51
|
A Pilot Study Combining Ultrafiltration with Ozonation for the Treatment of Secondary Urban Wastewater: Organic Micropollutants, Microbial Load and Biological Effects. WATER 2020. [DOI: 10.3390/w12123458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ozonation followed by ultrafiltration (O3 + UF) was employed at pilot scale for the treatment of secondary urban wastewater, envisaging its safe reuse for crop irrigation. Chemical contaminants of emerging concern (CECs) and priority substances (PSs), microbial load, estrogenic activity, cell viability and cellular metabolic activity were measured before and immediately after O3 + UF treatment. The microbial load was also evaluated after one-week storage of the treated water to assess potential bacteria regrowth. Among the organic micropollutants detected, only citalopram and isoproturon were not removed below the limit of quantification. The treatment was also effective in the reduction in the bacterial loads considering current legislation in water quality for irrigation (i.e., in terms of enterobacteria and nematode eggs). However, after seven days of storage, total heterotrophs regrew to levels close to the initial, with the concomitant increase in the genes 16S rRNA and intI1. The assessment of biological effects revealed similar water quality before and after treatment, meaning that O3 + UF did not produce detectable toxic by-products. Thus, the findings of this study indicate that the wastewater treated with this technology comply with the water quality standards for irrigation, even when stored up to one week, although improvements must be made to minimise microbial overgrowth.
Collapse
|
52
|
Phoon BL, Ong CC, Mohamed Saheed MS, Show PL, Chang JS, Ling TC, Lam SS, Juan JC. Conventional and emerging technologies for removal of antibiotics from wastewater. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:122961. [PMID: 32947727 DOI: 10.1016/j.jhazmat.2020.122961] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/26/2020] [Accepted: 05/12/2020] [Indexed: 05/27/2023]
Abstract
Antibiotics and pharmaceuticals related products are used to enhance public health and quality of life. The wastewater that is produced from pharmaceutical industries still contains noticeable amount of antibiotics, and this has remained one of the major environmental problems facing public health. The conventional wastewater remediation approach employed by the pharmaceutical industries for the antibiotics wastewater removal is unable to remove the antibiotics completely. Besides, municipal and livestock wastewater also contain unmetabolized antibiotics released by human and animal, respectively. The antibiotic found in wastewater leads to antibiotic resistance challenges, also emergence of superbugs. Currently, numerous technological approaches have been developed to remove antibiotics from the wastewater. Therefore, it was imperative to critically review the weakness and strength of these current advanced technological approaches in use. Besides, the conventional methods for removal of antibiotics such as Klavaroti et al., Homem and Santos also discussed. Although, membrane treatment is discovered as the ultimate choice of approach, to completely remove the antibiotics, while the filtered antibiotics are still retained on the membrane. This study found, hybrid processes to be the best solution antibiotics removal from wastewater. Nevertheless, real-time monitoring system is also recommended to ascertain that, wastewater is cleared of antibiotics.
Collapse
Affiliation(s)
- Bao Lee Phoon
- Nanotechnology & Catalysis Research Centre (NANOCAT), Level 3 Block A, Institute for Advanced Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chong Cheen Ong
- Department of Fundamental & Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Centre of Innovative Nanostructures & Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Mohamed Shuaib Mohamed Saheed
- Department of Fundamental & Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Centre of Innovative Nanostructures & Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan; Center for Nanotechnology, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP) & Institute of Tropical Biodiversity and Sustainable Development (Bio-D Tropika), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Joon Ching Juan
- Nanotechnology & Catalysis Research Centre (NANOCAT), Level 3 Block A, Institute for Advanced Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia; School of Science, Monash University, Sunway Campus, Jalan Lagoon Selatan, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
53
|
Beretsou VG, Michael-Kordatou I, Michael C, Santoro D, El-Halwagy M, Jäger T, Besselink H, Schwartz T, Fatta-Kassinos D. A chemical, microbiological and (eco)toxicological scheme to understand the efficiency of UV-C/H 2O 2 oxidation on antibiotic-related microcontaminants in treated urban wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140835. [PMID: 32721672 DOI: 10.1016/j.scitotenv.2020.140835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
An assessment comprising chemical, microbiological and (eco)toxicological parameters of antibiotic-related microcontaminants, during the application of UV-C/H2O2 oxidation in secondary-treated urban wastewater, is presented. The process was investigated at bench scale under different oxidant doses (0-50 mg L-1) with regard to its capacity to degrade a mixture of antibiotics (i.e. ampicillin, clarithromycin, erythromycin, ofloxacin, sulfamethoxazole, tetracycline and trimethoprim) with an initial individual concentration of 100 μg L-1. The process was optimized with respect to the oxidant dose. Under the optimum conditions, the inactivation of selected bacteria and antibiotic resistant bacteria (ARB) (i.e. faecal coliforms, Enterococcus spp., Pseudomonasaeruginosa and total heterotrophs), and the reduction of the abundance of selected antibiotic resistance genes (ARGs) (e.g. blaOXA, qnrS, sul1, tetM) were investigated. Also, phytotoxicity against three plant species, ecotoxicity against Daphnia magna, genotoxicity, oxidative stress and cytotoxicity were assessed. Apart from chemical actinometry, computational fluid dynamics (CFD) modelling was applied to estimate the fluence rate. For the given wastewater quality and photoreactor type used, 40 mg L-1 H2O2 were required for the complete degradation of the studied antibiotics after 18.9 J cm-2. Total bacteria and ARB inactivation was observed at UV doses <1.5 J cm-2 with no bacterial regrowth being observed after 24 h. The abundance of most ARGs was reduced at 16 J cm-2. The process produced a final effluent with lower phytotoxicity compared to the untreated wastewater. The toxicity against Daphnia magna was shown to increase during the chemical oxidation. Although genotoxicity and oxidative stress fluctuated during the treatment, the latter led to the removal of these effects. Overall, it was made apparent from the high UV fluence required, that the particular reactor although extensively used in similar studies, it does not utilize efficiently the incident radiation and thus, seems not to be suitable for this kind of studies.
Collapse
Affiliation(s)
- Vasiliki G Beretsou
- Nireas-International Water Research Center, University of Cyprus, P.O. Box 20537, CY-1678 Nicosia, Cyprus; Department of Civil and Environmental Engineering, University of Cyprus, P.O. Box 20537, CY-1678 Nicosia, Cyprus
| | - Irene Michael-Kordatou
- Nireas-International Water Research Center, University of Cyprus, P.O. Box 20537, CY-1678 Nicosia, Cyprus
| | - Costas Michael
- Nireas-International Water Research Center, University of Cyprus, P.O. Box 20537, CY-1678 Nicosia, Cyprus
| | | | | | - Thomas Jäger
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Harrie Besselink
- BioDetection Systems b.v., Science Park 406, 1098 XH Amsterdam, the Netherlands
| | - Thomas Schwartz
- BioDetection Systems b.v., Science Park 406, 1098 XH Amsterdam, the Netherlands
| | - Despo Fatta-Kassinos
- Nireas-International Water Research Center, University of Cyprus, P.O. Box 20537, CY-1678 Nicosia, Cyprus; Department of Civil and Environmental Engineering, University of Cyprus, P.O. Box 20537, CY-1678 Nicosia, Cyprus.
| |
Collapse
|
54
|
Rekhate CV, Srivastava J. Recent advances in ozone-based advanced oxidation processes for treatment of wastewater- A review. CHEMICAL ENGINEERING JOURNAL ADVANCES 2020. [DOI: 10.1016/j.ceja.2020.100031] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
55
|
Sabri NA, van Holst S, Schmitt H, van der Zaan BM, Gerritsen HW, Rijnaarts HHM, Langenhoff AAM. Fate of antibiotics and antibiotic resistance genes during conventional and additional treatment technologies in wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140199. [PMID: 32615424 DOI: 10.1016/j.scitotenv.2020.140199] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 05/23/2023]
Abstract
Information on the removal of antibiotics and ARGs in full-scale WWTPs (with or without additional treatment technology) is limited. However, it is important to understand the efficiency of full-scale treatment technologies in removing antibiotics and ARGs under a variety of conditions relevant for practice to reduce their environmental spreading. Therefore, this study was performed to evaluate the removal of antibiotics and ARGs in a conventional wastewater treatment plant (WWTP A) and two full-scale combined with additional treatment technologies. WWTP B, a conventional activated sludge treatment followed by an activated carbon filtration step (1-STEP® filter) as a final treatment step. WWTP C, a treatment plant using aerobic granular sludge (NEREDA®) as an alternative to activated sludge treatment. Water and sludge were collected and analysed for 52 antibiotics from four target antibiotic groups (macrolides, sulfonamides, quinolones, tetracyclines) and four target ARGs (ermB, sul 1, sul 2 and tetW) and integrase gene class 1 (intI1). Despite the high removal percentages (79-88%) of the total load of antibiotics in all WWTPs, some antibiotics were detected in the various effluents. Additional treatment technology (WWTP C) showed antibiotics removal up to 99% (tetracyclines). For ARGs, WWTP C reduced 2.3 log followed by WWTP A with 2.0 log, and WWTP B with 1.3 log. This shows that full-scale WWTP with an additional treatment technology are promising solutions for reducing emissions of antibiotics and ARGs from wastewater treatment plants. However, total removal of the antibiotics and ARGS cannot be achieved for all types of antibiotics and ARGs. In addition, the ARGs were more abundant in the sludge compared to the wastewater effluent suggesting that sludge is an important reservoir representing a source for later ARG emissions upon reuse, i.e. as fertilizer in agriculture or as resource for bioplastics or bioflocculants. These aspects require further research.
Collapse
Affiliation(s)
- N A Sabri
- Department of Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - S van Holst
- Department of Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - H Schmitt
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands
| | - B M van der Zaan
- Deltares, Subsurface and Groundwater Systems, Daltonlaan 600, 3584 KB Utrecht, the Netherlands
| | - H W Gerritsen
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | - H H M Rijnaarts
- Department of Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - A A M Langenhoff
- Department of Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
56
|
Grehs BWN, Linton MAO, Clasen B, de Oliveira Silveira A, Carissimi E. Antibiotic resistance in wastewater treatment plants: understanding the problem and future perspectives. Arch Microbiol 2020; 203:1009-1020. [PMID: 33112995 DOI: 10.1007/s00203-020-02093-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/02/2020] [Accepted: 10/13/2020] [Indexed: 11/26/2022]
Abstract
Antibiotics residues (AR), antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) are a new class of water contaminants, due to their adverse effects on aquatic ecosystems and human health. Contamination of water bodies occurs mainly by the excretion of antibiotics incompletely metabolized by humans and animals and is considered the main source of contamination of antibiotics in the environment. Given the imminent threat, the World Health Organization (WHO) has categorized the spread of antibiotics as one of the top three threats to public health in the twenty-first century. The Urban Wastewater Treatment Plants (UWWTP) bring together AR, ARB, ARG, making the understanding of this peculiar environment fundamental for the investigation of technologies aimed at combating the spread of bacterial resistance. Several methodologies have been employed focusing on reducing the ARB and ARG loads of the effluents, however the reactivation of these microorganisms after the treatment is widely reported. This work aims to elucidate the role of UWWTPs in the spread of bacterial resistance, as well as to report the efforts that have been made so far and future perspectives to combat this important global problem.
Collapse
Affiliation(s)
- Bárbara W N Grehs
- Department of Sanitary and Environmental Engineering, Federal University of Santa Maria (UFSM), Av. Roraima 1000, CT Lab, Santa Maria, RS, 97105-900, Brazil
| | - Maria A O Linton
- Department of Biology, Federal University of Santa Maria (UFSM), Av. Roraima 1000, CE, Santa Maria, RS, 97105-900, Brazil
| | - Barbara Clasen
- Department of Sanitary and Environmental Engineering, Federal University of Santa Maria (UFSM), Av. Roraima 1000, CT Lab, Santa Maria, RS, 97105-900, Brazil.
