51
|
Ahmad SF, Ansari MA, Nadeem A, Bakheet SA, Almutairi MM, Attia SM. Adenosine A2A receptor signaling affects IL-21/IL-22 cytokines and GATA3/T-bet transcription factor expression in CD4 + T cells from a BTBR T + Itpr3tf/J mouse model of autism. J Neuroimmunol 2017; 311:59-67. [PMID: 28807491 DOI: 10.1016/j.jneuroim.2017.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/22/2017] [Accepted: 08/09/2017] [Indexed: 02/06/2023]
Abstract
Autism is a complex heterogeneous neurodevelopmental disorder; previous studies have identified altered immune responses among individuals diagnosed with autism. An imbalance in the production of pro- and anti-inflammatory cytokines and transcription factors plays a role in neurodevelopmental behavioral and autism disorders. BTBR T+ Itpr3tf/J (BTBR) mice are used as a model for autism, as they exhibit social deficits, communication deficits, and repetitive behaviors compared with C57BL/6J (B6) mice. The adenosine A2A receptor (A2AR) appears to be a potential target for the improvement of behavioral, inflammatory, immune, and neurological disorders. We investigated the effects of the A2AR antagonist SCH 5826 (SCH) and agonist CGS 21680 (CGS) on IL-21, IL-22, T-bet, T-box transcription factor (T-bet), GATA3 (GATA Binding Protein 3), and CD152 (CTLA-4) expression in BTBR mice. Our results showed that BTBR mice treated with SCH had increased CD4+IL-21+, CD4+IL-22+, CD4+GATA3+, and CD4+T-bet+ and decreased CD4+CTLA-4+ expression in spleen cells compared with BTBR control mice. Moreover, CGS efficiently decreased CD4+IL-21+, CD4+IL-22+, CD4+GATA3+, and CD4+T-bet+ and increased CD4+CTLA-4 production in spleen cells compared with SCH-treated and BTBR control mice. Additionally, SCH treatment significantly increased the mRNA and protein expression levels of IL-21, IL-22, GATA3, and T-bet in brain tissue compared with CGS-treated and BTBR control mice. The augmented levels of IL-21/IL-22 and GATA3/T-bet could be due to altered A2AR signaling. Our results indicate that A2AR agonists may represent a new class of compounds that can be developed for use in the treatment of autistic and neuroimmune dysfunctions.
Collapse
Affiliation(s)
- Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mashal M Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
52
|
Ansari MA, Nadeem A, Attia SM, Bakheet SA, Raish M, Ahmad SF. Adenosine A2A receptor modulates neuroimmune function through Th17/retinoid-related orphan receptor gamma t (RORγt) signaling in a BTBR T + Itpr3 tf /J mouse model of autism. Cell Signal 2017; 36:14-24. [DOI: 10.1016/j.cellsig.2017.04.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/16/2017] [Accepted: 04/20/2017] [Indexed: 12/19/2022]
|
53
|
Bilbo SD, Block CL, Bolton JL, Hanamsagar R, Tran PK. Beyond infection - Maternal immune activation by environmental factors, microglial development, and relevance for autism spectrum disorders. Exp Neurol 2017; 299:241-251. [PMID: 28698032 DOI: 10.1016/j.expneurol.2017.07.002] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/26/2017] [Accepted: 07/05/2017] [Indexed: 12/17/2022]
Abstract
Immune molecules such as cytokines and chemokines and the cells that produce them within the brain, notably microglia, are critical for normal brain development. This recognition has in recent years led to the working hypothesis that inflammatory events during pregnancy, e.g. in response to infection, may disrupt the normal expression of immune molecules during critical stages of neural development and thereby contribute to the risk for neurodevelopmental disorders such as autism spectrum disorder (ASD). This hypothesis has in large part been shepherded by the work of Dr. Paul Patterson and colleagues, which has elegantly demonstrated that a single viral infection or injection of a viral mimetic to pregnant mice significantly and persistently impacts offspring immune and nervous system function, changes that underlie ASD-like behavioral dysfunction including social and communication deficits. Subsequent studies by many labs - in humans and in non-human animal models - have supported the hypothesis that ongoing disrupted immune molecule expression and/or neuroinflammation contributes to at least a significant subset of ASD. The heterogeneous clinical and biological phenotypes observed in ASD strongly suggest that in genetically susceptible individuals, environmental risk factors combine or synergize to create a tipping or threshold point for dysfunction. Importantly, animal studies showing a link between maternal immune activation (MIA) and ASD-like outcomes in offspring involve different species and diverse environmental factors associated with ASD in humans, beyond infection, including toxin exposures, maternal stress, and maternal obesity, all of which impact inflammatory or immune pathways. The goal of this review is to highlight the broader implications of Dr. Patterson's work for the field of autism, with a focus on the impact that MIA by diverse environmental factors has on fetal brain development, immune system development, and the pathophysiology of ASD.
Collapse
Affiliation(s)
- Staci D Bilbo
- Pediatrics and Neuroscience, Harvard Medical School, Lurie Center for Autism, Massachusetts General Hospital for Children, Boston, MA 02126, United States.
| | - Carina L Block
- Psychology and Neuroscience, Duke University, Durham, NC 27708, United States
| | - Jessica L Bolton
- Pediatrics and Anatomy/Neurobiology, University of California-Irvine, Irvine, CA 92697, United States
| | - Richa Hanamsagar
- Pediatrics and Neuroscience, Harvard Medical School, Lurie Center for Autism, Massachusetts General Hospital for Children, Boston, MA 02126, United States
| | - Phuong K Tran
- Pediatrics and Neuroscience, Harvard Medical School, Lurie Center for Autism, Massachusetts General Hospital for Children, Boston, MA 02126, United States
| |
Collapse
|
54
|
Yenkoyan K, Grigoryan A, Fereshetyan K, Yepremyan D. Advances in understanding the pathophysiology of autism spectrum disorders. Behav Brain Res 2017; 331:92-101. [DOI: 10.1016/j.bbr.2017.04.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/16/2017] [Accepted: 04/18/2017] [Indexed: 10/19/2022]
|
55
|
Ansari MA, Attia SM, Nadeem A, Bakheet SA, Raish M, Khan TH, Al-Shabanah OA, Ahmad SF. Activation of adenosine A2A receptor signaling regulates the expression of cytokines associated with immunologic dysfunction in BTBR T + Itpr3 tf /J mice. Mol Cell Neurosci 2017; 82:76-87. [DOI: 10.1016/j.mcn.2017.04.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 04/16/2017] [Accepted: 04/28/2017] [Indexed: 01/24/2023] Open
|
56
|
Alcocer-Gómez E, Castejón-Vega B, Cordero MD. Stress-Induced NLRP3 Inflammasome in Human Diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 108:127-162. [PMID: 28427559 DOI: 10.1016/bs.apcsb.2017.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Stress is a complex event that induces disturbances to physiological and psychological homeostasis, and it may have a detrimental impact on certain brain and physiological functions. In the last years, a dual role of the stress effect has been studied in order to elucidate the molecular mechanism by which can induce physiological symptoms after psychological stress exposition and vice versa. In this sense, inflammation has been proposed as an important starring. And in the same line, the inflammasome complex has emerged to give responses because of its role of stress sensor. The implication of the same complex, NLRP3 inflammasome, in different diseases such as cardiovascular, neurodegenerative, psychiatric, and metabolic diseases opens a door to develop new therapeutic perspectives.
Collapse
|
57
|
Vuong HE, Hsiao EY. Emerging Roles for the Gut Microbiome in Autism Spectrum Disorder. Biol Psychiatry 2017; 81:411-423. [PMID: 27773355 PMCID: PMC5285286 DOI: 10.1016/j.biopsych.2016.08.024] [Citation(s) in RCA: 345] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/28/2016] [Accepted: 08/18/2016] [Indexed: 01/16/2023]
Abstract
Autism spectrum disorder (ASD) is a serious neurodevelopmental disorder that affects one in 45 children in the United States, with a similarly striking prevalence in countries around the world. However, mechanisms underlying its etiology and manifestations remain poorly understood. Although ASD is diagnosed based on the presence and severity of impaired social communication and repetitive behavior, immune dysregulation and gastrointestinal issues are common comorbidities. The microbiome is an integral part of human physiology; recent studies show that changes in the gut microbiota can modulate gastrointestinal physiology, immune function, and even behavior. Links between particular bacteria from the indigenous gut microbiota and phenotypes relevant to ASD raise the important question of whether microbial dysbiosis plays a role in the development or presentation of ASD symptoms. Here we review reports of microbial dysbiosis in ASD. We further discuss potential effects of the microbiota on ASD-associated symptoms, drawing on signaling mechanisms for reciprocal interactions among the microbiota, immunity, gut function, and behavior. In addition, we discuss recent findings supporting a role for the microbiome as an interface between environmental and genetic risk factors that are associated with ASD. These studies highlight the integration of pathways across multiple body systems that together can impact brain and behavior and suggest that changes in the microbiome may contribute to symptoms of neurodevelopmental disease.
Collapse
Affiliation(s)
- Helen E. Vuong
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elaine Y. Hsiao
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA,Correspondence to: ; 610 Charles E. Young Drive MSB 3825A; Los Angeles CA 90095; 310-825-0228
| |
Collapse
|
58
|
Fiorentino M, Sapone A, Senger S, Camhi SS, Kadzielski SM, Buie TM, Kelly DL, Cascella N, Fasano A. Blood-brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders. Mol Autism 2016; 7:49. [PMID: 27957319 PMCID: PMC5129651 DOI: 10.1186/s13229-016-0110-z] [Citation(s) in RCA: 283] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/12/2016] [Indexed: 12/11/2022] Open
Abstract
Background Autism spectrum disorders (ASD) are complex conditions whose pathogenesis may be attributed to gene–environment interactions. There are no definitive mechanisms explaining how environmental triggers can lead to ASD although the involvement of inflammation and immunity has been suggested. Inappropriate antigen trafficking through an impaired intestinal barrier, followed by passage of these antigens or immune-activated complexes through a permissive blood–brain barrier (BBB), can be part of the chain of events leading to these disorders. Our goal was to investigate whether an altered BBB and gut permeability is part of the pathophysiology of ASD. Methods Postmortem cerebral cortex and cerebellum tissues from ASD, schizophrenia (SCZ), and healthy subjects (HC) and duodenal biopsies from ASD and HC were analyzed for gene and protein expression profiles. Tight junctions and other key molecules associated with the neurovascular unit integrity and function and neuroinflammation were investigated. Results Claudin (CLDN)-5 and -12 were increased in the ASD cortex and cerebellum. CLDN-3, tricellulin, and MMP-9 were higher in the ASD cortex. IL-8, tPA, and IBA-1 were downregulated in SCZ cortex; IL-1b was increased in the SCZ cerebellum. Differences between SCZ and ASD were observed for most of the genes analyzed in both brain areas. CLDN-5 protein was increased in ASD cortex and cerebellum, while CLDN-12 appeared reduced in both ASD and SCZ cortexes. In the intestine, 75% of the ASD samples analyzed had reduced expression of barrier-forming TJ components (CLDN-1, OCLN, TRIC), whereas 66% had increased pore-forming CLDNs (CLDN-2, -10, -15) compared to controls. Conclusions In the ASD brain, there is an altered expression of genes associated with BBB integrity coupled with increased neuroinflammation and possibly impaired gut barrier integrity. While these findings seem to be specific for ASD, the possibility of more distinct SCZ subgroups should be explored with additional studies.
