic ROE was further assayed towards CYP1A1 mRNA induction using RT-PCR in human keratinocytes against TCDD, FICZ, PZ, and IND. The isolated metabolites, carnosic acid, carnosol, 7-O-methyl-epi-rosmanol, 4′,7-O-dimethylapigenin, and betulinic acid, were assayed for their agonist and antagonist activity in the presence and absence of TCDD using the gel retardation assay (GRA). All assayed ROE extracts showed similar dose-dependent activities with almost complete inhibition of AhR activation by TCDD at 100 ppm. The methanol ROE at 10 ppm showed 99%, 50%, 90%, and 85% inhibition against TCDD, FICZ, IND, and PZ, respectively, in human keratinocytes. Most assayed metabolites exhibited dose-dependent antagonist activity. ROEs inhibit AhR activation by TCDD and by the Malassezia metabolites FICZ, PZ, and IND. Hence, ROE could be useful for the prevention or treatment of skin diseases mediated by activation of AhR.
Collapse
|
73
|
Shah K, Maradana MR, Joaquina Delàs M, Metidji A, Graelmann F, Llorian M, Chakravarty P, Li Y, Tolaini M, Shapiro M, Kelly G, Cheshire C, Bhurta D, Bharate SB, Stockinger B. Cell-intrinsic Aryl Hydrocarbon Receptor signalling is required for the resolution of injury-induced colonic stem cells. Nat Commun 2022; 13:1827. [PMID: 35383166 PMCID: PMC8983642 DOI: 10.1038/s41467-022-29098-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/23/2022] [Indexed: 12/17/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is an environmental sensor that integrates microbial and dietary cues to influence physiological processes within the intestinal microenvironment, protecting against colitis and colitis-associated colorectal cancer development. Rapid tissue regeneration upon injury is important for the reinstatement of barrier integrity and its dysregulation promotes malignant transformation. Here we show that AHR is important for the termination of the regenerative response and the reacquisition of mature epithelial cell identity post injury in vivo and in organoid cultures in vitro. Using an integrative multi-omics approach in colon organoids, we show that AHR is required for timely termination of the regenerative response through direct regulation of transcription factors involved in epithelial cell differentiation as well as restriction of chromatin accessibility to regeneration-associated Yap/Tead transcriptional targets. Safeguarding a regulated regenerative response places AHR at a pivotal position in the delicate balance between controlled regeneration and malignant transformation. Rapid intestinal regeneration after injury is critical to maintain barrier integrity and homeostasis, but must be tightly controlled to prevent tumorigenesis. Here they show that the aryl hydrocarbon receptor is required to terminate the regenerative response after wound healing.
Collapse
Affiliation(s)
| | | | | | - Amina Metidji
- Department of Oncology, St Jude Children's Hospital, Memphis, TN, USA
| | - Frederike Graelmann
- Immunology and Environment, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | | | | | - Ying Li
- The Francis Crick Institute, London, UK
| | | | | | | | | | - Deendyal Bhurta
- Natural Products & Medicinal Chemistry Division, CSIR - Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Sandip B Bharate
- Natural Products & Medicinal Chemistry Division, CSIR - Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | | |
Collapse
|
74
|
Farag AGA, Shoaib MAA, Labeeb AZ, Sleem AS, Hussien HAAEW, Elshaib ME, Hanout HMA. S100A8 (rs3806232) gene polymorphism and S100A8 serum level in psoriasis vulgaris patients: A preliminary study. J Cosmet Dermatol 2022; 21:4974-4982. [PMID: 35316567 DOI: 10.1111/jocd.14928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/06/2022] [Accepted: 03/17/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND S100A8 single nucleotide polymorphism (SNP) and S100A8 blood level are related to many inflammatory disorders with no available conclusion in psoriasis. AIM to evaluate the possible role of S100A8 in psoriasis pathogenesis through analyzing its S100A8 (rs3806232) gene polymorphism and S100A8 serum level in psoriasis vulgaris patients, in addition to correlate the detected results with severity psoriasis in those patients. METHODS This case-control study was conducted on 50 patients having psoriasis vulgaris, and 26 controls. Severity of psoriasis was evaluated using psoriasis area and severity index (PASI) score. S100A8 serum level and S100A8 (rs3806232) SNP were evaluated by ELISA and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) respectively. RESULTS Serum S100A8 level was significantly higher in psoriatic patients than controls and was positively correlated with PASI score (r=0.826, p<0.001). S100A8 (rs3806232) AA genotype and A allele were significantly increased among psoriasis patients than controls (p<0.001) increasing risk of psoriasis development by about 5, 12 and 6 times than AG, GG and G allele. AA genotype was significantly associated with psoriasis severity (p=0.005), and high S100A8 serum levels (P= 0.018). CONCLUSIONS Circulating S100A8 could associated with disease severity and have an active role in psoriasis pathogenesis. S100A8 (rs3806232) SNP (AA genotype and A allele) might contribute to development and severity of psoriasis in the Egyptian population.
Collapse
Affiliation(s)
- Azza Gaber Antar Farag
- Dermatology, Andrology and STDs department, Faculty of Medicine, Menoufia University, Egypt
| | | | - Azza Zagloul Labeeb
- Microbiology and Immunology department, Faculty of Medicine, Menoufia University, Egypt
| | - Asmaa Shaaban Sleem
- Microbiology and Immunology department, Faculty of Medicine, Menoufia University, Egypt
| | | | | | | |
Collapse
|
75
|
Kim DJ, Iwasaki A, Chien AL, Kang S. UVB-mediated DNA damage induces matrix metalloproteinases to promote photoaging in an AhR- and SP1-dependent manner. JCI Insight 2022; 7:156344. [PMID: 35316219 PMCID: PMC9090247 DOI: 10.1172/jci.insight.156344] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/18/2022] [Indexed: 11/17/2022] Open
Abstract
It is currently thought that UVB radiation drives photoaging of the skin primarily by generating ROS. In this model, ROS purportedly activates activator protein-1 to upregulate MMPs 1, 3, and 9, which then degrade collagen and other extracellular matrix components to produce wrinkles. However, these MMPs are expressed at relatively low levels and correlate poorly with wrinkles, suggesting that another mechanism distinct from ROS and MMP1/3/9 may be more directly associated with photoaging. Here we show that MMP2, which degrades type IV collagen, is abundantly expressed in human skin, increases with age in sun-exposed skin, and correlates robustly with aryl hydrocarbon receptor (AhR), a transcription factor directly activated by UV-generated photometabolites. Through mechanistic studies with HaCaT human immortalized keratinocytes, we found that AhR, specificity protein 1 (SP1), and other pathways associated with DNA damage are required for the induction of both MMP2 and MMP11 (another MMP implicated in photoaging), but not MMP1/3. Last, we found that topical treatment with AhR antagonists vitamin B12 and folic acid ameliorated UVB-induced wrinkle formation in mice while dampening MMP2 expression in the skin. These results directly implicate DNA damage in photoaging and reveal AhR as a potential target for preventing wrinkles.
