51
|
Ma L, Terrell M, Brown J, Castellanos Garcia A, Elshikha A, Morel L. TLR7/TLR8 activation and susceptibility genes synergize to breach gut barrier in a mouse model of lupus. Front Immunol 2023; 14:1187145. [PMID: 37483626 PMCID: PMC10358848 DOI: 10.3389/fimmu.2023.1187145] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Background Mounting evidence suggests that increased gut permeability, or leaky gut, and the resulting translocation of pathobionts or their metabolites contributes to the pathogenesis of Systemic Lupus Erythematosus. However, the mechanisms underlying the induction of gut leakage remain unclear. In this study, we examined the effect of a treatment with a TLR7/8 agonist in the B6.Sle1.Sle2.Sle3 triple congenic (TC) mouse, a spontaneous mouse model of lupus without gut leakage. Materials and methods Lupus-prone mice (TC), TC.Rag1-/- mice that lack B and T cells, and congenic B6 healthy controls were treated with R848. Gut barrier integrity was assessed by measuring FITC-dextran in the serum following oral gavage. Claudin-1 and PECAM1 expression as well as the extent of CD45+ immune cells, B220+ B cells, CD3+ T cells and CD11b+ myeloid cells were measured in the ileum by immunofluorescence. NKp46+ cells were measured in the ileum and colon by immunofluorescence. Immune cells in the ileum were also analyzed by flow cytometry. Results R848 decreased gut barrier integrity in TC but not in congenic control B6 mice. Immunofluorescence staining of the ileum showed a reduced expression of the tight junction protein Claudin-1, endothelial cell tight junction PECAM1, as well as an increased infiltration of immune cells, including B cells and CD11b+ cells, in R848-treated TC as compared to untreated control mice. However, NKp46+ cells which play critical role in maintaining gut barrier integrity, had a lower frequency in treated TC mice. Flow cytometry showed an increased frequency of plasma cells, dendritic cells and macrophages along with a decreased frequency of NK cells in R848 treated TC mice lamina propria. In addition, we showed that the R848 treatment did not induce gut leakage in TC.Rag1-/- mice that lack mature T and B cells. Conclusions These results demonstrate that TLR7/8 activation induces a leaky gut in lupus-prone mice, which is mediated by adaptive immune responses. TLR7/8 activation is however not sufficient to breach gut barrier integrity in non-autoimmune mice.
Collapse
Affiliation(s)
- Longhuan Ma
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Morgan Terrell
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Josephine Brown
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Abigail Castellanos Garcia
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Ahmed Elshikha
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Laurence Morel
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
52
|
Lamont RJ, Miller DP, Bagaitkar J. Illuminating the oral microbiome: cellular microbiology. FEMS Microbiol Rev 2023; 47:fuad045. [PMID: 37533213 PMCID: PMC10657920 DOI: 10.1093/femsre/fuad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023] Open
Abstract
Epithelial cells line mucosal surfaces such as in the gingival crevice and provide a barrier to the ingress of colonizing microorganisms. However, epithelial cells are more than a passive barrier to microbial intrusion, and rather constitute an interactive interface with colonizing organisms which senses the composition of the microbiome and communicates this information to the underlying cells of the innate immune system. Microorganisms, for their part, have devised means to manipulate host cell signal transduction pathways to favor their colonization and survival. Study of this field, which has become known as cellular microbiology, has revealed much about epithelial cell physiology, bacterial colonization and pathogenic strategies, and innate host responses.
Collapse
Affiliation(s)
- Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, KY40202, United States
| | - Daniel P Miller
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, VA23298, United States
| | - Juhi Bagaitkar
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, OH43205, United States
- Department of Pediatrics, The Ohio State College of Medicine, Columbus, OH, OH43210, United States
| |
Collapse
|
53
|
Zhu M, Song Y, Xu Y, Xu H. Manipulating Microbiota in Inflammatory Bowel Disease Treatment: Clinical and Natural Product Interventions Explored. Int J Mol Sci 2023; 24:11004. [PMID: 37446182 DOI: 10.3390/ijms241311004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex multifactorial chronic inflammatory disease, that includes Crohn's disease (CD) and ulcerative colitis (UC), having progressively increasing global incidence. Disturbed intestinal flora has been highlighted as an important feature of IBD and offers promising strategies for IBD remedies. A brief overview of the variations occurring in intestinal flora during IBD is presented, and the role of the gut microbiota in intestinal barrier maintenance, immune and metabolic regulation, and the absorption and supply of nutrients is reviewed. More importantly, we review drug research on gut microbiota in the past ten years, including research on clinical and natural drugs, as well as adjuvant therapies, such as Fecal Microbiota Transplantation and probiotic supplements. We also summarize the interventions and mechanisms of these drugs on gut microbiota.
Collapse
Affiliation(s)
- Mengjie Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yijie Song
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
54
|
Sun M, Ju J, Xu H, Wang Y. Intestinal fungi and antifungal secretory immunoglobulin A in Crohn's disease. Front Immunol 2023; 14:1177504. [PMID: 37359518 PMCID: PMC10285161 DOI: 10.3389/fimmu.2023.1177504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
The human gastrointestinal tract harbors trillions of commensal microorganisms. Emerging evidence points to a possible link between intestinal fungal dysbiosis and antifungal mucosal immunity in inflammatory bowel disease, especially in Crohn's disease (CD). As a protective factor for the gut mucosa, secretory immunoglobulin A (SIgA) prevents bacteria from invading the intestinal epithelium and maintains a healthy microbiota community. In recent years, the roles of antifungal SIgA antibodies in mucosal immunity, including the regulation of intestinal immunity binding to hyphae-associated virulence factors, are becoming increasingly recognized. Here we review the current knowledge on intestinal fungal dysbiosis and antifungal mucosal immunity in healthy individuals and in patients with CD, discuss the factors governing antifungal SIgA responses in the intestinal mucosa in the latter group, and highlight potential antifungal vaccines targeting SIgA to prevent CD.
Collapse
|
55
|
López-Marin B, Osorno-Gutiérrez AP, Arredondo-Vanegas N. [Effect of pasteurization and freezing on the content of IgA1 and IgA2 subtypes in breast milk]. REVISTA ALERGIA MÉXICO 2023; 70:15-21. [PMID: 37566752 DOI: 10.29262/ram.v70i1.1205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/06/2023] [Indexed: 08/13/2023] Open
Abstract
OBJECTIVE To determine the effect of pasteurization and freezing on the content of IgA1 and IgA2 in breast milk. METHODS Observational, retrospective study, carried out in women who had been breastfeeding their newborn for more than 30 days, and could donate 50 mL of milk. The concentration of IgA1 and IgA2 was determined by turbidimetry, before and after being subjected to pasteurization and freezing, every 15 days for 2 months. Freezing was at -20°C. A total IgA content of 1598.5 mg/dL was found. RESULTS 10 breast milk donors were selected. The initial concentration of IgA1 and IA2 was 651 and 945.7 mg/dL, respectively; At the end of the freezing times, the content of both immunoglobulins decreased: IgA1 of 74% and IgA2 of 86%. After the treatments, the immunoglobulin content decreased dramatically, with a significant difference of p < 0.05. CONCLUSIONS Pasteurization and freezing significantly affect the content of IgA1 and IgA in breast milk; therefore, breast-feeding remains the best way to offer full immunological protection to the infant.
Collapse
Affiliation(s)
- Beatriz López-Marin
- Maestría en Ciencias Farmacéuticas y Alimentarias; Doctorado en Ciencias Farmacéuticas Alimentarias; Pregrado en Nutrición y Dietética; Universidad de Antioquia, Colombia.
| | - Adriana Patricia Osorno-Gutiérrez
- Diplomado en Módulo de especialización "Enfermedades Metabólicas", Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile. Especialización en Nutrición Clínica Pediátrica, Hospital Infantil de México Federico Gómez, Pregrado en Nutrición y Dietética, Universidad de Antioquia, Colombia
| | | |
Collapse
|
56
|
Doron I, Kusakabe T, Iliev ID. Immunoglobulins at the interface of the gut mycobiota and anti-fungal immunity. Semin Immunol 2023; 67:101757. [PMID: 37003056 PMCID: PMC10192079 DOI: 10.1016/j.smim.2023.101757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The dynamic and complex community of microbes that colonizes the intestines is composed of bacteria, fungi, and viruses. At the mucosal surfaces, immunoglobulins play a key role in protection against bacterial and fungal pathogens, and their toxins. Secretory immunoglobulin A (sIgA) is the most abundantly produced antibody at the mucosal surfaces, while Immunoglobulin G (IgG) isotypes play a critical role in systemic protection. IgA and IgG antibodies with reactivity to commensal fungi play an important role in shaping the mycobiota and host antifungal immunity. In this article, we review the latest evidence that establishes a connection between commensal fungi and B cell-mediated antifungal immunity as an additional layer of protection against fungal infections and inflammation.
Collapse
Affiliation(s)
- Itai Doron
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| | - Takato Kusakabe
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| | - Iliyan D Iliev
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
57
|
Yue Z, Fan Z, Zhang H, Feng B, Wu C, Chen S, Ouyang J, Fan H, Weng P, Feng H, Chen S, Dong M, Xu A, Huang S. Differential roles of the fish chitinous membrane in gut barrier immunity and digestive compartments. EMBO Rep 2023; 24:e56645. [PMID: 36852962 PMCID: PMC10074124 DOI: 10.15252/embr.202256645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 03/01/2023] Open
Abstract
The chitin-based peritrophic matrix (PM) is a structure critical for both gut immunity and digestion in invertebrates. PM was traditionally considered lost in all vertebrates, but a PM-like chitinous membrane (CM) has recently been discovered in fishes, which may increase the knowledge on vertebrate gut physiology and structural evolution. Here, we show that in zebrafish, the CM affects ingestion behavior, microbial homeostasis, epithelial renewal, digestion, growth, and longevity. Young mutant fish without CM appear healthy and are able to complete their life cycle normally, but with increasing age they develop gut inflammation, resulting in gut atrophy. Unlike mammals, zebrafish have no visible gel-forming mucin layers to protect their gut epithelia, but at least in young fish, the CM is not a prerequisite for the antibacterial gut immunity. These findings provide new insights into the role of the CM in fish prosperity and its eventual loss in tetrapods. These findings may also help to improve fish health and conservation, as well as to advance the understanding of vertebrate gut physiology and human intestinal diseases.
Collapse
Affiliation(s)
- Zirui Yue
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangdongChina#
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Zhaoyu Fan
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangdongChina#
| | - Hao Zhang
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangdongChina#
| | - Buhan Feng
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangdongChina#
| | - Chengyi Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life SciencesXiamen UniversityXiamenChina
| | - Shenghui Chen
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangdongChina#
| | - Jihua Ouyang
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangdongChina#
| | - Huiping Fan
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangdongChina#
| | - Panwei Weng
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangdongChina#
| | - Huixiong Feng
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangdongChina#
| | - Shangwu Chen
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangdongChina#
| | - Meiling Dong
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangdongChina#
| | - Anlong Xu
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangdongChina#
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Shengfeng Huang
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life SciencesSun Yat‐sen UniversityGuangdongChina#
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| |
Collapse
|
58
|
Abstract
Abstract The gut has been hypothesized to be the "motor" of multiple organ dysfunction in sepsis. Although there are multiple ways in which the gut can drive systemic inflammation, increasing evidence suggests that the intestinal microbiome plays a more substantial role than previously appreciated. An English language literature review was performed to summarize the current knowledge of sepsis-induced gut microbiome dysbiosis. Conversion of a normal microbiome to a pathobiome in the setting of sepsis is associated with worsened mortality. Changes in microbiome composition and diversity signal the intestinal epithelium and immune system resulting in increased intestinal permeability and a dysregulated immune response to sepsis. Clinical approaches to return to microbiome homeostasis may be theoretically possible through a variety of methods including probiotics, prebiotics, fecal microbial transplant, and selective decontamination of the digestive tract. However, more research is required to determine the efficacy (if any) of targeting the microbiome for therapeutic gain. The gut microbiome rapidly loses diversity with emergence of virulent bacteria in sepsis. Restoring normal commensal bacterial diversity through various therapies may be an avenue to improve sepsis mortality.
