51
|
Kabat AM, Pearce EL, Pearce EJ. Metabolism in type 2 immune responses. Immunity 2023; 56:723-741. [PMID: 37044062 PMCID: PMC10938369 DOI: 10.1016/j.immuni.2023.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023]
Abstract
The immune response is tailored to the environment in which it takes place. Immune cells sense and adapt to changes in their surroundings, and it is now appreciated that in addition to cytokines made by stromal and epithelial cells, metabolic cues provide key adaptation signals. Changes in immune cell activation states are linked to changes in cellular metabolism that support function. Furthermore, metabolites themselves can signal between as well as within cells. Here, we discuss recent progress in our understanding of how metabolic regulation relates to type 2 immunity firstly by considering specifics of metabolism within type 2 immune cells and secondly by stressing how type 2 immune cells are integrated more broadly into the metabolism of the organism as a whole.
Collapse
Affiliation(s)
- Agnieszka M Kabat
- Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Erika L Pearce
- Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Edward J Pearce
- Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA.
| |
Collapse
|
52
|
Park SH, Song HK, Ji KY, Jung DH, Jang S, Kim T, Kim HK. Topical Administration of Gardenia jasminoides Extract Regulates Th2 Immunity in OVA-Induced Mice. Cells 2023; 12:cells12060941. [PMID: 36980282 PMCID: PMC10047210 DOI: 10.3390/cells12060941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
A key feature of an allergic immune response is a T helper type 2 (Th2)-mediated response with production of allergen-specific IgE antibodies. Gardenia jasminoides extract with the crocin removed (GJExCR) has been shown to inhibit IgE-mediated allergic disease. To evaluate the efficacy and mechanism-of-action of this inhibition, GJExCR was used in an ovalbumin (OVA)-induced allergy model in BALB/C mice. Sensitization of BALB/C mice with OVA and aluminum hydroxide was performed on days 1 and 14 by intraperitoneal injection, followed by OVA challenge to the dorsal skin for 2 weeks before removal. Seven days post-challenge, mice were treated with GJExCR topically every day for 11 days. Enzyme-linked immunosorbent assay, flow cytometry analysis, real-time PCR, and western blot were performed to determine IgE and Th2 cytokine levels. Following OVA challenge, Th2 cytokine expression and both total and OVA-specific serum IgE levels increased, of which OVA-specific IgE and Th2 cytokine levels decreased after GJExCR treatment. Flow cytometry analysis revealed that GJExCR treatment decreased CD4+ and CD8+ T cell populations in the spleen and lymph nodes. In addition, treatment with GJExCR downregulated signal transducer and activator of transcription 1 (STAT1) activation and Th2 cytokine levels as compared to control. GJExCR containing geniposide downregulated STAT1 activation in HaCaT cells. These findings demonstrate that GJExCR exerts its anti-allergy effect via inhibition of STAT1 activation, thus regulating the immune response via modulation of Th2 cytokine release and IgE levels. Therefore, we propose GJExCR as a potential treatment for allergic hypersensitivity reactions.
Collapse
Affiliation(s)
- Sun Haeng Park
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon 305-811, Republic of Korea
| | - Hyun-Kyung Song
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon 305-811, Republic of Korea
| | - Kon-Young Ji
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon 305-811, Republic of Korea
| | - Dong Ho Jung
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon 305-811, Republic of Korea
| | - Seol Jang
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon 305-811, Republic of Korea
| | - Taesoo Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon 305-811, Republic of Korea
| | - Ho Kyoung Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon 305-811, Republic of Korea
| |
Collapse
|
53
|
Meng X, Wang Y, Wang T, Jiao B, Shao H, Jia Q, Duan H. Particulate Matter and Its Components Induce Alteration on the T-Cell Response: A Population Biomarker Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:375-384. [PMID: 36537917 DOI: 10.1021/acs.est.2c04347] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Compared with the T-cell potential of particulate matter (PM) in animal studies, comprehensive evaluation on the impairments of T-cell response and exposure-response from PM and its components in human population is limited. There were 768 participants in this study. We measured environmental PM and its polycyclic aromatic hydrocarbons (PAHs) and metals and urinary metabolite levels of PAHs and metals among population. T lymphocyte and its subpopulation (CD4+ T cells and CD8+ T cells) and the expressions of T-bet, GATA3, RORγt, and FoxP3 were measured. We explored the exposure-response of PM compositions by principal component analysis and mode of action by mediation analysis. There was a significant decreasing trend for T lymphocytes and the levels of T-bet and GATA3 with increased PM levels. Generally, there was a negative correlation between PM, urinary 1-hydroxypyrene, urinary metals, and the levels of T-bet and GATA3 expression. Additionally, CD4+ T lymphocytes were found to mediate the associations of PM2.5 with T-bet expression. PM and its bound PAHs and metals could induce immune impairments by altering the T lymphocytes and genes of T-bet and GATA3.
Collapse
Affiliation(s)
- Xiangjing Meng
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong 250062, China
| | - Yanhua Wang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Ting Wang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Bo Jiao
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Hua Shao
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong 250062, China
| | - Qiang Jia
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong 250062, China
| | - Huawei Duan
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| |
Collapse
|
54
|
Bolte AC, Shapiro DA, Dutta AB, Ma WF, Bruch KR, Kovacs MA, Royo Marco A, Ennerfelt HE, Lukens JR. The meningeal transcriptional response to traumatic brain injury and aging. eLife 2023; 12:e81154. [PMID: 36594818 PMCID: PMC9810333 DOI: 10.7554/elife.81154] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/14/2022] [Indexed: 12/31/2022] Open
Abstract
Emerging evidence suggests that the meningeal compartment plays instrumental roles in various neurological disorders, however, we still lack fundamental knowledge about meningeal biology. Here, we utilized high-throughput RNA sequencing (RNA-seq) techniques to investigate the transcriptional response of the meninges to traumatic brain injury (TBI) and aging in the sub-acute and chronic time frames. Using single-cell RNA sequencing (scRNA-seq), we first explored how mild TBI affects the cellular and transcriptional landscape in the meninges in young mice at one-week post-injury. Then, using bulk RNA-seq, we assessed the differential long-term outcomes between young and aged mice following TBI. In our scRNA-seq studies, we highlight injury-related changes in differential gene expression seen in major meningeal cell populations including macrophages, fibroblasts, and adaptive immune cells. We found that TBI leads to an upregulation of type I interferon (IFN) signature genes in macrophages and a controlled upregulation of inflammatory-related genes in the fibroblast and adaptive immune cell populations. For reasons that remain poorly understood, even mild injuries in the elderly can lead to cognitive decline and devastating neuropathology. To better understand the differential outcomes between the young and the elderly following brain injury, we performed bulk RNA-seq on young and aged meninges 1.5 months after TBI. Notably, we found that aging alone induced upregulation of meningeal genes involved in antibody production by B cells and type I IFN signaling. Following injury, the meningeal transcriptome had largely returned to its pre-injury signature in young mice. In stark contrast, aged TBI mice still exhibited upregulation of immune-related genes and downregulation of genes involved in extracellular matrix remodeling. Overall, these findings illustrate the dynamic transcriptional response of the meninges to mild head trauma in youth and aging.
Collapse
Affiliation(s)
- Ashley C Bolte
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of MedicineCharlottesvilleUnited States
- Medical Scientist Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
- Immunology Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Daniel A Shapiro
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
| | - Arun B Dutta
- Medical Scientist Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Biochemistry and Molecular Genetics, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Wei Feng Ma
- Medical Scientist Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
- Center for Public Health Genomics, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Katherine R Bruch
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
| | - Michael A Kovacs
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of MedicineCharlottesvilleUnited States
- Medical Scientist Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
- Immunology Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Ana Royo Marco
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Hannah E Ennerfelt
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
| | - John R Lukens
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
- Medical Scientist Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
- Immunology Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
| |
Collapse
|
55
|
Immune Metabolism in TH2 Responses: New Opportunities to Improve Allergy Treatment - Cell Type-Specific Findings (Part 2). Curr Allergy Asthma Rep 2023; 23:41-52. [PMID: 36520269 PMCID: PMC9832094 DOI: 10.1007/s11882-022-01058-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2022] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Over the last years, we have learned that the metabolic phenotype of immune cells is closely connected to the cell's effector function. Understanding these changes will allow us to better understand allergic disease pathology and improve allergy treatment by modulating immune metabolic pathways. As part two of a two-article series, this review reports on the recent studies investigating the metabolism of the cell types involved in allergies and discusses the initial application of these discoveries in allergy treatment. RECENT FINDINGS The cell types involved in allergic reactions display pronounced and highly specific metabolic changes (here discussed for epithelial cells, APCs, ILC2s, mast cells, eosinophils, and Th2 cells). Currently, the first drugs targeting metabolic pathways are tested for their potential to improve allergy treatment. Immune-metabolic changes observed in allergy so far are complex and depend on the investigated disease and cell type. However, our increased understanding of the underlying principles has pointed to several promising target molecules that are now being investigated to improve allergy treatment.
Collapse
|
56
|
Chopp L, Redmond C, O'Shea JJ, Schwartz DM. From thymus to tissues and tumors: A review of T-cell biology. J Allergy Clin Immunol 2023; 151:81-97. [PMID: 36272581 PMCID: PMC9825672 DOI: 10.1016/j.jaci.2022.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
T cells are critical orchestrators of the adaptive immune response that optimally eliminate a specific pathogen. Aberrant T-cell development and function are implicated in a broad range of human disease including immunodeficiencies, autoimmune diseases, and allergic diseases. Accordingly, therapies targeting T cells and their effector cytokines have markedly improved the care of patients with immune dysregulatory diseases. Newer discoveries concerning T-cell-mediated antitumor immunity and T-cell exhaustion have further prompted development of highly effective and novel treatment modalities for malignancies, including checkpoint inhibitors and antigen-reactive T cells. Recent discoveries are also uncovering the depth and variability of T-cell phenotypes: while T cells have long been described using a subset-based classification system, next-generation sequencing technologies suggest an astounding degree of complexity and heterogeneity at the single-cell level.