Collapse
Affiliation(s)
- Daniel J Kim
- Department of Immunobiology, Yale University School of Medicine, New Haven, United States of America
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, United States of America
| | - Anna L Chien
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, United States of America
| | - Sewon Kang
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, United States of America
| |
Collapse
|
76
|
van de Kerkhof PCM. From Empirical to Pathogenesis-Based Treatments for Psoriasis. J Invest Dermatol 2022; 142:1778-1785. [DOI: 10.1016/j.jid.2022.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 02/07/2023]
|
77
|
Hwang J, Newton EM, Hsiao J, Shi VY. Aryl Hydrocarbon Receptor/nuclear factor E2-related factor 2 (AHR/NRF2) Signaling: A Novel Therapeutic Target for Atopic Dermatitis. Exp Dermatol 2022; 31:485-497. [PMID: 35174548 DOI: 10.1111/exd.14541] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/25/2022] [Accepted: 02/12/2022] [Indexed: 11/28/2022]
Abstract
Aryl hydrocarbon receptor (AHR)/nuclear factor-erythroid 2-related factor 2 (NRF2) modulation are emerging as novel targets in the treatment of atopic dermatitis and other inflammatory skin disorders. Agonist activation of this pathway has downstream effects on epidermal barrier function, immunomodulation, oxidative stress reduction, and cutaneous microbiome modulation. Tapinarof, a dual agonist of the AHR/NRF2 signaling pathway, has shown promise in phase 2 trials for atopic dermatitis. In this review, we summarize current knowledge of the AHR/NRF2 pathway and implications in skin disease process. We also review the therapeutic potential of current AHR agonists and propose future directions to address knowledge gaps.
Collapse
Affiliation(s)
- Jonwei Hwang
- University of Illinois College of Medicine, 808 S. Wood St. - 380 CME, Chicago, IL, 60612-7307, USA
| | - Edita M Newton
- University of Arkansas for Medical Sciences, Department of Dermatology, 4301 West Markham, Slot 576, Little Rock, Arkansas, 72205, USA
| | - Jennifer Hsiao
- University of Southern California, Department of Dermatology, Ezralow Tower, 1441 Eastlake Avenue, Suite 5301, Los Angeles, CA, 90033, USA
| | - Vivian Y Shi
- University of Arkansas for Medical Sciences, Department of Dermatology, 4301 West Markham, Slot 576, Little Rock, Arkansas, 72205, USA
| |
Collapse
|
78
|
Rannug A. 6-Formylindolo[3,2-b]carbazole, a Potent Ligand for the Aryl Hydrocarbon Receptor Produced Both Endogenously and by Microorganisms, can Either Promote or Restrain Inflammatory Responses. FRONTIERS IN TOXICOLOGY 2022; 4:775010. [PMID: 35295226 PMCID: PMC8915874 DOI: 10.3389/ftox.2022.775010] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) binds major physiological modifiers of the immune system. The endogenous 6-formylindolo[3,2-b]carbazole (FICZ), which binds with higher affinity than any other compound yet tested, including TCDD, plays a well-documented role in maintaining the homeostasis of the intestines and skin. The effects of transient activation of AHR by FICZ differ from those associated with continuous stimulation and, depending on the dose, include either differentiation into T helper 17 cells that express proinflammatory cytokines or into regulatory T cells or macrophages with anti-inflammatory properties. Moreover, in experimental models of human diseases high doses stimulate the production of immunosuppressive cytokines and suppress pathogenic autoimmunity. In our earlier studies we characterized the formation of FICZ from tryptophan via the precursor molecules indole-3-pyruvate and indole-3-acetaldehyde. In the gut formation of these precursor molecules is catalyzed by microbial aromatic-amino-acid transaminase ArAT. Interestingly, tryptophan can also be converted into indole-3-pyruvate by the amino-acid catabolizing enzyme interleukin-4 induced gene 1 (IL4I1), which is secreted by host immune cells. By thus generating derivatives of tryptophan that activate AHR, IL4I1 may have a role to play in anti-inflammatory responses, as well as in a tumor escape mechanism that reduces survival in cancer patients. The realization that FICZ can be produced from tryptophan by sunlight, by enzymes expressed in our cells (IL4I1), and by microorganisms as well makes it highly likely that this compound is ubiquitous in humans. A diurnal oscillation in the level of FICZ that depends on the production by the fluctuating number of microbes might influence not only intestinal and dermal immunity locally, but also systemic immunity.
Collapse
|
79
|
Identification of triazolopyridine derivatives as a new class of AhR agonists and evaluation of anti-psoriasis effect in a mouse model. Eur J Med Chem 2022; 231:114122. [DOI: 10.1016/j.ejmech.2022.114122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 12/24/2022]
|
80
|
Cannon AS, Nagarkatti PS, Nagarkatti M. Targeting AhR as a Novel Therapeutic Modality against Inflammatory Diseases. Int J Mol Sci 2021; 23:288. [PMID: 35008717 PMCID: PMC8745713 DOI: 10.3390/ijms23010288] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 12/12/2022] Open
Abstract
For decades, activation of Aryl Hydrocarbon Receptor (AhR) was excluded from consideration as a therapeutic approach due to the potential toxic effects of AhR ligands and the induction of the cytochrome P450 enzyme, Cyp1a1, following AhR activation. However, it is now understood that AhR activation not only serves as an environmental sensor that regulates the effects of environmental toxins, but also as a key immunomodulator where ligands induce a variety of cellular and epigenetic mechanisms to attenuate inflammation. Thus, the emergence of further in-depth research into diverse groups of compounds capable of activating this receptor has prompted reconsideration of its use therapeutically. The aim of this review is to summarize the body of research surrounding AhR and its role in regulating inflammation. Specifically, evidence supporting the potential of targeting this receptor to modulate the immune response in inflammatory and autoimmune diseases will be highlighted. Additionally, the opportunities and challenges of developing AhR-based therapies to suppress inflammation will be discussed.
