51
|
Regulatory effects of flavonoids luteolin on BDE-209-induced intestinal epithelial barrier damage in Caco-2 cell monolayer model. Food Chem Toxicol 2021; 150:112098. [DOI: 10.1016/j.fct.2021.112098] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 02/07/2023]
|
52
|
Wasti S, Sah N, Singh AK, Lee CN, Jha R, Mishra B. Dietary supplementation of dried plum: a novel strategy to mitigate heat stress in broiler chickens. J Anim Sci Biotechnol 2021; 12:58. [PMID: 33781340 PMCID: PMC8008564 DOI: 10.1186/s40104-021-00571-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/17/2021] [Indexed: 12/14/2022] Open
Abstract
Background Heat stress is a significant problem in the poultry industry, causing a severe economic loss due to its detrimental effects on chickens’ health and performance. Dried plum (DP) is a good source of minerals, vitamins, antioxidants, and phenolic compounds. Studies have suggested that DP has several health benefits, such as maintaining the body’s redox system, immune status, and calcium hemostasis. Based on the health benefits of DP, we hypothesized that the dietary supplementation of DP would alleviate the detrimental effects of heat stress on broiler chickens. Results To test the hypothesis, day-old broiler chicks (n = 72) were randomly allocated to three treatment groups (n = 24/group): no heat stress (NHS), heat stress (HS), and heat stress with dried plum (HS + DP), and reared under standard conditions. The inclusion of 2.5% DP in the feed of the HS + DP group was made during the treatment period, while birds in other groups were provided with a standard finisher diet. After 21 days, birds in the HS and HS + DP groups were exposed to cyclic heat stress conditions (33 °C for 8 h during daytime) for 3 weeks, while those in the NHS group were reared under normal conditions (22–24 °C). Weekly body weight and feed intake were recorded to calculate the average daily gain (ADG), average daily feed intake (ADFI), and feed conversion ratio (FCR). Heat stress significantly decreased the final body weight, ADG, ADFI, and increased FCR compared to the NHS group, whereas dietary supplementation of DP significantly improved these growth performance parameters compared to the HS group. Furthermore, supplementation of DP significantly increased the expression of heat shock protein-related genes (HSF1, HSF3, HSP70, and HSP90), antioxidant-related genes (SOD1, SOD2, GPX1, GPX3, PRDX1, and TXN), tight junction-related genes (CLDN1, and OCLN), and immune-related genes (IL4, MUC2) in the ileum as compared to the HS group. The microbiota analysis showed significant enrichment of Bacillales, Christensenellaceae, Bacillaceae, Peptostreptococcaceae, and Anaerotruncus in heat-stressed birds supplemented with DP as compared to the HS group. Further, DP supplementation also significantly increased the concentration of acetate, propionate, and total VFA in the cecal digesta of the HS + DP group as compared to the HS group. Conclusion These findings suggest that DP supplementation effectively improved the growth performances and gut health parameters in the heat-stressed birds. Thus, dried plum can be a potential feed supplement to mitigate heat stress in broiler chickens. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00571-5.
Collapse
Affiliation(s)
- Sanjeev Wasti
- Department of Human Nutrition Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Nirvay Sah
- Department of Human Nutrition Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Amit K Singh
- Department of Human Nutrition Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Chin N Lee
- Department of Human Nutrition Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Rajesh Jha
- Department of Human Nutrition Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Birendra Mishra
- Department of Human Nutrition Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
53
|
|
54
|
Protective Effects of Baicalin on Peritoneal Tight Junctions in Piglets Challenged with Glaesserella parasuis. Molecules 2021; 26:molecules26051268. [PMID: 33652818 PMCID: PMC7956672 DOI: 10.3390/molecules26051268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/11/2022] Open
Abstract
Glaesserella parasuis (G. parasuis) causes inflammation and damage to piglets. Whether polyserositis caused by G. parasuis is due to tight junctions damage and the protective effect of baicalin on it have not been examined. Therefore, this study aims to investigate the effects of baicalin on peritoneal tight junctions of piglets challenged with G. parasuis and its underlying molecular mechanisms. Piglets were challenged with G. parasuis and treated with or without baicalin. RT-PCR was performed to examine the expression of peritoneal tight junctions genes. Immunofluorescence was carried out to detect the distribution patterns of tight junctions proteins. Western blot assays were carried out to determine the involved signaling pathways. Our data showed that G. parasuis infection can down-regulate the tight junctions expression and disrupt the distribution of tight junctions proteins. Baicalin can alleviate the down-regulation of tight junctions mRNA in peritoneum, prevent the abnormalities and maintain the continuous organization of tight junctions. Our results provide novel evidence to support that baicalin has the capacity to protect peritoneal tight junctions from G. parasuis-induced inflammation. The protective mechanisms of baicalin could be associated with inhibition of the activation of PKC and MLCK/MLC signaling pathway. Taken together, these data demonstrated that baicalin is a promising natural agent for the prevention and treatment of G. parasuis infection.
Collapse
|
55
|
Navy Bean Supplementation in Established High-Fat Diet-Induced Obesity Attenuates the Severity of the Obese Inflammatory Phenotype. Nutrients 2021; 13:nu13030757. [PMID: 33652785 PMCID: PMC7996849 DOI: 10.3390/nu13030757] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/05/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023] Open
Abstract
Cooked common beans (Phaseolus vulgaris) improve intestinal health in lean mice and attenuate intestinal dysbiosis and inflammation when consumed concurrent with obesity development. We determined the effects of a high-fat (HF) bean supplemented diet in mice with established obesity (induced by 12 weeks of HF diet (60% fat as kcal)) compared to obese mice consuming a HF or low-fat (LF) weight loss control diet. Obese C57BL/6 male mice remained consuming HF for eight weeks or were randomly switched from HF to an isocaloric HF with 15.7% cooked navy bean powder diet (HF→HFB) or LF (11% fat as kcal; HF→LF) (n = 12/group). HF→HFB improved the obese phenotype, including (i) fecal microbiome (increased Prevotella, Akkermansia muciniphila, and short-chain fatty acid levels), (ii) intestinal health (increased ZO-1, claudin-2, Muc2, Relmβ, and Reg3γ expression), and (iii) reduced adipose tissue (AT) inflammatory proteins (NFκBp65, STAT3, IL-6, MCP-1, and MIP-1α), versus HF (p < 0.05). Conversely, HF→LF reduced body weight and circulating hormones (leptin, resistin, and PAI-1) versus HF and HF→HFB (p < 0.05); however, AT inflammation and intestinal health markers were not improved to the same degree as HF→HFB (p < 0.05). Despite remaining on a HF obesogenic diet, introducing beans in established obesity improved the obese phenotype (intestinal health and adipose inflammation) more substantially than weight loss alone.
Collapse
|
56
|
Fan J, Li BR, Zhang Q, Zhao XH, Wang L. Pretreatment of IEC-6 cells with quercetin and myricetin resists the indomethacin-induced barrier dysfunction via attenuating the calcium-mediated JNK/Src activation. Food Chem Toxicol 2021; 147:111896. [PMID: 33276066 DOI: 10.1016/j.fct.2020.111896] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/22/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022]
Abstract
This study investigated the protective effect of two flavonols quercetin and myricetin on barrier function of rat intestinal epithelial (IEC-6) cells with indomethacin injury. When the cells were pretreated with the heated or unheated flavonols of 2.5-10 μmol/L for 24-48 h and then injured by 300 μmol/L indomethacin for 24 h, they showed reduced lactate dehydrogenase release (LDH) but increased cell viability; however, the flavonols of 20 μmol/L exerted a little effect to increase cell viability or decrease LDH release. Cell pretreatment with 5 μmol/L flavonols also resisted cell barrier dysfunction by increasing transepithelial resistance, reducing paracellular permeability, and promoting mRNA and protein expression of three tight junction proteins zonula occluden-1, occludin, and claudin-1. Although indomethacin injury increased intracellular Ca2+ concentration ([Ca2+]i) and consequently caused JNK/Src activation, the flavonols could decrease [Ca2+]i and attenuate the calcium-mediated JNK/Src activation. Quercetin with less hydroxyl groups was more efficient than myricetin to resist barrier dysfunction, while the unheated flavonols were more active than the heated counterparts to perform this effect. It is thus proposed that quercetin and myricetin could resist barrier dysfunction of the intestine once injured by indomethacin, but heat treatment of flavonols had a negative impact on barrier-protective function of flavonols.
Collapse
Affiliation(s)
- Jing Fan
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, 525000, Maoming, PR China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, 150030, Harbin, PR China
| | - Bai-Ru Li
- School of Mechanical and Electrical Engineering Guangdong University of Petrochemical Technology, 525000, Maoming, PR China
| | - Qiang Zhang
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, 525000, Maoming, PR China
| | - Xin-Huai Zhao
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, 525000, Maoming, PR China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, 150030, Harbin, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong University of Petrochemical Technology, 525000, Maoming, PR China.
| | - Li Wang
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, 525000, Maoming, PR China.
| |
Collapse
|
57
|
Zheng B, Ying M, Xie J, Chen Y, Wang Y, Ding X, Hong J, Liao W, Yu Q. A Ganoderma atrum polysaccharide alleviated DSS-induced ulcerative colitis by protecting the apoptosis/autophagy-regulated physical barrier and the DC-related immune barrier. Food Funct 2020; 11:10690-10699. [PMID: 33220673 DOI: 10.1039/d0fo02260h] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polysaccharides are one of the main active substances in Ganoderma atrum (G. atrum). The purpose of this study was to explore the protective effect of a G. atrum polysaccharide (PSG-1) on DSS-induced colitis and the underlying mechanism. The results showed that PSG-1 could maintain the integrity of the intestinal structure by promoting the expression of goblet cells and levels of tight junction proteins in the colon of DSS-induced colitis mice. Furthermore, PSG-1 relieved the inhibition of Bcl-2 and the overexpression of caspase-3 and caspase-9 caused by DSS. Simultaneously, PSG-1 restored the expression of Atg5, Atg7 and beclin-1 and inhibited the p-akt and p-mTOR levels, suggesting that PSG-1 promoted autophagy via the Akt/mTOR pathway. Moreover, PSG-1 inhibited the content of DCs in the colon and modulated the expression of IL-10 in DCs. In conclusion, PSG-1 alleviated DSS-induced ulcerative colitis by protecting the apoptosis/autophagy-regulated physical barrier and the DC-related immune barrier.
Collapse
Affiliation(s)
- Bing Zheng
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Milajerdi A, Ebrahimi-Daryani N, Dieleman LA, Larijani B, Esmaillzadeh A. Association of Dietary Fiber, Fruit, and Vegetable Consumption with Risk of Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. Adv Nutr 2020; 12:735-743. [PMID: 33186988 PMCID: PMC8166559 DOI: 10.1093/advances/nmaa145] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/22/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
No previous investigation has summarized findings from prospective cohort studies on the association between dietary intake of fiber, fruit, and vegetables and risk of inflammatory bowel disease (IBD). Dietary fiber and its major sources can influence the risk of IBD by modulation of the gut microbiota. This study summarizes findings from published cohort studies on the association between dietary fiber, fruit, and vegetable consumption and risk of IBD. Relevant articles published up to January 2019 were searched via PubMed, MEDLINE, Scopus, Embase, Cochrane Library, and Google Scholar. All prospective cohort studies investigating the association between dietary fiber, fruit, and vegetable intake and risk of IBD were included. Combining 7 effect sizes from 6 studies, no significant association was found between dietary intake of fiber and risk of ulcerative colitis (UC) (RR: 1.09; 95% CI: 0.88, 1.34). However, a significant inverse association was found between dietary fiber intake and risk of Crohn disease (CD) (RR: 0.59; 95% CI: 0.46, 0.74), based on 5 studies with 6 effect sizes. Pooling information from 4 studies, we found a significant protective association between dietary intake of fruit and risk of UC (RR: 0.69; 95% CI: 0.55, 0.86) and CD (RR: 0.47; 95% CI: 0.38, 0.58). We also found a significant inverse association between vegetable consumption and risk of UC (RR: 0.56; 95% CI: 0.48, 0.66) and CD (RR: 0.52; 95% CI: 0.46, 0.59). In conclusion, dietary intake of fruit and vegetables was inversely associated with risk of IBD and its subtypes. Dietary fiber intake was also inversely associated with incidence of IBD and CD, but not with UC. Further studies are warranted to examine the association of other fiber-rich foods with IBD.