Collapse
Affiliation(s)
- Nathan J. Klingensmith
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Craig M. Coopersmith
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
59
|
English J, Patrick S, Stewart LD. The potential role of molecular mimicry by the anaerobic microbiome in the aetiology of autoimmune disease. Anaerobe 2023; 80:102721. [PMID: 36940867 DOI: 10.1016/j.anaerobe.2023.102721] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 03/23/2023]
Abstract
Autoimmune diseases are thought to develop as a consequence of various environmental and genetic factors, each of which contributes to dysfunctional immune responses and/or a breakdown in immunological tolerance towards native structures. Molecular mimicry by microbial components is among the environmental factors thought to promote a breakdown in immune tolerance, particularly through the presence of cross-reactive epitopes shared with the human host. While resident members of the microbiome are essential promoters of human health through immunomodulation, defence against pathogenic colonisation and conversion of dietary fibre into nutritional resources for host tissues, there may be an underappreciated role of these microbes in the aetiology and/or progression of autoimmune disease. An increasing number of molecular mimics are being identified amongst the anaerobic microbiota which structurally resemble endogenous components and, in some cases, for example the human ubiquitin mimic of Bacteroides fragilis and DNA methyltransferase of Roseburia intestinalis, have been associated with promoting antibody profiles characteristic of autoimmune diseases. The persistent exposure of molecular mimics from the microbiota to the human immune system is likely to be involved in autoantibody production that contributes to the pathologies associated with immune-mediated inflammatory disorders. Here-in, examples of molecular mimics that have been identified among resident members of the human microbiome and their ability to induce autoimmune disease through cross-reactive autoantibody production are discussed. Improved awareness of the molecular mimics that exist among human colonisers will help elucidate the mechanisms involved in the breakdown of immune tolerance that ultimately lead to chronic inflammation and downstream disease.
Collapse
Affiliation(s)
- Jamie English
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast. 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Sheila Patrick
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast. 19 Chlorine Gardens, Belfast, BT9 5DL, UK; The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Linda D Stewart
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast. 19 Chlorine Gardens, Belfast, BT9 5DL, UK.
| |
Collapse
|
60
|
Wang X, Lin S, Wang L, Cao Z, Zhang M, Zhang Y, Liu R, Liu J. Versatility of bacterial outer membrane vesicles in regulating intestinal homeostasis. SCIENCE ADVANCES 2023; 9:eade5079. [PMID: 36921043 PMCID: PMC10017049 DOI: 10.1126/sciadv.ade5079] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 02/14/2023] [Indexed: 06/09/2023]
Abstract
Outer membrane vesicles (OMVs) play vital roles in bacterial communication both intraspecifically and interspecifically. However, extracellular mechanisms of gut microbiota-derived OMVs in the intestine remain poorly understood. Here, we report that OMVs released from Akkermansia muciniphila are able to (i) restore disturbed balance of the gut microbiota by selectively promoting the proliferation of beneficial bacteria through membrane fusion, (ii) elicit mucosal immunoglobulin A response by translocating into Peyer's patches and subsequently activating B cells and dendritic cells, and (iii) maintain the integrity of the intestinal barrier by entering intestinal epithelial cells to stimulate the expressions of tight junctions and mucus. We demonstrate that transplantation of gut microbiota-associated OMVs to the intestine can alleviate colitis and enhance anti-programmed cell death protein 1 therapy against colorectal cancer by regulating intestinal homeostasis. This work discloses the importance of gut microbiota-derived OMVs in intestinal ecology, providing an alternative target for disease intervention and treatment.
Collapse
Affiliation(s)
- Xinyue Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Sisi Lin
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Mengmeng Zhang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yifan Zhang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Rui Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
61
|
Mes L, Steffen U, Chen HJ, Veth J, Hoepel W, Griffith GR, Schett G, den Dunnen J. IgA2 immune complexes selectively promote inflammation by human CD103+ dendritic cells. Front Immunol 2023; 14:1116435. [PMID: 37006318 PMCID: PMC10061090 DOI: 10.3389/fimmu.2023.1116435] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
While immunoglobulin A (IgA) is well known for its neutralizing and anti-inflammatory function, it is becoming increasingly clear that IgA can also induce human inflammatory responses by various different immune cells. Yet, little is known about the relative role of induction of inflammation by the two IgA subclasses i.e. IgA1, most prominent subclass in circulation, and IgA2, most prominent subclass in the lower intestine. Here, we set out to study the inflammatory function of IgA subclasses on different human myeloid immune cell subsets, including monocytes, and in vitro differentiated macrophages and intestinal CD103+ dendritic cells (DCs). While individual stimulation with IgA immune complexes only induced limited inflammatory responses by human immune cells, both IgA subclasses strongly amplified pro-inflammatory cytokine production upon co-stimulation with Toll-like receptor (TLR) ligands such as Pam3CSK4, PGN, and LPS. Strikingly, while IgA1 induced slightly higher or similar levels of pro-inflammatory cytokines by monocytes and macrophages, respectively, IgA2 induced substantially more inflammation than IgA1 by CD103+ DCs. In addition to pro-inflammatory cytokine proteins, IgA2 also induced higher mRNA expression levels, indicating that amplification of pro-inflammatory cytokine production is at least partially regulated at the level of gene transcription. Interestingly, cytokine amplification by IgA1 was almost completely dependent on Fc alpha receptor I (FcαRI), whilst blocking this receptor only partially reduced cytokine induction by IgA2. In addition, IgA2-induced amplification of pro-inflammatory cytokines was less dependent on signaling through the kinases Syk, PI3K, and TBK1/IKKϵ. Combined, these findings indicate that IgA2 immune complexes, which are most abundantly expressed in the lower intestine, particularly promote inflammation by human CD103+ intestinal DCs. This may serve an important physiological function upon infection, by enabling inflammatory responses by this otherwise tolerogenic DC subset. Since various inflammatory disorders are characterized by disturbances in IgA subclass balance, this may also play a role in the induction or exacerbation of chronic intestinal inflammation.
Collapse
Affiliation(s)
- Lynn Mes
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
- Department of Medical Microbiology, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Ulrike Steffen
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hung-Jen Chen
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Jennifer Veth
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Willianne Hoepel
- Department of Experimental Immunology, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
- Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Centers (UMC), Amsterdam Rheumatology and Immunology Center, Amsterdam, Netherlands
| | - Guillermo Romeo Griffith
- Department of Medical Biochemistry, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jeroen den Dunnen
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
- *Correspondence: Jeroen den Dunnen,
| |
Collapse
|
62
|
Plitt T, Faith JJ. Seminars in immunology special issue: Nutrition, microbiota and immunity The unexplored microbes in health and disease. Semin Immunol 2023; 66:101735. [PMID: 36857892 PMCID: PMC10049858 DOI: 10.1016/j.smim.2023.101735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/17/2023] [Accepted: 02/09/2023] [Indexed: 03/03/2023]
Abstract
Functional characterization of the microbiome's influence on host physiology has been dominated by a few characteristic example strains that have been studied in detail. However, the extensive development of methods for high-throughput bacterial isolation and culture over the past decade is enabling functional characterization of the broader microbiota that may impact human health. Characterizing the understudied majority of human microbes and expanding our functional understanding of the diversity of the gut microbiota could enable new insights into diseases with unknown etiology, provide disease-predictive microbiome signatures, and advance microbial therapeutics. We summarize high-throughput culture-dependent platforms for characterizing bacterial strain function and host-interactions. We elaborate on the importance of these technologies in facilitating mechanistic studies of previously unexplored microbes, highlight new opportunities for large-scale in vitro screens of host-relevant microbial functions, and discuss the potential translational applications for microbiome science.
Collapse
Affiliation(s)
- Tamar Plitt
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jeremiah J Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
63
|
Jang J, Hwang S, Oh AR, Park S, Yaseen U, Kim JG, Park S, Jung Y, Cha JY. Fructose malabsorption in ChREBP-deficient mice disrupts the small intestine immune microenvironment and leads to diarrhea-dominant bowel habit changes. Inflamm Res 2023; 72:769-782. [PMID: 36813915 DOI: 10.1007/s00011-023-01707-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND The mechanism by which incompletely absorbed fructose causes gastrointestinal symptoms is not fully understood. In this study, we investigated the immunological mechanisms of bowel habit changes associated with fructose malabsorption by examining Chrebp-knockout mice exhibiting defective fructose absorption. METHODS Mice were fed a high-fructose diet (HFrD), and stool parameters were monitored. The gene expression in the small intestine was analyzed by RNA sequencing. Intestinal immune responses were assessed. The microbiota composition was determined by 16S rRNA profiling. Antibiotics were used to assess the relevance of microbes for HFrD-induced bowel habit changes. RESULTS Chrebp-knockout (KO) mice fed HFrD showed diarrhea. Small-intestine samples from HFrD-fed Chrebp-KO mice revealed differentially expressed genes involved in the immune pathways, including IgA production. The number of IgA-producing cells in the small intestine decreased in HFrD-fed Chrebp-KO mice. These mice showed signs of increased intestinal permeability. Chrebp-KO mice fed a control diet showed intestinal bacterial imbalance, which the HFrD exaggerated. Bacterial reduction improved diarrhea-associated stool parameters and restored the decreased IgA synthesis induced in HFrD-fed Chrebp-KO mice. CONCLUSIONS The collective data indicate that gut microbiome imbalance and disrupting homeostatic intestinal immune responses account for the development of gastrointestinal symptoms induced by fructose malabsorption.