Collapse
Affiliation(s)
| | | | - Mitzi Nagarkatti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (A.S.C.); (P.S.N.)
| |
Collapse
|
81
|
Role of Aryl Hydrocarbon Receptor Activation in Inflammatory Chronic Skin Diseases. Cells 2021; 10:cells10123559. [PMID: 34944067 PMCID: PMC8700074 DOI: 10.3390/cells10123559] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023] Open
Abstract
Aryl Hydrocarbon Receptor (AhR) is an evolutionary transcription factor which acts as a crucial sensor of different exogenous and endogenous molecules Recent data indicate that AhR is implicated in several physiological processes such as cell physiology, host defense, proliferation and differentiation of immune cells, and detoxification. Moreover, AhR involvement has been reported in the development and maintenance of several pathological conditions. In recent years, an increasing number of studies have accumulated highlighting the regulatory role of AhR in the physiology of the skin. However, there is evidence of both beneficial and harmful effects of AHR signaling. At present, most of the evidence concerns inflammatory skin diseases, in particular atopic dermatitis, psoriasis, acne, and hidradenitis suppurativa. This review exam-ines the role of AhR in skin homeostasis and the therapeutic implication of its pharmacological modulation in these cutaneous inflammatory diseases.
Collapse
|
82
|
Fernández-Gallego N, Sánchez-Madrid F, Cibrian D. Role of AHR Ligands in Skin Homeostasis and Cutaneous Inflammation. Cells 2021; 10:cells10113176. [PMID: 34831399 PMCID: PMC8622815 DOI: 10.3390/cells10113176] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 02/07/2023] Open
Abstract
Aryl hydrocarbon receptor (AHR) is an important regulator of skin barrier function. It also controls immune-mediated skin responses. The AHR modulates various physiological functions by acting as a sensor that mediates environment–cell interactions, particularly during immune and inflammatory responses. Diverse experimental systems have been used to assess the AHR’s role in skin inflammation, including in vitro assays of keratinocyte stimulation and murine models of psoriasis and atopic dermatitis. Similar approaches have addressed the role of AHR ligands, e.g., TCDD, FICZ, and microbiota-derived metabolites, in skin homeostasis and pathology. Tapinarof is a novel AHR-modulating agent that inhibits skin inflammation and enhances skin barrier function. The topical application of tapinarof is being evaluated in clinical trials to treat psoriasis and atopic dermatitis. In the present review, we summarize the effects of natural and synthetic AHR ligands in keratinocytes and inflammatory cells, and their relevance in normal skin homeostasis and cutaneous inflammatory diseases.
Collapse
Affiliation(s)
- Nieves Fernández-Gallego
- Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IIS-IP), 28006 Madrid, Spain;
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IIS-IP), 28006 Madrid, Spain;
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (F.S.-M.); (D.C.)
| | - Danay Cibrian
- Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IIS-IP), 28006 Madrid, Spain;
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (F.S.-M.); (D.C.)
| |
Collapse
|
83
|
Abstract
Inflammatory bowel disease (IBD) is a life-threatening and chronic inflammatory disease of gastrointestinal tissue, with complex pathogenesis. Current research on IBD has mainly focused on bacteria; however, the role of fungi in IBD is largely unknown due to the incomplete annotation of fungi in current genomic databases. With the development of molecular techniques, the gut mycobiome has been found to have great diversity. In addition, increasing evidence has shown intestinal mycobiome plays an important role in the physiological and pathological processes of IBD. In this review, we will systemically introduce the recent knowledge about multi-dimensional fungal dysbiosis associated with IBD, the interactions between fungus and bacteria, the role of fungi in inflammation in IBD, and highlight recent advances in the potential therapeutic role of fungus in IBD, which may hold the keys to develop new predictive, therapeutic or prognostic approaches in IBD.
Collapse
Affiliation(s)
- Sui Wang
- Laboratory of Translational Gastroenterology, Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yu-Rong Zhang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.,Key Laboratory of Assisted Reproduction, Ministry of Education (Peking University), Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yan-Bo Yu
- Department of Gastroenterology, Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
84
|
Shou Y, Yang L, Yang Y, Xu J. Inhibition of keratinocyte ferroptosis suppresses psoriatic inflammation. Cell Death Dis 2021; 12:1009. [PMID: 34707088 PMCID: PMC8551323 DOI: 10.1038/s41419-021-04284-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/24/2021] [Accepted: 10/05/2021] [Indexed: 12/17/2022]
Abstract
Psoriasis is a common, chronic, and recurrent inflammatory disease. It is characterized by hyperproliferation and abnormal differentiation of keratinocytes. Keratinocyte death is also involved in many pathophysiological conditions and amplifies the inflammatory cascade. As a newly recognized form of cell death, ferroptosis is involved in several inflammatory diseases. In this study, we aimed to investigate a previously unrecognized role for ferroptosis in psoriasis. Ferroptosis is mediated by lipid peroxidation and iron overload. Compared with normal lesions, the mRNA expression of acyl-CoA synthetase long-chain family member 4 (ACSL4), prostaglandin-endoperoxide synthase 2 (PTGS2), and transferrin receptor (TFRC) were highly expressed in psoriatic lesions, with decreased levels of glutathione peroxidase 4 (GPX4), ferritin light chain (FTL), and ferritin heavy chain 1 (FTH1). The protein levels of ACSL4 and GPX4 were consistent with their mRNA levels. A similar tendency of ferroptosis was also observed in erastin-treated human primary keratinocytes and the Imiquimod (IMQ)-induced model of psoriasis. To investigate the correlation between inflammation and peroxidation, we analyzed single-cell RNA-sequencing data and identified 15 cell types. There was a high correlation between the activity of the lipid oxidation and the Th22/Th17 response in keratinocytes at a single-cell level. Moreover, ferrostatin-1 (Fer-1), a potent inhibitor of lipid peroxidation, suppressed ferroptosis-related changes in erastin-treated keratinocytes and alleviated psoriasiform dermatitis of IMQ-induced models. Additionally, Fer-1 blocked inflammatory responses in vitro and in vivo, reducing the production of cytokines including TNF-α, IL-6, IL-1α, IL-1β, IL-17, IL-22, and IL-23. This study revealed an expression pattern of ferroptosis in which specific molecules enhance inflammatory reactions in psoriasis.
Collapse
Affiliation(s)
- Yanhong Shou
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Lu Yang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Yongsheng Yang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, P. R. China.
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, P. R. China.
- Shanghai Institute of Dermatology, Shanghai, P. R. China.
| |
Collapse
|
85
|
Application of benvitimod on psoriasis: A systematic review and meta-analysis of randomized controlled trials. A systematic review of benvitimod on psoriasis. Therapie 2021; 77:339-347. [PMID: 34689959 DOI: 10.1016/j.therap.2021.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/04/2021] [Accepted: 09/09/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND We conducted this systematic review to clarify the efficacy and safety of benvitimod on psoriasis. METHODS We searched the databases of PubMed, China National Knowledge infrastructure, Cochrane Library, Embase, Web of science to identify randomized controlled trials (RCTs) of benvitimod on psoriasis up to April 2021. RESULTS Five RCTs of benvitimod on psoriasis were included. A total of 1237 patients were included. 0.5% or 1.0% benvitimod was applied topically once or twice a day. More patients in benvitimod group achieved PASI 90, PASI 75, PASI 50 and BSA reduction than placebo at Week 12. More patients in benvitimod group achieved PGA 0 or 1 than placebo since Week 6. There were no statistical significances in efficacies of benvitimod at different concentrations and frequencies. CONCLUSIONS Benvitimod was effective and safe for psoriasis. More RCTs with high qualities are needed to further verify the current conclusion.