Collapse
Affiliation(s)
- Alireza Milajerdi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran,Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran,Department of Health, Aja University of Medical Sciences, Tehran, Iran
| | - Nasser Ebrahimi-Daryani
- Department of Gastroenterology and Hepatology, Tehran University of Medical Sciences, Tehran, Iran
| | - Levinus A Dieleman
- Division of Gastroenterology, University of Alberta, Edmonton, Alberta, Canada
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
59
|
Che SY, Yuan JW, Zhang L, Ruan Z, Sun XM, Lu H. Puerarin prevents epithelial tight junction dysfunction induced by ethanol in Caco-2 cell model. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
60
|
Hou D, Zhao Q, Yousaf L, Xue Y, Shen Q. Beneficial effects of mung bean seed coat on the prevention of high-fat diet-induced obesity and the modulation of gut microbiota in mice. Eur J Nutr 2020; 60:2029-2045. [PMID: 33005980 DOI: 10.1007/s00394-020-02395-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE Our recent study has reported that whole mung bean showed better beneficial effects on high-fat diet (HFD)-induced obesity and gut microbiota disorders when compared with the decorticated mung bean at the same intervention dose level, suggesting that the mung bean seed coat (MBC) may play a crucial role in its health benefits. This study aims to investigate whether MBC has beneficial benefits on the prevention of HFD-induced obesity and the modulation of gut microbiota in mice when it was supplemented in HFD. METHODS Herein, male C57BL/6 J mice were fed with normal control diet, HFD, and HFD supplemented with MBC (3-6%, w/w) for 12 weeks. The changes in physiological, histological, biochemical parameters, serum endotoxin, proinflammatory cytokines, and gut microbiota composition of mice were determined to assess the ability of MBC to alleviate HFD-induced obesity and modulate gut microbiota disorders in mice. RESULTS MBC supplementation exhibited significant reductions in the HFD-induced adiposity, fat accumulation, serum lipid levels, lipopolysaccharide, and proinflammatory cytokines concentrations (P < 0.05), which was accompanied by improvements in hepatic steatosis and adipocyte size. Especially, the elevated fasting blood glucose and insulin resistance were also significantly improved by MBC supplementation (P < 0.05). Furthermore, high-throughput sequencing of the 16S rRNA gene revealed that MBC could normalize HFD-induced gut microbiota dysbiosis. MBC not only could promote the bloom of Akkermansia, but also restore several HFD-dependent taxa (Blautia, Ruminiclostridium_9, Bilophila, and unclassified_f_Ruminococcaceae) back to normal status, co-occurring with the decreases in obesity-related indices. CONCLUSIONS This study provides evidence that MBC may be mainly responsible for the beneficial effects of whole mung bean on preventing the HFD-induced changes, thus enlarging the application value of MBC.
Collapse
Affiliation(s)
- Dianzhi Hou
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17, Qinghua East Road, Haidian District, Beijing, 100083, China.,National Engineering Research Center for Fruit and Vegetable Processing, Beijing, 100083, China.,Key Laboratory of Plant Protein and Grain Processing, China Agricultural University, Beijing, 100083, China
| | - Qingyu Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17, Qinghua East Road, Haidian District, Beijing, 100083, China.,National Engineering Research Center for Fruit and Vegetable Processing, Beijing, 100083, China.,Key Laboratory of Plant Protein and Grain Processing, China Agricultural University, Beijing, 100083, China
| | - Laraib Yousaf
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17, Qinghua East Road, Haidian District, Beijing, 100083, China.,National Engineering Research Center for Fruit and Vegetable Processing, Beijing, 100083, China.,Key Laboratory of Plant Protein and Grain Processing, China Agricultural University, Beijing, 100083, China
| | - Yong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17, Qinghua East Road, Haidian District, Beijing, 100083, China.,National Engineering Research Center for Fruit and Vegetable Processing, Beijing, 100083, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17, Qinghua East Road, Haidian District, Beijing, 100083, China. .,National Engineering Research Center for Fruit and Vegetable Processing, Beijing, 100083, China. .,Key Laboratory of Plant Protein and Grain Processing, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
61
|
Abstract
PURPOSE OF REVIEW Soy isoflavones are known to have beneficial effects on several aspects of gastrointestinal physiological functions (contractility or motility, secretion, morphology, and barrier function). In this review, we discuss the effects of soy isoflavones on the overall gut function and inflammation and assess how these effects might be implicated in the treatment of several gut-related diseases. RECENT FINDINGS Soy isoflavones influence several key aspects of gastrointestinal health: improve basal intestinal secretion, alleviate inflammation, limit intestinal morphological damage, and improve epithelial barrier function in several clinically relevant murine models of gastrointestinal diseases. Dietary supplementation with isoflavones proves to be a key means to improve the overall gut function and health. Future mechanistic studies with isoflavone interventions will help treat clinically related diseases such as cystic fibrosis and inflammatory-related gut problems such as colitis and diabetes.
Collapse
Affiliation(s)
- Layla Al-Nakkash
- College of Graduate Studies, Midwestern University, Glendale, AZ, 85308, USA.
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, 85308, USA.
| | - Aaron Kubinski
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, 85308, USA
| |
Collapse
|
62
|
Miryan M, Alavinejad P, Abbaspour M, Soleimani D, Ostadrahimi A. Does propolis affect the quality of life and complications in subjects with irritable bowel syndrome (diagnosed with Rome IV criteria)? A study protocol of the randomized, double-blinded, placebo-controlled clinical trial. Trials 2020; 21:698. [PMID: 32758282 PMCID: PMC7405434 DOI: 10.1186/s13063-020-04615-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/15/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is one of the most frequent and recurrent gastrointestinal diseases. However, up to now, no pharmacological agent has been approved to treat IBS. Emerging evidence showed that inflammation has a vital role in enhancing nervous system sensitivity and perception of abdominal pain in subjects with IBS. Propolis is an herbal substance with a broad spectrum of antioxidants, anti-inflammatory, and prebiotic properties, which might exert beneficial effects to reduce the severity of IBS. The current clinical trial aims to evaluate the efficacy of propolis supplementation on IBS. METHODS This single-center, randomized, double-blind, placebo-controlled clinical trial will be performed to evaluate the effect of propolis supplementation in adult patients with IBS diagnosed with Rome IV criteria. Fifty-two eligible patients will randomly be allocated to receive a propolis tablet (450 mg, containing 100 mg polyphenol compounds) or identical placebo, twice daily for 6 weeks. The primary outcome of the trial is an improvement in IBS severity from baseline to the sixth week of intervention. The secondary outcomes include the change in weight, waist circumference, and IBS quality of life. We will use the paired sample t test or Mann-Whitney U test for the within-group comparison and independent sample t test or Wilcoxon rank-sum and chi-square test or Fisher's exact test for the between-group comparison. Besides, a multivariable-adjusted mean effect will be computed using the ANCOVA test. DISCUSSION We hypothesize that propolis supplementation would be useful for treating IBS through its antioxidants, anti-inflammatory, and prebiotic properties. This trial will show the results of propolis supplementation, whether positive or negative, on IBS. If the current trial confirms our hypothesis, propolis supplementation can be a new choice in adjunctive therapy of IBS. TRIAL REGISTRATION Iranian Registry of Clinical Trials IRCT20190708044154N1. Registered on 26 December 2019. Updated on 13 February 2020. https://en.irct.ir/trial/40983 SPONSOR: Tabriz University of Medical Sciences, Tabriz, Iran.
Collapse
Affiliation(s)
- Mahsa Miryan
- Nutrition Research Center, Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pezhman Alavinejad
- Alimentary Tract Research Center, Ahvaz Imam Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Abbaspour
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Davood Soleimani
- Nutritional Sciences Department, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
63
|
Hisada M, Hiranuma M, Nakashima M, Goda N, Tenno T, Hiroaki H. High dose of baicalin or baicalein can reduce tight junction integrity by partly targeting the first PDZ domain of zonula occludens-1 (ZO-1). Eur J Pharmacol 2020; 887:173436. [PMID: 32745606 DOI: 10.1016/j.ejphar.2020.173436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023]
Abstract
The tight junction (TJ) is the apical-most intercellular junction complex, serving as a biological barrier of intercellular spaces between epithelial cells. The TJ's integrity is maintained by a key protein-protein interaction between C-terminal motifs of claudins (CLDs) and the postsynaptic density 95 (PSD-95)/discs large/zonula occludens 1 (ZO-1; PDZ) domains of ZO-1. Weak but direct interaction of baicalin and its aglycon, baicalein-which are pharmacologically active components of Chinese skullcap (Radix scutellariae)-with ZO-1(PDZ1) have been observed in NMR experiments. Next, we observed TJ-mitigating activity of these flavonoids against Madin-Darby canine kidney (MDCK) II cells with the downregulation of subcellular localization of CLD-2 at TJs. Meanwhile, baicalein-but not baicalin-induced a slender morphological change of MDCK cells' shape from their normal cobblestone-like shapes. Since baicalin and baicalein did not induce a localization change of occludin (OCLN), a "partial" epithelial-mesenchymal transition (EMT) induced by these flavonoids was considered. SB431542, an ALK-5 inhibitor, reversed the CLD-2 downregulation of both baicalin and baicalein, while SB431542 did not reverse the slender morphology. In contrast, the MEK/ERK inhibitor U0126 reversed the slender shape change. Thus, in addition to inhibition of the ZO-1-CLD interaction, activation of both transforming growth factor-β (TGF-β) and MEK/ERK signaling pathways have been suggested to be involved in TJ reduction by these flavonoids. Finally, we demonstrated that baicalin enhanced the permeability of fluorescence-labeled insulin via the paracellular pathway of the Caco-2 cell layer. We propose that baicalin, baicalein, and Radix scutellariae extract are useful as drug absorption enhancers.
