51
|
Marino S, Carrasco G, Li B, Shah KM, Lath DL, Sophocleous A, Lawson MA, Idris AI. JZL184, A Monoacylglycerol Lipase Inhibitor, Induces Bone Loss in a Multiple Myeloma Model of Immunocompetent Mice. Calcif Tissue Int 2020; 107:72-85. [PMID: 32285169 PMCID: PMC7271071 DOI: 10.1007/s00223-020-00689-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/26/2020] [Indexed: 02/06/2023]
Abstract
Multiple myeloma (MM) patients develop osteolysis characterised by excessive osteoclastic bone destruction and lack of osteoblast bone formation. Pharmacological manipulation of monoacylglycerol lipase (MAGL), an enzyme responsible for the degradation of the endocannabinoid 2-arachidonoyl glycerol (2-AG), reduced skeletal tumour burden and osteolysis associated with osteosarcoma and advanced breast and prostate cancers. MM and hematopoietic, immune and bone marrow cells express high levels of type 2 cannabinoid receptor and osteoblasts secrete 2-AG. However, the effects of MAGL manipulation on MM have not been investigated. Here, we report that treatment of pre-osteoclasts with non-cytotoxic concentrations of JZL184, a verified MAGL inhibitor, enhanced MM- and RANKL-induced osteoclast formation and size in vitro. Exposure of osteoblasts to JZL184 in the presence of MM cell-derived factors reduced osteoblast growth but had no effect on the ability of these cells to mature or form bone nodules. In vivo, administration of JZL184 induced a modest, yet significant, bone loss at both trabecular and cortical compartments of long bones of immunocompetent mice inoculated with the syngeneic 5TGM1-GFP MM cells. Notably, JZL184 failed to inhibit the in vitro growth of a panel of mouse and human MM cell lines, or reduce tumour burden in mice. Thus, MAGL inhibitors such as JZL184 can exacerbate MM-induced bone loss.
Collapse
Affiliation(s)
- Silvia Marino
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
- IU School of Medicine, Division of Hematology/Oncology, Indiana University, Indianapolis, USA
| | - Giovana Carrasco
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Boya Li
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Karan M Shah
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Darren L Lath
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Antonia Sophocleous
- Department of Life Sciences, School of Sciences, European University Cyprus, 6 Diogenes Street, Nicosia, 1516, Cyprus
| | - Michelle A Lawson
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Aymen I Idris
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
| |
Collapse
|
52
|
Liu TT, Liu XT, Chen QX, Shi Y. Lipase Inhibitors for Obesity: A Review. Biomed Pharmacother 2020; 128:110314. [PMID: 32485574 DOI: 10.1016/j.biopha.2020.110314] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/08/2023] Open
Abstract
With the rapid increase in the population of obese individuals, obesity has become a global problem. Many kinds of chronic metabolic diseases easily caused by obesity have received increasing attention from researchers. People are also striving to find various safe and effective treatment methods as well as anti-obesity medicines. Pancreatic lipase (PL) inhibitors have received substantial attention from researchers in recent years, and PL inhibitors from natural products have attracted much attention due to their structural diversity, low toxicity and wide range of sources. They have been used in the intestinal tract, blood, and the central nervous system with no side effects, and these advantages could lead to a new generation of diet pills or health care products with great development potential. This article is mainly aimed at discussing the research of obesity drug treatment with PL inhibitors and offers a brief review of related properties and the use of PL inhibitors in the field of weight loss.
Collapse
Affiliation(s)
- Tian-Tian Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Xiao-Tian Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Qing-Xi Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Yan Shi
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
53
|
Syal C, Kosaraju J, Hamilton L, Aumont A, Chu A, Sarma SN, Thomas J, Seegobin M, Dilworth FJ, He L, Wondisford FE, Zimmermann R, Parent M, Fernandes K, Wang J. Dysregulated expression of monoacylglycerol lipase is a marker for anti-diabetic drug metformin-targeted therapy to correct impaired neurogenesis and spatial memory in Alzheimer's disease. Am J Cancer Res 2020; 10:6337-6360. [PMID: 32483456 PMCID: PMC7255032 DOI: 10.7150/thno.44962] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
Rationale: Monoacylglycerol lipase (Mgll), a hydrolase that breaks down the endocannabinoid 2-arachidonoyl glycerol (2-AG) to produce arachidonic acid (ARA), is a potential target for neurodegenerative diseases, such as Alzheimer's disease (AD). Increasing evidence shows that impairment of adult neurogenesis by perturbed lipid metabolism predisposes patients to AD. However, it remains unknown what causes aberrant expression of Mgll in AD and how Mgll-regulated lipid metabolism impacts adult neurogenesis, thus predisposing to AD during aging. Here, we identify Mgll as an aging-induced factor that impairs adult neurogenesis and spatial memory in AD, and show that metformin, an FDA-approved anti-diabetic drug, can reduce the expression of Mgll to reverse impaired adult neurogenesis, prevent spatial memory decline and reduce β-amyloid accumulation. Methods: Mgll expression was assessed in both human AD patient post-mortem hippocampal tissues and 3xTg-AD mouse model. In addition, we used both the 3xTg-AD animal model and the CbpS436A genetic knock-in mouse model to identify that elevated Mgll expression is caused by the attenuation of the aPKC-CBP pathway, involving atypical protein kinase C (aPKC)-stimulated Ser436 phosphorylation of histone acetyltransferase CBP through biochemical methods. Furthermore, we performed in vivo adult neurogenesis assay with BrdU/EdU labelling and Morris water maze task in both animal models following pharmacological treatments to show the key role of Mgll in metformin-corrected neurogenesis and spatial memory deficits of AD through reactivating the aPKC-CBP pathway. Finally, we performed in vitro adult neurosphere assays using both animal models to study the role of the aPKC-CBP mediated Mgll repression in determining adult neural stem/progenitor cell (NPC) fate. Results: Here, we demonstrate that aging-dependent induction of Mgll is observed in the 3xTg-AD model and human AD patient post-mortem hippocampal tissues. Importantly, we discover that elevated Mgll expression is caused by the attenuation of the aPKC-CBP pathway. The accumulation of Mgll in the 3xTg-AD mice reduces the genesis of newborn neurons and perturbs spatial memory. However, we find that metformin-stimulated aPKC-CBP pathway decreases Mgll expression to recover these deficits in 3xTg-AD. In addition, we reveal that elevated Mgll levels in cultured adult NPCs from both 3xTg-AD and CbpS436A animal models are responsible for their NPC neuronal differentiation deficits. Conclusion: Our findings set the stage for development of a clinical protocol where Mgll would serve as a biomarker in early stages of AD to identify potential metformin-responsive AD patients to restore their neurogenesis and spatial memory.
Collapse
|
54
|
Stasiulewicz A, Znajdek K, Grudzień M, Pawiński T, Sulkowska JI. A Guide to Targeting the Endocannabinoid System in Drug Design. Int J Mol Sci 2020; 21:ijms21082778. [PMID: 32316328 PMCID: PMC7216112 DOI: 10.3390/ijms21082778] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
The endocannabinoid system (ECS) is one of the most crucial systems in the human organism, exhibiting multi-purpose regulatory character. It is engaged in a vast array of physiological processes, including nociception, mood regulation, cognitive functions, neurogenesis and neuroprotection, appetite, lipid metabolism, as well as cell growth and proliferation. Thus, ECS proteins, including cannabinoid receptors and their endogenous ligands’ synthesizing and degrading enzymes, are promising therapeutic targets. Their modulation has been employed in or extensively studied as a treatment of multiple diseases. However, due to a complex nature of ECS and its crosstalk with other biological systems, the development of novel drugs turned out to be a challenging task. In this review, we summarize potential therapeutic applications for ECS-targeting drugs, especially focusing on promising synthetic compounds and preclinical studies. We put emphasis on modulation of specific proteins of ECS in different pathophysiological areas. In addition, we stress possible difficulties and risks and highlight proposed solutions. By presenting this review, we point out information pivotal in the spotlight of ECS-targeting drug design, as well as provide an overview of the current state of knowledge on ECS-related pharmacodynamics and show possible directions for needed research.