Collapse
Affiliation(s)
- Maria Fiorentino
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA USA ; Department of Pediatrics, Harvard Medical School, Boston, MA USA
| | - Anna Sapone
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA USA ; Department of Medicine, Celiac Center, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA USA
| | - Stefania Senger
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA USA ; Department of Pediatrics, Harvard Medical School, Boston, MA USA
| | - Stephanie S Camhi
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA USA ; Center for Celiac Research and Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital for Children, Boston, MA USA
| | | | - Timothy M Buie
- Department of Pediatrics, Harvard Medical School, Boston, MA USA
| | - Deanna L Kelly
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD USA
| | - Nicola Cascella
- Neuropsychiatry Program, Sheppard Pratt Health System, Baltimore, MD USA
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA USA ; Center for Celiac Research and Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital for Children, Boston, MA USA ; Department of Pediatrics, Harvard Medical School, Boston, MA USA
| |
Collapse
|
59
|
Walker SJ, Beavers DP, Fortunato J, Krigsman A. A Putative Blood-Based Biomarker for Autism Spectrum Disorder-Associated Ileocolitis. Sci Rep 2016; 6:35820. [PMID: 27767057 PMCID: PMC5073317 DOI: 10.1038/srep35820] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/06/2016] [Indexed: 12/11/2022] Open
Abstract
Gastrointestinal symptoms are common in children with autism spectrum disorder (ASD). A significant proportion of children with ASD and gastrointestinal symptoms have histologic evidence of ileocolitis (inflammation of the terminal ileum and/or colon). We previously reported the molecular characterization of gastrointestinal biopsy tissue from ASD children with ileocolitis (ASDIC+) compared to anatomically similar inflamed tissue from typically developing children with inflammatory bowel disease (IBD; i.e. Crohn’s disease or ulcerative colitis) and typically developing children with gastrointestinal symptoms but no evidence of gastrointestinal mucosal inflammation (TDIC−). ASDIC+ children had a gene expression profile that, while primarily overlapping with known IBD, had distinctive differences. The present study confirms these findings and replicates this molecular characterization in a second cohort of cases (ASDIC+) and controls (TDIC−). In these two separate case/control mucosal-based cohorts, we have demonstrated overlap of 59 differentially expressed transcripts (DETs) unique to inflamed ileocolonic tissue from symptomatic ASDIC+ children. We now report that 9 of these 59 transcripts are also differentially expressed in the peripheral blood of the second cohort of ASDIC+ children. This set of transcripts represents a putative blood-based biomarker for ASD-associated ileocolonic inflammation.
Collapse
Affiliation(s)
- Stephen J Walker
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston Salem, NC, USA
| | - Daniel P Beavers
- Department of Biostatistical Sciences, Public Health Sciences, Wake Forest University Health Sciences, Winston Salem, NC, USA
| | - John Fortunato
- Pediatric Gastroenterology, Hepatology, and Nutrition, Ann &Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Arthur Krigsman
- Pediatric Gastroenterology Resources, 148 Beach 9th Street, Suite 2B, Far Rockaway, NY, USA
| |
Collapse
|
60
|
Saresella M, Piancone F, Marventano I, Zoppis M, Hernis A, Zanette M, Trabattoni D, Chiappedi M, Ghezzo A, Canevini MP, la Rosa F, Esposito S, Clerici M. Multiple inflammasome complexes are activated in autistic spectrum disorders. Brain Behav Immun 2016; 57:125-133. [PMID: 26979869 DOI: 10.1016/j.bbi.2016.03.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/02/2016] [Accepted: 03/11/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Inflammasomes are multimeric protein platforms involved in the regulation of inflammatory responses whose activity results in the production of proinflammatory cytokines. Because neuroinflammation is observed in autistic spectrum disorders (ASD), a neurologic condition of childhood resulting in a complex behavioural impairment, we analyzed the inflammasomes activity in ASD. Additionally we verified whether alterations of the gastrointestinal (GI) barriers might play a role in inflammasomes activation. METHODS The activity of the inflammasomes, the concentration of the inflammasomes-derived proinflammatory cytokines interleukin (IL)-1β and IL-18, and serum parameters of GI damage were analyzed in 25 ASD children, 23 healthy siblings (HS) and 30 unrelated age-matched healthy controls (HC). RESULTS A significant upregulation of the AIM2 and the NLRP3 inflammasomes and an increased production of IL-1β and IL-18 that was associated with a consistent reduction of IL-33, an anti inflammation cytokine were observed in ASD alone. Notably, in a possible immune-mediated attempt to dampen inflammation, IL-37, a suppressor of innate inflammatory responses, was significantly augmented in these same children. Finally, intestinal fatty acid binding protein (IFABP), an index of altered GI permeability, was significantly increased in serum of ASD and HS. CONCLUSIONS These results show that the inflammasomes are activated in ASD and shed light on the molecular mechanisms responsible for ASD-associated neuroinflammation. The observation that GI alterations could be present as well in ASD offers a possible link between such alterations and neuroinflammation. Therapeutic strategies targeting inflammasome activation could be useful in ASD.
Collapse
Affiliation(s)
- Marina Saresella
- Don C. Gnocchi Foundation, IRCCS, Piazza Morandi, 3, 20121 Milano, Italy.
| | - Federica Piancone
- Don C. Gnocchi Foundation, IRCCS, Piazza Morandi, 3, 20121 Milano, Italy
| | - Ivana Marventano
- Don C. Gnocchi Foundation, IRCCS, Piazza Morandi, 3, 20121 Milano, Italy
| | - Martina Zoppis
- Don C. Gnocchi Foundation, IRCCS, Piazza Morandi, 3, 20121 Milano, Italy
| | - Ambra Hernis
- Don C. Gnocchi Foundation, IRCCS, Piazza Morandi, 3, 20121 Milano, Italy
| | - Michela Zanette
- Don C. Gnocchi Foundation, IRCCS, Piazza Morandi, 3, 20121 Milano, Italy
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milano, Milano, Italy
| | - Matteo Chiappedi
- Child Neurology and Psychiatry Unit, C. Mondino National Neurological Institute, Pavia, Italy
| | - Alessandro Ghezzo
- Department of Experimental, Diagnostic, Specialty Medicine, University of Bologna, Bologna, Italy
| | | | - Francesca la Rosa
- Don C. Gnocchi Foundation, IRCCS, Piazza Morandi, 3, 20121 Milano, Italy
| | - Susanna Esposito
- Department of Physiopathology and Transplants, University of Milano, Milano, Italy
| | - Mario Clerici
- Don C. Gnocchi Foundation, IRCCS, Piazza Morandi, 3, 20121 Milano, Italy; Department of Physiopathology and Transplants, University of Milano, Milano, Italy
| |
Collapse
|
61
|
Iovene MR, Bombace F, Maresca R, Sapone A, Iardino P, Picardi A, Marotta R, Schiraldi C, Siniscalco D, Serra N, de Magistris L, Bravaccio C. Intestinal Dysbiosis and Yeast Isolation in Stool of Subjects with Autism Spectrum Disorders. Mycopathologia 2016; 182:349-363. [DOI: 10.1007/s11046-016-0068-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/11/2016] [Indexed: 01/15/2023]
|
62
|
Kraneveld A, Szklany K, de Theije C, Garssen J. Gut-to-Brain Axis in Autism Spectrum Disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 131:263-287. [DOI: 10.1016/bs.irn.2016.09.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
63
|
Gottfried C, Bambini-Junior V, Francis F, Riesgo R, Savino W. The Impact of Neuroimmune Alterations in Autism Spectrum Disorder. Front Psychiatry 2015; 6:121. [PMID: 26441683 PMCID: PMC4563148 DOI: 10.3389/fpsyt.2015.00121] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/17/2015] [Indexed: 01/27/2023] Open
Abstract
Autism spectrum disorder (ASD) involves a complex interplay of both genetic and environmental risk factors, with immune alterations and synaptic connection deficiency in early life. In the past decade, studies of ASD have substantially increased, in both humans and animal models. Immunological imbalance (including autoimmunity) has been proposed as a major etiological component in ASD, taking into account increased levels of pro-inflammatory cytokines observed in postmortem brain from patients, as well as autoantibody production. Also, epidemiological studies have established a correlation of ASD with family history of autoimmune diseases; associations with major histocompatibility complex haplotypes and abnormal levels of immunological markers in the blood. Moreover, the use of animal models to study ASD is providing increasing information on the relationship between the immune system and the pathophysiology of ASD. Herein, we will discuss the accumulating literature for ASD, giving special attention to the relevant aspects of factors that may be related to the neuroimmune interface in the development of ASD, including changes in neuroplasticity.
