51
|
Golender N, Bumbarov V, Kovtunenko A, David D, Guini-Rubinstein M, Sol A, Beer M, Eldar A, Wernike K. Identification and Genetic Characterization of Viral Pathogens in Ruminant Gestation Abnormalities, Israel, 2015-2019. Viruses 2021; 13:v13112136. [PMID: 34834943 PMCID: PMC8619439 DOI: 10.3390/v13112136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 01/02/2023] Open
Abstract
Infectious agents including viruses are important abortifacients and can cause fetal abnormalities in livestock animals. Here, samples that had been collected in Israel from aborted or malformed ruminant fetuses between 2015 and 2019 were investigated for the presence of the following viruses: the reoviruses bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV), the flaviviruses bovine viral diarrhea virus (BVDV) and border disease virus (BDV), the peribunyaviruses Shuni virus (SHUV) and Akabane virus (AKAV), bovine herpesvirus type 1 (BoHV-1) and bovine ephemeral fever virus (BEFV). Domestic (cattle, sheep, goat) and wild/zoo ruminants were included in the study. The presence of viral nucleic acid or antigen could be confirmed in 21.8 % of abnormal pregnancies (213 out of 976 investigated cases), with peribunyaviruses, reoviruses and pestiviruses being the most prevalent. At least four different BTV serotypes were involved in abnormal courses of pregnancy in Israel. The subtyping of pestiviruses revealed the presence of two BDV and several distinct BVDV type 1 strains. The peribunyaviruses AKAV and SHUV were identified annually throughout the study period, however, variation in the extent of virus circulation could be observed between the years. In 2018, AKAV even represented the most detected pathogen in cases of small domestic ruminant gestation abnormalities. In conclusion, it was shown that various viruses are involved in abnormal courses of pregnancy in ruminants in Israel.
Collapse
Affiliation(s)
- Natalia Golender
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 50250, Israel; (V.B.); (A.K.); (D.D.); (M.G.-R.); (A.S.); (A.E.)
- Correspondence: ; Tel.: +972-3968-8949; Fax: +972-3968-1788
| | - Velizar Bumbarov
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 50250, Israel; (V.B.); (A.K.); (D.D.); (M.G.-R.); (A.S.); (A.E.)
| | - Anita Kovtunenko
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 50250, Israel; (V.B.); (A.K.); (D.D.); (M.G.-R.); (A.S.); (A.E.)
| | - Dan David
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 50250, Israel; (V.B.); (A.K.); (D.D.); (M.G.-R.); (A.S.); (A.E.)
| | - Marisol Guini-Rubinstein
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 50250, Israel; (V.B.); (A.K.); (D.D.); (M.G.-R.); (A.S.); (A.E.)
| | - Asaf Sol
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 50250, Israel; (V.B.); (A.K.); (D.D.); (M.G.-R.); (A.S.); (A.E.)
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (M.B.); (K.W.)
| | - Avi Eldar
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 50250, Israel; (V.B.); (A.K.); (D.D.); (M.G.-R.); (A.S.); (A.E.)
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (M.B.); (K.W.)
| |
Collapse
|
52
|
van Rijn PA, Maris-Veldhuis MA, Spedicato M, Savini G, van Gennip RGP. Pentavalent Disabled Infectious Single Animal (DISA)/DIVA Vaccine Provides Protection in Sheep and Cattle against Different Serotypes of Bluetongue Virus. Vaccines (Basel) 2021; 9:vaccines9101150. [PMID: 34696258 PMCID: PMC8537505 DOI: 10.3390/vaccines9101150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 12/04/2022] Open
Abstract
Bluetongue (BT) is a midge-borne OIE-notifiable disease of ruminants caused by the bluetongue virus (BTV). There are at least 29 BTV serotypes as determined by serum neutralization tests and genetic analyses of genome segment 2 encoding serotype immunodominant VP2 protein. Large parts of the world are endemic for multiple serotypes. The most effective control measure of BT is vaccination. Conventionally live-attenuated and inactivated BT vaccines are available but have their specific pros and cons and are not DIVA compatible. The prototype Disabled Infectious Single Animal (DISA)/DIVA vaccine based on knockout of NS3/NS3a protein of live-attenuated BTV, shortly named DISA8, fulfills all criteria for modern veterinary vaccines of sheep. Recently, DISA8 with an internal in-frame deletion of 72 amino acid codons in NS3/NS3a showed a similar ideal vaccine profile in cattle. Here, the DISA/DIVA vaccine platform was applied for other serotypes, and pentavalent DISA/DIVA vaccine for “European” serotypes 1, 2, 3, 4, 8 was studied in sheep and cattle. Protection was demonstrated for two serotypes, and neutralization Ab titers indicate protection against other included serotypes. The DISA/DIVA vaccine platform is flexible in use and generates monovalent and multivalent DISA vaccines to combat specific field situations with respect to Bluetongue.
Collapse
Affiliation(s)
- Piet A. van Rijn
- Department of Virology, Wageningen Bioveterinary Research (WBVR), 8200 RA Lelystad, The Netherlands; (M.A.M.-V.); (R.G.P.v.G.)
- Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom 2520, South Africa
- Correspondence: ; Tel.: +31-320-238-686
| | - Mieke A. Maris-Veldhuis
- Department of Virology, Wageningen Bioveterinary Research (WBVR), 8200 RA Lelystad, The Netherlands; (M.A.M.-V.); (R.G.P.v.G.)
| | - Massimo Spedicato
- Public Health Department, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (M.S.); (G.S.)
| | - Giovanni Savini
- Public Health Department, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy; (M.S.); (G.S.)
| | - René G. P. van Gennip
- Department of Virology, Wageningen Bioveterinary Research (WBVR), 8200 RA Lelystad, The Netherlands; (M.A.M.-V.); (R.G.P.v.G.)
| |
Collapse
|
53
|
Bamouh Z, Es-Sadeqy Y, Safini N, Douieb L, Omari Tadlaoui K, Martínez RV, García MA, Fassi-Fihri O, Elharrak M. Safety and efficacy of a Bluetongue inactivated vaccine (serotypes 1 and 4) in sheep. Vet Microbiol 2021; 261:109212. [PMID: 34450450 DOI: 10.1016/j.vetmic.2021.109212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/16/2021] [Indexed: 11/27/2022]
Abstract
A new inactivated vaccine against Bluetongue virus (BTV) serotypes 1 and 4, was developed from field isolates. Safety and efficacy of the vaccine were evaluated in sheep by serological monitoring and virus nucleic acid detection after experimental infection of vaccinated animals. Seroconversion was observed in vaccinated animals at day 14 post vaccination (pv) with neutralizing antibody titer of 1.9 and 1.8 for serotypes 1 and 4, respectively. The titer increase significantly after the booster reaching 2.7 and persist one year >1.5 for both serotypes. After challenge with virulent isolates, vireamia was recorded in control animals, as evident by q-PCR with threshold cycles (Ct) ranging from 24 to 31 and peaked at day 10 post challenge, while no vireamia was detected in vaccinated animals. Vaccinated sheep were fully protected against the disease and infection.
Collapse
Affiliation(s)
- Z Bamouh
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia 28810, Morocco; Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco.
| | - Y Es-Sadeqy
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia 28810, Morocco.
| | - N Safini
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia 28810, Morocco.
| | - L Douieb
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia 28810, Morocco.
| | - K Omari Tadlaoui
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia 28810, Morocco.
| | | | - M Agüero García
- Laboratorio Central de Veterinaria-Animal Health, Algete, Madrid, Spain.
| | - O Fassi-Fihri
- Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco.
| | - M Elharrak
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia 28810, Morocco.
| |
Collapse
|
54
|
Saminathan M, Singh KP, Khorajiya JH, Dinesh M, Vineetha S, Maity M, Rahman AF, Misri J, Malik YS, Gupta VK, Singh RK, Dhama K. An updated review on bluetongue virus: epidemiology, pathobiology, and advances in diagnosis and control with special reference to India. Vet Q 2021; 40:258-321. [PMID: 33003985 PMCID: PMC7655031 DOI: 10.1080/01652176.2020.1831708] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bluetongue (BT) is an economically important, non-contagious viral disease of domestic and wild ruminants. BT is caused by BT virus (BTV) and it belongs to the genus Orbivirus and family Reoviridae. BTV is transmitted by Culicoides midges and causes clinical disease in sheep, white-tailed deer, pronghorn antelope, bighorn sheep, and subclinical manifestation in cattle, goats and camelids. BT is a World Organization for Animal Health (OIE) listed multispecies disease and causes great socio-economic losses. To date, 28 serotypes of BTV have been reported worldwide and 23 serotypes have been reported from India. Transplacental transmission (TPT) and fetal abnormalities in ruminants had been reported with cell culture adopted live-attenuated vaccine strains of BTV. However, emergence of BTV-8 in Europe during 2006, confirmed TPT of wild-type/field strains of BTV. Diagnosis of BT is more important for control of disease and to ensure BTV-free trade of animals and their products. Reverse transcription polymerase chain reaction, agar gel immunodiffusion assay and competitive enzyme-linked immunosorbent assay are found to be sensitive and OIE recommended tests for diagnosis of BTV for international trade. Control measures include mass vaccination (most effective method), serological and entomological surveillance, forming restriction zones and sentinel programs. Major hindrances with control of BT in India are the presence of multiple BTV serotypes, high density of ruminant and vector populations. A pentavalent inactivated, adjuvanted vaccine is administered currently in India to control BT. Recombinant vaccines with DIVA strategies are urgently needed to combat this disease. This review is the first to summarise the seroprevalence of BTV in India for 40 years, economic impact and pathobiology.
Collapse
Affiliation(s)
- Mani Saminathan
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | | | - Murali Dinesh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sobharani Vineetha
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Madhulina Maity
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - At Faslu Rahman
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Jyoti Misri
- Animal Science Division, Indian Council of Agricultural Research, New Delhi, India
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Vivek Kumar Gupta
- Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Raj Kumar Singh
- Director, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
55
|
Rodríguez-Martín D, Louloudes-Lázaro A, Avia M, Martín V, Rojas JM, Sevilla N. The Interplay between Bluetongue Virus Infections and Adaptive Immunity. Viruses 2021; 13:1511. [PMID: 34452376 PMCID: PMC8402766 DOI: 10.3390/v13081511] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 12/18/2022] Open
Abstract
Viral infections have long provided a platform to understand the workings of immunity. For instance, great strides towards defining basic immunology concepts, such as MHC restriction of antigen presentation or T-cell memory development and maintenance, have been achieved thanks to the study of lymphocytic choriomeningitis virus (LCMV) infections. These studies have also shaped our understanding of antiviral immunity, and in particular T-cell responses. In the present review, we discuss how bluetongue virus (BTV), an economically important arbovirus from the Reoviridae family that affects ruminants, affects adaptive immunity in the natural hosts. During the initial stages of infection, BTV triggers leucopenia in the hosts. The host then mounts an adaptive immune response that controls the disease. In this work, we discuss how BTV triggers CD8+ T-cell expansion and neutralizing antibody responses, yet in some individuals viremia remains detectable after these adaptive immune mechanisms are active. We present some unpublished data showing that BTV infection also affects other T cell populations such as CD4+ T-cells or γδ T-cells, as well as B-cell numbers in the periphery. This review also discusses how BTV evades these adaptive immune mechanisms so that it can be transmitted back to the arthropod host. Understanding the interaction of BTV with immunity could ultimately define the correlates of protection with immune mechanisms that would improve our knowledge of ruminant immunology.
Collapse
Affiliation(s)
| | | | | | | | | | - Noemí Sevilla
- Centro de Investigación en Sanidad Animal, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Valdeolmos, 28130 Madrid, Spain; (D.R.-M.); (A.L.-L.); (M.A.); (V.M.); (J.M.R.)
| |
Collapse
|
56
|
Clemmons EA, Alfson KJ, Dutton JW. Transboundary Animal Diseases, an Overview of 17 Diseases with Potential for Global Spread and Serious Consequences. Animals (Basel) 2021; 11:2039. [PMID: 34359167 PMCID: PMC8300273 DOI: 10.3390/ani11072039] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Animals provide food and other critical resources to most of the global population. As such, diseases of animals can cause dire consequences, especially disease with high rates of morbidity or mortality. Transboundary animal diseases (TADs) are highly contagious or transmissible, epidemic diseases, with the potential to spread rapidly across the globe and the potential to cause substantial socioeconomic and public health consequences. Transboundary animal diseases can threaten the global food supply, reduce the availability of non-food animal products, or cause the loss of human productivity or life. Further, TADs result in socioeconomic consequences from costs of control or preventative measures, and from trade restrictions. A greater understanding of the transmission, spread, and pathogenesis of these diseases is required. Further work is also needed to improve the efficacy and cost of both diagnostics and vaccines. This review aims to give a broad overview of 17 TADs, providing researchers and veterinarians with a current, succinct resource of salient details regarding these significant diseases. For each disease, we provide a synopsis of the disease and its status, species and geographic areas affected, a summary of in vitro or in vivo research models, and when available, information regarding prevention or treatment.
