51
|
Fortunato IM, dos Santos TW, Ferraz LFC, Santos JC, Ribeiro ML. Effect of Polyphenols Intake on Obesity-Induced Maternal Programming. Nutrients 2021; 13:nu13072390. [PMID: 34371900 PMCID: PMC8308680 DOI: 10.3390/nu13072390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 12/12/2022] Open
Abstract
Excess caloric intake and body fat accumulation lead to obesity, a complex chronic disease that represents a significant public health problem due to the health-related risk factors. There is growing evidence showing that maternal obesity can program the offspring, which influences neonatal phenotype and predispose offspring to metabolic disorders such as obesity. This increased risk may also be epigenetically transmitted across generations. Thus, there is an imperative need to find effective reprogramming approaches in order to resume normal fetal development. Polyphenols are bioactive compounds found in vegetables and fruits that exert its anti-obesity effect through its powerful anti-oxidant and anti-inflammatory activities. Polyphenol supplementation has been proven to counteract the prejudicial effects of maternal obesity programming on progeny. Indeed, some polyphenols can cross the placenta and protect the fetal predisposition against obesity. The present review summarizes the effects of dietary polyphenols on obesity-induced maternal reprogramming as an offspring anti-obesity approach.
Collapse
Affiliation(s)
- Isabela Monique Fortunato
- Post Graduate Program in Health Science, Universidade São Francisco (USF), Bragança Paulista 12916-900, SP, Brazil; (I.M.F.); (T.W.d.S.); (L.F.C.F.)
| | - Tanila Wood dos Santos
- Post Graduate Program in Health Science, Universidade São Francisco (USF), Bragança Paulista 12916-900, SP, Brazil; (I.M.F.); (T.W.d.S.); (L.F.C.F.)
| | - Lucio Fábio Caldas Ferraz
- Post Graduate Program in Health Science, Universidade São Francisco (USF), Bragança Paulista 12916-900, SP, Brazil; (I.M.F.); (T.W.d.S.); (L.F.C.F.)
| | - Juliana Carvalho Santos
- Lymphoma Translational Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Spain
- Correspondence: (J.C.S.); (M.L.R.)
| | - Marcelo Lima Ribeiro
- Post Graduate Program in Health Science, Universidade São Francisco (USF), Bragança Paulista 12916-900, SP, Brazil; (I.M.F.); (T.W.d.S.); (L.F.C.F.)
- Correspondence: (J.C.S.); (M.L.R.)
| |
Collapse
|
52
|
The Effect of Simulated In Vitro Digestion on Biological Activity of Viburnum opulus Fruit Juices. Molecules 2021; 26:molecules26134086. [PMID: 34279426 PMCID: PMC8271880 DOI: 10.3390/molecules26134086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 11/17/2022] Open
Abstract
In the present study, an in vitro digestion method has been used to assay the influence of the physiological conditions in the mouth, stomach, and intestine on the stability and activity in different cell models of the main phenolic compounds from Viburnum opulus fresh juice (FJ), phenolic-rich juice (PJ), and the bioavailable fractions (DFJ and DPJ). The data obtained indicate that the V. opulus samples achieved after in vitro digestion had an influence on cellular glucose and lipid metabolism. The bioavailable fraction of both digested juices stimulated glucose uptake and decreased lipid accumulation by L6 myoblasts and HepG2 hepatocytes. Both DFJ and DPJ reduced the secretion of inflammatory cytokines by 3T3-L1 adipocytes: interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Simultaneously, DFJ and DPJ enhanced oxidative stress in MIN6 cells and decreased glucose-stimulated insulin secretion (GSIS). UPLC-MS analysis revealed qualitative and quantitative changes in hydroxycinnamic acids. In particular, the content of chlorogenic acid decreased drastically; its content in the bioavailable fraction was almost 7 times and 30 times lower than in the FJ and PJ, respectively. Our results suggested that although the phenolic compounds of V. opulus juices undergo transformation during digestion, they are still potent antioxidant agents with biological activity.
Collapse
|
53
|
Jang D, Jung YS, Seong H, Kim MS, Rha CS, Nam TG, Han NS, Kim DO. Stability of Enzyme-Modified Flavonoid C- and O-Glycosides from Common Buckwheat Sprout Extracts during In Vitro Digestion and Colonic Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5764-5773. [PMID: 33973775 DOI: 10.1021/acs.jafc.1c00542] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Common buckwheat sprout (CBS) contains more flavone C-glycosides (FCGs) and flavonol O-glycosides (FOGs) than does common buckwheat seed. Both flavonoids in CBS are well known for providing benefits to human health. However, they are relatively less bioaccessible and more directly degradable to aglycone during digestion than are multiglycosylated flavonoids. To overcome such limitations, the water solubility and digestion stability of FCGs and FOGs were enhanced by transglycosylation using cyclodextrin glycosyltransferase. Gastric conditions had little effect on the stability of FCGs and FOGs and their enzyme-modified compounds. In contrast, under intestinal conditions, transglycosylated FCGs lost a glucose moiety and reverted to their parent compounds before transglycosylation. Under colonic fermentation using human fecal samples, the different profiles and concentrations of short-chain fatty acids were suggested to be mainly due to the presence of transglycosylated FCGs and FOGs. These findings indicate that the process of transglycosylation changes the bioaccessibility of flavonoids in CBS.
Collapse
Affiliation(s)
- Davin Jang
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Young Sung Jung
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hyunbin Seong
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Mi-Seon Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Chan-Su Rha
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Tae Gyu Nam
- Major of Food Science and Biotechnology, Division of Bio-convergence, Kyonggi University, Suwon 16227, Republic of Korea
| | - Nam Soo Han
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Dae-Ok Kim
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
54
|
Guo CE, Cui Q, Cheng J, Chen J, Zhao Z, Guo R, Dai X, Wei Z, Li W. Probiotic-fermented Chinese dwarf cherry [Cerasus humilis (Bge.) Sok.] juice modulates the intestinal mucosal barrier and increases the abundance of Akkermansia in the gut in association with polyphenols. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104424] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
55
|
Mashitoa FM, Akinola SA, Manhevi VE, Garcia C, Remize F, Slabbert RM, Sivakumar D. Influence of Fermentation of Pasteurised Papaya Puree with Different Lactic Acid Bacterial Strains on Quality and Bioaccessibility of Phenolic Compounds during In Vitro Digestion. Foods 2021; 10:foods10050962. [PMID: 33924943 PMCID: PMC8145966 DOI: 10.3390/foods10050962] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/25/2021] [Accepted: 04/25/2021] [Indexed: 12/23/2022] Open
Abstract
This study describes the impact of utilising different strains of lactic acid bacteria (LAB) for the fermentation of papaya puree and their effect on the quality parameters and bioaccessibility of phenolic compounds during simulated in vitro gastrointestinal digestion. Papaya was processed into puree; pasteurised and fermented at 37 °C for 2 days; and stored for 7 days at 4 °C using LAB strains Lactiplantibacillus plantarum 75 (L75*D2; L75*D7), Weissella cibaria64 (W64*D2; W64*D7) and Leuconostoc pseudomesenteroides 56 (L56*D2; L56*D7), respectively. Non-fermented samples at 0 (PPD0), 2 (PPD2) and 7 days (PPD7) served as controls. pH was reduced with fermentation and was lowest in L56*D2 (3.03) and L75*D2 (3.16) after storage. The colour change (ΔE) increased with the fermentation and storage of purees; L75*D7 showed the highest ΔE (13.8), and its sourness reduced with storage. The fermentation by W64*D7 and L75*D7 increased the % recovery of chlorogenic, vanillic, syringic, ellagic, ferulic acids, catechin, epicatechin and quercetin in the intestinal fraction compared to the L56*D7 and PPD7. Fermentation by W64*D7 and L75*D7 significantly improved the antioxidant capacity of the dialysed fraction compared to the L56*D7 or PPD7. L56*D7-fermented papaya puree showed the highest inhibitory effect of α-glucosidase activity followed by L75*D7. L75*D7 had a significantly higher survival rate. LAB fermentation affected the bioacessibilities of phenolics and was strain dependent. This study recommends the use of Lpb. plantarum 75 for fermenting papaya puree.