Collapse
Affiliation(s)
- Misaki Hisada
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Minami Hiranuma
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Mio Nakashima
- Department of Biological Sciences, Faculty of Science, Nagoya University, Japan
| | - Natsuko Goda
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Takeshi Tenno
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya, Aichi, 464-8601, Japan; BeCerllBar, LLC., Nagoya, Aichi, Japan
| | - Hidekazu Hiroaki
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya, Aichi, 464-8601, Japan; Department of Biological Sciences, Faculty of Science, Nagoya University, Japan; BeCerllBar, LLC., Nagoya, Aichi, Japan.
| |
Collapse
|
64
|
Ahn-Jarvis J, Lombardo E, Cruz-Monserrate Z, Badi N, Crowe O, Kaul S, Komar H, Krishna SG, Lesinski GB, Mace TA, Ramsey ML, Roberts K, Stinehart K, Traczek M, Conwell DL, Vodovotz Y, Hart PA. Reduction of inflammation in chronic pancreatitis using a soy bread intervention: A feasibility study. Pancreatology 2020; 20:852-859. [PMID: 32595109 PMCID: PMC7780088 DOI: 10.1016/j.pan.2020.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Chronic pancreatitis is a chronic inflammatory disease, which progresses to fibrosis. Currently there are no interventions to delay or stop the progression to irreversible organ damage. In this study, we assessed the tolerability and feasibility of administering soy bread to reduce circulating inflammatory mediators. METHODS Subjects with chronic pancreatitis diagnosed using the American Pancreatic Association diagnostic guidelines were enrolled. During the dose escalation (DE) phase, subjects received one week of soy bread based using a 3 + 3 dose-escalation design, which was then followed by a maximally tolerated dose (MTD) phase with four weeks of intervention. Dose-limiting toxicities (DLTs) were monitored. Plasma cytokine levels were measured using a Meso Scale Discovery multiplex assay kit. Isoflavonoid excretion in 24-h urine collection was used to measure soy bread compliance. RESULTS Nine subjects completed the DE phase, and one subject completed the MTD phase without any DLTs at a maximum dosage of three slices (99 mg of isoflavones) per day. Reported compliance to soy bread intervention was 98%, and this was confirmed with urinary isoflavones and their metabolites detected in all subjects. There was a significant decline in the TNF-α level during the DE phase (2.667 vs 2.382 pg/mL, p = 0.039); other levels were similar. CONCLUSIONS In this feasibility study, there was excellent compliance with a short-term intervention using soy bread in chronic pancreatitis. Reduction was seen in at least one pro-inflammatory cytokine with short-term intervention. Larger cohorts and longer interventions with soy are warranted to assess the efficacy of reducing pro-inflammatory mediators of disease.
Collapse
Affiliation(s)
- Jennifer Ahn-Jarvis
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| | - Erin Lombardo
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Niharika Badi
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Olivia Crowe
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sabrina Kaul
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Hannah Komar
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Hematology and Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Somashekar G Krishna
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Gregory B Lesinski
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Hematology and Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Thomas A Mace
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mitchell L Ramsey
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kristen Roberts
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Medical Dietetics, The Ohio State University, Columbus, OH, USA
| | - Kyle Stinehart
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Madelyn Traczek
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Darwin L Conwell
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Yael Vodovotz
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| | - Phil A Hart
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
65
|
Mountzouris KC, Paraskeuas VV, Fegeros K. Priming of intestinal cytoprotective genes and antioxidant capacity by dietary phytogenic inclusion in broilers. ACTA ACUST UNITED AC 2020; 6:305-312. [PMID: 33005764 PMCID: PMC7503066 DOI: 10.1016/j.aninu.2020.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/08/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022]
Abstract
The potential of a phytogenic premix (PP) based on ginger, lemon balm, oregano and thyme to stimulate the expression of cytoprotective genes at the broiler gut level was evaluated in this study. In particular, the effects of PP inclusion levels on a selection of genes related to host protection against oxidation (catalase [CAT], superoxide dismutase 1 [SOD1], glutathione peroxidase 2 [GPX2], heme oxygenase 1 [HMOX1], NAD(P)H quinone dehydrogenase 1 [NQO1], nuclear factor (erythroid-derived 2)-like 2 [Nrf2] and kelch like ECH associated protein 1 [Keap1]), stress (heat shock 70 kDa protein 2 [HSP70] and heat shock protein 90 alpha family class A member 1 [HSP90]) and inflammation (nuclear factor kappa B subunit 1 [NF-κB1], Toll-like receptor 2 family member B (TLR2B) and Toll-like receptor 4 [TLR4]) were profiled along the broiler intestine. In addition, broiler intestinal segments were assayed for their total antioxidant capacity (TAC). Depending on PP inclusion level (i.e. 0, 750, 1,000 and 2,000 mg/kg diet) in the basal diets, 1-d-old Cobb broiler chickens (n = 500) were assigned into the following 4 treatments: CON, PP-750, PP-1000 and PP-2000. Each treatment had 5 replicates of 25 chickens with ad libitum access to feed and water. Data were analyzed by ANOVA and means compared using Tukey's honest significant difference (HSD) test. Polynomial contrasts tested the linear and quadratic effect of PP inclusion levels. Inclusion of PP increased (P ≤ 0.05) the expression of cytoprotective genes against oxidation, except CAT. In particular, the cytoprotective against oxidation genes were up-regulated primarily in the duodenum and the ceca and secondarily in the jejunum. Most of the genes were up-regulated in a quadratic manner with increasing PP inclusion level with the highest expression levels noted in treatments PP-750 and PP-1000 compared to CON. Similarly, intestinal TAC was higher in PP-1000 in the duodenum (P = 0.011) and the ceca (P = 0.050) compared to CON. Finally, increasing PP inclusion level resulted in linearly reduced (P ≤ 0.05) expression of NF-κB1, TLR4 and HSP70, the former in the duodenum and the latter 2 in the ceca. Overall, PP inclusion consistently up-regulated cytoprotective genes and down-regulated stress and inflammation related ones. The effect is dependent on PP inclusion level and the intestinal site. The potential of PP to beneficially prime bird cytoprotective responses merit further investigation under stress-challenge conditions.
Collapse
Affiliation(s)
| | - Vasileios V Paraskeuas
- Department of Nutritional Physiology and Feeding, Agricultural University of Athens, Greece
| | - Konstantinos Fegeros
- Department of Nutritional Physiology and Feeding, Agricultural University of Athens, Greece
| |
Collapse
|
66
|
Lv Z, Dai H, Wei Q, Jin S, Wang J, Wei X, Yuan Y, Yu D, Shi F. Dietary genistein supplementation protects against lipopolysaccharide-induced intestinal injury through altering transcriptomic profile. Poult Sci 2020; 99:3411-3427. [PMID: 32616235 PMCID: PMC7597844 DOI: 10.1016/j.psj.2020.03.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/04/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
Genistein is abundant in the corn-soybean meal feed. Little information is available about the effect of dietary genistein on the intestinal transcriptome of chicks, especially when suffering from intestinal injury. In this study, 180 one-day-old male ROSS 308 broiler chickens were randomly allocated to 3 groups, with 4 replicates (cages) of 15 birds each. The treatments were as follows: chicks received a basal diet (CON), a basal diet and underwent lipopolysaccharide-challenge (LPS), or a basal diet supplemented with 40 mg/kg genistein and underwent LPS-challenge (GEN). LPS injection induced intestinal injury and inflammatory reactions in the chicks. Transcriptomic analysis identified 7,131 differently expressed genes (3,281 upregulated and 3,851 downregulated) in the GEN group compared with the LPS group (P adjusted value < 0.05, |fold change| > 1.5), which revealed that dietary genistein exposure altered the gene expression profile and signaling pathways in the ileum of LPS-treated chicks. Furthermore, dietary genistein improved intestinal morphology, mucosal immune function, tight junction, antioxidant activity, apoptotic process, and growth performance, which were adversely damaged by LPS injection. Therefore, adding genistein into the diet of chicks can alter RNA expression profile and ameliorate intestinal injury in LPS-challenged chicks, thereby improving the growth performance of chicks with intestinal injury.
Collapse
Affiliation(s)
- Zengpeng Lv
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongjian Dai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Song Jin
- Animal Disease Control Center of Changzhou, Jiangsu 213003, China
| | - Jiao Wang
- Animal Disease Control Center of Changzhou, Jiangsu 213003, China
| | - Xihui Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunwei Yuan
- Poultry Production Department, Jiangsu Hesheng Food Limited Company, Taizhou 225300, China
| | - Debing Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
67
|
Abstract
Polyphenols are naturally occurring compounds in plants and they are the most abundant antioxidants in the human diet. Due to their considerable structural diversity, this largely influences their bioavailability. Since a large proportion of polyphenols remains unabsorbed along the gastrointestinal tract, they may accumulate in the large intestine, where most of them are extensively metabolized by the intestinal microbiota. The formation of bioactive polyphenol-derived metabolites may also benefit the health status of the subjects, although the mechanisms have not been delineated. This review aims to highlight the impact of polyphenols on gut health and the modes of action could be through modulation of intestinal barrier function, innate and adaptive immune response, signaling pathways, as well as the ability to modify gut microbiota composition. The review will conclude by presenting future perspective and challenges of polyphenols application in food products to be used for preventing or treating diseases.
Collapse
Affiliation(s)
- Murphy L Y Wan
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong
| | - Vanessa Anna Co
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong
| | - Hani El-Nezami
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
68
|
Sharma S, Tripathi P, Sharma J, Dixit A. Flavonoids modulate tight junction barrier functions in hyperglycemic human intestinal Caco-2 cells. Nutrition 2020; 78:110792. [PMID: 32473529 DOI: 10.1016/j.nut.2020.110792] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/01/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Diabetes mellitus is a chronic disease requiring lifelong medical attention. With hundreds of millions suffering worldwide and a rapidly rising incidence, diabetes mellitus poses a great burden on health care systems. Recent studies investigating the underlying mechanisms involved in disease development in diabetes point to the role of the dysregulation of the intestinal barrier. Hyperglycemia-mediated tight junction deformity is known to contribute to leaky gut in various metabolic disorders. The present study aimed to investigate the role of oxidative stress on intestinal epithelial tight junction (TJ) barrier functions in hyperglycemia. Because many flavonoids are known to influence the cellular redox state, exploring these flavonoids may help to understand the role of TJ barrier in hyperglycemia-mediated oxidative stress, which in turn might unfold the association of oxidative stress and dysfunction of barrier-forming TJs. METHODS Caco-2 cells were stimulated with high glucose (HG), with or without flavonoids (quercetin, morin, naringenin), for 24 h. We determined cellular viability, levels of reactive oxygen species, and mitochondrial membrane potential in flavonoids treated HG-Caco-2 cells. The levels of the proinflammatory cytokines, glucose uptake, and expression of glucose transporters were determined on flavonoids treatment. We investigated the effect of flavonoids on TJs functions by measuring transepithelial electrical resistance (a TJ integrity marker), membrane permeability using tracer compounds, and the expressions levels of TJs related molecules on hyperglycemic Caco-2 cell monolayers. RESULTS We found that high glucose treatment resulted in reduced cell viability, increased reactive oxygen species production, measurable mitochondrial dysfunction, and decreased transepithelial electrical resistance, with increased membrane permeability. Treatment with the test flavonoids produced increased cell viability and reduced glucose uptake of HG-Caco-2 cells. A concomitant decrease in reactive oxygen species production, proinflammatory cytokines, and Glut-associated genes and proteins were identified with flavonoid treatment. Flavonoids prevented derangement of TJs protein interaction and stabilized membrane permeability. CONCLUSIONS These findings indicate that flavonoids confer protection against hyperglycemia-mediated oxidative stress and enhance intestinal barrier functions by modulating underlying intracellular molecular mechanisms.
