51
|
Gambari L, Cellamare A, Grassi F, Grigolo B, Panciera A, Ruffilli A, Faldini C, Desando G. Targeting the Inflammatory Hallmarks of Obesity-Associated Osteoarthritis: Towards Nutraceutical-Oriented Preventive and Complementary Therapeutic Strategies Based on n-3 Polyunsaturated Fatty Acids. Int J Mol Sci 2023; 24:ijms24119340. [PMID: 37298291 DOI: 10.3390/ijms24119340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Obesity (Ob), which has dramatically increased in the last decade, is one of the main risk factors that contribute to the incidence and progression of osteoarthritis (OA). Targeting the characteristics of obesity-associated osteoarthritis (ObOA) may offer new chances for precision medicine strategies in this patient cohort. First, this review outlines how the medical perspective of ObOA has shifted from a focus on biomechanics to the significant contribution of inflammation, mainly mediated by changes in the adipose tissue metabolism through the release of adipokines and the modification of fatty acid (FA) compositions in joint tissues. Preclinical and clinical studies on n-3 polyunsaturated FAs (PUFAs) are critically reviewed to outline the strengths and weaknesses of n-3 PUFAs' role in alleviating inflammatory, catabolic and painful processes. Emphasis is placed on potential preventive and therapeutic nutritional strategies based on n-3 PUFAs, with a focus on ObOA patients who could specifically benefit from reformulating the dietary composition of FAs towards a protective phenotype. Finally, tissue engineering approaches that involve the delivery of n-3 PUFAs directly into the joint are explored to address the perspectives and current limitations, such as safety and stability issues, for implementing preventive and therapeutic strategies based on dietary compounds in ObOA patients.
Collapse
Affiliation(s)
- Laura Gambari
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Antonella Cellamare
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Francesco Grassi
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Brunella Grigolo
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Alessandro Panciera
- 1st Orthopedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli, via G.C. Pupilli 1, 40136 Bologna, Italy
| | - Alberto Ruffilli
- 1st Orthopedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli, via G.C. Pupilli 1, 40136 Bologna, Italy
| | - Cesare Faldini
- 1st Orthopedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli, via G.C. Pupilli 1, 40136 Bologna, Italy
| | - Giovanna Desando
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| |
Collapse
|
52
|
Rizzo MG, Best TM, Huard J, Philippon M, Hornicek F, Duan Z, Griswold AJ, Kaplan LD, Hare JM, Kouroupis D. Therapeutic Perspectives for Inflammation and Senescence in Osteoarthritis Using Mesenchymal Stem Cells, Mesenchymal Stem Cell-Derived Extracellular Vesicles and Senolytic Agents. Cells 2023; 12:1421. [PMID: 37408255 PMCID: PMC10217382 DOI: 10.3390/cells12101421] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 07/07/2023] Open
Abstract
Osteoarthritis (OA) is the most common cause of disability worldwide among the elderly. Alarmingly, the incidence of OA in individuals less than 40 years of age is rising, likely due to the increase in obesity and post-traumatic osteoarthritis (PTOA). In recent years, due to a better understanding of the underlying pathophysiology of OA, several potential therapeutic approaches targeting specific molecular pathways have been identified. In particular, the role of inflammation and the immune system has been increasingly recognized as important in a variety of musculoskeletal diseases, including OA. Similarly, higher levels of host cellular senescence, characterized by cessation of cell division and the secretion of a senescence-associated secretory phenotype (SASP) within the local tissue microenvironments, have also been linked to OA and its progression. New advances in the field, including stem cell therapies and senolytics, are emerging with the goal of slowing disease progression. Mesenchymal stem/stromal cells (MSCs) are a subset of multipotent adult stem cells that have demonstrated the potential to modulate unchecked inflammation, reverse fibrosis, attenuate pain, and potentially treat patients with OA. Numerous studies have demonstrated the potential of MSC extracellular vesicles (EVs) as cell-free treatments that comply with FDA regulations. EVs, including exosomes and microvesicles, are released by numerous cell types and are increasingly recognized as playing a critical role in cell-cell communication in age-related diseases, including OA. Treatment strategies for OA are being developed that target senescent cells and the paracrine and autocrine secretions of SASP. This article highlights the encouraging potential for MSC or MSC-derived products alone or in combination with senolytics to control patient symptoms and potentially mitigate the progression of OA. We will also explore the application of genomic principles to the study of OA and the potential for the discovery of OA phenotypes that can motivate more precise patient-driven treatments.
Collapse
Affiliation(s)
- Michael G. Rizzo
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL 33146, USA; (M.G.R.); (T.M.B.)
| | - Thomas M. Best
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL 33146, USA; (M.G.R.); (T.M.B.)
| | - Johnny Huard
- Center for Regenerative and Personalized Medicine (CRPM), Steadman Philippon Research Institute, Vail, CO 81657, USA (M.P.)
| | - Marc Philippon
- Center for Regenerative and Personalized Medicine (CRPM), Steadman Philippon Research Institute, Vail, CO 81657, USA (M.P.)
| | - Francis Hornicek
- Department of Orthopedics, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (F.H.); (Z.D.)
| | - Zhenfeng Duan
- Department of Orthopedics, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (F.H.); (Z.D.)
| | - Anthony J. Griswold
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Lee D. Kaplan
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL 33146, USA; (M.G.R.); (T.M.B.)
| | - Joshua M. Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | - Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL 33146, USA; (M.G.R.); (T.M.B.)
- Diabetes Research Institute, Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
53
|
Nisar A, Jagtap S, Vyavahare S, Deshpande M, Harsulkar A, Ranjekar P, Prakash O. Phytochemicals in the treatment of inflammation-associated diseases: the journey from preclinical trials to clinical practice. Front Pharmacol 2023; 14:1177050. [PMID: 37229273 PMCID: PMC10203425 DOI: 10.3389/fphar.2023.1177050] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Advances in biomedical research have demonstrated that inflammation and its related diseases are the greatest threat to public health. Inflammatory action is the pathological response of the body towards the external stimuli such as infections, environmental factors, and autoimmune conditions to reduce tissue damage and improve patient comfort. However, when detrimental signal-transduction pathways are activated and inflammatory mediators are released over an extended period of time, the inflammatory process continues and a mild but persistent pro-inflammatory state may develop. Numerous degenerative disorders and chronic health issues including arthritis, diabetes, obesity, cancer, and cardiovascular diseases, among others, are associated with the emergence of a low-grade inflammatory state. Though, anti-inflammatory steroidal, as well as non-steroidal drugs, are extensively used against different inflammatory conditions, they show undesirable side effects upon long-term exposure, at times, leading to life-threatening consequences. Thus, drugs targeting chronic inflammation need to be developed to achieve better therapeutic management without or with a fewer side effects. Plants have been well known for their medicinal use for thousands of years due to their pharmacologically active phytochemicals belonging to diverse chemical classes with a number of these demonstrating potent anti-inflammatory activity. Some typical examples include colchicine (alkaloid), escin (triterpenoid saponin), capsaicin (methoxy phenol), bicyclol (lignan), borneol (monoterpene), and quercetin (flavonoid). These phytochemicals often act via regulating molecular mechanisms that synergize the anti-inflammatory pathways such as increased production of anti-inflammatory cytokines or interfere with the inflammatory pathways such as to reduce the production of pro-inflammatory cytokines and other modulators to improve the underlying pathological condition. This review describes the anti-inflammatory properties of a number of biologically active compounds derived from medicinal plants, and their mechanisms of pharmacological intervention to alleviate inflammation-associated diseases. The emphasis is given to information on anti-inflammatory phytochemicals that have been evaluated at the preclinical and clinical levels. Recent trends and gaps in the development of phytochemical-based anti-inflammatory drugs have also been included.
Collapse
Affiliation(s)
- Akib Nisar
- Biochemical Sciences Division, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
| | - Suresh Jagtap
- Herbal Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
| | - Suresh Vyavahare
- Shatayu Ayurved and Research Centre, Solapur, Maharashtra, India
| | - Manasi Deshpande
- Department of Dravyagun Vigyan, College of Ayurved, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
| | - Abhay Harsulkar
- Herbal Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
- Pharmaceutical Biotechnology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
| | | | - Om Prakash
- Department of Microbiology, Immunology and Parasitology, University Health Sciences Center, New Orleans, LA, United States
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
54
|
Wen Y, Xu F, Liu Y, Zhi K, Tan J, Jiang Y, Li M, Zhang H. Outcome analysis of infrapatellar fat pad partial resection or preservation in patients with anterior cruciate ligament reconstruction. Sci Rep 2023; 13:6945. [PMID: 37117250 PMCID: PMC10147682 DOI: 10.1038/s41598-023-30933-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/03/2023] [Indexed: 04/30/2023] Open
Abstract
The infrapatellar fat pad (IPFP) is one of the structures surrounding the knee joint that obscures exposure in minimally arthroscopy anterior cruciate ligament reconstruction (ACLR). Most surgeons excise the partial fat pad for better exposure of the knee. However, whether removal of IPFP in ACLR remained inconclusive. The purpose of this study was to investigate clinical outcomes of IPFP preservation or resection in patients with primary hamstring-graft ACLR. A total of 104 patients were assigned to receive either IPFP-R (n = 55) or IPFP-P (n = 49). There were no significant preoperative differences between the two groups. The anterior knee pain (AKP) and the Knee Injury and Osteoarthritis Outcome Score (KOOS) in the two groups both recovered compared with those at baseline, but the IPFP-P group recovered more significantly at 3-, 6-, 12-month, and 3-, 6-month of follow-up, respectively. When assessing the KOOS subclasses using minimum perceptible clinical improvement (MPCI), patients with IPFP-R failed to make significant improvement at 3 months in the symptoms, pain and sports subsets of the KOOS. Knee-related complications were not significantly different between the two groups, while the resection group had a higher incidence. These results suggested that ACLR with primary hamstring grafts can achieve good effects whether performed with IPFP resection or preservation; however, the improvements in anterior knee pain and knee joint functions are better for the patients with IPFP preservation. Therefore, surgeons should avoid the resection of IPFP as much as possible while fully exposing the wild view to ensure the ACLR.
Collapse
Affiliation(s)
- Yixin Wen
- Department of Orthopaedics, Fifth Hospital in Wuhan, Wuhan, China
| | - Feng Xu
- Department of Orthopaedics, Fifth Hospital in Wuhan, Wuhan, China
| | - Yang Liu
- Department of Orthopaedics, Fifth Hospital in Wuhan, Wuhan, China
| | - Kaining Zhi
- Blood Transfusion Department, Wuhan Hankou Hospital, Wuhan, China
| | - Junfeng Tan
- Department of Orthopaedics, Fifth Hospital in Wuhan, Wuhan, China
| | - Yong Jiang
- Department of Orthopaedics, Fifth Hospital in Wuhan, Wuhan, China
| | - Minghui Li
- Department of Orthopaedics, Fifth Hospital in Wuhan, Wuhan, China.
| | - Hui Zhang
- Department of Orthopaedics, Fifth Hospital in Wuhan, Wuhan, China.
| |
Collapse
|
55
|
Ye Q, He D, Ding X, Wang Y, Wei Y, Liu J. Quantitative evaluation of the infrapatellar fat pad in knee osteoarthritis: MRI-based radiomic signature. BMC Musculoskelet Disord 2023; 24:326. [PMID: 37098523 PMCID: PMC10127010 DOI: 10.1186/s12891-023-06433-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/14/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND The infrapatellar fat pad (IFP) may have bilateral influence on knee osteoarthritis (KOA). IFP evaluation may be a key contributor to the diagnostic and clinical management of KOA. Few studies have evaluated KOA-related IFP alteration with radiomics. We investigated radiomic signature for the assessment of IFP for KOA progression in older adults. METHODS A total of 164 knees were enrolled and grouped based on Kellgren-Lawrence (KL) scoring. MRI-based radiomic features were calculated from IFP segmentation. The radiomic signature was developed using the most predictive subset of features and the machine-learning algorithm with minimum relative standard deviation. KOA severity and structure abnormality were assessed using a modified whole-organ magnetic resonance imaging score (WORMS). The performance of the radiomic signature was evaluated and the correlation with WORMS assessments was analyzed. RESULTS The area under the curve of the radiomic signature for diagnosing KOA was 0.83 and 0.78 in the training and test datasets, respectively. Rad-scores were 0.41 and 2.01 for the training dataset in the groups with and without KOA (P < 0.001) and 0.63 and 2.31 for the test dataset (P = 0.005), respectively. WORMS significantly and positively correlated with rad-scores. CONCLUSIONS The radiomic signature may be a reliable biomarker to detect IFP abnormality of KOA. Radiomic alterations in IFP were associated with severity and knee structural abnormalities of KOA in older adults.
