51
|
Nayak SP, Roy S. Immune phase transition under steroid treatment. Phys Rev E 2021; 103:062401. [PMID: 34271610 DOI: 10.1103/physreve.103.062401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/11/2021] [Indexed: 11/07/2022]
Abstract
The steroid hormone glucocorticoid (GC) is a well-known immunosuppressant that controls T-cell-mediated adaptive immune response. In this work, we have developed a minimal kinetic network model of T-cell regulation connecting relevant experimental and clinical studies to quantitatively understand the long-term effects of GC on pro-inflammatory T-cell (T_{pro}) and anti-inflammatory T-cell (T_{anti}) dynamics. Due to the antagonistic relation between these two types of T cells, their long-term steady-state population ratio helps us to characterize three classified immune regulations: (i) weak ([T_{pro}]>[T_{anti}]), (ii) strong ([T_{pro}]<[T_{anti}]), and (iii) moderate ([T_{pro}]∼[T_{anti}]), holding the characteristic bistability. In addition to the differences in their long-term steady-state outcome, each immune regulation shows distinct dynamical phases. In the presteady state, a characteristic intermediate stationary phase is observed to develop only in the moderate regulation regime. In the medicinal field, the resting time in this stationary phase is distinguished as a clinical latent period. GC dose-dependent steady-state analysis shows an optimal level of GC to drive a phase transition from the weak or autoimmune prone to the moderate regulation regime. Subsequently, the presteady state clinical latent period tends to diverge near that optimal GC level where [T_{pro}]:[T_{anti}] is highly balanced. The GC-optimized elongated stationary phase explains the rationale behind the requirement of long-term immune diagnostics, especially when long-term GC-based chemotherapeutics and other immunosuppressive drugs are administrated. Moreover, our study reveals GC sensitivity of clinical latent period, which might serve as an early warning signal in diagnosing different immune phases and determining immune phasewise steroid treatment.
Collapse
Affiliation(s)
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Campus Road, Mohanpur, West Bengal 741246, India
| |
Collapse
|
52
|
The dynamicity of acute ozone-induced systemic leukocyte trafficking and adrenal-derived stress hormones. Toxicology 2021; 458:152823. [PMID: 34051339 DOI: 10.1016/j.tox.2021.152823] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/06/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022]
Abstract
Ozone exposure induces neuroendocrine stress response, which causes lymphopenia. It was hypothesized that ozone-induced increases in stress hormones will temporally follow changes in circulating granulocytes, monocytes- and lymphocyte subpopulations. The goal of this study was to chronicle the changes in circulating stress hormones, cytokines, and leukocyte trafficking during 4 h exposure to ozone. Male Wistar Kyoto rats were exposed to air or ozone (0.4 or 0.8 ppm) for 0.5, 1, 2, or 4 h. After each time point, circulating stress hormones, cytokines, and lung gene expression were assessed along with live and apoptotic granulocytes, monocytes (classical and non-classical), and lymphocytes (B, Th, and Tc) in blood, thymus, and spleen using flow cytometry. Circulating stress hormones began to increase at 1 h of ozone exposure. Lung expression of inflammatory cytokines (Cxcl2, Il6, and Hmox1) and glucocorticoid-responsive genes (Nr3c1, Fkbp5 and Tsc22d3) increased in both a time- and ozone concentration-dependent manner. Circulating granulocytes increased at 0.5 h of ozone exposure but tended to decrease at 2 and 4 h, suggesting a rapid egress and then margination to the lung. Classical monocytes decreased over 4 h of exposure periods (∼80 % at 0.8 ppm). B and Tc lymphocytes significantly decreased after ozone exposure at 2 and 4 h. Despite dynamic shifts in circulating immune cell populations, few differences were measured in serum cytokines. Ozone neither increased apoptotic cells nor altered thymus and spleen lymphocytes. The data show that ozone-induced increases in adrenal-derived stress hormones precede the dynamic migration of circulating immune cells, likely to the lung to mediate inflammation.
Collapse
|
53
|
González-Ortiz A, Galindo-Hernández O, Hernández-Acevedo GN, Hurtado-Ureta G, García-González V. Impact of cholesterol-pathways on breast cancer development, a metabolic landscape. J Cancer 2021; 12:4307-4321. [PMID: 34093831 PMCID: PMC8176427 DOI: 10.7150/jca.54637] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
ApoB-lipoproteins and their components modulate intracellular metabolism and have been associated with the development of neoplastic phenomena, such as proliferation, anchorage-independent growth, epithelial-mesenchymal transition, and cancer invasion. In cancer cells, the modulation of targets that regulate cholesterol metabolism, such as synthesis de novo, endocytosis, and oxidation, are contributing factors to cancer development. While mechanisms associated with sterol regulatory element-binding protein 2 (SREBP-2)/mevalonate, the low-density lipoprotein receptor (LDL-R) and liver X receptor (LXR) have been linked with tumor growth; metabolites derived from cholesterol-oxidation, such as oxysterols and epoxy-cholesterols, also have been described as tumor processes-inducers. From this notion, we perform an analysis of the role of lipoproteins, their association with intracellular cholesterol metabolism, and the impact of these conditions on breast cancer development, mechanisms that can be shared during atherogenesis promoted mainly by LDL. Pathways connecting plasma dyslipidemias in conjunction with the effect of cholesterol-derived metabolites on intracellular mechanisms and cellular plasticity phenomena could provide new approaches to elucidate the triggering factors of carcinogenesis, conditions that could be considered in the development of new therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | - Victor García-González
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, 21000 Mexicali, México
| |
Collapse
|
54
|
Xie Y, Xie J, Meijer AH, Schaaf MJM. Glucocorticoid-Induced Exacerbation of Mycobacterial Infection Is Associated With a Reduced Phagocytic Capacity of Macrophages. Front Immunol 2021; 12:618569. [PMID: 34046029 PMCID: PMC8148013 DOI: 10.3389/fimmu.2021.618569] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 04/13/2021] [Indexed: 01/20/2023] Open
Abstract
Glucocorticoids are effective drugs for treating immune-related diseases, but prolonged therapy is associated with an increased risk of various infectious diseases, including tuberculosis. In this study, we have used a larval zebrafish model for tuberculosis, based on Mycobacterium marinum (Mm) infection, to study the effect of glucocorticoids. Our results show that the synthetic glucocorticoid beclomethasone increases the bacterial burden and the dissemination of a systemic Mm infection. The exacerbated Mm infection was associated with a decreased phagocytic activity of macrophages, higher percentages of extracellular bacteria, and a reduced rate of infected cell death, whereas the bactericidal capacity of the macrophages was not affected. The inhibited phagocytic capacity of macrophages was associated with suppression of the transcription of genes involved in phagocytosis in these cells. The decreased bacterial phagocytosis by macrophages was not specific for Mm, since it was also observed upon infection with Salmonella Typhimurium. In conclusion, our results show that glucocorticoids inhibit the phagocytic activity of macrophages, which may increase the severity of bacterial infections like tuberculosis.
Collapse
Affiliation(s)
- Yufei Xie
- Institute of Biology, Leiden University, Leiden, Netherlands
| | - Jiajun Xie
- Institute of Biology, Leiden University, Leiden, Netherlands
| | | | | |
Collapse
|
55
|
Saggam A, Limgaokar K, Borse S, Chavan-Gautam P, Dixit S, Tillu G, Patwardhan B. Withania somnifera (L.) Dunal: Opportunity for Clinical Repurposing in COVID-19 Management. Front Pharmacol 2021; 12:623795. [PMID: 34012390 PMCID: PMC8126694 DOI: 10.3389/fphar.2021.623795] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
As the COVID-19 pandemic is progressing, the therapeutic gaps in conventional management have highlighted the need for the integration of traditional knowledge systems with modern medicine. Ayurvedic medicines, especially Ashwagandha (Withania somnifera (L.) Dunal, WS), may be beneficial in the management of COVID-19. WS is a widely prescribed Ayurvedic botanical known as an immunomodulatory, antiviral, anti-inflammatory, and adaptogenic agent. The chemical profile and pharmacological activities of WS have been extensively reported. Several clinical studies have reported its safety for use in humans. This review presents a research synthesis of in silico, in vitro, in vivo, and clinical studies on Withania somnifera (L.) Dunal (WS) and discusses its potential for prophylaxis and management of COVID-19. We have collated the data from studies on WS that focused on viral infections (HIV, HSV, H1N1 influenza, etc.) and noncommunicable diseases (hypertension, diabetes, cancer, etc.). The experimental literature indicates that WS has the potential for 1) maintaining immune homeostasis, 2) regulating inflammation, 3) suppressing pro-inflammatory cytokines, 4) organ protection (nervous system, heart, lung, liver, and kidney), and 5) anti-stress, antihypertensive, and antidiabetic activities. Using these trends, the review presents a triangulation of Ayurveda wisdom, pharmacological properties, and COVID-19 pathophysiology ranging from viral entry to end-stage acute respiratory distress syndrome (ARDS). The review proposes WS as a potential therapeutic adjuvant for various stages of COVID-19 management. WS may also have beneficial effects on comorbidities associated with the COVID-19. However, systematic studies are needed to realize the potential of WS for improving clinical outcome of patients with COVID-19.
Collapse
Affiliation(s)
- Akash Saggam
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Kirti Limgaokar
- Division of Biochemistry, Department of Chemistry, Fergusson College (Autonomous), Pune, India
| | - Swapnil Borse
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Preeti Chavan-Gautam
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | | | - Girish Tillu
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Bhushan Patwardhan
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
56
|
Forecasting early onset diminished ovarian reserve for young reproductive age women. J Assist Reprod Genet 2021; 38:1853-1860. [PMID: 33786734 DOI: 10.1007/s10815-021-02155-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/14/2021] [Indexed: 10/21/2022] Open
Abstract
PURPOSE To investigate the biological networks associated with DOR in young women and the subsequent molecular impact on preimplantation embryos. METHODS Whole peripheral blood was collected from patients: young women presenting with diminished ovarian reserve (DOR) and age-matched young women with normal ovarian reserve. Maternal exome sequencing was performed on the NovaSEQ 6000 and sequencing validation was completed using Taqman® SNP Genotyping Assays. Blastocyst global methylome and transcriptome sequencing were also analyzed. RESULTS Exome sequencing revealed 730 significant DNA variants observed exclusively in the young DOR patients. Bioinformatic analysis revealed a significant impact to the Glucocorticoid receptor (GR) signaling pathway and each young DOR female had an average of 6.2 deleterious DNA variants within this pathway. Additional stratification based on patient age resulted in a cut-off at 31 years for young DOR discrimination. Embryonic global methylome sequencing resulted in only a very small number of total CpG sites with methylation alterations (1,775; 0.015% of total) in the DOR group. Additionally, there was no co-localization between these limited number of altered CpG sites and significant variants, genes, or pathways. RNA sequencing also resulted in no biologically significant transcription changes between DOR blastocysts and controls. CONCLUSION GR signaling DNA variants were observed in women with early-onset DOR potentially compromising oocyte production and quality. However, no significant downstream effects on biological processes appear to impact the resulting blastocyst. The ability to forecast premature DOR for young women may allow for earlier identification and clinical intervention for this patient population.
Collapse
|
57
|
Chang WT, Hong MY, Chen CL, Hwang CY, Tsai CC, Chuang CC. Mutant glucocorticoid receptor binding elements on the interleukin-6 promoter regulate dexamethasone effects. BMC Immunol 2021; 22:24. [PMID: 33771121 PMCID: PMC7995394 DOI: 10.1186/s12865-021-00413-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/14/2021] [Indexed: 12/15/2022] Open
Abstract
Background Glucocorticoids (GCs) have been extensively used as essential modulators in clinical infectious and inflammatory diseases. The GC receptor (GR) is a transcription factor belonging to the nuclear receptor family that regulates anti-inflammatory processes and releases pro-inflammatory cytokines, such as interleukin (IL)-6. Results Five putative GR binding sites and other transcriptional factor binding sites were identified on theIL-6 promoter, and dexamethasone (DEX) was noted to reduce the lipopolysaccharide (LPS)-induced IL-6 production. Among mutant transcriptional factor binding sites, nuclear factor-kappa B (NF-κB), activator protein (AP)-1, and specificity protein (Sp)1–2 sites reduced basal and LPS-induced IL-6 promoter activities through various responses. The second GR binding site (GR2) was noted to play a crucial role in both basal and inducible promoter activities in LPS-induced inflammation. Conclusions We concluded that selective GR2 modulator might exert agonistic and antagonistic effects and could activate crucial signaling pathways during the LPS-stimulated inflammatory process. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-021-00413-z.