- Department of Environmental Science, State University of Rio Grande Do Sul (UERGS), R. Cipriano Barata, 211, Três Passos, RS, 98600-000, Brazil.
| | - Andressa de Oliveira Silveira
- Department of Sanitary and Environmental Engineering, Federal University of Santa Maria (UFSM), Av. Roraima 1000, CT Lab, Santa Maria, RS, 97105-900, Brazil
| | - Elvis Carissimi
- Department of Sanitary and Environmental Engineering, Federal University of Santa Maria (UFSM), Av. Roraima 1000, CT Lab, Santa Maria, RS, 97105-900, Brazil
| |
Collapse
|
57
|
Tavares RDS, Tacão M, Figueiredo AS, Duarte AS, Esposito F, Lincopan N, Manaia CM, Henriques I. Genotypic and phenotypic traits of bla CTX-M-carrying Escherichia coli strains from an UV-C-treated wastewater effluent. WATER RESEARCH 2020; 184:116079. [PMID: 32717492 DOI: 10.1016/j.watres.2020.116079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Wastewater treatment plants (WWTPs) are relevant sources of antibiotic resistance into aquatic environments. Disinfection of WWTPs' effluents (e.g. by UV-C irradiation) may attenuate this problem, though some clinically relevant bacteria have been shown to survive disinfection. In this study we characterized 25 CTX-M-producing Escherichia coli strains isolated from a WWTP's UV-C-irradiated effluent, aiming to identify putative human health hazards associated with such effluents. Molecular typing indicated that the strains belong to the phylogroups A, B2 and C and clustered into 9 multilocus sequence types (STs), namely B2:ST131 (n = 7), A:ST58 (n = 1), A:ST155 (n = 4), C:ST410 (n = 2), A:ST453 (n = 2), A:ST617 (n = 2), A:ST744 (n = 1), A:ST1284 (n = 3) and a putative novel ST (n = 3). PCR-screening identified 9 of the 20 antibiotic resistance genes investigated [i.e. sul1, sul2, sul3, tet(A), tet(B), blaOXA-1-like, aacA4, aacA4-cr and qnrS1]. The more prevalent were sul1, sul2 (n = 15 isolates) and tet(A) (n = 14 isolates). Plasmid restriction analysis indicated diverse plasmid content among strains (14 distinct profiles) and mating assays yielded cefotaxime-resistant transconjugants for 8 strains. Two of the transconjugants displayed a multi-drug resistance (MDR) phenotype. All strains were classified as cytotoxic to Vero cells (9 significantly more cytotoxic than the positive control) and 10 of 21 strains were invasive towards this cell line (including all B2:ST131 strains). The 10 strains tested against G. mellonella larvae exhibited a virulent behaviour. Twenty-four and 7 of the 25 strains produced siderophores and haemolysins, respectively. Approximately 66% of the strains formed biofilms. Genome analysis of 6 selected strains identified several virulence genes encoding toxins, siderophores, and colonizing, adhesion and invasion factors. Freshwater microcosms assays showed that after 28 days of incubation 3 out of 6 strains were still detected by cultivation and 4 strains by qPCR. Resistance phenotypes of these strains remained unaltered. Overall, we confirmed WWTP's UV-C-treated outflow as a source of MDR and/or virulent E. coli strains, some probably capable of persisting in freshwater, and that carry conjugative antibiotic resistance plasmids. Hence, disinfected wastewater may still represent a risk for human health. More detailed evaluation of strains isolated from wastewater effluents is urgent, to design treatments that can mitigate the release of such bacteria.
Collapse
Affiliation(s)
- Rafael D S Tavares
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal; Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Marta Tacão
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal; Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal.
| | - Ana S Figueiredo
- Department of Biology, University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal
| | - Ana S Duarte
- Universidade Católica Portuguesa, Faculdade de Medicina Dentária, Centro de Investigação Interdisciplinar Em Saúde (CIIS), Estrada da Circunvalação, 3504-505, Viseu, Portugal
| | - Fernanda Esposito
- Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Department of Clinical Analysis, Faculty of Pharmacy, University of São Paulo, São Paulo, Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Isabel Henriques
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário Santiago, 3810-193, Aveiro, Portugal; University of Coimbra, Department of Life Sciences, Faculty of Sciences and Technology, Calçada Martins de Freitas, 3000-456, Coimbra, Portugal
| |
Collapse
|
58
|
Zhang G, Li W, Chen S, Zhou W, Chen J. Problems of conventional disinfection and new sterilization methods for antibiotic resistance control. CHEMOSPHERE 2020; 254:126831. [PMID: 32957272 DOI: 10.1016/j.chemosphere.2020.126831] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 05/20/2023]
Abstract
The problem of bacterial antibiotic resistance has attracted considerable research attention, and the effects of water treatment on antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are being increasingly investigated. As an indispensable part of the water treatment process, disinfection plays an important role in controlling antibiotic resistance. At present, there were many studies on the effects of conventional and new sterilization methods on ARB and ARGs. However, there is a lack of literature relating to the limitations of conventional methods and analysis of new techniques. Therefore, this review focuses on analyzing the deficiencies of conventional disinfection and the development of new methods for antibiotic resistance control to guide future research. Firstly, we analyzed the effects and drawbacks of conventional disinfection methods, such as chlorine (Cl), ultraviolet (UV) and ozone on antibiotic resistance control. Secondly, we discuss the research progress and shortcomings of new sterilization methods in antibiotic resistance. Finally, we propose suggestions for future research directions. There is an urgent need for new effective and low-cost sterilization methods. Disinfection via UV and chlorine in combination, UV/chlorine showed greater potential for controlling ARGs.
Collapse
Affiliation(s)
- Guosheng Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China
| | - Weiying Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China.
| | - Sheng Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China
| | - Wei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China
| | - Jiping Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China
| |
Collapse
|
59
|
Sakudo A, Misawa T. Antibiotic-Resistant and Non-Resistant Bacteria Display Similar Susceptibility to Dielectric Barrier Discharge Plasma. Int J Mol Sci 2020; 21:E6326. [PMID: 32878289 PMCID: PMC7504529 DOI: 10.3390/ijms21176326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 11/18/2022] Open
Abstract
Here, we examined whether antibiotic-resistant and non-resistant bacteria show a differential susceptibility to plasma treatment. Escherichia coli DH5α were transformed with pPRO-EX-HT-CAT, which encodes an ampicillin resistance gene and chloramphenicol acetyltransferase (CAT) gene, and then treated with a dielectric barrier discharge (DBD) plasma torch. Plasma treatment reduced the viable cell count of E. coli after transformation/selection and further cultured in ampicillin-containing and ampicillin-free medium. However, there was no significant difference in viable cell count between the transformed and untransformed E. coli after 1 min- and 2 min-plasma treatment. Furthermore, the enzyme-linked immunosorbent assay (ELISA) and acetyltransferase activity assay showed that the CAT activity was reduced after plasma treatment in both transformed and selected E. coli grown in ampicillin-containing or ampicillin-free medium. Loss of lipopolysaccharide and DNA damage caused by plasma treatment were confirmed by a Limulus test and polymerase chain reaction, respectively. Taken together, these findings suggest the plasma acts to degrade components of the bacteria and is therefore unlikely to display a differential affect against antibiotic-resistant and non-resistant bacteria. Therefore, the plasma method may be useful in eliminating bacteria that are recalcitrant to conventional antibiotic therapy.
Collapse
Affiliation(s)
- Akikazu Sakudo
- School of Veterinary Medicine, Okayama University of Science, Imabari, Ehime 794-8555, Japan
- Laboratory of Biometabolic Chemistry, School of Health Sciences, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Tatsuya Misawa
- Department of Electrical and Electronic Engineering, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan;
| |
Collapse
|
60
|
Anthony ET, Ojemaye MO, Okoh OO, Okoh AI. A critical review on the occurrence of resistomes in the environment and their removal from wastewater using apposite treatment technologies: Limitations, successes and future improvement. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:113791. [PMID: 32224385 DOI: 10.1016/j.envpol.2019.113791] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Recent reports are pointing towards the potential increasing risks of resistomes in human host. With no permissible limit in sight, resistomes are continually multiplying at an alarming rate in the ecosystem, with a disturbing level in drinking water source. The morphology and chemical constituent of resistomes afford them to resist degradation, elude membrane and counter ionic charge, thereby, rendering both conventional and advanced water and wastewater treatment inefficient. Water and wastewater matrix may govern the propagation of individual resistomes sub-type, co-selection and specific interaction towards precise condition may have enhanced the current challenge. This review covers recent reports (2011-2019) on the occurrence of ARB/ARGs and ease of spread of resistance genes in the aquatic ecosystem. The contributions of water matrix to the spread and mitigation, treatment options, via bulk removal or capture, and intracellular and extracellular DNA lysis were discussed. A complete summary of recent occurrences of ARB/ARGs, fate after disinfection and optimum conditions of individual treatment technology or in tandem, including process limitations, with a brief assessment of removal or degradation mechanism were highlighted.
Collapse
Affiliation(s)
- Eric Tobechukwu Anthony
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa; SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa; AEMREG, Applied and Environmental Microbiology Research Group, University of Fort Hare, Alice, South Africa.
| | - Mike O Ojemaye
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa; SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa; AEMREG, Applied and Environmental Microbiology Research Group, University of Fort Hare, Alice, South Africa
| | - Omobola O Okoh
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa; SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa; AEMREG, Applied and Environmental Microbiology Research Group, University of Fort Hare, Alice, South Africa
| | - Anthony I Okoh
- SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa; AEMREG, Applied and Environmental Microbiology Research Group, University of Fort Hare, Alice, South Africa
| |
Collapse
|
61
|
Yang Y, Wan K, Yang Z, Li D, Li G, Zhang S, Wang L, Yu X. Inactivation of antibiotic resistant Escherichia coli and degradation of its resistance genes by glow discharge plasma in an aqueous solution. CHEMOSPHERE 2020; 252:126476. [PMID: 32229364 DOI: 10.1016/j.chemosphere.2020.126476] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
Emerging contaminants such as antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs) are becoming a global environmental problem. In this study, the glow discharge plasma (GDP) was applied for degrading antibiotic resistant Escherichia coli (E. coli) with resistance genes (tetA, tetR, aphA) and transposase gene (tnpA) in 0.9% sterile saline. The results showed that GDP was able to inactivate the antibiotic resistant E. coli and remove the ARGs and reduce the risk of gene transfer. The levels of E. coli determined by 16S rRNA decreased by approximately 4.7 logs with 15 min of discharge treatment. Propidium monoazide - quantitative polymerase chain reaction (PMA-qPCR) tests demonstrated that the cellular structure of 4.8 more logs E. coli was destroyed in 15 min. The reduction of tetA, tetR, aphA, tnpA genes was increased to 5.8, 5.4, 5.3 and 5.5 logs with 30 min discharge treatment, respectively. The removal of ARGs from high salinity wastewater was also investigated. The total abundance of ARGs was reduced by 3.9 logs in 30 min. Scavenging tests indicated that hydroxyl radicals (·OH) was the most probable agents for bacteria inactivation and ARGs degradation. In addition, the active chlorine (Cl· and Cl2) which formed during the discharge may also contribute to the inactivation and degradation.
Collapse
Affiliation(s)
- Ye Yang
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, P. R. China; College of Geography & Environmental Sciences, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Kun Wan
- Key Lab of Urban Environment & Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, P. R. China; College of the Environment & Ecology, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhipeng Yang
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, P. R. China
| | - Dailin Li
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, P. R. China
| | - Guoxin Li
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, P. R. China
| | - Songlin Zhang
- College of Geography & Environmental Sciences, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Lei Wang
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, P. R. China.
| | - Xin Yu
- Key Lab of Urban Environment & Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, P. R. China; College of the Environment & Ecology, Xiamen University, Xiamen, 361005, P. R. China.
| |
Collapse
|
62
|
Zhang WZ, Gao JF, Duan WJ, Zhang D, Jia JX, Wang YW. Sulfidated nanoscale zero-valent iron is an efficient material for the removal and regrowth inhibition of antibiotic resistance genes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114508. [PMID: 32283399 DOI: 10.1016/j.envpol.2020.114508] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/08/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Antibiotic resistance genes (ARGs) and mobile gene elements (MGEs), the emerging genetic contaminants, are regarded as severe risks to public health for impairing the inactivation efficacy of antibiotics. Secondary effluents from wastewater treatment plants are the hotspots for spreading these menaces. Herein, sulfidated nanoscale zero-valent iron (S-nZVI) was occupied to remove ARGs and MGEs in secondary effluents and weaken the regrowth capacity of their bacterial carriers. The effects of S/Fe molar ratios (S/Fe), initial pH and dosages on 16S rRNA and ARGs removal were also investigated. Characterization, mass balance and scavenging experiments were conducted to explore the mechanisms of the gene removal. Quantitative PCR (qPCR) and high throughput fluorescence qPCR showed more than 3 log unit of 16S rRNA and seven out of 10 ARGs existed in secondary effluent could be removed after S-nZVI treatment. The mechanisms might be that DNA accepted the electron provided by the Fe0 core of S-nZVI after being adsorbed onto S-nZVI surface, causing the decrease of 16S rRNA, ARGs and lost their regrowth capacity, especially for typical MGE (intI1) and further inhibiting the vertical gene transfer (VGT) and intI1-induced horizontal gene transfer (HGT). Fe0 core was oxidized to iron oxides and hydroxides at the same time. High throughput sequencing, network analysis and variation partitioning analysis revealed the complex correlations between bacteria and ARGs in secondary effluent, S/Fe could directly influence ARGs variations, and bacterial genera made the greatest contribution to ARGs variations, followed by MGEs and operational parameters. As a result, S-nZVI could be an available reductive approach to deal with bacteria and ARGs.