Collapse
Affiliation(s)
- Qin Ye
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Dong He
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaonan Ding
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yajie Wang
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuguo Wei
- Precision Health Institution, General Electric Healthcare, Hangzhou, China
| | - Jing Liu
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
56
|
Kitano M, Kawahata H, Okawa Y, Handa T, Nagamori H, Kitayama Y, Miyashita T, Sakamoto K, Fukumoto Y, Kudo S. Effects of low-intensity pulsed ultrasound on the infrapatellar fat pad in knee osteoarthritis: a randomized, double blind, placebo-controlled trial. J Phys Ther Sci 2023; 35:163-169. [PMID: 36866007 PMCID: PMC9974316 DOI: 10.1589/jpts.35.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/01/2022] [Indexed: 03/04/2023] Open
Abstract
[Purpose] We investigated the effects of low-intensity pulsed ultrasound (LIPUS) irradiation of the infrapatellar fat pad (IFP) combined with therapeutic exercise for management of knee osteoarthritis (knee OA). [Participants and Methods] The study included 26 patients with knee OA, who were randomized into the LIPUS group (patients underwent LIPUS + therapeutic exercise) and the therapeutic exercise group (patients underwent sham LIPUS + therapeutic exercise). We measured changes in the patellar tendon-tibial angle (PTTA) and in IFP thickness, IFP gliding, and IFP echo intensity after 10 treatment sessions to determine the effects of the aforementioned interventions. We additionally recorded changes in the visual analog scale, Timed Up and Go Test, the Western Ontario and McMaster Universities Osteoarthritis Index, and Kujala scores, as well as range of motion in each group at the same end-point. [Results] Compared with patients in the therapeutic exercise group, those in the LIPUS group showed significant post-treatment improvements in PTTA, VAS, and Kujala scores, as well as in range of motion. [Conclusion] The combined use of LIPUS irradiation of the IFP and therapeutic exercise is a safe and effective modality to reduce IFP swelling, relieve pain, and improve function in patients with knee OA.
Collapse
Affiliation(s)
- Masashi Kitano
- Graduate School of Health Science, Morinomiya University of
Medical Science: 1-26-16 Nankoukita, Suminoe-ku, Osaka-shi, Osaka 559-8611, Japan, Inclusive Medical Science Research Institute, Morinomiya
University of Medical Sciences, Japan, Yamamuro Orthopedics Clinic, Japan
| | - Hirohisa Kawahata
- Inclusive Medical Science Research Institute, Morinomiya
University of Medical Sciences, Japan, Department of Medical Technology, Morinomiya University of
Medical Sciences, Japan
| | - Yuse Okawa
- Inclusive Medical Science Research Institute, Morinomiya
University of Medical Sciences, Japan, Morinomiya University of Medical Sciences Acupuncture
Information Center, Japan
| | | | | | | | - Toshinori Miyashita
- Inclusive Medical Science Research Institute, Morinomiya
University of Medical Sciences, Japan
| | - Kodai Sakamoto
- Graduate School of Health Science, Morinomiya University of
Medical Science: 1-26-16 Nankoukita, Suminoe-ku, Osaka-shi, Osaka 559-8611, Japan
| | - Yusuke Fukumoto
- Graduate School of Health Science, Morinomiya University of
Medical Science: 1-26-16 Nankoukita, Suminoe-ku, Osaka-shi, Osaka 559-8611, Japan
| | - Shintarou Kudo
- Graduate School of Health Science, Morinomiya University of
Medical Science: 1-26-16 Nankoukita, Suminoe-ku, Osaka-shi, Osaka 559-8611, Japan, Inclusive Medical Science Research Institute, Morinomiya
University of Medical Sciences, Japan, Department of Physical Therapy, Morinomiya University of
Medical Sciences, Japan,Corresponding author. Shintarou Kudo (E-mail: )
| |
Collapse
|
57
|
Hellmund C, Hepp P, Steinke H. The subpopliteal fat body. Ann Anat 2022; 245:151995. [PMID: 36182003 DOI: 10.1016/j.aanat.2022.151995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
INTRODUCTION The knee is likely to get hurt due to its excessive weight-bearing, for which it is surrounded by strongly tensioned ligaments, connectives and muscles. These highly active structures are imbedded in fatty tissue. The Fatty and loose connective tissue of the knee recently gained a renaissance in research. While the Hoffa fat body in the ventral knee attracted attention over the last years, we have investigated a smaller, dorsal fat body, ventral to the popliteus muscle. This fat body has not been described before. MATERIALS AND METHODS 11 knees of 11 fresh specimens were investigated. All muscles but the popliteus muscle were removed. The popliteus was released from its tibial origin and dissected towards its tendinous insertion. Thereby, a subpopliteal fat body (SFB) was shown. The related vessels and nerves were evaluated. The size of the body was measured. Examples of histological slices were stained with HE and immunostained against neurofilament. RESULTS The SFB lies ventral of the popliteus muscle at the concave posterior tibia and attaches to the periosteum and the popliteus muscle. It is not attached to the posterior cruciate ligament. It is separated from the subpopliteal recess by a lamella deriving from the fibular head. Arterial and venous vessels are seen entering the SFB, deriving from the popliteal artery or the anterior tibial artery. A subbranch of the tibial nerve was seen to reach the SFB. The SFB could be identified in MRI scans and in plastinations. DISCUSSION Primarily, the SFB provides a gliding space for the mobile part of the popliteus muscle over the tibia. The SFB lies within the tibial concavity, ventral to the popliteus muscle. This is exactly where embryologically, the popliteal artery passes through, before its involution in later stages. Therefore, the SFB may show the former perivascular autonomic nerves which encompass the embryologically created arteries, from which we have seen the arterial remnants. The nerves seen here form neurovascular bundles which could be a source of pain, when compressed. This anatomy may explain the autonomic component of pain in the deep lateral region of the knee. The SFB is functional fat, comparable to the Hoffa's fat pad in the ventral knee.
Collapse
Affiliation(s)
- Christoph Hellmund
- Institut für Anatomie, Universität Leipzig, Liebigstr. 13, 04103 Leipzig.
| | - Pierre Hepp
- Klinik und Poliklinik für Orthopädie, Unfallchirurgie und Plastische Chirurgie.
| | - Hanno Steinke
- Institut für Anatomie, Universität Leipzig, Liebigstr. 13, 04103 Leipzig.
| |
Collapse
|
58
|
Cui J, Shibata Y, Itaka K, Zhou J, Zhang J. Unbiased comparison and modularization identify time-related transcriptomic reprogramming in exercised rat cartilage: Integrated data mining and experimental validation. Front Physiol 2022; 13:974266. [PMID: 36187764 PMCID: PMC9520919 DOI: 10.3389/fphys.2022.974266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Exercise is indispensable for maintaining cartilage integrity in healthy joints and remains a recommendation for knee osteoarthritis. Although the effects of exercise on cartilage have been implied, the detailed mechanisms, such as the effect of exercise time which is important for exercise prescription, remain elusive. In this study, bioinformatic analyses, including unbiased comparisons and modularization, were performed on the transcriptomic data of rat cartilage to identify the time-related genes and signaling pathways. We found that exercise had a notable effect on cartilage transcriptome. Exercise prominently suppressed the genes related to cell division, hypertrophy, catabolism, inflammation, and immune response. The downregulated genes were more prominent and stable over time than the upregulated genes. Although exercise time did not prominently contribute to the effects of exercise, it was a factor related to a batch of cellular functions and signaling pathways, such as extracellular matrix (ECM) homeostasis and cellular response to growth factors and stress. Two clusters of genes, including early and late response genes, were identified according to the expression pattern over time. ECM organization, BMP signaling, and PI3K-Akt signaling were early responsive in the exercise duration. Moreover, time-related signaling pathways, such as inositol phosphate metabolism, nicotinate/nicotinamide metabolism, cell cycle, and Fc epsilon RI signaling pathway, were identified by unbiased mapping and polarization of the highly time-correlated genes. Immunohistochemistry staining showed that Egfr was a late response gene that increased on day 15 of exercise. This study elucidated time-related transcriptomic reprogramming induced by exercise in cartilage, advancing the understanding of cartilage homeostasis.
Collapse
Affiliation(s)
- Jiarui Cui
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yo Shibata
- Department of Conservative Dentistry, Division of Biomaterials and Engineering, Showa University School of Dentistry, Tokyo, Japan
| | - Keiji Itaka
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Jun Zhou
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- *Correspondence: Jun Zhou, ; Jiaming Zhang,
| | - Jiaming Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jun Zhou, ; Jiaming Zhang,
| |
Collapse
|
59
|
Das P, Jana S, Kumar Nandi S. Biomaterial-Based Therapeutic Approaches to Osteoarthritis and Cartilage Repair Through Macrophage Polarization. CHEM REC 2022; 22:e202200077. [PMID: 35792527 DOI: 10.1002/tcr.202200077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/15/2022] [Indexed: 11/06/2022]
Abstract
There is an ever-increasing clinical and socioeconomic burden associated with cartilage lesions & osteoarthritis (OA). Its progression, chondrocyte death & hypertrophy are all facilitated by inflamed synovium & joint environment. Due to their capacity to switch between pro- & anti-inflammatory phenotypes, macrophages are increasingly being recognized as a key player in the healing process, which has been largely overlooked in the past. A biomaterial's inertness has traditionally been a goal while developing them in order to reduce the likelihood of adverse reactions from the host organism. A better knowledge of how macrophages respond to implanted materials has made it feasible to determine the biomaterial architectural parameters that control the host response & aid in effective tissue integration. Thus, this review summarizes novel therapeutic techniques for avoiding OA or increasing cartilage repair & regeneration that might be developed using new technologies tuning macrophages into desirable functional phenotypes.
Collapse
Affiliation(s)
- Piyali Das
- Department of Microbiology, School of Life Science and Biotechnology, Adamas University, Kolkata, 700126, India
| | - Sonali Jana
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, 700037, Kolkata, India
| | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, 700037, Kolkata, India
| |
Collapse
|
60
|
Zhou S, Maleitzke T, Geissler S, Hildebrandt A, Fleckenstein FN, Niemann M, Fischer H, Perka C, Duda GN, Winkler T. Source and hub of inflammation: The infrapatellar fat pad and its interactions with articular tissues during knee osteoarthritis. J Orthop Res 2022; 40:1492-1504. [PMID: 35451170 DOI: 10.1002/jor.25347] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/28/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023]
Abstract
Knee osteoarthritis, the most prevalent degenerative joint disorder worldwide, is driven by chronic low-grade inflammation and subsequent cartilage degradation. Clinical data on the role of the Hoffa or infrapatellar fat pad in knee osteoarthritis are, however, scarce. The infrapatellar fat pad is a richly innervated intracapsular, extrasynovial adipose tissue, and an abundant source of adipokines and proinflammatory and catabolic cytokines, which may contribute to chronic synovial inflammation, cartilage destruction, and subchondral bone remodeling during knee osteoarthritis. How the infrapatellar fat pad interacts with neighboring tissues is poorly understood. Here, we review available literature with regard to the infrapatellar fat pad's interactions with cartilage, synovium, bone, menisci, ligaments, and nervous tissue during the development and progression of knee osteoarthritis. Signaling cascades are described with a focus on immune cell populations, pro- and anti-inflammatory cytokines, adipokines, mesenchymal stromal cells, and molecules derived from conditioned media from the infrapatellar fat pad. Understanding the complex interplay between the infrapatellar fat pad and its neighboring articular tissues may help to better understand and treat the multifactorial pathogenesis of osteoarthritis.
Collapse
Affiliation(s)
- Sijia Zhou
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Tazio Maleitzke
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
| | - Sven Geissler
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Alexander Hildebrandt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Florian Nima Fleckenstein
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Diagnostic and Interventional Radiology, Berlin, Germany
| | - Marcel Niemann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Heilwig Fischer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Carsten Perka
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
| | - Georg N Duda
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Tobias Winkler
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| |
Collapse
|
61
|
Edama M, Otsuki T, Yokota H, Hirabayashi R, Sekine C, Maruyama S, Kageyama I. Morphological characteristics of the infrapatellar fat pad. Sci Rep 2022; 12:8923. [PMID: 35624138 PMCID: PMC9142527 DOI: 10.1038/s41598-022-12859-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/17/2022] [Indexed: 11/09/2022] Open
Abstract
The relationship between the morphological characteristics of the infrapatellar fat pad (IFP) and joint deformity has yet to be fully elucidated. Therefore, the purpose of this study was to clarify the morphological characteristics of the IFP and to identify the relationships between morphological characteristics of the IFP and degenerative grade of the articular surface of the patella. This investigation examined 41 legs from 25 Japanese cadavers. The IFP length, width, and volume were measured. It was categorized into three types: Type I, IFP proximal located on medial and lateral sides of the patella; Type II, the IFP proximal only located medially; and Type III, absence of the IFP proximal. Articular surfaces were graded as macroscopically intact or mildly altered (Grade I), moderately (Grade II), or severely (Grade III). Grade III was significantly more frequent than Grades I or II in Type III. IFP volume was significantly larger in Type I than in Types II or III. A negative correlation was found between the degenerative grade of the articular surface of the patella and IFP volume. It was suggested that a relationship between the degenerative grade of the articular surface of the patella and the IFP volume.