Collapse
Affiliation(s)
- Florence M. Mashitoa
- Department of Horticulture, Tshwane University of Technology, Pretoria West 0001, South Africa; (F.M.M.); (R.M.S.)
| | - Stephen A. Akinola
- Phytochemical Food Network Group, Department of Crop Sciences, Pretoria West 0001, South Africa; (S.A.A.); (V.E.M.)
| | - Vimbainashe E. Manhevi
- Phytochemical Food Network Group, Department of Crop Sciences, Pretoria West 0001, South Africa; (S.A.A.); (V.E.M.)
| | - Cyrielle Garcia
- Qualisud, Univ Montpellier, Univ de La Réunion, CIRAD, Institut Agro, Avignon Université, F-34398 Montpellier, France; (C.G.); (F.R.)
| | - Fabienne Remize
- Qualisud, Univ Montpellier, Univ de La Réunion, CIRAD, Institut Agro, Avignon Université, F-34398 Montpellier, France; (C.G.); (F.R.)
| | - Retha. M. Slabbert
- Department of Horticulture, Tshwane University of Technology, Pretoria West 0001, South Africa; (F.M.M.); (R.M.S.)
| | - Dharini Sivakumar
- Phytochemical Food Network Group, Department of Crop Sciences, Pretoria West 0001, South Africa; (S.A.A.); (V.E.M.)
- Correspondence:
| |
Collapse
|
56
|
Lucas-González R, Pérez-Álvarez JÁ, Viuda-Martos M, Fernández-López J. Pork Liver Pâté Enriched with Persimmon Coproducts: Effect of In Vitro Gastrointestinal Digestion on Its Fatty Acid and Polyphenol Profile Stability. Nutrients 2021; 13:nu13041332. [PMID: 33920571 PMCID: PMC8073653 DOI: 10.3390/nu13041332] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/30/2022] Open
Abstract
Agrofood coproducts are used to enrich meat products to reduce harmful compounds and contribute to fiber and polyphenol enrichment. Pork liver pâtés with added persimmon coproducts (3 and 6%; PR-3 and PR-6, respectively) were developed. Therefore, the aim was to study the effect of their in vitro gastrointestinal digestion on: the free and bound polyphenol profile (HPLC) and their colon-available index; the lipid oxidation (TBARs); and the stability of the fatty acid profile (GC). Furthermore, the effect of lipolysis was investigated using two pancreatins with different lipase activity. Forty-two polyphenols were detected in persimmon flour, which were revealed as a good source of bound polyphenols in pâtés, especially gallic acid (164.3 µg/g d.w. in PR-3 and 631.8 µg/g d.w. in PR-6). After gastrointestinal digestion, the colon-available index in enriched pâté ranged from 88.73 to 195.78%. The different lipase activity in the intestinal phase caused significant differences in bound polyphenols' stability, contributing to increased lipid oxidation. The fatty acids profile in pâté samples was stable, and surprisingly their PUFA content was raised. In conclusion, rich fatty foods, such as pâté, are excellent vehicles to preserve bound polyphenols, which can reach the colon intact and be metabolized by the intestinal microbiome.
Collapse
|
57
|
Dong R, Liu S, Xie J, Chen Y, Zheng Y, Zhang X, Zhao E, Wang Z, Xu H, Yu Q. The recovery, catabolism and potential bioactivity of polyphenols from carrot subjected to in vitro simulated digestion and colonic fermentation. Food Res Int 2021; 143:110263. [PMID: 33992364 DOI: 10.1016/j.foodres.2021.110263] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 12/13/2022]
Abstract
Carrot powder digestion was researched utilizing an in vitro standardized static model associated with an in vitro colonic fermentation method to analyze the recovery, catabolism, and potential bioactivity of polyphenols from carrot. Twenty-seven polyphenols and their metabolites (hydroxybenzoic acids, hydroxycinnamic acids and its derivatives, etc.) were identified in samples before and after digestion/colonic fermentation, and the possible colonic pathways for major polyphenols were proposed. Polyphenols had low recovery during different phases of in vitro digestion (oral: -51.4%; gastric: -38%; intestinal: -35.3%, respectively). However, the concentration of polyphenols (p-hydroxybenzoic acid, gallic acid and protocatechuic acid) increased significantly after colonic fermentation for 12 h with 1391.7% recovery, then significantly declined after 48 h. Meanwhile, the released and catabolized polyphenols showed antioxidant activity and α-glucosidase inhibitory capacity (IC50 = 9.91 μg GAE/mL). The microbe community structure was regulated by fecal fermented carrot powder through improving relative abundance (RA) of beneficial microbiota and suppressed RA of various harmful bacteria. This work indicated that polyphenols from carrot potentially play a role in gastrointestinal and colonic health.
Collapse
Affiliation(s)
- Ruihong Dong
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Shuai Liu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yuting Zheng
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xingjie Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - En Zhao
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Zipei Wang
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Hongyan Xu
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
58
|
Acevedo-Fani A, Ochoa-Grimaldo A, Loveday SM, Singh H. Digestive dynamics of yoghurt structure impacting the release and bioaccessibility of the flavonoid rutin. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106215] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
59
|
Ketnawa S, Reginio FC, Thuengtung S, Ogawa Y. Changes in bioactive compounds and antioxidant activity of plant-based foods by gastrointestinal digestion: a review. Crit Rev Food Sci Nutr 2021; 62:4684-4705. [PMID: 33511849 DOI: 10.1080/10408398.2021.1878100] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Phenolic compounds, omnipresent in plants, are a crucial part of the human diet and are of considerable interest due to their antioxidant properties and other potential beneficial health effects, for instance, antidiabetic, antihypertensive, anti-inflammatory, and anticancer properties. The consumption of a variety of plant-based foods containing various phenolic compounds has increased due to published scientific verification of several health benefits. The release of phenolic compounds and change in their bioactivities examined through in vitro simulated gastrointestinal digestion could provide information on the biological potency of bioactive components, which will allow us to elucidate their metabolic pathways and bioactivities at target sites. This review reports on the recent research results focused on changes during the gastro and/or intestinal phase. The effect of digestive enzymes and digestive pH conditions during simulated digestion accounted for the variations in bioaccessibility and bioavailability of phenolic antioxidants as well as the corresponding antioxidant activities were also summarized and presented in the review.
Collapse
Affiliation(s)
- Sunantha Ketnawa
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Florencio Collado Reginio
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan.,Institute of Food Science and Technology, College of Agriculture and Food Science, University of the Philippines Los Baños, Laguna, Philippines
| | - Sukanya Thuengtung
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Yukiharu Ogawa
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| |
Collapse
|
60
|
Marinea M, Ellis A, Golding M, Loveday SM. Soy Protein Pressed Gels: Gelation Mechanism Affects the In Vitro Proteolysis and Bioaccessibility of Added Phenolic Acids. Foods 2021; 10:foods10010154. [PMID: 33450925 PMCID: PMC7828434 DOI: 10.3390/foods10010154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 01/10/2023] Open
Abstract
In this study, a model system of firm tofu (pressed gel) was prepared to study how the coagulation mechanism-acidification with glucono δ-lactone (GDL) or coagulation with magnesium sulphate (MgSO4)-affected the physical properties of the gels along with their in vitro proteolysis (or extent of proteolysis). The two types of gels were also fortified with 3.5 mM protocatechuic (PCA) and coumaric acid (CMA) to test whether they can be used as bioactive delivery systems. Texture analysis showed that all MgSO4-induced gels (fortified and control) had a higher hydration capacity and a weaker texture than the GDL-induced gels (p < 0.05). MgSO4 gels had almost double proteolysis percentages throughout the in vitro digestion and showed a significantly higher amino acid bioaccessibility than the GDL gels (essential amino acid bioaccessibility of 56% versus 31%; p < 0.05). Lastly, both gel matrices showed a similar phenolic acid release profile, on a percentage basis (~80% for PCA and ~100% for CMA). However, GDL gels delivered significantly higher masses of bioactives under simulated intestinal conditions because they could retain more of the bioactives in the gel after pressing. It was concluded that the coagulation mechanism affects both the macro- and microstructure of the soy protein pressed gels and as a result their protein digestibility. Both pressed gel matrices are promising delivery systems for bioactive phenolic acids.