Collapse
Affiliation(s)
- Wen-Zhi Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jing-Feng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China.
| | - Wan-Jun Duan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Da Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jing-Xin Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Yu-Wei Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
63
|
Liu X, Wang H, Zhao H. Propagation of antibiotic resistance genes in an industrial recirculating aquaculture system located at northern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114155. [PMID: 32066059 DOI: 10.1016/j.envpol.2020.114155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/02/2020] [Accepted: 02/08/2020] [Indexed: 06/10/2023]
Abstract
The increasing prevalence and spread of antibiotic resistance genes (ARGs) in intensive aquaculture environments are of great concern to food safety and public health. However, the level of ARGs and their potential propagation factors in an industrial recirculating aquaculture system (RAS) have not previously been comprehensive explored. In this study, the levels of 14 different ARG markers and 2 kinds of mobile genetic elements (MGEs) were investigated in a RAS (including water, fish, feces, pellet feed meal, and biofilm samples) located northern China. qnrA, qnrB, qnrS, qepA, aac(6')-Ib, and floR were dominant ARGs, which average concentration levels were presented at 4.51-7.74 copies/L and 5.36-13.07 copies/g, respectively, suggesting that ARGs were prevalent in RAS with no recorded history of antibiotic use. Elevated level of ARGs was found in water of RAS even after the final UV treatment compared with its influent. In RAS, Proteobacteria, Verrucomicrobia, Bacteroidetes, and Planctomycetes were the predominant phyla. Notably, elevated levels of potential opportunistic pathogens were observed along with abundant ARGs suggesting an increasing risk of capturing ARGs and MGEs for human pathogens. This study has revealed for the first time that reared fish, their feces, pellet feed meal as the introduction sources and the selection roles of treatment units co-driven the ARG profile, and the co-selection of water environmental factors and their consequently induced bacterial community shifts formed by their influence are the determining drivers for the ARG propagation in RAS.
Collapse
Affiliation(s)
- Xuan Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hua Wang
- School of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Huimin Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
64
|
Villarín MC, Merel S. Paradigm shifts and current challenges in wastewater management. JOURNAL OF HAZARDOUS MATERIALS 2020; 390:122139. [PMID: 32007860 DOI: 10.1016/j.jhazmat.2020.122139] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/10/2020] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
Wastewater is a significant environmental and public health concern which management is a constant challenge since antiquity. Wastewater research has increased exponentially over the last decades. This paper provides a global overview of the exponentially increasing wastewater research in order to identify current challenges and paradigm shifts. Besides households, hospitals and typical industries, other sources of wastewater appear due to emerging activities like hydraulic fracturing. While the composition of wastewater needs constant reassessment to identify contaminants of interest, the comprehensive chemical and toxicological analysis remains one of the main challenges in wastewater research. Moreover, recent changes in the public perception of wastewater has led to several paradigm shifts: i) water reuse considering wastewater as a water resource rather than a hazardous waste, ii) wastewater-based epidemiology considering wastewater as a source of information regarding the overall health of a population through the analysis of specific biomarkers, iii) circular economy through the implementation of treatment processes aiming at harvesting valuable components such as precious metals or producing valuable goods such as biofuel. However, wastewater research should also address social challenges such as the public acceptance of water reuse or the access to basic sanitation that is not available for nearly a third of the world population.
Collapse
Affiliation(s)
- María C Villarín
- Department of Human Geography, University of Seville, c/ Doña María de Padilla s/n, 41004, Sevilla, Spain.
| | - Sylvain Merel
- Institute of Marine Research (IMR), PO Box 1870 Nordnes, N-5817, Bergen, Norway; INRAE, UR RiverLy, 5 rue de la Doua, F-69625 Villeurbanne, France.
| |
Collapse
|
65
|
Rizzo L, Gernjak W, Krzeminski P, Malato S, McArdell CS, Perez JAS, Schaar H, Fatta-Kassinos D. Best available technologies and treatment trains to address current challenges in urban wastewater reuse for irrigation of crops in EU countries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136312. [PMID: 32050367 DOI: 10.1016/j.scitotenv.2019.136312] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/21/2019] [Accepted: 12/22/2019] [Indexed: 05/09/2023]
Abstract
Conventional urban wastewater treatment plants (UWTPs) are poorly effective in the removal of most contaminants of emerging concern (CECs), including antibiotics, antibiotic resistant bacteria and antibiotic resistance genes (ARB&ARGs). These contaminants result in some concern for the environment and human health, in particular if UWTPs effluents are reused for crop irrigation. Recently, stakeholders' interest further increased in Europe, because the European Commission is currently developing a regulation on water reuse. Likely, conventional UWTPs will require additional advanced treatment steps to meet water quality limits yet to be officially established for wastewater reuse. Even though it seems that CECs will not be included in the proposed regulation, the aim of this paper is to provide a technical contribution to this discussion as well as to support stakeholders by recommending possible advanced treatment options, in particular with regard to the removal of CECs and ARB&ARGs. Taking into account the current knowledge and the precautionary principle, any new or revised water-related Directive should address such contaminants. Hence, this review paper gathers the efforts of a group of international experts, members of the NEREUS COST Action ES1403, who for three years have been constructively discussing the efficiency of the best available technologies (BATs) for urban wastewater treatment to abate CECs and ARB&ARGs. In particular, ozonation, activated carbon adsorption, chemical disinfectants, UV radiation, advanced oxidation processes (AOPs) and membrane filtration are discussed with regard to their capability to effectively remove CECs and ARB&ARGs, as well as their advantages and drawbacks. Moreover, a comparison among the above-mentioned processes is performed for CECs relevant for crop uptake. Finally, possible treatment trains including the above-discussed BATs are discussed, issuing end-use specific recommendations which will be useful to UWTPs managers to select the most suitable options to be implemented at their own facilities to successfully address wastewater reuse challenges.
Collapse
Affiliation(s)
- Luigi Rizzo
- Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy.
| | - Wolfgang Gernjak
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; Catalan Institute for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Pawel Krzeminski
- Section of Systems Engineering and Technology, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo, Norway
| | - Sixto Malato
- Plataforma Solar de Almería (CIEMAT), Carretera de Senés, km. 4, Tabernas, Almería 04200, Spain; Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Universitiy of Almeria, Ctra. Sacramento s/n, ES04120 Almería, Spain
| | - Christa S McArdell
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Jose Antonio Sanchez Perez
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Universitiy of Almeria, Ctra. Sacramento s/n, ES04120 Almería, Spain; Department of Chemical Engineering, University of Almeria, Ctra. Sacramento s/n, ES04120 Almería, Spain
| | - Heidemarie Schaar
- Technische Universität Wien, Institute for Water Quality and Resource Management, Karlsplatz 13/2261, 1040 Vienna, Austria
| | - Despo Fatta-Kassinos
- Department of Civil and Environmental Engineering and Nireas, International Water Research Center, University of Cyprus, P.O. Box 20537, CY-1678 Nicosia, Cyprus.
| |
Collapse
|
66
|
Solar Powered Microplasma-Generated Ozone: Assessment of a Novel Point-of-Use Drinking Water Treatment Method. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17061858. [PMID: 32182999 PMCID: PMC7175310 DOI: 10.3390/ijerph17061858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/03/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022]
Abstract
Ozonation is widely used in high-income countries for water disinfection in centralized treatment facilities. New microplasma technology has reduced the energy requirements for ozone generation dramatically, such that a 15-watt solar panel is sufficient to produce small quantities of ozone. This technology has not been used previously for point-of-use drinking water treatment. We conducted a series of assessments of this technology, both in the laboratory and in homes of residents of a village in western Kenya, to estimate system efficacy and to determine if the solar-powered point-of-use water ozonation system appears safe and acceptable to end-users. In the laboratory, two hours of point-of-use ozonation reduced E. coli in 120 L of wastewater by a mean (standard deviation) of 2.3 (0.84) log-orders of magnitude and F+ coliphage by 1.54 (0.72). Based on laboratory efficacy, 10 families in Western Kenya used the system to treat 20 L of household stored water for two hours on a daily basis for eight weeks. Household stored water E. coli concentrations of >1000 most probable number (MPN)/100 mL were reduced by 1.56 (0.96) log removal value (LRV). No participants experienced symptoms of respiratory or mucous membrane irritation. Focus group research indicated that families who used the system for eight weeks had very favorable perceptions of the system, in part because it allowed them to charge mobile phones. Drinking water ozonation using microplasma technology may be a sustainable point-of-use treatment method, although system optimization and evaluations in other settings would be needed.
Collapse
|
67
|
Hu Y, Wang J, Shen Y. Enhanced performance of anaerobic digestion of cephalosporin C fermentation residues by gamma irradiation-induced pretreatment. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121335. [PMID: 31590081 DOI: 10.1016/j.jhazmat.2019.121335] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/18/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Antibiotic fermentation residues is a hazardous waste due to the existence of residual antibiotics and antibiotic resistance genes (ARGs), probably leading to the induction and spread of antibiotic resistant bacteria (ARB) in the environment, which could pose potential harm to the ecosystem and human health. It is urgent to develop an effective technology to remove the residual antibiotics and ARGs. In this study, the anaerobic digestion combined with gamma irradiation was applied for the disposal and utilization of cephalosporin C fermentation residues. The experimental results showed that the antibacterial activities of cephalosporin C against Staphylococcus aureus were significantly decreased after anaerobic digestion. The removal of tolC, a multidrug resistant gene, was improved up to 100% by the combination of gamma irradiation and anaerobic digestion compared to solely anaerobic digestion process, which may be due to the changes of microbial community structures induced by gamma irradiation.
Collapse
Affiliation(s)
- Yuming Hu
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing, 100084, PR China.
| | - Yunpeng Shen
- State Environmental Protection Engineering Center for Harmless Treatment and Resource Utilization of Antibiotic Residues, Yili Chuanning Biotechnology Company, Ltd., Xinjiang, 835007, PR China; School of Economics and Management, Center for Innovation Management Research, Xinjiang University, Xinjiang 830047, PR China
| |
Collapse
|
68
|
Zhang K, Xin R, Zhao Z, Ma Y, Zhang Y, Niu Z. Antibiotic Resistance Genes in drinking water of China: Occurrence, distribution and influencing factors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109837. [PMID: 31683044 DOI: 10.1016/j.ecoenv.2019.109837] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/20/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Drinking water samples were collected from 71 cities, including 28 provincial capital cities or municipalities, 20 prefecture cities and 23 counties, of 31 provincial-level administrative regions in China from July to August in 2017. Futhermore, 24 Antibiotic Resistance Genes (ARGs), 16S rRNA and 2 integrase genes were quantified by qPCR to investigate the pollution degree of ARGs. The results revealed that the 16S ranged from 105 - 108 copies/100 mL in the drinking water, and its treatment process could effectively remove bacteria. Moreover, sulfonamides-ARGs were the most prevalent ARGs in the drinking water of China, and the abundance of blaTEM ranked top five in all cities among the selected ARGs, indicating that the pollution condition of the genes should be aroused more attention. The data of qPCR and correlation analyses indicated that intI1 played a more crucial role than intI2 in the propagation of ARGs in the drinking water. Additionally, the pollution degree of ARGs among different city types showed no significant difference.
Collapse
Affiliation(s)
- Kai Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China; School of Geographic Sciences, Xinyang Normal University, Xinyang, 464000, China; Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, Xinyang Normal University, Xinyang, 464000, China
| | - Rui Xin
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Ze Zhao
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Yongzheng Ma
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Ying Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Zhiguang Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China; School of Marine Science and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
69
|
Chu L, Chen D, Wang J, Yang Z, Yang Q, Shen Y. Degradation of antibiotics and inactivation of antibiotic resistance genes (ARGs) in Cephalosporin C fermentation residues using ionizing radiation, ozonation and thermal treatment. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121058. [PMID: 31450213 DOI: 10.1016/j.jhazmat.2019.121058] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
In present work, the degradation of antibiotic and inactivation of antibiotic resistance genes (ARGs) in cephalosporin C fermentation (CEPF) residues were performed using ionizing radiation, ozonation and thermal treatment. The results showed that the three treatment methods could degrade cephalosporin C effectively, with the removal efficiency of 85.5% for radiation at dose of 100 kGy, 79.9% for ozonation at dosage of 5.2 g O3/L, and 71.9% and 87.3% for thermal treatment at 60 °C and 90 °C for 4 h. The cephalosporin resistance gene tolC was detected in the raw CEPF residues, and its abundance was decrease 74.2% by radiation, 64.6% by ozonation and 26.9%-37.1% by thermal treatment respectively. The presence of protein, glucose and acetate in the CEPF residues had inhibitive influence on the degradation of cephalosporin C by ionizing radiation, and the effect was more significant when the antibiotic concentration was lower. The total content of COD, polysaccharides and protein changed slightly after radiation and thermal treatment, while they were decreased greatly by ozonation. The primary techno-economic analysis showed that the operational cost of ionizing radiation by electron beam at 50 kGy ($5.2/m3) was comparable to thermal treatment ($4.3-7.9/m3), which was more economical than ozonation ($14.6/m3).