Collapse
Affiliation(s)
- Wen-Teng Chang
- Department of Biological Science and Technology, Chung Hwa University of Medical Technology, Tainan, 701, Taiwan
| | - Ming-Yuan Hong
- Department of Emergency Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Liang Chen
- Department of Physical Therapy, I-Shou University, Kaohsiung, Taiwan
| | - Chi-Yuan Hwang
- Department of Emergency Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Chieh Tsai
- Department of Nursing, Chung Hwa University of Medical Technology, Tainan, 701, Taiwan
| | - Chia-Chang Chuang
- Department of Emergency Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
58
|
Ravisankar S, Ting AY, Murphy MJ, Redmayne N, Wang D, McArthur CA, Takahashi DL, Kievit P, Chavez SL, Hennebold JD. Short-term Western-style diet negatively impacts reproductive outcomes in primates. JCI Insight 2021; 6:138312. [PMID: 33616080 PMCID: PMC7934943 DOI: 10.1172/jci.insight.138312] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/13/2021] [Indexed: 12/19/2022] Open
Abstract
A maternal Western-style diet (WSD) is associated with poor reproductive outcomes, but whether this is from the diet itself or underlying metabolic dysfunction is unknown. Here, we performed a longitudinal study using regularly cycling female rhesus macaques (n = 10) that underwent 2 consecutive in vitro fertilization (IVF) cycles, one while consuming a low-fat diet and another 6–8 months after consuming a high-fat WSD. Metabolic data were collected from the females prior to each IVF cycle. Follicular fluid (FF) and oocytes were assessed for cytokine/steroid levels and IVF potential, respectively. Although transition to a WSD led to weight gain and increased body fat, no difference in insulin levels was observed. A significant decrease in IL-1RA concentration and the ratio of cortisol/cortisone was detected in FF after WSD intake. Despite an increased probability of isolating mature oocytes, a 44% reduction in blastocyst number was observed with WSD consumption, and time-lapse imaging revealed delayed mitotic timing and multipolar divisions. RNA sequencing of blastocysts demonstrated dysregulation of genes involved in RNA binding, protein channel activity, mitochondrial function and pluripotency versus cell differentiation after WSD consumption. Thus, short-term WSD consumption promotes a proinflammatory intrafollicular microenvironment that is associated with impaired preimplantation development in the absence of large-scale metabolic changes.
Collapse
Affiliation(s)
- Sweta Ravisankar
- Department of Cell, Developmental & Cancer Biology, Graduate Program in Molecular & Cellular Biosciences, Oregon Health & Science University School of Medicine, Portland, Oregon, USA.,Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Alison Y Ting
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA.,21st Century Medicine Inc., Fontana, California, USA
| | - Melinda J Murphy
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Nash Redmayne
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Dorothy Wang
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Carrie A McArthur
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Diana L Takahashi
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Shawn L Chavez
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA.,Department of Molecular & Medical Genetics, Oregon Health & Science University School of Medicine, Portland, Oregon, USA.,Department of Obstetrics & Gynecology, Oregon Health & Science University School of Medicine, Portland, Oregon, USA
| | - Jon D Hennebold
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA.,Department of Obstetrics & Gynecology, Oregon Health & Science University School of Medicine, Portland, Oregon, USA
| |
Collapse
|
59
|
Récher C. Clinical Implications of Inflammation in Acute Myeloid Leukemia. Front Oncol 2021; 11:623952. [PMID: 33692956 PMCID: PMC7937902 DOI: 10.3389/fonc.2021.623952] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Recent advances in the description of the tumor microenvironment of acute myeloid leukemia, including the comprehensive analysis of the leukemic stem cell niche and clonal evolution, indicate that inflammation may play a major role in many aspects of acute myeloid leukemia (AML) such as disease progression, chemoresistance, and myelosuppression. Studies on the mechanisms of resistance to chemotherapy or tyrosine kinase inhibitors along with high-throughput drug screening have underpinned the potential role of glucocorticoids in this disease classically described as steroid-resistant in contrast to acute lymphoblastic leukemia. Moreover, some mutated oncogenes such as RUNX1, NPM1, or SRSF2 transcriptionally modulate cell state in a manner that primes leukemic cells for glucocorticoid sensitivity. In clinical practice, inflammatory markers such as serum ferritin or IL-6 have a strong prognostic impact and may directly affect disease progression, whereas interesting preliminary data suggested that dexamethasone may improve the outcome for AML patients with a high white blood cell count, which paves the way to develop prospective clinical trials that evaluate the role of glucocorticoids in AML.
Collapse
Affiliation(s)
- Christian Récher
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| |
Collapse
|
60
|
Hachemi Y, Rapp AE, Lee S, Dorn AK, Krüger BT, Kaiser K, Ignatius A, Tuckermann J. Intact Glucocorticoid Receptor Dimerization Is Deleterious in Trauma-Induced Impaired Fracture Healing. Front Immunol 2021; 11:628287. [PMID: 33679723 PMCID: PMC7927427 DOI: 10.3389/fimmu.2020.628287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/29/2020] [Indexed: 11/13/2022] Open
Abstract
Following severe trauma, fracture healing is impaired because of overwhelming systemic and local inflammation. Glucocorticoids (GCs), acting via the glucocorticoid receptor (GR), influence fracture healing by modulating the trauma-induced immune response. GR dimerization-dependent gene regulation is essential for the anti-inflammatory effects of GCs. Therefore, we investigated in a murine trauma model of combined femur fracture and thoracic trauma, whether effective GR dimerization influences the pathomechanisms of trauma-induced compromised fracture healing. To this end, we used mice with decreased GR dimerization ability (GRdim). The healing process was analyzed by cytokine/chemokine multiplex analysis, flow cytometry, gene-expression analysis, histomorphometry, micro-computed tomography, and biomechanical testing. GRdim mice did not display a systemic or local hyper-inflammation upon combined fracture and thorax trauma. Strikingly, we discovered that GRdim mice were protected from fracture healing impairment induced by the additional thorax trauma. Collectively and in contrast to previous studies describing the beneficial effects of intact GR dimerization in inflammatory models, we report here an adverse role of intact GR dimerization in trauma-induced compromised fracture healing.
Collapse
Affiliation(s)
- Yasmine Hachemi
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Anna E Rapp
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Sooyeon Lee
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Ann-Kristin Dorn
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Benjamin T Krüger
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Kathrin Kaiser
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| |
Collapse
|
61
|
Dhaibar HA, Cruz-Topete D. Predisposition of Women to Cardiovascular Diseases: A Side-Effect of Increased Glucocorticoid Signaling During the COVID-19 Pandemic? Front Glob Womens Health 2021; 2:606833. [PMID: 34816180 PMCID: PMC8593983 DOI: 10.3389/fgwh.2021.606833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/25/2021] [Indexed: 01/22/2023] Open
Abstract
The novel coronavirus disease 2019 (COVID-19) pandemic has created a significant health crisis worldwide. To mitigate this disease's spread, "social distancing" and "shelter in place" have been implemented. While these actions have been critical to controlling the pandemic, they have short- and long-term mental health consequences due to increased stress. There is a strong association between mental stress and cardiovascular disease (CVD). Young women (pre-menopausal) are at high risk of developing CV events in response to mental stress compared to age-matched men. The mechanisms underlying women's increased reactivity and response to stress are mostly unknown. The present review summarizes the known physiological consequences of mental stress in women's CV health and the latest molecular findings of the actions of the primary stress hormones, glucocorticoids, on the CV system. The current data suggest a clear link between psychological stress and heart disease, and women have an increased sensitivity to the harmful effects of stress hormone signaling imbalances. Therefore, it is expected that with the given unprecedented levels of stress associated with the COVID-19 pandemic, women's CV health will be significantly compromised. It is critical to widen our understanding of the direct contribution of mental stress to CVD risk in women and to identify biochemical markers with predictive value for CVD in female patients with/without cardiovascular conditions who have experienced significant mental stress during the current pandemic.
Collapse
Affiliation(s)
| | - Diana Cruz-Topete
- Department of Molecular and Cellular Physiology, Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| |
Collapse
|
62
|
Xie Y, Meijer AH, Schaaf MJM. Modeling Inflammation in Zebrafish for the Development of Anti-inflammatory Drugs. Front Cell Dev Biol 2021; 8:620984. [PMID: 33520995 PMCID: PMC7843790 DOI: 10.3389/fcell.2020.620984] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
Dysregulation of the inflammatory response in humans can lead to various inflammatory diseases, like asthma and rheumatoid arthritis. The innate branch of the immune system, including macrophage and neutrophil functions, plays a critical role in all inflammatory diseases. This part of the immune system is well-conserved between humans and the zebrafish, which has emerged as a powerful animal model for inflammation, because it offers the possibility to image and study inflammatory responses in vivo at the early life stages. This review focuses on different inflammation models established in zebrafish, and how they are being used for the development of novel anti-inflammatory drugs. The most commonly used model is the tail fin amputation model, in which part of the tail fin of a zebrafish larva is clipped. This model has been used to study fundamental aspects of the inflammatory response, like the role of specific signaling pathways, the migration of leukocytes, and the interaction between different immune cells, and has also been used to screen libraries of natural compounds, approved drugs, and well-characterized pathway inhibitors. In other models the inflammation is induced by chemical treatment, such as lipopolysaccharide (LPS), leukotriene B4 (LTB4), and copper, and some chemical-induced models, such as treatment with trinitrobenzene sulfonic acid (TNBS), specifically model inflammation in the gastro-intestinal tract. Two mutant zebrafish lines, carrying a mutation in the hepatocyte growth factor activator inhibitor 1a gene (hai1a) and the cdp-diacylglycerolinositol 3-phosphatidyltransferase (cdipt) gene, show an inflammatory phenotype, and they provide interesting model systems for studying inflammation. These zebrafish inflammation models are often used to study the anti-inflammatory effects of glucocorticoids, to increase our understanding of the mechanism of action of this class of drugs and to develop novel glucocorticoid drugs. In this review, an overview is provided of the available inflammation models in zebrafish, and how they are used to unravel molecular mechanisms underlying the inflammatory response and to screen for novel anti-inflammatory drugs.
Collapse
|
63
|
Nie X, Qian L, Sun R, Huang B, Dong X, Xiao Q, Zhang Q, Lu T, Yue L, Chen S, Li X, Sun Y, Li L, Xu L, Li Y, Yang M, Xue Z, Liang S, Ding X, Yuan C, Peng L, Liu W, Yi X, Lyu M, Xiao G, Xu X, Ge W, He J, Fan J, Wu J, Luo M, Chang X, Pan H, Cai X, Zhou J, Yu J, Gao H, Xie M, Wang S, Ruan G, Chen H, Su H, Mei H, Luo D, Zhao D, Xu F, Li Y, Zhu Y, Xia J, Hu Y, Guo T. Multi-organ proteomic landscape of COVID-19 autopsies. Cell 2021; 184:775-791.e14. [PMID: 33503446 PMCID: PMC7794601 DOI: 10.1016/j.cell.2021.01.004] [Citation(s) in RCA: 295] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/22/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023]
Abstract
The molecular pathology of multi-organ injuries in COVID-19 patients remains unclear, preventing effective therapeutics development. Here, we report a proteomic analysis of 144 autopsy samples from seven organs in 19 COVID-19 patients. We quantified 11,394 proteins in these samples, in which 5,336 were perturbed in the COVID-19 patients compared to controls. Our data showed that cathepsin L1, rather than ACE2, was significantly upregulated in the lung from the COVID-19 patients. Systemic hyperinflammation and dysregulation of glucose and fatty acid metabolism were detected in multiple organs. We also observed dysregulation of key factors involved in hypoxia, angiogenesis, blood coagulation, and fibrosis in multiple organs from the COVID-19 patients. Evidence for testicular injuries includes reduced Leydig cells, suppressed cholesterol biosynthesis, and sperm mobility. In summary, this study depicts a multi-organ proteomic landscape of COVID-19 autopsies that furthers our understanding of the biological basis of COVID-19 pathology.
Collapse
Affiliation(s)
- Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liujia Qian
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Rui Sun
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Bo Huang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaochuan Dong
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qi Xiao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Qiushi Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China; Westlake Omics (Hangzhou) Biotechnology Co., Ltd., Hangzhou 310024, China
| | - Tian Lu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Liang Yue
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Shuo Chen
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiang Li
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yaoting Sun
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Lu Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Luang Xu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Yan Li
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ming Yang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhangzhi Xue
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Shuang Liang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Xuan Ding
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Chunhui Yuan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Li Peng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Liu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Xiao Yi
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Mengge Lyu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Guixiang Xiao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xia Xu
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weigang Ge
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China; Westlake Omics (Hangzhou) Biotechnology Co., Ltd., Hangzhou 310024, China
| | - Jiale He
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Jun Fan
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junhua Wu
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Meng Luo
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China; Department of Anatomy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Xiaona Chang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huaxiong Pan
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xue Cai
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Junjie Zhou
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Yu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Huanhuan Gao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Mingxing Xie
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sihua Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guan Ruan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Hao Chen
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China; Westlake Omics (Hangzhou) Biotechnology Co., Ltd., Hangzhou 310024, China
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Danju Luo
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dashi Zhao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fei Xu
- Department of Anatomy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Yan Li
- Department of Anatomy and Physiology, College of Basic Medical Sciences, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yi Zhu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China.
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Tiannan Guo
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China.
| |
Collapse
|
64
|
Moreira M, Schrama D, Farinha AP, Cerqueira M, Raposo de Magalhães C, Carrilho R, Rodrigues P. Fish Pathology Research and Diagnosis in Aquaculture of Farmed Fish; a Proteomics Perspective. Animals (Basel) 2021; 11:E125. [PMID: 33430015 PMCID: PMC7827161 DOI: 10.3390/ani11010125] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/22/2022] Open
Abstract
One of the main constraints in aquaculture production is farmed fish vulnerability to diseases due to husbandry practices or external factors like pollution, climate changes, or even the alterations in the dynamic of product transactions in this industry. It is though important to better understand and characterize the intervenients in the process of a disease outbreak as these lead to huge economical losses in aquaculture industries. High-throughput technologies like proteomics can be an important characterization tool especially in pathogen identification and the virulence mechanisms related to host-pathogen interactions on disease research and diagnostics that will help to control, prevent, and treat diseases in farmed fish. Proteomics important role is also maximized by its holistic approach to understanding pathogenesis processes and fish responses to external factors like stress or temperature making it one of the most promising tools for fish pathology research.