Collapse
Affiliation(s)
- Sapna Sharma
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Prabhanshu Tripathi
- Translational Health Science, and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Jeetesh Sharma
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Aparna Dixit
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
69
|
Red lentil supplementation reduces the severity of dextran sodium sulfate-induced colitis in C57BL/6 male mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
70
|
Lv Z, Hu C, Jiang J, Jin S, Wei Q, Wei X, Yu D, Shi F. Effects of High-Dose Genistein on the Hypothalamic RNA Profile and Intestinal Health of Female Chicks. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13737-13750. [PMID: 31789024 DOI: 10.1021/acs.jafc.9b05162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Genistein is abundant in animal feed. In this study, the side effects of high-dose genistein on intestinal health and hypothalamic RNA profile were evaluated. Chicks exposed to high-dose genistein by intraperitoneal injection (416 ± 21, 34.5 ± 2.5) and feed supplementation (308 ± 19, 27.2 ± 2.1) both showed a reduced body weight gain and feed intake in comparison with the control group (261 ± 16, 22.7 ± 1.6, P < 0.01). In comparison with the control (22.4 ± 0.5, 33.3 ± 2.4), serum levels of albumin and total protein were decreased after high-dose genistein injection (21.6 ± 0.5, 31.8 ± 1.6) and diet supplementation (20.6 ± 0.9, 29.9 ± 2.5, P < 0.001). Interestingly, the genistein diet presented the chick hypothalamus with downregulated expression of bitter receptors (TAS1R3, P < 0.05). Meanwhile, it upregulated the expressions of TAS2R1 (P < 0.05) and downstream genes (PLCB2 and IP3R3) in the ileum (P < 0.05). Accordingly, high-dose dietary genistein reduced villus height and the abundance of Lactobacillus, along with the increased abundance of pathogenic bacteria in the ileum (P < 0.05). Furthermore, transcriptomic analysis identified 348 differently expressed genes (168 upregulated and 224 downregulated) in the high-dose dietary genistein treated group in comparison with the control (P < 0.05, |log2FoldChange| > 0.585). Therefore, high-dose dietary genistein altered the hypothalamic RNA profile and signal processing. Cluster analysis further revealed that high-dose dietary genistein significantly influenced apoptosis, the immune process, and the whole synthesis of steroid hormones in the hypothalamus (P < 0.05). In conclusion, high-dose dietary genistein altered the hypothalamic RNA profile and intestinal health of female chicks.
Collapse
Affiliation(s)
- Zengpeng Lv
- College of Animal Science and Technology , Nanjing Agricultural University , No. 1 Weigang Road , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Chenhui Hu
- College of Animal Science and Technology , Nanjing Agricultural University , No. 1 Weigang Road , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Jingle Jiang
- College of Animal Science and Technology , Nanjing Agricultural University , No. 1 Weigang Road , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Song Jin
- Changzhou Animal Disease Control Center , Changzhou 213003 , People's Republic of China
| | - Quanwei Wei
- College of Animal Science and Technology , Nanjing Agricultural University , No. 1 Weigang Road , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Xihui Wei
- College of Animal Science and Technology , Nanjing Agricultural University , No. 1 Weigang Road , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Debing Yu
- College of Animal Science and Technology , Nanjing Agricultural University , No. 1 Weigang Road , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Fangxiong Shi
- College of Animal Science and Technology , Nanjing Agricultural University , No. 1 Weigang Road , Nanjing , Jiangsu 210095 , People's Republic of China
| |
Collapse
|
71
|
Wang J, Ji H. Tight Junction Proteins in the Weaned Piglet Intestine: Roles and Regulation. Curr Protein Pept Sci 2019; 20:652-660. [PMID: 30678619 DOI: 10.2174/1389203720666190125095122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/30/2018] [Accepted: 01/01/2019] [Indexed: 12/24/2022]
Abstract
The intestinal epithelial barrier plays a crucial role in the health and growth of weaned piglets. Proper epithelial function mainly depends on tight junctions (TJs), which act as both ion channels and a barrier against noxious molecules. TJs are multiprotein complexes consisting of transmembrane and membrane-associated proteins. Because the intestine in piglets is immature and incomplete, its structure and function are easily impaired by various stresses, infections, and food-related factors. Certain nutrients have been demonstrated to participate in intestinal TJ regulation. Probiotics, amino acids, fibers, oligosaccharide, and certain micronutrients can enhance barrier integrity and counteract infections through elevated TJ protein expression and distribution. In this review, the distribution and classification of intestinal TJs is described, the factors influencing TJs after weaning are summarized, and the regulation of weaning piglet intestinal TJs by nutrients is discussed.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Haifeng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| |
Collapse
|
72
|
Zhang M, Kou J, Wu Y, Wang M, Zhou X, Yang Y, Wu Z. Dietary genistein supplementation improves intestinal mucosal barrier function in Escherichia coli O78-challenged broilers. J Nutr Biochem 2019; 77:108267. [PMID: 32000135 DOI: 10.1016/j.jnutbio.2019.108267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/28/2019] [Accepted: 11/03/2019] [Indexed: 12/23/2022]
Abstract
Genistein has multiple biological activities in both humans and animals. However, a protective effect of genistein on Escherichia coli (E. coli)-induced intestinal mucosal barrier dysfunction remains unknown. In the present study, a total of 288 1-day-old male Arbor Acre broilers fed a corn-soybean basal diet unsupplemented or supplemented with 20 mg genistein/kg diet were subjected to E. coli serotype O78 (108 cfu per bird) infection or equal volume of sodium chloride at 19 days of age. Sera and tissue samples were collected 2 days after E. coli infection. Growth performance, index of immune-related organs, intestinal barrier permeability, protein level of inflammatory cytokines, sIgA, tight junction protein, and mRNA level of apoptotic genes in jejunum were determined. Mortality rate at 7 days post infection was recorded. The results showed that E. coli challenge led to a reduced average daily gain, a decreased thymus index, and bursal index in broilers, an increase of fluorescein isothiocyanate (FITC)-dextran in serum, and a decreased sIgA in jejunum. These effects were abrogated by genistein administration. Western blot results showed that E. coli infection led to increased protein level of claudin-1 and zonula occludens (ZO)-1, which was largely abolished by genistein. Moreover, E. coli infection resulted increased protein level of TNF-α and IL-6, enhanced mRNA level of Bax and caspase-3, as well as decreased mRNA level of Bcl-2 were abrogated by genistein in jujunum of broilers. In conclusion, the results indicate that genistein supplementation improves intestinal mucosal barrier function which is associated with a regulatory effect on tight junction proteins, sIgA, apoptosis, and secretion of inflammatory cytokines in jejunum of E. coli-challenged broilers.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Jiao Kou
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Mengmeng Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Xiumin Zhou
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China.
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
73
|
Jiang YP, Ye RJ, Yang JM, Liu N, Zhang WJ, Ma L, Sun T, Niu JG, Zheng P, Yu JQ. Protective effects of Salidroside on spermatogenesis in streptozotocin induced type-1 diabetic male mice by inhibiting oxidative stress mediated blood-testis barrier damage. Chem Biol Interact 2019; 315:108869. [PMID: 31682803 DOI: 10.1016/j.cbi.2019.108869] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 09/10/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022]
Abstract
Spermatogenic dysfunction is one of the major secondary complications of male diabetes. Salidroside (SAL) is the important active ingredients isolated from Herba Cistanche, which exhibits numerous pharmacological activities such as antioxidant, anti-diabetic, and anti-inflammatory effects. The present study was designed to determine whether SAL contributes to the recovery from spermatogenic dysfunction in streptozotocin (STZ) induced type-1 diabetic mice. SAL (25, 50, or 100 mg/kg) and Clomiphene citrate (CC, 5 mg/kg) were orally administered to male type-1 diabetic mice for 10 weeks. Testis tissues were collected for histopathological and biochemical analysis. Moreover, reproductive organ weight, sperm parameters, and testicular cell DNA damage were estimated. The results revealed that SAL significantly improved the weight of the reproductive organs, sperm parameters and testicular morphology to different degrees in type-1 diabetic mice. Furthermore, reactive oxygen species (ROS) and malondialdehyde (MDA) levels were significantly reduced, and the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH), markedly increased in the testicular tissue after SAL treatment. In addition, our data also showed a marked downregulation the fluorescence expressions of p38 MAPK phosphorylation and upregulation the protein expressions of ZO-1, Occludin, Claudin-11 and N-cadherin after SAL administration (100 mg/kg) compared with the type-1 diabetic group. In conclusion, these results demonstrated that SAL exerts protective effects on type-1 diabetes-induced male spermatogenic dysfunction, which is likely mediated by inhibiting oxidative stress-mediated blood testis barrier damage.
Collapse
Affiliation(s)
- Ya-Ping Jiang
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, PR China
| | - Rui-Juan Ye
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, PR China
| | - Jia-Mei Yang
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, PR China
| | - Ning Liu
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, PR China
| | - Wen-Jin Zhang
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, PR China
| | - Lin Ma
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, PR China
| | - Tao Sun
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, PR China
| | - Jian-Guo Niu
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, PR China.
| | - Ping Zheng
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, PR China.
| | - Jian-Qiang Yu
- Department of Pharmacology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, PR China; Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, PR China.
| |
Collapse
|
74
|
Ou W, Hu H, Yang P, Dai J, Ai Q, Zhang W, Zhang Y, Mai K. Dietary daidzein improved intestinal health of juvenile turbot in terms of intestinal mucosal barrier function and intestinal microbiota. FISH & SHELLFISH IMMUNOLOGY 2019; 94:132-141. [PMID: 31461659 DOI: 10.1016/j.fsi.2019.08.059] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/20/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
A 12-week feeding trial was conducted to investigate the effect of dietary daidzein on the intestinal mucosal barrier function and the intestinal microbiota profile of juvenile turbot (Scophthalmus maximus L.). Three isonitrogenous and isolipidic experimental diets were formulated to contain 0 (FM), 40 (D.40) and 400 (D.400) mg kg-1 daidzein, respectively. Fish fed D.400 had significantly lower growth performance than fish fed D.40. Dietary daidzein significantly increased the feed efficiency, while significantly decreased the feed intake. Daidzein supplementation increased the activity of total anti-oxidative capacity and the gene expression of anti-inflammatory cytokine transforming growth factor-β1, Mucin-2 and tight junction proteins (Tricellulin, Zonula occludens-1 transcript variant 1, Zonula occludens-1 transcript variant 2 and Claudin-like and Occludin), and down-regulated the gene expression of pro-inflammatory cytokines interleukin-1β and tumor necrosis factor-α in the intestine of turbot. Dietary daidzein increased intestinal microbial diversities, the abundance of several short chain fatty acids producers, and decreased the abundance of some potential pathogenic bacteria. However, D.400 had dual effects on lactic acid bacteria and increased the abundance of potential harmful bacterium Prevotella copri. Collectively, dietary daidzein at the levels of 40 and 400 mg kg-1 could enhance the intestinal mucosal barrier function and alter the intestinal microbiota of turbot. However, high dose of daidzein must be treated with caution for its unclear effects on intestinal microbiota of turbot in the present study.
Collapse
Affiliation(s)
- Weihao Ou
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Haibin Hu
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Pei Yang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Jihong Dai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Qinghui Ai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Wenbing Zhang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - Yanjiao Zhang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China.
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| |
Collapse
|
75
|
The flavonoid-rich Quzhou Fructus Aurantii extract modulates gut microbiota and prevents obesity in high-fat diet-fed mice. Nutr Diabetes 2019; 9:30. [PMID: 31645541 PMCID: PMC6811639 DOI: 10.1038/s41387-019-0097-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 01/07/2023] Open
Abstract
Background Flavonoids are reported to modulate the composition of gut microbiota, which play an important role in preventing obesity and associated metabolic diseases. In this study, we investigated the effect of Total Flavonoids of Quzhou Fructus Aurantii Extract (TFQ) on gut microbial community in mice fed with a high-fat diet (HFD). Methods C57BL/6J mice were fed with either a chow diet or HFD with or without oral gavage of TFQ (300 mg/kg/day) for 12 weeks. Results Our data indicate TFQ significantly reduced obesity, inflammatio,n and liver steatosis. TFQ elevates the expression of tight junction proteins and reduces metabolic endotoxemia. In addition, TFQ treatment reverses HFD-induced gut dysbiosis, as indicated by the reduction of Firmicutes to Bacteroidetes ratio, the increase of genera Akkermansia and Alistipes, and the decrease of genera Dubosiella, Faecalibaculum, and Lactobacillus. Conclusion These findings support a prebiotic role of TFQ as a dietary supplement for the intervention of gut dysbiosis and obesity-related metabolic disorders.