Collapse
|
86
|
Spurlock B, Parker D, Basu MK, Hjelmeland A, GC S, Liu S, Siegal GP, Gunter A, Moran A, Mitra K. Fine-tuned repression of Drp1-driven mitochondrial fission primes a 'stem/progenitor-like state' to support neoplastic transformation. eLife 2021; 10:e68394. [PMID: 34545812 PMCID: PMC8497058 DOI: 10.7554/elife.68394] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
Gene knockout of the master regulator of mitochondrial fission, Drp1, prevents neoplastic transformation. Also, mitochondrial fission and its opposing process of mitochondrial fusion are emerging as crucial regulators of stemness. Intriguingly, stem/progenitor cells maintaining repressed mitochondrial fission are primed for self-renewal and proliferation. Using our newly derived carcinogen transformed human cell model, we demonstrate that fine-tuned Drp1 repression primes a slow cycling 'stem/progenitor-like state', which is characterized by small networks of fused mitochondria and a gene-expression profile with elevated functional stem/progenitor markers (Krt15, Sox2 etc) and their regulators (Cyclin E). Fine tuning Drp1 protein by reducing its activating phosphorylation sustains the neoplastic stem/progenitor cell markers. Whereas, fine-tuned reduction of Drp1 protein maintains the characteristic mitochondrial shape and gene-expression of the primed 'stem/progenitor-like state' to accelerate neoplastic transformation, and more complete reduction of Drp1 protein prevents it. Therefore, our data highlights a 'goldilocks' level of Drp1 repression supporting stem/progenitor state dependent neoplastic transformation.
Collapse
Affiliation(s)
- Brian Spurlock
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Danitra Parker
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Malay Kumar Basu
- Departments of Pathology, University of Alabama at BirminghamBirminghamUnited States
| | - Anita Hjelmeland
- Department of Cell Development and Integrative Biology, University of Alabama at BirminghamBirminghamUnited States
| | - Sajina GC
- Department of Cell Development and Integrative Biology, University of Alabama at BirminghamBirminghamUnited States
| | - Shanrun Liu
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Gene P Siegal
- Departments of Pathology, Surgery, Genetics and Cell and Developmental Biology, University of Alabama at BirminghamBirminghamUnited States
| | - Alan Gunter
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Aida Moran
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Kasturi Mitra
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| |
Collapse
|
87
|
Tanimoto K, Hirota K, Fukazawa T, Matsuo Y, Nomura T, Tanuza N, Hirohashi N, Bono H, Sakaguchi T. Inhibiting SARS-CoV-2 infection in vitro by suppressing its receptor, angiotensin-converting enzyme 2, via aryl-hydrocarbon receptor signal. Sci Rep 2021; 11:16629. [PMID: 34404832 PMCID: PMC8371152 DOI: 10.1038/s41598-021-96109-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/05/2021] [Indexed: 01/31/2023] Open
Abstract
Since understanding molecular mechanisms of SARS-CoV-2 infection is extremely important for developing effective therapies against COVID-19, we focused on the internalization mechanism of SARS-CoV-2 via ACE2. Although cigarette smoke is generally believed to be harmful to the pathogenesis of COVID-19, cigarette smoke extract (CSE) treatments were surprisingly found to suppress the expression of ACE2 in HepG2 cells. We thus tried to clarify the mechanism of CSE effects on expression of ACE2 in mammalian cells. Because RNA-seq analysis suggested that suppressive effects on ACE2 might be inversely correlated with induction of the genes regulated by aryl hydrocarbon receptor (AHR), the AHR agonists 6-formylindolo(3,2-b)carbazole (FICZ) and omeprazole (OMP) were tested to assess whether those treatments affected ACE2 expression. Both FICZ and OMP clearly suppressed ACE2 expression in a dose-dependent manner along with inducing CYP1A1. Knock-down experiments indicated a reduction of ACE2 by FICZ treatment in an AHR-dependent manner. Finally, treatments of AHR agonists inhibited SARS-CoV-2 infection into Vero E6 cells as determined with immunoblotting analyses detecting SARS-CoV-2 specific nucleocapsid protein. We here demonstrate that treatment with AHR agonists, including FICZ, and OMP, decreases expression of ACE2 via AHR activation, resulting in suppression of SARS-CoV-2 infection in mammalian cells.
Collapse
Affiliation(s)
- Keiji Tanimoto
- Department of Radiation Disaster Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8553, Japan.
| | - Kiichi Hirota
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, 573-1010, Japan
| | - Takahiro Fukazawa
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Yoshiyuki Matsuo
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, 573-1010, Japan
| | - Toshihito Nomura
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Nazmul Tanuza
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Nobuyuki Hirohashi
- Department of Radiation Disaster Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Hidemasa Bono
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-0046, Japan
| | - Takemasa Sakaguchi
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| |
Collapse
|
88
|
Alwan W, Di Meglio P. Guardians of the barrier: Microbiota engage AHR in keratinocytes to mantain skin homeostasis. Cell Host Microbe 2021; 29:1213-1216. [PMID: 34384523 DOI: 10.1016/j.chom.2021.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The skin barrier is critical in ensuring homeostasis, yet factors influencing its development, repair, and maintenance are ill-defined. In this issue of Cell Host & Microbe, Uberoi et al. demonstrate the skin microbiota's role in maintaining barrier integrity via AHR signaling in keratinocytes, which has implications for skin disease management.