Collapse
Affiliation(s)
- Adam Stasiulewicz
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Correspondence: (A.S.); (J.I.S.)
| | - Katarzyna Znajdek
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Monika Grudzień
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
| | - Tomasz Pawiński
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
| | - Joanna I. Sulkowska
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125, USA
- Correspondence: (A.S.); (J.I.S.)
| |
Collapse
|
55
|
Taïb B, Aboussalah AM, Moniruzzaman M, Chen S, Haughey NJ, Kim SF, Ahima RS. Lipid accumulation and oxidation in glioblastoma multiforme. Sci Rep 2019; 9:19593. [PMID: 31863022 PMCID: PMC6925201 DOI: 10.1038/s41598-019-55985-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/29/2019] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and lethal primary malignant brain tumor in adults. Despite the multimodal standard treatments for GBM, the median survival is still about one year. Analysis of brain tissues from GBM patients shows that lipid droplets are highly enriched in tumor tissues while undetectable in normal brain tissues, yet the identity and functions of lipid species in GBM are not well understood. The aims of the present work are to determine how GBM utilizes fatty acids, and assess their roles in GBM proliferation. Treatment of U138 GBM cells with a monounsaturated fatty acid, oleic acid, induces accumulation of perilipin 2-coated lipid droplets containing triglycerides enriched in C18:1 fatty acid, and increases fatty acid oxidation. Interestingly, oleic acid also increases glucose utilization and proliferation of GBM cells. In contrast, pharmacologic inhibition of monoacylglycerol lipase attenuates GBM proliferation. Our findings demonstrate that monounsaturated fatty acids promote GBM proliferation via triglyceride metabolism, suggesting a novel lipid droplet-mediated pathway which may be targeted for GBM treatment.
Collapse
Affiliation(s)
- Bouchra Taïb
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| | - Amine M Aboussalah
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Canada
| | | | - Suming Chen
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Norman J Haughey
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sangwon F Kim
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, USA
| | - Rexford S Ahima
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
56
|
Dahabiyeh LA, Abu-rish EY, Taha MO. Inhibition of monoglyceride lipase by proton pump inhibitors: investigation using docking and in vitro experiments. Pharmacol Rep 2019; 72:435-442. [PMID: 32048247 DOI: 10.1007/s43440-019-00013-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/26/2019] [Accepted: 10/18/2019] [Indexed: 12/24/2022]
|
57
|
Wyatt RM, Fraser I, Welty N, Lord B, Wennerholm M, Sutton S, Ameriks MK, Dugovic C, Yun S, White A, Nguyen L, Koudriakova T, Tian G, Suarez J, Szewczuk L, Bonnette W, Ahn K, Ghosh B, Flores CM, Connolly PJ, Zhu B, Macielag MJ, Brandt MR, Chevalier K, Zhang SP, Lovenberg T, Bonaventure P. Pharmacologic Characterization of JNJ-42226314, [1-(4-Fluorophenyl)indol-5-yl]-[3-[4-(thiazole-2-carbonyl)piperazin-1-yl]azetidin-1-yl]methanone, a Reversible, Selective, and Potent Monoacylglycerol Lipase Inhibitor. J Pharmacol Exp Ther 2019; 372:339-353. [PMID: 31818916 DOI: 10.1124/jpet.119.262139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/01/2019] [Indexed: 12/14/2022] Open
Abstract
The serine hydrolase monoacylglycerol lipase (MAGL) is the rate-limiting enzyme responsible for the degradation of the endocannabinoid 2-arachidonoylglycerol (2-AG) into arachidonic acid and glycerol. Inhibition of 2-AG degradation leads to elevation of 2-AG, the most abundant endogenous agonist of the cannabinoid receptors (CBs) CB1 and CB2. Activation of these receptors has demonstrated beneficial effects on mood, appetite, pain, and inflammation. Therefore, MAGL inhibitors have the potential to produce therapeutic effects in a vast array of complex human diseases. The present report describes the pharmacologic characterization of [1-(4-fluorophenyl)indol-5-yl]-[3-[4-(thiazole-2-carbonyl)piperazin-1-yl]azetidin-1-yl]methanone (JNJ-42226314), a reversible and highly selective MAGL inhibitor. JNJ-42226314 inhibits MAGL in a competitive mode with respect to the 2-AG substrate. In rodent brain, the compound time- and dose-dependently bound to MAGL, indirectly led to CB1 occupancy by raising 2-AG levels, and raised norepinephrine levels in cortex. In vivo, the compound exhibited antinociceptive efficacy in both the rat complete Freund's adjuvant-induced radiant heat hypersensitivity and chronic constriction injury-induced cold hypersensitivity models of inflammatory and neuropathic pain, respectively. Though 30 mg/kg induced hippocampal synaptic depression, altered sleep onset, and decreased electroencephalogram gamma power, 3 mg/kg still provided approximately 80% enzyme occupancy, significantly increased 2-AG and norepinephrine levels, and produced neuropathic antinociception without synaptic depression or decreased gamma power. Thus, it is anticipated that the profile exhibited by this compound will allow for precise modulation of 2-AG levels in vivo, supporting potential therapeutic application in several central nervous system disorders. SIGNIFICANCE STATEMENT: Potentiation of endocannabinoid signaling activity via inhibition of the serine hydrolase monoacylglycerol lipase (MAGL) is an appealing strategy in the development of treatments for several disorders, including ones related to mood, pain, and inflammation. [1-(4-Fluorophenyl)indol-5-yl]-[3-[4-(thiazole-2-carbonyl)piperazin-1-yl]azetidin-1-yl]methanone is presented in this report to be a novel, potent, selective, and reversible noncovalent MAGL inhibitor that demonstrates dose-dependent enhancement of the major endocannabinoid 2-arachidonoylglycerol as well as efficacy in models of neuropathic and inflammatory pain.