Collapse
|
76
|
Protective effects of betaine on diabetic induced disruption of the male mice blood-testis barrier by regulating oxidative stress-mediated p38 MAPK pathways. Biomed Pharmacother 2019; 120:109474. [PMID: 31585299 DOI: 10.1016/j.biopha.2019.109474] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Blood-testis barrier (BTB) impairments is one of the major secondary complications of diabetes. Betaine (BET) is the important active ingredients isolated from Lycium barbarum, which exhibits numerous pharmacological activities such as antioxidant, anti-diabetic, and anti-inflammatory effects. This study aimed to establish whether BET contributes to the recovery from BTB dysfunction in streptozotocin (STZ) induced diabetic mice. METHODS BET (200, 400, 800 mg/kg) was orally administered to diabetic mice for 8 weeks. Testis tissues were collected for histopathological and biochemical analysis, the reproductive organ weight was estimated. Antioxidant enzyme activity and BTB associated protein expressions were determined with their corresponding assay kits and western blot analysis. The results revealed that BET significantly improved the weight of the reproductive organs and testicular morphology in diabetic mice. Furthermore, reactive oxygen species (ROS) and malondialdehyde (MDA) levels were significantly reduced, and the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH), markedly increased in the testicular tissue after SAL treatment. In addition, our data also showed a marked down-regulated the expressions of p38 MAPK phosphorylation and up-regulation the protein expressions of ZO-1, Occludin, Claudin-11, N-cadherin, and Connexin-43 after BET administration compared with the diabetic group. In conclusion, these results demonstrated that BET exerts protective effects on diabetes-induced BTB dysfunction, which may be through regulating oxidative stress-mediated p38 MAPK pathways.
Collapse
|
77
|
Piovani D, Danese S, Peyrin-Biroulet L, Nikolopoulos GK, Lytras T, Bonovas S. Environmental Risk Factors for Inflammatory Bowel Diseases: An Umbrella Review of Meta-analyses. Gastroenterology 2019; 157:647-659.e4. [PMID: 31014995 DOI: 10.1053/j.gastro.2019.04.016] [Citation(s) in RCA: 410] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Multiple environmental factors have been associated with the development of inflammatory bowel diseases (IBDs). We performed an umbrella review of meta-analyses to summarize available epidemiologic evidence and assess its credibility. METHODS We systematically identified and appraised meta-analyses of observational studies examining environmental factors and risk of IBD (Crohn's disease [CD] or ulcerative colitis [UC]). For each meta-analysis, we considered the random effects estimate, its 95% confidence interval, the estimates of heterogeneity, and small-study effects, and we graded the evidence according to prespecified criteria. Methodologic quality was assessed with AMSTAR (ie, A Measurement Tool to Assess Systematic Reviews) 2. RESULTS We examined 183 estimates in 53 meta-analyses of 71 environmental factors related to lifestyles and hygiene, surgeries, drug exposures, diet, microorganisms, and vaccinations. We identified 9 factors that increase risk of IBD: smoking (CD), urban living (CD and IBD), appendectomy (CD), tonsillectomy (CD), antibiotic exposure (IBD), oral contraceptive use (IBD), consumption of soft drinks (UC), vitamin D deficiency (IBD), and non-Helicobacter pylori-like enterohepatic Helicobacter species (IBD). We identified 7 factors that reduce risk of IBD: physical activity (CD), breastfeeding (IBD), bed sharing (CD), tea consumption (UC), high levels of folate (IBD), high levels of vitamin D (CD), and H pylori infection (CD, UC, and IBD). Epidemiologic evidence for all of these associations was of high to moderate strength; we identified another 11 factors associated with increased risk and 16 factors associated with reduced risk with weak credibility. Methodologic quality varied considerably among meta-analyses. Several associations were based on findings from retrospective studies, so it is not possible to determine if these are effects of IBD or the results of recall bias. CONCLUSIONS In an umbrella review of meta-analyses, we found varying levels of evidence for associations of different environmental factors with risk of IBD. High-quality prospective studies with analyses of samples from patients with recent diagnoses of IBD are needed to determine whether these factors cause or are results of IBD and their pathogenic mechanisms.
Collapse
Affiliation(s)
- Daniele Piovani
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; Inflammatory Bowel Disease Center, Humanitas Clinical and Research Center-IRCCS, Milan, Italy
| | - Silvio Danese
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; Inflammatory Bowel Disease Center, Humanitas Clinical and Research Center-IRCCS, Milan, Italy
| | - Laurent Peyrin-Biroulet
- Department of Hepato-Gastroenterology and INSERM U954, University Hospital of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | | | - Theodore Lytras
- Hellenic Center for Disease Control and Prevention, Athens, Greece
| | - Stefanos Bonovas
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; Inflammatory Bowel Disease Center, Humanitas Clinical and Research Center-IRCCS, Milan, Italy.
| |
Collapse
|
78
|
Degroote J, Vergauwen H, Van Noten N, Wang W, De Smet S, Van Ginneken C, Michiels J. The Effect of Dietary Quercetin on the Glutathione Redox System and Small Intestinal Functionality of Weaned Piglets. Antioxidants (Basel) 2019; 8:antiox8080312. [PMID: 31426309 PMCID: PMC6720349 DOI: 10.3390/antiox8080312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/08/2019] [Accepted: 08/11/2019] [Indexed: 12/11/2022] Open
Abstract
Quercetin has been shown to alleviate mucosal damage and modulate the glutathione (GSH) redox system in the colon of rodents. In the current study, we assessed whether quercetin was able to mitigate small intestinal dysfunction in weaned pigs. Here, 224 weaned piglets were fed a diet containing quercetin at either 0, 100, 300, or 900 mg/kg diet until d14 post-weaning, followed by a common basal diet until d42. Eight animals per treatment were sampled at d5 and d14 post-weaning. In these animals, the small intestinal histomorphology, barrier function, and protein abundance of occludin, caspase-3, and proliferating cell nuclear antigen were assessed. None of these parameters were affected, and neither did quercetin improve performance up to d42 post-weaning. The GSH redox system was evaluated in blood, small intestinal mucosa, and liver. Quercetin did not affect the glutathione peroxidase, glutathione reductase, and glutamate–cysteine ligase activity in these tissues. In contrast, the hepatic glutathione transferase (GST) activity was significantly increased by quercetin supplementation at d5 post-weaning of 100, 300, and 900 mg/kg. Importantly, d5 was characterized by a more oxidized GSH redox status. To conclude, dietary quercetin had little effect on the small intestine, but did upregulate hepatic GST in the occurrence of redox disturbance.
Collapse
Affiliation(s)
- Jeroen Degroote
- Laboratory of Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Hans Vergauwen
- Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Noémie Van Noten
- Laboratory of Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Wei Wang
- Laboratory of Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Stefaan De Smet
- Laboratory of Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Chris Van Ginneken
- Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Joris Michiels
- Laboratory of Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
79
|
Cooked Red Lentils Dose-Dependently Modulate the Colonic Microenvironment in Healthy C57Bl/6 Male Mice. Nutrients 2019; 11:nu11081853. [PMID: 31405019 PMCID: PMC6724071 DOI: 10.3390/nu11081853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
Dietary pulses, including lentils, are protein-rich plant foods that are enriched in intestinal health-promoting bioactives, such as non-digestible carbohydrates and phenolic compounds. The aim of this study was to investigate the effect of diets supplemented with cooked red lentils on the colonic microenvironment (microbiota composition and activity and epithelial barrier integrity and function). C57Bl/6 male mice were fed one of five diets: a control basal diet (BD), a BD-supplemented diet with 5, 10 or 20% cooked red lentils (by weight), or a BD-supplemented diet with 0.7% pectin (equivalent soluble fiber level as found in the 20% lentil diet). Red lentil supplementation resulted in increased: (1) fecal microbiota α-diversity; (2) abundance of short-chain fatty acid (SCFA)-producing bacteria (e.g., Prevotella, Roseburia and Dorea spp.); (3) concentrations of fecal SCFAs; (4) mRNA expression of SCFA receptors (G-protein-coupled receptors (GPR 41 and 43) and tight/adherens junction proteins (Zona Occulden-1 (ZO-1), Claudin-2, E-cadherin). Overall, 20% lentil had the greatest impact on colon health outcomes, which were in part explained by a change in the soluble and insoluble fiber profile of the diet. These results support recent public health recommendations to increase consumption of plant-based protein foods for improved health, in particular intestinal health.
Collapse
|
80
|
Monk JM, Wu W, Lepp D, Wellings HR, Hutchinson AL, Liddle DM, Graf D, Pauls KP, Robinson LE, Power KA. Navy bean supplemented high-fat diet improves intestinal health, epithelial barrier integrity and critical aspects of the obese inflammatory phenotype. J Nutr Biochem 2019; 70:91-104. [DOI: 10.1016/j.jnutbio.2019.04.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/03/2019] [Accepted: 04/25/2019] [Indexed: 02/07/2023]
|
81
|
Hu L, Wu C, Zhang Z, Liu M, Maruthi Prasad E, Chen Y, Wang K. Pinocembrin Protects Against Dextran Sulfate Sodium-Induced Rats Colitis by Ameliorating Inflammation, Improving Barrier Function and Modulating Gut Microbiota. Front Physiol 2019; 10:908. [PMID: 31379610 PMCID: PMC6659384 DOI: 10.3389/fphys.2019.00908] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/02/2019] [Indexed: 12/13/2022] Open
Abstract
Pinocembrin (PIN) is a natural flavonoid widely found in bee propolis with potent gastrointestinal protective effects. In consequence, PIN has great potential in preventing inflammatory bowel diseases (IBDs) while scant information is available. In this study, a dextran sulfate sodium (DSS)-induced rats ulcerative colitis model (3.5% DSS in drinking water for 7 days) was applied to explore the protective effects of PIN on macroscopic colitis symptoms, inflammation, intestinal epithelial barrier function, and gut microbiota homeostasis. While DSS-treated rats showed severe colitis clinical symptoms and histological changes (colonic pathological damages and intestinal goblet cells loss), pre-administration of PIN (5 and 10 mg/kg, p.o.) for a week alleviated these symptoms. Pre-administration of PIN also suppressed the pro-inflammatory gene expressions and improved tight junction functions of colonic epithelial cells. Additionally, PIN administration reversed DSS-induced short chain fatty acid loss, and improved the gut microbial diversity assessed by 16S rRNA phylogenetic sequencing. Overall, our results suggest a wide spectrum of protective effects of PIN in preventing IBDs.