Collapse
Affiliation(s)
- Jinsun Jang
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science and Technology, Gachon University, Inchon, Korea
| | - Soonjae Hwang
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, 155 Gaetbeol-ro, Yeonsu-gu, Inchon, 21999, Korea
| | - Ah-Reum Oh
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science and Technology, Gachon University, Inchon, Korea.,Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, 22212, Korea
| | - Sohyeon Park
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science and Technology, Gachon University, Inchon, Korea
| | - Uzma Yaseen
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science and Technology, Gachon University, Inchon, Korea
| | - Jae Gon Kim
- Department of Microbiology, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, 155 Gaetbeol-ro, Yeonsu-gu, Inchon, 21999, Korea
| | - Sangbin Park
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science and Technology, Gachon University, Inchon, Korea
| | - YunJae Jung
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science and Technology, Gachon University, Inchon, Korea. .,Department of Microbiology, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, 155 Gaetbeol-ro, Yeonsu-gu, Inchon, 21999, Korea.
| | - Ji-Young Cha
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science and Technology, Gachon University, Inchon, Korea. .,Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, 155 Gaetbeol-ro, Yeonsu-gu, Inchon, 21999, Korea. .,Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, 22212, Korea.
| |
Collapse
|
64
|
Mestecky J, Julian BA, Raska M. IgA Nephropathy: Pleiotropic impact of Epstein-Barr virus infection on immunopathogenesis and racial incidence of the disease. Front Immunol 2023; 14:1085922. [PMID: 36865536 PMCID: PMC9973316 DOI: 10.3389/fimmu.2023.1085922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
IgA nephropathy (IgAN) is an autoimmune disease in which poorly galactosylated IgA1 is the antigen recognized by naturally occurring anti-glycan antibodies, leading to formation of nephritogenic circulating immune complexes. Incidence of IgAN displays geographical and racial disparity: common in Europe, North America, Australia, and east Asia, uncommon in African Americans, many Asian and South American countries, Australian Aborigines, and rare in central Africa. In analyses of sera and cells from White IgAN patients, healthy controls, and African Americans, IgAN patients exhibited substantial enrichment for IgA-expressing B cells infected with Epstein-Barr virus (EBV), leading to enhanced production of poorly galactosylated IgA1. Disparities in incidence of IgAN may reflect a previously disregarded difference in the maturation of the IgA system as related to the timing of EBV infection. Compared with populations with higher incidences of IgAN, African Americans, African Blacks, and Australian Aborigines are more frequently infected with EBV during the first 1-2 years of life at the time of naturally occurring IgA deficiency when IgA cells are less numerous than in late childhood or adolescence. Therefore, in very young children EBV enters "non-IgA" cells. Ensuing immune responses prevent infection of IgA B cells during later exposure to EBV at older ages. Our data implicate EBV-infected cells as the source of poorly galactosylated IgA1 in circulating immune complexes and glomerular deposits in patients with IgAN. Thus, temporal differences in EBV primo-infection as related to naturally delayed maturation of the IgA system may contribute to geographic and racial variations in incidence of IgAN.
Collapse
Affiliation(s)
- Jiri Mestecky
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Laboratory of Cellular and Molecular Immunology Institute of Microbiology, Czech Academy of Sciences, Prague, Czechia
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bruce A. Julian
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Milan Raska
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czechia
| |
Collapse
|
65
|
Takada K, Melnikov VG, Kobayashi R, Komine-Aizawa S, Tsuji NM, Hayakawa S. Female reproductive tract-organ axes. Front Immunol 2023; 14:1110001. [PMID: 36798125 PMCID: PMC9927230 DOI: 10.3389/fimmu.2023.1110001] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023] Open
Abstract
The female reproductive tract (FRT) and remote/versatile organs in the body share bidirectional communication. In this review, we discuss the framework of the "FRT-organ axes." Each axis, namely, the vagina-gut axis, uterus-gut axis, ovary-gut axis, vagina-bladder axis, vagina-oral axis, uterus-oral axis, vagina-brain axis, uterus-brain axis, and vagina-joint axis, is comprehensively discussed separately. Each axis could be involved in the pathogenesis of not only gynecological diseases but also diseases occurring apart from the FRT. Although the microbiota is clearly a key player in the FRT-organ axes, more quantitative insight into the homeostasis of the microbiota could be provided by host function measurements rather than current microbe-centric approaches. Therefore, investigation of the FRT-organ axes would provide us with a multicentric approach, including immune, neural, endocrine, and metabolic aspects, for understanding the homeostatic mechanism of women's bodies. The framework of the FRT-organ axes could also provide insights into finding new therapeutic approaches to maintain women's health.
Collapse
Affiliation(s)
- Kazuhide Takada
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,*Correspondence: Kazuhide Takada, ; Satoshi Hayakawa,
| | | | - Ryoki Kobayashi
- Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,Microbiology and Immunology, Nihon University, School of Dentistry at Matsudo, Chiba, Japan
| | - Shihoko Komine-Aizawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Noriko M. Tsuji
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,Department of Food Science, Jumonji University, Saitama, Japan
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,*Correspondence: Kazuhide Takada, ; Satoshi Hayakawa,
| |
Collapse
|
66
|
Kayongo A, Robertson NM, Siddharthan T, Ntayi ML, Ndawula JC, Sande OJ, Bagaya BS, Kirenga B, Mayanja-Kizza H, Joloba ML, Forslund SK. Airway microbiome-immune crosstalk in chronic obstructive pulmonary disease. Front Immunol 2023; 13:1085551. [PMID: 36741369 PMCID: PMC9890194 DOI: 10.3389/fimmu.2022.1085551] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) has significantly contributed to global mortality, with three million deaths reported annually. This impact is expected to increase over the next 40 years, with approximately 5 million people predicted to succumb to COPD-related deaths annually. Immune mechanisms driving disease progression have not been fully elucidated. Airway microbiota have been implicated. However, it is still unclear how changes in the airway microbiome drive persistent immune activation and consequent lung damage. Mechanisms mediating microbiome-immune crosstalk in the airways remain unclear. In this review, we examine how dysbiosis mediates airway inflammation in COPD. We give a detailed account of how airway commensal bacteria interact with the mucosal innate and adaptive immune system to regulate immune responses in healthy or diseased airways. Immune-phenotyping airway microbiota could advance COPD immunotherapeutics and identify key open questions that future research must address to further such translation.
Collapse
Affiliation(s)
- Alex Kayongo
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda,Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda,Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda,Department of Medicine, Center for Emerging Pathogens, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, United States
| | | | - Trishul Siddharthan
- Division of Pulmonary Medicine, School of Medicine, University of Miami, Miami, FL, United States
| | - Moses Levi Ntayi
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda,Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda,Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Josephine Caren Ndawula
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Obondo J. Sande
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Bernard S. Bagaya
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Bruce Kirenga
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Harriet Mayanja-Kizza
- Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Moses L. Joloba
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Sofia K. Forslund
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany,Experimental and Clinical Research Center, a cooperation of Charité - Universitatsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany,Charité-Universitatsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany,*Correspondence: Sofia K. Forslund,
| |
Collapse
|
67
|
Girdhar K, Dogru YD, Huang Q, Yang Y, Tolstikov V, Raisingani A, Chrudinova M, Oh J, Kelley K, Ludvigsson JF, Kiebish MA, Palm NW, Ludvigsson J, Altindis E. Dynamics of the gut microbiome, IgA response, and plasma metabolome in the development of pediatric celiac disease. MICROBIOME 2023; 11:9. [PMID: 36639805 PMCID: PMC9840338 DOI: 10.1186/s40168-022-01429-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Celiac disease (CD) is an autoimmune disorder triggered by gluten consumption. Almost all CD patients possess human leukocyte antigen (HLA) DQ2/DQ8 haplotypes; however, only a small subset of individuals carrying these alleles develop CD, indicating the role of environmental factors in CD pathogenesis. The main objective of this study was to determine the contributory role of gut microbiota and microbial metabolites in CD onset. To this end, we obtained fecal samples from a prospective cohort study (ABIS) at ages 2.5 and 5 years. Samples were collected from children who developed CD after the final sample collection (CD progressors) and healthy children matched by age, HLA genotype, breastfeeding duration, and gluten-exposure time (n=15-16). We first used 16S sequencing and immunoglobulin-A sequencing (IgA-seq) using fecal samples obtained from the same children (i) 16 controls and 15 CD progressors at age 2.5 and (ii) 13 controls and 9 CD progressors at age 5. We completed the cytokine profiling, and plasma metabolomics using plasma samples obtained at age 5 (n=7-9). We also determined the effects of one microbiota-derived metabolite, taurodeoxycholic acid (TDCA), on the small intestines and immune cell composition in vivo. RESULTS CD progressors have a distinct gut microbiota composition, an increased IgA response, and unique IgA targets compared to healthy subjects. Notably, 26 plasma metabolites, five cytokines, and one chemokine were significantly altered in CD progressors at age 5. Among 26 metabolites, we identified a 2-fold increase in TDCA. TDCA treatment alone caused villous atrophy, increased CD4+ T cells, Natural Killer cells, and two important immunoregulatory proteins, Qa-1 and NKG2D expression on T cells while decreasing T-regulatory cells in intraepithelial lymphocytes (IELs) in C57BL/6J mice. CONCLUSIONS Pediatric CD progressors have a distinct gut microbiota composition, plasma metabolome, and cytokine profile before diagnosis. Furthermore, CD progressors have more IgA-coated bacteria and unique targets of IgA in their gut microbiota. TDCA feeding alone stimulates an inflammatory immune response in the small intestines of C57BJ/6 mice and causes villous atrophy, the hallmark of CD. Thus, a microbiota-derived metabolite, TDCA, enriched in CD progressors' plasma, has the potential to drive inflammation in the small intestines and enhance CD pathogenesis. Video Abstract.
Collapse
Affiliation(s)
- Khyati Girdhar
- Boston College Biology Department, Chestnut Hill, MA, 02467, USA
| | | | - Qian Huang
- Boston College Biology Department, Chestnut Hill, MA, 02467, USA
| | - Yi Yang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | | | - Amol Raisingani
- Boston College Biology Department, Chestnut Hill, MA, 02467, USA
| | | | - Jaewon Oh
- Boston College Biology Department, Chestnut Hill, MA, 02467, USA
| | - Kristina Kelley
- Boston College Biology Department, Chestnut Hill, MA, 02467, USA
| | - Jonas F Ludvigsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Paediatrics, Örebro University Hospital, Örebro, Sweden
| | | | - Noah W Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Johnny Ludvigsson
- Crown Princess Victoria Children's Hospital, Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, 58185, Linköping, SE, Sweden
| | - Emrah Altindis
- Boston College Biology Department, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
68
|
Ghotaslou R, Nabizadeh E, Memar MY, Law WMH, Ozma MA, Abdi M, Yekani M, Kadkhoda H, hosseinpour R, Bafadam S, Ghotaslou A, Leylabadlo HE, Nezhadi J. The metabolic, protective, and immune functions of Akkermansia muciniphila. Microbiol Res 2023; 266:127245. [DOI: 10.1016/j.micres.2022.127245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022]
|
69
|
Xu J, Xu J, Shi T, Zhang Y, Chen F, Yang C, Guo X, Liu G, Shao D, Leong KW, Nie G. Probiotic-Inspired Nanomedicine Restores Intestinal Homeostasis in Colitis by Regulating Redox Balance, Immune Responses, and the Gut Microbiome. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207890. [PMID: 36341495 DOI: 10.1002/adma.202207890] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Microbiota-based therapeutics offer innovative strategies to treat inflammatory bowel diseases (IBDs). However, the poor clinical outcome so far and the limited flexibility of the bacterial approach call for improvement. Inspired by the health benefits of probiotics in alleviating symptoms of bowel diseases, bioartificial probiotics are designed to restore the intestinal microenvironment in colitis by regulating redox balance, immune responses, and the gut microbiome. The bioartificial probiotic comprises two components: an E. coli Nissle 1917-derived membrane (EM) as the surface and the biodegradable diselenide-bridged mesoporous silica nanoparticles (SeM) as the core. When orally administered, the probiotic-inspired nanomedicine (SeM@EM) adheres strongly to the mucus layer and restored intestinal redox balance and immune regulation homeostasis in a murine model of acute colitis induced by dextran sodium sulfate. In addition, the respective properties of the EM and SeM synergistically alter the gut microbiome to a favorable state by increasing the bacterial diversity and shifting the microbiome profile to an anti-inflammatory phenotype. This work suggests a safe and effective nanomedicine that can restore intestinal homeostasis for IBDs therapy.