Collapse
Affiliation(s)
- Elizabeth A. Clemmons
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA;
| | - Kendra J. Alfson
- Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA
| | - John W. Dutton
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA;
| |
Collapse
|
57
|
Roch FF, Conrady B. Overview of Mitigation Programs for Non-EU-Regulated Cattle Diseases in Austria. Front Vet Sci 2021; 8:689244. [PMID: 34212024 PMCID: PMC8239179 DOI: 10.3389/fvets.2021.689244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The non-regulation of animal diseases due to missing regulation at the European Union (EU) level enables member states to implement mitigation programs based on their own country-specific conditions such as priority settings of the governments, availability of financial resources, and epidemiological situation. This can result in a heterogeneous distribution of mitigation activities and prevalence levels within and/or between countries, which can cause difficulties for intracommunity trade. This article aims to describe the past, current, and future mitigation activities and associated prevalence levels for four non-regulated animal diseases, i.e., enzootic bovine leukosis (EBL), infectious bovine rhinotracheitis/infectious pustular vulvovaginitis (IBR/IPV), bovine viral diarrhea (BVD), and bluetongue disease (BT) for Austria. Over a period of 40 years (1978-2020), regulations concerning EBL, IBR/IPV, BVD, and BT were retraced to analyze the changes of legislation, focusing on sampling, testing, and mitigation activities in Austria, and were linked to the collected diagnostic testing results. The study results clearly demonstrate the adoption of the legislation by the Austrian governments in dependency of the epidemiological situations. Furthermore, our study shows that, related to the forthcoming Animal Health Law on April 21, 2021, Austria has a good initial situation to achieve disease-free status and/or free from infection status based on the current available epidemiological situation and previously implemented mitigation activities. The study results presented here are intended to contribute to a better comparison of the eradication status across the European countries for non-EU-regulated cattle diseases by providing information about the mitigation activities and data of testing results over a period of 40 years.
Collapse
Affiliation(s)
- Franz-Ferdinand Roch
- Department for Farm Animals and Veterinary Public Health, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Beate Conrady
- Department for Farm Animals and Veterinary Public Health, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
- Complexity Science Hub Vienna, Vienna, Austria
| |
Collapse
|
58
|
Genetic and phylogenetic characterization of polycistronic dsRNA segment-10 of bluetongue virus isolates from India between 1985 and 2011. Virus Genes 2021; 57:369-379. [PMID: 34120252 DOI: 10.1007/s11262-021-01855-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/08/2021] [Indexed: 01/07/2023]
Abstract
The smallest polycistronic dsRNA segment-10 (S10) of bluetongue virus (BTV) encodes NS3/3A and putative NS5. The S10 sequence data of 46 Indian BTV field isolates obtained between 1985 and 2011 were determined and compared with the cognate sequences of global BTV strains. The largest ORF on S10 encodes NS3 (229 aa) and an amino-terminal truncated form of the protein (NS3A) and a putative NS5 (50-59 aa) due to alternate translation initiation site. The overall mean distance of the global NS3 was 0.1106 and 0.0269 at nt and deduced aa sequence, respectively. The global BTV strains formed four major clusters. The major cluster of Indian BTV strains was closely related to the viruses reported from Australia and China. A minor sub-cluster of Indian BTV strains were closely related to the USA strains and a few of the Indian strains were similar to the South African reference and vaccine strains. The global trait association of phylogenetic structure indicates the evolution of the global BTV S10 was not homogenous but rather represents a moderate level of geographical divergence. There was no evidence of an association between the virus and the host species, suggesting a random spread of the viruses. Conflicting selection pressure on the alternate coding sequences of the S10 was evident where NS3/3A might have evolved through strong purifying (negative) selection and NS5 through a positive selection. The presence of multiple positively selected codons on the putative NS5 may be advantageous for adaptation of the virus though their precise role is unknown.
Collapse
|
59
|
Kopanke J, Lee J, Stenglein M, Carpenter M, Cohnstaedt LW, Wilson WC, Mayo C. Exposure of Culicoides sonorensis to Enzootic Strains of Bluetongue Virus Demonstrates Temperature- and Virus-Specific Effects on Virogenesis. Viruses 2021; 13:v13061016. [PMID: 34071483 PMCID: PMC8228769 DOI: 10.3390/v13061016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 01/25/2023] Open
Abstract
Bluetongue virus (BTV) is a segmented RNA virus transmitted by Culicoides midges. Climatic factors, animal movement, vector species, and viral mutation and reassortment may all play a role in the occurrence of BTV outbreaks among susceptible ruminants. We used two enzootic strains of BTV (BTV-2 and BTV-10) to explore the potential for Culicoides sonorensis, a key North American vector, to be infected with these viruses, and identify the impact of temperature variations on virogenesis during infection. While BTV-10 replicated readily in C. sonorensis following an infectious blood meal, BTV-2 was less likely to result in productive infection at biologically relevant exposure levels. Moreover, when C. sonorensis were co-exposed to both viruses, we did not detect reassortment between the two viruses, despite previous in vitro findings indicating that BTV-2 and BTV-10 are able to reassort successfully. These results highlight that numerous factors, including vector species and exposure dose, may impact the in vivo replication of varying BTV strains, and underscore the complexities of BTV ecology in North America.
Collapse
Affiliation(s)
- Jennifer Kopanke
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.K.); (J.L.); (M.S.); (M.C.)
| | - Justin Lee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.K.); (J.L.); (M.S.); (M.C.)
| | - Mark Stenglein
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.K.); (J.L.); (M.S.); (M.C.)
| | - Molly Carpenter
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.K.); (J.L.); (M.S.); (M.C.)
| | - Lee W. Cohnstaedt
- Arthropod-Borne Animal Diseases Research Unit, United States Department of Agriculture—Agricultural Research Service, Manhattan, KS 66502, USA;
| | - William C. Wilson
- National Bio and Agro-Defense Facility (NBAF), United States Department of Agriculture—Agricultural Research Service, 1880 Kimball Ave, Suite 300 CGAHR, Manhattan, KS 66502, USA;
| | - Christie Mayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (J.K.); (J.L.); (M.S.); (M.C.)
- Correspondence:
| |
Collapse
|
60
|
The Bluetongue Disabled Infectious Single Animal (DISA) Vaccine Platform Based on Deletion NS3/NS3a Protein Is Safe and Protective in Cattle and Enables DIVA. Viruses 2021; 13:v13050857. [PMID: 34067226 PMCID: PMC8151055 DOI: 10.3390/v13050857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022] Open
Abstract
The bluetongue virus (BTV) is transmitted by Culicoides biting midges and causes bluetongue (BT), an OIE-notifiable disease of ruminants. At least 29 BTV serotypes are described as determined by the outer shell proteins VP2 and VP5. Vaccination is the most effective control measure. Inactivated and live-attenuated vaccines (LAVs) are currently available. These vaccines have their specific pros and cons, and both are not DIVA vaccines. The BT Disabled Infectious Single Animal (DISA) vaccine platform is based on LAV without nonessential NS3/NS3a expression and is applicable for many serotypes by the exchange of outer shell proteins. The DISA vaccine is effective and completely safe. Further, transmission of the DISA vaccine by midges is blocked (DISA principle). Finally, the DISA vaccine enables DIVA because of a lack of antibodies against the immunogenic NS3/NS3a protein (DIVA principle). The deletion of 72 amino acids (72aa) in NS3/NS3a is sufficient to block virus propagation in midges. Here, we show that a prototype DISA vaccine based on LAV with the 72aa deletion enables DIVA, is completely safe and induces a long-lasting serotype-specific protection in cattle. In conclusion, the in-frame deletion of 72-aa codons in the BT DISA/DIVA vaccine platform is sufficient to fulfil all the criteria for modern veterinary vaccines.
Collapse
|
61
|
Yang H, Gu W, Li Z, Zhang L, Liao D, Song J, Shi B, Hasimu J, Li Z, Yang Z, Zhong Q, Li H. Novel putative bluetongue virus serotype 29 isolated from inapparently infected goat in Xinjiang of China. Transbound Emerg Dis 2021; 68:2543-2555. [PMID: 33190404 DOI: 10.1111/tbed.13927] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/29/2020] [Accepted: 11/10/2020] [Indexed: 02/04/2023]
Abstract
Bluetongue virus (BTV) is the 'type' species of the genus Orbivirus causing bluetongue (BT) in sheep, bovine and other ruminants. Twenty-four serotypes and several atypical serotypes of BTV were identified worldwide. In present study, a novel strain of BTV (V196/XJ/2014) was isolated from an asymptomatic sentinel goat in Yuli County, Xinjiang of China. Serotype identification of this isolate exhibited uniform negative results by serotype-specific conventional RT-PCR and real-time RT-PCR for BTV-1 to BTV-27, and virus neutralization tests using reference sera of BTV-1 to BTV-24. Genomic analysis showed V196/XJ/2014 grouped with atypical serotypes of BTV-25 to BTV-28, BTV-X/XJ1407, BTV-X/ITL2015 and BTV-Y/TUN2017, while segment 2 and VP2 protein of V196/XJ/2014 shared <63.4%/61.4% nucleic acids and amino acids sequence identities with other recognized BTV serotypes and its segment 2 formed a separate 'nucleotype' in phylogenetic tree. These results indicated V196/XJ/2014 does not belong to any reported serotypes of BTV. Further studies of infectivity and pathogenicity showed that goats infected with V196/XJ/2014 did not exhibit observed clinical symptoms, but high level of virus amplification and homologous neutralization antibodies were detected post-infection. Our studies suggested a novel putative serotype of BTV-29 was isolated in Xinjiang of China, which expands our knowledge about the diversity of BTV.
Collapse
Affiliation(s)
- Heng Yang
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| | - Wenxi Gu
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Autonomous Region, China
| | - Zhanhong Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| | - Ling Zhang
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Autonomous Region, China
| | - Defang Liao
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| | - Jianling Song
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| | - Baoxin Shi
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Autonomous Region, China
| | - Jiapaer Hasimu
- Yuli Animal Husbandry and Veterinary Station, Yuli, Xinjiang Autonomous Region, China
| | - Zhuoran Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| | - Zhenxing Yang
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| | - Qi Zhong
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Autonomous Region, China
| | - Huachun Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| |
Collapse
|
62
|
Ries C, Vögtlin A, Hüssy D, Jandt T, Gobet H, Hilbe M, Burgener C, Schweizer L, Häfliger-Speiser S, Beer M, Hoffmann B. Putative Novel Atypical BTV Serotype '36' Identified in Small Ruminants in Switzerland. Viruses 2021; 13:v13050721. [PMID: 33919269 PMCID: PMC8143309 DOI: 10.3390/v13050721] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022] Open
Abstract
We identified a putative novel atypical BTV serotype '36' in Swiss goat flocks. In the initial flock clinical signs consisting of multifocal purulent dermatitis, facial oedema and fever were observed. Following BTV detection by RT-qPCR, serotyping identified BTV-25 and also a putative novel BTV serotype in several of the affected goats. We successfully propagated the so-called "BTV-36-CH2019" strain in cell culture, developed a specific RT-qPCR targeting Segment 2, and generated the full genome by high-throughput sequencing. Furthermore, we experimentally infected goats with BTV-36-CH2019. Regularly, EDTA blood, serum and diverse swab samples were collected. Throughout the experiment, neither fever nor clinical disease was observed in any of the inoculated goats. Four goats developed BTV viremia, whereas one inoculated goat and the two contact animals remained negative. No viral RNA was detected in the swab samples collected from nose, mouth, eye, and rectum, and thus the experimental infection of goats using this novel BTV serotype delivered no indications for any clinical symptoms or vector-free virus transmission pathways. The subclinical infection of the four goats is in accordance with the reports for other atypical BTVs. However, the clinical signs of the initial goat flock did most likely not result from infection with the novel BTV-36-CH0219.
Collapse
Affiliation(s)
- Christina Ries
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (C.R.); (M.B.)
| | - Andrea Vögtlin
- Institute of Virology and Immunology (IVI), Mittelhäusern, Switzerland and Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (A.V.); (D.H.); (T.J.); (H.G.)
| | - Daniela Hüssy
- Institute of Virology and Immunology (IVI), Mittelhäusern, Switzerland and Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (A.V.); (D.H.); (T.J.); (H.G.)
| | - Tabea Jandt
- Institute of Virology and Immunology (IVI), Mittelhäusern, Switzerland and Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (A.V.); (D.H.); (T.J.); (H.G.)
| | - Hansjörg Gobet
- Institute of Virology and Immunology (IVI), Mittelhäusern, Switzerland and Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (A.V.); (D.H.); (T.J.); (H.G.)
| | - Monika Hilbe
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, 8057 Zürich, Switzerland; (M.H.); (C.B.)
| | - Carole Burgener
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, 8057 Zürich, Switzerland; (M.H.); (C.B.)
| | | | | | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (C.R.); (M.B.)
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (C.R.); (M.B.)
- Correspondence:
| |
Collapse
|
63
|
A Survey of Bluetongue Infection and Associated Risk Factors among the One-Humped Camel ( Camelus dromedaries) in Gadarif State, Eastern Sudan. Vet Med Int 2021; 2021:6613217. [PMID: 33833864 PMCID: PMC8012144 DOI: 10.1155/2021/6613217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/22/2021] [Accepted: 03/17/2021] [Indexed: 11/18/2022] Open
Abstract
Bluetongue (BT) is an infectious, noncontagious, vector-borne viral disease that affects wild and domestic ruminants transmitted by Culicoides spp. A cross-sectional study was carried out during the period 2016-2017 in Gadarif state. A total of 276 sera samples were collected from camels in six localities of Gadarif state, eastern Sudan, to investigate bluetongue virus (BTV) seroprevalence and associated risk factors of BTV infection including age, sex, breed, locality, and ecology of the region. Enzyme-linked immunosorbent assay (ELISA) was used for estimation of BTV seroprevalence rate. The overall BTV seroprevalence rate was 96.7% in the study area ranging from 93.5% to 100% in six screened localities with no significant differences. The findings revealed similar BTV seroprevalence rates in both males and females, but high rates were found in age group of less than one year and two to three years with estimated 100%. However, the lowest seroprevalence was found in the age group of five to four years with estimated BTV to be 92.3%. BTV seropositivity was not found to be statistically associated with examined different camel breeds which revealed 93%, 94.4%, 97.6%, and 97.8% seroprevalence in Bushari, Rashide, Arabi, and Anafi, breeds, respectively. Epidemiology of BTV assessment according to the ecology of the area showed high BTV seroprevalence in desert and savanna with estimated 100% and lower BTV seroprevalence in arid and rich savanna with estimated 94.8% and 95.7%, respectively. There was no significant association between BTV ELISA positivity and sex, breed, and ecology of the area.