Collapse
Affiliation(s)
- Lin Hu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Chao Wu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Zijian Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Mingchang Liu
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - E Maruthi Prasad
- Shenzhen Key Laboratory of Translational Medicine of Tumor, Department of Cell Biology and Genetics, Shenzhen University Health Sciences Center, Shenzhen, China
| | - Yu Chen
- Department of Experimental Animals, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
82
|
Jeong KH, Lee HJ, Park TS, Shim SM. Catechins Controlled Bioavailability of Benzo[a]pyrene (B[α]P) from the Gastrointestinal Tract to the Brain towards Reducing Brain Toxicity Using the In Vitro Bio-Mimic System Coupled with Sequential Co-Cultures. Molecules 2019; 24:molecules24112175. [PMID: 31185615 PMCID: PMC6600685 DOI: 10.3390/molecules24112175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/02/2022] Open
Abstract
The aim of the current study was to examine the preventive effect of green tea catechins on the transport of Benzo[a]pyrene (B[α]P) into the brain using an in vitro bio-mimic system coupled with sequential co-cultures. When 72 μM of catechins was pre-treated, cellular cytotoxicity induced by IC50 of B[α]P in human liver hepatocellular carcinoma (HepG2) and human brain microvascular endothelial cells (HBMECs) was reduced by 27% and 26%, respectively. The cellular integrity measured in HBMECs, which was exposed to IC50 of B[α]P, slowly decreased. However, the pre-treatment of catechins retained cellular integrity that was 1.14 times higher than with the absence of catechins. Co-consumption of catechins reduced not only the bio-accessibility of B[α]P in digestive fluid, but it also decreased absorption of B[α]P in human intestinal epithelial cells (Caco-2) with a HepG2 co-culture system. It was found that approximately a two times lower amount of B[α]P was transported via the blood-brain barrier (BBB) compared to only the B[α]P intake. These results are taken in conjunction with each other support that catechins could be able to prevent brain toxicity induced by B[α]P in the human body by limiting the bio-availability of B[α]P.
Collapse
Affiliation(s)
- Kang-Hyun Jeong
- Department of Food Science and Biotechnology, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 143-747, Korea.
| | - Hyun Jeong Lee
- Department of Food Science and Biotechnology, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 143-747, Korea.
| | - Tae-Sik Park
- Department of Life Science, Gachon University, Bokjung-dong, Sujung-gu, Sungnam-si 461-701, Gyeonggi-do, Korea.
| | - Soon-Mi Shim
- Department of Food Science and Biotechnology, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 143-747, Korea.
| |
Collapse
|
83
|
Paraskeuas VV, Mountzouris KC. Modulation of broiler gut microbiota and gene expression of Toll-like receptors and tight junction proteins by diet type and inclusion of phytogenics. Poult Sci 2019; 98:2220-2230. [PMID: 30597072 DOI: 10.3382/ps/pey588] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 12/12/2018] [Indexed: 12/22/2022] Open
Abstract
This study evaluated the effect of reduced dietary energy (ME) and crude protein (CP) levels along with inclusion of a phytogenic feed additive (PFA) on gut microbiota composition and gene expression of Toll-like receptor(s) (TLR), tight junction proteins, and inflammatory cytokines expressed in secondary lymphoid organs. Depending on dietary ME and CP level down regulation and the inclusion or not of PFA at 125 mg/kg diet, 450 one-day-old male broilers were allocated in the following 6 treatments for 42 D according to a 3 × 2 factorial design: A: diet formulated optimally to meet broiler nutrient requirements; APh: A+PFA; B: suboptimal in ME and CP levels by 3%; BPh: B+PFA; C: suboptimal in ME and CP levels by 6%; CPh: C+PFA. Diet type and PFA supplementation were shown to affect mostly the mucosa-associated microbiota compared to the luminal ones. Ileal mucosa-associated total bacteria (PD= 0.005), Lactobacillus spp. (PD= 0.003), and Clostridium cluster XIVa (PD= 0.009) were affected by diet type with broilers fed diet B having lower levels compared to broilers fed diets A or C. Moreover, diet type affected cecal mucosa-associated Lactobacillus spp. (PD= 0.002) with broilers fed diet C having lower levels compared to broilers fed diets A or B. Supplementation with PFA resulted in higher levels of cecal mucosa-associated Bacteroides (PP= 0.031), Clostridium cluster IV (PP= 0.007), and Clostridium cluster XIVa (PP= 0.039). Diet type affected TLR2 (PD= 0.046) and claudin 5 (PD= 0.027) in cecal epithelium. Lower TLR2 (PP= 0.021) and higher zonula occludens 2 (PP= 0.031) relative gene expressions were seen in ileal epithelium following PFA supplementation. Moreover, in cecal epithelium, PFA supplementation resulted in lower TLR2 (PP < 0.001) and higher zonula occludens 2 (PP= 0.009), claudin 5 (PP= 0.005) and occludin (PP= 0.039) relative gene expressions. There were no significant diet type and PFA effects on cytokines in secondary lymphoid organs, except for a dietary effect on transforming growth factor beta 4 (PD= 0.023) in cecal tonsils. In conclusion, PFA inclusion beneficially modulated elements of gut microbiota, Toll-like signaling molecules and gut tight junction genes.
Collapse
Affiliation(s)
- Vasileios V Paraskeuas
- Department of Nutritional Physiology and Feeding, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Konstantinos C Mountzouris
- Department of Nutritional Physiology and Feeding, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| |
Collapse
|
84
|
Zhang Z, Nie M, Liu C, Jiang N, Liu C, Li D. Citrus Flavanones Enhance β-Carotene Uptake in Vitro Experiment Using Caco-2 Cell: Structure-Activity Relationship and Molecular Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4280-4288. [PMID: 30907592 DOI: 10.1021/acs.jafc.9b01376] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Flavonoids can interfere with the absorption of carotenoids. In this study, the inherent mechanisms of 12 citrus flavanones for β-carotene (Bc) cellular uptake and the structure-activity relationship were investigated. The results showed that multiple hydroxyl groups had the lowest promoting effect. O-Glycosylation at C7 of the A ring led to the greatest promoting effect on Bc absorption. O-Glycosylation at C7 exhibited a strong affinity with the cell membrane and subsequently fluidized the cell membrane. Aglycon molecules significantly induced transient increases of paracellular permeability by decreasing tight junction proteins (ZO-1, claudin-1) expression. In addition, citrus flavanones might enhance scavenger receptor class B type I (SR-BI) expression via their actions as agonists of peroxisome proliferator-activated receptor-gamma (PPARγ). Catechol structure in the B-ring attenuated the activate action of SR-BI expression. The structure-dependent membrane permeability and activation of specific membrane proteins are mechanistically associated with the promoting effect on Bc cellular uptake by citrus flavanones.
Collapse
Affiliation(s)
- Zhongyuan Zhang
- Institute of Agro-product Processing , Jiangsu Academy of Agricultural Sciences , Nanjing 210014 , China
- School of Food and Biological Engineering , Jiangsu University , Zhenjiang 212013 , China
| | - Meimei Nie
- Institute of Agro-product Processing , Jiangsu Academy of Agricultural Sciences , Nanjing 210014 , China
- College of Food and Technology , Nanjing Agricultural University , Nanjing 210095 , China
| | - Chunquan Liu
- Institute of Agro-product Processing , Jiangsu Academy of Agricultural Sciences , Nanjing 210014 , China
| | - Ning Jiang
- Institute of Agro-product Processing , Jiangsu Academy of Agricultural Sciences , Nanjing 210014 , China
| | - Chunju Liu
- Institute of Agro-product Processing , Jiangsu Academy of Agricultural Sciences , Nanjing 210014 , China
| | - Dajing Li
- Institute of Agro-product Processing , Jiangsu Academy of Agricultural Sciences , Nanjing 210014 , China
- School of Food and Biological Engineering , Jiangsu University , Zhenjiang 212013 , China
| |
Collapse
|
85
|
Impact of molecular interactions with phenolic compounds on food polysaccharides functionality. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 90:135-181. [PMID: 31445595 DOI: 10.1016/bs.afnr.2019.02.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Commercial trends based of the emergence of plant-based functional foods lead to investigate the structure-function relationship of their main bioactive constituents and their interactions in the food matrix and throughout the gastro-intestinal tract. Among these bioactive constituents, dietary polysaccharides and polyphenols have shown to interact at the molecular level and these interactions may have consequences on the polysaccharides physical and nutritional properties. The methods of investigation and mechanisms of interactions between polysaccharides and polyphenols are reviewed in light of their respective technological and nutritional functionalities. Finally, the potential impact of the co-occurrence or co-ingestion of polyphenols and polysaccharides on the technological and nutritional functionality of the polysaccharides are investigated.
Collapse
|
86
|
Wang X, Li L, Zhang G. Impact of deoxynivalenol and kaempferol on expression of tight junction proteins at different stages of Caco-2 cell proliferation and differentiation. RSC Adv 2019; 9:34607-34616. [PMID: 35529998 PMCID: PMC9073856 DOI: 10.1039/c9ra06222j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/18/2019] [Indexed: 11/21/2022] Open
Abstract
The expression of tight junction proteins in human epithelial colorectal adenocarcinoma (Caco-2) cells was investigated after treatment by the mycotoxin of deoxynivalenol and phenolic compound of kaempferol in different stages of proliferation and differentiation.
Collapse
Affiliation(s)
- Xiaojie Wang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Li Li
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Genyi Zhang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| |
Collapse
|
87
|
Shi J, Zhao XH. Influence of the Maillard-type caseinate glycation with lactose on the intestinal barrier activity of the caseinate digest in IEC-6 cells. Food Funct 2019; 10:2010-2021. [DOI: 10.1039/c8fo02607f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The glycated caseinate digest of the Maillard-type shows lower capability than the caseinate digest to enhance the intestinal barrier function of IEC-6 cells.
Collapse
Affiliation(s)
- Jia Shi
- Key Laboratory of Dairy Science
- Ministry of Education
- Northeast Agricultural University
- Harbin 150030
- PR China
| | - Xin-Huai Zhao
- Key Laboratory of Dairy Science
- Ministry of Education
- Northeast Agricultural University
- Harbin 150030
- PR China
| |
Collapse
|
88
|
Broiler gut microbiota and expressions of gut barrier genes affected by cereal type and phytogenic inclusion. ACTA ACUST UNITED AC 2018; 5:22-31. [PMID: 30899806 PMCID: PMC6407073 DOI: 10.1016/j.aninu.2018.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/18/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022]
Abstract
The present study assessed the effects of cereal type and the inclusion level of a phytogenic feed additive (PFA) on broiler ileal and cecal gut microbiota composition, volatile fatty acids (VFA) and gene expression of toll like receptors (TLR), tight junction proteins, mucin 2 (MUC2) and secretory immunoglobulin A (sIgA). Depending on cereal type (i.e. maize or wheat) and PFA inclusion level (i.e. 0, 100 and 150 mg/kg diet), 450 one-day-old male broilers were allocated in 6 treatments according to a 2 × 3 factorial arrangement with 5 replicates of 15 broilers each, for 42 d. Significant interactions (P ≤ 0.05) between cereal type and PFA were shown for cecal digesta Bacteroides and Clostridium cluster XIVa, ileal digesta propionic and branched VFA, ileal sIgA gene expression, as well as cecal digesta branched and other VFA molar ratios. Cereal type affected the cecal microbiota composition. In particular, wheat-fed broilers had higher levels of mucosa-associated Lactobacillus (P CT = 0.007) and digesta Bifidobacterium (P CT < 0.001), as well as lower levels of total bacteria (P CT = 0.004) and Clostridia clusters I, IV and XIVa (P CT ≤ 0.05), compared with maize-fed ones. In addition, cereal type gave differences in fermentation intensity (P CT = 0.021) and in certain individual VFA molar ratios. Wheat-fed broilers had higher (P ≤ 0.05) ileal zonula occluden 2 (ZO-2) and lower ileal and cecal TLR2 and sIgA levels, compared with maize-fed broilers. On the other hand, PFA inclusion at 150 mg/kg had a stimulating effect on microbial fermentation at ileum and a retarding effect in ceca with additional variable VFA molar patterns. In addition, PFA inclusion at 100 mg/kg increased the ileal mucosa expression of claudin 5 (CLDN5) (P PFA = 0.023) and MUC2 (P PFA = 0.001) genes, and at 150 mg/kg decreased cecal TLR2 (P PFA = 0.022) gene expression compared with the un-supplemented controls. In conclusion, cereal type and PFA affected in combination and independently broiler gut microbiota composition and metabolic activity as well as the expression of critical gut barrier genes including TLR2. Further exploitation of these properties in cases of stressor challenges is warranted.