Collapse
Affiliation(s)
- Wisam Alwan
- Guy's and St Thomas' NHS Foundation Trust, London, UK; St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Paola Di Meglio
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, UK.
| |
Collapse
|
89
|
Yoshikawa Y, Izawa T, Hamada Y, Takenaga H, Wang Z, Ishimaru N, Kamioka H. Roles for B[a]P and FICZ in subchondral bone metabolism and experimental temporomandibular joint osteoarthritis via the AhR/Cyp1a1 signaling axis. Sci Rep 2021; 11:14927. [PMID: 34290363 PMCID: PMC8295293 DOI: 10.1038/s41598-021-94470-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022] Open
Abstract
Bone loss due to smoking represents a major risk factor for fractures and bone osteoporosis. Signaling through the aryl hydrocarbon receptor (AhR) and its ligands contributes to both bone homeostasis and inflammatory diseases. It remains unclear whether the same AhR signaling axis affects the temporomandibular joint (TMJ). The aim of this study was to investigate possible mechanisms which mediate bone loss in the TMJ due to smoking. In particular, whether benzo[a]pyrene (B[a]P), a carcinogen of tobacco smoke, induces expression of the AhR target gene, Cyp1a1, in mandibular condyles. Possible functions of an endogenous ligand of FICZ, were also investigated in a TMJ-osteoarthritis (OA) mouse model. B[a]P was administered orally to wild-type and AhR-/- mice and bone metabolism was subsequently examined. TMJ-OA was induced in wild-type mice with forceful opening of the mouth. Therapeutic functions of FICZ were detected with μCT and histology. Exposure to B[a]P accelerated bone loss in the mandibular subchondral bone. This bone loss manifested with osteoclastic bone resorption and upregulated expression of Cyp1a1 in an AhR-dependent manner. In a mouse model of TMJ-OA, FICZ exhibited a dose-dependent rescue of mandibular subchondral bone loss by repressing osteoclast activity. Meanwhile, in vitro, pre-treatment with FICZ reduced RANKL-mediated osteoclastogenesis. B[a]P regulates mandibular subchondral bone metabolism via the Cyp1a1. The AhR ligand, FICZ, can prevent TMJ-OA by regulating osteoclast differentiation.
Collapse
Affiliation(s)
- Yuri Yoshikawa
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takashi Izawa
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| | - Yusaku Hamada
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Hiroko Takenaga
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Ziyi Wang
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| |
Collapse
|
90
|
Cardinali G, Flori E, Mastrofrancesco A, Mosca S, Ottaviani M, Dell'Anna ML, Truglio M, Vento A, Zaccarini M, Zouboulis CC, Picardo M. Anti-Inflammatory and Pro-Differentiating Properties of the Aryl Hydrocarbon Receptor Ligands NPD-0614-13 and NPD-0614-24: Potential Therapeutic Benefits in Psoriasis. Int J Mol Sci 2021; 22:ijms22147501. [PMID: 34299118 PMCID: PMC8304622 DOI: 10.3390/ijms22147501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 12/13/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor expressed in all skin cell types, plays a key role in physiological and pathological processes. Several studies have shown that this receptor is involved in the prevention of inflammatory skin diseases, e.g., psoriasis, atopic dermatitis, representing a potential therapeutic target. We tested the safety profile and the biological activity of NPD-0614-13 and NPD-0614-24, two new synthetic AhR ligands structurally related to the natural agonist FICZ, known to be effective in psoriasis. NPD-0614-13 and NPD-0614-24 did not alter per se the physiological functions of the different skin cell populations involved in the pathogenesis of inflammatory skin diseases. In human primary keratinocytes stimulated with tumor necrosis factor-α or lipopolysaccharide the compounds were able to counteract the altered proliferation and to dampen inflammatory signaling by reducing the activation of p38MAPK, c-Jun, NF-kBp65, and the release of cytokines. Furthermore, the molecules were tested for their beneficial effects in human epidermal and full-thickness reconstituted skin models of psoriasis. NPD-0614-13 and NPD-0614-24 recovered the psoriasis skin phenotype exerting pro-differentiating activity and reducing the expression of pro-inflammatory cytokines and antimicrobial peptides. These data provide a rationale for considering NPD-0614-13 and NPD-0614-24 in the management of psoriasis.
Collapse
Affiliation(s)
- Giorgia Cardinali
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Enrica Flori
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Arianna Mastrofrancesco
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Sarah Mosca
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Monica Ottaviani
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Maria Lucia Dell'Anna
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Mauro Truglio
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Antonella Vento
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Marco Zaccarini
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodore Fontane and Faculty of Health Sciences Brandenburg, 06847 Dessau, Germany
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| |
Collapse
|
91
|
Koptan DMT, Rasheed Bahgat DM, Abdelrasool AA, Allam RSHM, Elgengehy FT, Abdel Baki NM, Medhat BM. Analysis of Nuclear Receptor Coactivator 5 (NCOA5) Messenger RNA Expression and rs2903908 Single Nucleotide Polymorphism of NCOA5 in an Egyptian Cohort with Behçet's Disease: A Single-Center Case-control Study. Ocul Immunol Inflamm 2021; 30:1436-1446. [PMID: 34255592 DOI: 10.1080/09273948.2021.1889610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The nuclear receptor coactivator 5 (NCOA5) has been linked to several inflammatory disorders, including Behçet's disease (BD). We evaluated the expression of NCOA5 messenger RNA (mRNA) using real-time reverse transcription-polymerase chain reaction, and analyzed the rs2903908 T > C of NCOA5 using TaqMan allelic discrimination assay in 49 Egyptian BD patients and 50 controls. The NCOA5 mRNA levels were higher in patients compared to controls (p = .02), female patients compared to males (p = .037), and in patients with ocular involvement (p = .049). Non-CC genotype carriers had a higher frequency of articular manifestations compared with CC carriers (p = .047). Genotypes CC + CT were associated with reduced risk of cutaneous involvement (OR = 0.27, p = .04). CC carriers with active BD or cutaneous manifestations displayed significantly lower NCOA5 mRNA expression than TT carriers. Our results demonstrate that NCOA5 is linked to BD clinical findings and activity.
Collapse
Affiliation(s)
- Dina M T Koptan
- Faculty of Medicine, Kasr Al Ainy, Department of Clinical and Chemical Pathology, Cairo University, Egypt
| | - Dina M Rasheed Bahgat
- Faculty of Medicine, Kasr Al Ainy, Department of Clinical and Chemical Pathology, Cairo University, Egypt
| | - Asmaa A Abdelrasool
- Faculty of Medicine, Kasr Al Ainy, Department of Clinical and Chemical Pathology, Cairo University, Egypt
| | - Riham S H M Allam
- Faculty of Medicine, Kasr Al Ainy, Department of Ophthalmology, Cairo University, Egypt
| | - Fatema T Elgengehy
- Faculty of Medicine, Kasr Al Ainy, Department of Rheumatology and Rehabilitation, Cairo University, Egypt
| | - Noha M Abdel Baki
- Faculty of Medicine, Kasr Al Ainy, Department of Rheumatology and Rehabilitation, Cairo University, Egypt
| | - Basma M Medhat
- Faculty of Medicine, Kasr Al Ainy, Department of Rheumatology and Rehabilitation, Cairo University, Egypt
| |
Collapse
|
92
|
Guerrina N, Traboulsi H, Eidelman DH, Baglole CJ. The Aryl Hydrocarbon Receptor Suppresses Chronic Smoke-Induced Pulmonary Inflammation. FRONTIERS IN TOXICOLOGY 2021; 3:653569. [PMID: 35295140 PMCID: PMC8915858 DOI: 10.3389/ftox.2021.653569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/07/2021] [Indexed: 12/22/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor expressed in the lungs that is activated by numerous xenobiotic, endogenous and dietary ligands. Although historically the AhR is known for mediating the deleterious response to the environmental pollutant dioxin, emerging evidence supports a prominent role for the AhR in numerous biological process including inflammation. We have shown that the AhR suppresses pulmonary neutrophilia in response to acute cigarette smoke exposure. Whether the AhR can also prevent lung inflammation from chronic smoke exposure is not known but highly relevant, given that people smoke for decades. Using our preclinical smoke model, we report that exposure to chronic cigarette smoke for 8-weeks or 4 months significantly increased pulmonary inflammation, the response of which was greater in Ahr−/− mice. Notably, there was an increased number of multinucleated giant cells (MNGCs) in smoke-exposed Ahr−/− mice without a change in cytokine levels. These data support a protective role for the AhR against the deleterious effects of cigarette smoke, warranting continued investigation into its therapeutic potential for chronic lung diseases.