Collapse
|
64
|
Athanasiou LV, Katsogiannou EG, Spanou VM, Dedousi A, Katsoulos PD. Potential Acute Renal Injury in Sheep with Bluetongue Serotype 4. Pathogens 2021; 10:pathogens10020159. [PMID: 33546448 PMCID: PMC7913749 DOI: 10.3390/pathogens10020159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 11/28/2022] Open
Abstract
Bluetongue is a vector-borne disease with epidemic potential. Recently, outbreaks of Bluetongue were reported across Greece, caused by the Bluetongue virus (BTV) serotype 4. Regarding its pathogenesis, BTV infection involves various target organs with limited data referring to the kidneys. The objective of this study was to identify the possible impact of BTV infection on kidneys using common renal biomarkers. Urine and blood samples collected from 30 sheep with clinical signs of bluetongue (BTV sheep) and 30 clinically healthy sheep (normal sheep) from the same farms were finally selected and included in the study from an initial population of 47 sheep per group, based on the absence of active urine sediment. Complete urinalysis was performed and urine protein to creatinine ratio (UPC) and urine gamma-glutamyl transferase to creatinine (UGGTC) ratio were determined. Blood urea nitrogen (BUN), creatinine, total proteins, albumin (ALB), and inorganic phosphate (P) were determined in serum samples. UPC and UGGTC were significantly higher (p < 0.05) in BTV sheep compared to normal, whereas urine specific gravity (USG) was significantly lower (p < 0.05). Cylindruria was also detected in BTV sheep, and absence of azotemia in BTV and normal sheep. All these findings are indicative of renal tubular injury and/or dysfunction and suggestive of an association between BTV infection and acute damage of renal tissue.
Collapse
Affiliation(s)
- Labrini V. Athanasiou
- Department of Medicine, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece; (L.V.A.); (E.G.K.); (V.M.S.)
| | - Eleni G. Katsogiannou
- Department of Medicine, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece; (L.V.A.); (E.G.K.); (V.M.S.)
| | - Victoria M. Spanou
- Department of Medicine, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece; (L.V.A.); (E.G.K.); (V.M.S.)
| | - Anna Dedousi
- Veterinary Research Institute, HAO-Demeter, 57001 Thessaloniki, Greece;
| | - Panagiotis D. Katsoulos
- Clinic of Farm Animals, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece
- Correspondence: ; Tel./Fax: +30-231-099-4455
| |
Collapse
|
65
|
Saminathan M, Singh KP, Maity M, Vineetha S, Manjunathareddy GB, Dhama K, Malik YS, Ramakrishnan MA, Misri J, Gupta VK. Pathological and immunological characterization of bluetongue virus serotype 1 infection in type I interferons blocked immunocompetent adult mice. J Adv Res 2021; 31:137-153. [PMID: 34194838 PMCID: PMC8240118 DOI: 10.1016/j.jare.2021.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/10/2021] [Accepted: 01/10/2021] [Indexed: 12/18/2022] Open
Abstract
Introduction Wild-type adult mice with intact interferon (IFN) system were neither susceptible to bluetongue virus (BTV) infection nor showed signs of morbidity/mortality. Establishment of immunologically competent wild-type adult mouse model with type I IFNs blockade is necessary to assess the pathogenesis, immune responses and testing of BTV vaccines. Objectives Present study aimed to establish and characterize BTV serotype 1 infection in immunocompetent adult mice with type I IFNs blockade at the time of infection by studying immune responses and sequential pathology. Methods Adult mice were administered with anti-mouse IFN-α/β receptor subunit-1 (IFNAR1) blocking antibody (Clone: MAR1-5A3) 24 h before and after BTV serotype 1 infection, and sacrificed at various time points. Sequential pathology, BTV localization by immunohistochemistry and quantification by qRT-PCR, immune cell kinetics and apoptosis by flow cytometry, and cytokines estimation by c-ELISA and qRT-PCR were studied. Results IFNAR blocked-infected mice developed clinical signs and typical lesions of BT; whereas, isotype-infected control mice did not develop any disease. The IFNAR blocked-infected mice showed enlarged, edematous, and congested lymph nodes (LNs) and spleen, and vascular (congestion and hemorrhage) and pneumonic lesions in lungs. Histopathologically, marked lymphoid depletion with “starry-sky pattern” due to lymphocytes apoptosis was noticed in the LNs and spleen. BTV antigen was detected and quantified in lymphoid organs, lungs, and other organs at various time points. Initial leukopenia (increased CD4+/CD8+ T cells ratio) followed by leukocytosis (decreased CD4+/CD8+ T cells ratio) and significantly increased biochemical values were noticed in IFNAR blocked-infected mice. Increased apoptotic cells in PBMCs and tissues coincided with viral load and levels of different cytokines in blood, spleen and draining LNs and notably varied between time points in IFNAR blocked-infected mice. Conclusion Present study is first to characterize BTV serotype 1 infection in immunocompetent adult mouse with type I IFNs blockade. The findings will be useful for studying pathogenesis and testing the efficacy of BTV vaccines.
Collapse
Affiliation(s)
- Mani Saminathan
- Division of Pathology, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Madhulina Maity
- Division of Pathology, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Sobharani Vineetha
- Division of Pathology, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | | | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Yashpal Singh Malik
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141001, Punjab, India
| | | | - Jyoti Misri
- Animal Science Division, Indian Council of Agricultural Research, New Delhi 110001, India
| | - Vivek Kumar Gupta
- Centre for Animal Disease Research and Diagnosis, ICAR-IVRI, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| |
Collapse
|
66
|
Mookhploy W, Krongdang S, Chantawannakul P. Effects of Deformed Wing Virus Infection on Expressions of Immune- and Apoptosis-Related Genes in Western Honeybees ( Apis mellifera). INSECTS 2021; 12:82. [PMID: 33477797 PMCID: PMC7832323 DOI: 10.3390/insects12010082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 01/11/2023]
Abstract
Honeybees are globally threatened by several pathogens, especially deformed wing virus (DWV), as the presence of DWV in western honeybees is indicative of colony loss. The high mortality rate is further exacerbated by the lack of effective treatment, and therefore understanding the immune and apoptosis responses could pave an avenue for the treatment method. In this study, DWV was directly injected into the white-eyed pupae stage of western honeybees (Apis mellifera). The DWV loads and selected gene responses were monitored using the real-time PCR technique. The results showed that honeybee pupae that were injected with the highest concentration of viral loads showed a significantly higher mortality rate than the control groups. Deformed wings could be observed in newly emerged adult bees when the infected bees harbored high levels of viral loads. However, the numbers of viral loads in both normal and crippled wing groups were not significantly different. DWV-injected honeybee pupae with 104 and 107 copy numbers per bee groups showed similar viral loads after 48 h until newly emerged adult bees. Levels of gene expression including immune genes (defensin, abaecin, and hymenoptaecin) and apoptosis genes (buffy, p53, Apaf1, caspase3-like, caspase8-like, and caspase9-like) were analyzed after DWV infection. The expressions of immune and apoptosis genes were significantly different in infected bees compared to those of the control groups. In the pupae stage, the immune genes were activated by injecting DWV (defensin and hymenoptaecin) or Escherichia coli (defensin, abaecin, and hymenoptaecin), a positive control. On the contrary, the expression of apoptosis-related genes (buffy, caspase3-like, caspase8-like, and caspase9-like genes) was suppressed at 96 h post-infection. In DWV-infected newly emerged adult bees, abaecin, hymenoptaecin, Apaf1, and caspase8-like genes were upregulated. However, these genes were not significantly different between the normal and crippled wing bees. Our results suggested that DWV could activate the humoral immunity in honeybees and that honeybee hosts may be able to protect themselves from the virus infection through immune responses. Apoptosis gene expressions were upregulated in newly emerged adult bees by the virus, however, they were downregulated during the initial phase of viral infection.
Collapse
Affiliation(s)
- Wannapha Mookhploy
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; or
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sasiprapa Krongdang
- Faculty of Science and Social Sciences, Burapha University Sa Kaeo Campus, Sa Kaeo 27160, Thailand; or
| | - Panuwan Chantawannakul
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; or
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
67
|
Viral Vector Vaccines against Bluetongue Virus. Microorganisms 2020; 9:microorganisms9010042. [PMID: 33375723 PMCID: PMC7823852 DOI: 10.3390/microorganisms9010042] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/20/2022] Open
Abstract
Bluetongue virus (BTV), the prototype member of the genus Orbivirus (family Reoviridae), is the causative agent of an important livestock disease, bluetongue (BT), which is transmitted via biting midges of the genus Culicoides. To date, up to 29 serotypes of BTV have been described, which are classified as classical (BTV 1–24) or atypical (serotypes 25–27), and its distribution has been expanding since 1998, with important outbreaks in the Mediterranean Basin and devastating incursions in Northern and Western Europe. Classical vaccine approaches, such as live-attenuated and inactivated vaccines, have been used as prophylactic measures to control BT through the years. However, these vaccine approaches fail to address important matters like vaccine safety profile, effectiveness, induction of a cross-protective immune response among serotypes, and implementation of a DIVA (differentiation of infected from vaccinated animals) strategy. In this context, a wide range of recombinant vaccine prototypes against BTV, ranging from subunit vaccines to recombinant viral vector vaccines, have been investigated. This article offers a comprehensive outline of the live viral vectors used against BTV.
Collapse
|
68
|
White JR, Williams DT, Davies K, Wang J, Chen H, Certoma A, Davis SS, Weir RP, Melville LF, Eagles D. Bluetongue virus serotype 12 enters Australia - a further incursion of novel western lineage genome segments. J Gen Virol 2020; 102. [PMID: 33331813 DOI: 10.1099/jgv.0.001536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Bluetongue virus (BTV) is an arbovirus (genus: Orbivirus) that occurs worldwide. It infects domestic and wild ruminant species and can cause disease in livestock, producing high economic impact. Recently, it gained extra prominence throughout Europe, with disease occurring in regions traditionally free of BTV. BTV enters Australia from Southeast Asia via wind-borne infected Culicoides spp. The first Australian isolation was 1975 (BTV-20) and further serotypes were isolated between 1979-86 (BTV-1, -3, -9, -15, -16, -21, -23). Despite increased, more sensitive, monitoring, no more were detected in over two decades, implying a stable BTV episystem of eastern ancestry. Isolations of BTV-2, -7 and -5 then occurred between 2007-15, with the latter two possessing genome segments with high sequence identity to western isolates. We report on the first isolation and genomic characterization of BTV-12, which revealed that three more novel western topotype gene segments have entered northern Australia.
Collapse
Affiliation(s)
- John R White
- CSIRO Australian Centre for Disease Preparedness (formerly: Australian Animal Health Laboratory), Geelong, Victoria, Australia
| | - David T Williams
- CSIRO Australian Centre for Disease Preparedness (formerly: Australian Animal Health Laboratory), Geelong, Victoria, Australia
| | - Kelly Davies
- CSIRO Australian Centre for Disease Preparedness (formerly: Australian Animal Health Laboratory), Geelong, Victoria, Australia
| | - Jianning Wang
- CSIRO Australian Centre for Disease Preparedness (formerly: Australian Animal Health Laboratory), Geelong, Victoria, Australia
| | - Honglei Chen
- CSIRO Australian Centre for Disease Preparedness (formerly: Australian Animal Health Laboratory), Geelong, Victoria, Australia
| | - Andrea Certoma
- CSIRO Australian Centre for Disease Preparedness (formerly: Australian Animal Health Laboratory), Geelong, Victoria, Australia
| | | | - Richard P Weir
- Berrimah Veterinary Laboratories, Department of Primary Industry and Resources, Northern Territory Government, Berrimah, Northern Territory, Australia
| | - Lorna F Melville
- Berrimah Veterinary Laboratories, Department of Primary Industry and Resources, Northern Territory Government, Berrimah, Northern Territory, Australia
| | - Debbie Eagles
- CSIRO Australian Centre for Disease Preparedness (formerly: Australian Animal Health Laboratory), Geelong, Victoria, Australia
| |
Collapse
|
69
|
Global emergence and evolutionary dynamics of bluetongue virus. Sci Rep 2020; 10:21677. [PMID: 33303862 PMCID: PMC7729867 DOI: 10.1038/s41598-020-78673-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Bluetongue virus (BTV) epidemics are responsible for worldwide economic losses of up to US$ 3 billion. Understanding the global evolutionary epidemiology of BTV is critical in designing intervention programs. Here we employed phylodynamic models to quantify the evolutionary characteristics, spatiotemporal origins, and multi-host transmission dynamics of BTV across the globe. We inferred that goats are the ancestral hosts for BTV but are less likely to be important for cross-species transmission, sheep and cattle continue to be important for the transmission and maintenance of infection between other species. Our models pointed to China and India, countries with the highest population of goats, as the likely ancestral country for BTV emergence and dispersal worldwide over 1000 years ago. However, the increased diversification and dispersal of BTV coincided with the initiation of transcontinental livestock trade after the 1850s. Our analysis uncovered important epidemiological aspects of BTV that may guide future molecular surveillance of BTV.