Collapse
Affiliation(s)
- Mutsuaki Edama
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Shimami-cho 1398, Kita-ku, Niigata, 950-3198, Japan. .,Department of Anatomy, School of Life Dentistry at Niigata, Nippon Dental University, Niigata, Japan.
| | - Tomofumi Otsuki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Shimami-cho 1398, Kita-ku, Niigata, 950-3198, Japan
| | - Hirotake Yokota
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Shimami-cho 1398, Kita-ku, Niigata, 950-3198, Japan
| | - Ryo Hirabayashi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Shimami-cho 1398, Kita-ku, Niigata, 950-3198, Japan
| | - Chie Sekine
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Shimami-cho 1398, Kita-ku, Niigata, 950-3198, Japan
| | - Sae Maruyama
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Shimami-cho 1398, Kita-ku, Niigata, 950-3198, Japan
| | - Ikuo Kageyama
- Department of Anatomy, School of Life Dentistry at Niigata, Nippon Dental University, Niigata, Japan
| |
Collapse
|
62
|
Du Z, You X, Wu D, Huang S, Zhou Z. Rhythm disturbance in osteoarthritis. Cell Commun Signal 2022; 20:70. [PMID: 35610652 PMCID: PMC9128097 DOI: 10.1186/s12964-022-00891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023] Open
Abstract
Osteoarthritis (OA) is one of the main causes of disabilities among older people. To date, multiple disease-related molecular networks in OA have been identified, including abnormal mechanical loadings and local inflammation. These pathways have not, however, properly elucidated the mechanism of OA progression. Recently, sufficient evidence has suggested that rhythmic disturbances in the central nervous system (CNS) and local joint tissues affect the homeostasis of joint and can escalate pathological changes of OA. This is accompanied with an exacerbation of joint symptoms that interfere with the rhythm of CNS in reverse. Eventually, these processes aggravate OA progression. At present, the crosstalk between joint tissues and biological rhythm remains poorly understood. As such, the mechanisms of rhythm changes in joint tissues are worth study; in particular, research on the effect of rhythmic genes on metabolism and inflammation would facilitate the understanding of the natural rhythms of joint tissues and the OA pathology resulting from rhythm disturbance. Video Abstract
Collapse
Affiliation(s)
- Ze Du
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.,Department of Orthopedics and Research institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xuanhe You
- Department of Orthopedics and Research institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Diwei Wu
- Department of Orthopedics and Research institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shishu Huang
- Department of Orthopedics and Research institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Zongke Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China. .,Department of Orthopedics and Research institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
63
|
Braun S, Zaucke F, Brenneis M, Rapp AE, Pollinger P, Sohn R, Jenei-Lanzl Z, Meurer A. The Corpus Adiposum Infrapatellare (Hoffa's Fat Pad)-The Role of the Infrapatellar Fat Pad in Osteoarthritis Pathogenesis. Biomedicines 2022; 10:1071. [PMID: 35625808 PMCID: PMC9138316 DOI: 10.3390/biomedicines10051071] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023] Open
Abstract
In recent years, the infrapatellar fat pad (IFP) has gained increasing research interest. The contribution of the IFP to the development and progression of knee osteoarthritis (OA) through extensive interactions with the synovium, articular cartilage, and subchondral bone is being considered. As part of the initiation process of OA, IFP secretes abundant pro-inflammatory mediators among many other factors. Today, the IFP is (partially) resected in most total knee arthroplasties (TKA) allowing better visualization during surgical procedures. Currently, there is no clear guideline providing evidence in favor of or against IFP resection. With increasing numbers of TKAs, there is a focus on preventing adverse postoperative outcomes. Therefore, anatomic features, role in the development of knee OA, and consequences of resecting versus preserving the IFP during TKA are reviewed in the following article.
Collapse
Affiliation(s)
- Sebastian Braun
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (M.B.); (A.M.)
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (F.Z.); (A.E.R.); (P.P.); (R.S.); (Z.J.-L.)
| | - Marco Brenneis
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (M.B.); (A.M.)
| | - Anna E. Rapp
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (F.Z.); (A.E.R.); (P.P.); (R.S.); (Z.J.-L.)
| | - Patrizia Pollinger
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (F.Z.); (A.E.R.); (P.P.); (R.S.); (Z.J.-L.)
| | - Rebecca Sohn
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (F.Z.); (A.E.R.); (P.P.); (R.S.); (Z.J.-L.)
| | - Zsuzsa Jenei-Lanzl
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (F.Z.); (A.E.R.); (P.P.); (R.S.); (Z.J.-L.)
| | - Andrea Meurer
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (M.B.); (A.M.)
| |
Collapse
|
64
|
Batushansky A, Zhu S, Komaravolu RK, South S, Mehta-D'souza P, Griffin TM. Fundamentals of OA. An initiative of Osteoarthritis and Cartilage. Obesity and metabolic factors in OA. Osteoarthritis Cartilage 2022; 30:501-515. [PMID: 34537381 PMCID: PMC8926936 DOI: 10.1016/j.joca.2021.06.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/14/2021] [Accepted: 06/07/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Obesity was once considered a risk factor for knee osteoarthritis (OA) primarily for biomechanical reasons. Here we provide an additional perspective by discussing how obesity also increases OA risk by altering metabolism and inflammation. DESIGN This narrative review is presented in four sections: 1) metabolic syndrome and OA, 2) metabolic biomarkers of OA, 3) evidence for dysregulated chondrocyte metabolism in OA, and 4) metabolic inflammation: joint tissue mediators and mechanisms. RESULTS Metabolic syndrome and its components are strongly associated with OA. However, evidence for a causal relationship is context dependent, varying by joint, gender, diagnostic criteria, and demographics, with additional environmental and genetic interactions yet to be fully defined. Importantly, some aspects of the etiology of obesity-induced OA appear to be distinct between men and women, especially regarding the role of adipose tissue. Metabolomic analyses of serum and synovial fluid have identified potential diagnostic biomarkers of knee OA and prognostic biomarkers of disease progression. Connecting these biomarkers to cellular pathophysiology will require future in vivo studies of joint tissue metabolism. Such studies will help reveal when a metabolic process or a metabolite itself is a causal factor in disease progression. Current evidence points towards impaired chondrocyte metabolic homeostasis and metabolic-immune dysregulation as likely factors connecting obesity to the increased risk of OA. CONCLUSIONS A deeper understanding of how obesity alters metabolic and inflammatory pathways in synovial joint tissues is expected to provide new therapeutic targets and an improved definition of "metabolic" and "obesity" OA phenotypes.
Collapse
Affiliation(s)
- A Batushansky
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| | - S Zhu
- Department of Biomedical Sciences, Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, 45701, USA.
| | - R K Komaravolu
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| | - S South
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| | - P Mehta-D'souza
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| | - T M Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA; Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
65
|
Kitagawa T, Ozaki N, Aoki Y. Effect of physical therapy on the flexibility of the infrapatellar fat pad: A single-blind randomised controlled trial. PLoS One 2022; 17:e0265333. [PMID: 35298522 PMCID: PMC8929552 DOI: 10.1371/journal.pone.0265333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/11/2022] [Indexed: 11/19/2022] Open
Abstract
The infrapatellar fat pad plays a biomechanical role in the knee joint. After knee injury or surgery, its dynamics decrease because of an inflammatory response. Physical therapy might be one of the valuable treatments for the recovery of knee joint mobility. This study aimed to evaluate the immediate effect of physical therapy on the dynamics of the infrapatellar fat pad in healthy participants using ultrasonography. In this prospective, single-blind, randomised controlled trial, 64 healthy young participants were enrolled and randomly assigned to one of the following three interventions: manual therapy, hot pack treatment, and control. Ultrasound images of the infrapatellar fat pad were obtained before and after the intervention. The thickness change ratio of the infrapatellar fat pad was calculated to compare the changes between and within groups before and after the intervention. No significant inter-group differences were observed. The effect sizes were relatively small. Manual therapy or hot pack intervention might not have an immediate effect on infrapatellar fat pad flexibility in healthy participants. Thus, it is necessary to consider more intensive treatments to change the dynamics of the infrapatellar fat pad.
Collapse
Affiliation(s)
- Takashi Kitagawa
- Department of Physical Therapy, School of Health Sciences, Shinshu University, Matsumoto, Japan
- * E-mail:
| | - Natsumi Ozaki
- Department of Physical Therapy, School of Health Sciences, Shinshu University, Matsumoto, Japan
| | - Yuma Aoki
- Department of Physical Therapy, School of Health Sciences, Shinshu University, Matsumoto, Japan
| |
Collapse
|
66
|
The Role of Synovial Membrane in the Development of a Potential In Vitro Model of Osteoarthritis. Int J Mol Sci 2022; 23:ijms23052475. [PMID: 35269618 PMCID: PMC8910122 DOI: 10.3390/ijms23052475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 01/15/2023] Open
Abstract
There is a lack of in vitro models able to plausibly represent the inflammation microenvironment of knee osteoarthritis (OA). We analyzed the molecules released from OA tissues (synovial membrane, cartilage, infrapatellar fat pad) and investigated whether the stimulation of human synovial fibroblasts (SFs), with synthetic cytokines (IL-1β and TNF-α or IFN-γ) or conditioned media (CM) from OA tissues, influence the SFs’ response, in the sense of pro-inflammatory cytokines, chemokines, growth factors, and degradative enzymes modulation. Human SFs were obtained from OA synovial membranes. SFs and their CM were analyzed for biomarkers, proliferation rate, protein profile and gene expression, before and after stimulation. Real-time PCR and multiplex assays quantified OA-related gene expression and biomolecule production. Unlike other activators, CM from OA synovial membrane (CM-SM), significantly up-regulated all genes of interest (IL-6, IL-8, MMP-1, MMP-3, RANTES, MCP-1, TSG-6, YKL-40) in SFs. Multiplex immunoassay analysis showed that levels of OA-related cytokines (IL-6, IL-8, MCP 1, IL-1Ra), chemokine (RANTES) and growth factor (VEGF), produced by CM-SM stimulated SFs, increased significantly compared to non-stimulated SFs. Molecules released from the SM from OA patients induces OA-like changes in vitro, in specific OA synovial populations (SFs). These findings promote the use and establish a compelling in vitro model that simulates the versatility and complexity of the OA disease. This model, in the future, will allow us to study new cell therapies or test drugs by reducing or avoiding animal models.
Collapse
|
67
|
Regulation of FGF-2, FGF-18 and Transcription Factor Activity by Perlecan in the Maturational Development of Transitional Rudiment and Growth Plate Cartilages and in the Maintenance of Permanent Cartilage Homeostasis. Int J Mol Sci 2022; 23:ijms23041934. [PMID: 35216048 PMCID: PMC8872392 DOI: 10.3390/ijms23041934] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to highlight the roles of perlecan in the regulation of the development of the rudiment developmental cartilages and growth plate cartilages, and also to show how perlecan maintains permanent articular cartilage homeostasis. Cartilage rudiments are transient developmental templates containing chondroprogenitor cells that undergo proliferation, matrix deposition, and hypertrophic differentiation. Growth plate cartilage also undergoes similar changes leading to endochondral bone formation, whereas permanent cartilage is maintained as an articular structure and does not undergo maturational changes. Pericellular and extracellular perlecan-HS chains interact with growth factors, morphogens, structural matrix glycoproteins, proteases, and inhibitors to promote matrix stabilization and cellular proliferation, ECM remodelling, and tissue expansion. Perlecan has mechanotransductive roles in cartilage that modulate chondrocyte responses in weight-bearing environments. Nuclear perlecan may modulate chromatin structure and transcription factor access to DNA and gene regulation. Snail-1, a mesenchymal marker and transcription factor, signals through FGFR-3 to promote chondrogenesis and maintain Acan and type II collagen levels in articular cartilage, but prevents further tissue expansion. Pre-hypertrophic growth plate chondrocytes also express high Snail-1 levels, leading to cessation of Acan and CoI2A1 synthesis and appearance of type X collagen. Perlecan differentially regulates FGF-2 and FGF-18 to maintain articular cartilage homeostasis, rudiment and growth plate cartilage growth, and maturational changes including mineralization, contributing to skeletal growth.
Collapse
|
68
|
Hao L, Ma C, Li Z, Wang Y, Zhao X, Yu M, Hou H. Effects of type II collagen hydrolysates on osteoarthritis through the NF-κB, Wnt/β-catenin and MAPK pathways. Food Funct 2022; 13:1192-1205. [PMID: 35018959 DOI: 10.1039/d1fo03414f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Osteoarthritis (OA), a degenerative disease, has attracted extensive attention all over the world. In this study, a rat model involving medial meniscus resection (MMx) and anterior to medial collateral ligament (ACL) operation was successfully established to study the effects of bovine cartilage hydrolysates rich in type II collagen peptides (BIIP) on cartilage protection. The results of histological analysis indicated that oral administration of BIIP at doses of 200 and 500 mg kg-1 d-1 ameliorated cartilage degeneration. Moreover, the potential targets of BIIP affecting OA in vivo were studied by proteomics, and the effects of BIIP on OA through signaling pathways, such as NF-κB, Wnt/β-catenin and MAPK, were further explored at mRNA and protein levels. BIIP downregulated the expression of IL-6, RUNX2, NF-κB p65, HIF-2α, β-catenin and p-JNK, which may be the main factor leading to the prevention of OA. These results suggest that BIIP can be used as a novel potential substance of functional foods to exert chondroprotective action.