Collapse
Affiliation(s)
- Laura Chopp
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda
| | - Christopher Redmond
- Clinical Fellowship Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda
| | - Daniella M Schwartz
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda; Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh.
| |
Collapse
|
57
|
Zhang Y, Li J, Li H, Jiang J, Guo C, Zhou C, Zhou Z, Ming Y. Single-cell RNA sequencing to dissect the immunological network of liver fibrosis in Schistosoma japonicum-infected mice. Front Immunol 2022; 13:980872. [PMID: 36618421 PMCID: PMC9814160 DOI: 10.3389/fimmu.2022.980872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Liver fibrosis is a poor outcome of patients with schistosomiasis, impacting the quality of life and even survival. Eggs deposited in the liver were the main pathogenic factors of hepatic fibrosis in Schistosomiasis japonica. However, the mechanism of hepatic fibrosis in schistosomiasis remains not well defined and there is no effective measure to prevent and treat schistosome-induced hepatic fibrosis. Methods In this study, we applied single-cell sequencing to primarily explore the mechanism of hepatic fibrosis in murine schistosomiasis japonica (n=1) and normal mouse was served as control (n=1). Results A total of 10,403 cells were included in our analysis and grouped into 18 major cell clusters. Th2 cells and NKT cells were obviously increased and there was a close communication between NKT cells and FASLG signaling pathway. Flow cytometry analysis indicated that the expression of Fasl in NKT cells, CD8+ T cell and NK cell were higher in SJ groups. Arg1, Retnla and Chil3, marker genes of alternatively activated macrophages (M2), were mainly expressed in mononuclear phagocyte(1) (MP(1)), suggesting that Kupffer cells might undergo M2-like polarization in fibrotic liver of schistosomiasis. CXCL and CCL signaling pathway analysis with CellChat showed that Cxcl16-Cxcr6, Ccl6-Ccr2 and Ccl5-Ccr5 were the most dominant L-R and there were close interactions between T cells and MPs. Conclusion Our research profiled a preliminary immunological network of hepatic fibrosis in murine schistosomiasis japonica, which might contribute to a better understanding of the mechanisms of liver fibrosis in schistosomiasis. NKT cells and CXCL and CCL signaling pathway such as Cxcl16-Cxcr6, Ccl6-Ccr2 and Ccl5-Ccr5 might be potential targets to alleviate hepatic fibrosis of schistosomiasis.
Collapse
Affiliation(s)
- Yu Zhang
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junhui Li
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Li
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Jiang
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chen Guo
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chen Zhou
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoqin Zhou
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yingzi Ming
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,*Correspondence: Yingzi Ming,
| |
Collapse
|
58
|
Tang W, Li M, Teng F, Cui J, Dong J, Wang W. Single-cell RNA-sequencing in asthma research. Front Immunol 2022; 13:988573. [PMID: 36524132 PMCID: PMC9744750 DOI: 10.3389/fimmu.2022.988573] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
Asthma is a complex and heterogeneous disease with multicellular involvement, and knowledge gaps remain in our understanding of the pathogenesis of asthma. Efforts are still being made to investigate the immune pathogenesis of asthma in order to identify possible targets for prevention. Single cell RNA sequencing (scRNA-seq) technology is a useful tool for exploring heterogeneous diseases, identifying rare cell types and distinct cell subsets, enabling elucidation of key processes of cell differentiation, and understanding regulatory gene networks that predict immune function. In this article, we provide an overview of the importance of scRNA-seq for asthma research, followed by an in-depth discussion of the results in recent years, in order to provide new ideas for the pathogenesis, drug development and treatment of asthma.
Collapse
Affiliation(s)
- Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China,The Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Mihui Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China,The Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Fangzhou Teng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China,The Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jie Cui
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China,The Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China,The Institutes of Integrative Medicine, Fudan University, Shanghai, China,*Correspondence: Wenqian Wang, ; Jingcheng Dong,
| | - Wenqian Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China,The Institutes of Integrative Medicine, Fudan University, Shanghai, China,*Correspondence: Wenqian Wang, ; Jingcheng Dong,
| |
Collapse
|
59
|
Wang Y, Dong X, Pan C, Zhu C, Qi H, Wang Y, Wei H, Xie Q, Wu L, Shen H, Li S, Xie Y. Single-cell transcriptomic characterization reveals the landscape of airway remodeling and inflammation in a cynomolgus monkey model of asthma. Front Immunol 2022; 13:1040442. [PMID: 36439114 PMCID: PMC9685410 DOI: 10.3389/fimmu.2022.1040442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/20/2022] [Indexed: 06/22/2024] Open
Abstract
Monkey disease models, which are comparable to humans in terms of genetic, anatomical, and physiological characteristics, are important for understanding disease mechanisms and evaluating the efficiency of biological treatments. Here, we established an A.suum-induced model of asthma in cynomolgus monkeys to profile airway inflammation and remodeling in the lungs by single-cell RNA sequencing (scRNA-seq). The asthma model results in airway hyperresponsiveness and remodeling, demonstrated by pulmonary function test and histological characterization. scRNA-seq reveals that the model elevates the numbers of stromal, epithelial and mesenchymal cells (MCs). Particularly, the model increases the numbers of endothelial cells (ECs), fibroblasts (Fibs) and smooth muscle cells (SMCs) in the lungs, with upregulated gene expression associated with cell functions enriched in cell migration and angiogenesis in ECs and Fibs, and VEGF-driven cell proliferation, apoptotic process and complement activation in SMCs. Interestingly, we discover a novel Fib subtype that mediates type I inflammation in the asthmatic lungs. Moreover, MCs in the asthmatic lungs are found to regulate airway remodeling and immunological responses, with elevated gene expression enriched in cell migration, proliferation, angiogenesis and innate immunological responses. Not only the numbers of epithelial cells in the asthmatic lungs change at the time of lung tissue collection, but also their gene expressions are significantly altered, with an enrichment in the biological processes of IL-17 signaling pathway and apoptosis in the majority of subtypes of epithelial cells. Moreover, the ubiquitin process and DNA repair are more prevalent in ciliated epithelial cells. Last, cell-to-cell interaction analysis reveals a complex network among stromal cells, MCs and macrophages that contribute to the development of asthma and airway remodeling. Our findings provide a critical resource for understanding the principle underlying airway remodeling and inflammation in a monkey model of asthma, as well as valuable hints for the future treatment of asthma, especially the airway remodeling-characterized refractory asthma.
Collapse
Affiliation(s)
- Yingshuo Wang
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyan Dong
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Caizhe Pan
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Cihang Zhu
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Hantao Qi
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Wang
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Wei
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiangmin Xie
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Respiratory Drugs Research, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Wu
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Huijuan Shen
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuxian Li
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yicheng Xie
- Department of Pulmonology, The Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
60
|
Ding T, Ge S. Metabolic regulation of type 2 immune response during tissue repair and regeneration. J Leukoc Biol 2022; 112:1013-1023. [PMID: 35603496 DOI: 10.1002/jlb.3mr0422-665r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/26/2022] [Indexed: 12/24/2022] Open
Abstract
Type 2 immune responses are mediated by the cytokines interleukin (IL)-4, IL-5, IL-10, and IL-13 and associated cell types, including T helper (Th)2 cells, group 2 innate lymphoid cells (ILC2s), basophils, mast cells, eosinophils, and IL-4- and IL-13-activated macrophages. It can suppress type 1-driven autoimmune diseases, promote antihelminth immunity, maintain cellular metabolic homeostasis, and modulate tissue repair pathways following injury. However, when type 2 immune responses become dysregulated, they can be a significant pathogenesis of many allergic and fibrotic diseases. As such, there is an intense interest in studying the pathways that modulate type 2 immune response so as to identify strategies of targeting and controlling these responses for tissue healing. Herein, we review recent literature on the metabolic regulation of immune cells initiating type 2 immunity and immune cells involved in the effector phase, and talk about how metabolic regulation of immune cell subsets contribute to tissue repair. At last, we discuss whether these findings can provide a novel prospect for regenerative medicine.
Collapse
Affiliation(s)
- Tian Ding
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Shaohua Ge
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
61
|
Zhou L, Zhu Y, Mo L, Wang M, Lin J, Zhao Y, Feng Y, Xie A, Wei H, Qiu H, Huang J, Yang Q. TLR7 controls myeloid-derived suppressor cells expansion and function in the lung of C57BL6 mice infected with Schistosoma japonicum. PLoS Negl Trop Dis 2022; 16:e0010851. [PMID: 36279265 PMCID: PMC9591064 DOI: 10.1371/journal.pntd.0010851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
Abstract
Toll-like receptors (TLRs) play an important role in the induction of innate and adaptive immune responses against Schistosoma japonicum (S. japonicum) infection. However, the role of Toll-like receptor 7 (TLR7) in the mouse lung during S. japonicum infection and the myeloid-derived suppressor cells (MDSCs) affected by the absence of TLR7 are not clearly understood. In this study, the results indicated that the MDSCs were accumulated and the proportion and activation of CD4+ and CD8+ T cells were decreased in the lung of mice at 6-7 weeks after S. japonicum infection. Then, the expression of TLR7 was detected in isolated pulmonary MDSCs and the results showed that the expression of TLR7 in MDSCs was increased after infection. Furthermore, TLR7 agonist R848 could down-regulate the induction effect of the soluble egg antigen (SEA) on pulmonary MDSCs in vitro. Meanwhile, TLR7 deficiency could promote the pulmonary MDSCs expansion and function by up-regulating the expression of PD-L1/2 and secreting of IL-10 in the mice infected with S. japonicum. Mechanistic studies revealed that S. japonicum infection and the antigen effects are mediated by NF-κB signaling. Moreover, TLR7 deficiency aggravates S. japonicum infection-induced damage in the lung, with more inflammatory cells infiltration, interstitial dilatation and granuloma in the tissue. In summary, this study indicated that TLR7 signaling inhibits the accumulation and function of MDSCs in S. japonicum infected mouse lung by down-regulating the expression of PD-L1/2 and secreting of IL-10, via NF-κB signaling.
Collapse
Affiliation(s)
- Lu Zhou
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yiqiang Zhu
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - lengshan Mo
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Mei Wang
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jie Lin
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yi Zhao
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Yuanfa Feng
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Anqi Xie
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Haixia Wei
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Huaina Qiu
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jun Huang
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- * E-mail: (JH); (QY)
| | - Quan Yang
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
- The State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- * E-mail: (JH); (QY)
| |
Collapse
|
62
|
Endo Y, Kanno T, Nakajima T. Fatty acid metabolism in T-cell function and differentiation. Int Immunol 2022; 34:579-587. [PMID: 35700102 DOI: 10.1093/intimm/dxac025] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/12/2022] [Indexed: 01/07/2023] Open
Abstract
Immunometabolism has recently emerged as a field of study examining the intersection between immunology and metabolism. Studies in this area have yielded new findings on the roles of a diverse range of metabolic pathways and metabolites, which have been found to control many aspects of T-cell biology, including cell differentiation, function and fate. A particularly important finding has been the discovery that to meet the energy requirements associated with their proliferation, activation and specific functions, T cells switch their metabolic signatures during differentiation. For example, whereas the induction of de novo fatty acid biosynthesis and fatty acid uptake programs are required for antigen-stimulation-induced proliferation and differentiation of effector T cells, fatty acid catabolism via β-oxidation is essential for the generation of memory T cells and the differentiation of regulatory T cells. In this review, we discuss recent advances in our understanding of the metabolism in different stages of T cells and how fatty acid metabolism in these cells controls their specific functions.