Collapse
Affiliation(s)
- Jiaqi Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Junchao Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tongfei Shi
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Yinlong Zhang
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangman Chen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510006, China
| | - Chao Yang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Xinjing Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Guangna Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Shao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
70
|
Cumpelik A, Cody E, Yu SMW, Grasset EK, Dominguez-Sola D, Cerutti A, Heeger PS. Cutting Edge: Neutrophil Complement Receptor Signaling Is Required for BAFF-Dependent Humoral Responses in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:19-23. [PMID: 36454023 PMCID: PMC9780177 DOI: 10.4049/jimmunol.2200410] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/06/2022] [Indexed: 12/24/2022]
Abstract
T cell-independent (TI) B cell responses to nonprotein Ags involve multiple cues from the innate immune system. Neutrophils express complement receptors and activated neutrophils can release BAFF, but mechanisms effectively linking neutrophil activation to TI B cell responses are incompletely understood. Using germline and conditional knockout mice, we found that TI humoral responses involve alternative pathway complement activation and neutrophil-expressed C3a and C5a receptors (C3aR1/C5aR1) that promote BAFF-dependent B1 cell expansion and TI Ab production. Conditional absence of C3aR1/C5aR1 on neutrophils lowered serum BAFF levels, led to fewer Peyer's patch germinal center B cells, reduced germinal center B cells IgA class-switching, and lowered fecal IgA levels. Together, the results indicate that sequential activation of complement on neutrophils crucially supports humoral TI and mucosal IgA responses through upregulating neutrophil production of BAFF.
Collapse
Affiliation(s)
- Arun Cumpelik
- Precision Immunology Institute, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Evan Cody
- Precision Immunology Institute, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Samuel Mon-Wei Yu
- Precision Immunology Institute, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Emilie K Grasset
- Precision Immunology Institute, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - David Dominguez-Sola
- Precision Immunology Institute, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Andrea Cerutti
- Precision Immunology Institute, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Peter S Heeger
- Precision Immunology Institute, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
71
|
Moreira H, Dobosz A, Cwynar-Zając Ł, Nowak P, Czyżewski M, Barg M, Reichert P, Królikowska A, Barg E. Unraveling the role of Breg cells in digestive tract cancer and infectious immunity. Front Immunol 2022; 13:981847. [PMID: 36618354 PMCID: PMC9816437 DOI: 10.3389/fimmu.2022.981847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/02/2022] [Indexed: 12/25/2022] Open
Abstract
Over the past two decades, regulatory B cells (Breg cells or Bregs) have emerged as an immunosuppressive subset of B lymphocytes playing a key role in inflammation, infection, allergy, transplantation, and cancer. However, the involvement of Bregs in various pathological conditions of the gastrointestinal tract is not fully understood and is the subject of much recent research. In this review, we aimed to summarize the current state of knowledge about the origin, phenotype, and suppressive mechanisms of Bregs. The relationship between the host gut microbiota and the function of Bregs in the context of the disturbance of mucosal immune homeostasis is also discussed. Moreover, we focused our attention on the role of Bregs in certain diseases and pathological conditions related to the digestive tract, especially Helicobacter pylori infection, parasitic diseases (leishmaniasis and schistosomiasis), and gastrointestinal neoplasms. Increasing evidence points to a relationship between the presence and number of Bregs and the severity and progression of these pathologies. As the number of cases is increasing year by year, also among young people, it is extremely important to understand the role of these cells in the digestive tract.
Collapse
Affiliation(s)
- Helena Moreira
- Department of Medical Sciences Foundation, Wroclaw Medical University, Wroclaw, Poland,*Correspondence: Helena Moreira, ; Agnieszka Dobosz,
| | - Agnieszka Dobosz
- Department of Medical Sciences Foundation, Wroclaw Medical University, Wroclaw, Poland,*Correspondence: Helena Moreira, ; Agnieszka Dobosz,
| | - Łucja Cwynar-Zając
- Department of Medical Sciences Foundation, Wroclaw Medical University, Wroclaw, Poland
| | - Paulina Nowak
- Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Marek Czyżewski
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Marta Barg
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Paweł Reichert
- Department of Trauma Surgery, Clinical Department of Trauma and Hand Surgery, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Aleksandra Królikowska
- Ergonomics and Biomedical Monitoring Laboratory, Department of Physiotherapy, Faculty of Health Sciences, Wroclaw Medical University, Wroclaw, Poland
| | - Ewa Barg
- Department of Medical Sciences Foundation, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
72
|
Strugnell RA. When secretion turns into excretion - the different roles of IgA. Front Immunol 2022; 13:1076312. [PMID: 36618388 PMCID: PMC9812643 DOI: 10.3389/fimmu.2022.1076312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
IgA deficiency is the commonest immunodeficiency affecting up to 1 in 700 individuals. The effects of IgA deficiency are difficult to see in many individuals, are mild in many fewer and severe in fewer still. While monovalent IgA is found in serum, dimeric IgA is secreted through mucosal surfaces where it helps to maintain epithelial homeostasis. Studies with knockout mice have taught us that there are subtle inflammatory consequences of removing secretory IgA (sIgA), and the best explanation for these changes can be related by the loss of the 'excretory' immune system. The excretion of antigens is a logical process in regulating the immune system, given the long half-life of complement fixing antibodies. But the function of IgA as an immune or inflammation regulator may go beyond antigen removal.
Collapse
|
73
|
Allergenic food protein consumption is associated with systemic IgG antibody responses in non-allergic individuals. Immunity 2022; 55:2454-2469.e6. [PMID: 36473469 DOI: 10.1016/j.immuni.2022.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/01/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
Although food-directed immunoglobulin E (IgE) has been studied in the context of allergies, the prevalence and magnitude of IgG responses against dietary antigens are incompletely characterized in the general population. Here, we measured IgG binding against food and environmental antigens obtained from allergen databases and the immune epitope database (IEDB), represented in a phage displayed library of 58,233 peptides. By profiling blood samples of a large cohort representing the average adult Israeli population (n = 1,003), we showed that many food antigens elicited systemic IgG in up to 50% of individuals. Dietary intake of specific food protein correlated with antibody binding, suggesting that diet can shape the IgG epitope repertoire. Our work documents abundant systemic IgG responses against food antigens and provides a reference map of the exact immunogenic epitopes on a population scale, laying the foundation to unravel the role of food- and environmental antigen-directed antibody binding in disease contexts.
Collapse
|
74
|
Wang K, Guo Y, Liu Y, Cui X, Gu X, Li L, Li Y, Li M. Pyruvate: Ferredoxin oxidoreductase is involved in IgA-related microbiota dysbiosis and intestinal inflammation. Front Immunol 2022; 13:1040774. [PMID: 36569858 PMCID: PMC9782971 DOI: 10.3389/fimmu.2022.1040774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Inflammatory bowel diseases (IBDs) are associated with both immune abnormalities and dysbiosis, characterized by a loss of Faecalibacterium prausnitzii (F. prausnitzii). However, the reason for F. prausnitzii deficiency remains unclear. Methods 16S rDNA seque-ncing and IgA enzyme-linked immunosorbent assay (ELISA) were applied to identify bacterial community and IgA changes in ulcerative colitis (UC) patients. Forced immunization with F. prausnitzii in rabbits was conducted. To screen for potential IgA-reactive proteins in F. prausnitzii lysates, we performed western blotting and mass spectrometry analyses. Pyruvate: ferredoxin oxidoreductase (PFOR) was cloned and purified, then the immunoreactivity of PFOR was verified in peripheral blood mononuclear cells (PBMCs) through PCR, ELISpot assay and single-cell sequencing (scRNA-seq). Finally, the UC fecal dysbiosis was re-analyzed in the context of the phylogenetic tree of PFOR. Results F. prausnitzii was underrepresented in UC patients with elevated F. prausnitzii-reactive IgA in the fecal supernatant. Forced immunization with F. prausnitzii in rabbits led to high interferon-γ (IFN-γ) transcription in the colon, along with beta diversity disturbance and intestinal inflammation. PFOR was identified as an IgA-binding antigen of F. prausnitzii and the immunoreactivity was validated in PBMCs, which showed elevated expression of inflammatory cytokines. The scRNA-seq revealed enhanced signals in both T regulatory cells (Tregs) and monocytes after PFOR incubation. Furthermore, phylogenetic analysis revealed that PFOR was a common but conserved protein among the gut bacteria. Discussion Our results collectively suggest that PFOR is a bioactive protein in the immune system and may contribute to host-microbial crosstalk. Conserved but bioactive microbial proteins, such as PFOR, warrant more attention in future host-microbial interaction studies.
Collapse
Affiliation(s)
- Kairuo Wang
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, China,Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yixuan Guo
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, China,Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, China,Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal Tumor, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yuanyuan Liu
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, China,Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, China,Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal Tumor, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xiao Cui
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, China,Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, China,Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal Tumor, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xiang Gu
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, China,Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, China,Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal Tumor, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, China,Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, China,Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal Tumor, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, China,Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, China,Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal Tumor, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Ming Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, China,Laboratory of Translational Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, China,Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal Tumor, Qilu Hospital, Shandong University, Jinan, Shandong, China,Shandong Provincial Clinical Research Center for digestive disease, Qilu Hospital, Shandong University, Jinan, Shandong, China,*Correspondence: Ming Li,
| |
Collapse
|
75
|
van Mourik DJM, Salet DM, Middeldorp S, Nieuwdorp M, van Mens TE. The role of the intestinal microbiome in antiphospholipid syndrome. Front Immunol 2022; 13:954764. [PMID: 36505427 PMCID: PMC9732728 DOI: 10.3389/fimmu.2022.954764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/01/2022] [Indexed: 11/27/2022] Open
Abstract
The antiphospholipid syndrome (APS) is a thrombotic autoimmune disease in which the origin of the disease-characterizing autoantibodies is unknown. Increased research effort into the role of the intestinal microbiome in autoimmunity has produced new insights in this field. This scoping review focusses on the gut microbiome in its relation to APS. EMBASE and MEDLINE were searched for original studies with relevance to the relation between the gut microbiome and APS. Thirty studies were included. Work on systemic lupus erythematosus, which strongly overlaps with APS, has shown that patients often display an altered gut microbiome composition, that the disease is transferable with the microbiome, and that microbiome manipulation affects disease activity in murine lupus models. The latter has also been shown for APS, although data on microbiome composition is less consistent. APS patients do display an altered intestinal IgA response. Evidence has accrued for molecular mimicry as an explanatory mechanism for these observations in APS and other autoimmune diseases. Specific gut microbes express proteins with homology to immunodominant APS autoantigens. The disease phenotype appears to be dependent on these mimicking proteins in an APS mouse model, and human APS B- and T-cells indeed cross-react with these mimics. Pre-clinical evidence furthermore suggests that diet may influence autoimmunity through the microbiome, as may microbial short chain fatty acid production, though this has not been studied in APS. Lastly, the microbiome has been shown to affect key drivers of thrombosis, and may thus affect APS severity through non-immunological mechanisms. Overall, these observations demonstrate the impact of the intestinal microbiome on autoimmunity and the importance of understanding its role in APS.