Collapse
Affiliation(s)
- Márcio Moreira
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- IPMA—Portuguese Institute for the Sea and Atmosphere, EPPO—Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Denise Schrama
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ana Paula Farinha
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Marco Cerqueira
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
| | - Cláudia Raposo de Magalhães
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Raquel Carrilho
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Pedro Rodrigues
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
65
|
Grabowski MM, Sankey EW, Ryan KJ, Chongsathidkiet P, Lorrey SJ, Wilkinson DS, Fecci PE. Immune suppression in gliomas. J Neurooncol 2021; 151:3-12. [PMID: 32542437 PMCID: PMC7843555 DOI: 10.1007/s11060-020-03483-y] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The overall survival in patients with gliomas has not significantly increased in the modern era, despite advances such as immunotherapy. This is in part due to their notorious ability to suppress local and systemic immune responses, severely restricting treatment efficacy. METHODS We have reviewed the preclinical and clinical evidence for immunosuppression seen throughout the disease process in gliomas. This review aims to discuss the various ways that brain tumors, and gliomas in particular, co-opt the body's immune system to evade detection and ensure tumor survival and proliferation. RESULTS A multitude of mechanisms are discussed by which neoplastic cells evade detection and destruction by the immune system. These include tumor-induced T-cell and NK cell dysfunction, regulatory T-cell and myeloid-derived suppressor cell expansion, M2 phenotypic transformation in glioma-associated macrophages/microglia, upregulation of immunosuppressive glioma cell surface factors and cytokines, tumor microenvironment hypoxia, and iatrogenic sequelae of immunosuppressive treatments. CONCLUSIONS Gliomas create a profoundly immunosuppressive environment, both locally within the tumor and systemically. Future research should aim to address these immunosuppressive mechanisms in the effort to generate treatment options with meaningful survival benefits for this patient population.
Collapse
Affiliation(s)
- Matthew M Grabowski
- Duke Brain Tumor Immunotherapy Program, Duke University Medical Center, 303 Research Drive, 220 Sands Bldg, Durham, NC, 27710, USA
| | - Eric W Sankey
- Duke Brain Tumor Immunotherapy Program, Duke University Medical Center, 303 Research Drive, 220 Sands Bldg, Durham, NC, 27710, USA
| | - Katherine J Ryan
- Duke Brain Tumor Immunotherapy Program, Duke University Medical Center, 303 Research Drive, 220 Sands Bldg, Durham, NC, 27710, USA
| | - Pakawat Chongsathidkiet
- Duke Brain Tumor Immunotherapy Program, Duke University Medical Center, 303 Research Drive, 220 Sands Bldg, Durham, NC, 27710, USA
| | - Selena J Lorrey
- Duke Brain Tumor Immunotherapy Program, Duke University Medical Center, 303 Research Drive, 220 Sands Bldg, Durham, NC, 27710, USA
| | - Daniel S Wilkinson
- Duke Brain Tumor Immunotherapy Program, Duke University Medical Center, 303 Research Drive, 220 Sands Bldg, Durham, NC, 27710, USA
| | - Peter E Fecci
- Duke Brain Tumor Immunotherapy Program, Duke University Medical Center, 303 Research Drive, 220 Sands Bldg, Durham, NC, 27710, USA.
| |
Collapse
|
66
|
Morris G, Bortolasci CC, Puri BK, Olive L, Marx W, O'Neil A, Athan E, Carvalho A, Maes M, Walder K, Berk M. Preventing the development of severe COVID-19 by modifying immunothrombosis. Life Sci 2021; 264:118617. [PMID: 33096114 PMCID: PMC7574725 DOI: 10.1016/j.lfs.2020.118617] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/01/2020] [Accepted: 10/13/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND COVID-19-associated acute respiratory distress syndrome (ARDS) is associated with significant morbidity and high levels of mortality. This paper describes the processes involved in the pathophysiology of COVID-19 from the initial infection and subsequent destruction of type II alveolar epithelial cells by SARS-CoV-2 and culminating in the development of ARDS. MAIN BODY The activation of alveolar cells and alveolar macrophages leads to the release of large quantities of proinflammatory cytokines and chemokines and their translocation into the pulmonary vasculature. The presence of these inflammatory mediators in the vascular compartment leads to the activation of vascular endothelial cells platelets and neutrophils and the subsequent formation of platelet neutrophil complexes. These complexes in concert with activated endothelial cells interact to create a state of immunothrombosis. The consequence of immunothrombosis include hypercoagulation, accelerating inflammation, fibrin deposition, migration of neutrophil extracellular traps (NETs) producing neutrophils into the alveolar apace, activation of the NLRP3 inflammazome, increased alveolar macrophage destruction and massive tissue damage by pyroptosis and necroptosis Therapeutic combinations aimed at ameliorating immunothrombosis and preventing the development of severe COVID-19 are discussed in detail.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia
| | | | - Lisa Olive
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; School of Psychology, Deakin University, Geelong, Australia
| | - Wolfgang Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Melbourne School of Population and Global Health, Melbourne, Australia
| | - Eugene Athan
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Barwon Health, Geelong, Australia
| | - Andre Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, University of Toronto, Toronto, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
67
|
Zhang J, Liang Y, Ren L, Zhang T. In vitro Anti-Inflammatory Potency of Sanguinarine and Chelerythrine via Interaction with Glucocorticoid Receptor. EFOOD 2021. [DOI: 10.2991/efood.k.210118.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
68
|
Preuss JM, Burret U, Vettorazzi S. Multiplex Fluorescent Bead-Based Immunoassay for the Detection of Cytokines, Chemokines, and Growth Factors. Methods Mol Biol 2021; 2261:247-262. [PMID: 33420994 DOI: 10.1007/978-1-0716-1186-9_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The comprehensive analysis of serum cytokine levels can be challenging due to low sample volumes and time consuming when using single-target methods like enzyme-linked immunosorbent assay (ELISA). Bead-based detection systems allow the simultaneous detection of multiple analytes using minimal sample volumes. Here we describe the use of a multiplex cytokine, chemokine, and growth factor assay for mouse cytokines in a 96-well format. This assay is based on antibody-coupled fluorescent magnetic beads combined with biotinylated secondary detection antibody followed by fluorescent-tagged streptavidin in a sandwich-like composition. Final assay readout provides the concentrations of 23 different cytokines, chemokines, and growth factors in up to 76 samples.
Collapse
Affiliation(s)
- Jonathan M Preuss
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany.
| | - Ute Burret
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, Ulm, Germany.
| |
Collapse
|
69
|
Lakatos P, Szili B, Bakos B, Takacs I, Putz Z, Istenes I. Thyroid Hormones, Glucocorticoids, Insulin, and Bone. Handb Exp Pharmacol 2020; 262:93-120. [PMID: 32036458 DOI: 10.1007/164_2019_314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Several endocrine systems have important effects on bone tissue. Thyroid hormones are essential for normal growth and development. Excess of these hormones will result in clinically significant changes that may require intervention. Glucocorticoids also have a marked effect on bone metabolism by several pathways. Their endogenous or exogenous excess will induce pathological processes that might elevate the risk of fractures. Insulin and the carbohydrate metabolism elicit a physiological effect on bone; however, the lack of insulin (type 1 diabetes) or insulin resistance (type 2 diabetes) have deleterious influence on bone tissue.
Collapse
Affiliation(s)
- Peter Lakatos
- 1st Department of Medicine, Semmelweis University, Budapest, Hungary.
| | - Balazs Szili
- 1st Department of Medicine, Semmelweis University, Budapest, Hungary
| | - Bence Bakos
- 1st Department of Medicine, Semmelweis University, Budapest, Hungary
| | - Istvan Takacs
- 1st Department of Medicine, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Putz
- 1st Department of Medicine, Semmelweis University, Budapest, Hungary
| | - Ildiko Istenes
- 1st Department of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
70
|
Kim MS, An MH, Kim WJ, Hwang TH. Comparative efficacy and safety of pharmacological interventions for the treatment of COVID-19: A systematic review and network meta-analysis. PLoS Med 2020; 17:e1003501. [PMID: 33378357 DOI: 10.2139/ssrn.3619770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/08/2021] [Accepted: 12/10/2020] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND Numerous clinical trials and observational studies have investigated various pharmacological agents as potential treatment for Coronavirus Disease 2019 (COVID-19), but the results are heterogeneous and sometimes even contradictory to one another, making it difficult for clinicians to determine which treatments are truly effective. METHODS AND FINDINGS We carried out a systematic review and network meta-analysis (NMA) to systematically evaluate the comparative efficacy and safety of pharmacological interventions and the level of evidence behind each treatment regimen in different clinical settings. Both published and unpublished randomized controlled trials (RCTs) and confounding-adjusted observational studies which met our predefined eligibility criteria were collected. We included studies investigating the effect of pharmacological management of patients hospitalized for COVID-19 management. Mild patients who do not require hospitalization or have self-limiting disease courses were not eligible for our NMA. A total of 110 studies (40 RCTs and 70 observational studies) were included. PubMed, Google Scholar, MEDLINE, the Cochrane Library, medRxiv, SSRN, WHO International Clinical Trials Registry Platform, and ClinicalTrials.gov were searched from the beginning of 2020 to August 24, 2020. Studies from Asia (41 countries, 37.2%), Europe (28 countries, 25.4%), North America (24 countries, 21.8%), South America (5 countries, 4.5%), and Middle East (6 countries, 5.4%), and additional 6 multinational studies (5.4%) were included in our analyses. The outcomes of interest were mortality, progression to severe disease (severe pneumonia, admission to intensive care unit (ICU), and/or mechanical ventilation), viral clearance rate, QT prolongation, fatal cardiac complications, and noncardiac serious adverse events. Based on RCTs, the risk of progression to severe course and mortality was significantly reduced with corticosteroids (odds ratio (OR) 0.23, 95% confidence interval (CI) 0.06 to 0.86, p = 0.032, and OR 0.78, 95% CI 0.66 to 0.91, p = 0.002, respectively) and remdesivir (OR 0.29, 95% CI 0.17 to 0.50, p < 0.001, and OR 0.62, 95% CI 0.39 to 0.98, p = 0.041, respectively) compared to standard care for moderate to severe COVID-19 patients in non-ICU; corticosteroids were also shown to reduce mortality rate (OR 0.54, 95% CI 0.40 to 0.73, p < 0.001) for critically ill patients in ICU. In analyses including observational studies, interferon-alpha (OR 0.05, 95% CI 0.01 to 0.39, p = 0.004), itolizumab (OR 0.10, 95% CI 0.01 to 0.92, p = 0.042), sofosbuvir plus daclatasvir (OR 0.26, 95% CI 0.07 to 0.88, p = 0.030), anakinra (OR 0.30, 95% CI 0.11 to 0.82, p = 0.019), tocilizumab (OR 0.43, 95% CI 0.30 to 0.60, p < 0.001), and convalescent plasma (OR 0.48, 95% CI 0.24 to 0.96, p = 0.038) were associated with reduced mortality rate in non-ICU setting, while high-dose intravenous immunoglobulin (IVIG) (OR 0.13, 95% CI 0.03 to 0.49, p = 0.003), ivermectin (OR 0.15, 95% CI 0.04 to 0.57, p = 0.005), and tocilizumab (OR 0.62, 95% CI 0.42 to 0.90, p = 0.012) were associated with reduced mortality rate in critically ill patients. Convalescent plasma was the only treatment option that was associated with improved viral clearance rate at 2 weeks compared to standard care (OR 11.39, 95% CI 3.91 to 33.18, p < 0.001). The combination of hydroxychloroquine and azithromycin was shown to be associated with increased QT prolongation incidence (OR 2.01, 95% CI 1.26 to 3.20, p = 0.003) and fatal cardiac complications in cardiac-impaired populations (OR 2.23, 95% CI 1.24 to 4.00, p = 0.007). No drug was significantly associated with increased noncardiac serious adverse events compared to standard care. The quality of evidence of collective outcomes were estimated using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) framework. The major limitation of the present study is the overall low level of evidence that reduces the certainty of recommendations. Besides, the risk of bias (RoB) measured by RoB2 and ROBINS-I framework for individual studies was generally low to moderate. The outcomes deducted from observational studies could not infer causality and can only imply associations. The study protocol is publicly available on PROSPERO (CRD42020186527). CONCLUSIONS In this NMA, we found that anti-inflammatory agents (corticosteroids, tocilizumab, anakinra, and IVIG), convalescent plasma, and remdesivir were associated with improved outcomes of hospitalized COVID-19 patients. Hydroxychloroquine did not provide clinical benefits while posing cardiac safety risks when combined with azithromycin, especially in the vulnerable population. Only 29% of current evidence on pharmacological management of COVID-19 is supported by moderate or high certainty and can be translated to practice and policy; the remaining 71% are of low or very low certainty and warrant further studies to establish firm conclusions.