Collapse
Affiliation(s)
- Yusuke Endo
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan.,Department of Omics Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Toshio Kanno
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Takahiro Nakajima
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan
| |
Collapse
|
63
|
Identification of distinct functional thymic programming of fetal and pediatric human γδ thymocytes via single-cell analysis. Nat Commun 2022; 13:5842. [PMID: 36195611 PMCID: PMC9532436 DOI: 10.1038/s41467-022-33488-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/21/2022] [Indexed: 12/12/2022] Open
Abstract
Developmental thymic waves of innate-like and adaptive-like γδ T cells have been described, but the current understanding of γδ T cell development is mainly limited to mouse models. Here, we combine single cell (sc) RNA gene expression and sc γδ T cell receptor (TCR) sequencing on fetal and pediatric γδ thymocytes in order to understand the ontogeny of human γδ T cells. Mature fetal γδ thymocytes (both the Vγ9Vδ2 and nonVγ9Vδ2 subsets) are committed to either a type 1, a type 3 or a type 2-like effector fate displaying a wave-like pattern depending on gestation age, and are enriched for public CDR3 features upon maturation. Strikingly, these effector modules express different CDR3 sequences and follow distinct developmental trajectories. In contrast, the pediatric thymus generates only a small effector subset that is highly biased towards Vγ9Vδ2 TCR usage and shows a mixed type 1/type 3 effector profile. Thus, our combined dataset of gene expression and detailed TCR information at the single-cell level identifies distinct functional thymic programming of γδ T cell immunity in human. Knowledge about the ontogeny of T cells in the thymus relies heavily on mouse studies because of difficulty to obtain human material. Here the authors perform a single cell analysis of thymocytes from human fetal and paediatric thymic samples to characterise the development of human γδ T cells in the thymus.
Collapse
|
64
|
Jaroušek R, Mikulová A, Daďová P, Tauš P, Kurucová T, Plevová K, Tichý B, Kubala L. Single-cell RNA sequencing analysis of T helper cell differentiation and heterogeneity. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119321. [PMID: 35779629 DOI: 10.1016/j.bbamcr.2022.119321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/02/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Single-cell transcriptomics has emerged as a powerful tool to investigate cells' biological landscape and focus on the expression profile of individual cells. Major advantage of this approach is an analysis of highly complex and heterogeneous cell populations, such as a specific subpopulation of T helper cells that are known to differentiate into distinct subpopulations. The need for distinguishing the specific expression profile is even more important considering the T cell plasticity. However, importantly, the universal pipelines for single-cell analysis are usually not sufficient for every cell type. Here, the aims are to analyze the diversity of T cell phenotypes employing classical in vitro cytokine-mediated differentiation of human T cells isolated from human peripheral blood by single-cell transcriptomic approach with support of labelled antibodies and a comprehensive bioinformatics analysis using combination of Seurat, Nebulosa, GGplot and others. The results showed high expression similarities between Th1 and Th17 phenotype and very distinct Th2 expression profile. In a case of Th2 highly specific marker genes SPINT2, TRIB3 and CST7 were expressed. Overall, our results demonstrate how donor difference, Th plasticity and cell cycle influence the expression profiles of distinct T cell populations. The results could help to better understand the importance of each step of the analysis when working with T cell single-cell data and observe the results in a more practical way by using our analyzed datasets.
Collapse
Affiliation(s)
- Radim Jaroušek
- Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Antónia Mikulová
- Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petra Daďová
- Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Tauš
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Terézia Kurucová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Karla Plevová
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Institute of Medical Genetics and Genomics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Boris Tichý
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Lukáš Kubala
- Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
65
|
Stark JM, Liu J, Tibbitt CA, Christian M, Ma J, Wintersand A, Dunst J, Kreslavsky T, Murrell B, Adner M, Grönlund H, Gafvelin G, Coquet JM. Recombinant multimeric dog allergen prevents airway hyperresponsiveness in a model of asthma marked by vigorous T H 2 and T H 17 cell responses. Allergy 2022; 77:2987-3001. [PMID: 35657107 PMCID: PMC9796107 DOI: 10.1111/all.15399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Allergy to dogs affects around 10% of the population in developed countries. Immune therapy of allergic patients with dog allergen extracts has shown limited therapeutic benefit. METHODS We established a mouse model of dog allergy by repeatedly administering dog dander and epithelium extracts via the intranasal route. We also assessed the efficacy of a recombinant multimeric protein containing Can f 1, f 2, f 4 and f 6 in preventing inflammatory responses to dog extracts. RESULTS Repeated inhalation of dog extracts induced infiltration of the airways by TH 2 cells, eosinophils and goblet cells, reminiscent of the house dust mite (HDM) model of asthma. Dog extracts also induced robust airway hyperresponsiveness and promoted TH 17 cell responses, which was associated with a high neutrophilic infiltration of the airways. scRNA-Seq analysis of T helper cells in the airways pinpointed a unique gene signature for TH 17 cells. Analysis of T-cell receptors depicted a high frequency of clones that were shared between TH 17, TH 2 and suppressive Treg cells, indicative of a common differentiation trajectory for these subsets. Importantly, sublingual administration of multimeric Can f 1-2-4-6 protein prior to sensitization reduced airway hyperresponsiveness and type 2-mediated inflammation in this model. CONCLUSION Dog allergen extracts induce robust TH 2 and TH 17 cell-mediated responses in mice. Recombinant Can f 1-2-4-6 can induce tolerance to complex dog allergen extracts.
Collapse
Affiliation(s)
- Julian M. Stark
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Jielu Liu
- Institute of Environmental Medicine and Centre for Allergy ResearchKarolinska InstitutetStockholmSweden
| | | | - Murray Christian
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Junjie Ma
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Anna Wintersand
- Department of Clinical Neuroscience, Karolinska InstitutetCentre for Molecular MedicineStockholmSweden
| | - Josefine Dunst
- Department of Medicine, Division of Immunology and Allergy, Karolinska InstitutetKarolinska University HospitalStockholmSweden,Center for Molecular MedicineKarolinska InstitutetStockholmSweden
| | - Taras Kreslavsky
- Department of Medicine, Division of Immunology and Allergy, Karolinska InstitutetKarolinska University HospitalStockholmSweden,Center for Molecular MedicineKarolinska InstitutetStockholmSweden
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Mikael Adner
- Institute of Environmental Medicine and Centre for Allergy ResearchKarolinska InstitutetStockholmSweden
| | - Hans Grönlund
- Department of Clinical Neuroscience, Karolinska InstitutetCentre for Molecular MedicineStockholmSweden
| | - Guro Gafvelin
- Department of Clinical Neuroscience, Karolinska InstitutetCentre for Molecular MedicineStockholmSweden
| | - Jonathan M. Coquet
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| |
Collapse
|
66
|
Morgan DM, Shreffler WG, Love JC. Revealing the heterogeneity of CD4+ T cells through single-cell transcriptomics. J Allergy Clin Immunol 2022; 150:748-755. [DOI: 10.1016/j.jaci.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/07/2022]
|
67
|
Grydziuszko E, Phelps A, Bruton K, Jordana M, Koenig JFE. Heterogeneity, subsets, and plasticity of T follicular helper cells in allergy. J Allergy Clin Immunol 2022; 150:990-998. [PMID: 36070826 DOI: 10.1016/j.jaci.2022.08.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/31/2022] [Accepted: 08/16/2022] [Indexed: 10/14/2022]
Abstract
Antibody responses are critical for protection against pathogens. However, diseases such as allergic rhinitis or food allergy result from aberrant production of IgE antibodies against otherwise innocuous environmental antigens. The production of allergen-specific IgE requires interaction between B cells and CD4+ T cells, and a granular understanding of these interactions is required to develop novel therapies for allergic disease. CD4+ T cells are exceptionally heterogeneous in their transcriptional, epigenetic, and proteomic profiles, which poses significant challenges when attempting to define subsets relevant to the study of allergy among a continuum of cells. Defining subsets such as the T follicular helper (TFH) cell cluster provides a shorthand to understand the functions of CD4+ T cells in antibody production and supports mechanistic experimentation for hypothesis-driven discovery. With a focus on allergic disease, this Rostrum article broadly discusses heterogeneity among CD4+ T cells and provides a rationale for subdividing TFH cells into both functional and cytokine-skewed subsets. Further, it highlights the plasticity demonstrated by TFH cells during the primary response and after recall, and it explores the possibility of harnessing this plasticity to reprogram immunity for therapeutic benefit in allergic disease.
Collapse
Affiliation(s)
- Emily Grydziuszko
- Department of Medicine, Schroeder Allergy and Immunology Research Institute, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Allyssa Phelps
- Department of Medicine, Schroeder Allergy and Immunology Research Institute, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Kelly Bruton
- Department of Medicine, Schroeder Allergy and Immunology Research Institute, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Manel Jordana
- Department of Medicine, Schroeder Allergy and Immunology Research Institute, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Joshua F E Koenig
- Department of Medicine, Schroeder Allergy and Immunology Research Institute, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
68
|
Distinctive populations of CD4+T cells associated with vaccine efficacy. iScience 2022; 25:104934. [PMID: 36060075 PMCID: PMC9436750 DOI: 10.1016/j.isci.2022.104934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Memory T cells underpin vaccine-induced immunity but are not yet fully understood. To distinguish features of memory cells that confer protective immunity, we used single cell transcriptome analysis to compare antigen-specific CD4+T cells recalled to lungs of mice that received a protective or nonprotective subunit vaccine followed by challenge with a fungal pathogen. We unexpectedly found populations specific to protection that expressed a strong type I interferon response signature, whose distinctive transcriptional signature appeared unconventionally dependent on IFN-γ receptor. We also detected a unique population enriched in protection that highly expressed the gene for the natural killer cell marker NKG7. Lastly, we detected differences in TCR gene use and in Th1- and Th17-skewed responses after protective and nonprotective vaccine, respectively, reflecting heterogeneous Ifng- and Il17a-expressing populations. Our findings highlight key features of transcriptionally diverse and distinctive antigen-specific T cells associated with protective vaccine-induced immunity. Protective and nonprotective vaccines generate distinct T cells in fungal infection A strong type I interferon signal is seen among CD4 T cells in protective immunity Th1 bias is seen with protective immunity; Th17 bias with nonprotective immunity Nkg7-expressing CD4 T cells are enriched in protective immunity
Collapse
|
69
|
Kong J, Yang F, Bai M, Zong Y, Li Z, Meng X, Zhao X, Wang J. Airway immune response in the mouse models of obesity-related asthma. Front Physiol 2022; 13:909209. [PMID: 36051916 PMCID: PMC9424553 DOI: 10.3389/fphys.2022.909209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
The prevalence rates of obesity and its complications have increased dramatically worldwide. Obesity can lead to low-grade chronic systemic inflammation, which predisposes individuals to an increased risk of morbidity and mortality. Although obesity has received considerable interest in recent years, the essential role of obesity in asthma development has not been explored. Asthma is a common chronic inflammatory airway disease caused by various environmental allergens. Obesity is a critical risk factor for asthma exacerbation due to systemic inflammation, and obesity-related asthma is listed as an asthma phenotype. A suitable model can contribute to the understanding of the in-depth mechanisms of obese asthma. However, stable models for simulating clinical phenotypes and the impact of modeling on immune response vary across studies. Given that inflammation is one of the central mechanisms in asthma pathogenesis, this review will discuss immune responses in the airways of obese asthmatic mice on the basis of diverse modeling protocols.