Collapse
Affiliation(s)
- Marina Marinea
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (A.E.); (M.G.); (S.M.L.)
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand
- Correspondence:
| | - Ashling Ellis
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (A.E.); (M.G.); (S.M.L.)
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand
| | - Matt Golding
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (A.E.); (M.G.); (S.M.L.)
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand
| | - Simon M. Loveday
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (A.E.); (M.G.); (S.M.L.)
- Food and Bio-Based Products Group, AgResearch Limited, Palmerston North 4442, New Zealand
| |
Collapse
|
61
|
Huang S, Liu H, Yan S, Chen D, Mei X. Changes in phenolic composition and bioactivity of raw and pickled cowpea (<i>Vigna unguiculata</i> L. Walp.) green pod after <i>in vitro</i> simulated gastrointestinal digestion. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Shirong Huang
- Department of Biological and Food Engineering, College of Chemical Engineering, Xiangtan University
| | - Huan Liu
- Department of Biological and Food Engineering, College of Chemical Engineering, Xiangtan University
| | - Sinian Yan
- Department of Biological and Food Engineering, College of Chemical Engineering, Xiangtan University
| | - Dongfang Chen
- Department of Biological and Food Engineering, College of Chemical Engineering, Xiangtan University
| | - Xin Mei
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science
| |
Collapse
|
62
|
Xie X, Chen C, Fu X. Study on the bioaccessibility of phenolic compounds and bioactivities of passion fruit juices from different regions in vitro digestion. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xing Xie
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Guangzhou Institute of Modern Industrial Technology Nansha China
| | - Chun Chen
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Guangzhou Institute of Modern Industrial Technology Nansha China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety Guangzhou China
| | - Xiong Fu
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Guangzhou Institute of Modern Industrial Technology Nansha China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou China
| |
Collapse
|
63
|
Zhu L, Li W, Deng Z, Li H, Zhang B. The Composition and Antioxidant Activity of Bound Phenolics in Three Legumes, and Their Metabolism and Bioaccessibility of Gastrointestinal Tract. Foods 2020; 9:E1816. [PMID: 33297502 PMCID: PMC7762431 DOI: 10.3390/foods9121816] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022] Open
Abstract
The composition and antioxidant activity of bound phenolics in three legumes (soybean, vicia faba, and kidney bean), and their metabolism and bioaccessibility in the gastrointestinal tract were investigated in this study. The total phenolic content, total flavonoid content, and antioxidant activities (ABTS and FRAP) were evaluated. The phytochemical compositions of the three legumes after acid/alkaline hydrolysis, simulated gastrointestinal digestion, and colonic fermentation were identified and quantified by UPLC-ESI-QTOF-MS/MS and HPLC-ESI-QqQ-MS/MS. The results showed that the three legumes were rich in bound phenolic compounds, and possessed a strong antioxidant activity; among which kidney bean showed a higher bound flavonoid content and antioxidant activity than the other two legumes. Alkaline hydrolysis allowed a more thorough extraction of the bound phenolics of the three legumes than acid hydrolysis. The released contents of bound phenolics were extremely low in in vitro digestion, whereas colonic fermentation favored the release of more phenolic compounds. Kidney bean, which presented the highest bound flavonoid content and antioxidant activity, had the lowest bioaccessibility. Our study provides a wider insight into the constituents and bioavailability of bound phenolic compounds in the three legumes.
Collapse
Affiliation(s)
- Liuying Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China; (L.Z.); (W.L.); (Z.D.); (H.L.)
| | - Wenting Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China; (L.Z.); (W.L.); (Z.D.); (H.L.)
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China; (L.Z.); (W.L.); (Z.D.); (H.L.)
- Institute for Advanced Study, University of Nanchang, Nanchang 330031, Jiangxi, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China; (L.Z.); (W.L.); (Z.D.); (H.L.)
- Institute for Advanced Study, University of Nanchang, Nanchang 330031, Jiangxi, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China; (L.Z.); (W.L.); (Z.D.); (H.L.)
| |
Collapse
|
64
|
Wang J, Chen Y, Hu X, Feng F, Cai L, Chen F. Assessing the Effects of Ginger Extract on Polyphenol Profiles and the Subsequent Impact on the Fecal Microbiota by Simulating Digestion and Fermentation In Vitro. Nutrients 2020; 12:E3194. [PMID: 33086593 PMCID: PMC7650818 DOI: 10.3390/nu12103194] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
The beneficial effects of ginger polyphenols have been extensively reported. However, their metabolic characteristics and health effects on gut microbiota are poor understood. The purpose of this study was to investigate the digestion stability of ginger polyphenols and their prebiotic effects on gut microbiota by simulating digestion and fermentation in vitro. Following simulated digestion in vitro, 85% of the polyphenols were still detectable, and the main polyphenol constituents identified in ginger extract are 6-, 8-, and 10-gingerols and 6-shogaol in the digestive fluids. After batch fermentation, the changes in microbial populations were measured by 16S rRNA gene Illumina MiSeq sequencing. In mixed-culture fermentation with fecal inoculate, digested ginger extract (GE) significantly modulated the fecal microbiota structure and promoted the growth of some beneficial bacterial populations, such as Bifidobacterium and Enterococcus. Furthermore, incubation with GE could elevate the levels of short-chain fatty acids (SCFAs) accompanied by a decrease in the pH value. Additionally, the quantitative PCR results showed that 6-gingerol (6G), as the main polyphenol in GE, increased the abundance of Bifidobacterium significantly. Therefore, 6G is expected to be a potential prebiotic that improves human health by promoting gut health.
Collapse
Affiliation(s)
- Jing Wang
- Ningbo Research Institute, Zhejiang University, Ningbo 310027, China; (J.W.); (F.F.); (L.C.)
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310027, China;
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 310027, China
| | - Yong Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310027, China;
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Fengqin Feng
- Ningbo Research Institute, Zhejiang University, Ningbo 310027, China; (J.W.); (F.F.); (L.C.)
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310027, China;
| | - Luyun Cai
- Ningbo Research Institute, Zhejiang University, Ningbo 310027, China; (J.W.); (F.F.); (L.C.)
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310027, China;
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 310027, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| |
Collapse
|
65
|
Garzón AG, Van de Velde F, Drago SR. Gastrointestinal and colonic in vitro bioaccessibility of γ-aminobutiric acid (GABA) and phenolic compounds from novel fermented sorghum food. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
66
|
Zang Z, Chou S, Tian J, Lang Y, Shen Y, Ran X, Gao N, Li B. Effect of whey protein isolate on the stability and antioxidant capacity of blueberry anthocyanins: A mechanistic and in vitro simulation study. Food Chem 2020; 336:127700. [PMID: 32768906 DOI: 10.1016/j.foodchem.2020.127700] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/17/2020] [Accepted: 07/26/2020] [Indexed: 01/06/2023]
Abstract
The processing stability and antioxidant capacity of blueberry anthocyanins (ANs) in the presence of whey protein isolate (WPI) were examined. WPI was found to enhance both the stability and antioxidant activity of ANs during processing and simulated in vitro digestion, especially at a concentration of 0.15 mg·mL-1. Fluorescence and ultraviolet-visible absorption spectroscopy showed that ANs were primarily stabilized by hydrophobic forces between WPI and malvidin-3-O-galactoside (M3G), the major anthocyanin monomer. Circular dichroism and Fourier-transform infrared spectroscopy confirmed that the structure of WPI changed and the microenvironments of certain amino acid residues were modulated by non-covalent binding to M3G; furthermore, fewer α-helices and more β-sheets were formed. Molecular docking studies revealed that WPI, especially immunoglobulin (IgG), contributed the most to ANs stability via hydrogen bonds and hydrophobic forces according to molecular docking scores (-141.30 kcal/mol). These results provided an important fundamental basis for improving the stabilities of ANs in milk systems.