Collapse
Affiliation(s)
- Dagmar J. M. van Mourik
- Amsterdam UMC location University of Amsterdam, Department of (Experimental) Vascular Medicine, Amsterdam, Netherlands,Amsterdam Cardiovascular Sciences, Pulmonary hypertension & thrombosis, Amsterdam, Netherlands,*Correspondence: Dagmar J. M. van Mourik, ; Thijs E. van Mens,
| | - Dorien M. Salet
- Amsterdam UMC location University of Amsterdam, Department of (Experimental) Vascular Medicine, Amsterdam, Netherlands,Amsterdam Cardiovascular Sciences, Pulmonary hypertension & thrombosis, Amsterdam, Netherlands,Department of Internal Medicine & Radboud Institute of Health Sciences (RIHS), Radboud University Medical Center, Nijmegen, Netherlands
| | - Saskia Middeldorp
- Department of Internal Medicine & Radboud Institute of Health Sciences (RIHS), Radboud University Medical Center, Nijmegen, Netherlands
| | - Max Nieuwdorp
- Amsterdam UMC location University of Amsterdam, Department of (Experimental) Vascular Medicine, Amsterdam, Netherlands
| | - Thijs E. van Mens
- Amsterdam UMC location University of Amsterdam, Department of (Experimental) Vascular Medicine, Amsterdam, Netherlands,Amsterdam Cardiovascular Sciences, Pulmonary hypertension & thrombosis, Amsterdam, Netherlands,Amsterdam Reproduction & Development, Pregnancy & Birth, Amsterdam, Netherlands,*Correspondence: Dagmar J. M. van Mourik, ; Thijs E. van Mens,
| |
Collapse
|
76
|
Homeostasis of the Intestinal Mucosa in Healthy Horses-Correlation between the Fecal Microbiome, Secretory Immunoglobulin A and Fecal Egg Count. Animals (Basel) 2022; 12:ani12223094. [PMID: 36428322 PMCID: PMC9687066 DOI: 10.3390/ani12223094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022] Open
Abstract
The defensive function of the intestinal mucosa depends both on the ability to secrete immunoglobulin A and communication with the mucus microbiome. In horses, the functioning of this system is also influenced by the presence of nematode eggs. Feces collected from healthy horses were examined to determine the fecal egg count, immunoglobulin A level (ELISA), microbiome composition (Next-Generation Sequencing, NGS, V3−V4 and V7−V9 hypervariable regions of the 16S rRNA gene analysis and short-chain fatty acid (SCFA) production ((high-performance liquid chromatography, HPLC). In the taxonomic analysis within the phylum, the following order of dominance was found: Firmicutes, Bacteroidota, Verrucomicrobiota and Fibrobacterota. The coefficient of phylogenetic diversity of the microbiome positively correlated with both secretory immunoglobulin A (SIgA) [μg/g of feces] (p = 0.0354, r = 0.61) and SIgA [μg/mg of fecal protein] (p = 0.0382, r = 0.6) and with the number of Cyathostomum eggs (p = 0.0023, r = 0.79). Important components of the key microbiome in horses, such as phylum Proteobacteria and species Ruminococcus flavefaciens, were positively correlated with the fecal SIgA (p < 0.05). All the obtained results indicate the existence of significant relationships between the host response (SIgA production) and composition and SCFA production in the microbiome as well as the presence of small strongyles in the digestive tract of horses.
Collapse
|
77
|
Sequestration of gut pathobionts in intraluminal casts, a mechanism to avoid dysregulated T cell activation by pathobionts. Proc Natl Acad Sci U S A 2022; 119:e2209624119. [PMID: 36201539 PMCID: PMC9565271 DOI: 10.1073/pnas.2209624119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
T cells that express the transcription factor RORγ, regulatory (Treg), or conventional (Th17) are strongly influenced by intestinal symbionts. In a genetic approach to identify mechanisms underlying this influence, we performed a screen for microbial genes implicated, in germfree mice monocolonized with Escherichia coli Nissle. The loss of capsule-synthesis genes impaired clonal expansion and differentiation of intestinal RORγ+ T cells. Mechanistic exploration revealed that the capsule-less mutants remained able to induce species-specific immunoglobulin A (IgA) and were highly IgA-coated. They could still trigger myeloid cells, and more effectively damaged epithelial cells in vitro. Unlike wild-type microbes, capsule-less mutants were mostly engulfed in intraluminal casts, large agglomerates composed of myeloid cells extravasated into the gut lumen. We speculate that sequestration in luminal casts of potentially harmful microbes, favored by IgA binding, reduces the immune system's actual exposure, preserving host-microbe equilibrium. The variable immunostimulation by microbes that has been charted in recent years may not solely be conditioned by triggering molecules or metabolites but also by physical limits to immune system exposure.
Collapse
|
78
|
Jones ST, Guo K, Cooper EH, Dillon SM, Wood C, Nguyen DH, Shen G, Barrett BS, Frank DN, Kroehl M, Janoff EN, Kechris K, Wilson CC, Santiago ML. Altered Immunoglobulin Repertoire and Decreased IgA Somatic Hypermutation in the Gut during Chronic HIV-1 Infection. J Virol 2022; 96:e0097622. [PMID: 35938870 PMCID: PMC9472609 DOI: 10.1128/jvi.00976-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/21/2022] [Indexed: 11/27/2022] Open
Abstract
Humoral immune perturbations contribute to pathogenic outcomes in persons with HIV-1 infection (PWH). Gut barrier dysfunction in PWH is associated with microbial translocation and alterations in microbial communities (dysbiosis), and IgA, the most abundant immunoglobulin (Ig) isotype in the gut, is involved in gut homeostasis by interacting with the microbiome. We determined the impact of HIV-1 infection on the antibody repertoire in the gastrointestinal tract by comparing Ig gene utilization and somatic hypermutation (SHM) in colon biopsies from PWH (n = 19) versus age and sex-matched controls (n = 13). We correlated these Ig parameters with clinical, immunological, microbiome and virological data. Gene signatures of enhanced B cell activation were accompanied by skewed frequencies of multiple Ig Variable genes in PWH. PWH showed decreased frequencies of SHM in IgA and possibly IgG, with a substantial loss of highly mutated IgA sequences. The decline in IgA SHM in PWH correlated with gut CD4+ T cell loss and inversely correlated with mucosal inflammation and microbial translocation. Diminished gut IgA SHM in PWH was driven by transversion mutations at A or T deoxynucleotides, suggesting a defect not at the AID/APOBEC3 deamination step but at later stages of IgA SHM. These results expand our understanding of humoral immune perturbations in PWH that could have important implications in understanding mucosal immune defects in individuals with chronic HIV-1 infection. IMPORTANCE The gut is a major site of early HIV-1 replication and pathogenesis. Extensive CD4+ T cell depletion in this compartment results in a compromised epithelial barrier that facilitates the translocation of microbes into the underlying lamina propria and systemic circulation, resulting in chronic immune activation. To date, the consequences of microbial translocation on the mucosal humoral immune response (or vice versa) remains poorly integrated into the panoply of mucosal immune defects in PWH. We utilized next-generation sequencing approaches to profile the Ab repertoire and ascertain frequencies of somatic hypermutation in colon biopsies from antiretroviral therapy-naive PWH versus controls. Our findings identify perturbations in the Ab repertoire of PWH that could contribute to development or maintenance of dysbiosis. Moreover, IgA mutations significantly decreased in PWH and this was associated with adverse clinical outcomes. These data may provide insight into the mechanisms underlying impaired Ab-dependent gut homeostasis during chronic HIV-1 infection.
Collapse
Affiliation(s)
- Sean T. Jones
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kejun Guo
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emily H. Cooper
- Center for Innovative Design and Analysis, Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Stephanie M. Dillon
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Cheyret Wood
- Center for Innovative Design and Analysis, Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David H. Nguyen
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Guannan Shen
- Center for Innovative Design and Analysis, Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Bradley S. Barrett
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Daniel N. Frank
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Miranda Kroehl
- Center for Innovative Design and Analysis, Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Edward N. Janoff
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, USA
| | - Katerina Kechris
- Center for Innovative Design and Analysis, Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Cara C. Wilson
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mario L. Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
79
|
Fox BE, Vilander AC, Gilfillan D, Dean GA, Abdo Z. Oral Vaccination Using a Probiotic Vaccine Platform Combined with Prebiotics Impacts Immune Response and the Microbiome. Vaccines (Basel) 2022; 10:vaccines10091465. [PMID: 36146543 PMCID: PMC9504555 DOI: 10.3390/vaccines10091465] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/26/2022] Open
Abstract
Unique to mucosal vaccination is the reciprocal influence of the microbiome and mucosal immune responses, where the immune system is constantly balancing between the clearance of pathogens and the tolerance of self-antigen, food, and the microbiota. Secretory IgA plays a major role in maintaining the homeostasis of a healthy gut microbiome. Natural polyreactive IgA often coats members of the commensal microbiota to aid in their colonization, while high-affinity specific IgA binds to pathogens resulting in their clearance. We developed a probiotic-based mucosal vaccination platform using the bacterium Lactobacillus acidophilus (rLA) with the potential to influence this balance in the IgA coating. In this study, we sought to determine whether repeated administration of rLA alters the host intestinal microbial community due to the immune response against the rLA vaccine. To address this, IgA-seq was employed to characterize shifts in IgA-bound bacterial populations. Additionally, we determined whether using rice bran as a prebiotic would influence the immunogenicity of the vaccine and/or IgA-bound bacterial populations. Our results show that the prebiotic influenced the kinetics of rLA antibody induction and that the rLA platform did not cause lasting disturbances to the microbiome.
Collapse
|
80
|
Penny HA, Domingues RG, Krauss MZ, Melo-Gonzalez F, Lawson MA, Dickson S, Parkinson J, Hurry M, Purse C, Jegham E, Godinho-Silva C, Rendas M, Veiga-Fernandes H, Bechtold DA, Grencis RK, Toellner KM, Waisman A, Swann JR, Gibbs JE, Hepworth MR. Rhythmicity of intestinal IgA responses confers oscillatory commensal microbiota mutualism. Sci Immunol 2022; 7:eabk2541. [PMID: 36054336 PMCID: PMC7613662 DOI: 10.1126/sciimmunol.abk2541] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Interactions between the mammalian host and commensal microbiota are enforced through a range of immune responses that confer metabolic benefits and promote tissue health and homeostasis. Immunoglobulin A (IgA) responses directly determine the composition of commensal species that colonize the intestinal tract but require substantial metabolic resources to fuel antibody production by tissue-resident plasma cells. Here, we demonstrate that IgA responses are subject to diurnal regulation over the course of a circadian day. Specifically, the magnitude of IgA secretion, as well as the transcriptome of intestinal IgA+ plasma cells, was found to exhibit rhythmicity. Oscillatory IgA responses were found to be entrained by time of feeding and were also found to be in part coordinated by the plasma cell-intrinsic circadian clock via deletion of the master clock gene Arntl. Moreover, reciprocal interactions between the host and microbiota dictated oscillatory dynamics among the commensal microbial community and its associated transcriptional and metabolic activity in an IgA-dependent manner. Together, our findings suggest that circadian networks comprising intestinal IgA, diet, and the microbiota converge to align circadian biology in the intestinal tract and to ensure host-microbial mutualism.