Collapse
Affiliation(s)
- Jingwei Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fan Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Minghua Bai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhan Zong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhuqing Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xianghe Meng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoshan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- School of Chinese Medicine, Southern Medical University, Guangzhou, China
- *Correspondence: Xiaoshan Zhao, ; Ji Wang,
| | - Ji Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Xiaoshan Zhao, ; Ji Wang,
| |
Collapse
|
70
|
Luo W, Hu J, Xu W, Dong J. Distinct spatial and temporal roles for Th1, Th2, and Th17 cells in asthma. Front Immunol 2022; 13:974066. [PMID: 36032162 PMCID: PMC9411752 DOI: 10.3389/fimmu.2022.974066] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/28/2022] [Indexed: 12/24/2022] Open
Abstract
Immune response in the asthmatic respiratory tract is mainly driven by CD4+ T helper (Th) cells, represented by Th1, Th2, and Th17 cells, especially Th2 cells. Asthma is a heterogeneous and progressive disease, reflected by distinct phenotypes orchestrated by τh2 or non-Th2 (Th1 and Th17) immune responses at different stages of the disease course. Heterogeneous cytokine expression within the same Th effector state in response to changing conditions in vivo and interlineage relationship among CD4+ T cells shape the complex immune networks of the inflammatory airway, making it difficult to find one panacea for all asthmatics. Here, we review the role of three T helper subsets in the pathogenesis of asthma from different stages, highlighting timing is everything in the immune system. We also discuss the dynamic topography of Th subsets and pathogenetic memory Th cells in asthma.
Collapse
Affiliation(s)
- Weihang Luo
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jindong Hu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Weifang Xu
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
- *Correspondence: Jingcheng Dong, ; Weifang Xu,
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
- *Correspondence: Jingcheng Dong, ; Weifang Xu,
| |
Collapse
|
71
|
Radtke D, Thuma N, Schülein C, Kirchner P, Ekici AB, Schober K, Voehringer D. Th2 single-cell heterogeneity and clonal distribution at distant sites in helminth-infected mice. eLife 2022; 11:74183. [PMID: 35950748 PMCID: PMC9391044 DOI: 10.7554/elife.74183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Th2 cells provide effector functions in type 2 immune responses to helminths and allergens. Despite knowledge about molecular mechanisms of Th2 cell differentiation, there is little information on Th2 cell heterogeneity and clonal distribution between organs. To address this, we performed combined single-cell transcriptome and T-cell receptor (TCR) clonotype analysis on murine Th2 cells in mesenteric lymph nodes (MLNs) and lung after infection with Nippostrongylus brasiliensis (Nb) as a human hookworm infection model. We find organ-specific expression profiles, but also populations with conserved migration or effector/resident memory signatures that unexpectedly cluster with potentially regulatory Il10posFoxp3neg cells. A substantial MLN subpopulation with an interferon response signature suggests a role for interferon signaling in Th2 differentiation or diversification. Further RNA-inferred developmental directions indicate proliferation as a hub for differentiation decisions. Although the TCR repertoire is highly heterogeneous, we identified expanded clones and CDR3 motifs. Clonal relatedness between distant organs confirmed effective exchange of Th2 effector cells, although locally expanded clones dominated the response. We further cloned an Nb-specific TCR from an expanded clone in the lung effector cluster and describe surface markers that distinguish transcriptionally defined clusters. These results provide insights in Th2 cell subset diversity and clonal relatedness in distant organs.
Collapse
Affiliation(s)
- Daniel Radtke
- Department of Infection Biology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Natalie Thuma
- Department of Infection Biology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Christine Schülein
- Institute of Clinical Microbiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Philipp Kirchner
- Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Kilian Schober
- Institute of Clinical Microbiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - David Voehringer
- Department of Infection Biology, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
72
|
Rahimi RA, Sokol CL. Functional Recognition Theory and Type 2 Immunity: Insights and Uncertainties. Immunohorizons 2022; 6:569-580. [PMID: 35926975 PMCID: PMC9897289 DOI: 10.4049/immunohorizons.2200002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023] Open
Abstract
Type 2 immunity plays an important role in host defense against helminths and toxins while driving allergic diseases. Despite progress in understanding the biology of type 2 immunity, the fundamental mechanisms regulating the type 2 immune module remain unclear. In contrast with structural recognition used by pattern recognition receptors, type 2 immunogens are sensed through their functional properties. Functional recognition theory has arisen as the paradigm for the initiation of type 2 immunity. However, the vast array of structurally unrelated type 2 immunogens makes it challenging to advance our understanding of type 2 immunity. In this article, we review functional recognition theory and organize type 2 immunogens into distinct classes based on how they fit into the concept of functional recognition. Lastly, we discuss areas of uncertainty in functional recognition theory with the goal of providing a framework to further define the logic of type 2 immunity in host protection and immunopathology.
Collapse
Affiliation(s)
- Rod A Rahimi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA;
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA; and
| | - Caroline L Sokol
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA; and
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
73
|
Hu X, Zhou X. Impact of single-cell RNA sequencing on understanding immune regulation. J Cell Mol Med 2022; 26:4645-4657. [PMID: 35906816 PMCID: PMC9443940 DOI: 10.1111/jcmm.17493] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/16/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023] Open
Abstract
Single‐cell RNA sequencing (scRNA‐seq), one of the most powerful technologies, can describe the transcriptomic heterogeneity of single cells and reveal previously unreported cell types or states in complex tissues. With the rapid development of scRNA‐seq, it has renewed our view of cellular heterogeneity and its significance for deeply understanding cell development and function. There are a large number of studies applying scRNA‐seq to investigate the heterogeneity of immune cells and disease pathogenesis, focusing on differences among every individual cell, which have provided novel inspiration for disease therapy and biological processes. In this review, we describe the development of scRNA‐seq and its application in immune‐related physiological states, regulatory mechanisms and diseases. In addition, we further discuss the opportunities and challenges of scRNA‐seq in immune regulation.
Collapse
Affiliation(s)
- Xueli Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,Collaborative Innovation Center for Biotherapy, West China Hospital, Chengdu, China
| |
Collapse
|
74
|
Chakraborty S, Khamaru P, Bhattacharyya A. Regulation of immune cell metabolism in health and disease: Special focus on T and B cell subsets. Cell Biol Int 2022; 46:1729-1746. [PMID: 35900141 DOI: 10.1002/cbin.11867] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 04/03/2022] [Accepted: 07/05/2022] [Indexed: 12/15/2022]
Abstract
Metabolism is a dynamic process and keeps changing from time to time according to the demand of a particular cell to meet its bio-energetic requirement. Different immune cells rely on distinct metabolic programs which allow the cell to balance its requirements for energy, molecular biosynthesis, and effector activity. In the aspect of infection and cancer immunology, effector T and B cells get exhausted and help tumor cells to evade immunosurveillance. On the other hand, T cells become hyperresponsive in the scenario of autoimmune diseases. In this article, we have explored the uniqueness and distinct metabolic features of key CD4+ T and B helper cell subsets, CD4+ T, B regulatory cell subsets and CD8+ T cells regarding health and disease. Th1 cells rely on glycolysis and glutaminolysis; inhibition of these metabolic pathways promotes Th1 cells in Treg population. However, Th2 cells are also dependent on glycolysis but an abundance of lactate within TME shifts their metabolic dependency to fatty acid metabolism. Th17 cells depend on HIF-1α mediated glycolysis, ablation of HIF-1α reduces Th17 cells but enhance Treg population. In contrast to effector T cells which are largely dependent on glycolysis for their differentiation and function, Treg cells mainly rely on FAO for their function. Therefore, it is of utmost importance to understand the metabolic fates of immune cells and how it facilitates their differentiation and function for different disease models. Targeting metabolic pathways to restore the functionality of immune cells in diseased conditions can lead to potent therapeutic measures.
Collapse
Affiliation(s)
- Sayan Chakraborty
- Immunology Laboratory, Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Poulomi Khamaru
- Immunology Laboratory, Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Arindam Bhattacharyya
- Immunology Laboratory, Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| |
Collapse
|
75
|
Schmidt V, Hogan AE, Fallon PG, Schwartz C. Obesity-Mediated Immune Modulation: One Step Forward, (Th)2 Steps Back. Front Immunol 2022; 13:932893. [PMID: 35844529 PMCID: PMC9279727 DOI: 10.3389/fimmu.2022.932893] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/27/2022] [Indexed: 11/15/2022] Open
Abstract
Over the past decades, the relationship between the immune system and metabolism has become a major research focus. In this arena of immunometabolism the capacity of adipose tissue to secrete immunomodulatory molecules, including adipokines, within the underlying low-grade inflammation during obesity brought attention to the impact obesity has on the immune system. Adipokines, such as leptin and adiponectin, influence T cell differentiation into different T helper subsets and their activation during immune responses. Furthermore, within the cellular milieu of adipose tissue nutrient availability regulates differentiation and activation of T cells and changes in cellular metabolic pathways. Upon activation, T cells shift from oxidative phosphorylation to oxidative glycolysis, while the differential signaling of the kinase mammalian target of rapamycin (mTOR) and the nuclear receptor PPARγ, amongst others, drive the subsequent T cell differentiation. While the mechanisms leading to a shift from the typical type 2-dominated milieu in lean people to a Th1-biased pro-inflammatory environment during obesity are the subject of extensive research, insights on its impact on peripheral Th2-dominated immune responses become more evident. In this review, we will summarize recent findings of how Th2 cells are metabolically regulated during obesity and malnutrition, and how these states affect local and systemic Th2-biased immune responses.
Collapse
Affiliation(s)
- Viviane Schmidt
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Andrew E. Hogan
- Kathleen Lonsdale Human Health Institute, Maynooth University, Maynooth, Ireland
- Obesity Immunology Research, St. Vincent’s University Hospital and University College Dublin, Dublin, Ireland
| | - Padraic G. Fallon
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Christian Schwartz
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- *Correspondence: Christian Schwartz,
| |
Collapse
|
76
|
Dectin-2 promotes house dust mite-skewed Th2 response through the activation of cDC2s. Cell Immunol 2022; 378:104558. [PMID: 35717749 DOI: 10.1016/j.cellimm.2022.104558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/20/2022]
Abstract
The role of Dectin-2 (gene symbol, Clec4n) in house dust mite (HDM) induced Th2 immune response and the exact mechanism remains controversial. In this study, we illustrated that, Clec4n-/- mice had decreased Th2 immune response following HDM challenge, which may ascribe to dramatically reduced type 2 conventional dendritic cells (cDC2s) in lung of Clec4n-/- mice, as cDC2s from lung of Clec4n-/- mice after challenging had less ability to induce Th2 response with decreased production of IL-4/IL-13. Further in vitro experiments showed the activation of Clec4n-/--BMDCs significantly decreased after HDM stimulation accompanied with decreased activation of Syk-NF-κB and Syk-JNK signal pathway. Importantly, Dectin-2 expression in PBMCs from asthmatic patients was significantly higher than that in healthy controls. Taken together, these results demonstrated that Dectin-2 could promote cDC2s activation in lung, which polarizes Th2 immune response outlining a novel mechanism of asthma development.