Collapse
Affiliation(s)
- Necola Guerrina
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Hussein Traboulsi
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
- Hussein Traboulsi
| | | | - Carolyn J. Baglole
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
- Deaprtment of Pathology, McGill University, Montreal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- *Correspondence: Carolyn J. Baglole
| |
Collapse
|
93
|
Uberoi A, Bartow-McKenney C, Zheng Q, Flowers L, Campbell A, Knight SAB, Chan N, Wei M, Lovins V, Bugayev J, Horwinski J, Bradley C, Meyer J, Crumrine D, Sutter CH, Elias P, Mauldin E, Sutter TR, Grice EA. Commensal microbiota regulates skin barrier function and repair via signaling through the aryl hydrocarbon receptor. Cell Host Microbe 2021; 29:1235-1248.e8. [PMID: 34214492 DOI: 10.1016/j.chom.2021.05.011] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/24/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022]
Abstract
The epidermis forms a barrier that defends the body from desiccation and entry of harmful substances, while also sensing and integrating environmental signals. The tightly orchestrated cellular changes needed for the formation and maintenance of this epidermal barrier occur in the context of the skin microbiome. Using germ-free mice, we demonstrate the microbiota is necessary for proper differentiation and repair of the epidermal barrier. These effects are mediated by microbiota signaling through the aryl hydrocarbon receptor (AHR) in keratinocytes, a xenobiotic receptor also implicated in epidermal differentiation. Mice lacking keratinocyte AHR are more susceptible to barrier damage and infection, during steady-state and epicutaneous sensitization. Colonization with a defined consortium of human skin isolates restored barrier competence in an AHR-dependent manner. We reveal a fundamental mechanism whereby the microbiota regulates skin barrier formation and repair, which has far-reaching implications for the numerous skin disorders characterized by epidermal barrier dysfunction.
Collapse
Affiliation(s)
- Aayushi Uberoi
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Casey Bartow-McKenney
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Qi Zheng
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Laurice Flowers
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Amy Campbell
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Simon A B Knight
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Neal Chan
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Monica Wei
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Victoria Lovins
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Julia Bugayev
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Joseph Horwinski
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Charles Bradley
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, PA, USA
| | - Jason Meyer
- San Francisco Veterans Affairs Medical Center, Dermatology Service, San Francisco, CA, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Debra Crumrine
- San Francisco Veterans Affairs Medical Center, Dermatology Service, San Francisco, CA, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Carrie Hayes Sutter
- Department of Biological Sciences, W. Harry Feinstone Center for Genomic Research, University of Memphis, Memphis, TN, USA
| | - Peter Elias
- San Francisco Veterans Affairs Medical Center, Dermatology Service, San Francisco, CA, USA; Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Elizabeth Mauldin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, PA, USA
| | - Thomas R Sutter
- Department of Biological Sciences, W. Harry Feinstone Center for Genomic Research, University of Memphis, Memphis, TN, USA.
| | - Elizabeth A Grice
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, PA, USA.
| |
Collapse
|
94
|
Cheng YC, Kuo CL, Hsu SY, Way TDER, Cheng CL, Chen JC, Liu KC, Peng SF, Ho WJ, Chueh FS, Huang WW. Tetrandrine Enhances H 2O 2-Induced Apoptotic Cell Death Through Caspase-dependent Pathway in Human Keratinocytes. In Vivo 2021; 35:2047-2057. [PMID: 34182480 DOI: 10.21873/invivo.12474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Tetrandrine, a bis-benzylisoquinoline alkaloid, induces apoptosis of many types of human cancer cell. Hydrogen peroxide (H2O2) is a reactive oxygen species inducer; however, there are no reports to show whether pre-treatment of tetrandrine with H2O2 induces more cell apoptosis than H2O2 alone. Thus, the present study investigated the effects of tetrandrine on H2O2-induced cell apoptosis of human keratinocytes, HaCaT, in vitro. MATERIALS AND METHODS HaCaT cells were pre-treated with and without tetrandrine for 1 h, and then treated with H2O2 for examining cell morphological changes and cell viability using contrast-phase microscopy and propidium iodide (PI) exclusion assay, respectively. Cells were measured apoptotic cell death by using annexin V/PI double staining and further analyzed by flow cytometer. Cells were further assessed for DNA condensation using 2-(4-amidinophenyl)-6-indolecarbamidine staining. Western blotting was used to measure expression of apoptosis-associated proteins and confocal laser microscopy was used to measure the protein expression and nuclear translocation from the cytoplasm to nuclei. RESULTS Pre-treatment of tetrandrine for 1 h and treatment with H2O2 enhanced H2O2-induced cell morphological changes and reduced cell viability, whilst increasing apoptotic cell death and DNA condensation. Furthermore, tetrandrine significantly increased expression of reactive oxygen species-associated proteins such as superoxide dismutase (Cu/Zn) and superoxide dismutase (Mn) but significantly reduced the level of catalase, which was also confirmed by confocal laser microscopy. It also increased expression of DNA repair-associated proteins ataxia telangiectasia mutated, ataxia-telangectasia and Rad3-related, phospho-P53, P53 and phosphorylated histone H2AX, and of pro-apoptotic proteins BCL2 apoptosis regulator-associated X-protein, caspase-3, caspase-8, caspase-9 and poly ADP ribose polymerase in HaCaT cells. CONCLUSION These are the first and novel findings showing tetrandrine enhances H2O2-induced apoptotic cell death of HaCaT cells and may provide a potent approach for the treatment of proliferated malignant keratinocytes.