Collapse
|
70
|
Grace KEF, Papadopoulou C, Floyd T, Avigad R, Collins S, White E, Batten C, Flannery J, Gubbins S, Carpenter ST. Risk-based surveillance for bluetongue virus in cattle on the south coast of England in 2017 and 2018. Vet Rec 2020; 187:e96. [PMID: 32917835 PMCID: PMC7786256 DOI: 10.1136/vr.106016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/01/2020] [Accepted: 07/13/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND Bluetongue (BT) is a viral disease of ruminants and camelids which can have a significant impact on animal health and welfare and cause severe economic loss. The UK has been officially free of bluetongue virus (BTV) since 2011. In 2015, BTV-8 re-emerged in France and since then BTV has been spreading throughout Europe. In response to this outbreak, risk-based active surveillance was carried out at the end of the vector seasons in 2017 and 2018 to assess the risk of incursion of BTV into Great Britain. METHOD Atmospheric dispersion modelling identified counties on the south coast of England at higher risk of an incursion. Blood samples were collected from cattle in five counties based on a sample size designed to detect at least one positive if the prevalence was 5 per cent or greater, with 95 per cent confidence. RESULTS No virus was detected in the 478 samples collected from 32 farms at the end of the 2017 vector season or in the 646 samples collected from 43 farms at the end of the 2018 vector season, when tested by RT-qPCR. CONCLUSION The negative results from this risk-based survey provided evidence to support the continuation of the UK's official BTV-free status.
Collapse
Affiliation(s)
| | | | - Tobias Floyd
- Pathology, Animal and Plant Health Agency, Addlestone, UK
| | - Rachelle Avigad
- Department of Epidemiological Sciences, APHA, Addlestone, UK
| | - Steve Collins
- Information Management and Technology, APHA, Worcester, UK
| | | | - Carrie Batten
- The Non-Vesicular Reference Laboratories, Pirbright Institute, Pirbright, Surrey, UK
| | - John Flannery
- The Non-Vesicular Reference Laboratories, Pirbright Institute, Pirbright, Surrey, UK
| | - Simon Gubbins
- Transmission Biology, The Pirbright Institute, Pirbright, Surrey, UK
| | | |
Collapse
|
71
|
Flannery J, King S, Rajko-Nenow P, Popova Z, Krstevski K, Djadjovski I, Batten C. Re-emergence of BTV serotype 4 in North Macedonia, July 2020. Transbound Emerg Dis 2020; 68:220-223. [PMID: 33108681 DOI: 10.1111/tbed.13900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/15/2020] [Accepted: 10/25/2020] [Indexed: 11/29/2022]
Abstract
Bluetongue virus serotype 4 (BTV-4) was confirmed in sheep in North Macedonia in July 2020. The full genome of this BTV-4 strain (MKD2020/06) was shown to be most closely related (99.74% nt identity) to the Greek GRE2014/08 and the Hungarian HUN1014 strains, indicating the re-emergence of this BTV serotype in the Balkan region since it was last reported in 2017.
Collapse
Affiliation(s)
| | | | | | - Zagorka Popova
- Faculty of Veterinary Medicine, University Ss. Cyril and Methodius, Skopje, Macedonia
| | - Kiril Krstevski
- Faculty of Veterinary Medicine, University Ss. Cyril and Methodius, Skopje, Macedonia
| | - Igor Djadjovski
- Faculty of Veterinary Medicine, University Ss. Cyril and Methodius, Skopje, Macedonia
| | | |
Collapse
|
72
|
Labadie T, Roy P. A non-enveloped arbovirus released in lysosome-derived extracellular vesicles induces super-infection exclusion. PLoS Pathog 2020; 16:e1009015. [PMID: 33075107 PMCID: PMC7595637 DOI: 10.1371/journal.ppat.1009015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/29/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022] Open
Abstract
Recent developments on extracellular vesicles (EVs) containing multiple virus particles challenge the rigid definition of non-enveloped viruses. However, how non-enveloped viruses hijack cell machinery to promote non-lytic release in EVs, and their functional roles, remain to be clarified. Here we used Bluetongue virus (BTV) as a model of a non-enveloped arthropod-borne virus and discovered that the majority of viruses are released in EVs. Based on the cellular proteins detected in these EVs, and use of inhibitors targeting the cellular degradation process, we demonstrated that these extracellular vesicles are derived from secretory lysosomes, in which the acidic pH is neutralized upon the infection. Moreover, we report that secreted EVs are more efficient than free-viruses for initiating infections, but that they trigger super-infection exclusion that only free-viruses can overcome.
Collapse
Affiliation(s)
- Thomas Labadie
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Polly Roy
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| |
Collapse
|
73
|
Putty K, Himaja K, Raju BE, Sandeep S, Sharanya M, Susmitha B, Rao Pp, Narasimha Reddy Y. Type specific seroprevalence of bluetongue virus during 2017-2018 in Andhra Pradesh and Telangana states of India. Trop Anim Health Prod 2020; 52:3907-3910. [PMID: 32940854 DOI: 10.1007/s11250-020-02387-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 09/10/2020] [Indexed: 11/30/2022]
Abstract
Bluetongue (BT) is one of the important viral diseases of domestic and wild ruminants, especially small ruminants such as sheep. Out of the 29 BTV serotypes prevalent in the world, at least 24 of the serotypes are reported in India, either by virus isolation or serology. To better understand the seroprevalence of BTV, we conducted a comprehensive study in the main reservoir hosts of BTV, i.e., cattle and buffaloes of different age groups in Andhra Pradesh and Telangana states of India where the disease is majorly prevalent. A total of 321 blood samples collected from cattle and buffaloes during 2017-2018 were tested for group-specific BTV seroprevalence by c-ELISA, followed by type specific seroprevalence (against BTV-1, 2, 4, 5, 9, 12, 16, and 24) by serum neutralization test. Of the 311 BTV seropositive samples, 112, 98, 102, 127, 2, 113, 160, and 5 samples neutralized BTV-1, 2, 4, 5, 9, 12, 16, and 24, respectively. Twenty-nine samples could not neutralize any of the tested BTV serotypes. Majority of the sera neutralized more than one serotype, up to a maximum of six serotypes. Major finding of the study is detection of BTV serotypes not included in the commercial pentavalent inactivated vaccine. Regular surveillance of circulating serotypes, especially in sentinel reservoir hosts throughout the country can help in designing better multivalent vaccines with suitable vaccine strains, for specific geographic regions.
Collapse
Affiliation(s)
- Kalyani Putty
- Department of Veterinary Microbiology and Biotechnology, PVNR Telangana Veterinary University, Hyderabad, Telangana, India.
| | - Himaja K
- Department of Veterinary Microbiology and Biotechnology, PVNR Telangana Veterinary University, Hyderabad, Telangana, India
| | - Bala Eshwar Raju
- Department of Veterinary Microbiology and Biotechnology, PVNR Telangana Veterinary University, Hyderabad, Telangana, India
| | - Sairam Sandeep
- Department of Veterinary Microbiology and Biotechnology, PVNR Telangana Veterinary University, Hyderabad, Telangana, India
| | - Sharanya M
- Department of Veterinary Microbiology and Biotechnology, PVNR Telangana Veterinary University, Hyderabad, Telangana, India
| | - Susmitha B
- Ella Foundation, Shamirpet, Hyderabad, Telangana, India
| | - Rao Pp
- Biovet, Malur, Karnataka, India
| | - Narasimha Reddy Y
- Department of Veterinary Microbiology and Biotechnology, PVNR Telangana Veterinary University, Hyderabad, Telangana, India
| |
Collapse
|
74
|
Russell BL, Gildenhuys S. Bluetongue virus viral protein 7 stability in the presence of glycerol and sodium chloride. Clin Exp Vaccine Res 2020; 9:108-118. [PMID: 32864367 PMCID: PMC7445327 DOI: 10.7774/cevr.2020.9.2.108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 11/15/2022] Open
Abstract
Purpose The Orbivirus Bluetongue virus (BTV) is an economically significant disease that affects mainly wild and domestic ruminants. BTV is most often seen symptomatically in sheep, but is easily carried by goats, cattle, and wild ruminants. To date there are several problems with the vaccines currently available for BTV, and one of the most promising candidates to increase vaccine efficacy is a protein-based vaccine, for which viral protein 7 (VP7) is a great candidate to be included in it. In order to further these studies, the stability of BTV VP7 in common vaccine additives needs to be investigated. Materials and Methods Recombinant BTV VP7 was expressed in a bacterial cell system and purified before being analysed using spectroscopic techniques including far-ultraviolet (UV) circular dichroism and intrinsic tryptophan fluorescence. BTV was analysed in a number of different buffer conditions. Results We report here that BTV VP7 maintains its native secondary structure until at least 52℃ and native-like tertiary structure to at least 80℃. Far-UV circular dichroism and intrinsic tryptophan fluorescence emission spectra indicate significant secondary and tertiary structure remaining even at 90℃, respectively. Six M guanidinium chloride is able to unfold BTV VP7 while 8 M urea could not. Conclusion Twenty percent glycerol and 300 mM sodium chloride appear to have a protective effect on BTV VP7's structure, as significantly more structure is seen at 90℃ when compared to BTV VP7 without the addition of these chemicals. Both glycerol and sodium chloride are common vaccine additives.
Collapse
Affiliation(s)
- Bonnie Leigh Russell
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida, South Africa
| | - Samantha Gildenhuys
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida, South Africa
| |
Collapse
|
75
|
FIRST REPORT OF ADENOVIRAL HEMORRHAGIC DISEASE IN THREE MULE DEER ( ODOCOILEUS HEMIONUS) IN ARIZONA. J Zoo Wildl Med 2020; 51:232-235. [PMID: 32212569 DOI: 10.1638/2019-0157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2019] [Indexed: 11/21/2022] Open
Abstract
This study presents the gross and histopathological findings of adenoviral hemorrhagic disease (AHD) in two yearling and one adult mule deer (Odocoileus hemionus). These cases represent the first known outbreak of deer adenovirus (Odocoileus adenovirus 1) in Arizona. Over the span of a month, three female captive mule deer were submitted to Midwestern University's Animal Health Institute for postmortem examination. All of these deer were from the same deer farm and historical findings were similar, consisting of acute presentation of hemorrhagic diarrhea and sudden death. Grossly and histopathologically, all cases had severe pulmonary edema and hemorrhagic enteritis. Additionally, two of the three cases had low numbers of large amphophilic intranuclear inclusions expanding endothelial cells within the small intestine and lungs. Viral PCR of pooled small intestine, lung, and spleen from each of the three cases were positive for deer adenovirus and negative for blue tongue and epizootic hemorrhagic disease.
Collapse
|
76
|
Calvo-Pinilla E, Marín-López A, Moreno S, Lorenzo G, Utrilla-Trigo S, Jiménez-Cabello L, Benavides J, Nogales A, Blasco R, Brun A, Ortego J. A protective bivalent vaccine against Rift Valley fever and bluetongue. NPJ Vaccines 2020; 5:70. [PMID: 32793399 PMCID: PMC7393076 DOI: 10.1038/s41541-020-00218-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/06/2020] [Indexed: 11/09/2022] Open
Abstract
Rift Valley fever (RVF) and bluetongue (BT) are two important ruminant diseases transmitted by arthropods. Both viruses have shown important geographic spread leading to endemicity of BT virus (BTV) in Africa and Europe. In this work, we report a dual vaccine that simultaneously induces protective immune responses against BTV and RVFV based on modified vaccinia Ankara virus (MVA) expressing BTV proteins VP2, NS1, or a truncated form of NS1 (NS1-Nt), and RVFV Gn and Gc glycoproteins. IFNAR(-/-) mice immunized with two doses of MVA-GnGc-VP2 developed a significant neutralizing antibody response against BTV-4 and RVFV. Furthermore, the homologous prime-boost immunization with MVA-GnGc-NS1 or MVA-GnGc-NS1-Nt triggered neutralizing antibodies against RVFV and NS1-specific cytotoxic CD8+ T cells in mice. Moreover, all mice immunized with MVA-GnGc-NS1 or MVA-GnGc-NS1-Nt remained healthy after lethal challenge with RVFV or BTV-4. The homologous prime-boost vaccination with MVA-GnGc-NS1, which was the best immunization strategy observed in mice, was assayed in sheep. Clinical signs and viremia were absent or highly reduced in vaccinated sheep after challenge with BTV-4 or RVFV. These results indicate that MVA-GnGc-NS1 vaccination elicits immune protection against RVFV and BTV in sheep.