Collapse
Affiliation(s)
- Ryan M Wyatt
- Janssen Research & Development, LLC, San Diego, California
| | - Ian Fraser
- Janssen Research & Development, LLC, San Diego, California
| | - Natalie Welty
- Janssen Research & Development, LLC, San Diego, California
| | - Brian Lord
- Janssen Research & Development, LLC, San Diego, California
| | | | - Steven Sutton
- Janssen Research & Development, LLC, San Diego, California
| | | | | | - Sujin Yun
- Janssen Research & Development, LLC, San Diego, California
| | - Allison White
- Janssen Research & Development, LLC, San Diego, California
| | - Leslie Nguyen
- Janssen Research & Development, LLC, San Diego, California
| | | | - Gaochao Tian
- Janssen Research & Development, LLC, San Diego, California
| | - Javier Suarez
- Janssen Research & Development, LLC, San Diego, California
| | | | | | - Kay Ahn
- Janssen Research & Development, LLC, San Diego, California
| | - Brahma Ghosh
- Janssen Research & Development, LLC, San Diego, California
| | | | | | - Bin Zhu
- Janssen Research & Development, LLC, San Diego, California
| | | | | | | | - Sui-Po Zhang
- Janssen Research & Development, LLC, San Diego, California
| | | | | |
Collapse
|
58
|
van Esbroeck ACM, Varga ZV, Di X, van Rooden EJ, Tóth VE, Onódi Z, Kuśmierczyk M, Leszek P, Ferdinandy P, Hankemeier T, van der Stelt M, Pacher P. Activity-based protein profiling of the human failing ischemic heart reveals alterations in hydrolase activities involving the endocannabinoid system. Pharmacol Res 2019; 151:104578. [PMID: 31794870 DOI: 10.1016/j.phrs.2019.104578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 01/14/2023]
Abstract
AIM Acute myocardial infarction and subsequent post-infarction heart failure are among the leading causes of mortality worldwide. The endocannabinoid system has emerged as an important modulator of cardiovascular disease, however the role of endocannabinoid metabolic enzymes in heart failure is still elusive. Herein, we investigated the endocannabinoids and their metabolic enzymes in ischemic end-stage failing human hearts and non-failing controls. METHODS AND RESULTS Quantitative real-time PCR, targeted lipidomics, and activity-based protein profiling (ABPP) enabled assessment of the endocannabinoids and their metabolic enzymes in ischemic end-stage failing human hearts and non-failing controls. Based on lipidomic analysis, two subgroups were identified within the ischemic heart failure group; the first similar to control hearts and the second with decreased levels of the endocannabinoid 2-arachidonoyl-glycerol (2-AG) and drastically increased levels of the endocannabinoid anandamide (AEA), other N-acylethanolamines (NAEs) and free fatty acids. The altered lipid profile was accompanied by strong reductions in the activity of 13 hydrolases, including the 2-AG hydrolytic enzyme monoacylglycerol lipase (MGLL). CONCLUSIONS Our findings suggest the presence of different biological states within the ischemic heart failure group, based on alterations in the lipid and hydrolase activity profiles. In addition, this study demonstrates that ABPP is a valuable tool to rapidly analyze enzyme activity in clinical samples with potential for novel drug and biomarker discovery.
Collapse
Affiliation(s)
- Annelot C M van Esbroeck
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, the Netherlands
| | - Zoltan V Varga
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, USA; Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary; HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
| | - Xinyu Di
- Department of Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Eva J van Rooden
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, the Netherlands
| | - Viktória E Tóth
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary; HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
| | - Zsófia Onódi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary; HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
| | - Mariusz Kuśmierczyk
- Department of Heart Failure and Transplantology, Cardinal Stefan Wyszyński Institute of Cardiology, Warszawa, Poland
| | - Przemyslaw Leszek
- Department of Heart Failure and Transplantology, Cardinal Stefan Wyszyński Institute of Cardiology, Warszawa, Poland
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Thomas Hankemeier
- Department of Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, the Netherlands
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, USA.
| |
Collapse
|
59
|
Liu T, Peng XC, Li B. The Metabolic Profiles in Hematological Malignancies. Indian J Hematol Blood Transfus 2019; 35:625-634. [PMID: 31741613 DOI: 10.1007/s12288-019-01107-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/25/2019] [Indexed: 11/24/2022] Open
Abstract
Leukemia is one of the most aggressive hematological malignancies. Leukemia stem cells account for the poor prognosis and relapse of the disease. Decades of investigations have been performed to figure out how to eradicate the leukemia stem cells. It has also been known that cancer cells especially solid cancer cells use energy differently than most of the cell types. The same thing happens to leukemia. Since there are metabolic differences between the hematopoietic stem cells and their immediate descendants, we aim at manipulating the energy sources with which that could have an effect on leukemia stem cells while sparing the normal blood cells. In this review we summarize the metabolic characteristics of distinct leukemias such as acute myeloid leukemia, chronic myeloid leukemia, T cell lymphoblastic leukemia, B-cell lymphoblastic leukemia, chronic lymphocytic leukemia and other leukemia associated hematological malignancies such as multiple myeloma and myelodysplastic syndrome. A better understanding of the metabolic profiles in distinct leukemias might provide novel perspectives and shed light on novel metabolic targeting strategies towards the clinical treatment of leukemias.
Collapse
Affiliation(s)
- Tao Liu
- Department of Pathology, People's Hospital of Longhua, Shenzhen, 518131 People's Republic of China
| | - Xing-Chun Peng
- Department of Pathology, People's Hospital of Longhua, Shenzhen, 518131 People's Republic of China
| | - Bin Li
- 2Department of Pathology, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai Clinical Center, CAS, Huaihai Road 966, Shanghai City, 200031 Shanghai People's Republic of China
| |
Collapse
|
60
|
Dato FM, Neudörfl JM, Gütschow M, Goldfuss B, Pietsch M. ω-Quinazolinonylalkyl aryl ureas as reversible inhibitors of monoacylglycerol lipase. Bioorg Chem 2019; 94:103352. [PMID: 31668797 DOI: 10.1016/j.bioorg.2019.103352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023]
Abstract
The serine hydrolase monoacylglycerol lipase (MAGL) is involved in a plethora of pathological conditions, in particular pain and inflammation, various types of cancer, metabolic, neurological and cardiovascular disorders, and is therefore a promising target for drug development. Although a large number of irreversible-acting MAGL inhibitors have been discovered over the past years, there are only few compounds known so far which inhibit the enzyme in a reversible manner. Therefore, much effort is put into the development of novel chemical entities showing reversible inhibitory behavior, which is thought to cause less undesired side effects. To explore a wide range of chemical structures as MAGL binders, we have applied a virtual screening approach by docking small molecules into the crystal structure of human MAGL (hMAGL) and envisaged a library of 45 selected compounds which were then synthesized. Biochemical investigations included the determination of the inhibitory potency on hMAGL and two related hydrolases, i.e. human fatty acid amide hydrolase (hFAAH) and murine cholesterol esterase (mCEase). The most promising candidates from theses analyses, i.e. three ω-quinazolinonylalkyl aryl ureas bearing alkyl spacers of three to five methylene groups, exhibited IC50 values of 20-41 µM and reversible, detergent-insensitive behavior towards hMAGL. Among these compounds, the inhibitor 1-(3,5-bis(trifluoromethyl)phenyl)-3-(4-(4-oxo-3,4-dihydroquinazolin-2-yl)butyl)urea (96) was selected for further kinetic characterization, yielding a dissociation constant Ki = 15.4 µM and a mixed-type inhibition with a pronounced competitive component (α = 8.94). This mode of inhibition was further supported by a docking experiment, which suggested that the inhibitor occupies the substrate binding pocket of hMAGL.
Collapse
Affiliation(s)
- Florian M Dato
- Institute II of Pharmacology, Center of Pharmacology, Medical Faculty, University of Cologne, Gleueler Strasse 24, 50931 Cologne, Germany; Institute of Organic Chemistry, Department of Chemistry, University of Cologne, Greinstrasse 4, 50939 Cologne, Germany
| | - Jörg-Martin Neudörfl
- Institute of Organic Chemistry, Department of Chemistry, University of Cologne, Greinstrasse 4, 50939 Cologne, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Bernd Goldfuss
- Institute of Organic Chemistry, Department of Chemistry, University of Cologne, Greinstrasse 4, 50939 Cologne, Germany.
| | - Markus Pietsch
- Institute II of Pharmacology, Center of Pharmacology, Medical Faculty, University of Cologne, Gleueler Strasse 24, 50931 Cologne, Germany.
| |
Collapse
|
61
|
Grimsey NL, Savinainen JR, Attili B, Ahamed M. Regulating membrane lipid levels at the synapse by small-molecule inhibitors of monoacylglycerol lipase: new developments in therapeutic and PET imaging applications. Drug Discov Today 2019; 25:330-343. [PMID: 31622747 DOI: 10.1016/j.drudis.2019.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/17/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022]
Abstract
Monoacylglycerol lipase (MAGL) is a major endocannabinoid hydrolyzing enzyme and can be regulated to control endogenous lipid levels in the brain. This review highlights the pharmacological roles and in vivo PET imaging of MAGL in brain.