Collapse
Affiliation(s)
- Carmem Gottfried
- Translational Research Group in Autism Spectrum Disorder (GETTEA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Research Group in Neuroglial Plasticity, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Victorio Bambini-Junior
- Translational Research Group in Autism Spectrum Disorder (GETTEA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Research Group in Neuroglial Plasticity, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Fiona Francis
- Sorbonne Université, Université Pierre et Marie Curie, Paris, France
- INSERM UMR-S 839, Paris, France
- Institut du Fer à Moulin, Paris, France
| | - Rudimar Riesgo
- Translational Research Group in Autism Spectrum Disorder (GETTEA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Child Neurology Unit, Clinical Hospital of Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
64
|
El Gohary TM, El Aziz NA, Darweesh M, Sadaa ES. Plasma level of transforming growth factor β 1 in children with autism spectrum disorder. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.ejenta.2014.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
65
|
Bilbo SD, Nevison CD, Parker W. A model for the induction of autism in the ecosystem of the human body: the anatomy of a modern pandemic? MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2015; 26:26253. [PMID: 25634608 PMCID: PMC4310853 DOI: 10.3402/mehd.v26.26253] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/01/2014] [Accepted: 12/01/2014] [Indexed: 02/06/2023]
Abstract
Background The field of autism research is currently divided based on a fundamental question regarding the nature of autism: Some are convinced that autism is a pandemic of modern culture, with environmental factors at the roots. Others are convinced that the disease is not pandemic in nature, but rather that it has been with humanity for millennia, with its biological and neurological underpinnings just now being understood. Objective In this review, two lines of reasoning are examined which suggest that autism is indeed a pandemic of modern culture. First, given the widely appreciated derailment of immune function by modern culture, evidence that autism is strongly associated with aberrant immune function is examined. Second, evidence is reviewed indicating that autism is associated with ‘triggers’ that are, for the most part, a construct of modern culture. In light of this reasoning, current epidemiological evidence regarding the incidence of autism, including the role of changing awareness and diagnostic criteria, is examined. Finally, the potential role of the microbial flora (the microbiome) in the pathogenesis of autism is discussed, with the view that the microbial flora is a subset of the life associated with the human body, and that the entire human biome, including both the microbial flora and the fauna, has been radically destabilized by modern culture. Conclusions It is suggested that the unequivocal way to resolve the debate regarding the pandemic nature of autism is to perform an experiment: monitor the prevalence of autism after normalizing immune function in a Western population using readily available approaches that address the well-known factors underlying the immune dysfunction in that population.
Collapse
Affiliation(s)
- Staci D Bilbo
- Department of Psychology & Neuroscience, Systems & Integrative Neuroscience Group, Duke University, Durham, NC, USA
| | - Cynthia D Nevison
- Institute for Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA
| | - William Parker
- Department of Surgery, Duke University Medical Center, Durham, NC, USA;
| |
Collapse
|
66
|
Tonhajzerova I, Ondrejka I, Mestanik M, Mikolka P, Hrtanek I, Mestanikova A, Bujnakova I, Mokra D. Inflammatory Activity in Autism Spectrum Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 861:93-8. [PMID: 26022900 DOI: 10.1007/5584_2015_145] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Autism spectrum disorder (ASD) is a severe neurodevelopmental disorder in early childhood characterized by impairment in communication and behavior. Recent research is focused on the immune dysregulation as a potential pathomechanism leading to ASD. Thus, we addressed the hypothesis that inflammatory activity might be enhanced in children suffering from ASD. We examined 15 children with ASD (13 boys/2 girls, mean age of 9.3 ± 0.7 years) and 20 age/gender-matched healthy subjects as a control group. All children were medication free and in good health. Hematological parameters in venous blood and plasma levels of pro-inflammatory cytokines - tumor necrosis factor alpha (TNF-α), interleukin 1ß (IL-1ß), and interleukin 8 (IL-8) - were assessed in each subject using human ultra-sensitive ELISA kits. In addition, TBARS as a marker of oxidative stress was evaluated. We found that the level of IL-8 was significantly increased in the ASD children, whereas the other markers remained unappreciably changed compared to controls (p = 0.003). In conclusion, the study demonstrates a discrete immune dysfunction in ASD of pro-inflammatory character.
Collapse
Affiliation(s)
- I Tonhajzerova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 036 01, Martin, Slovakia
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Mead J, Ashwood P. Evidence supporting an altered immune response in ASD. Immunol Lett 2014; 163:49-55. [PMID: 25448709 DOI: 10.1016/j.imlet.2014.11.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/07/2014] [Accepted: 11/11/2014] [Indexed: 11/17/2022]
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental disorders characterized by deficits in social interactions, communication, and increased stereotypical repetitive behaviors. The immune system plays an important role in neurodevelopment, regulating neuronal proliferation, synapse formation and plasticity, as well as removing apoptotic neurons. Immune dysfunction in ASD has been repeatedly described by many research groups across the globe. Symptoms of immune dysfunction in ASD include neuroinflammation, presence of autoantibodies, increased T cell responses, and enhanced innate NK cell and monocyte immune responses. Moreover these responses are frequently associated with more impairment in core ASD features including impaired social interactions, repetitive behaviors and communication. In mouse models replacing immune components in animals that exhibit autistic relevant features leads to improvement in behavior in these animals. Taken together this research suggests that the immune dysfunction often seen in ASD directly affects aspects of neurodevelopment and neurological processes leading to changes in behavior. Discussion of immune abnormalities in ASD will be the focus of this review.
Collapse
Affiliation(s)
- Jennifer Mead
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA; The M.I.N.D. Institute, University of California at Davis, CA, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA; The M.I.N.D. Institute, University of California at Davis, CA, USA.
| |
Collapse
|
68
|
Abstract
Autism spectrum disorder (ASD) is characterised by deficits in the ability to socialise, communicate and use imagination, and displays of stereotypical behaviour. It is widely accepted that ASD involves a disorder in brain development. However, the real causes of the neurodevelopmental disorders associated with ASD are not clear. In this respect, it has been found that a majority of children with ASD display gastrointestinal symptoms, and an increased intestinal permeability. Moreover, large differences in microbiotic composition between ASD patients and controls have been reported. Therefore, nutrition-related factors have been hypothesised to play a causal role in the aetiology of ASD and its symptoms. Through a review of the literature, it was found that abnormalities in carbohydrate digestion and absorption could explain some of the gastrointestinal problems observed in a subset of ASD patients, although their role in the neurological and behavioural problems remains uncertain. In addition, the relationship between an improved gut health and a reduction of symptoms in some patients was evaluated. Recent trials involving gluten-free diets, casein-free diets, and pre- and probiotic, and multivitamin supplementation show contradictive but promising results. It can be concluded that nutrition and other environmental influences might trigger an unstable base of genetic predisposition, which may lead to the development of autism, at least in a subset of ASD patients. Clear directions for further research to improve diagnosis and treatment for the different subsets of the disorder are provided.
Collapse
|
69
|
Napoli E, Wong S, Hertz-Picciotto I, Giulivi C. Deficits in bioenergetics and impaired immune response in granulocytes from children with autism. Pediatrics 2014; 133:e1405-10. [PMID: 24753527 PMCID: PMC4006429 DOI: 10.1542/peds.2013-1545] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Despite the emerging role of mitochondria in immunity, a link between bioenergetics and the immune response in autism has not been explored. Mitochondrial outcomes and phorbol 12-myristate 13-acetate (PMA)-induced oxidative burst were evaluated in granulocytes from age-, race-, and gender-matched children with autism with severity scores of ≥7 (n = 10) and in typically developing (TD) children (n = 10). The oxidative phosphorylation capacity of granulocytes was 3-fold lower in children with autism than in TD children, with multiple deficits encompassing ≥1 Complexes. Higher oxidative stress in cells of children with autism was evidenced by higher rates of mitochondrial reactive oxygen species production (1.6-fold), higher mitochondrial DNA copy number per cell (1.5-fold), and increased deletions. Mitochondrial dysfunction in children with autism was accompanied by a lower (26% of TD children) oxidative burst by PMA-stimulated reduced nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase and by a lower gene expression (45% of TD children's mean values) of the nuclear factor erythroid 2-related factor 2 transcription factor involved in the antioxidant response. Given that the majority of granulocytes of children with autism exhibited defects in oxidative phosphorylation, immune response, and antioxidant defense, our results support the concept that immunity and response to oxidative stress may be regulated by basic mitochondrial functions as part of an integrated metabolic network.
Collapse
Affiliation(s)
- Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine
| | - Sarah Wong
- Department of Molecular Biosciences, School of Veterinary Medicine
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, School of Medicine, and,Medical Investigations of Neurodevelopmental Disorders (M. I. N. D.) Institute, University of California, Davis, Davis California
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, Medical Investigations of Neurodevelopmental Disorders (M. I. N. D.) Institute, University of California, Davis, Davis California
| |
Collapse
|
70
|
Streck EL, Gonçalves CL, Furlanetto CB, Scaini G, Dal-Pizzol F, Quevedo J. Mitochondria and the central nervous system: searching for a pathophysiological basis of psychiatric disorders. REVISTA BRASILEIRA DE PSIQUIATRIA 2014; 36:156-67. [DOI: 10.1590/1516-4446-2013-1224] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/03/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Emilio L. Streck
- Universidade do Extremo Sul Catarinense (UNESC), Brazil; National Science and Technology Institute for Translational Medicine (INCT-TM), Brazil; Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Brazil
| | - Cinara L. Gonçalves
- Universidade do Extremo Sul Catarinense (UNESC), Brazil; National Science and Technology Institute for Translational Medicine (INCT-TM), Brazil; Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Brazil
| | - Camila B. Furlanetto
- Universidade do Extremo Sul Catarinense (UNESC), Brazil; National Science and Technology Institute for Translational Medicine (INCT-TM), Brazil; Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Brazil
| | - Giselli Scaini
- Universidade do Extremo Sul Catarinense (UNESC), Brazil; National Science and Technology Institute for Translational Medicine (INCT-TM), Brazil; Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Brazil
| | - Felipe Dal-Pizzol
- Universidade do Extremo Sul Catarinense (UNESC), Brazil; National Science and Technology Institute for Translational Medicine (INCT-TM), Brazil; Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Brazil
| | - João Quevedo
- National Science and Technology Institute for Translational Medicine (INCT-TM), Brazil; Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Brazil; UNESC, Brazil
| |
Collapse
|
71
|
Abstract
While autism spectrum disorder (ASD) is characterized by communication impairments, social abnormalities, and stereotypic behaviors, several medical comorbidities are observed in autistic individuals. Of these, gastrointestinal (GI) abnormalities are of particular interest given their reported prevalence and correlation with the severity of core autism-related behavioral abnormalities. This review discusses the GI pathologies seen in ASD individuals and the association of particular GI conditions with known genetic and environmental risk factors for autism. It further addresses how GI abnormalities can affect the neuropathological and behavioral features of ASD, as well as the development of autism-related endophenotypes such as immune dysregulation, hyperserotonemia, and metabolic dysfunction. Finally, it presents emerging evidence for a gut-brain connection in autism, wherein GI dysfunction may contribute to the pathogenesis or severity of ASD symptoms.