Collapse
Affiliation(s)
- Eva Calvo-Pinilla
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain
| | - Alejandro Marín-López
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain.,Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT USA
| | - Sandra Moreno
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain
| | - Gema Lorenzo
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain
| | - Sergio Utrilla-Trigo
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain
| | - Luis Jiménez-Cabello
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain
| | - Julio Benavides
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), León, Spain
| | - Aitor Nogales
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain
| | - Rafael Blasco
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Departamento de Biotecnología, Madrid, Spain
| | - Alejandro Brun
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain
| | - Javier Ortego
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), Madrid, Spain
| |
Collapse
|
77
|
Becker ME, Roberts J, Schroeder ME, Gentry G, Foil LD. Prospective Study of Epizootic Hemorrhagic Disease Virus and Bluetongue Virus Transmission in Captive Ruminants. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1277-1285. [PMID: 32083292 DOI: 10.1093/jme/tjaa027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) cause hemorrhagic disease (HD) in wild ruminants and bluetongue disease (BT) and epizootic hemorrhagic disease (EHD) in livestock. These viruses are transmitted by biting midges in the genus Culicoides (family Ceratopogonidae). Mortality from this disease can reach 90% in certain breeds of sheep and in white-tailed deer (Odocoileus virginianus). From January until December of 2012, we conducted a prospective study to determine the origin and routes of transmission of BTV and EHDV in captive deer and cattle. The objective was to determine the abundance of Culicoides spp. and BTV/EHDV infection prevalence in midges, cattle, and deer in an area experiencing an outbreak of BT and EHD. Agar gel immunodiffusion (AGID) tests to detect for EHDV and BTV antibodies were conducted on serum collected from cattle and deer, quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) was utilized for BTV/EHDV RNA detection in tissues from dead deer, and CDC miniature black light traps baited with dry ice were deployed to capture insects. The AGID results showed 19 out of 29 cattle and 18 out of 58 white-tailed deer seroconverted for these viruses during the vector season. Tradition gel-based reverse transcriptase polymerase chain reaction was utilized to determine serotype. Sixteen cows were positive for EHDV-2, EHDV-6, or BTV-12 and 15 deer positive for EHDV-1, EHDV-6, or BTV-12. Specimens from 14 species of Culicoides (Dptera: Ceratopogonidae) (Culicoides arboricola Root and Hoffman, Culicoides biguttatus Coquillett, Culicoides crepuscularis Malloch, Culicoides debilipalpis Lutz, Culicoides furens Poey, Culicoides haematopotus Malloch, Culicoides hinmani Khalaf, Culicoides nanus Root and Hoffman, Culicoides neopulicaris Wirth, Culicoides paraensis Goeldi, Culicoides stellifer Coquillet, Culicoides variipennis Coquillet, Culicoides villosipennis Root and Hoffman, and Culicoides venustus Hoffman) were captured and tested for BTV and EHDV using RT-qPCR assays. BTV viral nucleic acid was detected in three pools from three different species of midges: C. crepuscularis, C. debilipalpis, and C. stellifer.
Collapse
Affiliation(s)
- Michael E Becker
- Department of Entomology, Louisiana State University Agricultural Center, Agricultural Experiment Station, Life Sciences, Baton Rouge, LA
| | - Jonathan Roberts
- Louisiana Department of Agriculture and Forestry, LSU Union Square, Baton Rouge, LA
| | - Megan E Schroeder
- Texas A&M Veterinary Medical Diagnostic Laboratory, College Station, TX
| | - Glen Gentry
- Louisiana State University Agricultural Center, Agricultural Experiment Station, Bob R. Jones Idlewild Research Station, Idlewild Drive, Clinton, LA
| | - Lane D Foil
- Department of Entomology, Louisiana State University Agricultural Center, Agricultural Experiment Station, Life Sciences, Baton Rouge, LA
| |
Collapse
|
78
|
Heterologous Combination of ChAdOx1 and MVA Vectors Expressing Protein NS1 as Vaccination Strategy to Induce Durable and Cross-Protective CD8+ T Cell Immunity to Bluetongue Virus. Vaccines (Basel) 2020; 8:vaccines8030346. [PMID: 32610561 PMCID: PMC7564706 DOI: 10.3390/vaccines8030346] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 12/16/2022] Open
Abstract
The sequence of non-structural protein NS1 of bluetongue virus (BTV), which contains immunodominant CD8+ T cell epitopes, is highly conserved among BTV serotypes, and has therefore become a major tool in the development of a universal BTV vaccine. In this work, we have engineered multiserotype BTV vaccine candidates based on recombinant chimpanzee adenovirus (ChAdOx1) and modified vaccinia virus Ankara (MVA) vectors expressing the NS1 protein of BTV-4 or its truncated form NS1-Nt. A single dose of ChAdOx1-NS1 or ChAdOx1-NS1-Nt induced a moderate CD8+ T cell response and protected IFNAR(-/-) mice against a lethal dose of BTV-4/MOR09, a reassortant strain between BTV-1 and BTV-4, although the animals showed low viremia after infection. Furthermore, IFNAR(-/-) mice immunized with a single dose of ChAdOx1-NS1 were protected after challenge with a lethal dose of BTV-8 in absence of viremia nor clinical signs. Additionally, the heterologous prime-boost ChAdOx1/MVA expressing NS1 or NS1-Nt elicited a robust NS1 specific CD8+ T cell response and protected the animals against BTV-4/MOR09 even 16 weeks after immunization, with undetectable levels of viremia at any time after challenge. Subsequently, the best immunization strategy based on ChAdOx1/MVA-NS1 was assayed in sheep. Non-immunized animals presented fever and viremia levels up to 104 PFU/mL after infection. In contrast, although viremia was detected in immunized sheep, the level of virus in blood was 100 times lower than in non-immunized animals in absence of clinical signs.
Collapse
|
79
|
Veronesi E, Darpel K, Gubbins S, Batten C, Nomikou K, Mertens P, Carpenter S. Diversity of Transmission Outcomes Following Co-Infection of Sheep with Strains of Bluetongue Virus Serotype 1 and 8. Microorganisms 2020; 8:microorganisms8060851. [PMID: 32516979 PMCID: PMC7356686 DOI: 10.3390/microorganisms8060851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 01/03/2023] Open
Abstract
Bluetongue virus (BTV) causes an economically important disease, bluetongue (BT), in susceptible ruminants and is transmitted primarily by species of Culicoides biting midges (Diptera: Ceratopogonidae). Since 2006, northern Europe has experienced multiple incursions of BTV through a variety of routes of entry, including major outbreaks of strains of BTV serotype 8 (BTV-8) and BTV serotype 1 (BTV-1), which overlapped in distribution within southern Europe. In this paper, we examined the variation in response to coinfection with strains of BTV-1 and BTV-8 using an in vivo transmission model involving Culicoides sonorensis, low passage virus strains, and sheep sourced in the United Kingdom. In the study, four sheep were simultaneously infected using BTV-8 and BTV-1 intrathoracically inoculated C. sonorensis and co-infections of all sheep with both strains were established. However, there were significant variations in both the initiation and peak levels of virus RNA detected throughout the experiment, as well as in the infection rates in the C. sonorensis that were blood-fed on experimentally infected sheep at peak viremia. This is discussed in relation to the potential for reassortment between these strains in the field and the policy implications for detection of BTV strains.
Collapse
Affiliation(s)
- Eva Veronesi
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK; (K.D.); (S.G.); (C.B.); (K.N.); (P.M.)
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse Faculty, 8057 Zurich, Switzerland
- Correspondence: (E.V.); (S.C.)
| | - Karin Darpel
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK; (K.D.); (S.G.); (C.B.); (K.N.); (P.M.)
| | - Simon Gubbins
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK; (K.D.); (S.G.); (C.B.); (K.N.); (P.M.)
| | - Carrie Batten
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK; (K.D.); (S.G.); (C.B.); (K.N.); (P.M.)
| | - Kyriaki Nomikou
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK; (K.D.); (S.G.); (C.B.); (K.N.); (P.M.)
- University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD, UK
| | - Peter Mertens
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK; (K.D.); (S.G.); (C.B.); (K.N.); (P.M.)
- University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD, UK
| | - Simon Carpenter
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK; (K.D.); (S.G.); (C.B.); (K.N.); (P.M.)
- Correspondence: (E.V.); (S.C.)
| |
Collapse
|
80
|
Bray D, Isberg E, Hillbur Y, Ignell R. Influence of light and kairomone baiting systems on trap collections of biting midges in southern Sweden. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2020; 45:45-56. [PMID: 32492275 DOI: 10.1111/jvec.12372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/03/2020] [Indexed: 06/11/2023]
Abstract
Effective surveillance is essential for protecting livestock from Culicoides biting midges and the viruses they transmit. The objective of this study was to determine how the baiting system used in traps (UV, incandescent light, incandescent light with CO2 , and incandescent light with CO2 and 1-octen-3-ol) influences estimates of midge population abundance, parity, and diel activity. This was achieved through a standardized trapping protocol conducted in three habitats in Sweden. UV light traps caught the most Culicoides species and more C. obsoletus complex females than incandescent light traps. Traps baited with CO2 plus 1-octen-3-ol caught more female C. impunctatus than incandescent light traps. No consistent effect of bait type was found on C. obsoletus parity rate, as estimated from the proportion of midges with presence or absence of pigmentation. Midge activity, as reflected by trap catches, peaked between -3 h and +3 h relative to sunset, with UV traps catching significantly more female C. obsoletus complex and C. impunctatus at and after sunset than before sunset. We conclude that baiting system can influence biting midge collections, even using identical traps. Effective surveillance may require more than one bait type and kairomones to attract species that do not feed exclusively on cattle.
Collapse
Affiliation(s)
- Daniel Bray
- Swedish University of Agricultural Sciences, Department of Plant Protection Biology, Unit of Chemical Ecology, Box 102, 230 53, Alnarp, Sweden
- Agriculture, Health and Environment Department, Natural Resources Institute, University of Greenwich, Kent, ME4 4TB, UK
| | - Elin Isberg
- Swedish University of Agricultural Sciences, Department of Plant Protection Biology, Unit of Chemical Ecology, Box 102, 230 53, Alnarp, Sweden
| | - Ylva Hillbur
- Swedish University of Agricultural Sciences, Department of Plant Protection Biology, Unit of Chemical Ecology, Box 102, 230 53, Alnarp, Sweden
| | - Rickard Ignell
- Swedish University of Agricultural Sciences, Department of Plant Protection Biology, Unit of Chemical Ecology, Box 102, 230 53, Alnarp, Sweden
| |
Collapse
|
81
|
Yao X, Fan Q, Yao B, Lu P, Rahman SU, Chen D, Tao S. Codon Usage Bias Analysis of Bluetongue Virus Causing Livestock Infection. Front Microbiol 2020; 11:655. [PMID: 32508755 PMCID: PMC7248248 DOI: 10.3389/fmicb.2020.00655] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/23/2020] [Indexed: 12/22/2022] Open
Abstract
Bluetongue virus (BTV) is a double-stranded RNA virus with multiple segments and belongs to the genus Orbivirus within the family Reoviridae. BTV is spread to livestock through its dominant vector, biting midges of genus Culicoides. Although great progress has been made in genomic analyses, it is not fully understood how BTVs adapt to their hosts and evade the host's immune systems. In this study, we retrieved BTV genome sequences from the National Center for Biotechnology Information (NCBI) database and performed a comprehensive research to explore the codon usage patterns in 50 BTV strains. We used bioinformatic approaches to calculate the relative synonymous codon usage (RSCU), codon adaptation index (CAI), effective number of codons (ENC), and other indices. The results indicated that most of the overpreferred codons had A-endings, which revealed that mutational pressure was the major force shaping codon usage patterns in BTV. However, the influence of natural selection and geographical factors cannot be ignored on viral codon usage bias. Based on the RSCU values, we performed a comparative analysis between BTVs and their hosts, suggesting that BTVs were inclined to evolve their codon usage patterns that were comparable to those of their hosts. Such findings will be conducive to understanding the elements that contribute to viral evolution and adaptation to hosts.
Collapse
Affiliation(s)
- Xiaoting Yao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qinlei Fan
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Bo Yao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Ping Lu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Siddiq Ur Rahman
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China.,Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Pakistan
| | - Dekun Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Shiheng Tao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
82
|
Ries C, Beer M, Hoffmann B. BlueTYPE - A low density TaqMan-RT-qPCR array for the identification of all 24 classical Bluetongue virus serotypes. J Virol Methods 2020; 282:113881. [PMID: 32413478 DOI: 10.1016/j.jviromet.2020.113881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/21/2020] [Accepted: 05/05/2020] [Indexed: 01/21/2023]
Abstract
Bluetongue virus is a double-stranded RNA virus with 10 genome segments. VP2 is the primary target for neutralising antibodies and defines the serotype. Today, more than 27 serotypes are known, 24 are defined as "classical", and new serotypes are under investigation. Beside group-specific BTV-genome detection, additional serotype characterisation is important for disease control and epidemiological investigations. Therefore, a low-density RT-qPCR array representing a panel of group- and serotype-specific assays, was combined with an internal control system. For BTV serotype detection, both published and the newly developed in-house PCR systems were combined. The different primer-probe-mixes were placed in advance into a 96-well plate stored at -20 °C until use. At the time of analysis, the only template RNA was added to the prepared primer-probe-mixes and heat denatured at 95 °C for 3 min. After cooling, the master mix was added to each well and the PCR could run for around 90 min. The presented low-density TaqMan-RT-qPCR array enables fast and precise characterisation of the BTV serotype in clinical cases. Furthermore, mixed infections can be easily identified. In addition, the newly developed low-density RT-qPCR-array can easily be adapted to novel BTV strain variants or extended for relevant differential diagnosis.