Collapse
Affiliation(s)
- Li Hao
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China. .,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266237, PR China
| | - Chengcheng Ma
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China.
| | - Zhaoxia Li
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China.
| | - Yanchao Wang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China.
| | - Xue Zhao
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China.
| | - Mingxiao Yu
- Meitek Technology Co., Ltd, No. 1888 Dazhushan South Road, Qingdao, Shandong Province 266400, PR China
| | - Hu Hou
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China. .,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266237, PR China
| |
Collapse
|
69
|
Joint-on-chip platforms: entering a new era of in vitro models for arthritis. Nat Rev Rheumatol 2022; 18:217-231. [PMID: 35058618 DOI: 10.1038/s41584-021-00736-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2021] [Indexed: 12/12/2022]
|
70
|
Fat Is Consistently Present within the Plantar Muscular Space of the Human Foot—An Anatomical Study. Medicina (B Aires) 2022; 58:medicina58020154. [PMID: 35208480 PMCID: PMC8877207 DOI: 10.3390/medicina58020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Objectives: The foot comprises of active contractile and passive connective tissue components, which help maintain stability and facilitate movement during gait. The role of age- or pathology-related degeneration and the presence of fat within muscles in foot function and pain remains unclear. The existence of fat has to date not been quantified or compared between individuals according to age, sex, side or subregion. Materials and Methods: 18 cadaveric feet (mean age 79 years) were sectioned sagittally and photographed bilaterally. Fat in the plantar muscular space of the foot (PMSF) was quantified through the previously validated manual fat quantification method, which involved observing photographs of each section and identifying regions using OsiriX. Fat volume and percentage was calculated using a modified Cavalieri’s method. Results: All feet had fat located within the PMSF, averaging 25.8% (range, 16.5–39.4%) of the total PMSF volume. The presence of fat was further confirmed with plastination and confocal microscopy. Conclusions: These findings suggest that fat within the PMSF is a consistent but highly variable finding in elderly cohorts. Fat within the foot muscles may need to be considered a norm when comparing healthy and non-healthy subjects, and for therapeutic interventions to the foot. Further work is required to understand in detail the morphological and mechanical presence of fat in the foot, and compare these findings with pathological cohorts, such as sarcopenia. Additionally, future work should investigate if fat may compensate for the degeneration of the intrinsic muscles of the foot, with implications for both the use of orthotics and pain management.
Collapse
|
71
|
Accart N, Dawson J, Obrecht M, Lambert C, Flueckiger M, Kreider J, Hatakeyama S, Richards PJ, Beckmann N. Degenerative joint disease induced by repeated intra-articular injections of monosodium urate crystals in rats as investigated by translational imaging. Sci Rep 2022; 12:157. [PMID: 34997110 PMCID: PMC8742129 DOI: 10.1038/s41598-021-04125-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/09/2021] [Indexed: 11/09/2022] Open
Abstract
The objective of this work was to assess the consequences of repeated intra-articular injection of monosodium urate (MSU) crystals with inflammasome priming by lipopolysaccharide (LPS) in order to simulate recurrent bouts of gout in rats. Translational imaging was applied to simultaneously detect and quantify injury in different areas of the knee joint. MSU/LPS induced joint swelling, synovial membrane thickening, fibrosis of the infrapatellar fat pad, tidemark breaching, and cartilage invasion by inflammatory cells. A higher sensitivity to mechanical stimulus was detected in paws of limbs receiving MSU/LPS compared to saline-injected limbs. In MSU/LPS-challenged joints, magnetic resonance imaging (MRI) revealed increased synovial fluid volume in the posterior region of the joint, alterations in the infrapatellar fat pad reflecting a progressive decrease of fat volume and fibrosis formation, and a significant increase in the relaxation time T2 in femoral cartilage, consistent with a reduction of proteoglycan content. MRI also showed cyst formation in the tibia, femur remodeling, and T2 reductions in extensor muscles consistent with fibrosis development. Repeated intra-articular MSU/LPS injections in the rat knee joint induced pathology in multiple tissues and may be a useful means to investigate the relationship between urate crystal deposition and the development of degenerative joint disease.
Collapse
Affiliation(s)
- Nathalie Accart
- Musculoskeletal Diseases Department, Novartis Institutes for BioMedical Research, Fabrikstr. 28.3.04, CH-4056, Basel, Switzerland
| | - Janet Dawson
- Autoimmunity, Transplantation & Inflammation Department, Novartis Institutes for BioMedical Research, Lichtstr. 35, WSJ-386.6.08.18, CH-4056, Basel, Switzerland
| | - Michael Obrecht
- Musculoskeletal Diseases Department, Novartis Institutes for BioMedical Research, Fabrikstr. 28.3.04, CH-4056, Basel, Switzerland
| | - Christian Lambert
- Musculoskeletal Diseases Department, Novartis Institutes for BioMedical Research, Fabrikstr. 28.3.04, CH-4056, Basel, Switzerland
| | - Manuela Flueckiger
- Musculoskeletal Diseases Department, Novartis Institutes for BioMedical Research, Fabrikstr. 28.3.04, CH-4056, Basel, Switzerland
| | - Julie Kreider
- Musculoskeletal Diseases Department, Novartis Institutes for BioMedical Research, Fabrikstr. 28.3.04, CH-4056, Basel, Switzerland
| | - Shinji Hatakeyama
- Musculoskeletal Diseases Department, Novartis Institutes for BioMedical Research, Fabrikstr. 28.3.04, CH-4056, Basel, Switzerland
| | - Peter J Richards
- Musculoskeletal Diseases Department, Novartis Institutes for BioMedical Research, Fabrikstr. 28.3.04, CH-4056, Basel, Switzerland
| | - Nicolau Beckmann
- Musculoskeletal Diseases Department, Novartis Institutes for BioMedical Research, Fabrikstr. 28.3.04, CH-4056, Basel, Switzerland.
| |
Collapse
|
72
|
Hart HF, Culvenor AG, Patterson BE, Doshi A, Vora A, Guermazi A, Birmingham TB, Crossley KM. Infrapatellar fat pad volume and Hoffa-synovitis after ACL reconstruction: Association with early osteoarthritis features and pain over 5 years. J Orthop Res 2022; 40:260-267. [PMID: 33458849 DOI: 10.1002/jor.24987] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/11/2021] [Indexed: 02/04/2023]
Abstract
Infrapatellar fat pad (IPFP) morphology and Hoffa-synovitis may be relevant to the development and progression of post-traumatic osteoarthritis (OA). We aimed to compare IPFP volume and Hoffa-synovitis in participants with anterior cruciate ligament reconstruction (ACLR) and uninjured controls, and to determine their association with prevalent and worsening early knee OA features and pain in participants post-ACLR. We assessed IPFP volume and Hoffa-synovitis from magnetic resonance imaging (MRI) in 111 participants 1-year post-ACLR and 20 uninjured controls. Patellofemoral and tibiofemoral cartilage and bone marrow lesions (BMLs) were assessed from MRIs at 1 and 5 years post-ACLR, and worsening defined as any longitudinal increase in lesion size/severity. IPFP volume and Hoffa-synovitis prevalence were compared between groups with analysis of covariance and χ 2 tests, respectively. Generalized linear models assessed the relation of IPFP volume and Hoffa-synovitis to prevalent and worsening features of OA and knee pain (Knee injury and Osteoarthritis Outcome Score-Pain Subscale, Anterior Knee Pain Scale). No significant between-group differences were observed in IPFP volume (ACLR 34.39 ± 7.29cm3 , Control 34.27 ± 7.56cm3 ) and Hoffa-synovitis (ACLR 61%, Control 80%). Greater IPFP volume at 1-year post-ACLR was associated with greater odds of patellofemoral BMLs at 1-year (odds ratio [OR] [95% confidence intervals]: 1.104 [1.016, 1.200]) and worsening tibiofemoral cartilage lesions at 5-year post-ACLR (OR: 1.234 [1.026, 1.483]). Hoffa-synovitis at 1-year post-ACLR was associated with greater odds of worsening patellofemoral BMLs at 5-year post-ACLR (OR: 7.465 [1.291, 43.169]). In conclusion, IPFP volume and Hoffa-synovitis prevalence are similar between individuals 1-year post-ACLR and controls. Greater IPFP volume and Hoffa-synovitis appear to be associated with the presence and worsening of some early OA features in those post-ACLR, but not pain.
Collapse
Affiliation(s)
- Harvi F Hart
- Department of Physical Therapy, Western University, London, Ontario, Canada.,La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, Victoria, Australia
| | - Adam G Culvenor
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, Victoria, Australia
| | - Brooke E Patterson
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, Victoria, Australia
| | - Ankit Doshi
- Master of Clinical Science Program, Western University, London, Ontario, Canada
| | - Ashish Vora
- Master of Clinical Science Program, Western University, London, Ontario, Canada
| | - Ali Guermazi
- School of Medicine, Boston University, Boston, Massachusetts, USA
| | | | - Kay M Crossley
- La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
73
|
Okita Y, Sadamatsu T, Kawahara T, Gamada, K. Volume and mobility of the infrapatellar fat pad during quasi-static knee extension after manual therapy in patients with knee osteoarthritis: a randomized control trial study. J Phys Ther Sci 2022; 34:561-570. [PMID: 35937628 PMCID: PMC9345757 DOI: 10.1589/jpts.34.561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/18/2022] [Indexed: 11/24/2022] Open
Abstract
[Purpose] This study aimed to determine whether the volume and mobility of the
infrapatellar fat pad (IPFP) change as a result of manual release or stretching during
quasi-static knee extension in patients with knee osteoarthritis (KOA). [Participants and
Methods] Fourteen patients with KOA were allocated to one of two groups: the manual
release (R) and stretching (S, control) groups. They all underwent 12 treatment sessions
in in a space of four weeks. We created 3D models of the IPFP, tibia, patella, and
patellar tendon using sagittal MRI scans with the knee at 30° or 0°. We compared the
differences in (1) the distance of anterior movement of the anterior surface of the IPFP
(IPFP movement) and (2) the volume of the IPFP, between the R and S groups, using the 3D
models. [Results] Neither group showed any anterior movement of the IPFP during
quasi-static knee extension at pre-intervention; however, both groups showed significant
anterior movement of the IPFP at post-intervention. IPFP movement decreased in the S
group, meanwhile it increased in the R group at post-intervention. [Conclusion] Anterior
movement of the IPFP was more increased by manual release than by stretching since the
latter may have shortened the distance between the patella and tibial tuberosity at 0° and
30° flexion.
Collapse
Affiliation(s)
- Yuriko Okita
- Department of Rehabilitation, Sadamatsu Hospital, Japan
| | | | | | - Kazuyoshi Gamada,
- ReaLine Lab., GLAB Corp.: 889-1 Kurose-cho, Munechika-Yanakuni, Higashihiroshima, Hiroshima 739-2504, Japan
| |
Collapse
|
74
|
Afzali MF, Radakovich LB, Sykes MM, Campbell MA, Patton KM, Sanford JL, Vigon N, Ek R, Narez GE, Marolf AJ, Sikes KJ, Haut Donahue TL, Santangelo KS. Early removal of the infrapatellar fat pad/synovium complex beneficially alters the pathogenesis of moderate stage idiopathic knee osteoarthritis in male Dunkin Hartley guinea pigs. Arthritis Res Ther 2022; 24:282. [PMID: 36578046 PMCID: PMC9795160 DOI: 10.1186/s13075-022-02971-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The infrapatellar fat pad (IFP) is the largest adipose deposit in the knee; however, its contributions to the homeostasis of this organ remain undefined. To determine the influence of the IFP and its associated synovium (IFP/synovium complex or IFP/SC) on joint health, this study evaluated the progression of osteoarthritis (OA) following excision of this unit in a rodent model of naturally-occurring disease. METHODS Male Dunkin-Hartley guinea pigs (n=18) received surgical removal of the IFP in one knee at 3 months of age; contralateral knees received sham surgery as matched internal controls. Mobility and gait assessments were performed prior to IFP/SC removal and monthly thereafter. Animals were harvested at 7 months of age. Ten set of these knees were processed for microcomputed tomography (microCT), histopathology, transcript expression analyses, and immunohistochemistry (IHC); 8 sets of knees were dedicated to microCT and biomechanical testing (material properties of knee joints tissues and anterior drawer laxity). RESULTS Fibrous connective tissue (FCT) developed in place of the native adipose depot. Gait demonstrated no significant differences between IFP/SC removal and contralateral hindlimbs. MicroCT OA scores were improved in knees containing the FCT. Quantitatively, IFP/SC-containing knees had more osteophyte development and increased trabecular volume bone mineral density (vBMD) in femora and tibiae. Histopathology confirmed maintenance of articular cartilage structure, proteoglycan content, and chondrocyte cellularity in FCT-containing knees. Transcript analyses revealed decreased expression of adipose-related molecules and select inflammatory mediators in FCTs compared to IFP/SCs. This was verified via IHC for two key inflammatory agents. The medial articular cartilage in knees with native IFP/SCs showed an increase in equilibrium modulus, which correlated with increased amounts of magnesium and phosphorus. DISCUSSION/CONCLUSION Formation of the FCT resulted in reduced OA-associated changes in both bone and cartilage. This benefit may be associated with: a decrease in inflammatory mediators at transcript and protein levels; and/or improved biomechanical properties. Thus, the IFP/SC may play a role in the pathogenesis of knee OA in this strain, with removal prior to disease onset appearing to have short-term benefits.