Collapse
Affiliation(s)
- Min Seo Kim
- Korea University, College of Medicine, Seoul, Republic of Korea
- Cheongsan Public Health Center, Wando, Republic of Korea
| | - Min Ho An
- Ajou University, School of Medicine, Suwon, Republic of Korea
- So Ahn Public Health Center, Wando, Republic of Korea
| | - Won Jun Kim
- Korea University, College of Medicine, Seoul, Republic of Korea
- Gangneung Prison Medical Department, Ministry of Justice, Republic of Korea
| | - Tae-Ho Hwang
- Department of Pharmacology, Pusan National University, School of Medicine, Yangsan, Republic of Korea
- Gene and Cell Therapy Research Center for Vessel-associated Diseases, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
71
|
Kim MS, An MH, Kim WJ, Hwang TH. Comparative efficacy and safety of pharmacological interventions for the treatment of COVID-19: A systematic review and network meta-analysis. PLoS Med 2020; 17:e1003501. [PMID: 33378357 PMCID: PMC7794037 DOI: 10.1371/journal.pmed.1003501] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/08/2021] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Numerous clinical trials and observational studies have investigated various pharmacological agents as potential treatment for Coronavirus Disease 2019 (COVID-19), but the results are heterogeneous and sometimes even contradictory to one another, making it difficult for clinicians to determine which treatments are truly effective. METHODS AND FINDINGS We carried out a systematic review and network meta-analysis (NMA) to systematically evaluate the comparative efficacy and safety of pharmacological interventions and the level of evidence behind each treatment regimen in different clinical settings. Both published and unpublished randomized controlled trials (RCTs) and confounding-adjusted observational studies which met our predefined eligibility criteria were collected. We included studies investigating the effect of pharmacological management of patients hospitalized for COVID-19 management. Mild patients who do not require hospitalization or have self-limiting disease courses were not eligible for our NMA. A total of 110 studies (40 RCTs and 70 observational studies) were included. PubMed, Google Scholar, MEDLINE, the Cochrane Library, medRxiv, SSRN, WHO International Clinical Trials Registry Platform, and ClinicalTrials.gov were searched from the beginning of 2020 to August 24, 2020. Studies from Asia (41 countries, 37.2%), Europe (28 countries, 25.4%), North America (24 countries, 21.8%), South America (5 countries, 4.5%), and Middle East (6 countries, 5.4%), and additional 6 multinational studies (5.4%) were included in our analyses. The outcomes of interest were mortality, progression to severe disease (severe pneumonia, admission to intensive care unit (ICU), and/or mechanical ventilation), viral clearance rate, QT prolongation, fatal cardiac complications, and noncardiac serious adverse events. Based on RCTs, the risk of progression to severe course and mortality was significantly reduced with corticosteroids (odds ratio (OR) 0.23, 95% confidence interval (CI) 0.06 to 0.86, p = 0.032, and OR 0.78, 95% CI 0.66 to 0.91, p = 0.002, respectively) and remdesivir (OR 0.29, 95% CI 0.17 to 0.50, p < 0.001, and OR 0.62, 95% CI 0.39 to 0.98, p = 0.041, respectively) compared to standard care for moderate to severe COVID-19 patients in non-ICU; corticosteroids were also shown to reduce mortality rate (OR 0.54, 95% CI 0.40 to 0.73, p < 0.001) for critically ill patients in ICU. In analyses including observational studies, interferon-alpha (OR 0.05, 95% CI 0.01 to 0.39, p = 0.004), itolizumab (OR 0.10, 95% CI 0.01 to 0.92, p = 0.042), sofosbuvir plus daclatasvir (OR 0.26, 95% CI 0.07 to 0.88, p = 0.030), anakinra (OR 0.30, 95% CI 0.11 to 0.82, p = 0.019), tocilizumab (OR 0.43, 95% CI 0.30 to 0.60, p < 0.001), and convalescent plasma (OR 0.48, 95% CI 0.24 to 0.96, p = 0.038) were associated with reduced mortality rate in non-ICU setting, while high-dose intravenous immunoglobulin (IVIG) (OR 0.13, 95% CI 0.03 to 0.49, p = 0.003), ivermectin (OR 0.15, 95% CI 0.04 to 0.57, p = 0.005), and tocilizumab (OR 0.62, 95% CI 0.42 to 0.90, p = 0.012) were associated with reduced mortality rate in critically ill patients. Convalescent plasma was the only treatment option that was associated with improved viral clearance rate at 2 weeks compared to standard care (OR 11.39, 95% CI 3.91 to 33.18, p < 0.001). The combination of hydroxychloroquine and azithromycin was shown to be associated with increased QT prolongation incidence (OR 2.01, 95% CI 1.26 to 3.20, p = 0.003) and fatal cardiac complications in cardiac-impaired populations (OR 2.23, 95% CI 1.24 to 4.00, p = 0.007). No drug was significantly associated with increased noncardiac serious adverse events compared to standard care. The quality of evidence of collective outcomes were estimated using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) framework. The major limitation of the present study is the overall low level of evidence that reduces the certainty of recommendations. Besides, the risk of bias (RoB) measured by RoB2 and ROBINS-I framework for individual studies was generally low to moderate. The outcomes deducted from observational studies could not infer causality and can only imply associations. The study protocol is publicly available on PROSPERO (CRD42020186527). CONCLUSIONS In this NMA, we found that anti-inflammatory agents (corticosteroids, tocilizumab, anakinra, and IVIG), convalescent plasma, and remdesivir were associated with improved outcomes of hospitalized COVID-19 patients. Hydroxychloroquine did not provide clinical benefits while posing cardiac safety risks when combined with azithromycin, especially in the vulnerable population. Only 29% of current evidence on pharmacological management of COVID-19 is supported by moderate or high certainty and can be translated to practice and policy; the remaining 71% are of low or very low certainty and warrant further studies to establish firm conclusions.
Collapse
Affiliation(s)
- Min Seo Kim
- Korea University, College of Medicine, Seoul, Republic of Korea
- Cheongsan Public Health Center, Wando, Republic of Korea
| | - Min Ho An
- Ajou University, School of Medicine, Suwon, Republic of Korea
- So Ahn Public Health Center, Wando, Republic of Korea
| | - Won Jun Kim
- Korea University, College of Medicine, Seoul, Republic of Korea
- Gangneung Prison Medical Department, Ministry of Justice, Republic of Korea
| | - Tae-Ho Hwang
- Department of Pharmacology, Pusan National University, School of Medicine, Yangsan, Republic of Korea
- Gene and Cell Therapy Research Center for Vessel-associated Diseases, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
72
|
Luque-Córdoba D, Priego-Capote F. Fully automated method for quantitative determination of steroids in serum: An approach to evaluate steroidogenesis. Talanta 2020; 224:121923. [PMID: 33379124 DOI: 10.1016/j.talanta.2020.121923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/26/2022]
Abstract
Steroidogenesis is a set of metabolic reactions where the enzymes play a key role to control the physiological levels of steroids. A deficiency in steroidogenesis induces an accumulation and/or insufficiency of steroids in human blood and can lead to different pathologies. This issue added to the low levels of steroids (pg mL-1 to ng mL-1) in this biofluid make of their determination an analytical challenge. In this research, we present a high-throughtput and fully automated method based on solid-phase extraction on-line coupled to liquid chromatography with tandem mass spectrometry detection (SPE-LC-MS/MS) to quantify estrogens (estrone and estradiol), androgens (testosterone, androstenedione, dihydrotestosterone and dehydroepiandrosterone), progestogens (progesterone, pregnenolone, 17-hydroxyprogesterone and 17-hydroxypregnenolone), glucocorticoids (21-hydroxyprogesterone, 11-deoxycortisol, cortisone, corticosterone and cortisol) and one mineralocorticoid (aldosterone) in human serum. The performance of the SPE step and the multiple reaction monitoring (MRM) mode allowed reaching a high sensitivity and selectivity levels without any derivatization reaction. The fragmentation mechanisms of the steroids were complementary studied by LC-MS/MS in high-resolution mode to confirm the MRM transitions. The method was characterized with two SPE sorbents with similar physico-chemical properties. Thus, limits of quantification were at pg mL-1 levels, the variability was below 25% (except for pregnenolone and cortisone), and the accuracy, expressed as bias, was always within ±25%. The proposed method was tested in human serum from ten volunteers, who reported levels for the sixteen target steroids that were satisfactorily in agreement with the physiological ranges reported in the literature.
Collapse
Affiliation(s)
- D Luque-Córdoba
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, Córdoba, Spain; Nanochemistry University Institute (IUNAN), Campus of Rabanales, University of Córdoba, Córdoba, Spain; Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
| | - F Priego-Capote
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, Córdoba, Spain; Nanochemistry University Institute (IUNAN), Campus of Rabanales, University of Córdoba, Córdoba, Spain; Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain; Consortium for Biomedical Research in Frailty & Healthy Ageing, CIBERFES, Carlos III Institute of Health, Spain.
| |
Collapse
|
73
|
Sleep problems in adolescence are prospectively linked to later depressive symptoms via the cortisol awakening response. Dev Psychopathol 2020; 32:997-1006. [PMID: 31387652 DOI: 10.1017/s0954579419000762] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Sleep disturbance is a symptom of and a well-known risk factor for depression. Further, atypical functioning of the HPA axis has been linked to the pathogenesis of depression. The purpose of this study was to examine the role of adolescent HPA axis functioning in the link between adolescent sleep problems and later depressive symptoms. Methods: A sample of 157 17-18 year old adolescents (61.8% female) completed the Pittsburgh Sleep Quality Inventory (PSQI) and provided salivary cortisol samples throughout the day for three consecutive days. Two years later, adolescents reported their depressive symptoms via the Center for Epidemiological Studies Depression Scale (CES-D). Results: Individuals (age 17-18) with greater sleep disturbance reported greater depressive symptoms two years later (age 19-20). This association occurred through the indirect effect of sleep disturbance on the cortisol awakening response (CAR) (indirect effect = 0.14, 95%CI [.02 -.39]). Conclusions: One pathway through which sleep problems may lead to depressive symptoms is by up-regulating components of the body's physiological stress response system that can be measured through the cortisol awakening response. Behavioral interventions that target sleep disturbance in adolescents may mitigate this neurobiological pathway to depression during this high-risk developmental phase.
Collapse
|
74
|
Time-of-Day-Dependent Gating of the Liver-Spinal Axis Initiates an Anti-Inflammatory Reflex in the Rat. eNeuro 2020; 7:ENEURO.0463-20.2020. [PMID: 33203733 PMCID: PMC7729296 DOI: 10.1523/eneuro.0463-20.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 01/23/2023] Open
Abstract
The autonomic nervous system (ANS) modulates the immune response through the engagement of an anti-inflammatory reflex. There is controversy regarding which efferent branch of the ANS, sympathetic or parasympathetic, downregulates the intensity of the inflammatory response. Furthermore, how information about the immune status of the body reaches the CNS to engage this reflex remains unclear. The present study demonstrates the existence of a liver-spinal axis that conveys early circulating inflammatory information to the CNS in response to lipopolysaccharide (LPS) and serves as the afferent arm of a sympathetic anti-inflammatory reflex. Furthermore, brainstem and spinal cord visceral sensory neurons show a time-of-day-dependent sensitivity to the incoming inflammatory information, in particular, prostaglandins (PG). Consequentially, the liver-spinal axis promotes the retention of tumor necrosis factor α (TNFα) in the liver and spleen during the resting period, resulting in low plasmatic TNFα levels. Consistently, low sensitivity for LPS during the active period promotes the release of TNFα from the organs into the circulation, resulting in high plasmatic TNFα levels. The present novel findings illustrate how the time-of-day-dependent activation of the liver-spinal axis contributes to the daily fluctuations of the inflammatory response.
Collapse
|
75
|
Gao Q, Li Z, Meng L, Ma J, Xi Y, Wang T. Transcriptome profiling reveals an integrated mRNA-lncRNA signature with predictive value for long-term survival in diffuse large B-cell lymphoma. Aging (Albany NY) 2020; 12:23275-23295. [PMID: 33221755 PMCID: PMC7746345 DOI: 10.18632/aging.104100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022]
Abstract
For patients with diffuse large B-cell lymphoma (DLBCL), survival at 24 months is a milestone for long-term survival. The purpose of this study was to develop a multigene risk score (MGRS) to refine the International Prognostic Index (IPI) model to identify patients with DLBCL at high risk of death within 24 months. Using a robust statistical strategy, we built a MGRS incorporating nine mRNAs and two lncRNAs. Stratification and multivariable Cox regression analysis confirmed the MGRS as an independent risk factor. A nomogram based on IPI+MGRS model was constructed and its calibration plot showed close agreement between predicted 2-year survival rate and observed rate. The 2-year AUC was bigger with the IPI+MGRS model (ΔAUC=0.162; 95%CI 0.1295–0.1903) than with the IPI model, and the IPI+MGRS model more accurately predicted the prognostic risk of DLBCL. The 2-year survival decision curve revealed the IPI+MGRS model was more useful clinically than the IPI model. Functional enrichment analysis showed that the MGRS correlated with cell cycle, DNA replication and repair. The results were validated using an independent external dataset. In conclusion, we successfully developed an integrated mRNA–lncRNA signature to refine the IPI model for predicting long-term survival of patients with DLBCL.