Collapse
|
72
|
Chiocchetti AG, Haslinger D, Boesch M, Karl T, Wiemann S, Freitag CM, Poustka F, Scheibe B, Bauer JW, Hintner H, Breitenbach M, Kellermann J, Lottspeich F, Klauck SM, Breitenbach-Koller L. Protein signatures of oxidative stress response in a patient specific cell line model for autism. Mol Autism 2014; 5:10. [PMID: 24512814 PMCID: PMC3931328 DOI: 10.1186/2040-2392-5-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 01/23/2014] [Indexed: 12/26/2022] Open
Abstract
Background Known genetic variants can account for 10% to 20% of all cases with autism spectrum disorders (ASD). Overlapping cellular pathomechanisms common to neurons of the central nervous system (CNS) and in tissues of peripheral organs, such as immune dysregulation, oxidative stress and dysfunctions in mitochondrial and protein synthesis metabolism, were suggested to support the wide spectrum of ASD on unifying disease phenotype. Here, we studied in patient-derived lymphoblastoid cell lines (LCLs) how an ASD-specific mutation in ribosomal protein RPL10 (RPL10[H213Q]) generates a distinct protein signature. We compared the RPL10[H213Q] expression pattern to expression patterns derived from unrelated ASD patients without RPL10[H213Q] mutation. In addition, a yeast rpl10 deficiency model served in a proof-of-principle study to test for alterations in protein patterns in response to oxidative stress. Methods Protein extracts of LCLs from patients, relatives and controls, as well as diploid yeast cells hemizygous for rpl10, were subjected to two-dimensional gel electrophoresis and differentially regulated spots were identified by mass spectrometry. Subsequently, Gene Ontology database (GO)-term enrichment and network analysis was performed to map the identified proteins into cellular pathways. Results The protein signature generated by RPL10[H213Q] is a functionally related subset of the ASD-specific protein signature, sharing redox-sensitive elements in energy-, protein- and redox-metabolism. In yeast, rpl10 deficiency generates a specific protein signature, harboring components of pathways identified in both the RPL10[H213Q] subjects’ and the ASD patients’ set. Importantly, the rpl10 deficiency signature is a subset of the signature resulting from response of wild-type yeast to oxidative stress. Conclusions Redox-sensitive protein signatures mapping into cellular pathways with pathophysiology in ASD have been identified in both LCLs carrying the ASD-specific mutation RPL10[H213Q] and LCLs from ASD patients without this mutation. At pathway levels, this redox-sensitive protein signature has also been identified in a yeast rpl10 deficiency and an oxidative stress model. These observations point to a common molecular pathomechanism in ASD, characterized in our study by dysregulation of redox balance. Importantly, this can be triggered by the known ASD-RPL10[H213Q] mutation or by yet unknown mutations of the ASD cohort that act upstream of RPL10 in differential expression of redox-sensitive proteins.
Collapse
Affiliation(s)
- Andreas G Chiocchetti
- Division of Molecular Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany.,Department of Cell Biology, University of Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria.,Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, J.W. Goethe University, Deutschordenstr. 50, 60528 Frankfurt am Main, Germany
| | - Denise Haslinger
- Department of Cell Biology, University of Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria.,Division of Molecular Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany.,Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, J.W. Goethe University, Deutschordenstr. 50, 60528 Frankfurt am Main, Germany
| | - Maximilian Boesch
- Department of Cell Biology, University of Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria
| | - Thomas Karl
- Department of Cell Biology, University of Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, J.W. Goethe University, Deutschordenstr. 50, 60528 Frankfurt am Main, Germany
| | - Fritz Poustka
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, J.W. Goethe University, Deutschordenstr. 50, 60528 Frankfurt am Main, Germany
| | - Burghardt Scheibe
- Department of Cell Biology, University of Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria
| | - Johann W Bauer
- Department of Dermatology, General Hospital Salzburg/PMU, Müllner-Hauptstr. 48, 5020 Salzburg, Austria
| | - Helmut Hintner
- Department of Dermatology, General Hospital Salzburg/PMU, Müllner-Hauptstr. 48, 5020 Salzburg, Austria
| | - Michael Breitenbach
- Department of Cell Biology, University of Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria
| | - Josef Kellermann
- Max-Planck-Institute of Biochemistry, Protein Analysis Group, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Friedrich Lottspeich
- Max-Planck-Institute of Biochemistry, Protein Analysis Group, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Sabine M Klauck
- Division of Molecular Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Lore Breitenbach-Koller
- Department of Cell Biology, University of Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria
| |
Collapse
|
73
|
Antibodies against food antigens in patients with autistic spectrum disorders. BIOMED RESEARCH INTERNATIONAL 2013; 2013:729349. [PMID: 23984403 PMCID: PMC3747333 DOI: 10.1155/2013/729349] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 06/18/2013] [Accepted: 06/27/2013] [Indexed: 12/20/2022]
Abstract
PURPOSE Immune system of some autistic patients could be abnormally triggered by gluten/casein assumption. The prevalence of antibodies to gliadin and milk proteins in autistic children with paired/impaired intestinal permeability and under dietary regimen either regular or restricted is reported. METHODS 162 ASDs and 44 healthy children were investigated for intestinal permeability, tissue-transglutaminase (tTG), anti-endomysium antibodies (EMA)-IgA, and total mucosal IgA to exclude celiac disease; HLA-DQ2/-DQ8 haplotypes; total systemic antibodies (IgA, IgG, and IgE); specific systemic antibodies: α-gliadin (AGA-IgA and IgG), deamidated-gliadin-peptide (DGP-IgA and IgG), total specific gliadin IgG (all fractions: α, β, γ, and ω), β-lactoglobulin IgG, α-lactalbumin IgG, casein IgG; and milk IgE, casein IgE, gluten IgE,-lactoglobulin IgE, and α-lactalbumin IgE. RESULTS AGA-IgG and DPG-IgG titers resulted to be higher in ASDs compared to controls and are only partially influenced by diet regimen. Casein IgG titers resulted to be more frequently and significantly higher in ASDs than in controls. Intestinal permeability was increased in 25.6% of ASDs compared to 2.3% of healthy children. Systemic antibodies production was not influenced by paired/impaired intestinal permeability. CONCLUSIONS Immune system of a subgroup of ASDs is triggered by gluten and casein; this could be related either to AGA, DPG, and Casein IgG elevated production or to impaired intestinal barrier function.
Collapse
|
74
|
Essa MM, Subash S, Braidy N, Al-Adawi S, Lim CK, Manivasagam T, Guillemin GJ. Role of NAD(+), Oxidative Stress, and Tryptophan Metabolism in Autism Spectrum Disorders. Int J Tryptophan Res 2013; 6:15-28. [PMID: 23922500 PMCID: PMC3729335 DOI: 10.4137/ijtr.s11355] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Autism spectrum disorder (ASD) is a pervasive neuro-developmental disorder characterized by impaired social interaction, reduced/absent verbal and non-verbal communication, and repetitive behavior during early childhood. The etiology of this developmental disorder is poorly understood, and no biomarkers have been identified. Identification of novel biochemical markers related to autism would be advantageous for earlier clinical diagnosis and intervention. Studies suggest that oxidative stress-induced mechanisms and reduced antioxidant defense, mitochondrial dysfunction, and impaired energy metabolism (NAD(+), NADH, ATP, pyruvate, and lactate), are major causes of ASD. This review provides renewed insight regarding current autism research related to oxidative stress, mitochondrial dysfunction, and altered tryptophan metabolism in ASD.
Collapse
Affiliation(s)
- Musthafa Mohamed Essa
- Dept of Food Science and Nutrition, College of Agriculture and Marine Sciences, Sultan Qaboos University, Oman. ; School of Medical Sciences, Department of Pharmacology, Faculty of Medicine, University of NSW, Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
75
|
Walker SJ, Fortunato J, Gonzalez LG, Krigsman A. Identification of unique gene expression profile in children with regressive autism spectrum disorder (ASD) and ileocolitis. PLoS One 2013; 8:e58058. [PMID: 23520485 PMCID: PMC3592909 DOI: 10.1371/journal.pone.0058058] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 01/31/2013] [Indexed: 12/11/2022] Open
Abstract
Gastrointestinal symptoms are common in children with autism spectrum disorder (ASD) and are often associated with mucosal inflammatory infiltrates of the small and large intestine. Although distinct histologic and immunohistochemical properties of this inflammatory infiltrate have been previously described in this ASD(GI) group, molecular characterization of these lesions has not been reported. In this study we utilize transcriptome profiling of gastrointestinal mucosal biopsy tissue from ASD(GI) children and three non-ASD control groups (Crohn's disease, ulcerative colitis, and histologically normal) in an effort to determine if there is a gene expression profile unique to the ASD(GI) group. Comparison of differentially expressed transcripts between the groups demonstrated that non-pathologic (normal) tissue segregated almost completely from inflamed tissue in all cases. Gene expression profiles in intestinal biopsy tissue from patients with Crohn's disease, ulcerative colitis, and ASD(GI), while having significant overlap with each other, also showed distinctive features for each group. Taken together, these results demonstrate that ASD(GI) children have a gastrointestinal mucosal molecular profile that overlaps significantly with known inflammatory bowel disease (IBD), yet has distinctive features that further supports the presence of an ASD-associated IBD variant, or, alternatively, a prodromal phase of typical inflammatory bowel disease. Although we report qPCR confirmation of representative differentially expressed transcripts determined initially by microarray, these findings may be considered preliminary to the extent that they require further confirmation in a validation cohort.