Collapse
Affiliation(s)
- Maryam F. Afzali
- grid.47894.360000 0004 1936 8083Department of Microbiology, Immunology and Pathology, Colorado State University, 200 West Lake Street, Fort Collins, CO 80523 USA
| | - Lauren B. Radakovich
- grid.47894.360000 0004 1936 8083Department of Microbiology, Immunology and Pathology, Colorado State University, 200 West Lake Street, Fort Collins, CO 80523 USA
| | - Madeline M. Sykes
- grid.47894.360000 0004 1936 8083Department of Microbiology, Immunology and Pathology, Colorado State University, 200 West Lake Street, Fort Collins, CO 80523 USA
| | - Margaret A. Campbell
- grid.47894.360000 0004 1936 8083Department of Microbiology, Immunology and Pathology, Colorado State University, 200 West Lake Street, Fort Collins, CO 80523 USA
| | - Kayley M. Patton
- grid.47894.360000 0004 1936 8083Department of Microbiology, Immunology and Pathology, Colorado State University, 200 West Lake Street, Fort Collins, CO 80523 USA
| | - Joseph L. Sanford
- grid.47894.360000 0004 1936 8083Department of Microbiology, Immunology and Pathology, Colorado State University, 200 West Lake Street, Fort Collins, CO 80523 USA
| | - Nicole Vigon
- grid.266683.f0000 0001 2166 5835Department of Biomedical Engineering, S631 Life Sciences Laboratory, University of Massachusetts, Amherst, 240 Thatcher Road, Amherst, MA 01003 USA
| | - Ryan Ek
- grid.266683.f0000 0001 2166 5835Department of Biomedical Engineering, S631 Life Sciences Laboratory, University of Massachusetts, Amherst, 240 Thatcher Road, Amherst, MA 01003 USA
| | - Gerardo E. Narez
- grid.266683.f0000 0001 2166 5835Department of Biomedical Engineering, S631 Life Sciences Laboratory, University of Massachusetts, Amherst, 240 Thatcher Road, Amherst, MA 01003 USA
| | - Angela J. Marolf
- grid.47894.360000 0004 1936 8083Department of Environmental and Radiological Health Sciences, Colorado State University, 123 Flint Cancer Center, Fort Collins, CO 80523 USA
| | - Katie J. Sikes
- grid.47894.360000 0004 1936 8083Department of Clinical Sciences, Colorado State University, 1678 Clinical Sciences, Fort Collins, CO 80523 USA
| | - Tammy L. Haut Donahue
- grid.56061.340000 0000 9560 654XBiomedical Engineering Department, The University of Memphis, 3806 Norriswood, Memphis, TN 38152 USA
| | - Kelly S. Santangelo
- grid.47894.360000 0004 1936 8083Department of Microbiology, Immunology and Pathology, Colorado State University, 200 West Lake Street, Fort Collins, CO 80523 USA
| |
Collapse
|
75
|
Ragab E, Serag D. Infrapatellar fat pad area on knee MRI: does it correlate with the extent of knee osteoarthritis? THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2021. [DOI: 10.1186/s43055-020-00383-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Osteoarthritis (OA) of the knee joint is a common cause of chronic disability in older adults. During the past 10 years, the infrapatellar fat pad (IPFP) has emerged as a new player in the pathogenesis of knee OA. Its exact role in the pathogenesis of knee OA remains uncertain. While many studies focused on the detrimental effect of the chemical mediators released by IPFP and their role in the accentuation of the development of OA, only few studies elucidated the beneficial effect of IPFP maximal area as a local shock absorber protecting the adjacent articular structures from progressive damage. The aim of this study was to evaluate the relation between the IPFP maximal area and the prevalence of OA manifestations. We also studied the relation between the subcutaneous (SC) fat thicknesses on the medial aspect of the knee as a surrogate marker of body obesity and the IPFP area.
Results
A total of 216 knee scans for 188 adult patients (64 males and 124 females) who met the inclusion criteria were examined. They were between 45 and 66 years (mean 52.5 years). The mean IPFP area for all patients was 6.9 cm2 (± 1.6 SD) (ranged from 4.5 to 11 cm2). After adjustment for potential confounders, there was a significant negative association between IPFP area and radiographic manifestations of OA (osteophites, joint space narrowing, and grade of OA) (P value < 0.001 for each), as well as MRI manifestations of OA (cartilage defects and subchondral bone marrow lesions) (P value < 0.001 and < 0.003, respectively). There was a negative but non-significant association between IPFP area and SC fat thickness.
Conclusion
In our study, we found supportive evidence that IPFP maximal area is associated with fewer osteoarthritic knee changes and less cartilage damage, suggesting that it plays a protective role against the development and progression of OA. Further large-scale clinical studies are awaited to confirm the obtained results. Based on our findings, it would be recommended to avoid IPFP resection during surgery in order to maintain its protective effect.
Collapse
|
76
|
Papathanasiou I, Anastasopoulou L, Tsezou A. Cholesterol metabolism related genes in osteoarthritis. Bone 2021; 152:116076. [PMID: 34174501 DOI: 10.1016/j.bone.2021.116076] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
Cholesterol homeostasis plays a significant role in skeletal development and the dysregulation of cholesterol-related mechanism has been shown to be involved in the development of cartilage diseases including osteoarthritis (OA). Epidemiological studies have shown an association between elevated serum cholesterol levels and OA. Furthermore, abnormal lipid accumulation in chondrocytes as a result of abnormal regulation of cholesterol homeostasis has been demonstrated to be involved in the development of OA. Although, many in vivo and in vitro studies support the connection between cholesterol and cartilage degradation, the mechanisms underlying the complex interactions between lipid metabolism, especially HDL cholesterol metabolism, and OA remain unclear. The current review aims to address this problem and focuses on key molecular players of the HDL metabolism pathway and their role in ΟΑ pathogenesis. Understanding the complexity of biological processes implicated in OA pathogenesis, such as cholesterol metabolism, may lead to new targets for drug therapy of OA patients.
Collapse
Affiliation(s)
- Ioanna Papathanasiou
- Department of Biology, University of Thessaly, Faculty of Medicine, Larisa, Greece; Department of Cytogenetics and Molecular Genetics, University of Thessaly, Faculty of Medicine, Larisa, Greece
| | - Lydia Anastasopoulou
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Giessen, 35392 Giessen, Germany
| | - Aspasia Tsezou
- Department of Biology, University of Thessaly, Faculty of Medicine, Larisa, Greece; Department of Cytogenetics and Molecular Genetics, University of Thessaly, Faculty of Medicine, Larisa, Greece.
| |
Collapse
|
77
|
Wallace KG, Pfeiffer SJ, Pietrosimone LS, Harkey MS, Zong X, Nissman D, Kamath GM, Creighton RA, Spang JT, Blackburn JT, Pietrosimone B. Changes in Infrapatellar Fat Pad Volume 6 to 12 Months After Anterior Cruciate Ligament Reconstruction and Associations With Patient-Reported Knee Function. J Athl Train 2021; 56:1173-1179. [PMID: 33787883 PMCID: PMC8582630 DOI: 10.4085/1062-6050-0458.20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CONTEXT Hypertrophy of the infrapatellar fat pad (IFP) in idiopathic knee osteoarthritis has been linked to deleterious synovial changes and joint pain related to mechanical tissue impingement. Yet little is known regarding the IFP's volumetric changes after anterior cruciate ligament reconstruction (ACLR). OBJECTIVES To examine changes in IFP volume between 6 and 12 months after ACLR and determine associations between patient-reported outcomes and IFP volume at each time point as well as the volume change over time. In a subset of individuals, we examined interlimb IFP volume differences 12 months post-ACLR. STUDY DESIGN Prospective cohort study. SETTING Laboratory. PATIENTS OR OTHER PARTICIPANTS We studied 26 participants (13 women, 13 men, age = 21.88 ± 3.58 years, body mass index = 23.82 ± 2.21 kg/m2) for our primary aims and 13 of those participants (8 women, 5 men, age = 21.15 ± 3.85 years, body mass index = 23.01 ± 2.01 kg/m2) for our exploratory aim. MAIN OUTCOME MEASURE(S) Using magnetic resonance imaging, we evaluated the IFP volume change between 6 and 12 months post-ACLR in the ACLR limb and between-limbs differences at 12 months in a subset of participants. International Knee Documentation Committee subjective knee evaluation (IKDC) scores were collected at 6-month and 12-month follow-ups, and associations between IFP volume and patient-reported outcomes were determined. RESULTS The IFP volume in the ACLR limb increased from 6 months (19.67 ± 6.30 cm3) to 12 months (21.26 ± 6.91 cm3) post-ACLR. Greater increases of IFP volume between 6 and 12 months were significantly associated with better 6-month IKDC scores (r = .44, P = .03). The IFP volume was greater in the uninjured limb (22.71 ± 7.87 cm3) than in the ACLR limb (20.75 ± 9.03 cm3) 12 months post-ACLR. CONCLUSIONS The IFP volume increased between 6 and 12 months post-ACLR; however, the IFP volume of the ACLR limb remained smaller than that of the uninjured limb at 12 months. In addition, those with better knee function 6 months post-ACLR demonstrated greater increases in IFP volume between 6 and 12 months post-ACLR. This suggests that greater IFP volumes may play a role in long-term joint health after ACLR.
Collapse
Affiliation(s)
- Kyle G Wallace
- Georgetown University School of Medicine, Washington, DC
- MOTION Science Institute, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill
| | - Steven J Pfeiffer
- MOTION Science Institute, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens
- School of Applied Health Sciences and Wellness, Ohio University, Athens
| | - Laura S Pietrosimone
- Department of Orthopaedic Surgery, School of Medicine, Duke University, Durham, NC
| | - Matthew S Harkey
- Department of Kinesiology, Michigan State University, East Lansing
| | - Xiaopeng Zong
- Department of Radiology, University of North Carolina at Chapel Hill
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill
| | - Daniel Nissman
- Department of Radiology, University of North Carolina at Chapel Hill
| | - Ganesh M Kamath
- Department of Orthopaedics, University of North Carolina at Chapel Hill
| | | | - Jeffrey T Spang
- Department of Orthopaedics, University of North Carolina at Chapel Hill
| | - J Troy Blackburn
- MOTION Science Institute, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill
- Department of Orthopaedics, University of North Carolina at Chapel Hill
- Human Movement Science Curriculum, University of North Carolina at Chapel Hill
| | - Brian Pietrosimone
- MOTION Science Institute, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill
- Department of Orthopaedics, University of North Carolina at Chapel Hill
- Human Movement Science Curriculum, University of North Carolina at Chapel Hill
| |
Collapse
|
78
|
Single-Cell RNA-Sequencing Identifies Infrapatellar Fat Pad Macrophage Polarization in Acute Synovitis/Fat Pad Fibrosis and Cell Therapy. Bioengineering (Basel) 2021; 8:bioengineering8110166. [PMID: 34821732 PMCID: PMC8615266 DOI: 10.3390/bioengineering8110166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
The pathogenesis and progression of knee inflammatory pathologies is modulated partly by residing macrophages in the infrapatellar fat pad (IFP), thus, macrophage polarization towards pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes is important in joint disease pathologies. Alteration of M1/M2 balance contributes to the initiation and progression of joint inflammation and can be potentially altered with mesenchymal stem cell (MSC) therapy. In an acute synovial/IFP inflammation rat model a single intra-articular injection of IFP-MSC was performed, having as controls (1) diseased rats not receiving IFP-MSC and (2) non-diseased rats. After 4 days, cell specific transcriptional profiling via single-cell RNA-sequencing was performed on isolated IFP tissue from each group. Eight transcriptomically distinct cell populations were identified within the IFP across all three treatment groups with a noted difference in the proportion of myeloid cells across the groups. Largely myeloid cells consisted of macrophages (>90%); one M1 sub-cluster highly expressing pro-inflammatory markers and two M2 sub-clusters with one of them expressing higher levels of canonical M2 markers. Notably, the diseased samples (11.9%) had the lowest proportion of cells expressing M2 markers relative to healthy (14.8%) and MSC treated (19.4%) samples. These results suggest a phenotypic polarization of IFP macrophages towards the pro-inflammatory M1 phenotype in an acute model of inflammation, which are alleviated by IFP-MSC therapy inducing a switch towards an alternate M2 status. Understanding the IFP cellular heterogeneity and associated transcriptional programs may offer insights into novel therapeutic strategies for disabling joint disease pathologies.
Collapse
|
79
|
Steidle-Kloc E, Dannhauer T, Wirth W, Eckstein F. Responsiveness of subcutaneous fat, intermuscular fat, and muscle anatomical cross-sectional area of the thigh to longitudinal body weight loss and gain - Data from the Osteoarthritis Initiative (OAI). Cells Tissues Organs 2021; 211:555-564. [PMID: 34619678 DOI: 10.1159/000520037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/03/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Eva Steidle-Kloc
- Department for Imaging and Functional Musculoskeletal Research, Institute for Anatomy and Cell Biology, Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria
| | - Torben Dannhauer
- Department for Imaging and Functional Musculoskeletal Research, Institute for Anatomy and Cell Biology, Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria
| | - Wolfgang Wirth
- Department for Imaging and Functional Musculoskeletal Research, Institute for Anatomy and Cell Biology, Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
- Chondrometrics GmbH, Ainring, Germany
| | - Felix Eckstein
- Department for Imaging and Functional Musculoskeletal Research, Institute for Anatomy and Cell Biology, Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
- Chondrometrics GmbH, Ainring, Germany
| |
Collapse
|
80
|
Chun KH. Mouse model of the adipose organ: the heterogeneous anatomical characteristics. Arch Pharm Res 2021; 44:857-875. [PMID: 34606058 DOI: 10.1007/s12272-021-01350-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022]
Abstract
Adipose tissue plays a pivotal role in energy storage, hormone secretion, and temperature control. Mammalian adipose tissue is largely divided into white adipose tissue and brown adipose tissue, although recent studies have discovered the existence of beige adipocytes. Adipose tissues are widespread over the whole body and each location shows distinctive metabolic features. Mice are used as a representative experimental model system in metabolic studies due to their numerous advantages. Importantly, the adipose tissues of experimental animals and humans are not perfectly matched, and each adipose tissue exhibits both similar and specific characteristics. Nevertheless, the diversity and characteristics of mouse adipose tissue have not yet been comprehensively summarized. This review summarizes diverse information about the different types of adipose tissue being studied in mouse models. The types and characteristics of adipocytes were described, and each adipose tissue was classified by type, and features such as its distribution, origin, differences from humans, and metabolic characteristics were described. In particular, the distribution of widely studied adipose tissues was illustrated so that researchers can comprehensively grasp its location. Also, the adipose tissues misused or confusingly used among researchers were described. This review will provide researchers with comprehensive information and cautions needed to study adipose tissues in mouse models.