Collapse
Affiliation(s)
- Christina Ries
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17943 Greifswald, Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17943 Greifswald, Insel Riems, Germany
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17943 Greifswald, Insel Riems, Germany.
| |
Collapse
|
83
|
Qin S, Lin J, Li L, Zhang Y, Xiao L, Cao Y, Ren P, Li H, Wu J. Seroprevalence and Potential Risk Factors of Bluetongue Virus Infection in Domestic Cattle and Goats in Guangxi Province, Southern China. Vector Borne Zoonotic Dis 2020; 20:551-556. [PMID: 32343911 DOI: 10.1089/vbz.2019.2543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bluetongue is one of the most important vector-borne viral diseases that can lead to significant economic losses as a result of reduction of productivity and even death in some susceptible ruminants. However, epidemiological information on bluetongue virus (BTV) infection in cattle and goats is scarce in China. To determine the seropositive rate and risk factors of BTV infection in cattle and goats in Guangxi province, a subtropical region in Southern China, a total of 548 cattle serum samples and 6567 goat serum samples collected from 13 cities across Guangxi province during 2003-2015 were analyzed and found that the seroprevalence is 44.5% (244/548) in cattle and 28.0% (1837/6567) in goats and the main BTV serotypes are BTV-1, -2, -4, and -8. Climatic zone, age, and species are found to be the likely risk factors for BTV infection. To our knowledge, this is the first large-scale serological survey for BTV infection in domestic cattle and goats in Guangxi province, Southern China.
Collapse
Affiliation(s)
- Shaomin Qin
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Jun Lin
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Le Li
- Yunnan Tropical and Subtropical Animal Virus Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Jindian, Kunming, China
| | - Yixuan Zhang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Lei Xiao
- Yunnan Tropical and Subtropical Animal Virus Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Jindian, Kunming, China
| | - Yingying Cao
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Pengfei Ren
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Huachun Li
- Yunnan Tropical and Subtropical Animal Virus Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Jindian, Kunming, China
| | - Jianmin Wu
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| |
Collapse
|
84
|
Mayo C, McDermott E, Kopanke J, Stenglein M, Lee J, Mathiason C, Carpenter M, Reed K, Perkins TA. Ecological Dynamics Impacting Bluetongue Virus Transmission in North America. Front Vet Sci 2020; 7:186. [PMID: 32426376 PMCID: PMC7212442 DOI: 10.3389/fvets.2020.00186] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Bluetongue virus (BTV) is an arbovirus transmitted to domestic and wild ruminants by certain species of Culicoides midges. The disease resulting from infection with BTV is economically important and can influence international trade and movement of livestock, the economics of livestock production, and animal welfare. Recent changes in the epidemiology of Culicoides-transmitted viruses, notably the emergence of exotic BTV genotypes in Europe, have demonstrated the devastating economic consequences of BTV epizootics and the complex nature of transmission across host-vector landscapes. Incursions of novel BTV serotypes into historically enzootic countries or regions, including the southeastern United States (US), Israel, Australia, and South America, have also occurred, suggesting diverse pathways for the transmission of these viruses. The abundance of BTV strains and multiple reassortant viruses circulating in Europe and the US in recent years demonstrates considerable genetic diversity of BTV strains and implies a history of reassortment events within the respective regions. While a great deal of emphasis is rightly placed on understanding the epidemiology and emergence of BTV beyond its natural ecosystem, the ecological contexts in which BTV maintains an enzootic cycle may also be of great significance. This review focuses on describing our current knowledge of ecological factors driving BTV transmission in North America. Information presented in this review can help inform future studies that may elucidate factors that are relevant to longstanding and emerging challenges associated with prevention of this disease.
Collapse
Affiliation(s)
- Christie Mayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Emily McDermott
- Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Jennifer Kopanke
- Office of the Campus Veterinarian, Washington State University, Spokane, WA, United States
| | - Mark Stenglein
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Justin Lee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Candace Mathiason
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Molly Carpenter
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Kirsten Reed
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - T. Alex Perkins
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
85
|
Pascall DJ, Nomikou K, Bréard E, Zientara S, Filipe ADS, Hoffmann B, Jacquot M, Singer JB, De Clercq K, Bøtner A, Sailleau C, Viarouge C, Batten C, Puggioni G, Ligios C, Savini G, van Rijn PA, Mertens PPC, Biek R, Palmarini M. "Frozen evolution" of an RNA virus suggests accidental release as a potential cause of arbovirus re-emergence. PLoS Biol 2020; 18:e3000673. [PMID: 32343693 PMCID: PMC7188197 DOI: 10.1371/journal.pbio.3000673] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
The mechanisms underlying virus emergence are rarely well understood, making the appearance of outbreaks largely unpredictable. Bluetongue virus serotype 8 (BTV-8), an arthropod-borne virus of ruminants, emerged in livestock in northern Europe in 2006, spreading to most European countries by 2009 and causing losses of billions of euros. Although the outbreak was successfully controlled through vaccination by early 2010, puzzlingly, a closely related BTV-8 strain re-emerged in France in 2015, triggering a second outbreak that is still ongoing. The origin of this virus and the mechanisms underlying its re-emergence are unknown. Here, we performed phylogenetic analyses of 164 whole BTV-8 genomes sampled throughout the two outbreaks. We demonstrate consistent clock-like virus evolution during both epizootics but found negligible evolutionary change between them. We estimate that the ancestor of the second outbreak dates from the height of the first outbreak in 2008. This implies that the virus had not been replicating for multiple years prior to its re-emergence in 2015. Given the absence of any known natural mechanism that could explain BTV-8 persistence over this long period without replication, we hypothesise that the second outbreak could have been initiated by accidental exposure of livestock to frozen material contaminated with virus from approximately 2008. Our work highlights new targets for pathogen surveillance programmes in livestock and illustrates the power of genomic epidemiology to identify pathways of infectious disease emergence.
Collapse
Affiliation(s)
- David J. Pascall
- Institute of Biodiversity, Animal Health and Comparative Medicine, Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, United Kingdom
| | - Kyriaki Nomikou
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- The School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, United Kingdom
| | - Emmanuel Bréard
- UMR Virologie, INRA, École Nationale Vétérinaire d’Alfort, Laboratoire de Santé Animale d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Stephan Zientara
- UMR Virologie, INRA, École Nationale Vétérinaire d’Alfort, Laboratoire de Santé Animale d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Ana da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Maude Jacquot
- Spatial Epidemiology Lab (SpELL), University of Brussels, Brussels, Belgium
- INRAE-VetAgro Sup, UMR Epidemiology of Animal and Zoonotic Diseases, Saint Genès-Champanelle, France
| | - Joshua B. Singer
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Kris De Clercq
- Infectious Diseases in Animals, Exotic and Particular Diseases, Sciensano, Brussels, Belgium
| | - Anette Bøtner
- Section for Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Corinne Sailleau
- UMR Virologie, INRA, École Nationale Vétérinaire d’Alfort, Laboratoire de Santé Animale d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Cyril Viarouge
- UMR Virologie, INRA, École Nationale Vétérinaire d’Alfort, Laboratoire de Santé Animale d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Carrie Batten
- The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | - Giantonella Puggioni
- Istituto Zooprofilattico Sperimentale della Sardegna, Via Duca degli Abruzzi, Sassari, Italy
| | - Ciriaco Ligios
- Istituto Zooprofilattico Sperimentale della Sardegna, Via Duca degli Abruzzi, Sassari, Italy
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise (IZSAM), Teramo, Italy
| | - Piet A. van Rijn
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands
- Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Peter P. C. Mertens
- The School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, United Kingdom
- The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine, Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, United Kingdom
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
86
|
Golender N, Bumbarov V, Eldar A, Lorusso A, Kenigswald G, Varsano JS, David D, Schainin S, Dagoni I, Gur I, Kaplan A, Gorohov A, Koren O, Oron E, Khinich Y, Sclamovich I, Meir A, Savini G. Bluetongue Serotype 3 in Israel 2013-2018: Clinical Manifestations of the Disease and Molecular Characterization of Israeli Strains. Front Vet Sci 2020; 7:112. [PMID: 32211429 PMCID: PMC7068852 DOI: 10.3389/fvets.2020.00112] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/13/2020] [Indexed: 11/13/2022] Open
Abstract
In this paper, the results of the diagnostic activities on Bluetongue virus serotype 3 (BTV-3) conducted at Kimron Veterinary Institute (Beit Dagan, Israel) between 2013 and 2018 are reported. Bluetongue virus is the causative agent of bluetongue (BT), a disease of ruminants, mostly transmitted by competent Culicoides species. In Israel, BTV-3 circulation was first detected in 2013 from a sheep showing classical BT clinical signs. It was also evidenced in 2016, and, since then, it has been regularly detected in Israeli livestock. Between 2013 and 2017, BTV-3 outbreaks were limited in sheep flocks located in the southern area only. In 2018, BTV-3 was instead found in the Israeli coastal area being one of the dominant BTV serotypes isolated from symptomatic sheep, cattle and goats. In Israeli sheep, BTV-3 was able to cause BT classical clinical manifestations and fatalities, while in cattle and goats infection ranged from asymptomatic forms to death cases, depending on either general welfare of the herds or on the occurrence of viral and bacterial co-infections. Three different BTV-3 strains were identified in Israel between 2013 and 2018: ISR-2019/13 isolated in 2013, ISR-2153/16 and ISR-2262/2/16 isolated in 2016. Sequencing and phylogenetic analysis of these strains showed more than 99% identity by segment (Seg) 2, 5, 6, 7, and 8 sequences. In contrast, a wide range of diversity among these strains was exhibited in other viral gene segments, implying the occurrence of genome reassortment between these local circulating strains and those originating from Africa. The genome sequences of the BTV-3 isolated in 2017 and 2018 were most closely related to those of the ISR-2153/16 strain suggesting their common ancestor. Comparison of BTV-3 Israeli strains with those recently detected in the Mediterranean region uncovered high percentage identity (98.19–98.28%) only between Seg-2 of all Israeli strains and the BTV-3 Zarzis/TUN2016 strain. A 98.93% identity was also observed between Seg-4 sequences of ISR-2019/13 and the BTV-3 Zarzis/TUN2016 strain. This study demonstrated that BTV-3 has been circulating in the Mediterranean region at least since 2013, but, unlike the other Mediterranean strains, Israeli BTV-3 were able to cause clinical signs also in cattle.
Collapse
Affiliation(s)
- Natalia Golender
- Department of Virology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Velizar Bumbarov
- Department of Virology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Avi Eldar
- Department of Virology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Alessio Lorusso
- OIE Reference Laboratory for Bluetongue, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise (IZSAM), Campo Boario, Teramo, Italy
| | | | | | - Dan David
- Department of Virology, Kimron Veterinary Institute, Bet Dagan, Israel
| | | | - Ilan Dagoni
- Hachaklait Veterinary Services, Caesarea, Israel
| | - Iosef Gur
- Hachaklait Veterinary Services, Caesarea, Israel
| | - Alon Kaplan
- Hachaklait Veterinary Services, Caesarea, Israel
| | - Anna Gorohov
- Department of Virology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Ori Koren
- Hachaklait Veterinary Services, Caesarea, Israel
| | - Eldad Oron
- Hachaklait Veterinary Services, Caesarea, Israel
| | - Yevgeny Khinich
- Department of Virology, Kimron Veterinary Institute, Bet Dagan, Israel
| | | | - Abraham Meir
- Hachaklait Veterinary Services, Caesarea, Israel
| | - Giovanni Savini
- OIE Reference Laboratory for Bluetongue, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise (IZSAM), Campo Boario, Teramo, Italy
| |
Collapse
|
87
|
Rajko-Nenow P, Golender N, Bumbarov V, Brown H, Frost L, Darpel K, Tennakoon C, Flannery J, Batten C. Complete Coding Sequence of a Novel Bluetongue Virus Isolated from a Commercial Sheeppox Vaccine. Microbiol Resour Announc 2020; 9:e01539-19. [PMID: 32139561 PMCID: PMC7171223 DOI: 10.1128/mra.01539-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/11/2020] [Indexed: 11/20/2022] Open
Abstract
The full genome sequences of two isolates of bluetongue virus (BTV) from a commercial sheeppox vaccine were determined. Strain SPvvvv/02 shows low sequence identity to its closest relative, strain BTV-26 KUW2010/02, indicating the probable detection of a novel BTV genotype, whereas strain SPvvvv/03 shows high sequence identity to strain BTV-28/1537/14.
Collapse
Affiliation(s)
| | - Natalia Golender
- Department of Virology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Velizar Bumbarov
- Department of Virology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Hannah Brown
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Lorraine Frost
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Karin Darpel
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | | | - John Flannery
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Carrie Batten
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| |
Collapse
|
88
|
Alternative methods to reduce the animal use in quality controls of inactivated BTV8 Bluetongue vaccines. Prev Vet Med 2020; 176:104923. [PMID: 32066029 DOI: 10.1016/j.prevetmed.2020.104923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/17/2020] [Accepted: 02/05/2020] [Indexed: 11/22/2022]
Abstract
The acceptance of serology data instead of challenge for market release of new batches of commercial vaccine is under evaluation by regulatory agencies in order to reduce the use of animals and costs for manufacturers. In this study two vaccines for Bluetongue virus serotype 8 were submitted to quality controls required by the European Pharmacopoeia and tested on sheep in comparison with a commercial inactivated vaccine. Body temperature, antibody titres and viraemia of vaccinated and controls sheep were recorded. In addition IL4 and IFNγ in sera and supernatant derived from in vitro stimulation of blood cells were also quantified using two commercial ELISA kit. The outer-capsid protein VP2 contained in vaccine formulations was quantified using a home-made capture-ELISA. Results obtained indicates that in-lab evaluation of cell-mediated and humoral immune response are useful parameters to predict the efficacy of BTV inactivated vaccines avoiding the challenge phase required to release new batches of vaccines with proven clinical efficacy and safety. The correlation observed between serology data and VP2 protein concentration of final product could be useful in-process control to predict if a new vaccine batch of BTV must be discarded or released to the market.