Collapse
Affiliation(s)
- Stephen J Walker
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston Salem, North Carolina, United States of America.
| | | | | | | |
Collapse
|
76
|
El-Ansary A, Al-Ayadhi L. Neuroinflammation in autism spectrum disorders. J Neuroinflammation 2012; 9:265. [PMID: 23231720 PMCID: PMC3549857 DOI: 10.1186/1742-2094-9-265] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 11/28/2012] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES The neurobiological basis for autism remains poorly understood. However, research suggests that environmentalfactors and neuroinflammation, as well as genetic factors, are contributors. This study aims to test the role that might be played by heat shock protein (HSP)70, transforming growth factor (TGF)-β2, Caspase 7 and interferon-γ (IFN-γ)in the pathophysiology of autism. MATERIALS AND METHODS HSP70, TGF-β2, Caspase 7 and INF-γ as biochemical parameters related to inflammation were determined in plasma of 20 Saudi autistic male patients and compared to 19 age- and gender-matched control samples. RESULTS The obtained data recorded that Saudi autistic patients have remarkably higher plasma HSP70, TGF-β2, Caspase 7 and INF-γ compared to age and gender-matched controls. INF-γ recorded the highest (67.8%) while TGF-β recorded the lowest increase (49.04%). Receiver Operating Characteristics (ROC) analysis together with predictiveness diagrams proved that the measured parameters recorded satisfactory levels of specificity and sensitivity and all could be used as predictive biomarkers. CONCLUSION Alteration of the selected parameters confirm the role of neuroinflammation and apoptosis mechanisms in the etiology of autism together with the possibility of the use of HSP70, TGF-β2, Caspase 7 and INF-γ as predictive biomarkers that could be used to predict safety, efficacy of a specific suggested therapy or natural supplements, thereby providing guidance in selecting it for patients or tailoring its dose.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Biochemistry Department, Science College, King Saud University, P.O. Box 22452, 11495, Riyadh, Saudi Arabia
- Autism Research and Treatment Center, Riyadh, Saudi Arabia
- Shaik AL-Amodi Autism Research Chair, King Saud University, Riyadh, Saudi Arabia
- Medicinal Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Laila Al-Ayadhi
- Autism Research and Treatment Center, Riyadh, Saudi Arabia
- Shaik AL-Amodi Autism Research Chair, King Saud University, Riyadh, Saudi Arabia
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
77
|
Li LJ, Li MY, Li YT, Feng JJ, Hao FQ, Zhang L. Adjuvant activity of Sargassum pallidum polysaccharides against combined Newcastle disease, infectious bronchitis and avian influenza inactivated vaccines. Mar Drugs 2012; 10:2648-60. [PMID: 23342387 PMCID: PMC3528116 DOI: 10.3390/md10122648] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 11/07/2012] [Accepted: 11/13/2012] [Indexed: 11/17/2022] Open
Abstract
This study evaluates the effects of Sargassum pallidum polysaccharides (SPP) on the immune responses in a chicken model. The adjuvanticity of Sargassum pallidum polysaccharides in Newcastle disease (ND), infectious bronchitis (IB) and avian influenza (AI) was investigated by examining the antibody titers and lymphocyte proliferation following immunization in chickens. The chickens were administrated combined ND, IB and AI inactivated vaccines containing SPP at 10, 30 and 50 mg/mL, using an oil adjuvant vaccine as a control. The ND, IB and AI antibody titers and the lymphocyte proliferation were enhanced at 30 mg/mL SPP. In conclusion, an appropriate dose of SPP may be a safe and efficacious immune stimulator candidate that is suitable for vaccines to produce early and persistent prophylaxis.
Collapse
Affiliation(s)
- Li-Jie Li
- School of Medicinal and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
- Shandong Sinder Technology Co., Ltd., Qingdao, Shandong 266061, China; (M.-Y.L.); (J.-J.F.); (F.-Q.H.); (L.Z.)
| | - Ming-Yi Li
- Shandong Sinder Technology Co., Ltd., Qingdao, Shandong 266061, China; (M.-Y.L.); (J.-J.F.); (F.-Q.H.); (L.Z.)
| | - Yan-Tuan Li
- School of Medicinal and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Jing-Jing Feng
- Shandong Sinder Technology Co., Ltd., Qingdao, Shandong 266061, China; (M.-Y.L.); (J.-J.F.); (F.-Q.H.); (L.Z.)
| | - Feng-Qiang Hao
- Shandong Sinder Technology Co., Ltd., Qingdao, Shandong 266061, China; (M.-Y.L.); (J.-J.F.); (F.-Q.H.); (L.Z.)
| | - Lun Zhang
- Shandong Sinder Technology Co., Ltd., Qingdao, Shandong 266061, China; (M.-Y.L.); (J.-J.F.); (F.-Q.H.); (L.Z.)
| |
Collapse
|
78
|
Woods AG, Sokolowska I, Taurines R, Gerlach M, Dudley E, Thome J, Darie CC. Potential biomarkers in psychiatry: focus on the cholesterol system. J Cell Mol Med 2012; 16:1184-95. [PMID: 22304330 PMCID: PMC3823072 DOI: 10.1111/j.1582-4934.2012.01543.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Measuring biomarkers to identify and assess illness is a strategy growing in popularity and relevance. Although already in clinical use for treating and predicting cancer, no biological measurement is used clinically for any psychiatric disorder. Biomarkers could predict the course of a medical problem, and aid in determining how and when to treat. Several studies have indicated that of candidate psychiatric biomarkers detected using proteomic techniques, cholesterol and associated proteins, specifically apolipoproteins (Apos), may be of interest. Cholesterol is necessary for brain development and its synthesis continues at a lower rate in the adult brain. Apos are the protein component of lipoproteins responsible for lipid transport. There is extensive evidence that the levels of cholesterol and Apos may be disturbed in psychiatric disorders, including autistic spectrum disorders (ASD). Here, we describe putative serum biomarkers for psychiatric disorders, and the role of cholesterol and Apos in central nervous system (CNS) disorders.
Collapse
Affiliation(s)
- Alisa G Woods
- Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Clarkson University, Potsdam, NY 13699, USA.
| | | | | | | | | | | | | |
Collapse
|
79
|
Barichello T, Generoso JS, Cipriano AL, Casagrande R, Collodel A, Savi GD, Scherer EBS, Kolling J, Wyse ATS. Increased Na+,K+-ATPase activity in the rat brain after meningitis induction by Streptococcus pneumoniae. Acta Neuropsychiatr 2012; 24:301-5. [PMID: 25286995 DOI: 10.1111/j.1601-5215.2011.00635.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Barichello T, Generoso JS, Cipriano AL, Casagrande R, Collodel A, Savi GD, Scherer EBS, Kolling J, Wyse ATS. Increase Na+,K+-ATPase activity in the rat brain after meningitis induction byStreptococcus pneumoniae.Background: Pneumococcal meningitis is the most severe infection of the central nervous system with a mortality rate up to 20% and an adverse neurological result in up to 50% of survivors. A complicated series of interactions among the host immune response and oxidants seems to be responsible for meningitis associated brain dysfunctions. Na+,K+-ATPase is an essential enzyme responsible for generating and maintaining the membrane potential necessary for neural excitability, however, the Na+,K+-ATPase activity is altered in several illness;Objective: The aim of this study is to evaluate the Na+,K+-ATPase activity in hippocampus and cortex of the rats submitted to pneumococcal meningitis.Methods: Animals received 10 µl sterile saline as a placebo or an equivalent volume ofStreptococcus pneumoniaeto the concentration of 5 × 109cfu/ml and were killed at 24, 48, 72 and 96 h after meningitis induction. The brain structures, hippocampus and cortex, were immediately isolated on dry ice and stored at −80°C to analyse Na+,K+-ATPase activity.Results: In the hippocampus, we verified the increase of Na+,K+-ATPase activity at 48, 72 and 96 h (p< 0.05) and in the cortex at 24 h (p< 0.05) after pneumococcal meningitis induction.Conclusion: The Na+,K+-ATPase activity is under the control of a diversity of intracellular messengers that are able to modulate the function of the particular isozymes in a precise way. Furthermore, we verified that pneumococcal meningitis increased the Na+,K+-ATPase activity in hippocampus and cortex; this increase can be correlated with a compensatory mechanism in illness pathophysiology.
Collapse
Affiliation(s)
- Tatiana Barichello
- Laboratório de Microbiologia Experimental and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Programa de Pós-Graduaçã em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Jaqueline S Generoso
- Laboratório de Microbiologia Experimental and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Programa de Pós-Graduaçã em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Andreza L Cipriano
- Laboratório de Microbiologia Experimental and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Programa de Pós-Graduaçã em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Renata Casagrande
- Laboratório de Microbiologia Experimental and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Programa de Pós-Graduaçã em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Allan Collodel
- Laboratório de Microbiologia Experimental and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Programa de Pós-Graduaçã em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Geovana D Savi
- Laboratório de Microbiologia Experimental and Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Programa de Pós-Graduaçã em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Emilene B S Scherer
- Laboratório de Neuroproteção e Doenças Metabólicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Janaína Kolling
- Laboratório de Neuroproteção e Doenças Metabólicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Laboratório de Neuroproteção e Doenças Metabólicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
80
|
Cao F, Yin A, Wen G, Sheikh AM, Tauqeer Z, Malik M, Nagori A, Schirripa M, Schirripa F, Merz G, Brown WT, Li X. Alteration of astrocytes and Wnt/β-catenin signaling in the frontal cortex of autistic subjects. J Neuroinflammation 2012; 9:223. [PMID: 22999633 PMCID: PMC3544729 DOI: 10.1186/1742-2094-9-223] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 08/27/2012] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Autism is a neurodevelopmental disorder characterized by impairments in social interaction, verbal communication and repetitive behaviors. To date the etiology of this disorder is poorly understood. Studies suggest that astrocytes play critical roles in neural plasticity by detecting neuronal activity and modulating neuronal networks. Recently, a number of studies suggested that an abnormal function of glia/astrocytes may be involved in the development of autism. However, there is yet no direct evidence showing how astrocytes develop in the brain of autistic individuals. METHODS Study subjects include brain tissue from autistic subjects, BTBR T + tfJ (BTBR) and Neuroligin (NL)-3 knock-down mice. Western blot analysis, Immunohistochemistry and confocal microscopy studies have be used to examine the density and morphology of astrocytes, as well as Wnt and β-catenin protein expression. RESULTS In this study, we demonstrate that the astrocytes in autisitcsubjects exhibit significantly reduced branching processes, total branching length and cell body sizes. We also detected an astrocytosis in the frontal cortex of autistic subjects. In addition, we found that the astrocytes in the brain of an NL3 knockdown mouse exhibited similar alterations to what we found in the autistic brain. Furthermore, we detected that both Wnt and β-catenin proteins are decreased in the frontal cortex of autistic subjects. Wnt/β-catenin pathway has been suggested to be involved in the regulation of astrocyte development. CONCLUSIONS Our findings imply that defects in astrocytes could impair neuronal plasticity and partially contribute to the development of autistic-like behaviors in both humans and mice. The alteration of Wnt/β-catenin pathway in the brain of autistic subjects may contribute to the changes of astrocytes.