Collapse
Affiliation(s)
- Hugo A. Penny
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, M13 9PL, Manchester, United Kingdom
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, M13 9PL, Manchester, United Kingdom
| | - Rita G. Domingues
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, M13 9PL, Manchester, United Kingdom
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, M13 9PL, Manchester, United Kingdom
| | - Maria Z. Krauss
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, M13 9PL, Manchester, United Kingdom
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, M13 9PL, Manchester, United Kingdom
| | - Felipe Melo-Gonzalez
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, M13 9PL, Manchester, United Kingdom
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, M13 9PL, Manchester, United Kingdom
| | - Melissa A.E. Lawson
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, M13 9PL, Manchester, United Kingdom
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, M13 9PL, Manchester, United Kingdom
| | - Suzanna Dickson
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, M13 9PL, Manchester, United Kingdom
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, M13 9PL, Manchester, United Kingdom
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, United Kingdom
| | - James Parkinson
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, M13 9PL, Manchester, United Kingdom
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, M13 9PL, Manchester, United Kingdom
| | - Madeleine Hurry
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, M13 9PL, Manchester, United Kingdom
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, M13 9PL, Manchester, United Kingdom
| | - Catherine Purse
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, M13 9PL, Manchester, United Kingdom
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, M13 9PL, Manchester, United Kingdom
| | - Emna Jegham
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, M13 9PL, Manchester, United Kingdom
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, M13 9PL, Manchester, United Kingdom
| | | | - Miguel Rendas
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, 1400-038, Portugal
| | | | - David A. Bechtold
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, United Kingdom
| | - Richard K. Grencis
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, M13 9PL, Manchester, United Kingdom
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, M13 9PL, Manchester, United Kingdom
- Wellcome Centre for Cell Matrix Research, University of Manchester, M13 9PL, Manchester, United Kingdom
| | - Kai-Michael Toellner
- Institute of Immunology and Immunotherapy, College of Medical & Dental Sciences, Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jonathan R. Swann
- School of Human Development and Health, Faculty of Medicine, University of Southampton, SO16 6YD, Southampton, United Kingdom
| | - Julie E. Gibbs
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, M13 9PL, Manchester, United Kingdom
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, M13 9PL, Manchester, United Kingdom
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, United Kingdom
| | - Matthew R. Hepworth
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, M13 9PL, Manchester, United Kingdom
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, M13 9PL, Manchester, United Kingdom
| |
Collapse
|
81
|
Cerutti A, Filipska M, Fa XM, Tachó-Piñot R. Impact of the mucosal milieu on antibody responses to allergens. J Allergy Clin Immunol 2022; 150:503-512. [PMID: 36075636 DOI: 10.1016/j.jaci.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022]
Abstract
Respiratory and digestive mucosal surfaces are continually exposed to common environmental antigens, which include potential allergens. Although innocuous in healthy individuals, allergens cause allergy in predisposed subjects and do so by triggering a pathologic TH2 cell response that induces IgE class switching and somatic hypermutation in allergen-specific B cells. The ensuing affinity maturation and plasma cell differentiation lead to the abnormal release of high-affinity IgE that binds to powerful FcεRI receptors on basophils and mast cells. When cross-linked by allergen, FcεRI-bound IgE instigates the release of prestored and de novo-induced proinflammatory mediators. Aside from causing type I hypersensitivity reactions underlying allergy, IgE affords protection against nematodes or venoms from insects and snakes, which raises questions as to the fundamental differences between protective and pathogenic IgE responses. In this review, we discuss the impact of the mucosal environment, including the epithelial and mucus barriers, on the induction of protective IgE responses against environmental antigens. We further discuss how perturbations of these barriers may contribute to the induction of pathogenic IgE production.
Collapse
Affiliation(s)
- Andrea Cerutti
- Catalan Institute for Research and Advanced Studies, Barcelona, Spain; Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona Biomedical Research Park, Barcelona, Spain; Division of Clinical Immunology, Department of Medicine, Mount Sinai School of Medicine, New York.
| | - Martyna Filipska
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona Biomedical Research Park, Barcelona, Spain
| | - Xavi Marcos Fa
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona Biomedical Research Park, Barcelona, Spain
| | - Roser Tachó-Piñot
- Lydia Becher Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
82
|
Gudi R, Kamen D, Vasu C. Fecal immunoglobulin A (IgA) and its subclasses in systemic lupus erythematosus patients are nuclear antigen reactive and this feature correlates with gut permeability marker levels. Clin Immunol 2022; 242:109107. [PMID: 36049603 PMCID: PMC10785702 DOI: 10.1016/j.clim.2022.109107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/22/2022] [Accepted: 08/25/2022] [Indexed: 11/03/2022]
Abstract
Systemic lupus erythematosus (SLE) is characterized by the production of anti-nuclear autoantibodies. Here, for the first time, we show that the abundances of gut permeability marker Zonulin and IgA1- and IgA2- subclasses are significantly higher in the fecal samples of SLE patients compared to HCs. Importantly, IgA-total, and IgA1- and IgA2-subclasses from SLE patients showed higher nAg reactivity titers. Notably, we found that not only the nuclear antigen (nAg) reactive fecal IgA1:IgA2 ratio is higher in SLE patients, but also the abundance and nAg reactivity of fecal IgA and subclasses, IgA1 particularly, correlate with the fecal levels of Zonulin, which is produced primarily in the small intestine. These observations that higher amounts of nAg-reactive IgA and gut permeability marker are produced, particularly, in the proximal gut suggest a compromised epithelial barrier function and pro-inflammatory characteristics of small intestine in SLE patients.
Collapse
Affiliation(s)
- Radhika Gudi
- Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Diane Kamen
- Division of Rheumatology, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Chenthamarakshan Vasu
- Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
83
|
Hohman LS, Osborne LC. A gut-centric view of aging: Do intestinal epithelial cells contribute to age-associated microbiota changes, inflammaging, and immunosenescence? Aging Cell 2022; 21:e13700. [PMID: 36000805 PMCID: PMC9470900 DOI: 10.1111/acel.13700] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/07/2022] [Accepted: 08/03/2022] [Indexed: 01/25/2023] Open
Abstract
Intestinal epithelial cells (IECs) serve as both a physical and an antimicrobial barrier against the microbiota, as well as a conduit for signaling between the microbiota and systemic host immunity. As individuals age, the balance between these systems undergoes a myriad of changes due to age-associated changes to the microbiota, IECs themselves, immunosenescence, and inflammaging. In this review, we discuss emerging data related to age-associated loss of intestinal barrier integrity and posit that IEC dysfunction may play a central role in propagating age-associated alterations in microbiota composition and immune homeostasis.
Collapse
Affiliation(s)
- Leah S. Hohman
- Department of Microbiology & Immunology, Life Sciences InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Lisa C. Osborne
- Department of Microbiology & Immunology, Life Sciences InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
84
|
Asaji N, Inoue J, Hayashi H, Tokunaga E, Shimamoto Y, Kinoshita M, Tanaka T, Sakai A, Yano Y, Ueda Y, Kodama Y. Constitution of mucosa‐associated microbiota in the lower digestive tract does not change in early stage of non‐alcoholic fatty liver disease with fecal dysbiosis. JGH Open 2022; 6:677-684. [PMID: 36262534 PMCID: PMC9575329 DOI: 10.1002/jgh3.12803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/10/2022] [Indexed: 11/10/2022]
Abstract
Background and Aim Methods Results Conclusion
Collapse
Affiliation(s)
- Naoki Asaji
- Department of Internal Medicine, Division of Gastroenterology Kobe University Graduate School of Medicine Kobe Japan
| | - Jun Inoue
- Department of Internal Medicine, Division of Gastroenterology Kobe University Graduate School of Medicine Kobe Japan
| | - Hiroki Hayashi
- Division of Gastroenterology Kita‐Harima Medical Center Ono Japan
| | - Eri Tokunaga
- Department of Internal Medicine, Division of Gastroenterology Kobe University Graduate School of Medicine Kobe Japan
| | - Yusaku Shimamoto
- Department of Internal Medicine, Division of Gastroenterology Kobe University Graduate School of Medicine Kobe Japan
| | - Masato Kinoshita
- Department of Internal Medicine, Division of Gastroenterology Kobe University Graduate School of Medicine Kobe Japan
| | - Takeshi Tanaka
- Department of Internal Medicine, Division of Gastroenterology Kobe University Graduate School of Medicine Kobe Japan
| | - Arata Sakai
- Department of Internal Medicine, Division of Gastroenterology Kobe University Graduate School of Medicine Kobe Japan
| | - Yoshihiko Yano
- Department of Internal Medicine, Division of Gastroenterology Kobe University Graduate School of Medicine Kobe Japan
| | - Yoshihide Ueda
- Department of Internal Medicine, Division of Gastroenterology Kobe University Graduate School of Medicine Kobe Japan
| | - Yuzo Kodama
- Department of Internal Medicine, Division of Gastroenterology Kobe University Graduate School of Medicine Kobe Japan
| |
Collapse
|
85
|
Characterization of extracellular vesicles from Lactiplantibacillus plantarum. Sci Rep 2022; 12:13330. [PMID: 35941134 PMCID: PMC9360025 DOI: 10.1038/s41598-022-17629-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 07/28/2022] [Indexed: 11/08/2022] Open
Abstract
We investigated the characteristics and functionalities of extracellular vesicles (EVs) from Lactiplantibacillus plantarum (previously Lactobacillus plantarum) towards host immune cells. L. plantarum produces EVs that have a cytoplasmic membrane and contain cytoplasmic metabolites, membrane and cytoplasmic proteins, and small RNAs, but not bacterial cell wall components, namely, lipoteichoic acid and peptidoglycan. In the presence of L. plantarum EVs, Raw264 cells inducibly produced the pro-inflammatory cytokines IL-1β and IL-6, the anti-inflammatory cytokine IL-10, and IF-γ and IL-12, which are involved in the differentiation of naive T-helper cells into T-helper type 1 cells. IgA was produced by PP cells following the addition of EVs. Therefore, L. plantarum EVs activated innate and acquired immune responses. L. plantarum EVs are recognized by Toll-like receptor 2 (TLR2), which activates NF-κB, but not by other TLRs or NOD-like receptors. N-acylated peptides from lipoprotein19180 (Lp19180) in L. plantarum EVs were identified as novel TLR2 ligands. Therefore, L. plantarum induces an immunostimulation though the TLR2 recognition of the N-acylated amino acid moiety of Lp19180 in EVs. Additionally, we detected a large amount of EVs in the rat gastrointestinal tract for the first time, suggesting that EVs released by probiotics function as a modulator of intestinal immunity.
Collapse
|
86
|
Volker E, Tessier C, Rodriguez N, Yager J, Kozyrskyj A. Pathways of atopic disease and neurodevelopmental impairment: assessing the evidence for infant antibiotics. Expert Rev Clin Immunol 2022; 18:901-922. [PMID: 35822921 DOI: 10.1080/1744666x.2022.2101450] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Epidemiologic studies are starting to report associations between antibiotic use in early life and neurodevelopmental disorders. Through mechanisms within the gut microbiota-brain axis, indeed, it is plausible that infant antibiotic treatment plays a role in the development of atopic disease and neurodevelopmental disorders. AREAS COVERED This narrative review summarizes and interprets published evidence on infant antibiotic use in future outcomes of atopic disease, and neurodevelopmental delay and disorders, including attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). To this end, we critically assess study bias from 2 main confounding factors, maternal/infant infection and infant feeding status. We also discuss common mechanisms that link atopy and neurodevelopment, and propose hypotheses related to immune activation and the gut microbiome. EXPERT OPINION Atopic disease and neurodevelopmental disorders share many risk factors and biological pathways. Infant antibiotic use has been linked to both disorders and is likely a marker for prenatal or infant infection. The mediating role of breastfeeding can also not be discounted. The exploration of causal pathways along the gut-brain axis leading towards neurodevelopmental impairment is evolving and of future interest.