Collapse
|
77
|
Abstract
A principal purpose of type 2 immunity was thought to be defense against large parasites, but it also functions in the restoration of homeostasis, such as toxin clearance following snake bites. In other cases, like allergy, the type 2 T helper (Th2) cytokines and cells present in the environment are detrimental and cause diseases. In recent years, the recognition of cell heterogeneity within Th2-associated cell populations has revealed specific functions of cells with a particular phenotype or gene signature. In addition, here we discuss the recent data regarding heterogeneity of type 2 immunity-related cells, as well as their newly identified role in a variety of processes ranging from involvement in respiratory viral infections [especially in the context of the recent COVID-19 (coronavirus disease 2019) pandemic] to control of cancer development or of metabolic homeostasis.
Collapse
Affiliation(s)
- Hamida Hammad
- Laboratory of Mucosal Immunology and Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; .,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Nincy Debeuf
- Laboratory of Mucosal Immunology and Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; .,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Helena Aegerter
- Laboratory of Mucosal Immunology and Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; .,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Andrew S Brown
- Laboratory of Mucosal Immunology and Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; .,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Mucosal Immunology and Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium; .,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
78
|
Smita S, Chikina M, Shlomchik MJ, Tilstra JS. Heterogeneity and clonality of kidney-infiltrating T cells in murine lupus nephritis. JCI Insight 2022; 7:e156048. [PMID: 35271505 PMCID: PMC9089785 DOI: 10.1172/jci.insight.156048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/04/2022] [Indexed: 11/17/2022] Open
Abstract
We previously found that kidney-infiltrating T cells (KITs) in murine lupus nephritis (LN) resembled dysfunctional T cells that infiltrate tumors. This unexpected finding raised the question of how to reconcile the "exhausted" phenotype of KITs with ongoing tissue destruction in LN. To address this, we performed single-cell RNA-Seq and TCR-Seq of KITs in murine lupus models. We found that CD8+ KITs existed first in a transitional state, before clonally expanding and evolving toward exhaustion. On the other hand, CD4+ KITs did not fit into current differentiation paradigms but included both hypoxic and cytotoxic subsets with a pervasive exhaustion signature. Thus, autoimmune nephritis is unlike acute pathogen immunity; rather, the kidney microenvironment suppresses T cells by progressively inducing exhausted states. Our findings suggest that LN, a chronic condition, results from slow evolution of damage caused by dysfunctional T cells and their precursors on the way to exhaustion. These findings have implications for both autoimmunity and tumor immunology.
Collapse
Affiliation(s)
- Shuchi Smita
- Department of Immunology
- Department of Computational and Systems Biology
| | | | | | - Jeremy S. Tilstra
- Department of Medicine, and
- Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
79
|
Liu Y, Wang H, Taylor M, Cook C, Martínez-Berdeja A, North JP, Harirchian P, Hailer AA, Zhao Z, Ghadially R, Ricardo-Gonzalez RR, Grekin RC, Mauro TM, Kim E, Choi J, Purdom E, Cho RJ, Cheng JB. Classification of human chronic inflammatory skin disease based on single-cell immune profiling. Sci Immunol 2022; 7:eabl9165. [PMID: 35427179 PMCID: PMC9301819 DOI: 10.1126/sciimmunol.abl9165] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Inflammatory conditions represent the largest class of chronic skin disease, but the molecular dysregulation underlying many individual cases remains unclear. Single-cell RNA sequencing (scRNA-seq) has increased precision in dissecting the complex mixture of immune and stromal cell perturbations in inflammatory skin disease states. We single-cell-profiled CD45+ immune cell transcriptomes from skin samples of 31 patients (7 atopic dermatitis, 8 psoriasis vulgaris, 2 lichen planus (LP), 1 bullous pemphigoid (BP), 6 clinical/histopathologically indeterminate rashes, and 7 healthy controls). Our data revealed active proliferative expansion of the Treg and Trm components and universal T cell exhaustion in human rashes, with a relative attenuation of antigen-presenting cells. Skin-resident memory T cells showed the greatest transcriptional dysregulation in both atopic dermatitis and psoriasis, whereas atopic dermatitis also demonstrated recurrent abnormalities in ILC and CD8+ cytotoxic lymphocytes. Transcript signatures differentiating these rash types included genes previously implicated in T helper cell (TH2)/TH17 diatheses, segregated in unbiased functional networks, and accurately identified disease class in untrained validation data sets. These gene signatures were able to classify clinicopathologically ambiguous rashes with diagnoses consistent with therapeutic response. Thus, we have defined major classes of human inflammatory skin disease at the molecular level and described a quantitative method to classify indeterminate instances of pathologic inflammation. To make this approach accessible to the scientific community, we created a proof-of-principle web interface (RashX), where scientists and clinicians can visualize their patient-level rash scRNA-seq-derived data in the context of our TH2/TH17 transcriptional framework.
Collapse
Affiliation(s)
- Yale Liu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, ShaanXi 710004, P. R. China
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
- Dermatology, Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Hao Wang
- Department of Statistics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mark Taylor
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Christopher Cook
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
- Dermatology, Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | | | - Jeffrey P North
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Paymann Harirchian
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
- Dermatology, Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Ashley A Hailer
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
- Dermatology, Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Zijun Zhao
- Santa Clara Valley Medical Center, Santa Clara, CA 95128, USA
| | - Ruby Ghadially
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
- Dermatology, Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Roberto R Ricardo-Gonzalez
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
- Department of Immunology and Microbiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Roy C Grekin
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Theodora M Mauro
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
- Dermatology, Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Esther Kim
- Department of Plastic Surgery, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern School of Medicine, Chicago, IL 60611, USA
| | - Elizabeth Purdom
- Department of Statistics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Raymond J Cho
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Jeffrey B Cheng
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
- Dermatology, Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| |
Collapse
|
80
|
Silva TD, Voisey J, Hopkins P, Apte S, Chambers D, O'Sullivan B. Markers of rejection of a lung allograft: state of the art. Biomark Med 2022; 16:483-498. [PMID: 35315284 DOI: 10.2217/bmm-2021-1013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chronic lung allograft dysfunction (CLAD) affects approximately 50% of all lung transplant recipients by 5 post-operative years and is the leading cause of death in lung transplant recipients. Early CLAD diagnosis or ideally prediction of CLAD is essential to enable early intervention before significant lung injury occurs. New technologies have emerged to facilitate biomarker discovery, including epigenetic modification and single-cell RNA sequencing. This review examines new and existing technologies for biomarker discovery and the current state of research on biomarkers for identifying lung transplant rejection.
Collapse
Affiliation(s)
- Tharushi de Silva
- School of Biomedical Sciences, Centre for Genomics & Personalised Heath, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, 4032, Brisbane, Queensland, Australia
| | - Joanne Voisey
- School of Biomedical Sciences, Centre for Genomics & Personalised Heath, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Peter Hopkins
- Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, 4032, Brisbane, Queensland, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, The University of Queensland, 4032, Brisbane, Queensland, Australia
| | - Simon Apte
- Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, 4032, Brisbane, Queensland, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, The University of Queensland, 4032, Brisbane, Queensland, Australia
| | - Daniel Chambers
- School of Biomedical Sciences, Centre for Genomics & Personalised Heath, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, 4032, Brisbane, Queensland, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, The University of Queensland, 4032, Brisbane, Queensland, Australia
| | - Brendan O'Sullivan
- School of Biomedical Sciences, Centre for Genomics & Personalised Heath, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, 4032, Brisbane, Queensland, Australia.,Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, The University of Queensland, 4032, Brisbane, Queensland, Australia
| |
Collapse
|
81
|
Ulrich BJ, Kharwadkar R, Chu M, Pajulas A, Muralidharan C, Koh B, Fu Y, Gao H, Hayes TA, Zhou HM, Goplen NP, Nelson AS, Liu Y, Linnemann AK, Turner MJ, Licona-Limón P, Flavell RA, Sun J, Kaplan MH. Allergic airway recall responses require IL-9 from resident memory CD4 + T cells. Sci Immunol 2022; 7:eabg9296. [PMID: 35302861 PMCID: PMC9295820 DOI: 10.1126/sciimmunol.abg9296] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Asthma is a chronic inflammatory lung disease with intermittent flares predominately mediated through memory T cells. Yet, the identity of long-term memory cells that mediate allergic recall responses is not well defined. In this report, using a mouse model of chronic allergen exposure followed by an allergen-free rest period, we characterized a subpopulation of CD4+ T cells that secreted IL-9 as an obligate effector cytokine. IL-9-secreting cells had a resident memory T cell phenotype, and blocking IL-9 during a recall challenge or deleting IL-9 from T cells significantly diminished airway inflammation and airway hyperreactivity. T cells secreted IL-9 in an allergen recall-specific manner, and secretion was amplified by IL-33. Using scRNA-seq and scATAC-seq, we defined the cellular identity of a distinct population of T cells with a proallergic cytokine pattern. Thus, in a recall model of allergic airway inflammation, IL-9 secretion from a multicytokine-producing CD4+ T cell population was required for an allergen recall response.
Collapse
Affiliation(s)
- Benjamin J Ulrich
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rakshin Kharwadkar
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michelle Chu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Abigail Pajulas
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Charanya Muralidharan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Byunghee Koh
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yongyao Fu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hongyu Gao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Tristan A Hayes
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hong-Ming Zhou
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Nick P Goplen
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Rochester, MN 55902, USA
| | - Andrew S Nelson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amelia K Linnemann
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Matthew J Turner
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Paula Licona-Limón
- Departamento de Biologia Celular y del Desarrollo, Instituto de Fisiologia Celular, Universidad Nacional Autónoma de México, Mexico City 04020, Mexico
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06510, USA
| | - Jie Sun
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Rochester, MN 55902, USA
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
82
|
Wen S, Yuan G, Li C, Xiong Y, Zhong X, Li X. High cellulose dietary intake relieves asthma inflammation through the intestinal microbiome in a mouse model. PLoS One 2022; 17:e0263762. [PMID: 35271579 PMCID: PMC8912215 DOI: 10.1371/journal.pone.0263762] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 01/26/2022] [Indexed: 11/19/2022] Open
Abstract
Numerous epidemiological studies have shown that a high dietary fiber intake is associated inversely with the incidence of asthma in the population. There have been many studies on the role of soluble dietary fiber, but the mechanism of action for insoluble dietary fiber, such as cellulose-the most widely existing dietary fiber, in asthma is still unclear. The current study investigated the outcomes of a high-cellulose diet in a mouse model of asthma and detected pathological manifestations within the lungs, changes in the intestinal microbiome, and changes in intestinal short-chain fatty acids (SCFAs) in mice. A high-cellulose diet can reduce lung inflammation and asthma symptoms in asthmatic mice. Furthermore, it dramatically changes the composition of the intestinal microbiome. At the family level, a new dominant fungus family Peptostreptococcaceae is produced, and at the genus level, the unique genus Romboutsla, [Ruminococcus]_torques_group was generated. These genera and families of bacteria are closely correlated with lipid metabolism in vivo. Many studies have proposed that the mechanism of dietary fiber regulating asthma may involve the intestinal microbiome producing SCFAs, but the current research shows that a high-cellulose diet cannot increase the content of SCFAs in the intestine. These data suggest that a high-cellulose diet decreases asthma symptoms by altering the composition of the intestinal microbiome, however, this mechanism is thought to be independent of SCFAs and may involve the regulation of lipid metabolism.