Collapse
Affiliation(s)
- Libing Chu
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China
| | - Dan Chen
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| | - Zhilin Yang
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Qi Yang
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Yunpeng Shen
- State Environmental Protection Engineering Center for Harmless Treatment and Resource Utilization of Antibiotic Residues, Yili Chuanning Biotechnology Company, Ltd., Xinjiang, 835007, PR China
| |
Collapse
|
70
|
de Araújo JC, de Queiroz Silva S, de Aquino SF, Freitas DL, Machado EC, Pereira AR, de Oliveira Paranhos AG, de Paula Dias C. Antibiotic Resistance, Sanitation, and Public Health. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2020. [DOI: 10.1007/698_2020_470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
71
|
Pazda M, Kumirska J, Stepnowski P, Mulkiewicz E. Antibiotic resistance genes identified in wastewater treatment plant systems - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134023. [PMID: 31479900 DOI: 10.1016/j.scitotenv.2019.134023] [Citation(s) in RCA: 307] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 04/15/2023]
Abstract
The intensive use of antibiotics for human, veterinary and agricultural purposes, results in their continuous release into the environment. Together with antibiotics, antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are introduced into wastewater. Wastewater treatment plants (WWTPs) are believed to be probable hotspots for antibiotic resistance dissemination in the environment as they offer convenient conditions for ARB proliferation as well as for horizontal transfer of ARGs among different microorganisms. In fact, genes conferring resistance to all classes of antibiotics together with mobile genetic elements (MGEs) like plasmids, transposons, bacteriophages, integrons are detected in WWTPs in different countries. It seems that WWTPs with conventional treatment processes are capable of significant reduction of ARB but are not efficient in ARG removal. Implementation of advanced wastewater cleaning processes in addition to a conventional wastewater treatment is an important step to protect the aquatic environment. Growing interest in presence and fate of ARB and ARGs in WWTP systems resulted in the fact that knowledge in this area has increased staggeringly in the past few years. The main aim of the article is to collect and organize available data on ARGs, that are commonly detected in raw sewage, treated wastewater or activated sludge. Resistance to the antibiotics usually used in antibacterial therapy belonging to main classes like beta-lactams, macrolides, quinolones, sulfonamides, trimethoprim and tetracyclines was taken into account. The presence of multidrug efflux genes is also included in this paper. The occurrence of antibiotics may promote the selection of ARB and ARGs. As it is important to discuss the problem considering all aspects that influence it, the levels of antibiotics detected in influent and effluent of WWTPs were also presented.
Collapse
Affiliation(s)
- Magdalena Pazda
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Jolanta Kumirska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Ewa Mulkiewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| |
Collapse
|
72
|
Novel antimicrobial filtering materials based on carvacrol, eugenol, thymol and vanillin immobilized on silica microparticles for water treatment. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2019.102228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
73
|
Grehs BWN, Lopes AR, Moreira NFF, Fernandes T, Linton MAO, Silva AMT, Manaia CM, Carissimi E, Nunes OC. Removal of microorganisms and antibiotic resistance genes from treated urban wastewater: A comparison between aluminium sulphate and tannin coagulants. WATER RESEARCH 2019; 166:115056. [PMID: 31520811 DOI: 10.1016/j.watres.2019.115056] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 05/28/2023]
Abstract
The presence of antibiotic resistant-bacteria (ARB) and antibiotic resistance genes (ARG) in treated effluents of urban wastewater treatment plants (WWTP) may represent a threat to the environment and public health. Therefore, cost-effective technologies contributing to minimize loads of these contaminants in the final effluents of WWTP are required. This study aimed at assessing the capacity of coagulation to reduce the ARB&ARG load in secondary treated urban wastewater (STWW), as well as the impact of the process on the structure and diversity of the bacterial community. Coagulation performance using aluminium sulphate, a synthetic substance, and tannins, a biowaste, was compared. Samples were analysed immediately before (STWW) and after the coagulation treatment (Alu, Tan), as well as after 3-days storage in the dark at room temperature (RSTWW, RAlu, RTan), to assess possible reactivation events. Both coagulants decreased the turbidity and colour and reduced the bacterial load (16S rRNA gene copy number, total heterotrophs (HET), and ARB (faecal coliforms resistant to amoxicillin (FC/AMX) or ciprofloxacin (FC/CIP) up to 1-2 log immediately after the treatment. Both coagulants reduced the load of intl1, but in average, aluminium sulphate was able to decrease the content of the analysed ARGs (blaTEM and qnrS) to lower levels than tannin. Reactivation after storage was observed mainly in RTan. In these samples the load of the culturable populations and qnrS gene prevalence increased, sometimes to values higher than those found in the initial wastewater. Reactivation was also characterized by an increment in Gammaproteobacteria relative abundance in the bacterial community, although with distinct patterns for RTan and RAlu. Curvibacter, Undibacterium and Aquaspirillum were among the most abundant genera in RAlu and Aeromonas, Pseudomonas and Stenotrophomonas in RTan. These bacterial community shifts were in agreement with the variations in the culturable bacterial counts of HET for RTan and FC/CIP for RAlu. In summary, the overall performance of aluminium sulphate was better than that of tannins in the treatment of treated urban wastewater.
Collapse
Affiliation(s)
- Bárbara W N Grehs
- Department of Sanitary and Environmental Engineering, Federal University of Santa Maria (UFSM), Av. Roraima 1000, CT Lab, Santa Maria, RS, 97105-900, Brazil
| | - Ana Rita Lopes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Nuno F F Moreira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Telma Fernandes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 13274169-005, Porto, Portugal
| | - Maria A O Linton
- Department of Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Adrián M T Silva
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 13274169-005, Porto, Portugal
| | - Elvis Carissimi
- Department of Sanitary and Environmental Engineering, Federal University of Santa Maria (UFSM), Av. Roraima 1000, CT Lab, Santa Maria, RS, 97105-900, Brazil.
| | - Olga C Nunes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
74
|
Pei M, Zhang B, He Y, Su J, Gin K, Lev O, Shen G, Hu S. State of the art of tertiary treatment technologies for controlling antibiotic resistance in wastewater treatment plants. ENVIRONMENT INTERNATIONAL 2019; 131:105026. [PMID: 31351383 DOI: 10.1016/j.envint.2019.105026] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 05/27/2023]
Abstract
Antibiotic resistance genes (ARGs) have been considered as emerging contaminants of concern nowadays. There are no special technologies designed to directly remove ARGs in wastewater treatment plants (WWTPs). In order to reduce the risk of ARGs, it is vital to understand the efficiency of advanced treatment technologies in removing antibiotic resistance genes in WWTPs. This review highlights the application and efficiency of tertiary treatment technologies on the elimination of ARGs, s, based on an understanding of their occurrence and fate in WWTPs. These technologies include chemical-based processes such as chlorination, ozonation, ultraviolet, and advanced oxidation technology, as well as physical separation processes, biological processes such as constructed wetland and membrane bioreactor, and soil aquifer treatment. The merits, limitations and ameliorative measures of these processes are discussed, with the view to optimizing future treatment strategies and identifying new research directions.
Collapse
Affiliation(s)
- Mengke Pei
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianqiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Karina Gin
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Ovadia Lev
- The Casali Center and the Institute of Chemistry and The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - Genxiang Shen
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Shuangqing Hu
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| |
Collapse
|
75
|
De la Obra Jiménez I, López JLC, Ibáñez GR, García BE, Pérez JAS. Kinetic assessment of antibiotic resistant bacteria inactivation by solar photo-Fenton in batch and continuous flow mode for wastewater reuse. WATER RESEARCH 2019; 159:184-191. [PMID: 31096065 DOI: 10.1016/j.watres.2019.04.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
The presence of antibiotic resistant bacteria in municipal wastewater treatment plants represents a real risk to human health. For the first time, this paper shows that the inactivation rate of cefotaxime resistant bacteria is the same as total bacteria when secondary effluents are treated by the solar photo-Fenton process. To obtain this result, an exhaustive and comparative kinetic study on the inactivation of both total and cefotaxime resistant bacteria (Total coliform, Escherichia coli and Enterococcus sp) was carried out, taking into account the effects of the main operation conditions, such as solar irradiance and iron concentration, and operation mode (batch and continuous). In all the operation conditions studied, no significant differences were found between the first order inactivation rate constants, ki, of total and cefotaxime resistant bacteria. Additionally, ki increased with solar irradiance and iron concentration. As for the effect of the operation mode, the main finding of this work is much quicker inactivation in continuous flow mode than in batch mode, pointing out its potential application at large scale. The best continuous operation condition to inactivate the bacteria to the detection limit (1 CFU mL-1), was at 22.4 min of hydraulic residence time with 5 mg Fe2+ L-1 and 30 mg H2O2·L-1. This treatment time is approximately a third of that reported in batch mode. The efficiency, in terms of figure of merits, of the continuous flow operation was 2.7 m2 of solar collector area to reduce one log of E. coli concentration per m3 of treated water and per hour, in comparison with 2137 m2 calculated for batch operation under the same solar UVA irradiance, 30 W m-2. This paper encourages research into continuous solar disinfection processes due to its enhanced efficiency with regard to the commonly used batch wise operation and shows that efficient removal of total bacteria ensures the removal of antibiotic resistant bacteria.
Collapse
Affiliation(s)
- I De la Obra Jiménez
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, 04120, Almería, Spain; Department of Chemical Engineering, University of Almería, 04120, Almería, Spain
| | - J L Casas López
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, 04120, Almería, Spain; Department of Chemical Engineering, University of Almería, 04120, Almería, Spain
| | - G Rivas Ibáñez
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, 04120, Almería, Spain; Plataforma Solar de Almería, CIEMAT, 04200, Tabernas, Almería, Spain
| | - B Esteban García
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, 04120, Almería, Spain; Department of Chemical Engineering, University of Almería, 04120, Almería, Spain
| | - J A Sánchez Pérez
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, 04120, Almería, Spain; Department of Chemical Engineering, University of Almería, 04120, Almería, Spain.
| |
Collapse
|
76
|
Hou J, Chen Z, Gao J, Xie Y, Li L, Qin S, Wang Q, Mao D, Luo Y. Simultaneous removal of antibiotics and antibiotic resistance genes from pharmaceutical wastewater using the combinations of up-flow anaerobic sludge bed, anoxic-oxic tank, and advanced oxidation technologies. WATER RESEARCH 2019; 159:511-520. [PMID: 31129481 DOI: 10.1016/j.watres.2019.05.034] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/24/2019] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
Pharmaceutical wastewater often contains high levels of antibiotic residues and serves as an important reservoir for antibiotic resistance genes (ARGs). However, the current pharmaceutical wastewater treatment plants (PWWTPs) were not sufficiently effective in removing antibiotics and ARGs. Here, we designed a lab-scale simulation reactor, including up-flow anaerobic sludge bed (UASB), anoxic-oxic tank (A/O), and four separate advanced oxidation processes (AOPs) i.e., UV, Ozonation, Fenton, and Fenton/UV, to simultaneously remove 18 antibiotics and 10 ARGs from a real pharmaceutical wastewater. The results showed that all antibiotics were fully eliminated through the reactor during 180 d-operation. Among all treatment units, UASB provided the greatest contribution (85.8 ± 16.1%) for the removal of 18 antibiotics. The mass balance results manifested that degradation was a predominant mechanism for the removal of tetracyclines, sulfamethoxazole, and ampicillin (62.5-80.9%), while sorption to sludge (73.9%) was predominant for enrofloxacin removal in UASB. Meanwhile, the substantial decrease of ARG absolute abundance (log reduction by 0.1-3.1 fold) through the whole reactor was observed although the existence of the partial enrichment (1.2-3.8 log units) from the influent to the A/O unit. Fenton/UV combination was the most effective AOP for the removal of ARGs. Finally, the optimum operating conditions for the removal of ARGs using Fenton was also proposed considering the relatively lower cost and high ARG elimination. Overall, this study provides feasible suggestions for the design of real PWWTPs for simultaneous removal of antibiotics and ARGs.
Collapse
Affiliation(s)
- Jie Hou
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300071, China
| | - Zeyou Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300071, China
| | - Ju Gao
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300071, China
| | - Yonglei Xie
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Linyun Li
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300071, China
| | - Songyan Qin
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Qing Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300071, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Yi Luo
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
77
|
Iakovides IC, Michael-Kordatou I, Moreira NFF, Ribeiro AR, Fernandes T, Pereira MFR, Nunes OC, Manaia CM, Silva AMT, Fatta-Kassinos D. Continuous ozonation of urban wastewater: Removal of antibiotics, antibiotic-resistant Escherichia coli and antibiotic resistance genes and phytotoxicity. WATER RESEARCH 2019; 159:333-347. [PMID: 31108362 DOI: 10.1016/j.watres.2019.05.025] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 05/11/2023]
Abstract
This work evaluated the removal of a mixture of eight antibiotics (i.e. ampicillin (AMP), azithromycin (AZM), erythromycin (ERY), clarithromycin (CLA), ofloxacin (OFL), sulfamethoxazole (SMX), trimethoprim (TMP) and tetracycline (TC)) from urban wastewater, by ozonation operated in continuous mode at different hydraulic retention times (HRTs) (i.e. 10, 20, 40 and 60 min) and specific ozone doses (i.e. 0.125, 0.25, 0.50 and 0.75 gO3 gDOC- 1). As expected, the efficiency of ozonation was highly ozone dose- and contact time-dependent. The removal of the parent compounds of the selected antibiotics to levels below their detection limits was achieved with HRT of 40 min and specific ozone dose of 0.125 gO3 gDOC- 1. The effect of ozonation was also investigated at a microbiological and genomic level, by studying the efficiency of the process with respect to the inactivation of Escherichia coli and antibiotic-resistant E. coli, as well as to the reduction of the abundance of selected antibiotic resistance genes (ARGs). The inactivation of total cultivable E. coli was achieved under the experimental conditions of HRT 40 min and 0.25 gO3 gDOC-1, at which all antibiotic compounds were already degraded. The regrowth examinations revealed that higher ozone concentrations were required for the permanent inactivation of E. coli below the Limit of Quantification (<LOQ = 0.01 CFU mL- 1). Also, the abundance of the examined ARGs (intl1, aadA1, dfrA1, qacEΔ1 and sul1) was found to decrease with increasing HRT and ozone dose. Despite the fact that the mildest operating parameters were able to eliminate the parent compounds of the tested antibiotics in wastewater effluents, it was clearly demonstrated in this study that higher ozone doses were required in order to confer permanent damage and/or death and prevent potential post-treatment re-growth of both total bacteria and ARB, and to reduce the abundance of ARGs below the LOQ. Interestingly, the mineralization of wastewater, in terms of Dissolved Organic Carbon (DOC) removal, was found to be significantly low even when the higher ozone doses were applied, leading to an increased phytotoxicity towards various plant species. The findings of this study clearly underline the importance of properly optimising the ozonation process (e.g. specific ozone dose and contact time) taking into consideration both the bacterial species and associated ARGs, as well as the wastewater physicochemical properties (e.g. DOC), in order to mitigate the spread of ARB&ARGs, as well as to reduce the potential phytotoxicity.