Collapse
|
89
|
Tight Junction in the Intestinal Epithelium: Its Association with Diseases and Regulation by Phytochemicals. J Immunol Res 2018; 2018:2645465. [PMID: 30648119 PMCID: PMC6311762 DOI: 10.1155/2018/2645465] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/28/2018] [Accepted: 10/14/2018] [Indexed: 02/07/2023] Open
Abstract
The intestine plays an essential role in integrating immunity and nutrient digestion and absorption. Adjacent intestinal epithelia form tight junctions (TJs) that are essential to the function of the physical intestinal barrier, regulating the paracellular movement of various substances including ions, solutes, and water across the intestinal epithelium. Studies have shown that TJ dysfunction is highly associated with metabolic and inflammatory diseases. Thus, molecular and nutritional factors that improve TJ activity have gained attention in the pharmaceutical and medicinal fields. This review focuses on the association between TJ and diverse pathological conditions, as well as various molecular and nutritional interventions designed to boost TJ integrity.
Collapse
|
90
|
Kaliannan K, Robertson RC, Murphy K, Stanton C, Kang C, Wang B, Hao L, Bhan AK, Kang JX. Estrogen-mediated gut microbiome alterations influence sexual dimorphism in metabolic syndrome in mice. MICROBIOME 2018; 6:205. [PMID: 30424806 PMCID: PMC6234624 DOI: 10.1186/s40168-018-0587-0] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 10/30/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND Understanding the mechanism of the sexual dimorphism in susceptibility to obesity and metabolic syndrome (MS) is important for the development of effective interventions for MS. RESULTS Here we show that gut microbiome mediates the preventive effect of estrogen (17β-estradiol) on metabolic endotoxemia (ME) and low-grade chronic inflammation (LGCI), the underlying causes of MS and chronic diseases. The characteristic profiles of gut microbiome observed in female and 17β-estradiol-treated male and ovariectomized mice, such as decreased Proteobacteria and lipopolysaccharide biosynthesis, were associated with a lower susceptibility to ME, LGCI, and MS in these animals. Interestingly, fecal microbiota-transplant from male mice transferred the MS phenotype to female mice, while antibiotic treatment eliminated the sexual dimorphism in MS, suggesting a causative role of the gut microbiome in this condition. Moreover, estrogenic compounds such as isoflavones exerted microbiome-modulating effects similar to those of 17β-estradiol and reversed symptoms of MS in the male mice. Finally, both expression and activity of intestinal alkaline phosphatase (IAP), a gut microbiota-modifying non-classical anti-microbial peptide, were upregulated by 17β-estradiol and isoflavones, whereas inhibition of IAP induced ME and LGCI in female mice, indicating a critical role of IAP in mediating the effects of estrogen on these parameters. CONCLUSIONS In summary, we have identified a previously uncharacterized microbiome-based mechanism that sheds light upon sexual dimorphism in the incidence of MS and that suggests novel therapeutic targets and strategies for the management of obesity and MS in males and postmenopausal women.
Collapse
Affiliation(s)
- Kanakaraju Kaliannan
- Laboratory of Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 149 -13th Street, Boston, MA 02129 USA
| | - Ruairi C. Robertson
- School of Microbiology, University College Cork, Cork, Ireland
- Teagasc Moorepark Food Research Centre, Fermoy, Co., Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Kiera Murphy
- School of Microbiology, University College Cork, Cork, Ireland
| | - Catherine Stanton
- School of Microbiology, University College Cork, Cork, Ireland
- Teagasc Moorepark Food Research Centre, Fermoy, Co., Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Chao Kang
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing, People’s Republic of China
| | - Bin Wang
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing, People’s Republic of China
| | - Lei Hao
- Laboratory of Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 149 -13th Street, Boston, MA 02129 USA
| | - Atul K. Bhan
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA
| | - Jing X. Kang
- Laboratory of Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 149 -13th Street, Boston, MA 02129 USA
| |
Collapse
|
91
|
Figueroa-Lozano S, de Vos P. Relationship Between Oligosaccharides and Glycoconjugates Content in Human Milk and the Development of the Gut Barrier. Compr Rev Food Sci Food Saf 2018; 18:121-139. [DOI: 10.1111/1541-4337.12400] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Susana Figueroa-Lozano
- Immunoendocrinology, Div. of Medical Biology, Dept. of Pathology and Medical Biology; Univ. of Groningen and University Medical Center Groningen; Groningen The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Div. of Medical Biology, Dept. of Pathology and Medical Biology; Univ. of Groningen and University Medical Center Groningen; Groningen The Netherlands
| |
Collapse
|
92
|
Li L, Wang Y, Wang X, Tao Y, Bao K, Hua Y, Jiang G, Hong M. Formononetin attenuated allergic diseases through inhibition of epithelial-derived cytokines by regulating E-cadherin. Clin Immunol 2018; 195:67-76. [DOI: 10.1016/j.clim.2018.07.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/08/2018] [Accepted: 07/31/2018] [Indexed: 12/15/2022]
|
93
|
Junyuan Z, Hui X, Chunlan H, Junjie F, Qixiang M, Yingying L, Lihong L, Xingpeng W, Yue Z. Quercetin protects against intestinal barrier disruption and inflammation in acute necrotizing pancreatitis through TLR4/MyD88/p38 MAPK and ERS inhibition. Pancreatology 2018; 18:742-752. [PMID: 30115563 DOI: 10.1016/j.pan.2018.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/20/2018] [Accepted: 08/05/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the effects of quercetin on intestinal barrier disruption and inflammation in acute necrotizing pancreatitis (ANP) in rats, and its possible mechanism. METHODS ANP was established by retrograde injection of 3.5% sodium taurocholate into the biliopancreatic duct, and quercetin (50 mg/kg × 3) was administered by intraperitoneal injection prior to and after ANP induction. Pancreatitis was assessed by pancreatic histopathology, plasma amylase, pancreatic myeloperoxidase (MPO) activity, IL-1β, TNFα and IL-6 levels. Injury of the distal ileum was assessed by histological evaluation. The ultrastructural changes of ileal epithelial cells were examined by transmission electron microscope (TEM). Intestinal barrier function was estimated by plasma diamine oxidase (DAO), d-lactate, endotoxin; and intestinal tight junction proteins including zonula occludens-1 (ZO-1), claudin 1, occludin; and bacterial translocation. Intestinal inflammation was determined by IL-1β, TNFα and IL-17 A expression. TLR4, MyD88, pp38 MAPK, and endoplasmic reticulum stress (ERS)-related molecules (Bip, p-IRE1α, sXBP1, p-eIF2α, ATF6) were measured by immunohistochemistry and WB. RESULTS Quercetin intervention attenuated pancreatic and ileal pathological damages in ANP (P < 0.05), ameliorated intestinal barrier disruption and inflammation (P < 0.05). Meantime, QE significantly suppressed intestinal TLR4/MyD88/p38 MAPK pathway and ERS activation. CONCLUSIONS Quercetin plays a protective role against intestinal barrier disruption and inflammation in ANP, probably partly by inhibiting TLR4/MyD88/p38 MAPK and ERS activation.
Collapse
Affiliation(s)
- Zheng Junyuan
- Shanghai Key Laboratory of Pancreatic Disease & Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xu Hui
- Shanghai Key Laboratory of Pancreatic Disease & Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Huang Chunlan
- Shanghai Key Laboratory of Pancreatic Disease & Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Fan Junjie
- Shanghai Key Laboratory of Pancreatic Disease & Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Mei Qixiang
- Shanghai Key Laboratory of Pancreatic Disease & Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lu Yingying
- Shanghai Key Laboratory of Pancreatic Disease & Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lou Lihong
- Shanghai Key Laboratory of Pancreatic Disease & Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| | - Wang Xingpeng
- Shanghai Key Laboratory of Pancreatic Disease & Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| | - Zeng Yue
- Shanghai Key Laboratory of Pancreatic Disease & Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
94
|
Monk JM, Wu W, McGillis LH, Wellings HR, Hutchinson AL, Liddle DM, Graf D, Robinson LE, Power KA. Chickpea supplementation prior to colitis onset reduces inflammation in dextran sodium sulfate-treated C57Bl/6 male mice. Appl Physiol Nutr Metab 2018; 43:893-901. [PMID: 29522694 DOI: 10.1139/apnm-2017-0689] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The potential for a chickpea-supplemented diet (rich in fermentable nondigestible carbohydrates and phenolic compounds) to modify the colonic microenvironment and attenuate the severity of acute colonic inflammation was investigated. C57Bl/6 male mice were fed a control basal diet or basal diet supplemented with 20% cooked chickpea flour for 3 weeks prior to acute colitis onset induced by 7-day exposure to dextran sodium sulfate (DSS; 2% w/v in drinking water) and colon and serum levels of inflammatory mediators were assessed. Despite an equal degree of DSS-induced epithelial barrier histological damage and clinical symptoms between dietary groups, biomarkers of the ensuing inflammatory response were attenuated by chickpea pre-feeding, including reduced colon tissue activation of nuclear factor kappa B and inflammatory cytokine production (tumor necrosis factor alpha and interleukin (IL)-18). Additionally, colon protein expression of anti-inflammatory (IL-10) and epithelial repair (IL-22 and IL-27) cytokines were increased by chickpea pre-feeding. Furthermore, during acute colitis, chickpea pre-feeding increased markers of enhanced colonic function, including Relmβ and IgA gene expression. Collectively, chickpea pre-feeding modulated the baseline function of the colonic microenvironment, whereby upon induction of acute colitis, the severity of the inflammatory response was attenuated.
Collapse
Affiliation(s)
- Jennifer M Monk
- a Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
- b Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Wenqing Wu
- a Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
| | - Laurel H McGillis
- b Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Hannah R Wellings
- b Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Amber L Hutchinson
- b Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Danyelle M Liddle
- b Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Daniela Graf
- a Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
- b Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Lindsay E Robinson
- b Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Krista A Power
- a Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
- b Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
95
|
Gil-Cardoso K, Ginés I, Pinent M, Ardévol A, Blay M, Terra X. The co-administration of proanthocyanidins and an obesogenic diet prevents the increase in intestinal permeability and metabolic endotoxemia derived to the diet. J Nutr Biochem 2018; 62:35-42. [PMID: 30245181 DOI: 10.1016/j.jnutbio.2018.07.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/14/2018] [Accepted: 07/25/2018] [Indexed: 12/14/2022]
Abstract
The consumption of Westernized diets leads to hyperphagia and obesity, as well as intestinal alterations. In the present study, we evaluated the effect of the administration of a grape seed proanthocyanidin extract (GSPE) at different time points on the modulation of intestinal barrier function (intestinal permeability and metabolic endotoxemia), in rats with high-fat/high-carbohydrate diet-induced obesity. Animals were fed a cafeteria diet (CAF) supplemented with a preventive (PRE-CAF) or simultaneously intermittent (SIT-CAF) GSPE treatment (500 mg/kg bw). Changes in the plasma levels of an orally administered marker of intestinal permeability (ovalbumin, OVA), lipopolysaccharide (LPS) and tumor necrosis factor-α (TNF-α) were analyzed after animals were fed the obesogenic diet for 8, 12 and 17 weeks. In addition, ex vivo variations in transepithelial electrical resistance (TEER), the expression of tight junction (TJ) genes and the activity of myeloperoxidase (MPO) in the small and large intestines were monitored at the end of the experiment. The CAF diet increased OVA, LPS, MPO and TNF-α levels, accompanied by decreased TEER values in the small and large intestines. Interestingly, both GSPE treatments prevented these detrimental effects of the CAF diet, being the SIT-CAF group the most effective after 17 weeks of diet intervention. For the first time, this study provides evidence of the ameliorative effect of a proanthocyanidin extract, administered before or together with an obesogenic diet, on barrier dysfunction, as measured by intestinal permeability and metabolic endotoxemia.