Collapse
Affiliation(s)
- Song Wen
- Department of the First Clinical Medicine, Chongqing Medical University, Chongqing, China
| | - Guifang Yuan
- Department of the First Clinical Medicine, Chongqing Medical University, Chongqing, China
| | - Cunya Li
- Department of the Traditional Medicine, Chongqing Medical University, Chongqing, China
| | - Yang Xiong
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xuemei Zhong
- Department of Respiratory Endocrinology, School of Clinical Medicine, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Xiaoyu Li
- Laboratory of Innovation, Basic Medical Experimental Teaching Centre, Chongqing Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
83
|
Goretzki A, Zimmermann J, Lin YJ, Schülke S. Immune Metabolism–An Opportunity to Better Understand Allergic Pathology and Improve Treatment of Allergic Diseases? FRONTIERS IN ALLERGY 2022; 3:825931. [PMID: 35386646 PMCID: PMC8974690 DOI: 10.3389/falgy.2022.825931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/25/2022] [Indexed: 01/16/2023] Open
|
84
|
Barshad G, Webb LM, Ting HA, Oyesola OO, Onyekwere OG, Lewis JJ, Rice EJ, Matheson MK, Sun XH, von Moltke J, Danko CG, Tait Wojno ED. E-Protein Inhibition in ILC2 Development Shapes the Function of Mature ILC2s during Allergic Airway Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1007-1020. [PMID: 35181641 PMCID: PMC8881320 DOI: 10.4049/jimmunol.2100414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 12/09/2021] [Indexed: 01/16/2023]
Abstract
E-protein transcription factors limit group 2 innate lymphoid cell (ILC2) development while promoting T cell differentiation from common lymphoid progenitors. Inhibitors of DNA binding (ID) proteins block E-protein DNA binding in common lymphoid progenitors to allow ILC2 development. However, whether E-proteins influence ILC2 function upon maturity and activation remains unclear. Mice that overexpress ID1 under control of the thymus-restricted proximal Lck promoter (ID1tg/WT) have a large pool of primarily thymus-derived ILC2s in the periphery that develop in the absence of E-protein activity. We used these mice to investigate how the absence of E-protein activity affects ILC2 function and the genomic landscape in response to house dust mite (HDM) allergens. ID1tg/WT mice had increased KLRG1- ILC2s in the lung compared with wild-type (WT; ID1WT/WT) mice in response to HDM, but ID1tg/WT ILC2s had an impaired capacity to produce type 2 cytokines. Analysis of WT ILC2 accessible chromatin suggested that AP-1 and C/EBP transcription factors but not E-proteins were associated with ILC2 inflammatory gene programs. Instead, E-protein binding sites were enriched at functional genes in ILC2s during development that were later dynamically regulated in allergic lung inflammation, including genes that control ILC2 response to cytokines and interactions with T cells. Finally, ILC2s from ID1tg/WT compared with WT mice had fewer regions of open chromatin near functional genes that were enriched for AP-1 factor binding sites following HDM treatment. These data show that E-proteins shape the chromatin landscape during ILC2 development to dictate the functional capacity of mature ILC2s during allergic inflammation in the lung.
Collapse
Affiliation(s)
- Gilad Barshad
- Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Lauren M Webb
- Department of Immunology, University of Washington, Seattle, WA;
| | - Hung-An Ting
- Department of Immunology, University of Washington, Seattle, WA
| | | | - Oluomachi G Onyekwere
- Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY; and
| | - James J Lewis
- Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Edward J Rice
- Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Macy K Matheson
- Department of Immunology, University of Washington, Seattle, WA
| | - Xiao-Hong Sun
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | | | - Charles G Danko
- Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY
| | | |
Collapse
|
85
|
Comment on: Repositioning TH cell polarization from single cytokines to complex help. Nat Immunol 2022; 23:501-502. [DOI: 10.1038/s41590-022-01144-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
86
|
Tuzlak S, Ginhoux F, Korn T, Becher B. Reply to ‘Comment on: Repositioning TH cell polarization from single cytokines to complex help’. Nat Immunol 2022; 23:503-504. [DOI: 10.1038/s41590-022-01142-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
87
|
Alam A, Levanduski E, Denz P, Villavicencio HS, Bhatta M, Alhorebi L, Zhang Y, Gomez EC, Morreale B, Senchanthisai S, Li J, Turowski SG, Sexton S, Sait SJ, Singh PK, Wang J, Maitra A, Kalinski P, DePinho RA, Wang H, Liao W, Abrams SI, Segal BH, Dey P. Fungal mycobiome drives IL-33 secretion and type 2 immunity in pancreatic cancer. Cancer Cell 2022; 40:153-167.e11. [PMID: 35120601 PMCID: PMC8847236 DOI: 10.1016/j.ccell.2022.01.003] [Citation(s) in RCA: 146] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/30/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022]
Abstract
TH2 cells and innate lymphoid cells 2 (ILC2) can stimulate tumor growth by secreting pro-tumorigenic cytokines such as interleukin-4 (IL-4), IL-5, and IL-13. However, the mechanisms by which type 2 immune cells traffic to the tumor microenvironment are unknown. Here, we show that oncogenic KrasG12D increases IL-33 expression in pancreatic ductal adenocarcinoma (PDAC) cells, which recruits and activates TH2 and ILC2 cells. Correspondingly, cancer-cell-specific deletion of IL-33 reduces TH2 and ILC2 recruitment and promotes tumor regression. Unexpectedly, IL-33 secretion is dependent on the intratumoral fungal mycobiome. Genetic deletion of IL-33 or anti-fungal treatment decreases TH2 and ILC2 infiltration and increases survival. Consistently, high IL-33 expression is observed in approximately 20% of human PDAC, and expression is mainly restricted to cancer cells. These data expand our knowledge of the mechanisms driving PDAC tumor progression and identify therapeutically targetable pathways involving intratumoral mycobiome-driven secretion of IL-33.
Collapse
Affiliation(s)
- Aftab Alam
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Sts. CGP/BLSC-L5307, Buffalo, NY 14263, USA
| | - Eric Levanduski
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Sts. CGP/BLSC-L5307, Buffalo, NY 14263, USA
| | - Parker Denz
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Sts. CGP/BLSC-L5307, Buffalo, NY 14263, USA
| | - Helena Solleiro Villavicencio
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Sts. CGP/BLSC-L5307, Buffalo, NY 14263, USA
| | - Maulasri Bhatta
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Sts. CGP/BLSC-L5307, Buffalo, NY 14263, USA
| | - Lamees Alhorebi
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Sts. CGP/BLSC-L5307, Buffalo, NY 14263, USA
| | - Yali Zhang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Eduardo Cortes Gomez
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Brian Morreale
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Sts. CGP/BLSC-L5307, Buffalo, NY 14263, USA
| | - Sharon Senchanthisai
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Sts. CGP/BLSC-L5307, Buffalo, NY 14263, USA
| | - Jun Li
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Steven G Turowski
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Sandra Sexton
- Department of Animal Resources, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Sheila Jani Sait
- Department of Cytogenetics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Prashant K Singh
- Genomics Shared Resource, Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pawel Kalinski
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Sts. CGP/BLSC-L5307, Buffalo, NY 14263, USA; Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wenting Liao
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Scott I Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Sts. CGP/BLSC-L5307, Buffalo, NY 14263, USA
| | - Brahm H Segal
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Prasenjit Dey
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Sts. CGP/BLSC-L5307, Buffalo, NY 14263, USA.
| |
Collapse
|
88
|
Cautivo KM, Matatia PR, Lizama CO, Mroz NM, Dahlgren MW, Yu X, Sbierski-Kind J, Taruselli MT, Brooks JF, Wade-Vallance A, Caryotakis SE, Chang AA, Liang HE, Zikherman J, Locksley RM, Molofsky AB. Interferon gamma constrains type 2 lymphocyte niche boundaries during mixed inflammation. Immunity 2022; 55:254-271.e7. [PMID: 35139352 PMCID: PMC8852844 DOI: 10.1016/j.immuni.2021.12.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 09/20/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023]
Abstract
Allergic immunity is orchestrated by group 2 innate lymphoid cells (ILC2s) and type 2 helper T (Th2) cells prominently arrayed at epithelial- and microbial-rich barriers. However, ILC2s and Th2 cells are also present in fibroblast-rich niches within the adventitial layer of larger vessels and similar boundary structures in sterile deep tissues, and it remains unclear whether they undergo dynamic repositioning during immune perturbations. Here, we used thick-section quantitative imaging to show that allergic inflammation drives invasion of lung and liver non-adventitial parenchyma by ILC2s and Th2 cells. However, during concurrent type 1 and type 2 mixed inflammation, IFNγ from broadly distributed type 1 lymphocytes directly blocked both ILC2 parenchymal trafficking and subsequent cell survival. ILC2 and Th2 cell confinement to adventitia limited mortality by the type 1 pathogen Listeria monocytogenes. Our results suggest that the topography of tissue lymphocyte subsets is tightly regulated to promote appropriately timed and balanced immunity.