Collapse
Affiliation(s)
- Fujiang Cao
- Department of Neurochemistry, NY State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island New York, NY 10314, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, Blatt GJ, Chauhan A, Chauhan V, Dager SR, Dickson PE, Estes AM, Goldowitz D, Heck DH, Kemper TL, King BH, Martin LA, Millen KJ, Mittleman G, Mosconi MW, Persico AM, Sweeney JA, Webb SJ, Welsh JP. Consensus paper: pathological role of the cerebellum in autism. CEREBELLUM (LONDON, ENGLAND) 2012; 11:777-807. [PMID: 22370873 PMCID: PMC3677555 DOI: 10.1007/s12311-012-0355-9] [Citation(s) in RCA: 464] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
There has been significant advancement in various aspects of scientific knowledge concerning the role of cerebellum in the etiopathogenesis of autism. In the current consensus paper, we will observe the diversity of opinions regarding the involvement of this important site in the pathology of autism. Recent emergent findings in literature related to cerebellar involvement in autism are discussed, including: cerebellar pathology, cerebellar imaging and symptom expression in autism, cerebellar genetics, cerebellar immune function, oxidative stress and mitochondrial dysfunction, GABAergic and glutamatergic systems, cholinergic, dopaminergic, serotonergic, and oxytocin-related changes in autism, motor control and cognitive deficits, cerebellar coordination of movements and cognition, gene-environment interactions, therapeutics in autism, and relevant animal models of autism. Points of consensus include presence of abnormal cerebellar anatomy, abnormal neurotransmitter systems, oxidative stress, cerebellar motor and cognitive deficits, and neuroinflammation in subjects with autism. Undefined areas or areas requiring further investigation include lack of treatment options for core symptoms of autism, vermal hypoplasia, and other vermal abnormalities as a consistent feature of autism, mechanisms underlying cerebellar contributions to cognition, and unknown mechanisms underlying neuroinflammation.
Collapse
Affiliation(s)
- S Hossein Fatemi
- University of Minnesota Medical School, 420 Delaware St. SE, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Modeling an autism risk factor in mice leads to permanent immune dysregulation. Proc Natl Acad Sci U S A 2012; 109:12776-81. [PMID: 22802640 PMCID: PMC3411999 DOI: 10.1073/pnas.1202556109] [Citation(s) in RCA: 255] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence highlights a role for the immune system in the pathogenesis of autism spectrum disorder (ASD), as immune dysregulation is observed in the brain, periphery, and gastrointestinal tract of ASD individuals. Furthermore, maternal infection (maternal immune activation, MIA) is a risk factor for ASD. Modeling this risk factor in mice yields offspring with the cardinal behavioral and neuropathological symptoms of human ASD. In this study, we find that offspring of immune-activated mothers display altered immune profiles and function, characterized by a systemic deficit in CD4(+) TCRβ(+) Foxp3(+) CD25(+) T regulatory cells, increased IL-6 and IL-17 production by CD4(+) T cells, and elevated levels of peripheral Gr-1(+) cells. In addition, hematopoietic stem cells from MIA offspring exhibit altered myeloid lineage potential and differentiation. Interestingly, repopulating irradiated control mice with bone marrow derived from MIA offspring does not confer MIA-related immunological deficits, implicating the peripheral environmental context in long-term programming of immune dysfunction. Furthermore, behaviorally abnormal MIA offspring that have been irradiated and transplanted with immunologically normal bone marrow from either MIA or control offspring no longer exhibit deficits in stereotyped/repetitive and anxiety-like behaviors, suggesting that immune abnormalities in MIA offspring can contribute to ASD-related behaviors. These studies support a link between cellular immune dysregulation and ASD-related behavioral deficits in a mouse model of an autism risk factor.
Collapse
|
83
|
Heuer LS, Rose M, Ashwood P, Van de Water J. Decreased levels of total immunoglobulin in children with autism are not a result of B cell dysfunction. J Neuroimmunol 2012; 251:94-102. [PMID: 22854260 DOI: 10.1016/j.jneuroim.2012.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 06/27/2012] [Accepted: 07/02/2012] [Indexed: 11/28/2022]
Abstract
Autism spectrum disorders are a heterogeneous group of behaviorally defined disorders having complex etiologies. We previously reported a direct correlation between lower plasma levels of the immunoglobulins (Ig) IgG and IgM and increased severity of behavioral symptoms in children with autism. Our current objective was to determine if these reduced plasma levels of IgG and IgM are the result of defective B cell development, activation, or function. Results suggest no differences in the B cell parameters measured, indicating that decreased Ig in autism is not a result of B cell dysfunction and other immune cells might be involved.
Collapse
Affiliation(s)
- Luke S Heuer
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, USA
| | | | | | | |
Collapse
|
84
|
Is autism a member of a family of diseases resulting from genetic/cultural mismatches? Implications for treatment and prevention. AUTISM RESEARCH AND TREATMENT 2012; 2012:910946. [PMID: 22928103 PMCID: PMC3420574 DOI: 10.1155/2012/910946] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 01/18/2012] [Accepted: 04/10/2012] [Indexed: 12/20/2022]
Abstract
Several lines of evidence support the view that autism is a typical member of a large family of immune-related, noninfectious, chronic diseases associated with postindustrial society. This family of diseases includes a wide range of inflammatory, allergic, and autoimmune diseases and results from consequences of genetic/culture mismatches which profoundly destabilize the immune system. Principle among these consequences is depletion of important components, particularly helminths, from the ecosystem of the human body, the human biome. Autism shares a wide range of features in common with this family of diseases, including the contribution of genetics/epigenetics, the identification of disease-inducing triggers, the apparent role of immunity in pathogenesis, high prevalence, complex etiologies and manifestations, and potentially some aspects of epidemiology. Fortunately, using available resources and technology, modern medicine has the potential to effectively reconstitute the human biome, thus treating or even avoiding altogether the consequences of genetic/cultural mismatches which underpin this entire family of disease. Thus, if indeed autism is an epidemic of postindustrial society associated with immune hypersensitivity, we can expect that the disease is readily preventable.
Collapse
|
85
|
Wei H, Chadman KK, McCloskey DP, Sheikh AM, Malik M, Brown WT, Li X. Brain IL-6 elevation causes neuronal circuitry imbalances and mediates autism-like behaviors. Biochim Biophys Acta Mol Basis Dis 2012; 1822:831-42. [DOI: 10.1016/j.bbadis.2012.01.011] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/28/2011] [Accepted: 01/26/2012] [Indexed: 12/21/2022]
|
86
|
Decreased levels of EGF in plasma of children with autism spectrum disorder. AUTISM RESEARCH AND TREATMENT 2012; 2012:205362. [PMID: 22937258 PMCID: PMC3420731 DOI: 10.1155/2012/205362] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/03/2011] [Accepted: 12/16/2011] [Indexed: 11/18/2022]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder estimated to affect 1 in 110 children in the U.S., yet the pathology of this disorder is not fully understood. Abnormal levels of several growth factors have been demonstrated in adults with ASD, including epidermal growth factor (EGF) and hepatocyte growth factor (HGF). Both of these growth factors serve important roles in neurodevelopment and immune function. In this study, concentrations of EGF and HGF were assessed in the plasma of 49 children with ASD aged 2–4 years old and 31 typically developing controls of a similar age as part of the Autism Phenome Project (APP). Levels of EGF were significantly reduced in the ASD group compared to typically developing controls (P = 0.003). There were no significant differences in HGF levels in young children with ASD and typically developing controls. EGF plays an important role in regulating neural growth, proliferation, differentiation and migration, and reduced levels of this molecule may negatively impact neurodevelopment in young children with ASD.
Collapse
|
87
|
The role of immune dysfunction in the pathophysiology of autism. Brain Behav Immun 2012; 26:383-92. [PMID: 21906670 PMCID: PMC3418145 DOI: 10.1016/j.bbi.2011.08.007] [Citation(s) in RCA: 440] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/19/2011] [Accepted: 08/22/2011] [Indexed: 12/22/2022] Open
Abstract
Autism spectrum disorders (ASD) are a complex group of neurodevelopmental disorders encompassing impairments in communication, social interactions and restricted stereotypical behaviors. Although a link between altered immune responses and ASD was first recognized nearly 40 years ago, only recently has new evidence started to shed light on the complex multifaceted relationship between immune dysfunction and behavior in ASD. Neurobiological research in ASD has highlighted pathways involved in neural development, synapse plasticity, structural brain abnormalities, cognition and behavior. At the same time, several lines of evidence point to altered immune dysfunction in ASD that directly impacts some or all these neurological processes. Extensive alterations in immune function have now been described in both children and adults with ASD, including ongoing inflammation in brain specimens, elevated pro-inflammatory cytokine profiles in the CSF and blood, increased presence of brain-specific auto-antibodies and altered immune cell function. Furthermore, these dysfunctional immune responses are associated with increased impairments in behaviors characteristic of core features of ASD, in particular, deficits in social interactions and communication. This accumulating evidence suggests that immune processes play a key role in the pathophysiology of ASD. This review will discuss the current state of our knowledge of immune dysfunction in ASD, how these findings may impact on underlying neuro-immune mechanisms and implicate potential areas where the manipulation of the immune response could have an impact on behavior and immunity in ASD.
Collapse
|
88
|
Abstract
Autism spectrum disorders (ASD) are complex and heterogeneous with a spectrum of diverse symptoms. Mounting evidence from a number of disciplines suggests a link between immune function and ASD. Although the causes of ASD have yet to be identified, genetic studies have uncovered a host of candidate genes relating to immune regulation that are altered in ASD, while epidemiological studies have shown a relationship with maternal immune disturbances during pregnancy and ASD. Moreover, decades of research have identified numerous systemic and cellular immune abnormalities in individuals with ASD and their families. These include changes in immune cell number, differences in cytokine and chemokine production, and alterations of cellular function at rest and in response to immunological challenge. Many of these changes in immune responses are associated with increasing impairment in behaviors that are core features of ASD. Despite this evidence, much remains to be understood about the precise mechanism by which the immune system alters neurodevelopment and to what extent it is involved in the pathogenesis of ASD. With estimates of ASD as high as 1% of children, ASD is a major public health issue. Improvements in our understanding of the interactions between the nervous and immune system during early neurodevelopment and how this interaction is different in ASD will have important therapeutic implications with wide ranging benefits.
Collapse
Affiliation(s)
- Milo Careaga
- Department of Medical Microbiology and Immunology and the M.I.N.D. Institute, University of California at Davis, Davis, CA, USA
| | | |
Collapse
|
89
|
Intracellular and extracellular redox status and free radical generation in primary immune cells from children with autism. AUTISM RESEARCH AND TREATMENT 2011; 2012:986519. [PMID: 22928106 PMCID: PMC3420377 DOI: 10.1155/2012/986519] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 08/12/2011] [Accepted: 09/12/2011] [Indexed: 12/01/2022]
Abstract
The modulation of the redox microenvironment is an important regulator of immune cell activation and proliferation. To investigate immune cell redox status in autism we quantified the intracellular glutathione redox couple (GSH/GSSG) in resting peripheral blood mononuclear cells (PBMCs), activated monocytes and CD4 T cells and the extracellular cysteine/cystine redox couple in the plasma from 43 children with autism and 41 age-matched control children. Resting PBMCs and activated monocytes from children with autism exhibited significantly higher oxidized glutathione (GSSG) and percent oxidized glutathione equivalents and decreased glutathione redox status (GSH/GSSG). In activated CD4 T cells from children with autism, the percent oxidized glutathione equivalents were similarly increased, and GSH and GSH/GSSG were decreased. In the plasma, both glutathione and cysteine redox ratios were decreased in autistic compared to control children. Consistent with decreased intracellular and extracellular redox status, generation of free radicals was significantly elevated in lymphocytes from the autistic children. These data indicate primary immune cells from autistic children have a more oxidized intracellular and extracellular microenvironment and a deficit in glutathione-mediated redox/antioxidant capacity compared to control children. These results suggest that the loss of glutathione redox homeostasis and chronic oxidative stress may contribute to immune dysregulation in autism.