Collapse
|
87
|
Wang B, Shen J. NF-κB Inducing Kinase Regulates Intestinal Immunity and Homeostasis. Front Immunol 2022; 13:895636. [PMID: 35833111 PMCID: PMC9271571 DOI: 10.3389/fimmu.2022.895636] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/31/2022] [Indexed: 11/22/2022] Open
Abstract
Intestinal immunity and homeostasis are maintained through the regulation of cytokine trafficking, microbiota, necrosis and apoptosis. Intestinal immunity and homeostasis participate in host defenses and inflammatory responses locally or systemically through the gut-organ axis. NF-κB functions as a crucial transcription factor mediating the expression of proteins related to the immune responses. The activation of NF-κB involves two major pathways: canonical and non-canonical. The canonical pathway has been extensively studied and reviewed. Here, we present the current knowledge of NIK, a pivotal mediator of the non-canonical NF-κB pathway and its role in intestinal immunity and homeostasis. This review also discusses the novel role of NIK signaling in the pathogenesis and treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Bingran Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
- Ottawa-Shanghai Joint School of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
- Ottawa-Shanghai Joint School of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Jun Shen,
| |
Collapse
|
88
|
Saini A, Dalal P, Sharma D. Deciphering the Interdependent Labyrinth between Gut Microbiota and the Immune System. Lett Appl Microbiol 2022; 75:1122-1135. [PMID: 35730958 DOI: 10.1111/lam.13775] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/18/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
Abstract
The human gut microbiome interacts with each other and the host, which has significant effects on health and disease development. Intestinal homeostasis and inflammation are maintained by the dynamic interactions between gut microbiota and the innate and adaptive immune systems. Numerous metabolic products produced by the gut microbiota play a role in mediating cross-talk between gut epithelial and immune cells. In the event of an imbalance between the immune system and microbiota, the body becomes susceptible to infections, and homeostasis is compromised. This review mainly focuses on the interplay between microbes and the immune system, such as, T-cell and B-cell mediated adaptive responses to microbiota and signaling pathways for effective communication between the two. We have also highlighted the role of microbes in the activation of the immune response, the development of memory cells, and how the immune system determines the diversity of human gut microbiota. The review also explains the relationship of commensal microbiota and their relation in the production of immunoglobulins.
Collapse
Affiliation(s)
- Anamika Saini
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab, -140306, India.,Amity Institute of Biotechnology, Amity University Jaipur, Rajasthan, 302006
| | - Priyanka Dalal
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab, -140306, India
| | - Deepika Sharma
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab, -140306, India
| |
Collapse
|
89
|
León ED, Francino MP. Roles of Secretory Immunoglobulin A in Host-Microbiota Interactions in the Gut Ecosystem. Front Microbiol 2022; 13:880484. [PMID: 35722300 PMCID: PMC9203039 DOI: 10.3389/fmicb.2022.880484] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
In the gastrointestinal tract (GIT), the immune system interacts with a variety of microorganisms, including pathogens as well as beneficial symbionts that perform important physiological functions for the host and are crucial to sustain intestinal homeostasis. In normal conditions, secretory immunoglobulin A (SIgA) is the principal antibody produced by B cells in the GIT mucosa. Polyreactivity provides certain SIgA molecules with the ability of binding different antigens in the bacterial surface, such as O-antigens and teichoic acids, while cross-species reactivity allows them to recognize and interact with different types of bacteria. These functions may be crucial in allowing SIgA to modulate the complex gut microbiota in an efficient manner. Several studies suggest that SIgA can help with the retention and proliferation of helpful members of the gut microbiota. Gut microbiota alterations in people with IgA deficiency include the lack of some species that are known to be normally coated by SIgA. Here, we discuss the different ways in which SIgA behaves in relation to pathogens and beneficial bacteria of the gut microbiota and how the immune system might protect and facilitate the establishment and maintenance of certain gut symbionts.
Collapse
Affiliation(s)
- E Daniel León
- Department of Genomics and Health, Fundación Para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| | - M Pilar Francino
- Department of Genomics and Health, Fundación Para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain.,CIBER en Epidemiología y Salud Pública, Madrid, Spain
| |
Collapse
|
90
|
Hayashida S, Takada K, Melnikov VG, Komine-Aizawa S, Tsuji NM, Hayakawa S. How were Lactobacillus species selected as single dominant species in the human vaginal microbiota? Coevolution of humans and Lactobacillus. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
91
|
Abstract
Secretory immunoglobulin A (SIgA) in human milk plays a central role in complex maternal-infant interactions that influence long-term health outcomes. Governed by genetics and maternal microbial exposure, human milk SIgA shapes both the microbiota and immune system of infants. Historically, SIgA-microbe interactions have been challenging to unravel due to their dynamic and personalized nature, particularly during early life. Recent advances have helped to clarify how SIgA acts beyond simple pathogen clearance to help guide and constrain a healthy microbiota, promote tolerance, and influence immune system development. In this review, we highlight these new findings in the context of the critical early-life window and propose outstanding areas of study that will be key to harnessing the benefits of SIgA to support healthy immune development during infancy.
Collapse
|
92
|
Goncalves P, Doisne JM, Eri T, Charbit B, Bondet V, Posseme C, Llibre A, Casrouge A, Lenoir C, Neven B, Duffy D, Fischer A, Di Santo JP. Defects in mucosal immunity and nasopharyngeal dysbiosis in HSC-transplanted SCID patients with IL2RG/JAK3 deficiency. Blood 2022; 139:2585-2600. [PMID: 35157765 PMCID: PMC11022929 DOI: 10.1182/blood.2021014654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/31/2022] [Indexed: 11/20/2022] Open
Abstract
Both innate and adaptive lymphocytes have critical roles in mucosal defense that contain commensal microbial communities and protect against pathogen invasion. Here we characterize mucosal immunity in patients with severe combined immunodeficiency (SCID) receiving hematopoietic stem cell transplantation (HSCT) with or without myeloablation. We confirmed that pretransplant conditioning had an impact on innate (natural killer and innate lymphoid cells) and adaptive (B and T cells) lymphocyte reconstitution in these patients with SCID and now show that this further extends to generation of T helper 2 and type 2 cytotoxic T cells. Using an integrated approach to assess nasopharyngeal immunity, we identified a local mucosal defect in type 2 cytokines, mucus production, and a selective local immunoglobulin A (IgA) deficiency in HSCT-treated SCID patients with genetic defects in IL2RG/GC or JAK3. These patients have a reduction in IgA-coated nasopharyngeal bacteria and exhibit microbial dysbiosis with increased pathobiont carriage. Interestingly, intravenous immunoglobulin replacement therapy can partially normalize nasopharyngeal immunoglobulin profiles and restore microbial communities in GC/JAK3 patients. Together, our results suggest a potential nonredundant role for type 2 immunity and/or of local IgA antibody production in the maintenance of nasopharyngeal microbial homeostasis and mucosal barrier function.
Collapse
Affiliation(s)
- Pedro Goncalves
- Institut Pasteur, Université de Paris Cité, Inserm U1223, Innate Immunity Unit, Paris, France
| | - Jean-Marc Doisne
- Institut Pasteur, Université de Paris Cité, Inserm U1223, Innate Immunity Unit, Paris, France
| | - Toshiki Eri
- Institut Pasteur, Université de Paris Cité, Inserm U1223, Innate Immunity Unit, Paris, France
| | - Bruno Charbit
- Institut Pasteur, Université de Paris Cité, Center for Translational Science, Paris, France
| | - Vincent Bondet
- Institut Pasteur, Université de Paris Cité, Translational Immunology Unit, Paris, France
| | - Celine Posseme
- Institut Pasteur, Université de Paris Cité, Translational Immunology Unit, Paris, France
| | - Alba Llibre
- Institut Pasteur, Université de Paris Cité, Translational Immunology Unit, Paris, France
| | - Armanda Casrouge
- Institut Pasteur, Université de Paris Cité, Inserm U1223, Innate Immunity Unit, Paris, France
| | - Christelle Lenoir
- Inserm Unité Mixte de Recherche 1163, Paris, France
- Imagine Institut, Université de Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Bénédicte Neven
- Inserm Unité Mixte de Recherche 1163, Paris, France
- Department of Pediatric Immunology, Hematology and Rheumatology, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Darragh Duffy
- Institut Pasteur, Université de Paris Cité, Translational Immunology Unit, Paris, France
| | - Alain Fischer
- Inserm Unité Mixte de Recherche 1163, Paris, France
- Collège de France, Paris, France
| | - James P. Di Santo
- Institut Pasteur, Université de Paris Cité, Inserm U1223, Innate Immunity Unit, Paris, France
| | - The Milieu Intérieur Consortium
- Institut Pasteur, Université de Paris Cité, Inserm U1223, Innate Immunity Unit, Paris, France
- Institut Pasteur, Université de Paris Cité, Center for Translational Science, Paris, France
- Institut Pasteur, Université de Paris Cité, Translational Immunology Unit, Paris, France
- Inserm Unité Mixte de Recherche 1163, Paris, France
- Imagine Institut, Université de Paris Descartes Sorbonne Paris Cité, Paris, France
- Department of Pediatric Immunology, Hematology and Rheumatology, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
- Collège de France, Paris, France
| |
Collapse
|
93
|
Lactobacillus fermentum Stimulates Intestinal Secretion of Immunoglobulin A in an Individual-Specific Manner. Foods 2022; 11:foods11091229. [PMID: 35563952 PMCID: PMC9099657 DOI: 10.3390/foods11091229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 02/04/2023] Open
Abstract
Immunoglobulin A (IgA), as the most secreted immunoglobulin in the intestine, plays an irreplaceable role in mucosal immunity regulation. Previous studies have indicated that Lactobacillus showed strain specificity in stimulating the secretion of IgA through intestinal mucosal lymphocytes. The reason for this phenomenon is not clear. The current studies have been aimed at exploring the effect of a strain on the secretion of IgA in the host’s intestine, but the mechanism behind it has not been seriously studied. Based on this, we selected five strains of Lactobacillus fermentum isolated from different individuals to determine whether there are intraspecific differences in stimulating the secretion of IgA from the intestinal mucosa. It was found that IgA concentrations in different intestinal segments and faeces induced by L. fermentum were different. 12-1 and X6L1 strains increased the secretion of IgA by the intestine significantly. In addition, different strains of L. fermentum were also proven to have different effects on the host gut microbiota but no significant effects on IgA-coated microbiota. Besides, it was speculated that different strains of L. fermentum may act on different pathways to stimulate IgA in a non-inflammatory manner. By explaining the differences of IgA secretion in the host’s intestine tract stimulated by different strains of L. fermentum, it is expected to provide a theoretical basis for the stimulation of intestinal secretion of IgA by Lactobacillus and a new direction for exploring the relationship between Lactobacillus and human immunity.
Collapse
|
94
|
Teleost swim bladder, an ancient air-filled organ that elicits mucosal immune responses. Cell Discov 2022; 8:31. [PMID: 35379790 PMCID: PMC8979957 DOI: 10.1038/s41421-022-00393-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/08/2022] [Indexed: 11/08/2022] Open
Abstract
The air-filled organs (AOs) of vertebrates (lungs and swim bladders) have evolved unique functions (air-breathing or buoyancy control in water) to adapt to different environments. Thus far, immune responses to microbes in AOs have been described exclusively in the lungs of tetrapods. Similar to lungs, swim bladders (SBs) represent a mucosal surface, a feature that leads us to hypothesize a role for SB in immunity. In this study, we demonstrate that secretory IgT (sIgT) is the key SB immunoglobulin (Ig) responding to the viral challenge, and the only Ig involved in viral neutralization in that organ. In support of these findings, we found that the viral load of the SB from fish devoid of sIgT was much higher than that of control fish. Interestingly, similar to the lungs in mammals, the SB represents the mucosal surface in fish with the lowest content of microbiota. Moreover, sIgT is the main Ig class found coating their surface, suggesting a key role of this Ig in the homeostasis of the SB microbiota. In addition to the well-established role of SB in buoyancy control, our findings reveal a previously unrecognized function of teleost SB in adaptive mucosal immune responses upon pathogenic challenge, as well as a previously unidentified role of sIgT in antiviral defense. Overall, our findings indicate that despite the phylogenetic distance and physiological roles of teleost SB and mammalian lungs, they both have evolved analogous mucosal immune responses against microbes which likely originated independently through a process of convergent evolution.