Collapse
|
89
|
Virological, immunological and pathological findings of transplacentally transmitted bluetongue virus serotype 1 in IFNAR1-blocked mice during early and mid gestation. Sci Rep 2020; 10:2164. [PMID: 32034180 PMCID: PMC7005837 DOI: 10.1038/s41598-020-58268-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/05/2019] [Indexed: 01/08/2023] Open
Abstract
Transplacental transmission (TPT) of wild-type Indian BTV-1 had never been experimentally proved. This study was first time investigated TPT of Indian BTV-1 (isolated from aborted and stillborn goat fetal spleens). The sequential pathology, virological and immune cell kinetics (CD4+, CD8+ T-lymphocytes and NK cells in spleen and PBMCs), and apoptosis in IFNAR1-blocked pregnant mice during early (infected on 1 GD) and mid (infected on 8 GD) gestation have been studied. There was higher rate of TPT during mid stage (71.43%) than early (57.14%) stage. In early stage reduced implantation sites, early embryonic deaths, abortions, and necro-haemorrhagic lesions had observed. Mid stage, congenital defects and neurological lesions in foetuses like haemorrhages, diffuse cerebral edema, necrotizing encephalitis and decreased bone size (Alizarin red staining) were noticed. BTV-1 antigen was first time demonstrable in cells of mesometrium, decidua of embryos, placenta, uterus, ovary, and brain of foetuses by immunohistochemistry and quantified by real-time qRT-PCR. BTV-inoculated mice were seroconverted by 7 and 5 dpi, and reached peak levels by 15 and 9 dpi in early and mid gestation, respectively. CD4+ and CD8+ cells were significantly decreased (increased ratio) on 7 dpi but subsequently increased on 15 dpi in early gestation. In mid gestation, increased CD8+ cells (decreased ratio) were observed. Apoptotic cells in PBMCs and tissues increased during peak viral load. This first time TPT of wild-type Indian BTV-1 deserves to be reported for implementation of control strategies. This model will be very suitable for further research into mechanisms of TPT, overwintering, and vaccination strategies.
Collapse
|
90
|
Rajko-Nenow P, Christodoulou V, Thurston W, Ropiak HM, Savva S, Brown H, Qureshi M, Alvanitopoulos K, Gubbins S, Flannery J, Batten C. Origin of Bluetongue Virus Serotype 8 Outbreak in Cyprus, September 2016. Viruses 2020; 12:E96. [PMID: 31947695 PMCID: PMC7019704 DOI: 10.3390/v12010096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022] Open
Abstract
In September 2016, clinical signs, indicative of bluetongue, were observed in sheep in Cyprus. Bluetongue virus serotype 8 (BTV-8) was detected in sheep, indicating the first incursion of this serotype into Cyprus. Following virus propagation, Nextera XT DNA libraries were sequenced on the MiSeq instrument. Full-genome sequences were obtained for five isolates CYP2016/01-05 and the percent of nucleotide sequence (% nt) identity between them ranged from 99.92% to 99.95%, which corresponded to a few (2-5) amino acid changes. Based on the complete coding sequence, the Israeli ISR2008/13 (98.42-98.45%) was recognised as the closest relative to CYP2016/01-05. However, the phylogenetic reconstruction of CYP2016/01-05 revealed that the possibility of reassortment in several segments: 4, 7, 9 and 10. Based on the available sequencing data, the incursion BTV-8 into Cyprus most likely occurred from the neighbouring countries (e.g., Israel, Lebanon, Syria, or Jordan), where multiple BTV serotypes were co-circulating rather than from Europe (e.g., France) where a single BTV-8 serotype was dominant. Supporting this hypothesis, atmospheric dispersion modelling identified wind-transport events during July-September that could have allowed the introduction of BTV-8 infected midges from Lebanon, Syria or Israel coastlines into the Larnaca region of Cyprus.
Collapse
Affiliation(s)
- Paulina Rajko-Nenow
- Pirbright Institute, Woking, Surrey GU24 0NF, UK (H.B.); (M.Q.); (S.G.); (J.F.); (C.B.)
| | | | | | - Honorata M. Ropiak
- Pirbright Institute, Woking, Surrey GU24 0NF, UK (H.B.); (M.Q.); (S.G.); (J.F.); (C.B.)
| | - Savvas Savva
- Veterinary Services of Cyprus, Nicosia 1417, Cyprus; (V.C.); (S.S.); (K.A.)
| | - Hannah Brown
- Pirbright Institute, Woking, Surrey GU24 0NF, UK (H.B.); (M.Q.); (S.G.); (J.F.); (C.B.)
| | - Mehnaz Qureshi
- Pirbright Institute, Woking, Surrey GU24 0NF, UK (H.B.); (M.Q.); (S.G.); (J.F.); (C.B.)
| | | | - Simon Gubbins
- Pirbright Institute, Woking, Surrey GU24 0NF, UK (H.B.); (M.Q.); (S.G.); (J.F.); (C.B.)
| | - John Flannery
- Pirbright Institute, Woking, Surrey GU24 0NF, UK (H.B.); (M.Q.); (S.G.); (J.F.); (C.B.)
| | - Carrie Batten
- Pirbright Institute, Woking, Surrey GU24 0NF, UK (H.B.); (M.Q.); (S.G.); (J.F.); (C.B.)
| |
Collapse
|
91
|
Teffera M, Babiuk S. Potential of Using Capripoxvirus Vectored Vaccines Against Arboviruses in Sheep, Goats, and Cattle. Front Vet Sci 2019; 6:450. [PMID: 31921911 PMCID: PMC6932975 DOI: 10.3389/fvets.2019.00450] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/27/2019] [Indexed: 11/26/2022] Open
Abstract
The genus capripoxvirus consists of sheeppox virus, goatpox virus, and lumpy skin disease virus, which affect sheep, goats, and cattle, respectively. Together capripoxviruses cause significant economic losses to the sheep, goat, and cattle industry where these diseases are present. These diseases have spread into previously free bordering regions most recently demonstrated with the spread of lumpy skin disease virus into the Middle East, some Eastern European countries, and Russia. This recent spread has highlighted the transboundary nature of these diseases. To control lumpy skin disease virus, live attenuated viral vaccines are used in endemic countries as well as in response to an outbreak. For sheeppox and goatpox, live attenuated viral vaccines are used in endemic countries; these diseases can also be contained through slaughter of infected animals to stamp out the disease. The thermostability, narrow host range, and ability of capripoxviruses to express a wide variety of antigens make capripoxviruses ideal vectors. The ability to immunize animals against multiple diseases simultaneously increases vaccination efficiency by decreasing the number of vaccinations required. Additionally, the use of capripoxvirus vectored vaccines allows the possibility of differentiating infected from vaccinated animals. Arboviruses such as bluetongue virus and Rift Valley fever viruses are also responsible for significant economic losses in endemic countries. In the case of Rift Valley fever virus, vaccination is not routinely practiced unless there is an outbreak making vaccination not as effective, therefore, incorporating Rift Valley fever vaccination into routine capripoxvirus vaccination would be highly beneficial. This review will discuss the potential of using capripoxvirus as a vector expressing protective arboviral antigens.
Collapse
Affiliation(s)
- Mahder Teffera
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Shawn Babiuk
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
92
|
Avia M, Rojas JM, Miorin L, Pascual E, Van Rijn PA, Martín V, García‐Sastre A, Sevilla N. Virus-induced autophagic degradation of STAT2 as a mechanism for interferon signaling blockade. EMBO Rep 2019; 20:e48766. [PMID: 31603272 PMCID: PMC6831997 DOI: 10.15252/embr.201948766] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/27/2019] [Accepted: 09/09/2019] [Indexed: 12/31/2022] Open
Abstract
The mammalian interferon (IFN) signaling pathway is a primary component of the innate antiviral response, and viral pathogens have evolved multiple mechanisms to antagonize this pathway and to facilitate infection. Bluetongue virus (BTV), an orbivirus of the Reoviridae family, is transmitted by midges to ruminants and causes a disease that produces important economic losses and restriction to animal trade and is of compulsory notification to the World Organization for Animal Health (OIE). Here, we show that BTV interferes with IFN-I and IFN-II responses in two ways, by blocking STAT1 phosphorylation and by degrading STAT2. BTV-NS3 protein, which is involved in virion egress, interacts with STAT2, and induces its degradation by an autophagy-dependent mechanism. This STAT2 degradative process requires the recruitment of an E3-Ub-ligase to NS3 as well as NS3 K63 polyubiquitination. Taken together, our study identifies a new mechanism by which a virus degrades STAT2 for IFN signaling blockade, highlighting the diversity of mechanisms employed by viruses to subvert the IFN response.
Collapse
Affiliation(s)
- Miguel Avia
- Centro de Investigación en Sanidad Animal (CISA‐INIA)Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaValdeolmos, MadridSpain
| | - José M Rojas
- Centro de Investigación en Sanidad Animal (CISA‐INIA)Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaValdeolmos, MadridSpain
| | - Lisa Miorin
- Department of MicrobiologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Global Health and Emerging Pathogens InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Elena Pascual
- Centro de Investigación en Sanidad Animal (CISA‐INIA)Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaValdeolmos, MadridSpain
| | - Piet A Van Rijn
- Department of VirologyWageningen Bioveterinary ResearchLelystadThe Netherlands
- Department of BiochemistryCentre for Human MetabolomicsLelystadThe Netherlands
- North‐West UniversityPotchefstroomSouth Africa
| | - Verónica Martín
- Centro de Investigación en Sanidad Animal (CISA‐INIA)Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaValdeolmos, MadridSpain
| | - Adolfo García‐Sastre
- Department of MicrobiologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Global Health and Emerging Pathogens InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Division of Infectious DiseasesDepartment of MedicineIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Noemí Sevilla
- Centro de Investigación en Sanidad Animal (CISA‐INIA)Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaValdeolmos, MadridSpain
| |
Collapse
|
93
|
Yang JL, Yen LHC, Yen WCW, Wang FI. A SUBCLINICAL BLUETONGUE VIRUS INFECTION IN RUMINANTS WITH THREE UNIQUE AMINO ACID VARIATIONS ON VP7 CORE PROTEIN OF TAIWAN ISOLATES. ACTA ACUST UNITED AC 2019. [DOI: 10.1142/s168264851950001x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bluetongue is an arthropod-borne disease in domestic and wild ruminants caused by bluetongue virus (BTV), and it leads to great economic loss worldwide. Previous studies showed that BTV in ruminants in Taiwan was often subclinical infection. The aim of this study was to determine the current status (years 2016–2017) of BTV infection in ruminants in Taiwan, to compare it to the results of a large-scale study conducted in the year 2003, and to investigate whether new viral strains exist. Competitive ELISA tests of serum samples for anti-BTV-VP7 group-specific antibody revealed seropositive rates of 26.7% in cattle by head, similar to 32.7% in the year 2003, suggestive of a BTV-vector-host (cattle) dynamic balance. In goats, the seropositive rate was 18.6%, slightly increased from 8.2% in the year 2003, suggestive of a slow but active infection taking place. This notion was supported by the detection of VP1 gene nucleic acid from whole blood in six out of 29 seropositive goats by reverse transcription–polymerase chain reaction. However, no new virus strain was isolated from embryonating chicken embryos (ECEs) inoculation. Alignment of VP7 amino acid sequences revealed that Taiwan and Japan isolates possessed three specific amino acids on sites No. 82 (arginine), No. 328 (aspartate), and No. 336 (glutamine), which are different from many countries. In a three-dimensional model, these amino acids were located closely on the middle lateral surface of VP7 trimers. Since VP7 is a major outer protein engaged in entry into insect cells and a strong T cell response inducer, these differences likely indicate the result of positive selection of local vectors and hosts in Taiwan.
Collapse
Affiliation(s)
- Jia-Ling Yang
- School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, R. O. C
| | - Lenny Hao-Che Yen
- School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, R. O. C
| | - Well Chia-Wei Yen
- School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, R. O. C
| | - Fun-In Wang
- School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, R. O. C
| |
Collapse
|
94
|
Reliable and Standardized Animal Models to Study the Pathogenesis of Bluetongue and Schmallenberg Viruses in Ruminant Natural Host Species with Special Emphasis on Placental Crossing. Viruses 2019; 11:v11080753. [PMID: 31443153 PMCID: PMC6722754 DOI: 10.3390/v11080753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/19/2019] [Accepted: 08/13/2019] [Indexed: 01/03/2023] Open
Abstract
Starting in 2006, bluetongue virus serotype 8 (BTV8) was responsible for a major epizootic in Western and Northern Europe. The magnitude and spread of the disease were surprisingly high and the control of BTV improved significantly with the marketing of BTV8 inactivated vaccines in 2008. During late summer of 2011, a first cluster of reduced milk yield, fever, and diarrhoea was reported in the Netherlands. Congenital malformations appeared in March 2012 and Schmallenberg virus (SBV) was identified, becoming one of the very few orthobunyaviruses distributed in Europe. At the start of both epizootics, little was known about the pathogenesis and epidemiology of these viruses in the European context and most assumptions were extrapolated based on other related viruses and/or other regions of the World. Standardized and repeatable models potentially mimicking clinical signs observed in the field are required to study the pathogenesis of these infections, and to clarify their ability to cross the placental barrier. This review presents some of the latest experimental designs for infectious disease challenges with BTV or SBV. Infectious doses, routes of infection, inoculum preparation, and origin are discussed. Particular emphasis is given to the placental crossing associated with these two viruses.