Collapse
Affiliation(s)
- Qian Gao
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Zhiyao Li
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Lingxian Meng
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Jinsha Ma
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Yanfeng Xi
- Department of Pathology, Shanxi Cancer Hospital, Taiyuan 030013, China
| | - Tong Wang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
76
|
Acharya S, Praveena J, Guru BR. In Vitro Studies of Prednisolone Loaded PLGA Nanoparticles-Surface Functionalized With Folic Acid on Glioma and Macrophage Cell Lines. PHARMACEUTICAL SCIENCES 2020; 27:407-417. [DOI: 10.34172/ps.2020.94] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/13/2020] [Indexed: 01/03/2025] Open
Abstract
Background: Glucocorticoids are employed for their anti-inflammatory effects in treatingglioma, whose cells are known to overexpress the folate receptors. Some glucocorticoids haveshown inhibitory effects, but the efficacy of prednisolone when delivered via folate receptormediateduptake, has not been attempted. The study aimed to assess the efficacy of targeteddelivery of prednisolone on glioma cell lines like C6 and U87 via the folate receptors. Methods: Targeted delivery of prednisolone was achieved by initially conjugating folic acid (FA)to the di-block copolymer of polylactic acid (PLA) – polyethylene glycol (PEG). This moietycarrying di-block copolymer was incorporated on the surface of the drug-loaded poly lactic-coglycolicacid (PLGA) nanoparticle (NP) by employing the Interfacial Activity Assisted SurfaceFunctionalization (IAASF) technique. The NPs were evaluated for size, zeta potential, and drugloading. It was characterized using particle size analyser, SEM, 1H-NMR, and XRD. cell uptake,cytotoxicity, and anti-inflammatory activities were studied for various formulations. Results: The cytotoxicity assay indicated a high cell growth inhibitory effect of drug encapsulatedNPs with FA moiety as compared to free drug and NPs without the moiety for an incubationperiod of three, five, and six days. The growth-inhibitory effect of the free drug was short-lived,whereas FA functionalized NPs showed higher uptake and sustained inhibitory effect, and werealso able to significantly control the release of pro-inflammatory cytokines like tumour necrosisfactor-alpha (TNF-α) and nitric oxide (NO). Conclusion: Uptake, attenuation of pro-inflammatory signals, and the inhibitory effect ofprednisolone on the cells were more effective when targeted with the FA moiety on the surfaceof NPs as compared to free drug and NPs without the moiety.
Collapse
Affiliation(s)
- Sriprasad Acharya
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Joyceline Praveena
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Bharath Raja Guru
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
77
|
Potential anti-neuroinflammatory compounds from Australian plants - A review. Neurochem Int 2020; 142:104897. [PMID: 33186611 DOI: 10.1016/j.neuint.2020.104897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 12/23/2022]
Abstract
Neuroinflammation is a complex response to brain injury involving the activation of glia, release of inflammatory mediators, such as cytokines and chemokines, and generation of reactive oxygen and nitrogen species. Even though it is considered an event secondary to neuronal death or dysfunction, neuro-inflammation comprises a majority of the non-neuronal contributors to the cause and progression of neurodegenerative diseases like Alzheimer's Disease (AD), Parkinson's Disease (PD), Multiple Sclerosis (MS), Chronic Traumatic Encephalopathy (CTE) and others. As a result of the lack of effectiveness of current treatments for neurodegenerative diseases, neuroinflammation has become a legitimate therapeutic target for drug discovery, leading to the study of various in vivo and in vitro models of neuroinflammation. Several molecules sourced from plants have displayed anti-inflammatory properties in the study of neurodegenerative diseases. A group of these anti-inflammatory compounds has been classified as cytokine-suppressive anti-inflammatory drugs (CSAIDs), which target the pro-inflammatory AP1 and nuclear factor-κB signaling pathways and inhibit the expression of many pro-inflammatory cytokines, such as interleukin IL-1, IL-6, TNF-α, or nitric oxide. Australian plants, thriving amid the driest inhabited continent of the world, are an untapped source of chemical diversity in the form of secondary metabolites. These compounds are produced in response to biotic and abiotic stresses that the plants are exposed to in the highly biodiverse environment. This review is an attempt to highlight anti-inflammatory compounds isolated from Australian plants.
Collapse
|
78
|
HIV-1 Tat Dysregulates the Hypothalamic-Pituitary-Adrenal Stress Axis and Potentiates Oxycodone-Mediated Psychomotor and Anxiety-Like Behavior of Male Mice. Int J Mol Sci 2020; 21:ijms21218212. [PMID: 33153023 PMCID: PMC7662349 DOI: 10.3390/ijms21218212] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 01/31/2023] Open
Abstract
Human immunodeficiency virus (HIV) is associated with co-morbid affective and stress-sensitive neuropsychiatric disorders that may be related to dysfunction of the hypothalamic-pituitary-adrenal (HPA) stress axis. The HPA axis is perturbed in up to 46% of HIV patients, but the mechanisms are not known. The neurotoxic HIV-1 regulatory protein, trans-activator of transcription (Tat), may contribute. We hypothesized that HPA dysregulation may contribute to Tat-mediated interactions with oxycodone, a clinically-used opioid often prescribed to HIV patients. In transgenic male mice, Tat expression produced significantly higher basal corticosterone levels with adrenal insufficiency in response to a natural stressor or pharmacological blockade of HPA feedback, recapitulating the clinical phenotype. On acute exposure, HIV-1 Tat interacted with oxycodone to potentiate psychomotor and anxiety like-behavior in an open field and light-dark transition tasks, whereas repeated exposure sensitized stress-related psychomotor behavior and the HPA stress response. Pharmacological blockade of glucocorticoid receptors (GR) partially-restored the stress response and decreased oxycodone-mediated psychomotor behavior in Tat-expressing mice, implicating GR in these effects. Blocking corticotrophin-releasing factor (CRF) receptors reduced anxiety-like behavior in mice that were exposed to oxycodone. Together, these effects support the notion that Tat exposure can dysregulate the HPA axis, potentially raising vulnerability to stress-related substance use and affective disorders.
Collapse
|
79
|
Kim SE, Nowak V, Quartilho A, Larkin F, Hingorani M, Tuft S, Dahlmann-Noor A. Systemic interventions for severe atopic and vernal keratoconjunctivitis in children and young people up to the age of 16 years. Cochrane Database Syst Rev 2020; 10:CD013298. [PMID: 33084033 PMCID: PMC8078190 DOI: 10.1002/14651858.cd013298.pub2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Atopic keratoconjunctivitis (AKC) and vernal keratoconjunctivitis (VKC) are severe and potentially sight-threatening allergic eye diseases characterised by chronic inflammation of the ocular surface. Both topical and systemic treatments are used. This Cochrane Review focuses on systemic treatments. OBJECTIVES To assess the effects of systemic treatments (including corticosteroids, NSAIDS, immunomodulators, and monoclonal antibodies), alone or in combination, compared to placebo or other systemic or topical treatment, for severe AKC and VKC in children and young people up to the age of 16 years. SEARCH METHODS We searched CENTRAL, Ovid MEDLINE, Ovid Embase, the ISRCTN registry, ClinicalTrials.gov and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP). There were no restrictions to language or year of publication. We last searched the electronic databases on 17 February 2020. SELECTION CRITERIA We searched for randomised controlled trials (RCTs) that involved systemic treatments in children aged up to 16 years with a clinical diagnosis of AKC or VKC. We planned to include studies that evaluated a single systemic medication versus placebo, and studies that compared two or multiple active treatments. DATA COLLECTION AND ANALYSIS We used standard methods expected by Cochrane. MAIN RESULTS No trial met the inclusion criteria of this Cochrane Review. No RCTs have been carried out on this topic. AUTHORS' CONCLUSIONS There is currently no evidence from randomised controlled trials regarding the safety and efficacy of systemic treatments for VKC and AKC. Trials are required to test efficacy and safety of current and future treatments. Outcome measures need to be developed which can capture both objective clinical and patient-reported aspects of the condition and treatments.
Collapse
Affiliation(s)
| | | | - Ana Quartilho
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Frank Larkin
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | | | - Stephen Tuft
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Annegret Dahlmann-Noor
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
80
|
Wang D, Wang J. Antiviral immune mechanism of Toll-like receptor 4-mediated human alveolar epithelial cells type Ⅱ. Exp Ther Med 2020; 20:2561-2568. [PMID: 32765749 PMCID: PMC7401722 DOI: 10.3892/etm.2020.8963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/18/2019] [Indexed: 11/06/2022] Open
Abstract
Expression of Toll-like receptor (TLR)4 and its downstream substances, myeloid differentiation factor 88 (MyD88), NF-κB p65, tumor necrosis factor-α (TNF-α) and GR in human alveolar epithelial cells type Ⅱ (AEC Ⅱ) infected with respiratory syncytial virus (RSV) were investigated, and the antiviral immune mechanism mediated by TLR4 was explored. Human AEC Ⅱ were divided into TLR4-/- group, normal group and TLR4+ group, and also into control group, RSV group and RSV+MP (methylprednisolone) group. MTT assay was used to measure the survival of cells after TLR4 knockout and overexpression, and the survival of normal cells after treatment with MP. The concentration of TLR4, MyD88, NF-κB p65, TNF-α, and GR was measured by ELISA after TLR4 knockout and overexpression. Reverse transcription-quantitative PCR (RT-qPCR) was used to measure the mRNA expression of the gene knockout and overexpression groups. RT-qPCR and western blot analysis were used to determine the expression of TLR4, MyD88, NF-κB p65 and GR in RSV and RSV+MP groups. The concentration of the detected substances in the TLR4-/- group was significantly lower than that in the normal group (P<0.01 and <0.001), and in the TLR4+ group was significantly higher than that in the normal group (P<0.05, <0.01 and <0.001); the expression of RSV in the TLR4-/- group was significantly higher than that in the normal group (P<0.001), and in the TLR4+ group was significantly lower than that in the normal group (P<0.05). The expression levels of TLR4, MyD88 and NF-κB p65 in the RSV and RSV+MP groups were significantly higher than those in the control group (P<0.05, <0.01 and <0.001), and the increase presented in the RSV+MP group was significantly lower than that in the RSV group (P<0.05 and <0.01). TLR4-mediated antiviral immunity of human AEC Ⅱ can reduce the levels of TLR4, MyD88, NF-κB p65 and TNF-α and increase the level of GR, participating in the immune defense and reducing the damage of the viral epithelial cells of human type Ⅱ alveoli, thus improving human immunity.
Collapse
Affiliation(s)
- Dandan Wang
- Department of Infectious Disease, Xuzhou Children's Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Jie Wang
- Department of Infectious Disease, Xuzhou Children's Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| |
Collapse
|
81
|
Su M, Zhang R, Liu N, Zhang J. Modulation of inflammatory response by cortisol in the kidney of spotted scat (Scatophagus argus) in vitro under different osmotic stresses. FISH & SHELLFISH IMMUNOLOGY 2020; 104:46-54. [PMID: 32474084 DOI: 10.1016/j.fsi.2020.05.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 05/20/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Salinity changes on renal osmoregulation have often been investigated while the immune response of the kidney under osmotic stress is poorly understood in teleosts. Acute stress is generally associated with enhancement of circulating cortisol. The effects of osmotic stress on renal immune response and its regulation by cortisol deserve more attention. In the present study, the effects of exogenous cortisol treatment on the lipopolysaccharide (LPS)-induced immune response were analyzed in renal masses of Scatophagus argus under different osmotic stresses in vitro. mRNA expression of pro-inflammatory cytokines (TNF-α, IL1-β and IL-6) and immune-regulatory related genes (GR and SOCS1) was measured over a short course (15 h). Comprehensive analysis reveals that transcript abundances of pro-inflammatory cytokine genes such as TNF-α, IL-1β, and IL-6 induced by LPS, alone or in the combination of cortisol, are tightly associated with osmoregulation under acute osmotic stress. Our results showed that osmotic challenge could significantly enhance mRNA expression levels of pro-inflammatory cytokines in renal masses in vitro. Based on our analysis, it can be inferred that cortisol suppresses the magnitude of renal inflammatory response and attenuates LPS-induced immune response through GR signaling in the face of challenging environmental conditions.
Collapse
Affiliation(s)
- Maoliang Su
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ran Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Nanxi Liu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Junbin Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
82
|
Wu J, Dong J, Li S, Luo J, Zhang Y, Liu H, Ni Y, Li X, Zhou J, Yang H, Xie Q, Jiang X, Wang T, Wang P, Zeng F, Chu Y, Yang J, Zeng F. The Role of Vitamin D in Combination Treatment for Patients With Rheumatoid Arthritis. Front Med (Lausanne) 2020; 7:312. [PMID: 32766259 PMCID: PMC7381115 DOI: 10.3389/fmed.2020.00312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/29/2020] [Indexed: 01/01/2023] Open
Abstract
Background: The aim of this study is to evaluate the clinical efficacy of vitamin D (VitD) supplementation in terms of response to treatment and improvement of disease activity in rheumatoid arthritis (RA). Methods: This study analyzed 1180 RA patients' records treated at Mianyang Central Hospital from February 2015 to July 2019. The patients were allocated into VitD group and control group based on their medical regimens. The outcome measures were primary efficacy, defined as treatment response-based EULAR response criteria in RA, and secondary efficacy, defined as improvement in disease activity indicators. Safety was evaluated according to the incidence of all-cause infections. Results: At month 6, the primary efficacy revealed that there were 22.8% good responders and 19.0% moderate responders in the VitD group, and 22.3% good responders and 22.3% moderate responders in the control group; there were no differences between the two groups (p = 0.754). The similar primary efficacy outcomes were observed at months 3, 12, and >12. The secondary efficacy indicated that there were no differences in most indexes between the two groups at months 1, 3, 6, 12, and >12. The subgroups (based on baseline DAS28 (CRP), glucocorticoids use and disease duration) analysis results suggested that VitD group didn't have the advantage for treating RA. The incidence of infections was similar in the two groups. Conclusion: VitD supplementation did not provide additional benefit for anti-rheumatic treatment. These data supported the need for prospective, randomized, controlled trials to evaluate the role of VitD supplementation in treating RA.