Collapse
|
95
|
Is There a Role for Gut Microbiome Dysbiosis in IgA Nephropathy? Microorganisms 2022; 10:microorganisms10040683. [PMID: 35456735 PMCID: PMC9031807 DOI: 10.3390/microorganisms10040683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis and one of the leading causes of renal failure worldwide. The pathophysiology of IgAN involves nephrotoxic IgA1-immune complexes. These complexes are formed by galactose-deficient (Gd) IgA1 with autoantibodies against the hinge region of Gd-IgA1 as well as soluble CD89, an immune complex amplifier with an affinity for mesangial cells. These multiple molecular interactions result in the induction of the mesangial IgA receptor, CD71, injuring the kidney and causing disease. This review features recent immunological and microbiome studies that bring new microbiota-dependent mechanisms developing the disease based on data from IgAN patients and a humanized mouse model of IgAN. Dysbiosis of the microbiota in IgAN patients is also discussed in detail. Highlights of this review underscore that nephrotoxic IgA1 in the humanized mice originates from mucosal surfaces. Fecal microbiota transplantation (FMT) experiments in mice using stools from patients reveal a possible microbiota dysbiosis in IgAN with the capacity to induce progression of the disease whereas FMT from healthy hosts has beneficial effects in mice. The continual growth of knowledge in IgAN patients and models can lead to the development of new therapeutic strategies targeting the microbiota to treat this disease.
Collapse
|
96
|
Sánchez Montalvo A, Gohy S, Rombaux P, Pilette C, Hox V. The Role of IgA in Chronic Upper Airway Disease: Friend or Foe? FRONTIERS IN ALLERGY 2022; 3:852546. [PMID: 35386640 PMCID: PMC8974816 DOI: 10.3389/falgy.2022.852546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/10/2022] [Indexed: 01/28/2023] Open
Abstract
Chronic upper airway inflammation is amongst the most prevalent chronic disease entities in the Western world with prevalence around 30% (rhinitis) and 11% (rhinosinusitis). Chronic rhinitis and rhinosinusitis may severely impair the quality of life, leading to a significant socio-economic burden. It becomes more and more clear that the respiratory mucosa which forms a physiological as well as chemical barrier for inhaled particles, plays a key role in maintaining homeostasis and driving disease. In a healthy state, the mucosal immune system provides protection against pathogens as well as maintains a tolerance toward non-harmful commensal microbes and benign environmental substances such as allergens. One of the most important players of the mucosal immune system is immunoglobulin (Ig) A, which is well-studied in gut research where it has emerged as a key factor in creating tolerance to potential food allergens and maintaining a healthy microbiome. Although, it is very likely that IgA plays a similar role at the level of the respiratory epithelium, very little research has been performed on the role of this protein in the airways, especially in chronic upper airway diseases. This review summarizes what is known about IgA in upper airway homeostasis, as well as in rhinitis and rhinosinusitis, including current and possible new treatments that may interfere with the IgA system. By doing so, we identify unmet needs in exploring the different roles of IgA in the upper airways required to find new biomarkers or therapeutic options for treating chronic rhinitis and rhinosinusitis.
Collapse
Affiliation(s)
- Alba Sánchez Montalvo
- Pole of Pneumology, ENT and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Sophie Gohy
- Pole of Pneumology, ENT and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- Department of Pulmonology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Cystic Fibrosis Reference Center, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Philippe Rombaux
- Department of Otorhinolaryngology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Charles Pilette
- Pole of Pneumology, ENT and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- Department of Pulmonology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Valérie Hox
- Pole of Pneumology, ENT and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- Department of Otorhinolaryngology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- *Correspondence: Valérie Hox
| |
Collapse
|
97
|
Zhang H, Ding Y, Zeng Q, Wang D, Liu G, Hussain Z, Xiao B, Liu W, Deng T. Characteristics of mesenteric adipose tissue attached to different intestinal segments and their roles in immune regulation. Am J Physiol Gastrointest Liver Physiol 2022; 322:G310-G326. [PMID: 34984923 DOI: 10.1152/ajpgi.00256.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mesenteric adipose tissue (MAT) plays a critical role in the intestinal physiological ecosystems. Small and large intestines have evidently intrinsic and distinct characteristics. However, whether there exist any mesenteric differences adjacent to the small and large intestines (SMAT and LMAT) has not been properly characterized. We studied the important facets of these differences, such as morphology, gene expression, cell components, and immune regulation of MATs, to characterize the mesenteric differences. The SMAT and LMAT of mice were used for comparison of tissue morphology. Paired mesenteric samples were analyzed by RNA-seq to clarify gene expression profiles. MAT partial excision models were constructed to illustrate the immune regulation roles of MATs, and 16S-seq was applied to detect the subsequent effect on microbiota. Our data show that different segments of mesenteries have different morphological structures. SMAT not only has smaller adipocytes but also contains more fat-associated lymphoid clusters than LMAT. The gene expression profile is also discrepant between these two MATs in mice. B-cell markers were abundantly expressed in SMAT, whereas development-related genes were highly expressed in LMAT. Adipose-derived stem cells of LMAT exhibited higher adipogenic potential and lower proliferation rates than those of SMAT. In addition, SMAT and LMAT play different roles in immune regulation and subsequently affect microbiota components. Finally, our data clarified the described differences between SMAT and LMAT in humans. There were significant differences in cell morphology, gene expression profiles, cell components, biological characteristics, and immune and microbiota regulation roles between regional MATs.NEW & NOTEWORTHY Our results change the paradigm of how we regard MAT as a contiguous and homogeneous tissue to an intensely heterogeneous tissue. Appreciation of the differences between regional MATs will guide future research to investigate the specialized roles of different MATs in intestinal health and disease.
Collapse
Affiliation(s)
- Haowei Zhang
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Orthopedics, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yujin Ding
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qin Zeng
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Dandan Wang
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ganglei Liu
- Department of Geriatric Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zain Hussain
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas
| | - Boen Xiao
- Department of Biliopancreatic Surgery and Bariatric Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Liu
- Department of Biliopancreatic Surgery and Bariatric Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tuo Deng
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Immunology Center, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
98
|
Scheithauer TP, Davids M, Winkelmeijer M, Verdoes X, Aydin Ö, de Brauw M, van de Laar A, Meijnikman AS, Gerdes VE, van Raalte D, Herrema H, Nieuwdorp M. Compensatory intestinal antibody response against pro-inflammatory microbiota after bariatric surgery. Gut Microbes 2022; 14:2031696. [PMID: 35130127 PMCID: PMC8824225 DOI: 10.1080/19490976.2022.2031696] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Obesity and type 2 diabetes (T2D) are growing burdens for individuals and the health-care system. Bariatric surgery is an efficient, but drastic treatment to reduce body weight, normalize glucose values, and reduce low-grade inflammation. The gut microbiome, which is in part controlled by intestinal antibodies, such as IgA, is involved in the development of both conditions. Knowledge of the effect of bariatric surgery on systemic and intestinal antibody response is limited. Here, we determined the fecal antibody and gut microbiome response in 40 T2D and non-diabetic (ND) obese individuals that underwent bariatric surgery (N = 40). Body weight, fasting glucose concentrations and inflammatory parameters decreased after bariatric surgery, whereas pro-inflammatory bacterial species such as lipopolysaccharide (LPS), and flagellin increased in the feces. Simultaneously, concentrations of LPS- and flagellin-specific intestinal IgA levels increased with the majority of pro-inflammatory bacteria coated with IgA after surgery. Finally, serum antibodies decreased in both groups, along with a lower inflammatory tone. We conclude that intestinal rearrangement by bariatric surgery leads to expansion of typical pro-inflammatory bacteria, which may be compensated by an improved antibody response. Although further evidence and mechanistic insights are needed, we postulate that this apparent compensatory antibody response might help to reduce systemic inflammation by neutralizing intestinal immunogenic components and thereby enhance intestinal barrier function after bariatric surgery.
Collapse
Affiliation(s)
- Torsten P.M. Scheithauer
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands,CONTACT Torsten P.M. Scheithauer Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Location AMC, Amsterdam, AZ1105, The Netherlands
| | - Mark Davids
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands
| | - Maaike Winkelmeijer
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands
| | - Xanthe Verdoes
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands
| | - Ömrüm Aydin
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands,Department of Surgery, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | - Maurits de Brauw
- Department of Surgery, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | | | - Abraham S. Meijnikman
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands,Department of Surgery, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | - Victor E.A. Gerdes
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands
| | - Daniël van Raalte
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands,Diabetes Center; Department of Internal Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands
| | - Hilde Herrema
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands,Department of Surgery, Spaarne Gasthuis, Hoofddorp, The Netherlands,Diabetes Center; Department of Internal Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands
| |
Collapse
|
99
|
Han X, Guo J, Qin Y, Huang W, You Y, Zhan J. Dietary regulation of the SIgA-gut microbiota interaction. Crit Rev Food Sci Nutr 2022; 63:6379-6392. [PMID: 35125055 DOI: 10.1080/10408398.2022.2031097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gut microbiota (GM) is essential for host health, and changes in the GM are related to the development of various diseases. Recently, secretory immunoglobulin A (SIgA), the most abundant immunoglobulin isotype in the intestinal mucosa, has been found to play an essential role in controlling GM. SIgA dysfunction can lead to changes in the GM and is associated with the development of various GM-related diseases. Although in early stage, recent studies have shown that assorted dietary interventions, including vitamins, amino acids, fatty acids, polyphenols, oligo/polysaccharides, and probiotics, can influence the intestinal SIgA response and SIgA-GM interaction. Dietary intervention can enhance the SIgA response by directly regulating it (from top to bottom) or by regulating the GM structure or gene expression (from bottom to top). Furthermore, intensive studies involving the particular influence of dietary intervention on SIgA-binding to the GM and SIgA repertoire and the precise regulation of the SIgA response via dietary intervention are still exceedingly scarce and merit further consideration. This review summarizes the existing knowledge and (possible) mechanisms of the influence of dietary intervention on the SIgA-GM interaction. Key issues are considered, and the approaches in addressing these issues in future studies are also discussed.
Collapse
Affiliation(s)
- Xue Han
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing
| | - Jielong Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yue Qin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Weidong Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yilin You
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
100
|
Kou Y, Zheng X, Meng L, Liu M, Xu S, Jing Q, Zhang S, Wang H, Han J, Liu Z, Wei Y, Wang Y. The HVEM-BTLA Immune Checkpoint Restrains Murine Chronic Cholestatic Liver Injury by Regulating the Gut Microbiota. Front Immunol 2022; 13:773341. [PMID: 35185877 PMCID: PMC8854854 DOI: 10.3389/fimmu.2022.773341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
The herpes virus entry mediator (HVEM) is an immune checkpoint molecule regulating immune response, but its role in tissue repair remains unclear. Here, we reported that HVEM deficiency aggravated hepatobiliary damage and compromised liver repair after 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-induced injury. A similar phenotype was observed in B and T lymphocyte attenuator (BTLA)-deficient mice. These were correlated with impairment of neutrophil accumulation in the liver after injury. The hepatic neutrophil accumulation was regulated by microbial-derived secondary bile acids. HVEM-deficient mice had reduced ability to deconjugate bile acids during DDC-feeding, suggesting a gut microbiota defect. Consistently, both HVEM and BTLA deficiency had dysregulated intestinal IgA responses targeting the gut microbes. These results suggest that the HVEM-BTLA signaling may restrain liver injury by regulating the gut microbiota.
Collapse
|