Collapse
Affiliation(s)
- Natasha L Grimsey
- Department of Pharmacology and Clinical Pharmacology, and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Juha R Savinainen
- Institute of Biomedicine, Faculty of Health Sciences, The University of Eastern Finland, Finland
| | - Bala Attili
- Department of Radiology, The University of Cambridge, UK
| | - Muneer Ahamed
- ARC Centre for Innovation in Biomedical Imaging Technology, Centre for Advanced Imaging, The University of Queensland, Australia.
| |
Collapse
|
62
|
Ehrenkranz J, Levine MA. Bones and Joints: The Effects of Cannabinoids on the Skeleton. J Clin Endocrinol Metab 2019; 104:4683-4694. [PMID: 31393556 DOI: 10.1210/jc.2019-00665] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/24/2019] [Indexed: 01/12/2023]
Abstract
CONTEXT The endocannabinoid system uses tissue-specific lipid ligands and G protein‒coupled transmembrane receptors to regulate neurologic, metabolic, and immune responses. Recent studies demonstrate that the endocannabinoid system influences bone metabolism. With the increasing use of endocannabinoid mimetics (e.g., tetrahydrocannabinol and cannabidiol), the involvement of endocannabinoids in bone growth and remodeling has become clinically relevant. EVIDENCE ACQUISITION This literature review is based on a search of PubMed and Google Scholar databases as of June 2019 for all English-language publications relating to cannabinoids and bone. We evaluated retrieved articles for relevance, experimental design, data acquisition, statistical analysis, and conclusions. EVIDENCE SYNTHESIS Preclinical studies establish a role for endocannabinoids in bone metabolism. These studies yield complex and often contradictory results attributed to differences in the specific experimental model examined. Studies using human cells or subjects are limited. CONCLUSIONS In vitro and animal models document that endocannabinoids are involved in bone biology. The relevance of these observations to humans is not clear. The increasing long-term use of medical and recreational cannabis underscores the need to better understand the role of endocannabinoids in human bone metabolism. Moreover, it is important to evaluate the role of endocannabinoids as a therapeutic target to prevent and treat disorders associated with bone loss.
Collapse
Affiliation(s)
- Joel Ehrenkranz
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Michael A Levine
- Center for Bone Health and Division of Pediatric Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
63
|
Abstract
Substance use disorder (SUD) is a major public health crisis worldwide, and effective treatment options are limited. During the past 2 decades, researchers have investigated the impact of a variety of pharmacological approaches to treat SUD, one of which is the use of medical cannabis or cannabinoids. Significant progress was made with the discovery of rimonabant, a selective CB1 receptor (CB1R) antagonist (also an inverse agonist), as a promising therapeutic for SUDs and obesity. However, serious adverse effects such as depression and suicidality led to the withdrawal of rimonabant (and almost all other CB1R antagonists/inverse agonists) from clinical trials worldwide in 2008. Since then, much research interest has shifted to other cannabinoid-based strategies, such as peripheral CB1R antagonists/inverse agonists, neutral CB1R antagonists, allosteric CB1R modulators, CB2R agonists, fatty acid amide hydrolase (FAAH) inhibitors, monoacylglycerol lipase (MAGL) inhibitors, fatty acid binding protein (FABP) inhibitors, or nonaddictive phytocannabinoids with CB1R or CB2R-binding profiles, as new therapeutics for SUDs. In this article, we first review recent progress in research regarding the endocannabinoid systems, cannabis reward versus aversion, and the underlying receptor mechanisms. We then review recent progress in cannabinoid-based medication development for the treatment of SUDs. As evidence continues to accumulate, neutral CB1R antagonists (such as AM4113), CB2R agonists (JWH133, Xie2-64), and nonselective phytocannabinoids (cannabidiol, β-caryophyllene, ∆9-tetrahydrocannabivarin) have shown great therapeutic potential for SUDs, as shown in experimental animals. Several cannabinoid-based medications (e.g., dronabinol, nabilone, PF-04457845) that entered clinical trials have shown promising results in reducing withdrawal symptoms in cannabis and opioid users.
Collapse
Affiliation(s)
- Ewa Galaj
- Addiction Biology Unit, Molecular Targets and Medication Discoveries Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Zheng-Xiong Xi
- Addiction Biology Unit, Molecular Targets and Medication Discoveries Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA.
| |
Collapse
|
64
|
Chen Z, Mori W, Fu H, Schafroth MA, Hatori A, Shao T, Zhang G, Van RS, Zhang Y, Hu K, Fujinaga M, Wang L, Belov V, Ogasawara D, Giffenig P, Deng X, Rong J, Yu Q, Zhang X, Papisov MI, Shao Y, Collier TL, Ma JA, Cravatt BF, Josephson L, Zhang MR, Liang SH. Design, Synthesis, and Evaluation of 18F-Labeled Monoacylglycerol Lipase Inhibitors as Novel Positron Emission Tomography Probes. J Med Chem 2019; 62:8866-8872. [PMID: 31518130 DOI: 10.1021/acs.jmedchem.9b00936] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Dysfunction of monoacylglycerol lipase (MAGL) is associated with several psychopathological disorders, including drug addiction and neurodegenerative diseases. Herein we design, synthesize, and evaluate several irreversible fluorine-containing MAGL inhibitors for positron emission tomography (PET) ligand development. Compound 6 (identified from a therapeutic agent) was advanced for 18F-labeling via a novel spirocyclic iodonium ylide (SCIDY) strategy, which demonstrated high brain permeability and excellent specific binding. This work supports further development of novel 18F-labeled MAGL PET probes.