Collapse
Affiliation(s)
- I C Iakovides
- Department of Civil and Environmental Engineering, School of Engineering, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus; Nireas-International Water Research Centre, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus
| | - I Michael-Kordatou
- Nireas-International Water Research Centre, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus
| | - N F F Moreira
- LEPABE-Laboratory for Process Engineering Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - A R Ribeiro
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - T Fernandes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374, Porto, Portugal
| | - M F R Pereira
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - O C Nunes
- LEPABE-Laboratory for Process Engineering Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - C M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374, Porto, Portugal
| | - A M T Silva
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| | - D Fatta-Kassinos
- Department of Civil and Environmental Engineering, School of Engineering, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus; Nireas-International Water Research Centre, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus.
| |
Collapse
|
78
|
Völker J, Stapf M, Miehe U, Wagner M. Systematic Review of Toxicity Removal by Advanced Wastewater Treatment Technologies via Ozonation and Activated Carbon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7215-7233. [PMID: 31120742 DOI: 10.1021/acs.est.9b00570] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Upgrading wastewater treatment plants (WWTPs) with advanced technologies is one key strategy to reduce micropollutant emissions. Given the complex chemical composition of wastewater, toxicity removal is an integral parameter to assess the performance of WWTPs. Thus, the goal of this systematic review is to evaluate how effectively ozonation and activated carbon remove in vitro and in vivo toxicity. Out of 2464 publications, we extracted 46 relevant studies conducted at 22 pilot or full-scale WWTPs. We performed a quantitative and qualitative evaluation of in vitro (100 assays) and in vivo data (20 species), respectively. Data is more abundant on ozonation (573 data points) than on an activated carbon treatment (162 data points), and certain in vitro end points (especially estrogenicity) and in vivo models (e.g., daphnids) dominate. The literature shows that while a conventional treatment effectively reduces toxicity, residual effects in the effluents may represent a risk to the receiving ecosystem on the basis of effect-based trigger values. In general, an upgrade to ozonation or activated carbon treatment will significantly increase toxicity removal with similar performance. Nevertheless, ozonation generates toxic transformation products that can be removed by a post-treatment. By assessing the growing body of effect-based studies, we identify sensitive and underrepresented end points and species and provide guidance for future research.
Collapse
Affiliation(s)
- Johannes Völker
- Department of Biology , Norwegian University of Science and Technology (NTNU) , Trondheim 7491 , Norway
| | - Michael Stapf
- Berlin Centre of Competence for Water (KWB) , Berlin 10709 , Germany
| | - Ulf Miehe
- Berlin Centre of Competence for Water (KWB) , Berlin 10709 , Germany
| | - Martin Wagner
- Department of Biology , Norwegian University of Science and Technology (NTNU) , Trondheim 7491 , Norway
| |
Collapse
|
79
|
Zhang Z, Li B, Li N, Sardar MF, Song T, Zhu C, Lv X, Li H. Effects of UV disinfection on phenotypes and genotypes of antibiotic-resistant bacteria in secondary effluent from a municipal wastewater treatment plant. WATER RESEARCH 2019; 157:546-554. [PMID: 30991178 DOI: 10.1016/j.watres.2019.03.079] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/24/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
To elucidate the effects of UV disinfection on antibiotic resistance in biologically-treated wastewater, we investigated the antibiotic resistance profiles, species of cultivable heterotrophic bacteria, and antibiotic-resistance genes (ARGs) in antibiotic-resistant bacteria before and after treatment. UV disinfection greatly changed the bacterial community structure and the antibiotic resistance in wastewater. The antibiotic resistance in wastewater samples was strongly associated with the bacterial community. The proportions of Gram-positive bacteria gradually increased with increasing UV fluence. The proportions of bacteria resistant to cephalexin, penicillin, and vancomycin all greatly decreased after UV treatment in both sampling events (July 2018 and January 2019), and those for bacteria resistant to ofloxacin, ciprofloxacin, and sulfadiazine increased, resulting from the alternative antibiotic resistance profiles among different genera. UV disinfection induced the selection of multi-antibiotic resistant (MAR) bacteria. For example, the MAR indices of Aeromonas, the dominant genus during the treatments, were significantly increased after UV irradiation (P < 0.05). The MAR index was also markedly increased (P < 0.05) at a fluence of 5 mJ/cm2 in both events. In UV10 treatment, the bacterial community structure was greatly changed. The genera with relatively low MAR indices replaced that with high MAR indices, and became the dominant genera. As a result, the MAR indices of treated samples showed a decreased trend after 10 mJ/cm2 UV irradiation. The detection frequencies of ARGs located on the chromosome varied mainly due to the evolution of the microbial community. The occurrence of ARGs (tetA, tetC, tetM, tetW, tetX, and sul1) located on plasmid DNA decreased after UV disinfection, and the average detection frequencies of tet and sul genes decreased by 15% and 6%, respectively (P < 0.05). Generally speaking, the effect of UV disinfection on the enrichment of antibiotic resistance is limited in this study, and horizontal gene transfer via the plasmids in surviving bacteria might be impaired due to the decreased abundance of ARGs on the plasmids.
Collapse
Affiliation(s)
- Zhiguo Zhang
- Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; School of Energy and Environment, Southeast University, Nanjing, 210096, PR China
| | - Binxu Li
- Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Na Li
- Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Muhammad Fahad Sardar
- Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Tingting Song
- Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Changxiong Zhu
- Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Xiwu Lv
- School of Energy and Environment, Southeast University, Nanjing, 210096, PR China
| | - Hongna Li
- Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| |
Collapse
|
80
|
Sharma VK, Yu X, McDonald TJ, Jinadatha C, Dionysiou DD, Feng M. Elimination of antibiotic resistance genes and control of horizontal transfer risk by UV-based treatment of drinking water: A mini review. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2019; 13:10.1007/s11783-019-1122-7. [PMID: 32133212 PMCID: PMC7055709 DOI: 10.1007/s11783-019-1122-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 05/19/2023]
Abstract
Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have been recognized as one of the biggest public health issues of the 21st century. Both ARB and ARGs have been determined in water after treatment with conventional disinfectants. Ultraviolet (UV) technology has been seen growth in application to disinfect the water. However, UV method alone is not adequate to degrade ARGs in water. Researchers are investigating the combination of UV with other oxidants (chlorine, hydrogen peroxide (H2O2), peroxymonosulfate (PMS), and photocatalysts) to harness the high reactivity of produced reactive species (Cl·, ClO·, Cl2·-, ·OH, and SO4·-) in such processes with constituents of cell (e.g., deoxyribonucleic acid (DNA) and its components) in order to increase the degradation efficiency of ARGs. This paper briefly reviews the current status of different UV-based treatments (UV/chlorination, UV/H2O2, UV/PMS, and UV-photocatalysis) to degrade ARGs and to control horizontal gene transfer (HGT) in water. The review also provides discussion on the mechanism of degradation of ARGs and application of q-PCR and gel electrophoresis to obtain insights of the fate of ARGs during UV-based treatment processes.
Collapse
Affiliation(s)
- Virender K. Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Xin Yu
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Thomas J. McDonald
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Chetan Jinadatha
- Central Texas Veterans Health Care System, Temple, TX 76504, USA
- College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Dionysios D. Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (DChEE), 705 Engineering Research Center, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Mingbao Feng
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
81
|
Paulus GK, Hornstra LM, Alygizakis N, Slobodnik J, Thomaidis N, Medema G. The impact of on-site hospital wastewater treatment on the downstream communal wastewater system in terms of antibiotics and antibiotic resistance genes. Int J Hyg Environ Health 2019; 222:635-644. [DOI: 10.1016/j.ijheh.2019.01.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/21/2018] [Accepted: 01/15/2019] [Indexed: 02/08/2023]
|
82
|
Solís RR, Gimeno O, Rivas FJ, Beltrán FJ. Simulated solar driven photolytic ozonation for the oxidation of aqueous recalcitrant-to-ozone tritosulfuron. Transformation products and toxicity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 233:513-522. [PMID: 30594116 DOI: 10.1016/j.jenvman.2018.12.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/10/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
This work reports the combination of ozone and solar radiation as an advanced oxidation process to remove the herbicide tritosufuron (TSF) in water. Firstly, the recalcitrance of TSF has been assessed, obtaining an ozonation second order rate constant of 5-154 M-1 min-1 in the range of pH from 5 to 8; while the rate constant with HO was found to be (1.8-3.1)·109 M-1 s-1. Secondly, the simultaneous application of simulated solar radiation in between 300 and 800 nm and ozone resulted positive in the oxidation rate of TSF. Mineralization extent was also higher. Less effective oxidation was achieved after limiting the radiation to the range 360-800 nm or 390-800 nm; also completely inappropriate for mineralization. Thirdly, the detected transformation products (TPs) demonstrated the vulnerability of TSF molecule to be attacked by HO in the sulfonylurea bridge. The combination of ozone and radiation of 300-800 nm led to the most effective removal of the TPs. Finally, after the photolytic ozonation treatment toxicity was also evaluated in terms of phytotoxicity towards the germination and root elongation of Lactuca Sativa seeds, and toxicity by immobilization tests of Daphnia Magna.
Collapse
Affiliation(s)
- Rafael R Solís
- Departamento de Ingeniería Química y Química Física, Universidad de Extremadura, Avda. Elvas s/n, 06006, Badajoz, Spain; Instituto Universitario del Agua, Cambio Climático y Sostenibilidad (IACYS), Universidad de Extremadura, Avda. de la Investigación s/n, 06006, Badajoz, Spain.
| | - Olga Gimeno
- Departamento de Ingeniería Química y Química Física, Universidad de Extremadura, Avda. Elvas s/n, 06006, Badajoz, Spain; Instituto Universitario del Agua, Cambio Climático y Sostenibilidad (IACYS), Universidad de Extremadura, Avda. de la Investigación s/n, 06006, Badajoz, Spain
| | - F Javier Rivas
- Departamento de Ingeniería Química y Química Física, Universidad de Extremadura, Avda. Elvas s/n, 06006, Badajoz, Spain; Instituto Universitario del Agua, Cambio Climático y Sostenibilidad (IACYS), Universidad de Extremadura, Avda. de la Investigación s/n, 06006, Badajoz, Spain
| | - Fernando J Beltrán
- Departamento de Ingeniería Química y Química Física, Universidad de Extremadura, Avda. Elvas s/n, 06006, Badajoz, Spain; Instituto Universitario del Agua, Cambio Climático y Sostenibilidad (IACYS), Universidad de Extremadura, Avda. de la Investigación s/n, 06006, Badajoz, Spain
| |
Collapse
|
83
|
Rodríguez-Chueca J, Varella Della Giustina S, Rocha J, Fernandes T, Pablos C, Encinas Á, Barceló D, Rodríguez-Mozaz S, Manaia CM, Marugán J. Assessment of full-scale tertiary wastewater treatment by UV-C based-AOPs: Removal or persistence of antibiotics and antibiotic resistance genes? THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:1051-1061. [PMID: 30586792 DOI: 10.1016/j.scitotenv.2018.10.223] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/04/2018] [Accepted: 10/16/2018] [Indexed: 06/09/2023]
Abstract
This research reports for the first time the full-scale application of different homogeneous Advanced Oxidation Processes (AOPs) (H2O2/UV-C, PMS/UV-C and PMS/Fe(II)/UV-C) for the removal of antibiotics (ABs) and antibiotic resistance genes (ARGs) from wastewater effluent at Estiviel wastewater treatment plant (WWTP) (Toledo, Spain). AOPs based on the photolytic decomposition of H2O2 and peroxymonosulfate tested at low dosages (0.05-0.5 mM) and with very low UV-C contact time (4-18 s) demonstrated to be more efficient than UV-C radiation alone on the removal of the analyzed ABs. PMS (0.5 mM) combined with UV-C (7 s contact time) was the most efficient treatment in terms of AB removal: 7 out of 10 ABs detected in the wastewater were removed more efficiently than using the other oxidants. In terms of ARGs removal efficiency, UV-C alone seemed the most efficient treatment, although H2O2/UV-C, PMS/UV-C and PMS/Fe(II)/UV-C were supposed to generate higher concentrations of free radicals. The results show that treatments with the highest removal of ABs and ARGs did not coincide, which could be attributed to the competition between DNA and oxidants in the absorption of UV photons, reducing the direct photolysis of the DNA. Whereas the photolytic ABs removal is improved by the generation of hydroxyl and sulfate radicals, the opposite behavior occurs in the case of ARGs. These results suggest that a compromise between ABs and ARGs removal must be achieved in order to optimize wastewater treatment processes.