Collapse
Affiliation(s)
- Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Inchon, 21936, Republic of Korea.
| |
Collapse
|
81
|
ÖZEN G, ŞEN Eİ, ÇELİK Z, ŞAHBAZ T, TOPAL G, DIRAÇOĞLU D. Association between synovial fluid prostanoid levels and ultrasonographic findings in knee osteoarthritis. CUKUROVA MEDICAL JOURNAL 2021. [DOI: 10.17826/cumj.899751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
82
|
Oei EHG, van Zadelhoff TA, Eijgenraam SM, Klein S, Hirvasniemi J, van der Heijden RA. 3D MRI in Osteoarthritis. Semin Musculoskelet Radiol 2021; 25:468-479. [PMID: 34547812 DOI: 10.1055/s-0041-1730911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Osteoarthritis (OA) is among the top 10 burdensome diseases, with the knee the most affected joint. Magnetic resonance imaging (MRI) allows whole-knee assessment, making it ideally suited for imaging OA, considered a multitissue disease. Three-dimensional (3D) MRI enables the comprehensive assessment of OA, including quantitative morphometry of various joint tissues. Manual tissue segmentation on 3D MRI is challenging but may be overcome by advanced automated image analysis methods including artificial intelligence (AI). This review presents examples of the utility of 3D MRI for knee OA, focusing on the articular cartilage, bone, meniscus, synovium, and infrapatellar fat pad, and it highlights several applications of AI that facilitate segmentation, lesion detection, and disease classification.
Collapse
Affiliation(s)
- Edwin H G Oei
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Tijmen A van Zadelhoff
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Susanne M Eijgenraam
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Stefan Klein
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jukka Hirvasniemi
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rianne A van der Heijden
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
83
|
Li Z, Huang Z, Bai L. Cell Interplay in Osteoarthritis. Front Cell Dev Biol 2021; 9:720477. [PMID: 34414194 PMCID: PMC8369508 DOI: 10.3389/fcell.2021.720477] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/14/2021] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is a common chronic disease and a significant health concern that needs to be urgently solved. OA affects the cartilage and entire joint tissues, including the subchondral bone, synovium, and infrapatellar fat pads. The physiological and pathological changes in these tissues affect the occurrence and development of OA. Understanding complex crosstalk among different joint tissues and their roles in OA initiation and progression is critical in elucidating the pathogenic mechanism of OA. In this review, we begin with an overview of the role of chondrocytes, synovial cells (synovial fibroblasts and macrophages), mast cells, osteoblasts, osteoclasts, various stem cells, and engineered cells (induced pluripotent stem cells) in OA pathogenesis. Then, we discuss the various mechanisms by which these cells communicate, including paracrine signaling, local microenvironment, co-culture, extracellular vesicles (exosomes), and cell tissue engineering. We particularly focus on the therapeutic potential and clinical applications of stem cell-derived extracellular vesicles, which serve as modulators of cell-to-cell communication, in the field of regenerative medicine, such as cartilage repair. Finally, the challenges and limitations related to exosome-based treatment for OA are discussed. This article provides a comprehensive summary of key cells that might be targets of future therapies for OA.
Collapse
Affiliation(s)
- Zihao Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ziyu Huang
- Foreign Languages College, Shanghai Normal University, Shanghai, China
| | - Lunhao Bai
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
84
|
Sugimoto H, Murahashi Y, Chijimatsu R, Miwa S, Yano F, Tanaka S, Saito T. Primary culture of mouse adipose and fibrous synovial fibroblasts under normoxic and hypoxic conditions. Biomed Res 2021; 41:43-51. [PMID: 32092739 DOI: 10.2220/biomedres.41.43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Synovial fibroblasts have attracted considerable attention in studies of joint diseases. Although mice are useful and powerful in in vitro and in vivo experiments, primary cultures of mouse synovial fibroblasts are notoriously difficult because the mouse synovial tissues are much smaller and cell cycle arrests can be induced more easily in murine cells than in human cells. Here, we report a precise protocol for the isolation and culture of fibroblasts from mouse adipose and fibrous knee joint synovia. In both adipose and fibrous synovial fibroblasts, proliferation was decreased in addition to a higher rate of cellular senescence under normoxic conditions (20% O2); however, it was maintained over 20 days with low cellular senescence under hypoxic conditions (3% O2). The marker gene expression in adipose and fibrous synovial fibroblasts was not markedly altered after a 3-week culture. Both cells displayed similar potencies for chondrogenic, osteogenic, and adipogenic differentiation, and responses to a proinflammatory cytokine. The present method provides a sufficient amount of mouse synovial fibroblasts for in vitro and in vivo experiments in joint biology and the pathophysiology of osteoarthritis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Hikaru Sugimoto
- Faculty of Medicine, Graduate School of Medicine, The University of Tokyo
| | - Yasutaka Murahashi
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo
| | - Ryota Chijimatsu
- Bone and Cartilage Regenerative Medicine, Graduate School of Medicine, The University of Tokyo
| | - Satoshi Miwa
- Faculty of Medicine, Graduate School of Medicine, The University of Tokyo
| | - Fumiko Yano
- Bone and Cartilage Regenerative Medicine, Graduate School of Medicine, The University of Tokyo
| | - Sakae Tanaka
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo
| | - Taku Saito
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo
| |
Collapse
|
85
|
Buchanan MW, Furman BD, Zeitlin JH, Huebner JL, Kraus VB, Yi JS, Olson SA. Degenerative joint changes following intra-articular fracture are more severe in mice with T cell deficiency. J Orthop Res 2021; 39:1710-1721. [PMID: 33104263 DOI: 10.1002/jor.24899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/25/2020] [Accepted: 10/21/2020] [Indexed: 02/04/2023]
Abstract
The inflammatory response to joint injury, specifically intra-articular fracture, has been implicated in posttraumatic arthritis development. However, the role of T cells in regulating the development of posttraumatic arthritis is unclear. We hypothesized that the absence of T cells would lead to less severe posttraumatic arthritis following intra-articular fracture. T cell-deficient, athymic nude, and wild-type C57BL/6NJ mice were assessed at 8 weeks following closed articular fracture. Joints were assessed using histologic scores of arthritis, synovitis, and bone morphology via micro computed tomography. Cells were profiled in whole blood via flow cytometry, and plasma and synovial fluid derived cytokines were quantified by multiplex analysis. Compared to C57BL/6NJ mice, nude mice had significantly greater histologic evidence of arthritis and synovitis. Whole blood immune cell profiling revealed a lower percentage of dendritic cells but increased natural killer (NK) cells in nude mice. Concurrently, nude mice had significantly higher levels of NK cells in synovial tissue. Concentrations of plasma interleukin 1β (IL-1β) and tumor necrosis factor α, and synovial fluid IL-12, IL-17, and IL-6 in both knees were greater in nude mice. Outcomes of this study suggest that T cells may play a protective regulatory role against the development of posttraumatic arthritis. Clinical significance: Lack of functional T cells exacerbated the development of posttraumatic arthritis following intra-articular fracture suggesting that critical regulators of the immune responses, contained within the T cell population, are required for protection. Future research identifying the specific T cell subsets responsible for modulating disease immunopathogenesis will lead to new therapeutic targets to mitigate posttraumatic arthritis.
Collapse
Affiliation(s)
- Michael W Buchanan
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Bridgette D Furman
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Jacob H Zeitlin
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Janet L Huebner
- Duke Molecular Physiology Institute, Durham, North Carolina, USA
| | - Virginia B Kraus
- Duke Molecular Physiology Institute, Durham, North Carolina, USA.,Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - John S Yi
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Steven A Olson
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
86
|
Signal intensity alteration and maximal area of pericruciate fat pad are associated with incident radiographic osteoarthritis: data from the Osteoarthritis Initiative. Eur Radiol 2021; 32:489-496. [PMID: 34327582 DOI: 10.1007/s00330-021-08193-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/03/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To determine whether pericruciate fat pad (PCFP) signal intensity alteration and maximal area are associated with incident radiographic osteoarthritis (ROA) over 4 years in the Osteoarthritis Initiative (OAI) study. METHODS Participants were from the Osteoarthritis Initiative (OAI) study. Case knees (n = 355) were defined by incident ROA between 12 and 48 months visits and were matched by sex, age, and radiographic status with control knees (n = 355). Magnetic resonance images (MRIs) were used to assess PCFP signal intensity alteration and PCFP maximal area at P0 (time of onset of ROA), P-1 (1 year prior to P0), and baseline. Conditional logistic regression analyses were applied to assess associations between PCFP measures and the risk of incident ROA. RESULTS The mean age of participants was 60.1 years and 66.9% were women. In multivariable analyses, PCFP signal intensity alteration measured at three time points (OR [95%CI]: 1.28 [1.10-1.50], 1.52 [1.30-1.78], 1.50 [1.27-1.76], respectively) and PCFP maximal area (OR [95%CI]: 1.21 [1.03-1.42], 1.27 [1.07-1.52], 1.37 [1.15-1.62], respectively) were significantly associated with incident ROA. CONCLUSIONS PCFP signal intensity alteration and maximal area were associated with incident ROA over 4 years, implying that they may have roles to play in ROA. KEY POINTS • Pericruciate fat pad signal intensity alteration and maximal area were associated with incident ROA, implying that they may have roles to play in ROA.
Collapse
|
87
|
Mobasheri A, Trumble TN, Byron CR. Editorial: One Step at a Time: Advances in Osteoarthritis. Front Vet Sci 2021; 8:727477. [PMID: 34336985 PMCID: PMC8322576 DOI: 10.3389/fvets.2021.727477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022] Open
Affiliation(s)
- Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium
| | - Troy N. Trumble
- Veterinary Population Medicine, University of Minnesota Twin Cities, St. Paul, MN, United States
| | - Christopher R. Byron
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
88
|
Janovits PM, Leiguez E, Portas V, Teixeira C. A Metalloproteinase Induces an Inflammatory Response in Preadipocytes with the Activation of COX Signalling Pathways and Participation of Endogenous Phospholipases A 2. Biomolecules 2021; 11:921. [PMID: 34206390 PMCID: PMC8301905 DOI: 10.3390/biom11070921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are proteolytic enzymes that have been associated with the pathogenesis of inflammatory diseases and obesity. Adipose tissue in turn is an active endocrine organ capable of secreting a range of proinflammatory mediators with autocrine and paracrine properties, which contribute to the inflammation of adipose tissue and adjacent tissues. However, the potential inflammatory effects of MMPs in adipose tissue cells are still unknown. This study investigates the effects of BmooMPα-I, a single-domain snake venom metalloproteinase (SVMP), in activating an inflammatory response by 3T3-L1 preadipocytes in culture, focusing on prostaglandins (PGs), cytokines, and adipocytokines biosynthesis and mechanisms involved in prostaglandin E2 (PGE2) release. The results show that BmooMPα-I induced the release of PGE2, prostaglandin I2 (PGI2), monocyte chemoattractant protein-1 (MCP-1), and adiponectin by preadipocytes. BmooMPα-I-induced PGE2 biosynthesis was dependent on group-IIA-secreted phospholipase A2 (sPLA2-IIA), cytosolic phospholipase A2-α (cPLA2-α), and cyclooxygenase (COX)-1 and -2 pathways. Moreover, BmooMPα-I upregulated COX-2 protein expression but not microsomal prostaglandin E synthase-1 (mPGES-1) expression. In addition, we demonstrate that the enzymatic activity of BmooMPα-I is essential for the activation of prostanoid synthesis pathways in preadipocytes. These data highlight preadipocytes as important targets for metalloproteinases and provide new insights into the contribution of these enzymes to the inflammation of adipose tissue and tissues adjacent to it.
Collapse
Affiliation(s)
- Priscila Motta Janovits
- Laboratório de Farmacologia, Instituto Butantan, São Paulo 05503-900, Brazil;
- Centre of Excellence in New Target Discovery (CENTD), Instituto Butantan, São Paulo 05503-900, Brazil;
| | - Elbio Leiguez
- Laboratório de Farmacologia, Instituto Butantan, São Paulo 05503-900, Brazil;
- Centre of Excellence in New Target Discovery (CENTD), Instituto Butantan, São Paulo 05503-900, Brazil;
| | - Viviane Portas
- Centre of Excellence in New Target Discovery (CENTD), Instituto Butantan, São Paulo 05503-900, Brazil;
- Laboratório de Desenvolvimento e Inovação, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Catarina Teixeira
- Laboratório de Farmacologia, Instituto Butantan, São Paulo 05503-900, Brazil;
- Centre of Excellence in New Target Discovery (CENTD), Instituto Butantan, São Paulo 05503-900, Brazil;
| |
Collapse
|
89
|
Bone marrow derived mast cells injected into the osteoarthritic knee joints of mice induced by sodium monoiodoacetate enhanced spontaneous pain through activation of PAR2 and action of extracellular ATP. PLoS One 2021; 16:e0252590. [PMID: 34086763 PMCID: PMC8177436 DOI: 10.1371/journal.pone.0252590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Conditions that resemble osteoarthritis (OA) were produced by injection of sodium monoiodoacetate (MIA) into the knee joints of mice. Bone marrow derived mast cells (BMMCs) injected into the OA knee joints enhanced spontaneous pain. Since no spontaneous pain was observed when BMMCs were injected into the knee joints of control mice that had not been treated with MIA, BMMCs should be activated within the OA knee joints and release some pain-inducible factors. Protease activated receptor-2 (PAR2) antagonist (FSLLRY-NH2) almost abolished the pain-enhancing effects of BMMCs injected into the OA knee joints, suggesting that tryptase, a mast cell protease that is capable of activating PAR2, should be released from the injected BMMCs and enhance pain through activation of PAR2. When PAR2 agonist (SLIGKV-NH2) instead of BMMCs was injected into the OA knee joints, it was also enhanced pain. Apyrase, an ATP degrading enzyme, injected into the OA knee joints before BMMCs suppressed the pain enhanced by BMMCs. We showed that purinoceptors (P2X4 and P2X7) were expressed in BMMCs and that extracellular ATP stimulated the release of tryptase from BMMCs. These observations suggest that ATP may stimulate degranulation of BMMCs and thereby enhanced pain. BMMCs injected into the OA knee joints stimulated expression of IL-1β, IL-6, TNF-α, CCL2, and MMP9 genes in the infrapatellar fat pads, and PAR2 antagonist suppressed the stimulatory effects of BMMCs. Our study suggests that intermittent pain frequently observed in OA knee joints may be due, at least partly, to mast cells through activation of PAR2 and action of ATP, and that intraarticular injection of BMMCs into the OA knee joints may provide a useful experimental system for investigating molecular mechanisms by which pain is induced in OA knee joints.