Collapse
Affiliation(s)
- Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School , Boston , Massachusetts 02114 , United States.,Department of Chemistry, School of Science , Tianjin University , 92 Weijin Road, Nankai District , Tianjin 300072 , China
| | - Wakana Mori
- Department of Radiopharmaceuticals Development , National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , Chiba 263-8555 , Japan
| | - Hualong Fu
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Michael A Schafroth
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology , The Scripps Research Institute , SR107, 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Akiko Hatori
- Department of Radiopharmaceuticals Development , National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , Chiba 263-8555 , Japan
| | - Tuo Shao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Genwei Zhang
- Department of Chemistry and Biochemistry , University of Oklahoma , Norman , Oklahoma 73019 , United States
| | - Richard S Van
- Department of Chemistry and Biochemistry , University of Oklahoma , Norman , Oklahoma 73019 , United States
| | - Yiding Zhang
- Department of Radiopharmaceuticals Development , National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , Chiba 263-8555 , Japan
| | - Kuan Hu
- Department of Radiopharmaceuticals Development , National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , Chiba 263-8555 , Japan
| | - Masayuki Fujinaga
- Department of Radiopharmaceuticals Development , National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , Chiba 263-8555 , Japan
| | - Lu Wang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School , Boston , Massachusetts 02114 , United States.,Department of Nuclear Medicine and PET/CT-MRI Centre, the First Affiliated Hospital of Jinan University & Institute of Molecular and Functional Imaging , Jinan University , Guangzhou 510630 , China
| | - Vasily Belov
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School , Boston , Massachusetts 02114 , United States.,Department of Research , Shriners Hospitals for Children , Boston , Massachusetts 02114 , United States
| | - Daisuke Ogasawara
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology , The Scripps Research Institute , SR107, 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Pilar Giffenig
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School , Boston , Massachusetts 02114 , United States.,Department of Research , Shriners Hospitals for Children , Boston , Massachusetts 02114 , United States
| | - Xiaoyun Deng
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Qingzhen Yu
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Xiaofei Zhang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Mikhail I Papisov
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School , Boston , Massachusetts 02114 , United States.,Department of Research , Shriners Hospitals for Children , Boston , Massachusetts 02114 , United States
| | - Yihan Shao
- Department of Chemistry and Biochemistry , University of Oklahoma , Norman , Oklahoma 73019 , United States
| | - Thomas L Collier
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Jun-An Ma
- Department of Chemistry, School of Science , Tianjin University , 92 Weijin Road, Nankai District , Tianjin 300072 , China
| | - Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology , The Scripps Research Institute , SR107, 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development , National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , Chiba 263-8555 , Japan
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, and Department of Radiology, Harvard Medical School , Boston , Massachusetts 02114 , United States
| |
Collapse
|
65
|
Zhang L, Butler CR, Maresca KP, Takano A, Nag S, Jia Z, Arakawa R, Piro JR, Samad T, Smith DL, Nason DM, O'Neil S, McAllister L, Schildknegt K, Trapa P, McCarthy TJ, Villalobos A, Halldin C. Identification and Development of an Irreversible Monoacylglycerol Lipase (MAGL) Positron Emission Tomography (PET) Radioligand with High Specificity. J Med Chem 2019; 62:8532-8543. [PMID: 31483137 DOI: 10.1021/acs.jmedchem.9b00847] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Monoacylglycerol lipase (MAGL), a serine hydrolase extensively expressed throughout the brain, serves as a key gatekeeper regulating the tone of endocannabinoid signaling. Preclinically, inhibition of MAGL is known to provide therapeutic benefits for a number of neurological disorders. The availability of a MAGL-specific positron emission tomography (PET) ligand would considerably facilitate the development and clinical characterization of MAGL inhibitors via noninvasive and quantitative PET imaging. Herein, we report the identification of the potent and selective irreversible MAGL inhibitor 7 (PF-06809247) as a suitable radioligand lead, which upon radiolabeling was found to exhibit a high level of MAGL specificity; this enabled cross-species measurement of MAGL brain expression (Bmax), assessment of in vivo binding in the rat, and nonhuman primate PET imaging.
Collapse
Affiliation(s)
| | | | | | - Akihiro Takano
- Department of Clinical Neuroscience, Center for Psychiatry Research , Karolinska Institutet and Stockholm County Council , SE-17176 Stockholm , Sweden
| | - Sangram Nag
- Department of Clinical Neuroscience, Center for Psychiatry Research , Karolinska Institutet and Stockholm County Council , SE-17176 Stockholm , Sweden
| | - Zhisheng Jia
- Department of Clinical Neuroscience, Center for Psychiatry Research , Karolinska Institutet and Stockholm County Council , SE-17176 Stockholm , Sweden
| | - Ryosuke Arakawa
- Department of Clinical Neuroscience, Center for Psychiatry Research , Karolinska Institutet and Stockholm County Council , SE-17176 Stockholm , Sweden
| | | | | | | | | | | | | | | | | | | | | | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research , Karolinska Institutet and Stockholm County Council , SE-17176 Stockholm , Sweden
| |
Collapse
|
66
|
Chinnadurai A, Berger G, Burkovskiy I, Zhou J, Cox A, Lynch M, Lehmann C. Monoacylglycerol lipase inhibition as potential treatment for interstitial cystitis. Med Hypotheses 2019; 131:109321. [PMID: 31443753 DOI: 10.1016/j.mehy.2019.109321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/19/2019] [Indexed: 12/20/2022]
Abstract
Interstitial cystitis is a chronic inflammatory condition of the urinary bladder with an unclear etiology. Currently, there are no widely accepted long-term treatment options available for patients with IC, with the European Association of Urology (EAU, 2017 guidelines), American Urology Association (AUA, 2014 guidelines), and the Royal College of Obstetricians and Gynaecologists (RCOG, 2016 guidelines) all suggesting various different conservative, pharmacological, intravesical, and surgical interventions. The endocannabinoid system represents a potential target for IC treatment and management. Activation of cannabinoid receptor 2 (CBR2) with various agonists has previously been shown to reduce leukocyte differentiation and migration, in addition to inhibiting the release of pro-inflammatory cytokines at the site of inflammation. These receptors have been identified in the detrusor and sensory nerves of the urothelium in various mammalian species, including humans. We hypothesize that by inhibiting the enzymes responsible for the catabolism of endogenous cannabinoids locally, bladder concentrations of CBR2 agonists will increase, particularly 2-arachidonyl glycerol, resulting in a diminished inflammatory response.
Collapse
Affiliation(s)
- Anu Chinnadurai
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Geraint Berger
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ian Burkovskiy
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Juan Zhou
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Ashley Cox
- Department of Urology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mary Lynch
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
67
|
Rodríguez-Soacha DA, Scheiner M, Decker M. Multi-target-directed-ligands acting as enzyme inhibitors and receptor ligands. Eur J Med Chem 2019; 180:690-706. [PMID: 31401465 DOI: 10.1016/j.ejmech.2019.07.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/04/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022]
Abstract
In this review, we present the latest advances in the field of multi-target-directed ligand (MTDL) design for the treatment of various complex pathologies of multifactorial origin. In particular, latest findings in the field of MTDL design targeting both an enzyme and a receptor are presented for different diseases such as Alzheimer's disease (AD), depression, addiction, glaucoma, non-alcoholic steatohepatitis and pain and inflammation. The ethology of the diseases is briefly described, with special emphasis on how the MTDL can evolve into novel therapies that replace the classic pharmacological dogma "one target one disease". Considering the current needs for therapy adherence improvement, it is exposed as from the medicinal chemistry, different molecular scaffolds are studied. With the use of structure activity relationship studies and molecular optimization, new hybrid molecules are generated with improved biological properties acting at two biologically very distinct targets.
Collapse
Affiliation(s)
- Diego Alejandro Rodríguez-Soacha
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Matthias Scheiner
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
68
|
Burstein SH. Eicosanoid mediation of cannabinoid actions. Bioorg Med Chem 2019; 27:2718-2728. [DOI: 10.1016/j.bmc.2019.05.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/08/2019] [Accepted: 05/11/2019] [Indexed: 12/26/2022]
|
69
|
Mori W, Hatori A, Zhang Y, Kurihara Y, Yamasaki T, Xie L, Kumata K, Hu K, Fujinaga M, Zhang MR. Radiosynthesis and evaluation of a novel monoacylglycerol lipase radiotracer: 1,1,1,3,3,3-hexafluoropropan-2-yl-3-(1-benzyl-1H-pyrazol-3-yl)azetidine-1-[ 11C]carboxylate. Bioorg Med Chem 2019; 27:3568-3573. [PMID: 31278005 DOI: 10.1016/j.bmc.2019.06.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 01/07/2023]
Abstract
Monoacylglycerol lipase (MAGL) is a major serine hydrolase that hydrolyses 2-arachidonoylglycerol (2-AG) into arachidonic acid (AA) and glycerol in the brain. Because 2-AG and AA are endogenous biologically active ligands in the brain, the inhibition of MAGL is an attractive therapeutic target for neurodegenerative diseases. In this study, to visualize MAGL via positron emission tomography (PET), we report a new carbon-11-labeled radiotracer, namely 1,1,1,3,3,3-hexafluoropropan-2-yl-3-(1-benzyl-1H-pyrazol-3-yl)azetidine-1-[11C]carboxylate ([11C]6). Compound 6 exhibited high in vitro binding affinity (IC50 = 0.41 nM) to MAGL in the brain with a suitable lipophilicity (cLogD = 3.29). [11C]6 was synthesized by reacting 1,1,1,3,3,3-hexafluoropropanol (7) with [11C]phosgene ([11C]COCl2), followed by a reaction with 3-(1-benzyl-1H-pyrazol-3-yl)azetidine hydrochloride (8), which resulted in a 15.0 ± 6.8% radiochemical yield (decay-corrected, n = 7) based on [11C]CO2 and a 45 min synthesis time from the end of bombardment. A biodistribution study in mice showed high uptake of radioactivity in MAGL-rich organs, including the lungs, heart, and kidneys. More than 90% of the total radioactivity was irreversibly bound in the brain homogenate of rats 5 min and 30 min after the radiotracer injection. PET summation images of rat brains showed high radioactivity in all brain regions. Pretreatment with 6 or MAGL-selective inhibitor JW642 significantly reduced the uptake of radioactivity in the brain. [11C]6 is a promising PET tracer which offers in vivo specific binding and selectivity for MAGL in rodent brains.