Collapse
Affiliation(s)
- Katherine Gil-Cardoso
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University, Marcel·lí Domingo 1. PC, 43007, Tarragona. Spain
| | - Iris Ginés
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University, Marcel·lí Domingo 1. PC, 43007, Tarragona. Spain
| | - Montserrat Pinent
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University, Marcel·lí Domingo 1. PC, 43007, Tarragona. Spain
| | - Anna Ardévol
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University, Marcel·lí Domingo 1. PC, 43007, Tarragona. Spain
| | - Mayte Blay
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University, Marcel·lí Domingo 1. PC, 43007, Tarragona. Spain.
| | - Ximena Terra
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University, Marcel·lí Domingo 1. PC, 43007, Tarragona. Spain
| |
Collapse
|
96
|
Huang YC, Wu BH, Chu YL, Chang WC, Wu MC. Effects of Tempeh Fermentation with Lactobacillus plantarum and Rhizopus oligosporus on Streptozotocin-Induced Type II Diabetes Mellitus in Rats. Nutrients 2018; 10:E1143. [PMID: 30135362 PMCID: PMC6163431 DOI: 10.3390/nu10091143] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022] Open
Abstract
The increased consumption of high fat-containing foods has been linked to the prevalence of obesity and abnormal metabolic syndromes. Rhizopus oligosporus, a fungus in the family Mucoraceae, is widely used as a starter for homemade tempeh. Although R. oligosporus can prevent the growth of other microorganisms, it grows well with lactic acid bacteria (LAB). Lactobacillus plantarum can produce β-glucosidase, which catalyzes the hydrolysis of glucoside isoflavones into aglycones (with greater bioavailability). Therefore, the development of a soybean-based functional food by the co-inoculation of R. oligosporus and L. plantarum is a promising approach to increase the bioactivity of tempeh. In this study, the ameliorative effect of L. plantarum in soy tempeh on abnormal carbohydrate metabolism in high-fat diet (HFD)-induced hyperglycemic rats was evaluated. The co-incubation of L. plantarum with R. oligosporus during soy tempeh fermentation reduced the homeostatic model assessment of insulin resistance, HbA1c, serum glucose, total cholesterol, triglyceride, free fatty acid, insulin, and low-density lipoprotein contents, and significantly increased the high-density lipoprotein content in HFD rats. It also increased the LAB counts, as well as the bile acid, cholesterol, triglyceride, and short-chain fatty acid contents in the feces of HFD rats. Our results suggested that the modulation of serum glucose and lipid levels by LAB occurs via alterations in the internal microbiota, leading to the inhibition of cholesterol synthesis and promotion of lipolysis. Tempeh, which was produced with both L. plantarum and R. oligosporus, might be a beneficial dietary supplement for individuals with abnormal carbohydrate metabolism.
Collapse
Affiliation(s)
- Ying-Che Huang
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| | - Bo-Hua Wu
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| | - Yung-Lin Chu
- International Master's Degree Program in Food Science, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| | - Wen-Chang Chang
- Department of Food Science, National Chiayi University, Chiayi 60004, Taiwan.
| | - Ming-Chang Wu
- Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| |
Collapse
|
97
|
Lee T, Huang Y, Lu Y, Yeh Y, Yu LC. Hypoxia-induced intestinal barrier changes in balloon-assisted enteroscopy. J Physiol 2018; 596:3411-3424. [PMID: 29178568 PMCID: PMC6068115 DOI: 10.1113/jp275277] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/20/2017] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS Balloon-assisted enteroscopy (BAE) is an emerging standard procedure by utilizing distensible balloons to facilitate deep endoscopy in the small and large intestine. Sporadic cases of bacteraemia were found after BAE. Balloon distension by BAE caused gut tissue hypoxia. The impact of balloon distension-induced hypoxia on intestinal barriers remains unclear. Murine models of BAE by colonic balloon distension showed that short- and long-term hypoxia evoked opposite effects on epithelial tight junctions (TJs). Short-term hypoxia fortified TJ integrity, whereas long-term hypoxia caused damage to barrier function. Our data showed for the first time the molecular mechanisms and signalling pathways of epithelial barrier fortification and TJ reorganization by short-term hypoxia for the maintenance of gut homeostasis. The findings suggest avoiding prolonged balloon distension during BAE to reduce the risk of hypoxia-induced gut barrier dysfunction. ABSTRACT Balloon-assisted enteroscopy (BAE) is an emerging standard procedure that uses distensible balloons to facilitate deep endoscopy. Intestines are known to harbour an abundant microflora. Whether balloon distension causes perturbation of blood flow and gut barrier dysfunction, and elicits risk of bacterial translocation remains unknown. Our aims were to (1) conduct a prospective study to gather microbiological and molecular evidence of bacterial translocation by BAE in patients, (2) establish a murine model of colonic balloon distension to investigate tissue hypoxia and intestinal barrier, and (3) assess the effect of short- and long-term hypoxia on epithelial permeability using cell lines. Thirteen patients were enrolled for BAE procedures, and blood samples were obtained before and after BAE for paired comparison. Four of the 13 patients (30.8%) had positive bacterial DNA in blood after BAE. Post-BAE endotoxaemia was higher than the pre-BAE level. Nevertheless, no clinical symptom of sepsis or fever was reported. To mimic clinical BAE, mice were subjected to colonic balloon distension. Local tissue hypoxia was observed during balloon inflation, and reoxygenation after deflation. A trend of increased gut permeability was seen after long-term distension, whereas a significant reduction of permeability was observed by short-term distension in the proximal colon. Human colonic epithelial Caco-2 cells exposed to hypoxia for 5-20 min exhibited increased tight junctional assembly, while those exposed to longer hypoxia displayed barrier disruption. In conclusion, sporadic cases of bacteraemia were found after BAE, without septic symptoms. Short-term hypoxia by balloon distension yielded a protective effect whereas long-term hypoxia caused damage to the gut barrier.
Collapse
Affiliation(s)
- Tsung‐Chun Lee
- Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwanROC
- Department of Internal MedicineNational Taiwan University HospitalTaipeiTaiwanROC
| | - Yi‐Chen Huang
- Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwanROC
| | - Yen‐Zhen Lu
- Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwanROC
| | - Yu‐Chang Yeh
- Department of AnesthesiologyNational Taiwan University HospitalTaipeiTaiwanROC
| | - Linda Chia‐Hui Yu
- Graduate Institute of PhysiologyNational Taiwan University College of MedicineTaipeiTaiwanROC
| |
Collapse
|
98
|
Chen N, Su P, Wang M, Li YM. Ascorbic acid inhibits cadmium-induced disruption of the blood-testis barrier by regulating oxidative stress-mediated p38 MAPK pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:21713-21720. [PMID: 29790047 DOI: 10.1007/s11356-018-2138-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
Ascorbic acid (AA), one of the best-known reactive oxygen species (ROS) scavengers, exhibits numerous functions such as antioxidant, anti-cancer, and anti-inflammatory effects. Increasing evidence demonstrates that oxidative stress plays an important role in testicular toxicity. In the present study, we investigated the protective effect of AA against cadmium (Cd)-induced blood-testis barrier (BTB) disruption. Sprague-Dawley (SD) rats were divided into four groups: the Cd-treated group received a single dose (s.c.) of 2 mg/kg BW cadmium chloride; the AA antagonism group received an injection of AA at a dose of 400 mg/kg BW (200 mg 24 h prior to Cd treatment and 200 mg 24 h following Cd treatment); and the control groups received an equal volume of saline or an equal dose of AA. As expected, ROS expression was upregulated in the Cd-treated rats, accompanied by an increase in malondialdehyde (MDA). Interestingly, AA suppressed Cd-induced oxidative stress by decreasing the levels of ROS and MDA and increasing the activity of superoxide dismutase (SOD) and catalase (CAT). In addition, AA also reduced BTB disruption by inhibiting TGF-β3 activation and p38 MAPK phosphorylation. Significant decreases in occludin and claudin-11 expression were observed in the Cd-treated rats, whereas AA administration attenuated this effect. Moreover, testicular histopathology and transmission electron microscopy further demonstrated the protective effects of AA against Cd-induced BTB damage. In conclusion, the results of the present study suggest that AA protects BTB destruction via the inhibition of oxidative stress and the TGF-β3/p38 MAPK signalling pathway in the testis of Cd-exposed rats.
Collapse
Affiliation(s)
- Na Chen
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ping Su
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Mei Wang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ya-Min Li
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
99
|
Patra AK, Amasheh S, Aschenbach JR. Modulation of gastrointestinal barrier and nutrient transport function in farm animals by natural plant bioactive compounds – A comprehensive review. Crit Rev Food Sci Nutr 2018; 59:3237-3266. [DOI: 10.1080/10408398.2018.1486284] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Amlan Kumar Patra
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, Berlin, Germany
- Institute of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, 37 K. B. Sarani, Belgachia, Kolkata, India
| | - Salah Amasheh
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, Berlin, Germany
| | - Jörg Rudolf Aschenbach
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, Berlin, Germany
| |
Collapse
|
100
|
Fructo-Oligosaccharide (DFA III) Feed Supplementation for Mitigation of Mycotoxin Exposure in Cattle-Clinical Evaluation by a Urinary Zearalenone Monitoring System. Toxins (Basel) 2018; 10:toxins10060223. [PMID: 29857569 PMCID: PMC6024752 DOI: 10.3390/toxins10060223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 12/13/2022] Open
Abstract
The potential effect of difructose anhydride III (DFA III) supplementation in cattle feed was evaluated using a previously developed urinary-zearalenone (ZEN) monitoring system. Japanese Black cattle from two beef herds aged 9⁻10 months were used. DFA III was supplemented for two weeks. ZEN concentrations in feed were similar in both herds (0.27 and 0.22 mg/kg in roughage and concentrates, respectively), and below the maximum allowance in Japan. ZEN, α-zearalenol (α-ZOL), and β-ZOL concentrations in urine were measured using LC/MS/MS the day before DFA III administration, 9 and 14 days thereafter, and 9 days after supplementation ceased. Significant differences in ZEN, α-ZOL, β-ZOL, and total ZEN were recorded on different sampling dates. The concentration of inorganic phosphate in DFA III-supplemented animals was significantly higher than in controls on day 23 (8.4 vs. 7.7 mg/dL), suggesting a possible role of DFA III in tight junction of intestinal epithelial cells. This is the first evidence that DFA III reduces mycotoxin levels reaching the systemic circulation and excreted in urine. This preventive effect may involve an improved tight-junction-dependent intestinal barrier function. Additionally, our practical approach confirmed that monitoring of urinary mycotoxin is useful for evaluating the effects of dietary supplements to prevent mycotoxin adsorption.
Collapse
|