Collapse
Affiliation(s)
- Kelly M Cautivo
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Peri R Matatia
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Carlos O Lizama
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Nicholas M Mroz
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Madelene W Dahlgren
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Xiaofei Yu
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Julia Sbierski-Kind
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Marcela T Taruselli
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Jeremy F Brooks
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Adam Wade-Vallance
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Sofia E Caryotakis
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Anthony A Chang
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Hong-Erh Liang
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Julie Zikherman
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Richard M Locksley
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Ari B Molofsky
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA; Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
89
|
Saini A, Ghoneim HE, Lio CWJ, Collins PL, Oltz EM. Gene Regulatory Circuits in Innate and Adaptive Immune Cells. Annu Rev Immunol 2022; 40:387-411. [PMID: 35119910 DOI: 10.1146/annurev-immunol-101320-025949] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell identity and function largely rely on the programming of transcriptomes during development and differentiation. Signature gene expression programs are orchestrated by regulatory circuits consisting of cis-acting promoters and enhancers, which respond to a plethora of cues via the action of transcription factors. In turn, transcription factors direct epigenetic modifications to revise chromatin landscapes, and drive contacts between distal promoter-enhancer combinations. In immune cells, regulatory circuits for effector genes are especially complex and flexible, utilizing distinct sets of transcription factors and enhancers, depending on the cues each cell type receives during an infection, after sensing cellular damage, or upon encountering a tumor. Here, we review major players in the coordination of gene regulatory programs within innate and adaptive immune cells, as well as integrative omics approaches that can be leveraged to decipher their underlying circuitry. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ankita Saini
- Department of Microbial Infection and Immunity and Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA; ,
| | - Hazem E Ghoneim
- Department of Microbial Infection and Immunity and Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA; ,
| | - Chan-Wang Jerry Lio
- Department of Microbial Infection and Immunity and Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA; ,
| | - Patrick L Collins
- Department of Microbial Infection and Immunity and Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA; ,
| | - Eugene M Oltz
- Department of Microbial Infection and Immunity and Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA; ,
| |
Collapse
|
90
|
James KR, Elmentaite R, Teichmann SA, Hold GL. Redefining intestinal immunity with single-cell transcriptomics. Mucosal Immunol 2022; 15:531-541. [PMID: 34848830 PMCID: PMC8630196 DOI: 10.1038/s41385-021-00470-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 02/04/2023]
Abstract
The intestinal immune system represents the largest collection of immune cells in the body and is continually exposed to antigens from food and the microbiota. Here we discuss the contribution of single-cell transcriptomics in shaping our understanding of this complex system. We consider the impact on resolving early intestine development, engagement with the neighbouring microbiota, diversity of intestinal immune cells, compartmentalisation within the intestines and interactions with non-immune cells. Finally, we offer a perspective on open questions about gut immunity that evolving single-cell technologies are well placed to address.
Collapse
Affiliation(s)
- Kylie Renee James
- grid.415306.50000 0000 9983 6924Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010 Australia ,grid.1005.40000 0004 4902 0432School of Medical Sciences, University of New South Wales, Sydney, NSW 2006 Australia
| | - Rasa Elmentaite
- grid.10306.340000 0004 0606 5382Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA UK
| | - Sarah Amalia Teichmann
- grid.10306.340000 0004 0606 5382Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA UK ,grid.5335.00000000121885934Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge, NSW CB3 0HE UK
| | - Georgina Louise Hold
- grid.1005.40000 0004 4902 0432University of New South Wales Microbiome Research Centre, Sydney, NSW 2217 Australia
| |
Collapse
|
91
|
Chandler J, Prout M, Old S, Morgan C, Ronchese F, Benoist C, Le Gros G. BCL6 deletion in CD4 T cells does not affect Th2 effector mediated immunity in the skin. Immunol Cell Biol 2022; 100:791-804. [PMID: 36177669 PMCID: PMC9828354 DOI: 10.1111/imcb.12589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/05/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023]
Abstract
Recent studies propose that T follicular helper (Tfh) cells possess a high degree of functional plasticity in addition to their well-defined roles in mediating interleukin-4-dependent switching of germinal center B cells to the production of immunoglobulin (Ig)G1 and IgE antibodies. In particular Tfh cells have been proposed to be an essential stage in Th2 effector cell development that are able to contribute to innate type 2 responses. We used CD4-cre targeted deletion of BCL6 to identify the contribution Tfh cells make to tissue Th2 effector responses in models of atopic skin disease and lung immunity to parasites. Ablation of Tfh cells did not impair the development or recruitment of Th2 effector subsets to the skin and did not alter the transcriptional expression profile or functional activities of the resulting tissue resident Th2 effector cells. However, the accumulation of Th2 effector cells in lung Th2 responses was partially affected by BCL6 deficiency. These data indicate that the development of Th2 effector cells does not require a BCL6 dependent step, implying Tfh and Th2 effector populations follow separate developmental trajectories and Tfh cells do not contribute to type 2 responses in the skin.
Collapse
Affiliation(s)
- Jodie Chandler
- Malaghan Institute of Medical ResearchWellingtonNew Zealand
| | - Melanie Prout
- Malaghan Institute of Medical ResearchWellingtonNew Zealand
| | - Sam Old
- Malaghan Institute of Medical ResearchWellingtonNew Zealand
| | - Cynthia Morgan
- Malaghan Institute of Medical ResearchWellingtonNew Zealand
| | | | | | - Graham Le Gros
- Malaghan Institute of Medical ResearchWellingtonNew Zealand
| |
Collapse
|
92
|
Intestinal helminth infection transforms the CD4 + T cell composition of the skin. Mucosal Immunol 2022; 15:257-267. [PMID: 34931000 PMCID: PMC8866128 DOI: 10.1038/s41385-021-00473-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/22/2021] [Accepted: 11/23/2021] [Indexed: 02/04/2023]
Abstract
Intestinal helminth parasites can alter immune responses to vaccines, other infections, allergens and autoantigens, implying effects on host immune responses in distal barrier tissues. We herein show that the skin of C57BL/6 mice infected with the strictly intestinal nematode Heligmosomoides polygyrus contain higher numbers of CD4+ T cells compared to the skin of uninfected controls. Accumulated CD4+ T cells were H. polygyrus-specific TH2 cells that skewed the skin CD4+ T cell composition towards a higher TH2/TH1 ratio which persisted after worm expulsion. Accumulation of TH2 cells in the skin was associated with increased expression of the skin-homing chemokine receptors CCR4 and CCR10 on CD4+ T cells in the blood and mesenteric lymph nodes draining the infected intestine and was abolished by FTY720 treatment during infection, indicating gut-to-skin trafficking of cells. Remarkably, skin TH2 accumulation was associated with impaired capacity to initiate IFN-γ recall responses and develop skin-resident memory cells to mycobacterial antigens, both during infection and months after deworming therapy. In conclusion, we show that infection by a strictly intestinal helminth has long-term effects on immune cell composition and local immune responses to unrelated antigens in the skin, revealing a novel process for T cell colonisation and worm-mediated immunosuppression in this organ.
Collapse
|
93
|
Schnell A, Huang L, Singer M, Singaraju A, Barilla RM, Regan BML, Bollhagen A, Thakore PI, Dionne D, Delorey TM, Pawlak M, Meyer Zu Horste G, Rozenblatt-Rosen O, Irizarry RA, Regev A, Kuchroo VK. Stem-like intestinal Th17 cells give rise to pathogenic effector T cells during autoimmunity. Cell 2021; 184:6281-6298.e23. [PMID: 34875227 PMCID: PMC8900676 DOI: 10.1016/j.cell.2021.11.018] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/13/2021] [Accepted: 11/11/2021] [Indexed: 12/24/2022]
Abstract
While intestinal Th17 cells are critical for maintaining tissue homeostasis, recent studies have implicated their roles in the development of extra-intestinal autoimmune diseases including multiple sclerosis. However, the mechanisms by which tissue Th17 cells mediate these dichotomous functions remain unknown. Here, we characterized the heterogeneity, plasticity, and migratory phenotypes of tissue Th17 cells in vivo by combined fate mapping with profiling of the transcriptomes and TCR clonotypes of over 84,000 Th17 cells at homeostasis and during CNS autoimmune inflammation. Inter- and intra-organ single-cell analyses revealed a homeostatic, stem-like TCF1+ IL-17+ SLAMF6+ population that traffics to the intestine where it is maintained by the microbiota, providing a ready reservoir for the IL-23-driven generation of encephalitogenic GM-CSF+ IFN-γ+ CXCR6+ T cells. Our study defines a direct in vivo relationship between IL-17+ non-pathogenic and GM-CSF+ and IFN-γ+ pathogenic Th17 populations and provides a mechanism by which homeostatic intestinal Th17 cells direct extra-intestinal autoimmune disease.
Collapse
Affiliation(s)
- Alexandra Schnell
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Linglin Huang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Meromit Singer
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Anvita Singaraju
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Rocky M Barilla
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Brianna M L Regan
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Alina Bollhagen
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; German Cancer Research Center, DKFZ, Heidelberg 69120, Germany
| | - Pratiksha I Thakore
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Danielle Dionne
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Toni M Delorey
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mathias Pawlak
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gerd Meyer Zu Horste
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rafael A Irizarry
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
94
|
Lin YJ, Goretzki A, Schülke S. Immune Metabolism of IL-4-Activated B Cells and Th2 Cells in the Context of Allergic Diseases. Front Immunol 2021; 12:790658. [PMID: 34925372 PMCID: PMC8671807 DOI: 10.3389/fimmu.2021.790658] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022] Open
Abstract
Over the last decades, the frequency of allergic disorders has steadily increased. Immunologically, allergies are caused by abnormal immune responses directed against otherwise harmless antigens derived from our environment. Two of the main cell types driving allergic sensitization and inflammation are IgE-producing plasma cells and Th2 cells. The acute activation of T and B cells, their differentiation into effector cells, as well as the formation of immunological memory are paralleled by distinct changes in cellular metabolism. Understanding the functional consequences of these metabolic changes is the focus of a new research field termed "immune metabolism". Currently, the contribution of metabolic changes in T and B cells to either the development or maintenance of allergies is not completely understood. Therefore, this mini review will introduce the fundamentals of energy metabolism, its connection to immune metabolism, and subsequently focus on the metabolic phenotypes of IL-4-activated B cells and Th2 cells.
Collapse
Affiliation(s)
- Yen-Ju Lin
- Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Stefan Schülke
- Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
95
|
Schetters STT, Schuijs MJ. Pulmonary Eosinophils at the Center of the Allergic Space-Time Continuum. Front Immunol 2021; 12:772004. [PMID: 34868033 PMCID: PMC8634472 DOI: 10.3389/fimmu.2021.772004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/27/2021] [Indexed: 01/01/2023] Open
Abstract
Eosinophils are typically a minority population of circulating granulocytes being released from the bone-marrow as terminally differentiated cells. Besides their function in the defense against parasites and in promoting allergic airway inflammation, regulatory functions have now been attributed to eosinophils in various organs. Although eosinophils are involved in the inflammatory response to allergens, it remains unclear whether they are drivers of the asthma pathology or merely recruited effector cells. Recent findings highlight the homeostatic and pro-resolving capacity of eosinophils and raise the question at what point in time their function is regulated. Similarly, eosinophils from different physical locations display phenotypic and functional diversity. However, it remains unclear whether eosinophil plasticity remains as they develop and travel from the bone marrow to the tissue, in homeostasis or during inflammation. In the tissue, eosinophils of different ages and origin along the inflammatory trajectory may exhibit functional diversity as circumstances change. Herein, we outline the inflammatory time line of allergic airway inflammation from acute, late, adaptive to chronic processes. We summarize the function of the eosinophils in regards to their resident localization and time of recruitment to the lung, in all stages of the inflammatory response. In all, we argue that immunological differences in eosinophils are a function of time and space as the allergic inflammatory response is initiated and resolved.