Collapse
|
90
|
Gui C, Parson J, Meyer GA. Harnessing adipose stem cell diversity in regenerative medicine. APL Bioeng 2021; 5:021501. [PMID: 33834153 PMCID: PMC8018797 DOI: 10.1063/5.0038101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/26/2021] [Indexed: 12/20/2022] Open
Abstract
Since the first isolation of mesenchymal stem cells from lipoaspirate in the early 2000s, adipose tissue has been a darling of regenerative medicine. It is abundant, easy to access, and contains high concentrations of stem cells (ADSCs) exhibiting multipotency, proregenerative paracrine signaling, and immunomodulation-a winning combination for stem cell-based therapeutics. While basic science, preclinical and clinical findings back up the translational potential of ADSCs, the vast majority of these used cells from a single location-subcutaneous abdominal fat. New data highlight incredible diversity in the adipose morphology and function in different anatomical locations or depots. Even in isolation, ADSCs retain a memory of this diversity, suggesting that the optimal adipose source material for ADSC isolation may be application specific. This review discusses our current understanding of the heterogeneity in the adipose organ, how that heterogeneity translates into depot-specific ADSC characteristics, and how atypical ADSC populations might be harnessed for regenerative medicine applications. While our understanding of the breadth of ADSC heterogeneity is still in its infancy, clear trends are emerging for application-specific sourcing to improve regenerative outcomes.
Collapse
Affiliation(s)
- Chang Gui
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63110, USA
| | - Jacob Parson
- Program in Physical Therapy, Washington University in St. Louis, St. Louis, Missouri 63110, USA
| | - Gretchen A. Meyer
- Author to whom correspondence should be addressed:. Tel.: (314) 286-1425. Fax: (314) 747-0674
| |
Collapse
|
91
|
Szwedowski D, Szczepanek J, Paczesny Ł, Zabrzyński J, Gagat M, Mobasheri A, Jeka S. The Effect of Platelet-Rich Plasma on the Intra-Articular Microenvironment in Knee Osteoarthritis. Int J Mol Sci 2021; 22:5492. [PMID: 34071037 PMCID: PMC8197096 DOI: 10.3390/ijms22115492] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Knee osteoarthritis (KOA) represents a clinical challenge due to poor potential for spontaneous healing of cartilage lesions. Several treatment options are available for KOA, including oral nonsteroidal anti-inflammatory drugs, physical therapy, braces, activity modification, and finally operative treatment. Intra-articular (IA) injections are usually used when the non-operative treatment is not effective, and when the surgery is not yet indicated. More and more studies suggesting that IA injections are as or even more efficient and safe than NSAIDs. Recently, research to improve intra-articular homeostasis has focused on biologic adjuncts, such as platelet-rich plasma (PRP). The catabolic and inflammatory intra-articular processes that exists in knee osteoarthritis (KOA) may be influenced by the administration of PRP and its derivatives. PRP can induce a regenerative response and lead to the improvement of metabolic functions of damaged structures. However, the positive effect on chondrogenesis and proliferation of mesenchymal stem cells (MSC) is still highly controversial. Recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, significant progress has been made in understanding the mechanism of PRP action. In this review, we will discuss mechanisms related to inflammation and chondrogenesis in cartilage repair and regenerative processes after PRP administration in in vitro and animal studies. Furthermore, we review clinical trials of PRP efficiency in changing the OA biomarkers in knee joint.
Collapse
Affiliation(s)
- Dawid Szwedowski
- Orthopedic Arthroscopic Surgery International (O.A.S.I.) Bioresearch Foundation, Gobbi N.P.O., 20133 Milan, Italy
- Department of Orthopaedics and Trauma Surgery, Provincial Polyclinical Hospital, 87100 Torun, Poland
| | - Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87100 Torun, Poland;
| | - Łukasz Paczesny
- Orvit Clinic, Citomed Healthcare Center, 87100 Torun, Poland; (Ł.P.); (J.Z.)
| | - Jan Zabrzyński
- Orvit Clinic, Citomed Healthcare Center, 87100 Torun, Poland; (Ł.P.); (J.Z.)
| | - Maciej Gagat
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85067 Bydgoszcz, Poland;
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, FI-90014 Oulu, Finland;
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania
- Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
- Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Sławomir Jeka
- Department and Clinic of Rheumatology and Connective Tissue Diseases, University Hospital No. 2, Collegium Medicum UMK, 85168 Bydgoszcz, Poland;
| |
Collapse
|
92
|
Miao C, Zhou W, Wang X, Fang J. The Research Progress of Exosomes in Osteoarthritis, With Particular Emphasis on the Mediating Roles of miRNAs and lncRNAs. Front Pharmacol 2021; 12:685623. [PMID: 34093208 PMCID: PMC8176107 DOI: 10.3389/fphar.2021.685623] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a kind of degenerative disease, which is caused by many factors such as aging, obesity, strain, trauma, congenital joint abnormalities, joint deformities. Exosomes are mainly derived from the invagination of intracellular lysosomes, which are released into the extracellular matrix after fusion of the outer membrane of multi vesicles with the cell membrane. Exosomes mediate intercellular communication and regulate the biological activity of receptor cells by carrying non-coding RNA, long noncoding RNAs (lncRNAs), microRNAs (miRNAs), proteins and lipids. Evidences show that exosomes are involved in the pathogenesis of OA. In view of the important roles of exosomes in OA, this paper systematically reviewed the roles of exosomes in the pathogenesis of OA, including the roles of exosomes in OA diagnosis, the regulatory mechanisms of exosomes in the pathogenesis, and the intervention roles of exosomes in the treatment of OA. Reviewing the roles of exosomes in OA will help to clarify the pathogenesis of OA and explore new diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Department of Pharmacy, School of Life and Health Sciences, Anhui University of Science and Technology, Fengyang, China.,Institute of Prevention and Treatment of Rheumatoid Arthritis of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Wanwan Zhou
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xiao Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China
| | - Jihong Fang
- Department of Nursing, Anhui Provincial Children's Hospital, Affiliated to Anhui Medical University, Hefei, China.,Department of Orthopedics, Anhui Provincial Children's Hospital, Affiliated to Anhui Medical University, Hefei, China
| |
Collapse
|
93
|
Huang GS, Peng YJ, Hsu YJ, Lee HS, Chang YC, Chiang SW, Hsu YC, Liu YC, Lin MH, Wang CY. Hypoperfusion of the infrapatellar fat pad and its relationship to MRI T2* relaxation time changes in a 5/6 nephrectomy model. Sci Rep 2021; 11:9924. [PMID: 33976243 PMCID: PMC8113578 DOI: 10.1038/s41598-021-89336-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/22/2021] [Indexed: 11/28/2022] Open
Abstract
The purpose of present study was to longitudinally investigate the alterations in infrapatellar fat pad (IPFP) vascularity in 5/6 nephrectomized rats by using dynamic contrast enhanced (DCE) MRI and IPFP degeneration by using MRI T2* relaxation time. Twelve male Sprague–Dawley rats were assigned to a control group and a 5/6 nephrectomy CKD group. The right knees of all rats were longitudinally scanned by 4.7 T MRI, and serial changes in the IPFP were assessed at 0, 8, 16, 30, and 44 weeks by DCE-MRI (parameters A, kel and kep) and MRI T2* mapping. After MRI measurements, knee specimens were obtained and evaluated histologically. The CKD group had IPFPs with lower blood volume A and lower permeability kep values from 16 weeks (p < 0.05), lower venous washout kel value from 30 weeks (p < 0.001), and significantly higher T2* values reflecting adipocyte degeneration beginning at 16 weeks (p < 0.05). The histopathological results confirmed the MRI findings. Hypoperfusion and adipocytes degeneration related to CKD were demonstrated in a rodent 5/6 nephrectomy model. DCE parameters and MRI T2* can serve as imaging biomarkers of fat pad degeneration during CKD progression.
Collapse
Affiliation(s)
- Guo-Shu Huang
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Jen Peng
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Herng-Sheng Lee
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yue-Cune Chang
- Department of Mathematics, Tamkang University, New Taipei, Taiwan
| | - Shih-Wei Chiang
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Chih Hsu
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ying-Chun Liu
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Huang Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chao-Ying Wang
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei, 11490, Taiwan.
| |
Collapse
|
94
|
Stocco E, Belluzzi E, Contran M, Boscolo-Berto R, Picardi E, Guidolin D, Fontanella CG, Olivotto E, Filardo G, Borile G, Romanato F, Ramonda R, Ruggieri P, Favero M, Porzionato A, De Caro R, Macchi V. Age-Dependent Remodeling in Infrapatellar Fat Pad Adipocytes and Extracellular Matrix: A Comparative Study. Front Med (Lausanne) 2021; 8:661403. [PMID: 34041253 PMCID: PMC8141643 DOI: 10.3389/fmed.2021.661403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/09/2021] [Indexed: 01/30/2023] Open
Abstract
The infrapatellar fat pad (IFP) is actively involved in knee osteoarthritis (OA). However, a proper description of which developmental modifications occur in the IFP along with age and in absence of joint pathological conditions, is required to adequately describe its actual contribution in OA pathophysiology. Here, two IFP sources were compared: (a) IFP from healthy young patients undergoing anterior-cruciate ligament (ACL) reconstruction for ACL rupture (n = 24); (b) IFP from elderly cadaver donors (n = 23). After histopathological score assignment to confirm the absence of inflammatory features (i.e., inflammatory infiltrate and increased vascularity), the adipocytes morphology was determined; moreover, extracellular matrix proteins were studied through histology and Second Harmonic Generation approach, to determine collagens content and orientation by Fast Fourier Transform and OrientationJ. The two groups were matched for body mass index. No inflammatory signs were observed, while higher area, perimeter, and equivalent diameter and volume were detected for the adipocytes in the elderly group. Collagen III displayed higher values in the young group and a lower total collagen deposition with aging was identified. However, collagen I/III ratio and the global architecture of the samples were not affected. A higher content in elastic fibers was observed around the adipocytes for the ACL-IFPs and in the septa cadaver donor-IFPs, respectively. Age affects the characteristics of the IFP tissue also in absence of a pathological condition. Variable mechanical stimulation, depending on age-related different mobility, could be speculated to exert a role in tissue remodeling.
Collapse
Affiliation(s)
- Elena Stocco
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| | - Elisa Belluzzi
- Orthopedic and Traumatologic Clinic, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
- Musculoskeletal Pathology and Oncology Laboratory, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Martina Contran
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padova, Italy
| | - Rafael Boscolo-Berto
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padova, Italy
| | - Edgardo Picardi
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padova, Italy
| | - Diego Guidolin
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padova, Italy
| | - Chiara Giulia Fontanella
- Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Eleonora Olivotto
- RAMSES Laboratory, Research, Innovation & Technology (RIT) Department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giuseppe Filardo
- Applied and Translational Research Center, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giulia Borile
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
- Department of Physics and Astronomy “G. Galilei,” University of Padova, Padova, Italy
- Institute of Pediatric Research Città della Speranza, Padova, Italy
| | - Filippo Romanato
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
- Department of Physics and Astronomy “G. Galilei,” University of Padova, Padova, Italy
- Institute of Pediatric Research Città della Speranza, Padova, Italy
| | - Roberta Ramonda
- Rheumatology Unit, Department of Medicine, University - Hospital of Padova, Padova, Italy
| | - Pietro Ruggieri
- Orthopedic and Traumatologic Clinic, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Marta Favero
- Rheumatology Unit, Department of Medicine, University - Hospital of Padova, Padova, Italy
- Internal Medicine 1, Ca' Foncello Hospital, ULSS2 Marca Trevigiana, Treviso, Italy
| | - Andrea Porzionato
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| | - Raffaele De Caro
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| | - Veronica Macchi
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| |
Collapse
|
95
|
Luna M, Guss JD, Vasquez-Bolanos LS, Alepuz AJ, Dornevil S, Strong J, Alabi D, Shi Q, Pannellini T, Otero M, Brito IL, van der Meulen MCH, Goldring SR, Hernandez CJ. Obesity and load-induced posttraumatic osteoarthritis in the absence of fracture or surgical trauma. J Orthop Res 2021; 39:1007-1016. [PMID: 32658313 PMCID: PMC7855296 DOI: 10.1002/jor.24799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 02/04/2023]
Abstract
Osteoarthritis is increasingly viewed as a heterogeneous disease with multiple phenotypic subgroups. Obesity enhances joint degeneration in mouse models of posttraumatic osteoarthritis (PTOA). Most models of PTOA involve damage to surrounding tissues caused by surgery/fracture; it is unclear if obesity enhances cartilage degeneration in the absence of surgery/fracture. We used a nonsurgical animal model of load-induced PTOA to determine the effect of obesity on cartilage degeneration 2 weeks after loading. Cartilage degeneration was caused by a single bout of cyclic tibial loading at either a high or moderate load magnitude in adult male mice with severe obesity (C57Bl6/J + high-fat diet), mild obesity (toll-like receptor 5 deficient mouse [TLR5KO]), or normal adiposity (C57Bl6/J mice + normal diet and TLR5KO mice in which obesity was prevented by manipulation of the gut microbiome). Two weeks after loading, cartilage degeneration occurred in limbs loaded at a high magnitude, as determined by OARSI scores (P < .001). However, the severity of cartilage damage did not differ among groups. Osteophyte width and synovitis of loaded limbs did not differ among groups. Furthermore, obesity did not enhance cartilage damage in limbs evaluated 6 weeks after loading. Constituents of the gut microbiota differed among groups. Our findings suggest that, in the absence of surgery/fracture, obesity may not influence cartilage loss after a single mechanical insult, suggesting that either damage to surrounding tissues or repeated mechanical insult is necessary for obesity to influence cartilage degeneration. These findings further illustrate heterogeneity in PTOA phenotypes and complex interactions between mechanical/metabolic factors in cartilage loss.