Collapse
Affiliation(s)
- Zhihuan Zang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Shurui Chou
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yuxi Lang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yixiao Shen
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xulong Ran
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Ningxuan Gao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
67
|
Renaud V, Faucher M, Perreault V, Serre E, Dubé P, Boutin Y, Bazinet L. Evolution of cranberry juice compounds during in vitro digestion and identification of the organic acid responsible for the disruption of in vitro intestinal cell barrier integrity. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:2329-2342. [PMID: 32431359 PMCID: PMC7230080 DOI: 10.1007/s13197-020-04271-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 01/02/2023]
Abstract
Cranberry juice is increasingly consumed for its richness in polyphenols having a positive impact on human health. Unfortunately, when regularly consumed, its high concentration in organic acids may cause some intestinal discomforts. In the present study, its organic acid content was reduced of 41% by electrodialysis with bipolar membrane (EDBM), and the resulted deacidified juice was divided in five different juices readjusted or not with different concentrations of citric and/or malic acid(s) corresponding to the concentration of this/these acid(s) recovered during EDBM or at the titratable acidity (TA) of the non-deacidified cranberry juice. The evolution of the cranberry juice main interesting compounds (organic acids and polyphenols), according to the concentration and nature of the organic acids present, was studied for the first time at each specific stages of the digestion. After digestion, Caco-2 cells were exposed to all digested juices to identify the organic acid(s) responsible for the loss of integrity of the epithelial barrier. It appeared that organic acid contents did not change during the different steps of the digestion while polyphenolic compounds decreased starting from the gastric phase. Whatever the organic acid concentration or nature, the concentration of PACs significantly decreased between the salivary and the gastric steps but was different according to their structure when the concentration of most of anthocyanins significantly decreased at the gastric step. Also, to the best of our knowledge, it was the first time that citric acid was demonstrated as the organic acid responsible for the loss of integrity of Caco-2 cell monolayers.
Collapse
Affiliation(s)
- Valentine Renaud
- Institute of Nutrition and Functional Foods (INAF), Department of Food Sciences, Paul Comtois Pavillion, Laval University, Quebec, QC G1V 0A6 Canada
- Laboratory of Food Processing and ElectroMembrane Processes (LTAPEM), Paul Comtois Pavillion, Laval University, Quebec, QC G1V 0A6 Canada
| | - Mélanie Faucher
- Institute of Nutrition and Functional Foods (INAF), Department of Food Sciences, Paul Comtois Pavillion, Laval University, Quebec, QC G1V 0A6 Canada
- Laboratory of Food Processing and ElectroMembrane Processes (LTAPEM), Paul Comtois Pavillion, Laval University, Quebec, QC G1V 0A6 Canada
| | - Véronique Perreault
- Institute of Nutrition and Functional Foods (INAF), Department of Food Sciences, Paul Comtois Pavillion, Laval University, Quebec, QC G1V 0A6 Canada
- Laboratory of Food Processing and ElectroMembrane Processes (LTAPEM), Paul Comtois Pavillion, Laval University, Quebec, QC G1V 0A6 Canada
| | - Elodie Serre
- Institute of Nutrition and Functional Foods (INAF), Department of Food Sciences, Paul Comtois Pavillion, Laval University, Quebec, QC G1V 0A6 Canada
- Laboratory of Food Processing and ElectroMembrane Processes (LTAPEM), Paul Comtois Pavillion, Laval University, Quebec, QC G1V 0A6 Canada
| | - Pascal Dubé
- Industrial Research Center of Quebec (CRIQ), Quebec, QC G1P 4C7 Canada
| | | | - Laurent Bazinet
- Institute of Nutrition and Functional Foods (INAF), Department of Food Sciences, Paul Comtois Pavillion, Laval University, Quebec, QC G1V 0A6 Canada
- Laboratory of Food Processing and ElectroMembrane Processes (LTAPEM), Paul Comtois Pavillion, Laval University, Quebec, QC G1V 0A6 Canada
| |
Collapse
|
68
|
Cheng Y, Wu T, Chu X, Tang S, Cao W, Liang F, Fang Y, Pan S, Xu X. Fermented blueberry pomace with antioxidant properties improves fecal microbiota community structure and short chain fatty acids production in an in vitro mode. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109260] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
69
|
Inada KOP, Silva TBR, Lobo LA, Domingues RMCP, Perrone D, Monteiro M. Bioaccessibility of phenolic compounds of jaboticaba (Plinia jaboticaba) peel and seed after simulated gastrointestinal digestion and gut microbiota fermentation. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103851] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
70
|
Liu Y, Zhang X, Li C, Qin Y, Xiao L, Liu J. Comparison of the structural, physical and functional properties of κ-carrageenan films incorporated with pomegranate flesh and peel extracts. Int J Biol Macromol 2020; 147:1076-1088. [DOI: 10.1016/j.ijbiomac.2019.10.075] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/25/2019] [Accepted: 10/08/2019] [Indexed: 10/25/2022]
|
71
|
Guo B, Oliviero T, Fogliano V, Ma Y, Chen F, Capuano E. Gastrointestinal Bioaccessibility and Colonic Fermentation of Fucoxanthin from the Extract of the Microalga Nitzschia laevis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1844-1850. [PMID: 31081326 PMCID: PMC7034079 DOI: 10.1021/acs.jafc.9b02496] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Affiliation(s)
- Bingbing Guo
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, People’s Republic of China
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, Netherlands
| | - Teresa Oliviero
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, Netherlands
| | - Vincenzo Fogliano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, Netherlands
| | - Yuwei Ma
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, Netherlands
| | - Feng Chen
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, People’s Republic of China
- Institute for Advanced Study, Shenzhen University, Nanshan District, Shenzhen, Guangdong 518060, People’s Republic of China
| | - Edoardo Capuano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, Netherlands
| |
Collapse
|
72
|
Quatrin A, Rampelotto C, Pauletto R, Maurer LH, Nichelle SM, Klein B, Rodrigues RF, Maróstica Junior MR, Fonseca BDS, de Menezes CR, Mello RDO, Rodrigues E, Bochi VC, Emanuelli T. Bioaccessibility and catabolism of phenolic compounds from jaboticaba (Myrciaria trunciflora) fruit peel during in vitro gastrointestinal digestion and colonic fermentation. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103714] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
73
|
Untargeted metabolomics reveals changes in phenolic profile following in vitro large intestine fermentation of non-edible parts of Punica granatum L. Food Res Int 2020; 128:108807. [DOI: 10.1016/j.foodres.2019.108807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/22/2022]
|
74
|
Liu J, Mu T, Sun H, Fauconnier ML. Effects of processing and storage conditions on the stability of sweet potato (
Ipomoea batatas
L.) leaf flavonoids. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jiang Liu
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences No. 2 Yuan Ming Yuan West Road, PO Box 5109 Beijing 100193 PR China
- Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs No. 2 Yuan Ming Yuan West Road, PO Box 5109, Beijing 100193 PR China
- Laboratory of Chemistry of Natural Molecules University of Liege Gembloux Agro‐Bio Tech Passage des Déportés 2‐5030 Gembloux Belgium
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences No. 2 Yuan Ming Yuan West Road, PO Box 5109 Beijing 100193 PR China
- Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs No. 2 Yuan Ming Yuan West Road, PO Box 5109, Beijing 100193 PR China
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences No. 2 Yuan Ming Yuan West Road, PO Box 5109 Beijing 100193 PR China
- Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs No. 2 Yuan Ming Yuan West Road, PO Box 5109, Beijing 100193 PR China
| | - Marie Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules University of Liege Gembloux Agro‐Bio Tech Passage des Déportés 2‐5030 Gembloux Belgium
| |
Collapse
|
75
|
Chen L, Lin X, Fan X, Lv Q, Fang H, Chenchen Y, Teng H. A self-emulsifying formulation of Sonchus oleraceus Linn for an improved anti-diabetic effect in vivo. Food Funct 2020; 11:1225-1229. [DOI: 10.1039/c9fo00772e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
The aim of the present study was to develop a self-emulsifying drug delivery system (SEDDS) containing the extract of S oleraceus Linn (SOL) with improved intestinal stability in order to increase oral bio-potency.