Collapse
Affiliation(s)
- Wakana Mori
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Akiko Hatori
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yiding Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yusuke Kurihara
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; SHI Accelerator Service Co., 1-17-6 Osaki, Shinagawa-ku, Tokyo 141-0032, Japan
| | - Tomoteru Yamasaki
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Lin Xie
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Katsushi Kumata
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Kuan Hu
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masayuki Fujinaga
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| |
Collapse
|
70
|
Marino S, de Ridder D, Bishop RT, Renema N, Ponzetti M, Sophocleous A, Capulli M, Aljeffery A, Carrasco G, Gens MD, Khogeer A, Ralston SH, Gertsch J, Lamoureux F, Heymann D, Rucci N, Idris AI. Paradoxical effects of JZL184, an inhibitor of monoacylglycerol lipase, on bone remodelling in healthy and cancer-bearing mice. EBioMedicine 2019; 44:452-466. [PMID: 31151929 PMCID: PMC6606522 DOI: 10.1016/j.ebiom.2019.05.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cancer-associated bone disease is a serious complication in bone sarcomas and metastatic carcinomas of breast and prostate origin. Monoacylglycerol lipase (MAGL) is an enzyme of the endocannabinoid system, and is responsible for the degradation of the most abundant endocannabinoid in bone, 2-arachidonoyl glycerol (2AG). METHODS The effects of the verified MAGL inhibitor on bone remodelling were assessed in healthy mice and in mouse models of bone disease caused by prostate and breast cancers and osteosarcoma. FINDINGS JZL184 reduced osteolytic bone metastasis in mouse models of breast and prostate cancers, and inhibited skeletal tumour growth, metastasis and the formation of ectopic bone in models of osteosarcoma. Additionally, JZL184 suppressed cachexia and prolonged survival in mice injected with metastatic osteosarcoma and osteotropic cancer cells. Functional and histological analysis revealed that the osteoprotective action of JZL184 in cancer models is predominately due to inhibition of tumour growth and metastasis. In the absence of cancer, however, exposure to JZL184 exerts a paradoxical reduction of bone volume via an effect that is mediated by both Cnr1 and Cnr2 cannabinoid receptors. INTERPRETATION MAGL inhibitors such as JZL184, or its novel analogues, may be of value in the treatment of bone disease caused by primary bone cancer and bone metastasis, however, activation of the skeletal endocannabinoid system may limit their usefulness as osteoprotective agents.
Collapse
Affiliation(s)
- Silvia Marino
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK; Bone and Cancer Group, Edinburgh Cancer Research Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XR, UK
| | - Daniëlle de Ridder
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Ryan T Bishop
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Nathalie Renema
- INSERM, U1238, University of Nantes, Faculty of Medicine, 1 rue Gaston Veil, 44035 Nantes, Cedex 1, France
| | - Marco Ponzetti
- University of L'Aquila, Department of Biotechnological and Applied Clinical Sciences, L'Aquila, Italy
| | - Antonia Sophocleous
- Rheumatic disease unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK; Department of Life Sciences, School of Sciences, European University Cyprus, 6 Diogenes Street, 1516 Nicosia, Cyprus
| | - Mattia Capulli
- University of L'Aquila, Department of Biotechnological and Applied Clinical Sciences, L'Aquila, Italy
| | - Abdullah Aljeffery
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Giovana Carrasco
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | | | - Asim Khogeer
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK; Bone and Cancer Group, Edinburgh Cancer Research Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XR, UK
| | - Stuart H Ralston
- Rheumatic disease unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland
| | - Francois Lamoureux
- INSERM, U1238, University of Nantes, Faculty of Medicine, 1 rue Gaston Veil, 44035 Nantes, Cedex 1, France
| | - Dominique Heymann
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK; INSERM, U1232, CRCINA, Institut de Cancérologie de l'Ouest, University of Nantes, Université d'Angers, Blvd Jacques Monod, 44805 Saint-Herblain, France
| | - Nadia Rucci
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK; University of L'Aquila, Department of Biotechnological and Applied Clinical Sciences, L'Aquila, Italy
| | - Aymen I Idris
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK; Bone and Cancer Group, Edinburgh Cancer Research Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XR, UK.
| |
Collapse
|
71
|
Pope ED, Kimbrough EO, Vemireddy LP, Surapaneni PK, Copland JA, Mody K. Aberrant lipid metabolism as a therapeutic target in liver cancer. Expert Opin Ther Targets 2019; 23:473-483. [PMID: 31076001 DOI: 10.1080/14728222.2019.1615883] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is one of the most common and lethal cancers. Progress has been made in treatment of HCC; however, improved outcomes are much needed. The increased metabolic needs of cancer cells underscore the importance of metabolic pathways in cancer cell survival. Lipid metabolism has a role in HCC development; aberrant overexpression of several key enzymes is seen in many solid human tumors. Areas covered: We discuss aberrant lipid metabolism and the promise of multiple targets, in particular related to HCC treatment. We searched PubMed and clinicaltrials.gov for published and unpublished studies from 2000 to 2019. These terms were used: lipids, fatty acid metabolism, lipid metabolism, liver cancer, HCC, de novo fatty acid synthesis, ATP citrate lyase, stearoyl CoA denaturase, fatty acid synthase, acetyl coenzyme A carboxylase, CD147, KLF4, monoglyceride lipase, AMP activated protein kinase. Expert opinion: The importance of dysregulation of fatty acid synthesis in cancer is a growing area of research. HCC demonstrates significant alteration in lipid metabolism, representing great potential as a target for novel therapeutics. Various agents have demonstrated promising anti-neoplastic activity. This strategy deserves further development for improved outcomes.