Collapse
Affiliation(s)
- Yi-Ching Cheng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Chao-Lin Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan, R.O.C
| | - Sheng-Yao Hsu
- Department of Ophthalmology, An Nan Hospital, China Medical University, Tainan, Taiwan, R.O.C.,Department of Optometry, Chung Hwa University of Medical Technology, Tainan, Taiwan, R.O.C
| | - Tzong-DER Way
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Ching-Ling Cheng
- Progam of Digital Health Innovation, China Medical University, Taichung, Taiwan, R.O.C
| | - Jaw-Chyun Chen
- Department of Medicinal Botanicals and Health Applications, Da-Yeh University, Changhua, Taiwan, R.O.C
| | - Kuo-Ching Liu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan, R.O.C
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Wai-Jane Ho
- Department of Medicinal Botanicals and Health Applications, Da-Yeh University, Changhua, Taiwan, R.O.C
| | - Fu-Shin Chueh
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan, R.O.C.
| | - Wen-Wen Huang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C.;
| |
Collapse
|
95
|
Cheng YC, Chen PY, Way TDER, Cheng CL, Huang YP, Hsia TC, Chou YC, Peng SF. Pre-Treatment of Pterostilbene Enhances H 2O 2-induced Cell Apoptosis Through Caspase-dependent Pathway in Human Keratinocyte Cells. In Vivo 2021; 35:833-843. [PMID: 33622876 DOI: 10.21873/invivo.12324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/06/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND/AIM Hydrogen peroxide (H2O2) is one of the reactive oxygen species (ROS), which can induce apoptotic cell death in numerous cancer cells. Pterostilbene (PTE), a natural polyphenolic compound, induces cell apoptosis in many human cancer cells. MATERIALS AND METHODS We investigated whether PTE could enhance H2O2-induced cell apoptosis in human keratinocyte HaCaT cells in vitro. The morphological change of HaCaT cells was observed and photographed under a contrast-phase microscope. The percentage of cell viability was measured by propidium iodide exclusion assay. Cell apoptosis was performed by Annexin V/PI double staining and assayed by flow cytometer. DNA condensation was measured by DAPI staining. The protein expression was determined by western blotting. ROS production-associated proteins were also assayed by confocal laser scanning microscopy. RESULTS PTE pre-treatment enhanced H2O2 (600 μM)-induced cell morphological changes and reduced the total cell number (cell viability). The decreased cell viability in HaCaT cells was through induction of apoptotic cell death, which was confirmed by Annexin V/PI double staining and DAPI staining. Western blotting studies indicated that HaCaT cells which were pre-treated with PTE (100 μM) and then co-treated with H2O2 (600 μM) for 12 h showed significantly increased levels of SOD (Cu/Zn), SOD (Mn), Bax, caspase-3, caspase-8, caspase-9, PARP, p53, p-p53, and p-H2A.X but decreased levels Bcl-2 and catalase. Results also showed that HaCaT cells pre-treated with PTE and then co-treated with H2O2 had increased expression of SOD (Cu/Zn) and glutathione but decreased catalase. CONCLUSION These observations suggest that PTE pre-treatment can enhance the H2O2-induced apoptotic cell death in keratinocyte cells and may be an effective candidate for the treatment of proliferative keratinocytes.
Collapse
Affiliation(s)
- Yi-Ching Cheng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Po-Yuan Chen
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Tzong-DER Way
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Ching-Ling Cheng
- Program of Digital Health Innovation, China Medical University, Taichung, Taiwan, R.O.C
| | - Yi-Ping Huang
- Department of Physiology, College of Medicine, China Medical University, Taichung, Taiwan, R.O.C
| | - Te-Chun Hsia
- Department of Respiratory Therapy, China Medical University, Taichung, Taiwan, R.O.C.,Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Yu-Cheng Chou
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C.; .,Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C.; .,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| |
Collapse
|
96
|
Grifka-Walk HM, Jenkins BR, Kominsky DJ. Amino Acid Trp: The Far Out Impacts of Host and Commensal Tryptophan Metabolism. Front Immunol 2021; 12:653208. [PMID: 34149693 PMCID: PMC8213022 DOI: 10.3389/fimmu.2021.653208] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Tryptophan (Trp) is an essential amino acid primarily derived from the diet for use by the host for protein synthesis. The intestinal tract is lined with cells, both host and microbial, that uptake and metabolize Trp to also generate important signaling molecules. Serotonin (5-HT), kynurenine and its downstream metabolites, and to a lesser extent other neurotransmitters are generated by the host to signal onto host receptors and elicit physiological effects. 5-HT production by neurons in the CNS regulates sleep, mood, and appetite; 5-HT production in the intestinal tract by enterochromaffin cells regulates gastric motility and inflammation in the periphery. Kynurenine can signal onto the aryl hydrocarbon receptor (AHR) to elicit pleiotropic responses from several cell types including epithelial and immune cells, or can be further metabolized into bioactive molecules to influence neurodegenerative disease. There is a remarkable amount of cross-talk with the microbiome with regard to tryptophan metabolites as well. The gut microbiome can regulate the production of host tryptophan metabolites and can use dietary or recycled trp to generate bioactive metabolites themselves. Trp derivatives like indole are able to signal onto xenobiotic receptors, including AHR, to elicit tolerogenic effects. Here, we review studies that demonstrate that tryptophan represents a key intra-kingdom signaling molecule.
Collapse
Affiliation(s)
| | | | - Douglas J. Kominsky
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
97
|
Bier K, Schittek B. Beneficial effects of coagulase-negative Staphylococci on Staphylococcus aureus skin colonization. Exp Dermatol 2021; 30:1442-1452. [PMID: 33960019 DOI: 10.1111/exd.14381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022]
Abstract
Our skin is constantly exposed to a large number of pathogens while at the same time undergoing selective colonization by commensal microorganisms such as coagulase-negative Staphylococci. Staphylococcus aureus, however, is a facultative pathogen that is usually absent from healthy skin but frequently colonizes the inflamed skin of atopic dermatitis patients, where it further promotes inflammation. Enhanced S. aureus skin colonization was shown to correlate with a loss of microbiome diversity indicating a role for skin commensals to shape pathogen colonization. Together, keratinocytes and immune cells in the skin need to discriminate commensals from pathogens and orchestrate subsequent immune reactions in response to colonizing microbes. However, the mechanisms how individual commensals cooperate with keratinocytes and the immune system of the skin to prevent pathogen colonization are barely understood. In this review, we discuss the current knowledge on the functional effects of coagulase-negative staphylococci, the most frequently isolated skin commensals, on S. aureus skin colonization.