Collapse
Affiliation(s)
- Lei Chen
- College of Food Science
- Fujian Agriculture and Forestry University
- Fuzhou
- China
| | - Xiujun Lin
- College of Food Science
- Fujian Agriculture and Forestry University
- Fuzhou
- China
| | - Xiaoyun Fan
- College of Food Science
- Fujian Agriculture and Forestry University
- Fuzhou
- China
| | - Qiyan Lv
- College of Food Science
- Fujian Agriculture and Forestry University
- Fuzhou
- China
| | - Huan Fang
- College of Food Science
- Fujian Agriculture and Forestry University
- Fuzhou
- China
| | - Yaqiong Chenchen
- College of Food Science
- Fujian Agriculture and Forestry University
- Fuzhou
- China
| | - Hui Teng
- College of Food Science
- Fujian Agriculture and Forestry University
- Fuzhou
- China
| |
Collapse
|
76
|
Trigo JP, Alexandre EMC, Silva S, Costa E, Saraiva JA, Pintado M. Study of viability of high pressure extract from pomegranate peel to improve carrot juice characteristics. Food Funct 2020; 11:3410-3419. [DOI: 10.1039/c9fo02922b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Extracts from fruit processing by-products usually present high amounts of bioactive compounds with several important activities such as antioxidant and antimicrobial capacities.
Collapse
Affiliation(s)
- João P. Trigo
- QOPNA & LAQV-REQUIMTE
- Department of Chemistry
- University of Aveiro
- Campus Universitário de Santiago
- 3810-193 Aveiro
| | - Elisabete M. C. Alexandre
- QOPNA & LAQV-REQUIMTE
- Department of Chemistry
- University of Aveiro
- Campus Universitário de Santiago
- 3810-193 Aveiro
| | - Sara Silva
- Universidade Católica Portuguesa
- CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado
- Escola Superior de Biotecnologia
- 4169-005 Porto
- Portugal
| | - Eduardo Costa
- Universidade Católica Portuguesa
- CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado
- Escola Superior de Biotecnologia
- 4169-005 Porto
- Portugal
| | - Jorge A. Saraiva
- QOPNA & LAQV-REQUIMTE
- Department of Chemistry
- University of Aveiro
- Campus Universitário de Santiago
- 3810-193 Aveiro
| | - Manuela Pintado
- Universidade Católica Portuguesa
- CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado
- Escola Superior de Biotecnologia
- 4169-005 Porto
- Portugal
| |
Collapse
|
77
|
Morais SGG, da Silva Campelo Borges G, dos Santos Lima M, Martín-Belloso O, Magnani M. Effects of probiotics on the content and bioaccessibility of phenolic compounds in red pitaya pulp. Food Res Int 2019; 126:108681. [DOI: 10.1016/j.foodres.2019.108681] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 12/18/2022]
|
78
|
Hernandez-Hernandez O. In vitro Gastrointestinal Models for Prebiotic Carbohydrates: A Critical Review. Curr Pharm Des 2019; 25:3478-3483. [DOI: 10.2174/1381612825666191011094724] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/01/2019] [Indexed: 12/27/2022]
Abstract
Background:
In the last decade, various consortia and companies have created standardized digestion
protocols and gastrointestinal simulators, such as the protocol proposed by the INFOGEST Consortium, the simulator
SHIME, the simulator simgi®, the TIM, etc. Most of them claim to simulate the entire human gastrointestinal
tract. However, few results have been reported on the use of these systems with potential prebiotic carbohydrates.
Methods:
This critical review addresses the existing data on the analysis of prebiotic carbohydrates by different in
vitro gastrointestinal simulators, the lack of parameters that could affect the results, and recommendations for
their enhancement.
Results:
According to the reviewed data, there is a lack of a realistic approximation of the small intestinal conditions,
mainly because of the absence of hydrolytic conditions, such as the presence of small intestinal brush border
carbohydrases that can affect the digestibility of different carbohydrates, including prebiotics.
Conclusion:
There is a necessity to standardize and enhance the small intestine simulators to study the in vitro
digestibility of carbohydrates.
Collapse
|
79
|
Yu Y, Zhang B, Xia Y, Li H, Shi X, Wang J, Deng Z. Bioaccessibility and transformation pathways of phenolic compounds in processed mulberry (Morus alba L.) leaves after in vitro gastrointestinal digestion and faecal fermentation. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
80
|
Gardeli C, Varela K, Krokida E, Mallouchos A. Investigation of Anthocyanins Stability from Pomegranate Juice ( Punica Granatum L. Cv Ermioni) under a Simulated Digestion Process. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E90. [PMID: 31434230 PMCID: PMC6789892 DOI: 10.3390/medicines6030090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/11/2019] [Accepted: 08/16/2019] [Indexed: 01/01/2023]
Abstract
Background: Pomegranate gained a widespread popularity as a functional food due to the high content of bioactive components of the whole fruit, as well as its juice and extracts. There is a large amount of research that assigns them very important functions for the human organism. Methods: The anthocyanins (ACNs) of pomegranate juice (PJ) from the Ermioni variety are quantitatively identified and their stability under a simulated digestion process (SDP) is investigated. ACNs, as well as phenolic compounds, were isolated through solid phase extraction and determined using high-performance liquid chromatography in every stage of the SDP. Total phenolics, total monomeric ACNs, polymeric color and antioxidant activity were also determined in pomegranate juice and during the digestion process. Results: The predominant anthocyanin was Cy-3-glucoside followed by the corresponding 3,5-diglucoside, which accounted for 40.8% and 27.4% of the total ACN content, respectively. About 65% of the total monomeric ACN content remained intact by the end of the simulated digestion process. Conclusions: The PJ of the Ermioni variety seems to retain a large amount of the bioactive compounds after the SDP. The antioxidant activity and total phenolic content (TPC) remain almost stable during the SDP, suggesting that the products formed during ACN degradation maintain the antioxidant activity of the parent molecule.
Collapse
Affiliation(s)
- Chrysavgi Gardeli
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.
| | - Kalliopi Varela
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Eleni Krokida
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Athanasios Mallouchos
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
81
|
In Vitro Gastrointestinal Digestion and Colonic Fermentation of High Dietary Fiber and Antioxidant-Rich Mango ( Mangifera indica L.) "Ataulfo"-Based Fruit Bars. Nutrients 2019; 11:nu11071564. [PMID: 31336740 PMCID: PMC6682962 DOI: 10.3390/nu11071564] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 01/06/2023] Open
Abstract
Mango (Mangifera indica L.) is a tropical fruit which is considered to be a source of dietary fiber (DF) and phenolic compounds (PCs). In this study, high DF mango-based fruit bars were developed from whole mango (peel and pulp). The bars were evaluated for their nutritional composition, the bioaccesibility of PCs during gastrointestinal digestion, and the PCs metabolites profile after in vitro colonic fermentation. The amount of DF in a 30 g portion of mango bars was 9.5 g, i.e., 35% of the recommended daily intake. Phenolic acids such as gallic acid; cinnamic acids, such as ferulic, coumaric, and caffeic acids; flavonoids such as quercertin; and xanthones such as mangiferin and mangiferin gallate, were identified as the main PCs in the bars. The antioxidant capacity associated with the PCs profile, together with the high DF content are indicative of the potential functional features of these natural fruit bars. The bioaccesibility of PCs in the mango bar was 53.78%. During fermentation, the PCs were bioconverted mainly to hydroxyphenolic acids and the main short-chain fatty acid produced was acetic acid. The xanthone norathyriol was identified after 12 h of fermentation. This study on the digestion and colonic fermentation of mango-based bars using in vitro models provides hints of the potential physiological behavior of PCs associated with DF, which constitutes relevant information for further development of natural and health-promoting fruit-based bars.