Collapse
Affiliation(s)
- Jianhong Wu
- Department of Rheumatology, Dazhou Central Hospital, Dazhou, China
| | - Jianling Dong
- Department of Rheumatology, Mianyang Central Hospital, Mianyang, China
| | - Shilin Li
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Jiaang Luo
- Department of Rheumatology, Mianyang Central Hospital, Mianyang, China
| | - Yu Zhang
- Department of Rheumatology, Mianyang Central Hospital, Mianyang, China
| | - Hong Liu
- Department of Rheumatology, Mianyang Central Hospital, Mianyang, China
| | - Yuanpiao Ni
- Department of Rheumatology, Mianyang Central Hospital, Mianyang, China
| | - Xue Li
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Jun Zhou
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Hang Yang
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Qianrong Xie
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Xuejun Jiang
- Department of Rheumatology, Dazhou Central Hospital, Dazhou, China
| | - Tingting Wang
- Department of Rheumatology, Dazhou Central Hospital, Dazhou, China
| | - Pingxi Wang
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Fanwei Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Yanpeng Chu
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| | - Jing Yang
- Department of Rheumatology, Mianyang Central Hospital, Mianyang, China
| | - Fanxin Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, China
| |
Collapse
|
83
|
Yang X, Geng J, Meng H. Glucocorticoid receptor modulates dendritic cell function in ulcerative colitis. Histol Histopathol 2020; 35:1379-1389. [PMID: 32706033 DOI: 10.14670/hh-18-241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ulcerative colitis (UC) is a serious form of inflammatory bowel disease (IBD) occurring worldwide. Although anti-TNF therapy is found to be effective in over 70% of patients with UC, nearly one-third are still deprived of effective treatment. Because glucocorticoids (GC) can effectively inhibit granulocyte-recruitment into the mucosa, cytokine secretion and T cell activation, they are used widely in the treatment of UC. However, remission is observed in only 55% of the patients after one year of steroid use due to a condition known as steroid response. Additionally, it has been noted that 20%-40% of the patients with UC do not respond to GC treatment. Researchers have revealed that the number of dendritic cells (DCs) in patients with UC tends to increase in the colonic mucosa. Many studies have determined that the removal of peripheral DCs through the adsorption and separation of granulocytes and monocytes could improve tolerance of the intestine to its symbiotic flora. Based on these results, further insights regarding the beneficial effects of Adacolumn apheresis in patients subjected to this treatment could be revealed. GC can effectively inhibit the activation of DCs by reducing the levels of major histocompatibility complex class II (MHC II) molecules, which is critical for controlling the recruitment of granulocytes. Therefore, alternative biological and new individualized therapies based on these approaches need to be evaluated to counter UC. In this review, progress in research associated with the regulatory effect of glucocorticoid receptors on DCs under conditions of UC is discussed, thus providing insights and identifying potential targets which could be employed in the treatment strategies against UC.
Collapse
Affiliation(s)
- Xinxin Yang
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jingshu Geng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hongxue Meng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China.,Department of Pathology, Harbin Medical University, Harbin, China.
| |
Collapse
|
84
|
Seiler A, Sood AK, Jenewein J, Fagundes CP. Can stress promote the pathophysiology of brain metastases? A critical review of biobehavioral mechanisms. Brain Behav Immun 2020; 87:860-880. [PMID: 31881262 DOI: 10.1016/j.bbi.2019.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 12/15/2019] [Accepted: 12/20/2019] [Indexed: 01/20/2023] Open
Abstract
Chronic stress can promote tumor growth and progression through immunosuppressive effects and bi-directional interactions between tumor cells and their microenvironment. β-Adrenergic receptor signaling plays a critical role in mediating stress-related effects on tumor progression. Stress-related mechanisms that modulate the dissemination of tumor cells to the brain have received scant attention. Brain metastases are highly resistant to chemotherapy and contribute considerably to morbidity and mortality in various cancers, occurring in up to 20% of patients in some cancer types. Understanding the mechanisms promoting brain metastasis could help to identify interventions that improve disease outcomes. In this review, we discuss biobehavioral, sympathetic, neuroendocrine, and immunological mechanisms by which chronic stress can impact tumor progression and metastatic dissemination to the brain. The critical role of the inflammatory tumor microenvironment in tumor progression and metastatic dissemination to the brain, and its association with stress pathways are delineated. We also discuss translational implications for biobehavioral and pharmacological interventions.
Collapse
Affiliation(s)
- Annina Seiler
- Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Josef Jenewein
- Clinic Zugersee, Center for Psychiatry and Psychotherapy, Oberwil-Zug, Switzerland
| | - Christopher P Fagundes
- Department of Psychology, Rice University, Houston, TX, United States; Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
85
|
Assis VR, Gardner ST, Smith KM, Gomes FR, Mendonça MT. Stress and immunity: Field comparisons among populations of invasive cane toads in Florida. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:779-791. [PMID: 32488987 DOI: 10.1002/jez.2389] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/07/2020] [Accepted: 05/22/2020] [Indexed: 12/28/2022]
Abstract
Cane toads (Rhinella marina) were introduced worldwide and have become invasive in multiple locations, representing a major driver of biodiversity loss through competition (food, shelter, territory), predation, and the poisoning of native species. These toads have been used in Australia as a model for studies concerning invasion biology and ecoimmunology, as longer-established (core) and invasion front (edge) populations show altered stress and immune response profiles. Although cane toads were also introduced into the United States in the 1950s, these patterns have yet to be evaluated for the populations spanning Florida. Toads introduced into Florida have dispersed primarily northward along a latitudinal gradient, where they encounter cooler temperatures that may further impact stress and immune differences between core and edge populations. In this study, we sampled cane toads from nine different locations spanning their invasion in Florida. Cane toads from southern populations showed higher plasma bacterial killing ability and natural antibody titers than the toads from the northern populations, indicating they have a better immune surveillance system. Also, southern toads were more responsive to a novel stressor (1 hr restraint), showing a higher increase in corticosterone levels. These results indicate that possible trade-offs have occurred between immune and stress responses as these toads have become established in northern cooler areas in Florida.
Collapse
Affiliation(s)
- Vania R Assis
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Steven T Gardner
- Department of Biological Sciences, Auburn University, Auburn, Alabama
| | - Kyra M Smith
- Department of Biological Sciences, Auburn University, Auburn, Alabama
| | - Fernando R Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Mary T Mendonça
- Department of Biological Sciences, Auburn University, Auburn, Alabama
| |
Collapse
|
86
|
MLL2 regulates glucocorticoid receptor-mediated transcription of ENACα in human retinal pigment epithelial cells. Biochem Biophys Res Commun 2020; 525:675-680. [PMID: 32139118 DOI: 10.1016/j.bbrc.2020.02.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 02/07/2020] [Indexed: 11/24/2022]
Abstract
Glucocorticoids require the glucocorticoid receptor (GR), a type of ligand-dependent nuclear receptor to transmit their downstream effects. Upon glucocorticoid binding, GR associates with glucocorticoid response elements (GREs) and recruits other transcriptional coregulators to activate or repress target gene transcription. Many SET-domain family proteins have been demonstrated to contribute to GR-mediated transcriptional activity. However, whether histone H3K4-specific methyltransferase plays a cell-type-specific role in GR transcriptional regulation remains poorly understood. In this report, we examined MLL2 (KMT2D), a histone-lysine methyltransferase that catalyzes histone H3 lysine 4 methylation (H3K4me). Furthermore, we demonstrated that MLL2 specifically regulates the transcription of some GR target genes (e.g., ENACα and FLJ20371) in ARPE-19 cells, but has no effect in A549 cells. Mechanistically, co-immunoprecipitation assays revealed that MLL2 is associated with GR in a ligand-independent manner in APRE-19 cells. Moreover, chromatin immunoprecipitation analyses demonstrated that MLL2 could co-occupy glucocorticoid response elements (GREs) of GR target genes along with GR following Dex stimulation. Finally, the FAIRE-qPCR results illustrated that MLL2 is pivotal in establishing chromatin structure accessibility at the GREs of ARPE-19 specific genes in the presence of Dex. Taken together, our study determined that MLL2 regulates GR-mediated transcription in a cell-type-specific manner, and we provide a molecular mechanism to explain the specific role of MLL2 in regulating GR target gene expression in ARPE-19 cells.
Collapse
|
87
|
Gokon Y, Fujishima F, Taniyama Y, Ishida H, Yamagata T, Sawai T, Uzuki M, Ichikawa H, Itakura Y, Takahashi K, Yajima N, Hagiwara M, Nishida A, Ozawa Y, Sakuma T, Sakamoto K, Zuguchi M, Saito M, Kamei T, Sasano H. Glucocorticoid receptor and serum- and glucocorticoid-induced kinase-1 in esophageal adenocarcinoma and adjacent Barrett's esophagus. Pathol Int 2020; 70:355-363. [PMID: 32173971 DOI: 10.1111/pin.12922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/25/2020] [Indexed: 12/31/2022]
Abstract
Barrett's esophagus (BE) is a consequence of gastroesophageal reflux disease and is predisposed to esophageal adenocarcinoma (EAC). EAC is an exemplar model of inflammation-associated cancer. Glucocorticoids suppress inflammation through glucocorticoid receptor (GR) and serum- and glucocorticoid-induced kinase-1 (Sgk1) expressions. Therefore, we immunolocalized GR and Sgk1 in EAC and the adjacent BE tissues and studied their association with clinical disease course in 87 patients with EAC who underwent surgical resection (N = 58) or endoscopic submucosal dissection (N = 29). Low GR and Sgk1 expressions in adjacent BE tissues were associated with adverse clinical outcomes (P = 0.0008 and 0.034, respectively). Patients with low Sgk1 expression in EAC cells exhibited worse overall survival (P = 0.0018). In multivariate Cox regression analysis, low GR expression in the adjacent nonmalignant BE tissues was significantly associated with worse overall survival (P = 0.023). The present study indicated that evaluation of GR and Sgk1 expressions in both the EAC cells and adjacent nonmalignant BE tissues could help to predict clinical outcomes following endoscopic and surgical treatments. In particular, the GR status in BE tissues adjacent to EAC was an independent prognostic factor.
Collapse
Affiliation(s)
- Yusuke Gokon
- Department of Surgery, Tohoku University Hospital, Miyagi, Japan.,Department of Pathology, Tohoku University Hospital, Miyagi, Japan
| | | | - Yusuke Taniyama
- Department of Surgery, Tohoku University Hospital, Miyagi, Japan
| | - Hirotaka Ishida
- Department of Surgery, Tohoku University Hospital, Miyagi, Japan
| | - Taku Yamagata
- Department of Gastroenterology, Sendai City Medical Center, Miyagi, Japan
| | - Takashi Sawai
- Department of Pathology, Sendai City Medical Center, Miyagi, Japan
| | - Miwa Uzuki
- Department of Medical Science and Welfare, Tohoku Bunka Gakuen University, Miyagi, Japan
| | - Hirofumi Ichikawa
- Department of Surgery, Japanese Red Cross Ishinomaki Hospital, Miyagi, Japan
| | - Yuko Itakura
- Department of Pathology, Japanese Red Cross Ishinomaki Hospital, Miyagi, Japan
| | | | - Nobuhisa Yajima
- Department of Pathology and Laboratory Medicine, Hachinohe City Hospital, Aomori, Japan
| | | | - Akiko Nishida
- Department of Pathology, Nihonkai General Hospital, Yamagata, Japan
| | - Yohei Ozawa
- Department of Gastrointestinal Surgery, Iwate Prefectural Central Hospital, Iwate, Japan
| | - Tsutomu Sakuma
- Department of Pathology, Iwate Prefectural Central Hospital, Iwate, Japan
| | | | - Masashi Zuguchi
- Department of Surgery, Hiraka General Hospital, Akita, Japan
| | - Masahiro Saito
- Department of Pathology, Hiraka General Hospital, Akita, Japan
| | - Takashi Kamei
- Department of Surgery, Tohoku University Hospital, Miyagi, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Hospital, Miyagi, Japan
| |
Collapse
|
88
|
Highly selective organ distribution and cellular uptake of inorganic-organic hybrid nanoparticles customized for the targeted delivery of glucocorticoids. J Control Release 2020; 319:360-370. [DOI: 10.1016/j.jconrel.2020.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/11/2019] [Accepted: 01/06/2020] [Indexed: 12/11/2022]
|
89
|
Kanai A, McNamara KM, Iwabuchi E, Miki Y, Onodera Y, Guestini F, Khalid F, Sagara Y, Ohi Y, Rai Y, Yamaguchi R, Tanaka M, Miyashita M, Ishida T, Sasano H. Significance of glucocorticoid signaling in triple-negative breast cancer patients: a newly revealed interaction with androgen signaling. Breast Cancer Res Treat 2020; 180:97-110. [PMID: 31989378 DOI: 10.1007/s10549-020-05523-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/04/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE Chemotherapy is the only current effective systemic treatment for triple-negative breast cancer (TNBC) patients. Therefore, the identification of active biological pathways that could become therapeutic targets is crucial. In this study, considering the well-reported biological roles of glucocorticoid and androgen receptors (GR, AR) in TNBC, we attempted to explore the effects of glucocorticoids (GCs) on cell kinetics as well as the potential interaction between GR and AR in TNBC. METHODS We first explored the association between the status of GR, AR, and/or GCs-metabolizing enzymes such as 11β-hydroxysteroid dehydrogenase (11βHSD) 1 and 2 and the clinicopathological variables of the TNBC patients. Thereafter, we also studied the effects of dexamethasone (DEX) with/without dihydrotestosterone (DHT) on TNBC cell lines by assessing the cell proliferation, migration and GC response genes at the transcriptional level. RESULTS GR positivity in carcinoma cells was significantly associated with adverse clinical outcome of the patients and AR positivity was significantly associated with lower histological grade and Ki-67 labeling index of the cases examined. In particular, AR positivity was significantly associated with decreased risks of developing recurrence in GR-positive TNBC patients. The subsequent in vitro studies revealed that DEX-promoted cell migration was inhibited by the co-treatment with DHT in GR/AR double-positive HCC38 cells. In addition, DHT inhibited the DEX-increased serum and glucocorticoid-regulated kinase-1 (SGK1) mRNA expression. CONCLUSION This is the first study to reveal that the interaction of GR and AR did influence the clinical outcome of TNBC patients and GCs induced cell migration in TNBC cells.