Collapse
Affiliation(s)
- Evans D Pope
- a Cancer Clinical Studies Unit , Mayo Clinic , Jacksonville , FL , USA
| | | | | | | | - John A Copland
- d Department of Cancer Biology , Mayo Clinic , Jacksonville , FL , USA
| | - Kabir Mody
- c Division of Hematology and Medical Oncology , Mayo Clinic , Jacksonville , FL , USA
| |
Collapse
|
72
|
Ali MR, Kumar S, Shalmali N, Afzal O, Azim S, Chanana D, Alam O, Paudel YN, Sharma M, Bawa S. Development of Thiazole-5-carboxylate Derivatives as Selective Inhibitors of Monoacylglycerol Lipase as Target in Cancer. Mini Rev Med Chem 2019; 19:410-423. [PMID: 29962341 DOI: 10.2174/1389557518666180702103542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/07/2017] [Accepted: 06/27/2018] [Indexed: 01/28/2023]
Abstract
INTRODUCTION The signalling function of 2-arachidonoylglycerol (2-AG) in endocannabinoid system is delineated by Monoacylglycerol lipase (MAGL). MAGL readdresses the lipid stores in the direction of pro-tumorigenic signalling lipids in cancer cells. Selective as well as potent MAGL inhibitors are limited in number hence their continuous development may lead to a breakthrough invention in the field of MAGL inhibitors. In succession of the above, we have synthesised 2-amino-4- methylthiazole-5-carboxylate derivatives and characterised them by collective use of IR, 1H-NMR, 13C-NMR, Mass spectral data and elemental analysis. METHODOLOGY Thirteen compounds (3c-g, 4c, 4e, 4f and 6b-f) inhibited MAGL with IC50 value 0.037- 9.60 µM. Two compounds (3g and 4c) were found to be most potent with IC50 values 0.037 and 0.063µM, respectively. Thirty synthesised compounds were sent to NCI for anticancer screening, out of which nine compounds were selected for one dose anticancer assay. Compounds 3g (NSC:788170) and 4c (NSC:788176)were found to be the most potent during one dose anticancer screening and fulfilled the specified threshold for growth inhibition criteria of NCI and were further selected for full panel five dose assay at 10-fold dilutions of five different concentrations. CONCLUSION Compound 3g displayed GI50 value 0.865 μM against EKVX (Non-Small Cell Lung Cancer cell line), and 1.20 µM against MDA-MB-468 (Breast Cancer cell Line), while (4c) showed GI50 value 0.34 and 0.96 µM against HOP-92 and EKVX (Non-Small Cell Lung Cancer cell line) and 1.08 µM against MDA-MB-231/ATCC(Breast Cancer cell Line). In addition, molecular docking studies of the said MAGL inhibitors have also been presented in this article.
Collapse
Affiliation(s)
- Md Rahmat Ali
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi-110062, India
| | - Suresh Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi-110062, India
| | - Nishtha Shalmali
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi-110062, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi-110062, India
| | - Sabir Azim
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi-110062, India
| | - Damini Chanana
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi-110062, India
| | - Ozair Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi-110062, India
| | - Yam Nath Paudel
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi-110062, India
| | - Manju Sharma
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi-110062, India
| | - Sandhya Bawa
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
73
|
Chen Z, Mori W, Deng X, Cheng R, Ogasawara D, Zhang G, Schafroth MA, Dahl K, Fu H, Hatori A, Shao T, Zhang Y, Yamasaki T, Zhang X, Rong J, Yu Q, Hu K, Fujinaga M, Xie L, Kumata K, Gou Y, Chen J, Gu S, Bao L, Wang L, Collier TL, Vasdev N, Shao Y, Ma JA, Cravatt BF, Fowler C, Josephson L, Zhang MR, Liang SH. Design, Synthesis, and Evaluation of Reversible and Irreversible Monoacylglycerol Lipase Positron Emission Tomography (PET) Tracers Using a "Tail Switching" Strategy on a Piperazinyl Azetidine Skeleton. J Med Chem 2019; 62:3336-3353. [PMID: 30829483 DOI: 10.1021/acs.jmedchem.8b01778] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Monoacylglycerol lipase (MAGL) is a serine hydrolase that degrades 2-arachidonoylglycerol (2-AG) in the endocannabinoid system (eCB). Selective inhibition of MAGL has emerged as a potential therapeutic approach for the treatment of diverse pathological conditions, including chronic pain, inflammation, cancer, and neurodegeneration. Herein, we disclose a novel array of reversible and irreversible MAGL inhibitors by means of "tail switching" on a piperazinyl azetidine scaffold. We developed a lead irreversible-binding MAGL inhibitor 8 and reversible-binding compounds 17 and 37, which are amenable for radiolabeling with 11C or 18F. [11C]8 ([11C]MAGL-2-11) exhibited high brain uptake and excellent binding specificity in the brain toward MAGL. Reversible radioligands [11C]17 ([11C]PAD) and [18F]37 ([18F]MAGL-4-11) also demonstrated excellent in vivo binding specificity toward MAGL in peripheral organs. This work may pave the way for the development of MAGL-targeted positron emission tomography tracers with tunability in reversible and irreversible binding mechanisms.
Collapse
Affiliation(s)
- Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology , Harvard Medical School , Boston , Massachusetts 02114 , United States.,Department of Chemistry, School of Science , Tianjin University , 92 Weijin Road , Nankai District, Tianjin 300072 , China
| | - Wakana Mori
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences , National Institutes for Quantum and Radiological Science and Technology , Chiba 263-8555 , Japan
| | - Xiaoyun Deng
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology , Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Ran Cheng
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology , Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Daisuke Ogasawara
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology , The Scripps Research Institute , SR107 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Genwei Zhang
- Department of Chemistry and Biochemistry , University of Oklahoma , Norman , Oklahoma 73019 , United States
| | - Michael A Schafroth
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology , The Scripps Research Institute , SR107 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Kenneth Dahl
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology , Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Hualong Fu
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology , Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Akiko Hatori
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences , National Institutes for Quantum and Radiological Science and Technology , Chiba 263-8555 , Japan
| | - Tuo Shao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology , Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Yiding Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences , National Institutes for Quantum and Radiological Science and Technology , Chiba 263-8555 , Japan
| | - Tomoteru Yamasaki
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences , National Institutes for Quantum and Radiological Science and Technology , Chiba 263-8555 , Japan
| | - Xiaofei Zhang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology , Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology , Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Qingzhen Yu
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology , Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Kuan Hu
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences , National Institutes for Quantum and Radiological Science and Technology , Chiba 263-8555 , Japan
| | - Masayuki Fujinaga
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences , National Institutes for Quantum and Radiological Science and Technology , Chiba 263-8555 , Japan
| | - Lin Xie
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences , National Institutes for Quantum and Radiological Science and Technology , Chiba 263-8555 , Japan
| | - Katsushi Kumata
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences , National Institutes for Quantum and Radiological Science and Technology , Chiba 263-8555 , Japan
| | - Yuancheng Gou
- ChemShuttle, Inc. , 1699 Huishan Blvd. , Wuxi , Jiangsu 214174 , China
| | - Jingjin Chen
- ChemShuttle, Inc. , 1699 Huishan Blvd. , Wuxi , Jiangsu 214174 , China
| | - Shuyin Gu
- ChemShuttle, Inc. , 1699 Huishan Blvd. , Wuxi , Jiangsu 214174 , China
| | - Liang Bao
- ChemShuttle, Inc. , 1699 Huishan Blvd. , Wuxi , Jiangsu 214174 , China
| | - Lu Wang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology , Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Thomas Lee Collier
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology , Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology , Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Yihan Shao
- Department of Chemistry and Biochemistry , University of Oklahoma , Norman , Oklahoma 73019 , United States
| | - Jun-An Ma
- Department of Chemistry, School of Science , Tianjin University , 92 Weijin Road , Nankai District, Tianjin 300072 , China
| | - Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology , The Scripps Research Institute , SR107 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Christopher Fowler
- Department of Pharmacology and Clinical Neuroscience , Umeå University , SE-901 87 Umeå , Sweden
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology , Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences , National Institutes for Quantum and Radiological Science and Technology , Chiba 263-8555 , Japan
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology , Harvard Medical School , Boston , Massachusetts 02114 , United States
| |
Collapse
|
74
|
Otrubova K, Chatterjee S, Ghimire S, Cravatt BF, Boger DL. N-Acyl pyrazoles: Effective and tunable inhibitors of serine hydrolases. Bioorg Med Chem 2019; 27:1693-1703. [PMID: 30879861 DOI: 10.1016/j.bmc.2019.03.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 11/24/2022]
Abstract
A series of N-acyl pyrazoles was examined as candidate serine hydrolase inhibitors in which the active site acylating reactivity and the leaving group ability of the pyrazole could be tuned not only through the nature of the acyl group (reactivity: amide > carbamate > urea), but also through pyrazole C4 substitution with electron-withdrawing or electron-donating substituents. Their impact on enzyme inhibitory activity displayed pronounced effects with the activity improving substantially as one alters both the nature of the reacting carbonyl group (urea > carbamate > amide) and the pyrazole C4 substituent (CN > H > Me). It was further demonstrated that the acyl chain of the N-acyl pyrazole ureas can be used to tailor the potency and selectivity of the inhibitor class to a targeted serine hydrolase. Thus, elaboration of the acyl chain of pyrazole-based ureas provided remarkably potent, irreversible inhibitors of fatty acid amide hydrolase (FAAH, apparent Ki = 100-200 pM), dual inhibitors of FAAH and monoacylglycerol hydrolase (MGLL), or selective inhibitors of MGLL (IC50 = 10-20 nM) while simultaneously minimizing off-target activity (e.g., ABHD6 and KIAA1363).