Collapse
Affiliation(s)
- Jorge Rodríguez-Chueca
- Department of Chemical and Environmental Technology (ESCET), Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933, Móstoles, Madrid, Spain; Department of Chemical and Environmental Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/ José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Saulo Varella Della Giustina
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, 17003 Girona, Spain
| | - Jaqueline Rocha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
| | - Telma Fernandes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
| | - Cristina Pablos
- Department of Chemical and Environmental Technology (ESCET), Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933, Móstoles, Madrid, Spain
| | - Ángel Encinas
- Department of Innovation & Technology, FCC Aqualia, S.A., C/ Montesinos 28, 06002 Badajoz, Spain
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, 17003 Girona, Spain; Environmental Chemistry Department, IDAEA-CSIC, Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, 17003 Girona, Spain
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
| | - Javier Marugán
- Department of Chemical and Environmental Technology (ESCET), Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933, Móstoles, Madrid, Spain.
| |
Collapse
|
84
|
Shen Y, Chu L, Zhuan R, Xiang X, Sun H, Wang J. Degradation of antibiotics and antibiotic resistance genes in fermentation residues by ionizing radiation: A new insight into a sustainable management of antibiotic fermentative residuals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 232:171-178. [PMID: 30472560 DOI: 10.1016/j.jenvman.2018.11.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/20/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
Antibiotic fermentative residues are categorized into hazardous wastes in China due to the existence of antibiotic resistance genes (ARGs) and residual antibiotics How to treat and manage these wastes is a new challenge. This paper investigated the treatment of erythromycin thiocyanate fermentation (EryTcF) residues using ionizing radiation technology for removing ARGs and antibiotics from the fermentation residues. The results showed that as exposed the EryTcF residues to gamma radiation, the abundance of four macrolide resistance genes (ereA, ermB, mefA and mpfB) decreased 1.0-1.3 log with 90-95% removal, and around 56% of erythromycin was removed at absorbed dose of 30 kGy and room temperature (19-22 °C). Direct action of γ-ray radiation contributed to 42-53% of ARGs removal and indirect action (radicals' reaction) was mainly responsible for erythromycin removal (84%). The positive correlation between total ARGs and Shannon index was observed. The potential ARGs-linked hosts were assigned to genera Aeromonas and Enterobacteriaceae and their abundance decreased by 36-43% at 30 kGy. Radiation has not obvious influence on the nutrient components of residues, such as protein content, suggesting that the radiation treated fermentative residues can be used as fertilizer, which is favorable for the development of recycling economy in antibiotic pharmaceutical factory. The results could provide a new insight into a sustainable management of antibiotic fermentative residuals.
Collapse
Affiliation(s)
- Yunpeng Shen
- School of Economics and Management, Center for Innovation Management Research, Xinjiang University, Xinjiang 830047, PR China
| | - Libing Chu
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Run Zhuan
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Xianhong Xiang
- School of Economics and Management, Center for Innovation Management Research, Xinjiang University, Xinjiang 830047, PR China
| | - Hui Sun
- School of Economics and Management, Center for Innovation Management Research, Xinjiang University, Xinjiang 830047, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
85
|
Removal of Enteric Pathogens from Real Wastewater Using Single and Catalytic Ozonation. WATER 2019. [DOI: 10.3390/w11010127] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Water scarcity is one of the main problems of this century. Water reclamation appears as an alternative due to the reuse of treated wastewater. Therefore, effluents treatment technologies (activated sludge, rotary biological discs, percolating beds) must be improved since they are not able to remove emerging contaminants such as enteric pathogens (bacteria and virus). These pollutants are difficult to remove from the wastewater and lead to adverse consequences to human health. Advanced oxidation processes, such as single and catalytic ozonation, appear as suitable complements to conventional processes. Catalytic ozonation was carried out using a low-cost material, a volcanic rock. Single and catalytic ozonation were capable of promoting total Escherichia coli removal from municipal wastewater after 90 min of contact. The presence of volcanic rock increases disinfection efficiency since E. coli regrowth was not observed. The identified viruses (Norovirus genotype I and II and JC virus) were completely removed using catalytic ozonation, whereas single ozonation was not able to eliminate JC virus even after 150 min of treatment. The higher performance of the catalytic process can be explained by the formation of hydroxyl radicals, proving that disinfection occurs in the liquid bulk and not due to adsorption at the volcanic rock.
Collapse
|
86
|
Abstract
The search for alternative water sources is pushing to the reuse of treated water coming from municipal wastewater treatment plants. However, this requires that tightened standards be fulfilled. Among them is the microbiological safety of reused water. Although chlorination is the mostly applied disinfection system, it presents several disadvantages, such as the high doses required and the possibility of formation of dangerous by-products. Moreover, the threat of antibiotic resistance genes (ARGs) spread throughout poorly treated water is requiring the implementation of more efficient disinfection systems. Ozone and photo assisted disinfection technologies are being given special attention to reach treated water with higher quality. Still, much must be done to optimize the processes so that cost-effective systems may be obtained. This review paper gives a critical overview on the application of ozone and photo-based disinfection systems, bearing in mind their advantages and disadvantages when applied to water and municipal wastewater. Also, the possibility of integrated disinfection systems is considered.
Collapse
|
87
|
Li X, Sun J, Che Y, Lv Y, Liu F. Antibacterial properties of chitosan chloride-graphene oxide composites modified quartz sand filter media in water treatment. Int J Biol Macromol 2019; 121:760-773. [DOI: 10.1016/j.ijbiomac.2018.10.123] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/06/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022]
|
88
|
Li R, Jay JA, Stenstrom MK. Fate of antibiotic resistance genes and antibiotic-resistant bacteria in water resource recovery facilities. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:5-20. [PMID: 30682226 DOI: 10.1002/wer.1008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 06/09/2023]
Abstract
Many important diseases are showing resistance to commonly used antibiotics, and the resistance is potentially caused by widespread use of antibiotics for maintaining human health and improving food production. Antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) are associated with this increase, and their fate in water resource recovery facilities is an important, emerging area of research. This literature review summarizes current findings of worldwide research on the fate of ARB and ARGs in various types of treatment plants. Twenty-five published studies were reviewed which contained 215 observations in activated sludge, membrane bioreactors, anaerobic digestion, constructed wetlands, coagulation-filtration, and three types of disinfection. We found 70% decreased observations, 18% increased observations, and 12% unchanged observations of all observations in all treatment processes. Resistance genes to tetracycline were most often observed, but more studies are needed in other antibiotic resistance genes. The causes for increased abundance of ARGs and ARB are not well understood, and further studies are warranted. PRACTITIONER POINTS: Antibiotic resistance is increasing with concern that treatment plants may acclimate bacteria to antibiotics. A literature survey found 215 resistance observations with 70% decreased, 18% increased, 12% unchanged after treatment. The type of treatment process is important with activated sludge showing the greatest reductions.
Collapse
Affiliation(s)
- Renjie Li
- University of California Los Angeles, Los Angeles, California
| | - Jennifer A Jay
- University of California Los Angeles, Los Angeles, California
| | | |
Collapse
|
89
|
Liao X, Cullen PJ, Liu D, Muhammad AI, Chen S, Ye X, Wang J, Ding T. Combating Staphylococcus aureus and its methicillin resistance gene (mecA) with cold plasma. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:1287-1295. [PMID: 30248853 DOI: 10.1016/j.scitotenv.2018.07.190] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 06/08/2023]
Abstract
The increase in antibiotic resistance has become a global challenge to public health. In this study, an atmospheric cold plasma (ACP) system was applied for combating methicillin-resistant Staphylococcus aureus (MRSA) and its methicillin resistance gene (mecA) during food wastewater treatment. The plate count and flow cytometry methods were employed to estimate the damage in MRSA induced by plasma treatment. A quantitative real-time PCR (qPCR) method was used to assess the plasma-induced degradation of the mecA genes. The inactivation of MRSA and degradation of extracellular (e-) and intracellular (i-)mecA genes were investigated in phosphate buffered solution as a function of plasma exposure. A relatively low plasma influence of 0.12 kJ/cm2 accounted for 5-log MRSA and 1.4-log e-mecA genes reduction, while only around 0.19-log degradation for i-mecA genes. As the plasma intensity was accumulated to 0.35 kJ/cm2, the reduction of e- and i-mecA genes was increased to 2.6 and 0.8 logs, respectively. The degradation of i-mecA genes was much slower than that of e-mecA genes due to the protective effects of the outer envelopes or intracellular components against plasma. The matrix effect of wastewater effluents shielded both antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs) from plasma disinfection, which led to a lower degradation efficacy. Our results could support the development and optimization of plasma-based wastewater treatment.
Collapse
Affiliation(s)
- Xinyu Liao
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - P J Cullen
- BioPlasma Research Group, Dublin Institute of Technology, Dublin, Ireland; Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Donghong Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Aliyu Idris Muhammad
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, China; Department of Agricultural and Environmental Engineering, Faculty of Engineering, Bayero University Kano, Nigeria
| | - Shiguo Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, China
| | - Xingqian Ye
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, China
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Chengyang, Qingdao, China
| | - Tian Ding
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
90
|
Fortunato G, Vaz-Moreira I, Becerra-Castro C, Nunes OC, Manaia CM. A rationale for the high limits of quantification of antibiotic resistance genes in soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1696-1703. [PMID: 30300875 DOI: 10.1016/j.envpol.2018.09.128] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
The determination of values of abundance of antibiotic resistance genes (ARGs) per mass of soil is extremely useful to assess the potential impacts of relevant sources of antibiotic resistance, such as irrigation with treated wastewater or manure application. Culture-independent methods and, in particular, quantitative PCR (qPCR), have been regarded as suitable approaches for such a purpose. However, it is arguable if these methods are sensitive enough to measure ARGs abundance at levels that may represent a risk for environmental and human health. This study aimed at demonstrating the range of values of ARGs quantification that can be expected based on currently used procedures of DNA extraction and qPCR analyses. The demonstration was based on the use of soil samples spiked with known amounts of wastewater antibiotic resistant bacteria (ARB) (Enterococcus faecalis, Escherichia coli, Acinetobacter johnsonii, or Pseudomonas aeruginosa), harbouring known ARGs, and also on the calculation of expected values determined based on qPCR. The limits of quantification (LOQ) of the ARGs (vanA, qnrS, blaTEM, blaOXA, blaIMP, blaVIM) were observed to be approximately 4 log-units per gram of soil dry weight, irrespective of the type of soil tested. These values were close to the theoretical LOQ values calculated based on currently used DNA extraction methods and qPCR procedures. The observed LOQ values can be considered extremely high to perform an accurate assessment of the impacts of ARGs discharges in soils. A key message is that ARGs accumulation will be noticeable only at very high doses. The assessment of the impacts of ARGs discharges in soils, of associated risks of propagation and potential transmission to humans, must take into consideration this type of evidence, and avoid the simplistic assumption that no detection corresponds to risk absence.
Collapse
Affiliation(s)
- Gianuario Fortunato
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374, Porto, Portugal
| | - Ivone Vaz-Moreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374, Porto, Portugal; LEPABE, Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Cristina Becerra-Castro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374, Porto, Portugal; LEPABE, Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Olga C Nunes
- LEPABE, Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374, Porto, Portugal.
| |
Collapse
|
91
|
Chen T, Luo L, Deng S, Shi G, Zhang S, Zhang Y, Deng O, Wang L, Zhang J, Wei L. Sorption of tetracycline on H 3PO 4 modified biochar derived from rice straw and swine manure. BIORESOURCE TECHNOLOGY 2018; 267:431-437. [PMID: 30032057 DOI: 10.1016/j.biortech.2018.07.074] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/10/2018] [Accepted: 07/14/2018] [Indexed: 05/04/2023]
Abstract
Currently, the information about the sorption of tetracycline (TC) on animal manure derived biochar was rare although plant residue derived biochar showed high sorption of TC). Therefore, this study explored the sorption of TC on swine manure derived biochar, and compared with rice straw derived biochar simultaneously. Also, H3PO4 was adopted to modify both types of biochar. The sorption kinetic and isotherm data showed H3PO4 modification enhanced the sorption of TC on both types of biochar (especially swine-manure-biochar), and indicated the chemisorptions including H-bonding and π-π electron donor acceptor interaction might be the primary mechanism. Moreover, the strengthened electrostatic attraction between TC and biochars might largely explain the enhanced sorption capacity of TC along with pH increasing from 5.0 to 9.0. At the same conditions, swine manure derived biochar demonstrated lower sorption capacity of TC than rice straw biochar, but still could be good material for the sorption of TC.