Collapse
Affiliation(s)
- Ayako Kanai
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,Department of Pathology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Keely May McNamara
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| | - Erina Iwabuchi
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yasuhiro Miki
- Department of Disaster Obstetrics and Gynecology, International Research Institute of Disaster Science, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yoshiaki Onodera
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Fouzia Guestini
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Freeha Khalid
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yasuaki Sagara
- Sagara Hospital, 3-31, Matsubara-cho, Kagoshima, Kagoshima, 892-0833, Japan
| | - Yasuyo Ohi
- Sagara Hospital, 3-31, Matsubara-cho, Kagoshima, Kagoshima, 892-0833, Japan
| | - Yoshiaki Rai
- Sagara Hospital, 3-31, Matsubara-cho, Kagoshima, Kagoshima, 892-0833, Japan
| | - Rin Yamaguchi
- Department of Pathology and Laboratory Medicine, Kurume University Medical Center, 155-1, Kokubu-machi, Kurume, Fukuoka, 839-0863, Japan
| | - Maki Tanaka
- JCHO Kurume General Hospital, 21, Kushihara-machi, Kurume, Fukuoka, 830-0013, Japan
| | - Minoru Miyashita
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Takanori Ishida
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
90
|
Naselli A, Moretti D, Regalbuto C, Arpi ML, Lo Giudice F, Frasca F, Belfiore A, Le Moli R. Evidence That Baseline Levels of Low-Density Lipoproteins Cholesterol Affect the Clinical Response of Graves' Ophthalmopathy to Parenteral Corticosteroids. Front Endocrinol (Lausanne) 2020; 11:609895. [PMID: 33414766 PMCID: PMC7784376 DOI: 10.3389/fendo.2020.609895] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND High dose intravenous glucocorticoid (ivGC) therapy is the first line treatment in moderate to severe Graves' ophthalmopathy (GO) and is associated with a clinical response rate ranging from 50% to 80%. Recently, a positive correlation between total cholesterol and low-density lipoproteins cholesterol (LDLc) with GO presentation and activity has been described. OBJECTIVE We aimed at evaluating whether, in patients with moderate to severe active GO treated with ivGC therapy, cholesterol, and LDLc could represent valuable predictive factors of medium-term GO outcome. METHODS This single center retrospective study was conducted in a consecutive series of 87 patients undergone ivGC therapy because affected by moderate to severe active GO. Clinical outcome of GO was evaluated at week 6 (W6) and 12 (W12) in respect to baseline conditions (week 0) by the seven points CAS according to EUGOGO recommendations. Univariate analysis and binary logistic regression were performed for the outcome variable W12CAS. RESULTS In patients with active GO, an early positive clinical response to ivGC therapy (as evaluated by CAS at 6W) was a strong determinant (OR=13) of the clinical outcome at week 12. Moreover, high levels of LDLc at baseline were positively associated with a reduction in the likelihood of being classified as improved at 12W. Patients with LDLc >193.6 mg/dl were very likely to respond negatively to ivGC therapy independently from the response at 6W. Based on these results, we propose a predictive decision-making model to be tested in future prospective studies. DISCUSSION We found that, in patients with active GO, both an early clinical response to ivGC therapy and baseline LDLc levels are significant determinants of GO outcome (W12CAS). These data support the need of a cholesterol-lowering treatment before addressing these patients to ivGC therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rosario Le Moli
- *Correspondence: Rosario Le Moli, ; orcid.org/0000-0002-1398-9271
| |
Collapse
|
91
|
Boiko AS, Mednova IA, Kornetova EG, Bokhan NA, Semke AV, Loonen AJM, Ivanova SA. Cortisol and DHEAS Related to Metabolic Syndrome in Patients with Schizophrenia. Neuropsychiatr Dis Treat 2020; 16:1051-1058. [PMID: 32368067 PMCID: PMC7184116 DOI: 10.2147/ndt.s247161] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/28/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Both dehydroepiandrosterone (DHEAS) and cortisol are secreted by the adrenal glands and may modulate metabolic syndrome (MetS), which often affects the health of patients with schizophrenia. The relationship between the serum levels of these hormones and MetS has not been established. PURPOSE In this pilot study, we investigated the serum levels in schizophrenia patients with and without MetS and compared them with those in healthy volunteers. PATIENTS AND METHODS After obtaining informed consent, 110 patients with acute paranoid schizophrenia were recruited directly after admission to the Mental Health Research Institute. The control group consisted of 51 persons reported on questioning to be mentally and somatically healthy. Blood samples to prepare serum were drawn after an 8-h overnight fast during one of the first days of admission. Serum cortisol and DHEAS concentrations were quantified by enzyme-linked immunosorbent assay. RESULTS A total of 42 patients had MetS and 68 patients were without MetS. The cortisol blood level was significantly (p = 0.012) higher in schizophrenia patients without MetS in comparison to healthy controls, while patients with schizophrenia and a MetS have significantly (p = 0.014) lower DHEAS levels than healthy volunteers. These differences could, however, exclusively be attributed to female participants. Analysis of covariance adjusted for gender and age demonstrated a significant relationship between age and DHEAS levels (F = 9.512, р = 0.003). CONCLUSION Lower DHEAS serum levels in relationship to MetS become evident in women, but not in men, and have age differences as a confounding factor.
Collapse
Affiliation(s)
- Anastasiia S Boiko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Irina A Mednova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Elena G Kornetova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,Hospital, Siberian State Medical University, Tomsk, Russian Federation
| | - Nikolay A Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, Russian Federation
| | - Arkadiy V Semke
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Anton J M Loonen
- PharmacoTherapy, -Epidemiology and -Economics, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Svetlana A Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation.,Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, Russian Federation
| |
Collapse
|
92
|
Mitani Y, Lin SH, Pytynia KB, Ferrarotto R, El-Naggar AK. Reciprocal and Autonomous Glucocorticoid and Androgen Receptor Activation in Salivary Duct Carcinoma. Clin Cancer Res 2019; 26:1175-1184. [PMID: 31772120 DOI: 10.1158/1078-0432.ccr-19-1603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/01/2019] [Accepted: 11/22/2019] [Indexed: 01/28/2023]
Abstract
PURPOSE To determine the expression of glucocorticoid receptor (GR) and androgen receptor (AR) in salivary duct carcinoma (SDC) and to analyze the role of these proteins in the development and management of this disease entity. EXPERIMENTAL DESIGN We performed a phenotypic assessment of GR and AR localization and expression, and determined their association with clinicopathologic factors in 67 primary SDCs. In vitro functional and response analysis of SDC cell lines was also performed. RESULTS Of the 67 primary tumors, 12 (18%) overexpressed GR protein, 30 (45%) had constitutive expression, and 25 (37%) had complete loss of expression. Reciprocal GR and AR expression was found in 32 (48%) tumors, concurrent constitutive GR and AR expression in 23 (34%), and simultaneous loss of both receptors and high GR with AR expressions were found in 12 (18%). GR overexpression was significantly associated with worse clinical outcomes. In vitro ligand-independent AR activation was observed in both male- and female-derived cell lines. GR antagonist treatment resulted in decreased cell proliferation and survival in GR-overexpressing cells, irrespective of AR status. Reciprocal GR- and AR-knockdown experiments revealed an independent interaction. CONCLUSIONS Our study, for the first time, demonstrates differential GR and AR expressions, autonomous GR and AR activation, and ligand-independent AR expression and activation in SDC cells. The findings provide critical information on the roles of GR and AR steroid receptors in SDC tumorigenesis and development of biomarkers to guide targeted steroid receptor therapy trials in patients with these tumors.
Collapse
Affiliation(s)
- Yoshitsugu Mitani
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kristen B Pytynia
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Renata Ferrarotto
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adel K El-Naggar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
93
|
Roffe-Vazquez DN, Huerta-Delgado AS, Castillo EC, Villarreal-Calderón JR, Gonzalez-Gil AM, Enriquez C, Garcia-Rivas G, Elizondo-Montemayor L. Correlation of Vitamin D with Inflammatory Cytokines, Atherosclerotic Parameters, and Lifestyle Factors in the Setting of Heart Failure: A 12-Month Follow-Up Study. Int J Mol Sci 2019; 20:ijms20225811. [PMID: 31752330 PMCID: PMC6887713 DOI: 10.3390/ijms20225811] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
Vitamin D deficiency is highly prevalent worldwide. It has been associated with heart failure (HF) given its immunoregulatory functions. In-vitro and animal models have shown protective roles through mechanisms involving procollagen-1, JNK2, calcineurin/NFAT, NF-κB, MAPK, Th1, Th2, Th17, cytokines, cholesterol-efflux, oxLDL, and GLUT4, among others. A 12-month follow-up in HF patients showed a high prevalence of vitamin D deficiency, with no seasonal variation (64.7-82.4%). A positive correlation between serum 25(OH)D concentration and dietary intake of vitamin D-rich foods was found. A significant inverse correlation with IL-1β (R = -0.78), TNF-α (R = -0.53), IL-6 (R = -0.42), IL-8 (R = -0.41), IL-17A (R = -0.31), LDL-cholesterol (R = -0.51), Apo-B (R = -0.57), total-cholesterol (R = -0.48), and triglycerides (R = -0.32) was shown. Cluster analysis demonstrated that patients from cluster three, with the lowest 25(OH)D levels, presented the lowermost vitamin D intake, IL-10 (1.0 ± 0.9 pg/mL), and IL-12p70 (0.5 ± 0.4 pg/mL), but the highest TNF-α (9.1 ± 3.5 pg/mL), IL-8 (55.6 ± 117.1 pg/mL), IL-17A (3.5 ± 2.0 pg/mL), total-cholesterol (193.9 ± 61.4 mg/dL), LDL-cholesterol (127.7 ± 58.2 mg/dL), and Apo-B (101.4 ± 33.4 mg/dL) levels, compared with patients from cluster one. Although the role of vitamin D in the pathogenesis of HF in humans is still uncertain, we applied the molecular mechanisms of in-vitro and animal models to explain our findings. Vitamin D deficiency might contribute to inflammation, remodeling, fibrosis, and atherosclerosis in patients with HF.
Collapse
Affiliation(s)
- Daniel N. Roffe-Vazquez
- Tecnologico de Monterrey, Center for Research in Clinical Nutrition, Escuela de Medicina, Monterrey 64710, N.L., Mexico; (D.N.R.-V.); (A.S.H.-D.); (J.R.V.-C.); (A.M.G.-G.)
| | - Anna S. Huerta-Delgado
- Tecnologico de Monterrey, Center for Research in Clinical Nutrition, Escuela de Medicina, Monterrey 64710, N.L., Mexico; (D.N.R.-V.); (A.S.H.-D.); (J.R.V.-C.); (A.M.G.-G.)
| | - Elena C. Castillo
- Tecnologico de Monterrey, Centro de Investigacion Biomedica, Hospital Zambrano Hellion, San Pedro Garza-Garcia 66278, N.L., Mexico; (E.C.C.); (C.E.)
| | - José R. Villarreal-Calderón
- Tecnologico de Monterrey, Center for Research in Clinical Nutrition, Escuela de Medicina, Monterrey 64710, N.L., Mexico; (D.N.R.-V.); (A.S.H.-D.); (J.R.V.-C.); (A.M.G.-G.)
| | - Adrian M. Gonzalez-Gil
- Tecnologico de Monterrey, Center for Research in Clinical Nutrition, Escuela de Medicina, Monterrey 64710, N.L., Mexico; (D.N.R.-V.); (A.S.H.-D.); (J.R.V.-C.); (A.M.G.-G.)
| | - Cecilio Enriquez
- Tecnologico de Monterrey, Centro de Investigacion Biomedica, Hospital Zambrano Hellion, San Pedro Garza-Garcia 66278, N.L., Mexico; (E.C.C.); (C.E.)
| | - Gerardo Garcia-Rivas
- Tecnologico de Monterrey, Centro de Investigacion Biomedica, Hospital Zambrano Hellion, San Pedro Garza-Garcia 66278, N.L., Mexico; (E.C.C.); (C.E.)
- Tecnologico de Monterrey, Cardiovascular and Metabolomics Research Group, Escuela de Medicina, San Pedro Garza-Garcia 66278, N.L., Mexico
- Correspondence: (G.G.-R.); (L.E.-M.)
| | - Leticia Elizondo-Montemayor
- Tecnologico de Monterrey, Center for Research in Clinical Nutrition, Escuela de Medicina, Monterrey 64710, N.L., Mexico; (D.N.R.-V.); (A.S.H.-D.); (J.R.V.-C.); (A.M.G.-G.)