Collapse
Affiliation(s)
- Katharina Bier
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Birgit Schittek
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
98
|
Gargaro M, Manni G, Scalisi G, Puccetti P, Fallarino F. Tryptophan Metabolites at the Crossroad of Immune-Cell Interaction via the Aryl Hydrocarbon Receptor: Implications for Tumor Immunotherapy. Int J Mol Sci 2021; 22:ijms22094644. [PMID: 33924971 PMCID: PMC8125364 DOI: 10.3390/ijms22094644] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/25/2021] [Accepted: 04/25/2021] [Indexed: 02/07/2023] Open
Abstract
The Aryl hydrocarbon receptor (AhR) is a critical regulator of both innate and adaptive immune responses, with potent immunomodulatory effects that makes this receptor an attractive molecular target for novel therapeutics. Accumulating evidence indicates that diverse—both host’s and microbial—tryptophan metabolites profoundly regulate the immune system in the host via AhR, promoting either tolerance or immunity, largely as a function of the qualitative and quantitative nature of the metabolites being contributed by either source. Additional findings indicate that host and microbiota-derived tryptophan metabolic pathways can influence the outcome of immune responses to tumors. Here, we review recent studies on the role and modalities of AhR activation by various ligands, derived from either host-cell or microbial-cell tryptophan metabolic pathways, in the regulation of immune responses. Moreover, we highlight potential implications of those ligands and pathways in tumor immunotherapy, with particular relevance to checkpoint-blockade immune intervention strategies.
Collapse
|
99
|
Kim JE, Kim HR, Kang SY, Jung MJ, Heo NH, Lee HJ, Ryu A, Kim HO, Park CW, Chung BY. Aryl Hydrocarbon Receptor and Autophagy-Related Protein Microtubule-Associated Protein Light Chain 3 Expression in Psoriasis. Ann Dermatol 2021; 33:138-146. [PMID: 33935455 PMCID: PMC8082009 DOI: 10.5021/ad.2021.33.2.138] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/03/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Background The aryl hydrocarbon receptor (AHR) and autophagy are both important to maintain skin homeostasis. However, they are also involved in skin disorders. So far, their roles in psoriasis pathogenesis are unknown. Objective We studied the immunohistochemical and gene expression of AHR, CYP1A1, and microtubule-associated protein light chain 3 (LC3) in lesional skin of psoriasis patients to determine correlations among them. Methods We included 24 psoriasis patients and ten healthy volunteers. Skin biopsies were collected. AHR, CYP1A1, and LC3 protein expression was examined by immunohistochemistry, immunofluorescence, and western blotting. AHR, CYP1A1, LC3, ATG5, BECN1 and Nrf2 mRNA levels were measured by quantitative polymerase chain reaction. Results AHR and CYP1A1 protein expression were higher in psoriasis lesional skin than in normal skin. LC3 protein expression was lower in psoriasis lesions than in normal controls. AHR and CYP1A1 protein expression in psoriasis lesions showed significant positive correlations with mean epidermal thickness and inflammatory cell density. Significant negative correlations were noted between LC3 protein expression in psoriasis lesions and the mean epidermal thickness or inflammatory cell density. A significant negative correlation was found between AHR and LC3 expression in psoriatic skin. AHR, CYP1A1 and Nrf2 mRNA expression were upregulated while LC3, ATG5, and BECN1 mRNA were down-regulated, in psoriatic lesional skin compared with normal controls. Conclusion AHR and autophagy could play a role in psoriasis pathogenesis by modifying epidermal hyperproliferation and inflammation. AHR and autophagy regulation are potential therapeutic targets in chronic inflammatory skin diseases.
Collapse
Affiliation(s)
- Jung Eun Kim
- Department of Dermatology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Hye Ran Kim
- Department of Dermatology, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
| | - Seok Young Kang
- Department of Dermatology, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
| | - Min Je Jung
- Department of Dermatology, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
| | - Nam Hun Heo
- Soonchunhyang University Hospital Cheonan, Clinical Trial Center, Cheonan, Korea
| | - Hyun Ju Lee
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Aeli Ryu
- Department of Obstetrics and Gynecology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Hye One Kim
- Department of Dermatology, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
| | - Chun Wook Park
- Department of Dermatology, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
| | - Bo Young Chung
- Department of Dermatology, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Korea
| |
Collapse
|
100
|
Kim BE, Kim J, Goleva E, Berdyshev E, Lee J, Vang KA, Lee UH, Han S, Leung S, Hall CF, Kim NR, Bronova I, Lee EJ, Yang HR, Leung DY, Ahn K. Particulate matter causes skin barrier dysfunction. JCI Insight 2021; 6:145185. [PMID: 33497363 PMCID: PMC8021104 DOI: 10.1172/jci.insight.145185] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/21/2021] [Indexed: 11/17/2022] Open
Abstract
The molecular mechanisms that underlie the detrimental effects of particulate matter (PM) on skin barrier function are poorly understood. In this study, the effects of PM2.5 on filaggrin (FLG) and skin barrier function were investigated in vitro and in vivo. The levels of FLG degradation products, including pyrrolidone carboxylic acid, urocanic acid (UCA), and cis/trans-UCA, were significantly decreased in skin tape stripping samples of study subjects when they moved from Denver, an area with low PM2.5, to Seoul, an area with high PM2.5 count. Experimentally, PM2.5 collected in Seoul inhibited FLG, loricrin, keratin-1, desmocollin-1, and corneodesmosin but did not modulate involucrin or claudin-1 in keratinocyte cultures. Moreover, FLG protein expression was inhibited in human skin equivalents and murine skin treated with PM2.5. We demonstrate that this process was mediated by PM2.5-induced TNF-α and was aryl hydrocarbon receptor dependent. PM2.5 exposure compromised skin barrier function, resulting in increased transepidermal water loss, and enhanced the penetration of FITC-dextran in organotypic and mouse skin. PM2.5-induced TNF-α caused FLG deficiency in the skin and subsequently induced skin barrier dysfunction. Compromised skin barrier due to PM2.5 exposure may contribute to the development and the exacerbation of allergic diseases such as atopic dermatitis.
Collapse
Affiliation(s)
- Byung Eui Kim
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.,Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jihyun Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, South Korea
| | - Elena Goleva
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Evgeny Berdyshev
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Jinyoung Lee
- Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, South Korea
| | - Kathryn A Vang
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Un Ha Lee
- Department of Dermatology, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, South Korea
| | - SongYi Han
- Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, South Korea
| | - Susan Leung
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Clifton F Hall
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Na-Rae Kim
- Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, South Korea
| | - Irina Bronova
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Eu Jin Lee
- Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, South Korea
| | - Hye-Ran Yang
- Seoul Metropolitan Government Research Institute of Public Health and Environment, Seoul, South Korea
| | - Donald Ym Leung
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, South Korea
| |
Collapse
|