Collapse
Affiliation(s)
- Tingwei Chen
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Ling Luo
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, People's Republic of China.
| | - Shihuai Deng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, People's Republic of China.
| | - Guozhong Shi
- Biogas Institute of Ministry of Agriculture, Chengdu 610041, People's Republic of China.
| | - Shirong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Yanzong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Ouping Deng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Lilin Wang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Jing Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Luoyu Wei
- Biogas Institute of Ministry of Agriculture, Chengdu 610041, People's Republic of China
| |
Collapse
|
92
|
Giannakis S, Le TTM, Entenza JM, Pulgarin C. Solar photo-Fenton disinfection of 11 antibiotic-resistant bacteria (ARB) and elimination of representative AR genes. Evidence that antibiotic resistance does not imply resistance to oxidative treatment. WATER RESEARCH 2018; 143:334-345. [PMID: 29986243 DOI: 10.1016/j.watres.2018.06.062] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/24/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
The emergence of antibiotic resistance represents a major threat to human health. In this work we investigated the elimination of antibiotic resistant bacteria (ARB) by solar light and solar photo-Fenton processes. As such, we have designed an experimental plan in which several bacterial strains (Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae) possessing different drug-susceptible and -resistant patterns and structures (Gram-positive and Gram-negative) were subjected to solar light and the photo-Fenton oxidative treatment in water. We showed that both solar light and solar photo-Fenton processes were effective in the elimination of ARB in water and that the time necessary for solar light disinfection and solar photo-Fenton disinfection were similar for antibiotic-susceptible and antibiotic-resistant strains (mostly 180-240 and 90-120 min, respectively). Moreover, the bacterial structure did not significantly affect the effectiveness of the treatment. Similar regrowth pattern was observed (compared to the susceptible strain) and no development of bacteria with higher drug-resistance values was found in waters after any treatment. Finally, both processes were effective to reduce AR genes (ARGs), although solar photo-Fenton was more rapid than solar light. In conclusion, the solar photo-Fenton process ensured effective disinfection of ARB and elimination of ARGs in water (or wastewater) and is a potential mean to ensure limitation of ARB and ARG spread in nature.
Collapse
Affiliation(s)
- Stefanos Giannakis
- School of Basic Sciences (SB), Institute of Chemical Science and Engineering (ISIC), Group of Advanced Oxidation Processes (GPAO), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015 Lausanne, Switzerland.
| | - Truong-Thien Melvin Le
- School of Basic Sciences (SB), Institute of Chemical Science and Engineering (ISIC), Group of Advanced Oxidation Processes (GPAO), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015 Lausanne, Switzerland
| | - Jose Manuel Entenza
- Faculty of Biology and Medicine, Department of Fundamental Microbiology, University of Lausanne (UNIL), Biophore Building, CH-1015, Lausanne, Switzerland
| | - Cesar Pulgarin
- School of Basic Sciences (SB), Institute of Chemical Science and Engineering (ISIC), Group of Advanced Oxidation Processes (GPAO), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
93
|
Silva I, Tacão M, Tavares RDS, Miranda R, Araújo S, Manaia CM, Henriques I. Fate of cefotaxime-resistant Enterobacteriaceae and ESBL-producers over a full-scale wastewater treatment process with UV disinfection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:1028-1037. [PMID: 29929272 DOI: 10.1016/j.scitotenv.2018.05.229] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/17/2018] [Accepted: 05/18/2018] [Indexed: 05/29/2023]
Abstract
Disinfection by UV radiation is one of the most promising solutions to reduce the bacterial load and antibiotic resistance in the final effluents of urban wastewater treatment plants (UWTP). Our aim was to evaluate the fate of cefotaxime-resistant Enterobacteriaceae and Extended Spectrum Beta-Lactamase (ESBL) producers in a full-scale system that includes UV-C disinfection. Over treatment, the abundance of cefotaxime-resistant Enterobacteriaceae was reduced, with reductions of 1.9 log units after secondary treatment (STW samples) and 1.8 log following UV disinfection (UTW samples). These reductions, did not reflect the variations in the prevalence of cefotaxime-resistant Enterobacteriaceae, estimated to be of 3% in raw wastewater (RW), 18% in STW and 3% in UTW. A significant increase of cefotaxime-resistant bacterial counts (0.5 log; p < 0.05) was observed after 3 days of storage. In a total of 1799 cefotaxime-resistant Enterobacteriaceae isolates, 15% harboured blaCTX-M (n = 274), 11% blaTEM (n = 194) and 4% blaSHV (n = 72). While the ESBL gene prevalence decreased over treatment, the prevalence of the intI1 gene decreased after ST but slightly increased in UTW samples. The blaCTX-M-carriers were identified as Escherichia coli and Klebsiella pneumoniae, mostly multi-drug resistant (90.5%) and carrying integrase genes (82.8%). The blaCTX-M gene variants (48 blaCTX-M-15, 9 blaCTX-M-32, 8 blaCTX-M-1, 5 blaCTX-M-27, and 2 blaCTX-M-14) were flanked by ISEcp1, ISEcp1/IS26, IS903 and ORF477 in 8 different arrangements. The IncF plasmid replicon type was highly prevalent among blaCTX-M-carrying Escherichia coli (74.5%) while IncR predominated among K. pneumoniae (54.5%). Our results confirmed the potential of UV-C disinfection to remove antibiotic resistant bacteria. Still, resistant Enterobacteriaceae (about 30 × 106 cells per m3 of water), presenting traits that might potentiate antibiotic resistance spread, are released in the final effluent. In addition, a significant regrowth was observed after storage. These results suggest that improvements of wastewater disinfection are still required to minimize the risks associated with UWTP discharges.
Collapse
Affiliation(s)
- Isabel Silva
- Department of Biology and CESAM, University of Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal
| | - Marta Tacão
- Department of Biology and CESAM, University of Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal.
| | - Rafael D S Tavares
- Department of Biology and CESAM, University of Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal
| | - Rita Miranda
- Department of Biology and CESAM, University of Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal
| | - Susana Araújo
- Department of Biology and CESAM, University of Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, apartado 2511, 4202-401 Porto, Portugal
| | - Isabel Henriques
- Department of Biology and CESAM, University of Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
94
|
Gomes JF, Lopes A, Gonçalves D, Luxo C, Gmurek M, Costa R, Quinta-Ferreira RM, Martins RC, Matos A. Biofiltration using C. fluminea for E.coli removal from water: Comparison with ozonation and photocatalytic oxidation. CHEMOSPHERE 2018; 208:674-681. [PMID: 29894968 DOI: 10.1016/j.chemosphere.2018.06.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 06/08/2023]
Abstract
Corbicula fluminea, an Asian clam, is one of the worst invasive species in Europe that can survive in very adverse environmental conditions. Despite its negative impacts, the species also has the capacity to bioaccumulate heavy metals, contaminants and can be exploited for wastewater treatment purposes. The capacity of the Asian clam to remove Escherichia coli, used as fecal contamination indicator, was analyzed. Conventional wastewater treatment plants are not suitable to remove bacteria, thus resulting in treated municipal wastewater with high bacterial loads. E. coli clearance rate was analyzed as function of the number of clams. The bivalves can remove bacteria until concentrations below the detection limit in about 6 h. The adsorption on the clam shells' and bioaccumulation on the soft tissues were also analyzed. The depuration of clams along 48 h were analyzed revealing that no bacteria was detected in the water. Thus, these results suggest that Asian clam can bioprocess E. coli. On the other hand, results obtained by this methodology were compared with ozonation and photocatalytic oxidation using TiO2, Ag, Au, Pd-TiO2. In all treatments it was possible to achieve concentrations of E. coli below the detection limit. However, photocatalytic oxidation demands about 4700 folds more energy than ozonation, besides the costs associated with catalysts. Comparing complexity of ozonation with biofiltration, this study suggests that application of biofiltration using C. fluminea can be a suitable solution to minimize the presence of bacteria in wastewater, reducing environmental and economic impacts.
Collapse
Affiliation(s)
- João F Gomes
- CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal.
| | - Ana Lopes
- CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - Daniel Gonçalves
- CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Microbiology Laboratory, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
| | - Cristina Luxo
- CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Microbiology Laboratory, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
| | - Marta Gmurek
- Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering Lodz University of Technology, Wolczanska 213, 90-924 Lodz, Poland
| | - Raquel Costa
- CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - Rosa M Quinta-Ferreira
- CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - Rui C Martins
- CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - Ana Matos
- CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Microbiology Laboratory, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
| |
Collapse
|
95
|
Proia L, Anzil A, Borrego C, Farrè M, Llorca M, Sanchis J, Bogaerts P, Balcázar JL, Servais P. Occurrence and persistence of carbapenemases genes in hospital and wastewater treatment plants and propagation in the receiving river. JOURNAL OF HAZARDOUS MATERIALS 2018; 358:33-43. [PMID: 29960932 DOI: 10.1016/j.jhazmat.2018.06.058] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 05/29/2023]
Abstract
This study aims to investigate the prevalence of clinically relevant carbapenemases genes (blaKPC, blaNDM and blaOXA-48) in water samples collected over one-year period from hospital (H), raw and treated wastewater of two wastewater treatment plants (WWTPs) as well as along the Zenne River (Belgium). The genes were quantified in both particle-attached (PAB) and free-living (FLB) bacteria. Our results showed that absolute abundances were the highest in H waters. Although absolute abundances were significantly reduced in WWTP effluents, the relative abundance (normalized per 16S rRNA) was never lowered through wastewater treatment. Particularly, for the PAB the relative abundances were significantly higher in the effluents respect to the influents of both WWTPs for all the genes. The absolute abundances along the Zenne River increased from upstream to downstream, peaking after the release of WWTPs effluents, in both fractions. Our results demonstrated that blaKPC, blaNDM and blaOXA-48 are widely distributed in the Zenne as a consequence of chronic discharge from WWTPs. To conclude, the levels of carbapenemases genes are significantly lower than other genes conferring resistance to more widely used antibiotics (analyzed in previous studies carried out at the same sites), but could raise up to the levels of high prevalent resistance genes.
Collapse
Affiliation(s)
- Lorenzo Proia
- Ecologie des Systèmes Aquatiques, Université Libre de Bruxelles, Campus de la Plaine, CP 221, Boulevard du Triomphe, 1050 Brussels, Belgium.
| | - Adriana Anzil
- Ecologie des Systèmes Aquatiques, Université Libre de Bruxelles, Campus de la Plaine, CP 221, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Carles Borrego
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain; Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Campus de Montilivi, 17003, Girona, Spain
| | - Marinella Farrè
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Marta Llorca
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Josep Sanchis
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Pierre Bogaerts
- Laboratory of Clinical Microbiology, Belgian National Reference Center for Monitoring Antimicrobial Resistance in Gram-negative Bacteria, CHU UCL Avenue Docteur G. Thérasse, 1, 5530, Yvoir, Belgium
| | - Jose Luis Balcázar
- Catalan Institute for Water Research (ICRA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain
| | - Pierre Servais
- Ecologie des Systèmes Aquatiques, Université Libre de Bruxelles, Campus de la Plaine, CP 221, Boulevard du Triomphe, 1050 Brussels, Belgium
| |
Collapse
|
96
|
Narciso-da-Rocha C, Rocha J, Vaz-Moreira I, Lira F, Tamames J, Henriques I, Martinez JL, Manaia CM. Bacterial lineages putatively associated with the dissemination of antibiotic resistance genes in a full-scale urban wastewater treatment plant. ENVIRONMENT INTERNATIONAL 2018; 118:179-188. [PMID: 29883764 DOI: 10.1016/j.envint.2018.05.040] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/25/2018] [Accepted: 05/23/2018] [Indexed: 05/25/2023]
Abstract
Urban wastewater treatment plants (UWTPs) are reservoirs of antibiotic resistance. Wastewater treatment changes the bacterial community and inevitably impacts the fate of antibiotic resistant bacteria and antibiotic resistance genes (ARGs). Some bacterial groups are major carriers of ARGs and hence, their elimination during wastewater treatment may contribute to increasing resistance removal efficiency. This study, conducted at a full-scale UWTP, evaluated variations in the bacterial community and ARGs loads and explored possible associations among them. With that aim, the bacterial community composition (16S rRNA gene Illumina sequencing) and ARGs abundance (real-time PCR) were characterized in samples of raw wastewater (RWW), secondary effluent (sTWW), after UV disinfection (tTWW), and after a period of 3 days storage to monitoring possible bacterial regrowth (tTWW-RE). Culturable enterobacteria were also enumerated. Secondary treatment was associated with the most dramatic bacterial community variations and coincided with reductions of ~2 log-units in the ARGs abundance. In contrast, no significant changes in the bacterial community composition and ARGs abundance were observed after UV disinfection of sTWW. Nevertheless, after UV treatment, viability losses were indicated ~2 log-units reductions of culturable enterobacteria. The analysed ARGs (qnrS, blaCTX-M, blaOXA-A, blaTEM, blaSHV, sul1, sul2, and intI1) were strongly correlated with taxa more abundant in RWW than in the other types of water, and which associated with humans and animals, such as members of the families Campylobacteraceae, Comamonadaceae, Aeromonadaceae, Moraxellaceae, and Bacteroidaceae. Further knowledge of the dynamics of the bacterial community during wastewater treatment and its relationship with ARGs variations may contribute with information useful for wastewater treatment optimization, aiming at a more effective resistance control.