Collapse
|
90
|
The potential role of probiotics in the management of childhood autism spectrum disorders. Gastroenterol Res Pract 2011; 2011:161358. [PMID: 22114588 PMCID: PMC3205659 DOI: 10.1155/2011/161358] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 08/20/2011] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal (GI) dysfunction has been reported in a substantial number of children with autism spectrum disorders (ASD). Activation of the mucosal immune response and the presence of abnormal gut microbiota are repeatedly observed in these children. In children with ASD, the presence of GI dysfunction is often associated with increased irritability, tantrums, aggressive behaviour, and sleep disturbances. Moreover, modulating gut bacteria with short-term antibiotic treatment can lead to temporary improvement in behavioral symptoms in some individuals with ASD. Probiotics can influence microbiota composition and intestinal barrier function and alter mucosal immune responses. The administration of probiotic bacteria to address changes in the microbiota might, therefore, be a useful novel therapeutic tool with which to restore normal gut microbiota, reduce inflammation, restore epithelial barrier function, and potentially ameliorate behavioural symptoms associated with some children with ASD. In this review of the literature, support emerges for the clinical testing of probiotics in ASD, especially in the context of addressing GI symptoms.
Collapse
|
91
|
NF-κB signaling in the brain of autistic subjects. Mediators Inflamm 2011; 2011:785265. [PMID: 22046080 PMCID: PMC3199189 DOI: 10.1155/2011/785265] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 08/18/2011] [Indexed: 02/01/2023] Open
Abstract
Autism is a neurodevelopmental disorder characterized by problems in communication, social skills, and repetitive behavior. Recent studies suggest that apoptotic and inflammatory mechanisms may contribute to the pathogenesis of this disorder. Nuclear factor-κB (NF-κB) is an important gene transcriptional factor involved in the mediation of inflammation and apoptosis. This study examined the activities of the NF-κB signaling pathway in the brain of autistic subjects and their age-matched controls. The NF-κB activation is also determined in the brain of BTBR mice, which is a promising animal model for study of pathogenic mechanisms responsible for autism. Our results showed that the level of IKKα kinase, which phosphorylates the inhibitory subunit IκBα, is significantly increased in the cerebellum of autistic subjects. However, the expression and phosphorylation of IκBα are not altered. In addition, our results demonstrated that the expression of NF-κB (p65), and the phosphorylation/activation of NF-κB (p65) at Ser536 are not significantly changed in the cerebellum and cortex of both autistic subjects and BTBR mice. Our findings suggest that the NF-κB signaling pathway is not disregulated in the brain of autistic subjects and thus may not be significantly involved in the processes of abnormal inflammatory responses suggested in autistic brain.
Collapse
|
92
|
El-Ansary AK, Ben Bacha AG, Al-Ayadhi LY. Proinflammatory and proapoptotic markers in relation to mono and di-cations in plasma of autistic patients from Saudi Arabia. J Neuroinflammation 2011; 8:142. [PMID: 21999440 PMCID: PMC3213048 DOI: 10.1186/1742-2094-8-142] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 10/15/2011] [Indexed: 01/30/2023] Open
Abstract
Objectives Autism is a developmental disorder characterized by social and emotional deficits, language impairments and stereotyped behaviors that manifest in early postnatal life. This study aims to clarify the relationship amongst absolute and relative concentrations of K+, Na+, Ca2+, Mg2+ and/or proinflammatory and proapoptotic biomarkers. Materials and methods Na+, K+, Ca2+, Mg2+, Na+/K+, Ca2+/Mg2+ together with IL6, TNFα as proinflammatory cytokines and caspase3 as proapoptotic biomarker were determined in plasma of 25 Saudi autistic male patients and compared to 16 age and gender matching control samples. Results The obtained data recorded that Saudi autistic patients have a remarkable lower plasma caspase3, IL6, TNFα, Ca2+ and a significantly higher K+ compared to age and gender matching controls. On the other hand both Mg2+ and Na+ were non-significantly altered in autistic patients. Pearson correlations revealed that plasma concentrations of the measured cytokines and caspase-3 were positively correlated with Ca2+ and Ca2+/K+ ratio. Reciever Operating Characteristics (ROC) analysis proved that the measured parameters recorded satisfactory levels of specificity and sensitivity. Conclusion Alteration of the selected measured ions confirms that oxidative stress and defective mitochondrial energy production could be contributed in the pathogenesis of autism. Moreover, it highlights the relationship between the measured ions, IL6, TNFα and caspase3 as a set of signalling pathways that might have a role in generating this increasingly prevalent disorder. The role of ions in the possible proinflammation and proapoptic mechanisms of autistics' brains were hypothesized and explained.
Collapse
Affiliation(s)
- Afaf K El-Ansary
- Biochemistry Department, Science College, King Saud University, P,O box 22452, Zip code 11495, Riyadh, Saudi Arabia.
| | | | | |
Collapse
|
93
|
Heuer L, Braunschweig D, Ashwood P, Van de Water J, Campbell DB. Association of a MET genetic variant with autism-associated maternal autoantibodies to fetal brain proteins and cytokine expression. Transl Psychiatry 2011; 1:e48. [PMID: 22833194 PMCID: PMC3309488 DOI: 10.1038/tp.2011.48] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The contribution of peripheral immunity to autism spectrum disorders (ASDs) risk is debated and poorly understood. Some mothers of children with ASD have autoantibodies that react to fetal brain proteins, raising the possibility that a subset of ASD cases may be associated with a maternal antibody response during gestation. The mechanism by which the maternal immune system breaks tolerance has not been addressed. We hypothesized that the mechanism may involve decreased expression of the MET receptor tyrosine kinase, an ASD risk gene that also serves as a key negative regulator of immune responsiveness. In a sample of 365 mothers, including 202 mothers of children with ASD, the functional MET promoter variant rs1858830 C allele was strongly associated with the presence of an ASD-specific 37+73-kDa band pattern of maternal autoantibodies to fetal brain proteins (P=0.003). To determine the mechanism of this genetic association, we measured MET protein and cytokine production in freshly prepared peripheral blood mononuclear cells from 76 mothers of ASD and typically developing children. The MET rs1858830 C allele was significantly associated with MET protein expression (P=0.025). Moreover, decreased expression of the regulatory cytokine IL-10 was associated with both the MET gene C allele (P=0.001) and reduced MET protein levels (P=0.002). These results indicate genetic distinction among mothers who produce ASD-associated antibodies to fetal brain proteins, and suggest a potential mechanism for how a genetically determined decrease in MET protein production may lead to a reduction in immune regulation.
Collapse
Affiliation(s)
- L Heuer
- Department of Internal Medicine, University of California, Davis, Davis, CA, USA,University of California, Davis M.I.N.D. Institute, Davis, CA, USA
| | - D Braunschweig
- Department of Internal Medicine, University of California, Davis, Davis, CA, USA,University of California, Davis M.I.N.D. Institute, Davis, CA, USA
| | - P Ashwood
- University of California, Davis M.I.N.D. Institute, Davis, CA, USA,Department of Medical Microbiology, University of California, Davis, Davis, CA, USA
| | - J Van de Water
- Department of Internal Medicine, University of California, Davis, Davis, CA, USA,University of California, Davis M.I.N.D. Institute, Davis, CA, USA,Division of Rheumatology/Allergy and Clinical Immunology; 451 E. Health Sciences Dr., Suite 6510; University of California Davis; Davis, CA 95616, USA. E-mail:
| | - D B Campbell
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA,Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA,213 Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA. E-mail:
| |
Collapse
|
94
|
Dow CT. Mycobacterium paratuberculosis and autism: is this a trigger? Med Hypotheses 2011; 77:977-81. [PMID: 21903338 DOI: 10.1016/j.mehy.2011.08.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 08/14/2011] [Indexed: 12/21/2022]
Abstract
Autism is a heterogeneous group of life-long neurologic problems that begin in childhood. Success in efforts to understand and treat autism has been mostly elusive. The role of autoimmunity in autism has gained recognition both for associated systemic autoimmune disease and the presence of brain autoantibodies in autistic children and their family members. There is an acknowledged genetic susceptibility to autism--most notably allotypes of complement C4. C4 defects are associated with several autoimmune diseases and also confer susceptibility to mycobacterial infections. Mycobacterium avium ss. paratuberculosis (MAP) causes an enteric inflammatory disease in ruminant animals (Johne's disease) and is the putative cause of the very similar Crohn's disease in humans. Humans are widely exposed to MAP in food and water. MAP has been also linked to ulcerative colitis, irritable bowel syndrome, sarcoidosis, Blau syndrome, autoimmune (Type 1) diabetes, Hashimoto's thyroiditis and multiple sclerosis. Environmental agents are thought to trigger autism in the genetically at risk. Molecular mimicry is the proposed mechanism by which MAP is thought to trigger autoantibodies. Autoantibodies to brain myelin basic protein (MBP) is a common feature of autism. This article considers the subset of autoimmunity-related autism patients and postulates that MAP, through molecular mimicry to its heat shock protein HSP65, triggers autism by stimulating antibodies that cross react with myelin basic protein (MBP).
Collapse
Affiliation(s)
- Coad Thomas Dow
- UW Eye Research Institute, 445 Henry Mall #307, Madison, WI 53706, United States.
| |
Collapse
|
95
|
Children with autism spectrum disorders (ASD) who exhibit chronic gastrointestinal (GI) symptoms and marked fluctuation of behavioral symptoms exhibit distinct innate immune abnormalities and transcriptional profiles of peripheral blood (PB) monocytes. J Neuroimmunol 2011; 238:73-80. [PMID: 21803429 DOI: 10.1016/j.jneuroim.2011.07.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 06/26/2011] [Accepted: 07/06/2011] [Indexed: 12/11/2022]
Abstract
Innate/adaptive immune responses and transcript profiles of peripheral blood monocytes were studied in ASD children who exhibit fluctuating behavioral symptoms following infection and other immune insults (ASD/Inf, N=30). The ASD/Inf children with persistent gastrointestinal symptoms (ASD/Inf+GI, N=19), revealed less production of proinflammatory and counter-regulatory cytokines with stimuli of innate immunity and marked changes in transcript profiles of monocytes as compared to ASD/no-Inf (N=28) and normal (N=26) controls. This included a 4-5 fold up-regulation of chemokines (CCL2 and CCL7), consistent with the production of more CCL2 by ASD/Inf+GI cells. These results indicate dysregulated innate immune defense in the ASD/Inf+GI children, rendering them more vulnerable to common microbial infection/dysbiosis and possibly subsequent behavioral changes.