Collapse
Affiliation(s)
- Marysol Luna
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Jason D. Guss
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | - Adrian J. Alepuz
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Sophie Dornevil
- College of Human Ecology, Cornell University, Ithaca, NY, USA
| | - Jasmin Strong
- College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Denise Alabi
- College of Arts and Sciences, Cornell University, Ithaca, NY, USA
| | - Qiaojuan Shi
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | | | - Ilana L. Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Marjolein C. H. van der Meulen
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA,Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA,Hospital for Special Surgery, New York, NY, USA
| | | | - Christopher J. Hernandez
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA,Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA,Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
96
|
Zhu X, Lee CW, Xu H, Wang YF, Yung PSH, Jiang Y, Lee OK. Phenotypic alteration of macrophages during osteoarthritis: a systematic review. Arthritis Res Ther 2021; 23:110. [PMID: 33838669 PMCID: PMC8035781 DOI: 10.1186/s13075-021-02457-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Osteoarthritis (OA) has long been regarded as a disease of cartilage degeneration, whereas mounting evidence implies that low-grade inflammation contributes to OA. Among inflammatory cells involved, macrophages play a crucial role and are mediated by the local microenvironment to exhibit different phenotypes and polarization states. Therefore, we conducted a systematic review to uncover the phenotypic alterations of macrophages during OA and summarized the potential therapeutic interventions via modulating macrophages. METHODS A systematic review of multiple databases (PubMed, Web of Science, ScienceDirect, Medline) was performed up to February 29, 2020. Included articles were discussed and evaluated by two independent reviewers. Relevant information was analyzed with a standardized and well-designed template. RESULTS A total of 28 studies were included. Results were subcategorized into two sections depending on sources from human tissue/cell-based studies (12 studies) and animal experiments (16 studies). The overall observation indicated that M1 macrophages elevated in both synovium and circulation during OA development, along with lower numbers of M2 macrophages. The detailed alterations of macrophages in both synovium and circulation were listed and analyzed. Furthermore, interventions against OA via regulating macrophages in animal models were highlighted. CONCLUSION This study emphasized the importance of the phenotypic alterations of macrophages in OA development. The classical phenotypic subcategory of M1 and M2 macrophages was questionable due to controversial and conflicting results. Therefore, further efforts are needed to categorize macrophages in an exhaustive manner and to use advanced technologies to identify the individual roles of each subtype of macrophages in OA.
Collapse
Affiliation(s)
- Xiaobo Zhu
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chien-Wei Lee
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hongtao Xu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu-Fan Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Patrick S H Yung
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yangzi Jiang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Oscar K Lee
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China. .,Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China. .,Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China. .,Department of Orthopedics, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
97
|
Hoffa's fat pad thickness: a measurement method with sagittal MRI sequences. LA RADIOLOGIA MEDICA 2021; 126:886-893. [PMID: 33772711 PMCID: PMC8154775 DOI: 10.1007/s11547-021-01345-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/03/2021] [Indexed: 11/12/2022]
Abstract
Background Hoffa’s fat pad is a structure located within the fibrous joint capsule of the knee joint, but outside the synovial cavity. It plays an important biomechanical and metabolic role in knee joint, reducing the impact of forces generated by loading and producing cytokines. Changes in its size can induce modifications in the knee homeostasis. However, a great variability exists regarding its measurements. This work aims to evaluate the reliability of a measurement method of Hoffa’s fat pad dimensions through MRI. Methods 3T sagittal IW 2D TSE fat-suppressed MRI sequences, taken from the OAI (Osteoarthritis initiative) database, of 191 male and female patients, aged between 40 and 80 years, were analysed; a manual measurement of the thickness of Hoffa’s fat pad of each subject was then performed by two different readers. The interobserver reliability and intraobserver reliability of the measurements were described by coefficient of variation (CV), Pearson correlation and Bland–Altman plots. Results All statistical analyses have shown that not significant intra- or interobservers differences were evident (intraobserver CV % for the first observer was 2.17% for the right knee and 2.24% for the left knee, while for the second observer 2.31% for the right knee and 2.24% for the left knee; linear correlation was for the first observer r = 0.96 for the right knee and r = 0.96 for the left knee, while for the second observer r = 0.97 for the right knee and r = 0.96 for the left knee; in addition, the interobserver CV % was 1.25% for the right knee and 1.21% for the left knee and a high interobserver linear correlation was found: r = 0.97 for the right knee and r = 0.96 for the left knee). All results suggest that this manual measurement method of Hoffa’s fat pad thickness can be performed with satisfactory intra- and interobserver reliability. Conclusions Hoffa’s fat pad thickness can be measured, using sagittal MRI images, with this manual method that represents, for his high reliability, an effective means for the study of this anatomical structure.
Collapse
|
98
|
Level of Adiponectin, Leptin and Selected Matrix Metalloproteinases in Female Overweight Patients with Primary Gonarthrosis. J Clin Med 2021; 10:jcm10061263. [PMID: 33803785 PMCID: PMC8003316 DOI: 10.3390/jcm10061263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 12/04/2022] Open
Abstract
The aim of this study was to assess levels of adiponectin (ACRP-30) and leptin in serum and synovial fluid (SF) of overweight females with primary gonarthrosis (GOA) and to look for their correlations with clinical status and the level of biochemical OA biomarkers: matrix metalloproteinase (MMP) 1, MMP-9 and tissue inhibitor of metalloproteinase (TIMP-1). The studied group consisted of 39 overweight females undergoing primary total knee arthroplasty as a result of GOA. The stage of GOA was evaluated according to Knee Society Score (KSS), Ahlbäck and Kellgren–Lawrence (K-L) scores. Peripheral blood and SF were obtained. Levels of selected biomarkers were assessed using ELISA kits. The mean level of ACRP-30 in serum valued were 8393.80 ng/mL and in SF, 774.33 ng/mL, the mean concentration of leptin in serum was 32,040.74 pg/mL and in SF, 27,332.12 pg/mL. Levels of leptin in serum and SF correlated with body mass index (BMI), (p = 0.0005, and p = 0.0002, respectively). Levels of ACRP-30 in serum was correlated with clinical scores (Ahlbäck: p = 0.0214; K-L: p = 0.0146). ACRP-30 in SF correlated with ACRP-30 in serum (p = 0.0003), tended to negatively correlate with MMP-1 in serum (p = 0.0598) and positively correlate with pro-MMP-1 in SF (p = 0.0600). To conclude, this study confirms the correlations between concentrations of both, leptin and ACRP-30, comparing serum and SF. In overweight females, leptin levels increase with BMI and ACRP-30 serum level increase in more advanced GOA stages. Finally, leptin levels were correlated with TIMP-1 serum concentration, one of the biochemical markers of GOA.
Collapse
|
99
|
Eitner A, Culvenor AG, Wirth W, Schaible HG, Eckstein F. Impact of Diabetes Mellitus on Knee Osteoarthritis Pain and Physical and Mental Status: Data From the Osteoarthritis Initiative. Arthritis Care Res (Hoboken) 2021; 73:540-548. [PMID: 32105401 DOI: 10.1002/acr.24173] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 02/18/2020] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Diabetes mellitus (DM) appears to increase osteoarthritic knee pain, which may be related to greater adiposity and more advanced disease status often observed in individuals with osteoarthritis (OA) and DM. We aimed to assess whether OA knee pain and health status are worse in individuals with OA and DM, independent of these potential confounders. METHODS We included 202 OA participants with DM and 2,279 without DM from the Osteoarthritis Initiative. Knee pain was evaluated using the Knee Injury and Osteoarthritis Outcome Score (KOOS) and a numeric rating scale (NRS). Physical and mental status were assessed by the Medical Outcomes Study Short Form 12 (SF-12) questionnaire, physical component summary (PCS) score and mental component summary (MCS) score, and by the Center for Epidemiologic Studies Depression Scale (CES-D). Linear regression models assessed the influence of DM, adjusted for age, sex, body mass index (BMI), and radiographic severity. RESULTS OA participants with DM reported worse knee pain and greater physical and mental issues compared with participants without DM. Individuals with DM had worse KOOS pain (β = -4.72 [95% confidence interval (95% CI) -7.22, -2.23]) and worse NRS pain (β = 0.42 [95% CI 0.04, 0.80]) independent of BMI, OA severity, age, and sex. The negative influence of DM was also apparent for SF-12 PCS (β = -3.49 [95% CI -4.73, -2.25]), SF-12 MCS (β = -1.42 [95% CI -2.57, -0.26]), and CES-D (β = 1.08 [95% CI 0.08, 2.08]). CONCLUSION Individuals with knee OA experience on average higher pain intensity and a worse physical and mental health status if they have DM. Linear regression models show that DM is a risk factor for higher pain, in addition to and independent of greater BMI and radiographic OA severity.
Collapse
Affiliation(s)
- Annett Eitner
- University Hospital Jena and Friedrich Schiller University, Jena, Germany
| | - Adam G Culvenor
- Paracelsus Medical University Salzburg and Nuremberg, Salzburg, Austria, and La Trobe University, Bundoora, Victoria, Australia
| | - Wolfgang Wirth
- Chondrometrics GmbH, Ainring, Germany, and Paracelsus Medical University, Salzburg, Austria
| | | | - Felix Eckstein
- Chondrometrics GmbH, Ainring, Germany, and Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
100
|
Sohn R, Rösch G, Junker M, Meurer A, Zaucke F, Jenei-Lanzl Z. Adrenergic signalling in osteoarthritis. Cell Signal 2021; 82:109948. [PMID: 33571663 DOI: 10.1016/j.cellsig.2021.109948] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/14/2022]
Abstract
Adrenoceptors (ARs) mediate the effects of the sympathetic neurotransmitters norepinephrine (NE) and epinephrine (E) in the human body and play a central role in physiologic and pathologic processes. Therefore, ARs have long been recognized as targets for therapeutic agents, especially in the field of cardiovascular medicine. During the past decades, the contribution of the sympathetic nervous system (SNS) and particularly of its major peripheral catecholamine NE to the pathogenesis of osteoarthritis (OA) attracted growing interest. OA is the most common degenerative joint disorder worldwide and a disease of the whole joint. It is characterized by progressive degradation of articular cartilage, synovial inflammation, osteophyte formation, and subchondral bone sclerosis mostly resulting in chronic pain. The subchondral bone marrow, the periosteum, the synovium, the vascular meniscus and numerous tendons and ligaments are innervated by tyrosine hydroxylase-positive (TH+) sympathetic nerve fibers that release NE into the synovial fluid and cells of all abovementioned joint tissues express at least one out of nine AR subtypes. During the past decades, several in vitro studies explored the AR-mediated effects of NE on different cell types in the joint. So far, only a few studies used animal OA models to investigate the contribution of distinct AR subtypes to OA pathogenesis in vivo. This narrative review shortly summarizes the current background knowledge about ARs and their signalling pathways at first. In the second part, we focus on recent findings in the field of NE-induced AR-mediated signalling in different joint tissues during OA pathogenesis and at the end, we will delineate the potential of targeting the adrenergic signalling for OA prevention or treatment. We used the PubMed bibliographic database to search for keywords such as 'joint' or 'cartilage' or 'synovium' or 'bone' and 'osteoarthritis' and/or 'trauma' and 'sympathetic nerve fibers' and/or 'norepinephrine' and 'adrenergic receptors / adrenoceptors' as well as 'adrenergic therapy'.
Collapse
Affiliation(s)
- Rebecca Sohn
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt / Main, Germany
| | - Gundula Rösch
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt / Main, Germany
| | - Marius Junker
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt / Main, Germany
| | - Andrea Meurer
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt / Main, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt / Main, Germany
| | - Zsuzsa Jenei-Lanzl
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt / Main, Germany.
| |
Collapse
|