Collapse
|
82
|
Yildiz E, Gungor G, Yilmaz H, Gocmen D. Changes in bioaccessibility, phenolic content and antioxidant capacity of novel crackers with turmeric (Curcuma longa L.) and mahaleb (Prunus mahaleb L.) powders. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2019. [DOI: 10.3920/qas2018.1334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- E. Yildiz
- Uludag University, Faculty of Agriculture, Department of Food Engineering, Gorukle-Bursa 16059, Turkey
| | - G. Gungor
- Uludag University, Faculty of Agriculture, Department of Food Engineering, Gorukle-Bursa 16059, Turkey
| | - H. Yilmaz
- Uludag University, Faculty of Agriculture, Department of Food Engineering, Gorukle-Bursa 16059, Turkey
| | - D. Gocmen
- Uludag University, Faculty of Agriculture, Department of Food Engineering, Gorukle-Bursa 16059, Turkey
| |
Collapse
|
83
|
Dantas AM, Mafaldo IM, Oliveira PMDL, Lima MDS, Magnani M, Borges GDSC. Bioaccessibility of phenolic compounds in native and exotic frozen pulps explored in Brazil using a digestion model coupled with a simulated intestinal barrier. Food Chem 2019; 274:202-214. [DOI: 10.1016/j.foodchem.2018.08.099] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 12/22/2022]
|
84
|
Dou Z, Chen C, Fu X. Bioaccessibility, antioxidant activity and modulation effect on gut microbiota of bioactive compounds from Moringa oleifera Lam. leaves during digestion and fermentation in vitro. Food Funct 2019; 10:5070-5079. [DOI: 10.1039/c9fo00793h] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study aims to investigate the bioaccessibility, bioactivity and gut microbiota modulation effect of Moringa oleifera Lam. leaves after in vitro gastrointestinal digestion and colonic fermentation.
Collapse
Affiliation(s)
- Zuman Dou
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- Guangzhou Inst Modern Ind Technol
| | - Chun Chen
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- SCUT-Zhuhai Institute of Modern Industrial Innovation
| | - Xiong Fu
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- SCUT-Zhuhai Institute of Modern Industrial Innovation
| |
Collapse
|
85
|
Han F, Yang P, Wang H, Fernandes I, Mateus N, Liu Y. Digestion and absorption of red grape and wine anthocyanins through the gastrointestinal tract. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.025] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
86
|
S Freitas C, Alves da Silva G, Perrone D, A Vericimo M, Dos S Baião D, R Pereira P, M F Paschoalin V, M Del Aguila E. Recovery of Antimicrobials and Bioaccessible Isoflavones and Phenolics from Soybean ( Glycine max) Meal by Aqueous Extraction. Molecules 2018; 24:E74. [PMID: 30587803 PMCID: PMC6337456 DOI: 10.3390/molecules24010074] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022] Open
Abstract
Soybeans display strategic potential in food security as a source of protein and functional bioactives for human consumption. Polyphenols and other bioactive compounds can be recovered after an aqueous extraction from soybean meal, a byproduct of soy oil refining. The objective of the present study was to compile and quantify compounds from soybean oil refinery by-products, providing information about valuable bioactive phytochemicals, their bioaccessibility and potential bioactivities. Genistin, daidzin, glycitin and malonylgenistin were the predominant isoflavones, and the overall bioaccessibility of their glycosidic forms was of nearly 75%. Sixteen phenolics were identified and caffeic acid, 5-caffeoylquinic chlorogenic acid and hesperidin were the most predominant. Approximately 30% of gallic acid, syringic acid, vanillic acid and myricetin were released and the antioxidant capacity of aqueous extract was enhanced after simulated in vitro gastro intestinal digestion. The ability of aqueous soybean meal extract to inhibit lipid peroxidation was higher than natural and synthetic food antioxidants. Antimicrobial activity against several foodborne pathogens and antitumoral activity towards human glioblastoma cell line were also observed, but the aqueous extract showed no cytotoxicity to healthy murine cells. Compounds derived from the aqueous soybean meal extract have the potential to be used as health promoting agents.
Collapse
Affiliation(s)
- Cyntia S Freitas
- Instituto de Química, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos 149, 21941-909 Rio de Janeiro, Brazil.
| | - Genilton Alves da Silva
- Instituto de Química, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos 149, 21941-909 Rio de Janeiro, Brazil.
| | - Daniel Perrone
- Instituto de Química, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos 149, 21941-909 Rio de Janeiro, Brazil.
| | - Mauricio A Vericimo
- Instituto de Biologia, Universidade Federal Fluminense, Niterói, 4020-141 Rio de Janeiro, Brazil.
| | - Diego Dos S Baião
- Instituto de Química, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos 149, 21941-909 Rio de Janeiro, Brazil.
| | - Patrícia R Pereira
- Instituto de Química, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos 149, 21941-909 Rio de Janeiro, Brazil.
| | - Vânia M F Paschoalin
- Instituto de Química, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos 149, 21941-909 Rio de Janeiro, Brazil.
| | - Eduardo M Del Aguila
- Instituto de Química, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos 149, 21941-909 Rio de Janeiro, Brazil.
| |
Collapse
|
87
|
Yahfoufi N, Alsadi N, Jambi M, Matar C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients 2018; 10:E1618. [PMID: 30400131 PMCID: PMC6266803 DOI: 10.3390/nu10111618] [Citation(s) in RCA: 816] [Impact Index Per Article: 136.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/17/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023] Open
Abstract
This review offers a systematic understanding about how polyphenols target multiple inflammatory components and lead to anti-inflammatory mechanisms. It provides a clear understanding of the molecular mechanisms of action of phenolic compounds. Polyphenols regulate immunity by interfering with immune cell regulation, proinflammatory cytokines' synthesis, and gene expression. They inactivate NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) and modulate mitogen-activated protein Kinase (MAPk) and arachidonic acids pathways. Polyphenolic compounds inhibit phosphatidylinositide 3-kinases/protein kinase B (PI3K/AkT), inhibitor of kappa kinase/c-Jun amino-terminal kinases (IKK/JNK), mammalian target of rapamycin complex 1 (mTORC1) which is a protein complex that controls protein synthesis, and JAK/STAT. They can suppress toll-like receptor (TLR) and pro-inflammatory genes' expression. Their antioxidant activity and ability to inhibit enzymes involved in the production of eicosanoids contribute as well to their anti-inflammation properties. They inhibit certain enzymes involved in reactive oxygen species ROS production like xanthine oxidase and NADPH oxidase (NOX) while they upregulate other endogenous antioxidant enzymes like superoxide dismutase (SOD), catalase, and glutathione (GSH) peroxidase (Px). Furthermore, they inhibit phospholipase A2 (PLA2), cyclooxygenase (COX) and lipoxygenase (LOX) leading to a reduction in the production of prostaglandins (PGs) and leukotrienes (LTs) and inflammation antagonism. The effects of these biologically active compounds on the immune system are associated with extended health benefits for different chronic inflammatory diseases. Studies of plant extracts and compounds show that polyphenols can play a beneficial role in the prevention and the progress of chronic diseases related to inflammation such as diabetes, obesity, neurodegeneration, cancers, and cardiovascular diseases, among other conditions.
Collapse
Affiliation(s)
- Nour Yahfoufi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H8L1, Canada.
| | - Nawal Alsadi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H8L1, Canada.
| | - Majed Jambi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H8L1, Canada.
| | - Chantal Matar
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H8L1, Canada.