Collapse
|
96
|
Pathways underlying the gut-to-brain connection in autism spectrum disorders as future targets for disease management. Eur J Pharmacol 2011; 668 Suppl 1:S70-80. [PMID: 21810417 DOI: 10.1016/j.ejphar.2011.07.013] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/08/2011] [Accepted: 07/12/2011] [Indexed: 01/09/2023]
Abstract
Autism spectrum disorders (ASDs) are pervasive neurodevelopmental disorders, characterized by impairments in social interaction and communication and the presence of limited, repetitive and stereotyped interests and behavior. Bowel symptoms are frequently reported in children with ASD and a potential role for gastrointestinal disturbances in ASD has been suggested. This review focuses on the importance of (allergic) gastrointestinal problems in ASD. We provide an overview of the possible gut-to-brain pathways and discuss opportunities for pharmaceutical and/or nutritional approaches for therapy.
Collapse
|
97
|
Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah IN, Van de Water J. Altered T cell responses in children with autism. Brain Behav Immun 2011; 25:840-9. [PMID: 20833247 PMCID: PMC3039713 DOI: 10.1016/j.bbi.2010.09.002] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/04/2010] [Accepted: 09/06/2010] [Indexed: 10/19/2022] Open
Abstract
Autism spectrum disorders (ASD) are characterized by impairment in social interactions, communication deficits, and restricted repetitive interests and behaviors. A potential etiologic role for immune dysfunction in ASD has been suggested. Dynamic adaptive cellular immune function was investigated in 66 children with a confirmed diagnosis of ASD and 73 confirmed typically developing (TD) controls 2-5 years-of-age. In vitro stimulation of peripheral blood mononuclear cells with PHA and tetanus was used to compare group-associated cellular responses. The production of GM-CSF, TNFα, and IL-13 were significantly increased whereas IL-12p40 was decreased following PHA stimulation in ASD relative to TD controls. Induced cytokine production was associated with altered behaviors in ASD children such that increased pro-inflammatory or T(H)1 cytokines were associated with greater impairments in core features of ASD as well as aberrant behaviors. In contrast, production of GM-CSF and T(H)2 cytokines were associated with better cognitive and adaptive function. Following stimulation, the frequency of CD3(+), CD4(+) and CD8(+) T cells expressing activation markers CD134 and CD25 but not CD69, HLA-DR or CD137 were significantly reduced in ASD, and suggests an altered activation profile for T cells in ASD. Overall these data indicate significantly altered adaptive cellular immune function in children with ASD that may reflect dysfunctional immune activation, along with evidence that these perturbations may be linked to disturbances in behavior and developmental functioning. Further longitudinal analyzes of cellular immunity profiles would delineate the relationship between immune dysfunction and the progression of behavioral and developmental changes throughout the course of this disorder.
Collapse
Affiliation(s)
- Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California at Davis, CA, USA.
| | - Paula Krakowiak
- Department of Public Health Sciences, Division of Epidemiology, University of California, Davis, CA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, Division of Epidemiology, University of California, Davis, CA, The Medical Investigation of Neuodevelopmental Disorders (M.I.N.D.) Institute, UC Davis Health System, Sacramento, CA
| | - Robin Hansen
- Department of Pediatrics, School of Medicine, University of California, Davis, CA, The Medical Investigation of Neuodevelopmental Disorders (M.I.N.D.) Institute, UC Davis Health System, Sacramento, CA
| | - Isaac N. Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, The Medical Investigation of Neuodevelopmental Disorders (M.I.N.D.) Institute, UC Davis Health System, Sacramento, CA
| | - Judy Van de Water
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, The Medical Investigation of Neuodevelopmental Disorders (M.I.N.D.) Institute, UC Davis Health System, Sacramento, CA
| |
Collapse
|
98
|
Wei H, Zou H, Sheikh AM, Malik M, Dobkin C, Brown WT, Li X. IL-6 is increased in the cerebellum of autistic brain and alters neural cell adhesion, migration and synaptic formation. J Neuroinflammation 2011; 8:52. [PMID: 21595886 PMCID: PMC3114764 DOI: 10.1186/1742-2094-8-52] [Citation(s) in RCA: 233] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 05/19/2011] [Indexed: 02/04/2023] Open
Abstract
Background Although the cellular mechanisms responsible for the pathogenesis of autism are not understood, a growing number of studies have suggested that localized inflammation of the central nervous system (CNS) may contribute to the development of autism. Recent evidence shows that IL-6 has a crucial role in the development and plasticity of CNS. Methods Immunohistochemistry studies were employed to detect the IL-6 expression in the cerebellum of study subjects. In vitro adenoviral gene delivery approach was used to over-express IL-6 in cultured cerebellar granule cells. Cell adhesion and migration assays, DiI labeling, TO-PRO-3 staining and immunofluorescence were used to examine cell adhesion and migration, dendritic spine morphology, cell apoptosis and synaptic protein expression respectively. Results In this study, we found that IL-6 was significantly increased in the cerebellum of autistic subjects. We investigated how IL-6 affects neural cell development and function by transfecting cultured mouse cerebellar granule cells with an IL-6 viral expression vector. We demonstrated that IL-6 over-expression in granule cells caused impairments in granule cell adhesion and migration but had little effect on the formation of dendritic spines or granule cell apoptosis. However, IL-6 over-expression stimulated the formation of granule cell excitatory synapses, without affecting inhibitory synapses. Conclusions Our results provide further evidence that aberrant IL-6 may be associated with autism. In addition, our results suggest that the elevated IL-6 in the autistic brain could alter neural cell adhesion, migration and also cause an imbalance of excitatory and inhibitory circuits. Thus, increased IL-6 expression may be partially responsible for the pathogenesis of autism.
Collapse
Affiliation(s)
- Hongen Wei
- Department of Neurochemistry, NY State Institute for Basic Research in Developmental Disabilities, New York, USA
| | | | | | | | | | | | | |
Collapse
|
99
|
Ashwood P, Corbett BA, Kantor A, Schulman H, Van de Water J, Amaral DG. In search of cellular immunophenotypes in the blood of children with autism. PLoS One 2011; 6:e19299. [PMID: 21573236 PMCID: PMC3087757 DOI: 10.1371/journal.pone.0019299] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 03/30/2011] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Autism is a neurodevelopmental disorder characterized by impairments in social behavior, communication difficulties and the occurrence of repetitive or stereotyped behaviors. There has been substantial evidence for dysregulation of the immune system in autism. METHODS We evaluated differences in the number and phenotype of circulating blood cells in young children with autism (n = 70) compared with age-matched controls (n = 35). Children with a confirmed diagnosis of autism (4-6 years of age) were further subdivided into low (IQ<68, n = 35) or high functioning (IQ ≥ 68, n = 35) groups. Age- and gender-matched typically developing children constituted the control group. Six hundred and forty four primary and secondary variables, including cell counts and the abundance of cell surface antigens, were assessed using microvolume laser scanning cytometry. RESULTS There were multiple differences in immune cell populations between the autism and control groups. The absolute number of B cells per volume of blood was over 20% higher for children with autism and the absolute number of NK cells was about 40% higher. Neither of these variables showed significant difference between the low and high functioning autism groups. While the absolute number of T cells was not different across groups, a number of cellular activation markers, including HLA-DR and CD26 on T cells, and CD38 on B cells, were significantly higher in the autism group compared to controls. CONCLUSIONS These results support previous findings that immune dysfunction may occur in some children with autism. Further evaluation of the nature of the dysfunction and how it may play a role in the etiology of autism or in facets of autism neuropathology and/or behavior are needed.
Collapse
Affiliation(s)
- Paul Ashwood
- Department of Medical Microbiology and Immunology, University of
California Davis, Davis, California, United States of America
- The M.I.N.D. Institute, University of California Davis, Davis,
California, United States of America
| | - Blythe A. Corbett
- The M.I.N.D. Institute, University of California Davis, Davis,
California, United States of America
- Department of Psychiatry and Behavioral Sciences University of California
Davis, Davis, California, United States of America
| | - Aaron Kantor
- PPD Biomarker Discovery Sciences, Menlo Park, California, United States
of America
| | - Howard Schulman
- PPD Biomarker Discovery Sciences, Menlo Park, California, United States
of America
| | - Judy Van de Water
- The M.I.N.D. Institute, University of California Davis, Davis,
California, United States of America
- Division of Rheumatology, Allergy and Clinical Immunology University of
California Davis, Davis, California, United States of America
| | - David G. Amaral
- The M.I.N.D. Institute, University of California Davis, Davis,
California, United States of America
- Department of Psychiatry and Behavioral Sciences University of California
Davis, Davis, California, United States of America
| |
Collapse
|
100
|
Tamiji J, Crawford DA. The neurobiology of lipid metabolism in autism spectrum disorders. Neurosignals 2011; 18:98-112. [PMID: 21346377 DOI: 10.1159/000323189] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 11/29/2010] [Indexed: 01/17/2023] Open
Abstract
Autism is a neurodevelopmental disorder characterized by impairments in communication and reciprocal social interaction, coupled with repetitive behavior, which typically manifests by 3 years of age. Multiple genes and early exposure to environmental factors are the etiological determinants of the disorder that contribute to variable expression of autism-related traits. Increasing evidence indicates that altered fatty acid metabolic pathways may affect proper function of the nervous system and contribute to autism spectrum disorders. This review provides an overview of the reported abnormalities associated with the synthesis of membrane fatty acids in individuals with autism as a result of insufficient dietary supplementation or genetic defects. Moreover, we discuss deficits associated with the release of arachidonic acid from the membrane phospholipids and its subsequent metabolism to bioactive prostaglandins via phospholipase A(2)-cyclooxygenase biosynthetic pathway in autism spectrum disorders. The existing evidence for the involvement of lipid neurobiology in the pathology of neurodevelopmental disorders such as autism is compelling and opens up an interesting possibility for further investigation of this metabolic pathway.
Collapse
Affiliation(s)
- Javaneh Tamiji
- Department of Biology, York University, Toronto, Ont., Canada
| | | |
Collapse
|