Collapse
Affiliation(s)
- Carlos Narciso-da-Rocha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal.
| | - Jaqueline Rocha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal; Biology Department, CESAM, University of Aveiro, Aveiro, Portugal.
| | - Ivone Vaz-Moreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal.
| | - Felipe Lira
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Cantoblanco, Madrid, Spain
| | - Javier Tamames
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Cantoblanco, Madrid, Spain.
| | - Isabel Henriques
- Biology Department, CESAM, University of Aveiro, Aveiro, Portugal.
| | - José Luis Martinez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Cantoblanco, Madrid, Spain.
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal.
| |
Collapse
|
97
|
Lorenzo P, Adriana A, Jessica S, Carles B, Marinella F, Marta L, Luis BJ, Pierre S. Antibiotic resistance in urban and hospital wastewaters and their impact on a receiving freshwater ecosystem. CHEMOSPHERE 2018; 206:70-82. [PMID: 29730567 DOI: 10.1016/j.chemosphere.2018.04.163] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/18/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
The main objective of this study was to investigate the antibiotic resistance (AR) levels in wastewater (WW) and the impact on the receiving river. Samples were collected once per season over one year in the WW of a hospital, in the raw and treated WW of two wastewater treatment plants (WWTPs), as well as upstream and downstream from the release of WWTPs effluents into the Zenne River (Belgium). Culture-dependent methods were used to quantify Escherichia coli and heterotrophic bacteria resistant to amoxicillin, sulfamethoxazole, nalidixic acid and tetracycline. Six antibiotic resistance genes (ARGs) were quantified in both particle-attached (PAB) and free-living (FLB) bacteria. Our results showed that WWTPs efficiently removed antibiotic resistant bacteria (ARB) regardless of its AR profile. The ARGs levels were the highest in the hospital WW and were significantly reduced in both WWTPs. However, ARB and ARGs abundances significantly increased into the Zenne River downstream from the WWTPs outfalls. The variation in the relative abundance of ARGs through WW treatment differed depending on the WWTP, fraction, and gene considered. The sul1 and sul2 genes in PAB fraction showed significantly higher relative abundances in the effluent compared to the influent of both WWTPs. This study demonstrated that WWTPs could be hotspots for AR spread with significant impacts on receiving freshwater ecosystems. This was the first comprehensive study investigating at the same time antibiotics occurrence, fecal bacteria indicators, heterotrophic bacterial communities, and ARGs (distinguishing PAB and FLB) to assess AR levels in WW and impacts on the receiving river.
Collapse
Affiliation(s)
- Proia Lorenzo
- Ecologie des Systèmes Aquatiques, Université Libre de Bruxelles, Campus de la Plaine, CP 221, Boulevard du Triomphe, 1050 Brussels, Belgium.
| | - Anzil Adriana
- Ecologie des Systèmes Aquatiques, Université Libre de Bruxelles, Campus de la Plaine, CP 221, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Subirats Jessica
- Catalan Institute for Water Research (ICRA), c/ Emili Grahit 101, 17003 Girona, Spain
| | - Borrego Carles
- Catalan Institute for Water Research (ICRA), c/ Emili Grahit 101, 17003 Girona, Spain
| | - Farrè Marinella
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Llorca Marta
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Balcázar Jose Luis
- Catalan Institute for Water Research (ICRA), c/ Emili Grahit 101, 17003 Girona, Spain
| | - Servais Pierre
- Ecologie des Systèmes Aquatiques, Université Libre de Bruxelles, Campus de la Plaine, CP 221, Boulevard du Triomphe, 1050 Brussels, Belgium
| |
Collapse
|
98
|
Manaia CM, Rocha J, Scaccia N, Marano R, Radu E, Biancullo F, Cerqueira F, Fortunato G, Iakovides IC, Zammit I, Kampouris I, Vaz-Moreira I, Nunes OC. Antibiotic resistance in wastewater treatment plants: Tackling the black box. ENVIRONMENT INTERNATIONAL 2018; 115:312-324. [PMID: 29626693 DOI: 10.1016/j.envint.2018.03.044] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/05/2018] [Accepted: 03/28/2018] [Indexed: 05/20/2023]
Abstract
Wastewater is among the most important reservoirs of antibiotic resistance in urban environments. The abundance of carbon sources and other nutrients, a variety of possible electron acceptors such as oxygen or nitrate, the presence of particles onto which bacteria can adsorb, or a fairly stable pH and temperature are examples of conditions favouring the remarkable diversity of microorganisms in this peculiar habitat. The wastewater microbiome brings together bacteria of environmental, human and animal origins, many harbouring antibiotic resistance genes (ARGs). Although numerous factors contribute, mostly in a complex interplay, for shaping this microbiome, the effect of specific potential selective pressures such as antimicrobial residues or metals, is supposedly determinant to dictate the fate of antibiotic resistant bacteria (ARB) and ARGs during wastewater treatment. This paper aims to enrich the discussion on the ecology of ARB&ARGs in urban wastewater treatment plants (UWTPs), intending to serve as a guide for wastewater engineers or other professionals, who may be interested in studying or optimizing the wastewater treatment for the removal of ARB&ARGs. Fitting this aim, the paper overviews and discusses: i) aspects of the complexity of the wastewater system and/or treatment that may affect the fate of ARB&ARGs; ii) methods that can be used to explore the resistome, meaning the whole ARB&ARGs, in wastewater habitats; and iii) some frequently asked questions for which are proposed addressing modes. The paper aims at contributing to explore how ARB&ARGs behave in UWTPs having in mind that each plant is a unique system that will probably need a specific procedure to maximize ARB&ARGs removal.
Collapse
Affiliation(s)
- Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal.
| | - Jaqueline Rocha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
| | - Nazareno Scaccia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
| | - Roberto Marano
- Department of Agroecology and Plant Health, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel; Institute of Soil, Water, and Environmental Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel
| | - Elena Radu
- University of Technology Vienna, Institute for Water Quality and Resources Management, Karlsplatz 13/226, A-1040 Vienna, Austria; AGES - Austrian Agency for Health and Food Safety, Spargelfeldstraße 191, A-1220 Vienna, Austria
| | - Francesco Biancullo
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Adventech-Advanced Environmental Technologies, Centro Empresarial e Tecnológico, Rua de Fundões 151, 3700-121 São João da Madeira, Portugal
| | - Francisco Cerqueira
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain
| | - Gianuário Fortunato
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
| | - Iakovos C Iakovides
- NIREAS-International Water Research Center and Department of Civil and Environmental Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Ian Zammit
- Department of Civil Engineering, University of Salerno, SP24a, 84084 Fisciano, SA, Italy
| | - Ioannis Kampouris
- Institute for Hydrobiology, Technische Universität Dresden, 01217 Dresden, Germany
| | - Ivone Vaz-Moreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal; LEPABE, Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Olga C Nunes
- LEPABE, Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
99
|
Moreira NFF, Narciso-da-Rocha C, Polo-López MI, Pastrana-Martínez LM, Faria JL, Manaia CM, Fernández-Ibáñez P, Nunes OC, Silva AMT. Solar treatment (H 2O 2, TiO 2-P25 and GO-TiO 2 photocatalysis, photo-Fenton) of organic micropollutants, human pathogen indicators, antibiotic resistant bacteria and related genes in urban wastewater. WATER RESEARCH 2018; 135:195-206. [PMID: 29475109 DOI: 10.1016/j.watres.2018.01.064] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/23/2017] [Accepted: 01/26/2018] [Indexed: 05/29/2023]
Abstract
Solar-driven advanced oxidation processes were studied in a pilot-scale photoreactor, as tertiary treatments of effluents from an urban wastewater treatment plant. Solar-H2O2, heterogeneous photocatalysis (with and/or without the addition of H2O2 and employing three different photocatalysts) and the photo-Fenton process were investigated. Chemical (sulfamethoxazole, carbamazepine, and diclofenac) and biological contaminants (faecal contamination indicators, their antibiotic resistant counterparts, 16S rRNA and antibiotic resistance genes), as well as the whole bacterial community, were characterized. Heterogeneous photocatalysis using TiO2-P25 and assisted with H2O2 (P25/H2O2) was the most efficient process on the degradation of the chemical organic micropollutants, attaining levels below the limits of quantification in less than 4 h of treatment (corresponding to QUV < 40 kJ L-1). This performance was followed by the same process without H2O2, using TiO2-P25 or a composite material based on graphene oxide and TiO2. Regarding the biological indicators, total faecal coliforms and enterococci and their antibiotic resistant (tetracycline and ciprofloxacin) counterparts were reduced to values close, or beneath, the detection limit (1 CFU 100 mL-1) for all treatments employing H2O2, even upon storage of the treated wastewater for 3-days. Moreover, P25/H2O2 and solar-H2O2 were the most efficient processes in the reduction of the abundance (gene copy number per volume of wastewater) of the analysed genes. However, this reduction was transient for 16S rRNA, intI1 and sul1 genes, since after 3-days storage of the treated wastewater their abundance increased to values close to pre-treatment levels. Similar behaviour was observed for the genes qnrS (using TiO2-P25), blaCTX-M and blaTEM (using TiO2-P25 and TiO2-P25/H2O2). Interestingly, higher proportions of sequence reads affiliated to the phylum Proteobacteria (Beta- and Gammaproteobacteria) were found after 3-days storage of treated wastewater than before its treatment. Members of the genera Pseudomonas, Rheinheimera and Methylotenera were among those with overgrowth.
Collapse
Affiliation(s)
- Nuno F F Moreira
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Carlos Narciso-da-Rocha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | | | - Luisa M Pastrana-Martínez
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joaquim L Faria
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - Pilar Fernández-Ibáñez
- Plataforma Solar de Almeria - CIEMAT, P.O. Box 22, 04200, Tabernas, Almeria, Spain; Nanotechnology and Integrated BioEngineering Centre, School of Engineering, University of Ulster, Newtownabbey, Northern Ireland BT37 0QB, United Kingdom.
| | - Olga C Nunes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Adrián M T Silva
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
100
|
Michael-Kordatou I, Karaolia P, Fatta-Kassinos D. The role of operating parameters and oxidative damage mechanisms of advanced chemical oxidation processes in the combat against antibiotic-resistant bacteria and resistance genes present in urban wastewater. WATER RESEARCH 2018; 129:208-230. [PMID: 29153875 DOI: 10.1016/j.watres.2017.10.007] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/04/2017] [Accepted: 10/04/2017] [Indexed: 05/26/2023]
Abstract
An upsurge in the study of antibiotic resistance in the environment has been observed in the last decade. Nowadays, it is becoming increasingly clear that urban wastewater is a key source of antibiotic resistance determinants, i.e. antibiotic-resistant bacteria and antibiotic resistance genes (ARB&ARGs). Urban wastewater reuse has arisen as an important component of water resources management in the European Union and worldwide to address prolonged water scarcity issues. Especially, biological wastewater treatment processes (i.e. conventional activated sludge), which are widely applied in urban wastewater treatment plants, have been shown to provide an ideal environment for the evolution and spread of antibiotic resistance. The ability of advanced chemical oxidation processes (AOPs), e.g. light-driven oxidation in the presence of H2O2, ozonation, homogeneous and heterogeneous photocatalysis, to inactivate ARB and remove ARGs in wastewater effluents has not been yet evaluated through a systematic and integrated approach. Consequently, this review seeks to provide an extensive and critical appraisal on the assessment of the efficiency of these processes in inactivating ARB and removing ARGs in wastewater effluents, based on recent available scientific literature. It tries to elucidate how the key operating conditions may affect the process efficiency, while pinpointing potential areas for further research and major knowledge gaps which need to be addressed. Also, this review aims at shedding light on the main oxidative damage pathways involved in the inactivation of ARB and removal of ARGs by these processes. In general, the lack and/or heterogeneity of the available scientific data, as well as the different methodological approaches applied in the various studies, make difficult the accurate evaluation of the efficiency of the processes applied. Besides the operating conditions, the variable behavior observed by the various examined genetic constituents of the microbial community, may be directed by the process distinct oxidative damage mechanisms in place during the application of each treatment technology. For example, it was shown in various studies that the majority of cellular damage by advanced chemical oxidation may be on cell wall and membrane structures of the targeted bacteria, leaving the internal components of the cells relatively intact/able to repair damage. As a result, further in-depth mechanistic studies are required, to establish the optimum operating conditions under which oxidative mechanisms target internal cell components such as genetic material and ribosomal structures more intensively, thus conferring permanent damage and/or death and preventing potential post-treatment re-growth.
Collapse
Affiliation(s)
- I Michael-Kordatou
- Nireas-International Water Research Centre, University of Cyprus, P.O. Box 20537, CY-1678, Nicosia, Cyprus
| | - P Karaolia
- Nireas-International Water Research Centre, University of Cyprus, P.O. Box 20537, CY-1678, Nicosia, Cyprus; Department of Civil and Environmental Engineering University of Cyprus, P.O. Box 20537, CY-1678, Nicosia, Cyprus
| | - D Fatta-Kassinos
- Nireas-International Water Research Centre, University of Cyprus, P.O. Box 20537, CY-1678, Nicosia, Cyprus; Department of Civil and Environmental Engineering University of Cyprus, P.O. Box 20537, CY-1678, Nicosia, Cyprus.
| |
Collapse
|