- Tecnologico de Monterrey, Cardiovascular and Metabolomics Research Group, Escuela de Medicina, San Pedro Garza-Garcia 66278, N.L., Mexico
- Correspondence: (G.G.-R.); (L.E.-M.)
| |
Collapse
|
94
|
Lee KJ, Ko YJ, Kang SK, Kim WS, Cho CS, Choi YJ. Additive anti-inflammation by a combination of conjugated linoleic acid and α-lipoic acid through molecular interaction between both compounds. Food Sci Biotechnol 2019; 29:419-429. [PMID: 32257526 DOI: 10.1007/s10068-019-00677-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/22/2019] [Accepted: 09/04/2019] [Indexed: 02/08/2023] Open
Abstract
Alpha lipoic acid (LA) and conjugated linoleic acid (CLA) have been well-documented on a variety of functional effects in health foods. The main purpose of this study was focused on the additive anti-inflammatory activity of the combination of LA and CLA in vitro. Raw 264.7 cells induced by lipopolysaccharide were treated with LA and CLA individually or in combination at a variety of concentration ranges. Co-treating 25 μM of LA and 25 μM of CLA significantly inhibited pro-inflammatory cytokines compared to the same concentration of single LA- or CLA-treated group. The molecular mechanism of anti-inflammation by a combination of these compounds was attributed to extracellular signal-regulated kinase-1 (ERK1) and peroxisome proliferator-activated receptor gamma (PPARγ). Also, the molecular interaction between both compounds was confirmed by NMR. Our findings suggested that the combination of CLA and LA showed potential additive effect on anti-inflammation through the molecular interaction of both compounds.
Collapse
Affiliation(s)
- Ki-June Lee
- 1Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Yoon-Joo Ko
- 2National Center for Inter-University Research Facilities, Seoul National University, Seoul, 08826 Republic of Korea
| | - Sang-Kee Kang
- 3Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do 25354 Republic of Korea
| | - Whee-Soo Kim
- 1Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Chong-Su Cho
- 1Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Yun-Jaie Choi
- 1Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
95
|
Vandermosten L, Vanhorebeek I, De Bosscher K, Opdenakker G, Van den Steen PE. Critical Roles of Endogenous Glucocorticoids for Disease Tolerance in Malaria. Trends Parasitol 2019; 35:918-930. [PMID: 31606404 DOI: 10.1016/j.pt.2019.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 10/25/2022]
Abstract
During malaria, the hypothalamic-pituitary-adrenal (HPA) axis is activated and glucocorticoid (GC) levels are increased, but their essential roles have been largely overlooked. GCs are decisive for systemic regulation of vital processes such as immune responses, vascular function, and metabolism, which are crucial in malaria. Here, we introduce GCs in general, followed by their versatile roles for disease tolerance in malaria. A complementary comparison is provided with their role in sepsis. Finally, potential translational implications are considered. The failed clinical trials of dexamethasone against cerebral malaria in the past have diminished the interest in GCs in malaria. However, the issue of relative corticosteroid insufficiency has barely been explored in malaria patients, but may hold promise for a better understanding and treatment of specific malaria complications.
Collapse
Affiliation(s)
- Leen Vandermosten
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology, and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Ilse Vanhorebeek
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Karolien De Bosscher
- Translational Nuclear Receptor Research Laboratory, VIB Center for Medical Biotechnology, Department of Biomolecular Medicine, UGent, Ghent, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology, Immunology, and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology, and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.
| |
Collapse
|
96
|
Manou-Stathopoulou V, Korbonits M, Ackland GL. Redefining the perioperative stress response: a narrative review. Br J Anaesth 2019; 123:570-583. [PMID: 31547969 DOI: 10.1016/j.bja.2019.08.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/21/2019] [Accepted: 08/11/2019] [Indexed: 12/13/2022] Open
Abstract
The systemic stress response triggered by surgical trauma is characterised by sterile inflammation preceding metabolic and neuroendocrine dysregulation. However, the relevance of the classically described 'stress response' is now highly questionable in an era where profound physiological deconditioning is common in older, frail surgical patients. Commonly used assessment techniques do not accurately reflect hypothalamic-pituitary-adrenal axis integrity after major surgery. Clinical interpretation of plasma concentrations of cortisol, the prototypical stress hormone, is rarely accurate, because of study heterogeneity, the inherently dynamic characteristics of cortisol production, and assay variability. Before surgery, chronic psychosocial stress and common cardiorespiratory co-morbidities are clinically relevant modifiers of neuroendocrine activation to acute stress/inflammation. The frequent development of multi-morbidity after major surgery further clouds the compartmentalised, discrete model of neuroendocrine activation after initial tissue injury. Starvation, impaired mobility, and sepsis after surgery generate distinct neuroendocrine profiles that challenge the conventional model of neuroendocrine activation. Basic science studies suggest that high circulating levels of cortisol may directly cause organ injury. Conversely, randomised controlled clinical trials investigating glucocorticoid supplementation have delivered contrasting results, with some suggesting a protective effect in the perioperative period. Here, we consider many of the confounding factors that have emerged to challenge the conventional model of the surgical stress response, and suggest that a more nuanced understanding of changes in hypothalamic-pituitary-adrenal axis physiology is warranted to advance perioperative medicine. Re-examining the perioperative stress response presents opportunities for improving outcomes through enhancing the understanding of the neuroendocrine aspects of preparation for and recovery from surgery.
Collapse
Affiliation(s)
- Vasiliki Manou-Stathopoulou
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gareth L Ackland
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
97
|
Transcriptome mining of apoptotic mechanisms in response to density and functional diets in Oncorhynchus mykiss and role in homeostatic regulation. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 31:100595. [DOI: 10.1016/j.cbd.2019.100595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 11/23/2022]
|
98
|
Cavalcante P, Mizrachi T, Barzago C, Scandiffio L, Bortone F, Bonanno S, Frangiamore R, Mantegazza R, Bernasconi P, Brenner T, Vaknin-Dembinsky A, Antozzi C. MicroRNA signature associated with treatment response in myasthenia gravis: A further step towards precision medicine. Pharmacol Res 2019; 148:104388. [PMID: 31401213 DOI: 10.1016/j.phrs.2019.104388] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/26/2019] [Accepted: 08/02/2019] [Indexed: 01/01/2023]
Abstract
Myasthenia gravis (MG) is an autoimmune disorder affecting neuromuscular transmission currently treated with chronic immunosuppression. Inter-subject variation in treatment response and side effects highlight the need for personalized therapies by identification of biomarkers predictive of drug efficacy in individual patients, still lacking in MG. MicroRNAs (miRNAs) play a key role in immune response and drug metabolism modulation. This study, part of an Italian-Israeli collaborative project, aimed to identify specific miRNAs as biomarkers associated with immunosuppressive treatment response in MG patients. Whole miRNome sequencing, followed by miRNA validation by real-time PCR, was performed in peripheral blood from Italian MG patients (n = 40) classified as responder and non-responder to immunosuppressive therapies. MiRNA sequencing identified 41 miRNAs differentially expressed in non-responder compared to responder Italian MG patients. Validation phase pointed out three miRNAs, miR-323b-3p, -409-3p, and -485-3p, clustered on chromosome 14q32.31, the levels of which were significantly decreased in non-responder versus responder patients, whereas miR-181d-5p and -340-3p showed an opposite trend. ROC curve analysis showed sensitivity and specificity performance results indicative of miR-323b-3p, -409-3p, and -485-3p predictive value for responsiveness to immunosuppressive drugs in MG. Validated miRNAs were further analyzed in blood from responder and non-responder MG patients of the Israeli population (n = 33), confirming a role for miR-323b-3p, -409-3p, -485-3p, -181d-5p and -340-3p as biomarkers of drug efficacy. Gene Ontology enrichment analysis, mRNA target prediction, and in silico modeling for function of the identified miRNAs disclosed functional involvement of the five miRNAs, and their putative target genes, in both immune (i.e. neurotrophin TRK and Fc-epsilon receptor signaling pathways) and drug metabolism processes. Our overall findings thus revealed a blood "miR-323b-3p, -409-3p, -485-3p, -181d-5p, and -340-3p" signature associated with drug responsiveness in MG patients. Its identification sets the basis for precision medicine approaches based on "pharmacomiRs" as biomarkers of drug responsiveness in MG, promising to improve therapeutic success in a cost/effective manner.
Collapse
Affiliation(s)
- Paola Cavalcante
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy.
| | - Tehila Mizrachi
- Laboratory of Neuroimmunology, Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, PO Box 12000, Jerusalem, Israel.
| | - Claudia Barzago
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy.
| | - Letizia Scandiffio
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy.
| | - Federica Bortone
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy.
| | - Silvia Bonanno
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy.
| | - Rita Frangiamore
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy.
| | - Renato Mantegazza
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy.
| | - Pia Bernasconi
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy.
| | - Talma Brenner
- Laboratory of Neuroimmunology, Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, PO Box 12000, Jerusalem, Israel.
| | - Adi Vaknin-Dembinsky
- Laboratory of Neuroimmunology, Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, PO Box 12000, Jerusalem, Israel.
| | - Carlo Antozzi
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy.
| |
Collapse
|
99
|
Cannarile L, Delfino DV, Adorisio S, Riccardi C, Ayroldi E. Implicating the Role of GILZ in Glucocorticoid Modulation of T-Cell Activation. Front Immunol 2019; 10:1823. [PMID: 31440237 PMCID: PMC6693389 DOI: 10.3389/fimmu.2019.01823] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoid-induced leucine zipper (GILZ) is a protein with multiple biological roles that is upregulated by glucocorticoids (GCs) in both immune and non-immune cells. Importantly, GCs are immunosuppressive primarily due to their regulation of cell signaling pathways that are crucial for immune system activity. GILZ, which is transcriptionally induced by the glucocorticoid receptor (GR), mediates part of these immunosuppressive, and anti-inflammatory effects, thereby controlling immune cell proliferation, survival, and differentiation. The primary immune cells targeted by the immunosuppressive activity of GCs are T cells. Importantly, the effects of GCs on T cells are partially mediated by GILZ. In fact, GILZ regulates T-cell activation, and differentiation by binding and inhibiting factors essential for T-cell function. For example, GILZ associates with nuclear factor-κB (NF-κB), c-Fos, and c-Jun and inhibits NF-κB-, and AP-1-dependent transcription. GILZ also binds Raf and Ras, inhibits activation of Ras/Raf downstream targets, including mitogen-activated protein kinase 1 (MAPK1). In addition GILZ inhibits forkhead box O3 (FoxO3) without physical interaction. GILZ also promotes the activity of regulatory T cells (Tregs) by activating transforming growth factor-β (TGF-β) signaling. Ultimately, these actions inhibit T-cell activation and modulate the differentiation of T helper (Th)-1, Th-2, Th-17 cells, thereby mediating the immunosuppressive effects of GCs on T cells. In this mini-review, we discuss how GILZ mediates GC activity on T cells, focusing mainly on the therapeutic potential of this protein as a more targeted anti-inflammatory/immunosuppressive GC therapy.
Collapse
Affiliation(s)
- Lorenza Cannarile
- Section of Pharmacology, Department of Medicine, Medical School, University of Perugia, Perugia, Italy
| | - Domenico V Delfino
- Section of Pharmacology, Department of Medicine, Medical School, University of Perugia, Perugia, Italy
| | - Sabrina Adorisio
- Section of Pharmacology, Department of Medicine, Medical School, University of Perugia, Perugia, Italy
| | - Carlo Riccardi
- Section of Pharmacology, Department of Medicine, Medical School, University of Perugia, Perugia, Italy
| | - Emira Ayroldi
- Section of Pharmacology, Department of Medicine, Medical School, University of Perugia, Perugia, Italy
| |
Collapse
|
100
|
Kim SH, Moon JH, Jeong SU, Jung HH, Park CS, Hwang BY, Lee CK. Induction of antigen-specific immune tolerance using biodegradable nanoparticles containing antigen and dexamethasone. Int J Nanomedicine 2019; 14:5229-5242. [PMID: 31371958 PMCID: PMC6636315 DOI: 10.2147/ijn.s210546] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/04/2019] [Indexed: 01/21/2023] Open
Abstract
Purpose Dexamethasone (Dex) has long been used as a potent immunosuppressive agent in the treatment of inflammatory and autoimmune diseases, despite serious side effects. In the present study, Dex and model antigen ovalbumin (OVA) were encapsulated with poly(lactic-co-glycolic acid) to deliver Dex and OVA preferentially to phagocytic cells, reducing systemic side effects of Dex. The OVA-specific immune tolerance-inducing activity of the nanoparticles (NPs) was examined. Methods Polymeric NPs containing OVA and Dex (NP[OVA+Dex]) were prepared by the water-in-oil-in-water double emulsion solvent evaporation method. The effects of NP[OVA+Dex] on the maturation and function of immature dendritic cells (DCs) were examined in vitro. Furthermore, the OVA-specific immune tolerizing effects of NP[OVA+Dex] were confirmed in mice that were intravenously injected or orally fed with the NPs. Results Immature DCs treated in vitro with NP[OVA+Dex] did not mature into immunogenic DCs but instead were converted into tolerogenic DCs. Furthermore, profoundly suppressed generation of OVA-specific cytotoxic T cells and production of OVA-specific IgG were observed in mice injected with NP[OVA+Dex], whereas regulatory T cells were concomitantly increased. Feeding of mice with NP[OVA+Dex] also induced OVA-specific immune tolerance. Conclusion The present study demonstrates that oral feeding as well as intravenous injection of poly(lactic-co-glycolic acid) NPs encapsulating both antigen and Dex is a useful means of inducing antigen-specific immune tolerance, which is crucial for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Sang-Hyun Kim
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Jun-Hyeok Moon
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Seong-Un Jeong
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Ho-Hyun Jung
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Chan-Su Park
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Bang Yeon Hwang
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Chong-Kil Lee
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| |
Collapse
|