Collapse
Affiliation(s)
- Sjoerd T T Schetters
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Martijn J Schuijs
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
96
|
Single-cell characterization of dog allergen-specific T cells reveals T H2 heterogeneity in allergic individuals. J Allergy Clin Immunol 2021; 149:1732-1743.e15. [PMID: 34863852 DOI: 10.1016/j.jaci.2021.11.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Allergen-specific type 2 CD4+ TH2 cells are critically involved in the pathogenesis of IgE-mediated allergic diseases. However, the heterogeneity of the TH2 response has only recently been appreciated. OBJECTIVE We sought to characterize at the single-cell level the ex vivo phenotype, transcriptomic profile, and T-cell receptor (TCR) repertoire of circulating CD4+ T cells specific to the major dog allergens Can f 1, Can f 4, and Can f 5 in subjects with and without dog allergy. METHODS Dog allergen-specific memory CD4+ T cells were detected ex vivo by flow cytometry using a CD154-based enrichment assay and single-cell sorted for targeted gene expression analysis and TCR sequencing. RESULTS Dog allergen-specific T-cell responses in allergic subjects were dominantly of TH2 type. TH2 cells could be phenotypically further divided into 3 subsets, which consisted of TH2-like (CCR6-CXCR3-CRTH2-), TH2 (CCR6-CXCR3-CRTH2+CD161-), and TH2A (CCR6-CXCR3-CRTH2+CD161+CD27-) cells. All these subsets were nonexistent within the allergen-specific T-cell repertoire of healthy subjects. Single-cell transcriptomic profiling confirmed the TH2-biased signature in allergen-specific T cells from allergic subjects and revealed a TH1/TH17 signature in nonallergic subjects. TCR repertoire analyses showed that dog allergen-specific T cells were diverse and allergic subjects demonstrated less clonality compared to nonallergic donors. Finally, TCR and transcriptomic analyses revealed a close relationship between TH2-like, TH2, and TH2A cells, with the last ones representing the most terminally differentiated and highly polarized subtype. CONCLUSIONS Our study demonstrates heterogeneity within allergen-specific TH2 cells at the single-cell level. The results may be utilized for improving immune monitoring after allergen immunotherapy and for designing targeted immunomodulatory approaches.
Collapse
|
97
|
Liu Z, Huo JH, Dong WT, Sun GD, Li FJ, Zhang YN, Qin ZW, Pengna J, Wang WM. A Study Based on Metabolomics, Network Pharmacology, and Experimental Verification to Explore the Mechanism of Qinbaiqingfei Concentrated Pills in the treatment of Mycoplasma Pneumonia. Front Pharmacol 2021; 12:761883. [PMID: 34803705 PMCID: PMC8599429 DOI: 10.3389/fphar.2021.761883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
Qinbaiqingfei concentrated pills (QB) are a commonly used medicine for the treatment of mycoplasma pneumonia in China, and the mechanism of action of QB needs to be studied further. Therefore, we use a combination of metabolomics and network pharmacology to clarify the mechanism of QB. Nontarget metabolomics studies were performed on rat serum, urine, and lung tissues, and 56 therapeutic biomarkers were found. Subsequently, the components of QB absorbed into the blood and lung tissues were clarified, and based on this finding, the core target of network pharmacology was predicted. The enrichment analysis of biomarkers–genes finally confirmed their close relationship with the NF-κB signaling pathway. By western blotting expression of the proteins in the lung tissue–related signaling pathways, it is finally confirmed that QB inhibits the NF-κB signaling pathway through SIRT1, IL-10 and MMP9, CTNNB1, EGFR, and other targets. It plays a role in regulating immunity, regulating metabolism, and treating diseases.
Collapse
Affiliation(s)
- Zheng Liu
- Heilongjiang Academy of Chinese Medicine, Institute of Chinese Materia Medica, Harbin, China
| | - Jin-Hai Huo
- Heilongjiang Academy of Chinese Medicine, Institute of Chinese Materia Medica, Harbin, China
| | - Wen-Ting Dong
- Heilongjiang Academy of Chinese Medicine, Institute of Chinese Materia Medica, Harbin, China
| | - Guo-Dong Sun
- Heilongjiang Academy of Chinese Medicine, Institute of Chinese Materia Medica, Harbin, China
| | - Feng-Jin Li
- Heilongjiang Academy of Chinese Medicine, Institute of Chinese Materia Medica, Harbin, China
| | - Ya-Nan Zhang
- Heilongjiang Academy of Chinese Medicine, Institute of Chinese Materia Medica, Harbin, China
| | - Zhi-Wei Qin
- Heilongjiang Academy of Chinese Medicine, Institute of Chinese Materia Medica, Harbin, China
| | - Jiang Pengna
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei-Ming Wang
- Heilongjiang Academy of Chinese Medicine, Institute of Chinese Materia Medica, Harbin, China
| |
Collapse
|
98
|
Tang W, Dong M, Teng F, Cui J, Zhu X, Wang W, Wuniqiemu T, Qin J, Yi L, Wang S, Dong J, Wei Y. Environmental allergens house dust mite-induced asthma is associated with ferroptosis in the lungs. Exp Ther Med 2021; 22:1483. [PMID: 34765024 PMCID: PMC8576623 DOI: 10.3892/etm.2021.10918] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022] Open
Abstract
Previous studies have indicated that allergens such as house dust mites (HDM) in the environment can induce allergic asthma. Ferroptosis is a newly discovered form of regulatory cell death characterized by aberrant lipid peroxidation and the accumulation of reactive oxygen species (ROS) in cells. However, whether ferroptosis participates in the pathological process of asthma remains to be elucidated. The present study used a HDM-induced mouse asthma model to determine the effect of HDM exposure on allergic asthma and its underlying mechanisms. Female BALB/c mice were intranasally exposed to HDM to induce allergic asthma. Airway hyperresponsiveness (AHR), lung inflammation, mucus secretion, IgE levels, cytokine levels and inflammatory cell counts in bronchoalveolar lavage fluid (BALF) were investigated. In addition, the morphological changes of mitochondria, ROS levels, glutathione (GSH) levels and changes in ferroptosis pathway proteins were also determined in murine lungs. As a result, HDM exposure significantly increased AHR, inflammatory cell infiltration and mucus secretion around the airways. Furthermore, elevated IgE levels in the BALF, lung eosinophilia and a concomitant increase in IL-13 and IL-5 levels in BALF were observed. HDM inhalation increased ROS and decreased GSH levels in the lungs. HDM inhalation induced dysmorphic small mitochondria with decreased crista, as well as condensed, ruptured outer membranes. Western blotting demonstrated that the activities of glutathione peroxidase 4 and catalytic subunit solute carrier family 7 member 11 were significantly decreased, and that protein expression levels of acyl-CoA synthetase long-chain family member 4 and 15 lipoxygenase 1 were upregulated compared with mice in the normal control group. Overall, these results indicated that the AHR, airway inflammation, lipid peroxidation and ROS levels increased in HDM-induced asthma, and that HDM inhalation induced ferroptosis in the lungs, which helped to form an improved understanding of the pathogenesis of allergic asthma.
Collapse
Affiliation(s)
- Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Cell and Molecular Biology Laboratory, Institutes of Integrative Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Ming Dong
- Department of Acupuncture and Orthopedics, Gumei Community Health Center, Shanghai 201102, P.R. China
| | - Fangzhou Teng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Cell and Molecular Biology Laboratory, Institutes of Integrative Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Jie Cui
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Cell and Molecular Biology Laboratory, Institutes of Integrative Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Xueyi Zhu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Cell and Molecular Biology Laboratory, Institutes of Integrative Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Wenqian Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Cell and Molecular Biology Laboratory, Institutes of Integrative Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Tulake Wuniqiemu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Cell and Molecular Biology Laboratory, Institutes of Integrative Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Jingjing Qin
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Cell and Molecular Biology Laboratory, Institutes of Integrative Medicine, Fudan University, Shanghai 200040, P.R. China
| | - La Yi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Cell and Molecular Biology Laboratory, Institutes of Integrative Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Shiyuan Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Cell and Molecular Biology Laboratory, Institutes of Integrative Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Cell and Molecular Biology Laboratory, Institutes of Integrative Medicine, Fudan University, Shanghai 200040, P.R. China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Cell and Molecular Biology Laboratory, Institutes of Integrative Medicine, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
99
|
Holm SR, Jenkins BJ, Cronin JG, Jones N, Thornton CA. A role for metabolism in determining neonatal immune function. Pediatr Allergy Immunol 2021; 32:1616-1628. [PMID: 34170575 DOI: 10.1111/pai.13583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 01/04/2023]
Abstract
Immune responses of neonates differ markedly to those of adults, with skewed cytokine phenotypes, reduced inflammatory properties and drastically diminished memory function. Recent research efforts have started to unravel the role of cellular metabolism in determining immune cell fate and function. For studies in humans, much of the work on metabolic mechanisms underpinning innate and adaptive immune responses by different haematopoietic cell types is in adults. Studies investigating the contribution of metabolic adaptation in the unique setting of early life are just emerging, and much more work is needed to elucidate the contribution of metabolism to neonatal immune responses. Here, we discuss our current understanding of neonatal immune responses, examine some of the latest developments in neonatal immunometabolism and consider the possible role of altered metabolism to the distinctive immune phenotype of the neonate. Understanding the role of metabolism in regulating immune function at this critical stage in life has direct benefit for the child by affording opportunities to maximize immediate and long-term health. Additionally, gaining insight into the diversity of human immune function and naturally evolved immunometabolic strategies that modulate immune function could be harnessed for a wide range of opportunities including new therapeutic approaches.
Collapse
Affiliation(s)
- Sean R Holm
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, UK
| | - Ben J Jenkins
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, UK
| | - James G Cronin
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, UK
| | - Nicholas Jones
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, UK
| | - Catherine A Thornton
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, UK
| |
Collapse
|
100
|
Abstract
PURPOSE OF REVIEW The incidence of allergic diseases such as asthma, rhinitis and atopic dermatitis has risen at an alarming rate over the last century. Thus, there is a clear need to understand the critical factors that drive such pathologic immune responses. Peroxisome proliferator-activated receptor-γ (PPAR-γ) is a nuclear receptor that has emerged as an important regulator of multiple cell types involved in the inflammatory response to allergens; from airway epithelial cells to T Helper (TH) cells. RECENT FINDINGS Initial studies suggested that agonists of PPAR-γ could be employed to temper allergic inflammation, suppressing pro-inflammatory gene expression programs in epithelial cells. Several lines of work now suggest that PPAR-γ plays an essential in promoting 'type 2' immune responses that are typically associated with allergic disease. PPAR-γ has been found to promote the functions of TH2 cells, type 2 innate lymphoid cells, M2 macrophages and dendritic cells, regulating lipid metabolism and directly inducing effector gene expression. Moreover, preclinical models of allergy in gene-targeted mice have increasingly implicated PPAR-γ in driving allergic inflammation. Herein, we highlight the contrasting roles of PPAR-γ in allergic inflammation and hypothesize that the availability of environmental ligands for PPAR-γ may be at the heart of the rise in allergic diseases worldwide.
Collapse
Affiliation(s)
- Julian M Stark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan M Coquet
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Christopher A Tibbitt
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|