Collapse
|
95
|
Kundlacz C, Pourcelot M, Fablet A, Amaral Da Silva Moraes R, Léger T, Morlet B, Viarouge C, Sailleau C, Turpaud M, Gorlier A, Breard E, Lecollinet S, van Rijn PA, Zientara S, Vitour D, Caignard G. Novel Function of Bluetongue Virus NS3 Protein in Regulation of the MAPK/ERK Signaling Pathway. J Virol 2019; 93:e00336-19. [PMID: 31167915 PMCID: PMC6675888 DOI: 10.1128/jvi.00336-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/22/2019] [Indexed: 12/22/2022] Open
Abstract
Bluetongue virus (BTV) is an arbovirus transmitted by blood-feeding midges to a wide range of wild and domestic ruminants. In this report, we showed that BTV, through its nonstructural protein NS3 (BTV-NS3), is able to activate the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway, as assessed by phosphorylation levels of ERK1/2 and the translation initiation factor eukaryotic translation initiation factor 4E (eIF4E). By combining immunoprecipitation of BTV-NS3 and mass spectrometry analysis from both BTV-infected and NS3-transfected cells, we identified the serine/threonine-protein kinase B-Raf (BRAF), a crucial player in the MAPK/ERK pathway, as a new cellular interactor of BTV-NS3. BRAF silencing led to a significant decrease in the MAPK/ERK activation by BTV, supporting a model wherein BTV-NS3 interacts with BRAF to activate this signaling cascade. This positive regulation acts independently of the role of BTV-NS3 in counteracting the induction of the alpha/beta interferon response. Furthermore, the intrinsic ability of BTV-NS3 to bind BRAF and activate the MAPK/ERK pathway is conserved throughout multiple serotypes/strains but appears to be specific to BTV compared to other members of Orbivirus genus. Inhibition of MAPK/ERK pathway with U0126 reduced viral titers, suggesting that BTV manipulates this pathway for its own replication. Altogether, our data provide molecular mechanisms that unravel a new essential function of NS3 during BTV infection.IMPORTANCE Bluetongue virus (BTV) is responsible of the arthropod-borne disease bluetongue (BT) transmitted to ruminants by blood-feeding midges. In this report, we found that BTV, through its nonstructural protein NS3 (BTV-NS3), interacts with BRAF, a key component of the MAPK/ERK pathway. In response to growth factors, this pathway promotes cell survival and increases protein translation. We showed that BTV-NS3 enhances the MAPK/ERK pathway, and this activation is BRAF dependent. Treatment of MAPK/ERK pathway with the pharmacologic inhibitor U0126 impairs viral replication, suggesting that BTV manipulates this pathway for its own benefit. Our results illustrate, at the molecular level, how a single virulence factor has evolved to target a cellular function to increase its viral replication.
Collapse
Affiliation(s)
- Cindy Kundlacz
- UMR Virologie, INRA, École Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Marie Pourcelot
- UMR Virologie, INRA, École Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Aurore Fablet
- UMR Virologie, INRA, École Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | | | - Thibaut Léger
- Mass Spectrometry and Proteomics Facility, Jacques Monod Institute, UMR 7592, Paris Diderot University, CNRS, Paris Cedex 13, France
| | - Bastien Morlet
- Mass Spectrometry and Proteomics Facility, Jacques Monod Institute, UMR 7592, Paris Diderot University, CNRS, Paris Cedex 13, France
| | - Cyril Viarouge
- UMR Virologie, INRA, École Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Corinne Sailleau
- UMR Virologie, INRA, École Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Mathilde Turpaud
- UMR Virologie, INRA, École Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Axel Gorlier
- UMR Virologie, INRA, École Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Emmanuel Breard
- UMR Virologie, INRA, École Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Sylvie Lecollinet
- UMR Virologie, INRA, École Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Piet A van Rijn
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Stephan Zientara
- UMR Virologie, INRA, École Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Damien Vitour
- UMR Virologie, INRA, École Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Grégory Caignard
- UMR Virologie, INRA, École Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| |
Collapse
|
96
|
Jacquot M, Rao PP, Yadav S, Nomikou K, Maan S, Jyothi YK, Reddy N, Putty K, Hemadri D, Singh KP, Maan NS, Hegde NR, Mertens P, Biek R. Contrasting selective patterns across the segmented genome of bluetongue virus in a global reassortment hotspot. Virus Evol 2019; 5:vez027. [PMID: 31392031 PMCID: PMC6680063 DOI: 10.1093/ve/vez027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
For segmented viruses, rapid genomic and phenotypic changes can occur through the process of reassortment, whereby co-infecting strains exchange entire segments creating novel progeny virus genotypes. However, for many viruses with segmented genomes, this process and its effect on transmission dynamics remain poorly understood. Here, we assessed the consequences of reassortment for selection on viral diversity through time using bluetongue virus (BTV), a segmented arbovirus that is the causative agent of a major disease of ruminants. We analysed ninety-two BTV genomes isolated across four decades from India, where BTV diversity, and thus opportunities for reassortment, are among the highest in the world. Our results point to frequent reassortment and segment turnover, some of which appear to be driven by selective sweeps and serial hitchhiking. Particularly, we found evidence for a recent selective sweep affecting segment 5 and its encoded NS1 protein that has allowed a single variant to essentially invade the full range of BTV genomic backgrounds and serotypes currently circulating in India. In contrast, diversifying selection was found to play an important role in maintaining genetic diversity in genes encoding outer surface proteins involved in virus interactions (VP2 and VP5, encoded by segments 2 and 6, respectively). Our results support the role of reassortment in driving rapid phenotypic change in segmented viruses and generate testable hypotheses for in vitro experiments aiming at understanding the specific mechanisms underlying differences in fitness and selection across viral genomes.
Collapse
Affiliation(s)
- Maude Jacquot
- Institute of Biodiversity, Animal Health and Comparative Medicine, Boyd Orr Centre for Population and Ecosystem Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Pavuluri P Rao
- Ella Foundation, Genome Valley Hyderabad, Hyderabad, Telangana, India
| | - Sarita Yadav
- The Pirbright Institute, Pirbright, Woking, Surrey, UK
| | - Kyriaki Nomikou
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Sushila Maan
- College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Y Krishna Jyothi
- Veterinary Biological and Research Institute, Vijayawada, Andhra Pradesh, India
| | - Narasimha Reddy
- PVNR Telangana Veterinary University, Hyderabad, Telangana, India
| | - Kalyani Putty
- PVNR Telangana Veterinary University, Hyderabad, Telangana, India
| | - Divakar Hemadri
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, India
| | - Karam P Singh
- Centre for Animal Disease Research and Diagnosis, Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Narender Singh Maan
- College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Nagendra R Hegde
- Ella Foundation, Genome Valley Hyderabad, Hyderabad, Telangana, India
| | - Peter Mertens
- The Pirbright Institute, Pirbright, Woking, Surrey, UK.,The School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, UK
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine, Boyd Orr Centre for Population and Ecosystem Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
97
|
Hwang JM, Kim JG, Yeh JY. Serological evidence of bluetongue virus infection and serotype distribution in dairy cattle in South Korea. BMC Vet Res 2019; 15:255. [PMID: 31337392 PMCID: PMC6651986 DOI: 10.1186/s12917-019-2000-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 07/11/2019] [Indexed: 11/10/2022] Open
Abstract
Background Bluetongue is a vector-borne viral disease, and bluetongue virus (BTV) outbreaks can cause substantial economic losses. Even subclinical infection may carry significant associated costs, including a loss of condition, reduced milk yield, and infertility and abortion, and indirect costs, largely due to the export restrictions and surveillance requirements imposed to limit the spread of the virus. However, the BTV epidemiology in the Far East remains incompletely understood, especially in the cattle population in South Korea. In this study, the seroprevalence of BTV antibodies and distribution of BTV serotypes in dairy cattle in South Korea were evaluated to improve the understanding of the BTV epidemiological situation in the Asia-Pacific region. Results Between 2012 and 2013, a total of 37 out of 171 dairy cattle herds (21.6%) and 85 out of 466 dairy cattle heads (18.2%) showed antibodies against BTV. Neutralizing antibodies to BTV-1, − 2, − 3, − 4, − 7, − 15, and − 16 serotypes were identified, and the RNAs of the BTV-1, − 2, − 3, − 15, and − 16 serotypes were detected, indicating that BTV was circulating in the dairy cattle population in South Korea. Conclusions These findings indicate that BTV is widespread and has circulated in dairy cattle in South Korea. This is the first report presenting evidence of circulating antibodies against BTV and the serotype distribution in bovine populations in South Korea.
Collapse
Affiliation(s)
- Jeong-Min Hwang
- Veterinary Research Center, Green Cross Veterinary Products Co., Ltd, Kugal-dong 227-5, Giheung-gu, Yongin-si, Gyeonggi-do, 17066, South Korea
| | - Jae Geun Kim
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-ro 119, Yeonsu-gu, Incheon, 22012, South Korea
| | - Jung-Yong Yeh
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-ro 119, Yeonsu-gu, Incheon, 22012, South Korea. .,Emerging & Exotic Diseases Research Laboratory, Foreign Animal Diseases Division, National Veterinary Research and Quarantine Service, Anyang-ro 175, Manan-gu, Anyang-si, Gyeonggi-do, 14089, South Korea.
| |
Collapse
|
98
|
Bluetongue Virus in France: An Illustration of the European and Mediterranean Context since the 2000s. Viruses 2019; 11:v11070672. [PMID: 31340459 PMCID: PMC6669443 DOI: 10.3390/v11070672] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/05/2019] [Accepted: 07/19/2019] [Indexed: 01/24/2023] Open
Abstract
Bluetongue (BT) is a non-contagious animal disease transmitted by midges of the Culicoides genus. The etiological agent is the BT virus (BTV) that induces a variety of clinical signs in wild or domestic ruminants. BT is included in the notifiable diseases list of the World Organization for Animal Health (OIE) due to its health impact on domestic ruminants. A total of 27 BTV serotypes have been described and additional serotypes have recently been identified. Since the 2000s, the distribution of BTV has changed in Europe and in the Mediterranean Basin, with continuous BTV incursions involving various BTV serotypes and strains. These BTV strains, depending on their origin, have emerged and spread through various routes in the Mediterranean Basin and/or in Europe. Consequently, control measures have been put in place in France to eradicate the virus or circumscribe its spread. These measures mainly consist of assessing virus movements and the vaccination of domestic ruminants. Many vaccination campaigns were first carried out in Europe using attenuated vaccines and, in a second period, using exclusively inactivated vaccines. This review focuses on the history of the various BTV strain incursions in France since the 2000s, describing strain characteristics, their origins, and the different routes of spread in Europe and/or in the Mediterranean Basin. The control measures implemented to address this disease are also discussed. Finally, we explain the circumstances leading to the change in the BTV status of France from BTV-free in 2000 to an enzootic status since 2018.
Collapse
|
99
|
Emergence of a Novel Reassortant Strain of Bluetongue Serotype 6 in Israel, 2017: Clinical Manifestations of the Disease and Molecular Characterization. Viruses 2019; 11:v11070633. [PMID: 31295819 PMCID: PMC6669665 DOI: 10.3390/v11070633] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 12/19/2022] Open
Abstract
Reassortment contributes to the evolution of RNA viruses with segmented genomes, including Bluetongue virus (BTV). Recently, co-circulation of natural and vaccine BTV variants in Europe, and their ensuing reassortment, were proposed to promote appearance of novel European BTV strains, with potential implications for pathogenicity, spread and vaccination policies. Similarly, the geographical features of the Mediterranean basin, which spans over portions of three continents, may facilitate the appearance of clinically relevant reassortants via co-circulation of BTV strains of African, Asian and European origins. In August–October 2017, BTV serotype 6 (BTV-6) was identified in young animals exhibiting classical clinical signs of Bluetongue (BT) at Israeli sheep and cattle farms. Sequencing and pairwise analysis of this Israeli BTV-6 isolate revealed the closest sequence homology of its serotype-defining Segment 2 was with that of South African reference BTV-6 strain 5011 (93.88% identity). In contrast, the other viral segments showed highest homology (97.0%–99.47% identity) with BTV-3, -4 and -9 of Mediterranean and African origins. Specifically, four viral segments were nearly identical (99.13%–99.47%), with Tunisian and Italian BTV-3 strains (TUN2016 and SAD2018, correspondingly). Together, our data suggest that Mediterranean co-circulation and reassortment of BTV-3 and BTV-6 drove the emergence of a novel and virulent BTV-6 strain
Collapse
|
100
|
Replication kinetics and cellular tropism of emerging reoviruses in sheep and swine respiratory ex vivo organ cultures. Vet Microbiol 2019; 234:119-127. [PMID: 31213267 DOI: 10.1016/j.vetmic.2019.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/23/2019] [Accepted: 06/03/2019] [Indexed: 01/06/2023]
Abstract
Ex vivo organ cultures (EVOCs) are extensively used to study the cellular tropism and infectivity of different pathogens. In this study, we used ovine and porcine respiratory EVOCs to investigate the replication kinetics and cellular tropism of selected emerging reoviruses namely Pteropine orthoreovirus, an emerging bat-borne zoonotic respiratory virus, and atypical Bluetongue virus (BTV) serotypes which, unlike classical serotypes, do not cause Bluetongue, a major OIE-listed disease of ruminants. BTV failed to replicate in ovine EVOCs. Instead, PRV showed slight replication in porcine lower respiratory EVOCs and a more sustained replication in all ovine respiratory tissues. By confocal laser scanning microscopy, PRV was demonstrated to infect bronchiolar and type I pneumocytes of ovine tissues. Overall, respiratory EVOCs from different animal species, eventually obtained at slaughterhouse, are a useful tool for testing and preliminarily characterize novel and emerging viruses addressing the essential in vivo animal work. Further experiments are, indeed, warranted in order to characterize the pathogenesis and transmission of these emerging reoviruses.
Collapse
|