- School of Nutrition, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H8L1, Canada.
| |
Collapse
|
88
|
Starch and antioxidant compound release during in vitro gastrointestinal digestion of gluten-free pasta. Food Chem 2018; 263:201-207. [DOI: 10.1016/j.foodchem.2018.04.075] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 01/19/2023]
|
89
|
Mosele JI, Motilva MJ, Ludwig IA. Beta-Glucan and Phenolic Compounds: Their Concentration and Behavior during in Vitro Gastrointestinal Digestion and Colonic Fermentation of Different Barley-Based Food Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8966-8975. [PMID: 30080960 DOI: 10.1021/acs.jafc.8b02240] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Among cereals, barley ( Hordeum vulgare L.) is notable for its high content of bioactives such as β-glucan and phenolic compounds, but it is not used as widely in human nutrition as wheat. To compare the impact of food formulation and processing on barley bioactives, crackers, cookies, and fresh pasta were prepared combining wheat and barley flour. After quantification of β-glucan and PCs in the barley flour and barley-based products, their behavior during in vitro gastrointestinal digestion and colonic fermentation was studied. The β-glucan and PCs were not drastically affected by processing. The amount of bioaccessible compounds after gastrointestinal digestion was lower than the amount retained in the undigested fraction. After in vitro colonic fermentation, β-glucan was mainly metabolized to acetic and propionic acids and PCs to phenylpropionic and phenylacetic acids. Based on the results of the study, the daily ingestion of barley-based foods may contribute to the intake of beneficial bioactive compounds.
Collapse
Affiliation(s)
- Juana I Mosele
- Universidad de Buenos Aires , Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Fisicoquímica , C1113AAD Buenos Aires , Argentina
- CONICET-Universidad de Buenos Aires , Instituto de Bioquímica y Medicina Molecular (IBIMOL) , C1113AAD Buenos Aires , Argentina
| | - María-José Motilva
- Food Technology Department, Agrotecnio Research Center , University of Lleida , Av/Alcalde Rovira Roure 191 , 25198 , Lleida , Spain
| | - Iziar A Ludwig
- Food Technology Department, Agrotecnio Research Center , University of Lleida , Av/Alcalde Rovira Roure 191 , 25198 , Lleida , Spain
| |
Collapse
|
90
|
Rocchetti G, Giuberti G, Lucini L. Gluten-free cereal-based food products: the potential of metabolomics to investigate changes in phenolics profile and their in vitro bioaccessibility. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2017.10.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
91
|
Agudelo CD, Luzardo-Ocampo I, Campos-Vega R, Loarca-Piña G, Maldonado-Celis ME. Bioaccessibility during In Vitro Digestion and Antiproliferative Effect of Bioactive Compounds from Andean Berry ( Vaccinium meridionale Swartz) Juice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7358-7366. [PMID: 29913068 DOI: 10.1021/acs.jafc.8b01604] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Berry consumption is associated with colorectal-cancer chemoprevention, but digestive conditions can affect this property. The bioaccessibility and apparent permeability coefficients of bioactive compounds from Andean Berry Juice (ABJ) after in vitro gastrointestinal digestion and colonic fermentation were analyzed. The antiproliferative effect of the fermented nondigestible fraction was evaluated against SW480 colon-adenocarcinoma cells. Gallic acid displayed the highest bioaccessibility in the mouth, stomach, small intestine, and colon. However, chlorogenic acid exhibited the highest apparent permeability coefficients (up to 1.98 × 10-4 cm/s). The colonic-fermentation fraction showed an increase of ≥50% antiproliferative activity against SW480 cells (19.32%, v/v), equivalent to those of gallic acid (13.04 μg/g), chlorogenic acid (7.07 μg/g), caffeic acid (0.40 μg/g), ellagic acid (7.32 μg/g), rutin (6.50 μg/g), raffinose (0.14 mg/g), stachyose (0.70 mg/g), and xylose (9.41 mg/g). Bioactive compounds from ABJ are bioaccessible through the gastrointestinal tract and colon fermentation, resulting in antiproliferative activity.
Collapse
Affiliation(s)
- Carlos D Agudelo
- Instituto de Biología, Facultad de Ciencias Exactas y Naturales , Universidad de Antioquia , Calle 67 #53-108 , Medellín AA 1226 , Colombia
| | - Ivan Luzardo-Ocampo
- Programa de Posgrado del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry , Universidad Autónoma de Querétaro , Santiago de Querétaro 76010 , México
| | - Rocio Campos-Vega
- Programa de Posgrado del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry , Universidad Autónoma de Querétaro , Santiago de Querétaro 76010 , México
| | - Guadalupe Loarca-Piña
- Programa de Posgrado del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry , Universidad Autónoma de Querétaro , Santiago de Querétaro 76010 , México
| | - María E Maldonado-Celis
- Escuela de Nutrición y Dietética , Universidad de Antioquia , Ciudadela de Robledo Carrera 75 # 65-87 , Medellín AA 1226 , Colombia
| |
Collapse
|
92
|
Qin Y, Wang L, Liu Y, Zhang Q, Li Y, Wu Z. Release of phenolics compounds from Rubus idaeus L. dried fruits and seeds during simulated in vitro digestion and their bio-activities. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
93
|
Banerjee A, Dhar P. Amalgamation of polyphenols and probiotics induce health promotion. Crit Rev Food Sci Nutr 2018; 59:2903-2926. [PMID: 29787290 DOI: 10.1080/10408398.2018.1478795] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The residing microbiome with its vast repertoire of genes provide distinctive properties to the host by which they can degrade and utilise nutrients that otherwise pass the gastro-intestinal tract unchanged. The polyphenols in our diet have selective growth promoting effects which is of utmost importance as the state of good health has been linked to dominance of particular microbial genera. The polyphenols in native form might more skilfully exert anti-oxidative and anti-inflammatory properties but in a living system it is the microbial derivatives of polyphenol that play a key role in determining health outcome. This two way interaction has invoked great interest among researchers who have commenced several clinical surveys and numerous studies in in-vitro, simulated environment and living systems to find out in detail about the biomolecules involved in such interaction along with their subsequent physiological benefits. In this review, we have thoroughly discussed these studies to develop a fair idea on how the amalgamation of probiotics and polyphenol has an immense potential as an adjuvant therapeutic for disease prevention as well as treatment.
Collapse
Affiliation(s)
- Arpita Banerjee
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta , 20B Judges Court Road, Alipore, Kolkata , West Bengal , India
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta , 20B Judges Court Road, Alipore, Kolkata , West Bengal , India
| |
Collapse
|
94
|
Seraglio SKT, Gonzaga LV, Schulz M, Vitali L, Micke GA, Costa ACO, Fett R, Borges GDSC. Effects of gastrointestinal digestion models in vitro
on phenolic compounds and antioxidant activity of juçara (Euterpe edulis
). Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13816] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Siluana Katia Tischer Seraglio
- Departament of Food Science and Technology; Rodovia Admar Gonzaga; 1346, Itacorubi, CEP 88034-001 Florianopolis SC Brazil
| | - Luciano Valdemiro Gonzaga
- Departament of Food Science and Technology; Rodovia Admar Gonzaga; 1346, Itacorubi, CEP 88034-001 Florianopolis SC Brazil
| | - Mayara Schulz
- Departament of Food Science and Technology; Rodovia Admar Gonzaga; 1346, Itacorubi, CEP 88034-001 Florianopolis SC Brazil
| | - Luciano Vitali
- Departament of Chemistry; Federal University of Santa Catarina; Campus Universitário Trindade; CEP 88040-900 Florianopolis SC Brazil
| | - Gustavo Amadeu Micke
- Departament of Chemistry; Federal University of Santa Catarina; Campus Universitário Trindade; CEP 88040-900 Florianopolis SC Brazil
| | - Ana Carolina Oliveira Costa
- Departament of Food Science and Technology; Rodovia Admar Gonzaga; 1346, Itacorubi, CEP 88034-001 Florianopolis SC Brazil
| | - Roseane Fett
- Departament of Food Science and Technology; Rodovia Admar Gonzaga; 1346, Itacorubi, CEP 88034-001 Florianopolis SC Brazil
| | - Graciele Da Silva Campelo Borges
- Department of Food Technology; Federal University of Paraíba; Campus Mangabeira, Distrito Industrial; CEP 58058-600 João Pessoa PB Brazil
| |
Collapse
|
95
|
Effects of in vitro gastrointestinal digestion on phenolic compounds and antioxidant activity of different white winemaking byproducts extracts. Food Res Int 2018; 109:433-439. [PMID: 29803468 DOI: 10.1016/j.foodres.2018.04.060] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/17/2018] [Accepted: 04/26/2018] [Indexed: 11/20/2022]
Abstract
The effect of in vitro gastrointestinal digestion on phenolic composition and antioxidant activity of different white winemaking byproducts extracts (grape pomace and its parts: seeds, skins and stems) was evaluated. Fourteen individual phenolic compounds were evaluated by UHPLC. The antioxidant activity was measured by DPPH and ORAC assays. Differences on phenolic profile and antioxidant activity were observed depending on the digestion phase, the type of byproduct, the phenolic group and the antioxidant activity assay. In general, digestion had a reducing effect on TPC and antioxidant activity; however, ORAC values of seed and stem extracts increased after digestion and some recovery indexes of the phenolic groups were very high. Results indicate that extracts from white winemaking byproducts are a reliable source of bioaccessible antioxidant compounds, which could be used as functional food ingredients.
Collapse
|
96
|
Regulation of Immune Function by Polyphenols. J Immunol Res 2018; 2018:1264074. [PMID: 29850614 PMCID: PMC5925142 DOI: 10.1155/2018/1264074] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/27/2018] [Indexed: 12/31/2022] Open
Abstract
Immune dysfunction is caused by various factors, including changes in relevant immune regulators and environmental stress. Immune system imbalance leads to a variety of diseases in humans. Nutrition may play an essential role in immunity by interfering with proinflammatory cytokine synthesis, immune cell regulation, and gene expression. Polyphenols, one of many categories of natural substances, exhibit a range of biological activities. Polyphenols promote immunity to foreign pathogens via various pathways. Different immune cells express multiple types of polyphenol receptors that recognise and allow cellular uptake of polyphenols, which subsequently activate signalling pathways to initiate immune responses. Furthermore, the polyphenols curcumin and epigallocatechin gallate can induce epigenetic changes in cells. In summary, polyphenols can be used to regulate intestinal mucosal immune responses, allergic diseases, and antitumour immunity.
Collapse
|
97
|
Rocchetti G, Chiodelli G, Giuberti G, Lucini L. Bioaccessibility of phenolic compounds following in vitro large intestine fermentation of nuts for human consumption. Food Chem 2018; 245:633-640. [DOI: 10.1016/j.foodchem.2017.10.146] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/13/2017] [Accepted: 10/31/2017] [Indexed: 10/18/2022]
|
98
|
Lucas-González R, Viuda-Martos M, Pérez-Alvarez JA, Fernández-López J. In vitro digestion models suitable for foods: Opportunities for new fields of application and challenges. Food Res Int 2018; 107:423-436. [PMID: 29580504 DOI: 10.1016/j.foodres.2018.02.055] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 02/19/2018] [Accepted: 02/25/2018] [Indexed: 01/08/2023]
Abstract
In vitro digestion assays simulate the physiological conditions of digestion in vivo and are useful tools for studying and understanding changes, interactions, as well as the bioaccessibility of nutrients, drugs and non-nutritive compounds. The technique is widely used in fields such as nutrition, pharmacology and food chemistry. Over the last 40 years, more than 2500 research articles have been published using in vitro digestion assays (85% of which have been published in the last two decades) to elucidate multiple aspects such as protein digestibility, nutrient interactions or the viability of encapsulated microorganisms. The most recent trend in the use of this technique involves the determination of the antioxidant activity of bioactive compounds after digestion. However, the inability to reproduce certain in vivo digestion events, as well as the multiple models of in vitro digestion, point to a need to optimize and validate the method with in vivo assays to determine its limitations and uses. The purpose of this paper is to provide an overview of the current state of the art of in vitro digestion models through an analysis of how they have evolved in terms of the development of digestion models (parameters, protocols, guidance) and taking into consideration the boom in new fields of application.
Collapse
Affiliation(s)
- Raquel Lucas-González
- IPOA Research Group, Agro-Food Technology Department, Escuela Politécnica Superior de Orihuela, Universidad Miguel Hernández, Orihuela, Alicante, Spain
| | - Manuel Viuda-Martos
- IPOA Research Group, Agro-Food Technology Department, Escuela Politécnica Superior de Orihuela, Universidad Miguel Hernández, Orihuela, Alicante, Spain
| | - José Angel Pérez-Alvarez
- IPOA Research Group, Agro-Food Technology Department, Escuela Politécnica Superior de Orihuela, Universidad Miguel Hernández, Orihuela, Alicante, Spain
| | - Juana Fernández-López
- IPOA Research Group, Agro-Food Technology Department, Escuela Politécnica Superior de Orihuela, Universidad Miguel Hernández, Orihuela, Alicante, Spain.
| |
Collapse
|
99
|
Yang P, Yuan C, Wang H, Han F, Liu Y, Wang L, Liu Y. Stability of Anthocyanins and Their Degradation Products from Cabernet Sauvignon Red Wine under Gastrointestinal pH and Temperature Conditions. Molecules 2018; 23:E354. [PMID: 29414926 PMCID: PMC6017626 DOI: 10.3390/molecules23020354] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/04/2018] [Accepted: 02/05/2018] [Indexed: 01/01/2023] Open
Abstract
This study investigated the stability of wine anthocyanins under simulated gastrointestinal pH and temperature conditions, and further studied the evolution of anthocyanin degradation products through simulated digestive conditions. The aim of this study was to investigate the relation between anthocyanins' structure and their digestive stability. Results showed that a total of 22 anthocyanins were identified in wine and most of these anthocyanins remained stable under simulated gastric digestion process. However, a dramatic concentration decrease happened to these anthocyanins during simulated intestinal digestion. The stability of anthocyanins in digestive process appeared to be related to their structure. The methoxy group in the B-ring enhanced the stability of anthocyanins, whereas hydroxyl group resulted in a reduction of their stability. Acylation decreased the stability of malvidin 3-O-glucoside. Pyruvic acid conjugation enhanced the structural stability of pyranoanthocyanins, whereas acetaldehyde attachment weakened their stability. A commercial malvidin 3-O-glucoside standard was used to investigate anthocyanin degradation products under simulated digestion process, and syringic acid, protocatechuic acid and vanillic acid were confirmed to be the degradation products via anthocyanin chalcone conversion path. Gallic acid, protocatechuic acid, vanillic acid, syringic acid, and p-coumaric acid in wine experienced a significant concentration decrease during digestion process. However, wine model solution revealed that phenolic acids remained stable under gastrointestinal conditions, except gallic acid.
Collapse
Affiliation(s)
- Ping Yang
- College of Enology, Northwest A&F University, Yangling 712100, China.
| | - Chunlong Yuan
- College of Enology, Northwest A&F University, Yangling 712100, China.
- Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling 712100, China.
- Heyang Viticulture Experimental Station, Northwest A&F University, Heyang 715300, China.
| | - Hua Wang
- College of Enology, Northwest A&F University, Yangling 712100, China.
- Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling 712100, China.
- Heyang Viticulture Experimental Station, Northwest A&F University, Heyang 715300, China.
| | - Fuliang Han
- College of Enology, Northwest A&F University, Yangling 712100, China.
- Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling 712100, China.
- Heyang Viticulture Experimental Station, Northwest A&F University, Heyang 715300, China.
| | - Yangjie Liu
- College of Enology, Northwest A&F University, Yangling 712100, China.
| | - Lin Wang
- College of Enology, Northwest A&F University, Yangling 712100, China.
| | - Yang Liu
- College of Enology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
100
|
Zheng G, Deng J, Wen L, You L, Zhao Z, Zhou L. Release of phenolic compounds and antioxidant capacity of Chinese hawthorn “Crataegus pinnatifida” during in vitro digestion. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.10.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|