Collapse
Affiliation(s)
- Katerina Otrubova
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shreyosree Chatterjee
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Srijana Ghimire
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Benjamin F Cravatt
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Dale L Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
75
|
Hattori Y, Aoyama K, Maeda J, Arimura N, Takahashi Y, Sasaki M, Fujinaga M, Seki C, Nagai Y, Kawamura K, Yamasaki T, Zhang MR, Higuchi M, Koike T. Design, Synthesis, and Evaluation of (4R)-1-{3-[2-(18F)Fluoro-4-methylpyridin-3-yl]phenyl}-4-[4-(1,3-thiazol-2-ylcarbonyl)piperazin-1-yl]pyrrolidin-2-one ([18F]T-401) as a Novel Positron-Emission Tomography Imaging Agent for Monoacylglycerol Lipase. J Med Chem 2019; 62:2362-2375. [DOI: 10.1021/acs.jmedchem.8b01576] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yasushi Hattori
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kazunobu Aoyama
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Jun Maeda
- National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Naoto Arimura
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yasuko Takahashi
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masako Sasaki
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masayuki Fujinaga
- National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Chie Seki
- National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Yuji Nagai
- National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Kazunori Kawamura
- National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Tomoteru Yamasaki
- National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Ming-Rong Zhang
- National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Makoto Higuchi
- National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Tatsuki Koike
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
76
|
Granchi C, Lapillo M, Glasmacher S, Bononi G, Licari C, Poli G, el Boustani M, Caligiuri I, Rizzolio F, Gertsch J, Macchia M, Minutolo F, Tuccinardi T, Chicca A. Optimization of a Benzoylpiperidine Class Identifies a Highly Potent and Selective Reversible Monoacylglycerol Lipase (MAGL) Inhibitor. J Med Chem 2019; 62:1932-1958. [DOI: 10.1021/acs.jmedchem.8b01483] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Carlotta Granchi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Margherita Lapillo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Sandra Glasmacher
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, CH-3012 Bern, Switzerland
| | - Giulia Bononi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Cristina Licari
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Maguie el Boustani
- Pathology Unit, Department of Molecular Biology and Translational Research, National Cancer Institute and Center for Molecular Biomedicine, 33081 Aviano, Pordenone, Italy
- Doctoral School in Molecular Biomedicine, University of Trieste, 34100 Trieste, Italy
| | - Isabella Caligiuri
- Pathology Unit, Department of Molecular Biology and Translational Research, National Cancer Institute and Center for Molecular Biomedicine, 33081 Aviano, Pordenone, Italy
| | - Flavio Rizzolio
- Pathology Unit, Department of Molecular Biology and Translational Research, National Cancer Institute and Center for Molecular Biomedicine, 33081 Aviano, Pordenone, Italy
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University, 30123 Venezia, Italy
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, CH-3012 Bern, Switzerland
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Filippo Minutolo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Andrea Chicca
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, CH-3012 Bern, Switzerland
| |
Collapse
|
77
|
Aida J, Fushimi M, Kusumoto T, Sugiyama H, Arimura N, Ikeda S, Sasaki M, Sogabe S, Aoyama K, Koike T. Design, Synthesis, and Evaluation of Piperazinyl Pyrrolidin-2-ones as a Novel Series of Reversible Monoacylglycerol Lipase Inhibitors. J Med Chem 2018; 61:9205-9217. [DOI: 10.1021/acs.jmedchem.8b00824] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jumpei Aida
- Research, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Makoto Fushimi
- Research, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tomokazu Kusumoto
- Research, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hideyuki Sugiyama
- Research, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Naoto Arimura
- Research, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Shuhei Ikeda
- Research, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masako Sasaki
- Research, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Satoshi Sogabe
- Research, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kazunobu Aoyama
- Research, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tatsuki Koike
- Research, Takeda Pharmaceutical Co., Ltd., 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
78
|
Bononi G, Granchi C, Lapillo M, Giannotti M, Nieri D, Fortunato S, Boustani ME, Caligiuri I, Poli G, Carlson KE, Kim SH, Macchia M, Martinelli A, Rizzolio F, Chicca A, Katzenellenbogen JA, Minutolo F, Tuccinardi T. Discovery of long-chain salicylketoxime derivatives as monoacylglycerol lipase (MAGL) inhibitors. Eur J Med Chem 2018; 157:817-836. [DOI: 10.1016/j.ejmech.2018.08.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/19/2018] [Accepted: 08/14/2018] [Indexed: 02/08/2023]
|
79
|
Covey DP, Dantrassy HM, Yohn SE, Castro A, Conn PJ, Mateo Y, Cheer JF. Inhibition of endocannabinoid degradation rectifies motivational and dopaminergic deficits in the Q175 mouse model of Huntington's disease. Neuropsychopharmacology 2018; 43:2056-2063. [PMID: 29925886 PMCID: PMC6098121 DOI: 10.1038/s41386-018-0107-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/18/2018] [Accepted: 05/24/2018] [Indexed: 12/13/2022]
Abstract
Prominent motor deficits (e.g., chorea) that typify Huntington's disease (HD) arise following a prolonged prodromal stage characterized by psychiatric disturbances. Apathy, a disorder of motivation characterized by diminished goal-directed behavior, is one of the earliest and most common psychiatric symptoms in HD, but the underlying neurobiology is unclear and treatment options are limited. Alterations in the endocannabinoid (eCB) and dopamine systems represent prominent pathophysiological markers in HD that-similar to motivational deficits-present early and decline across disease progression. Whether changes in dopamine and eCB systems are associated with specific behavioral impairments in HD and whether these deficits are amenable to viable treatments is unknown. Here, we show that dopaminergic encoding of effortful drive progressively declines with age in an HD mouse model, and is restored by elevating tissue levels of the eCB 2-arachidonoylglycerol (2-AG) through targeted inhibition of its enzymatic degradation. This work supports aberrant dopaminergic encoding of reward as a neurobiological correlate of apathy in HD, and indicates that cannabinoid receptor-based therapies may benefit neuropsychiatric care for HD.
Collapse
Affiliation(s)
- Dan P Covey
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hannah M Dantrassy
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Samantha E Yohn
- Department of Pharmacology, Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, USA
| | - Alberto Castro
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yolanda Mateo
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institute of Health, Rockville, MD, USA
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
80
|
Cisar JS, Weber OD, Clapper JR, Blankman JL, Henry CL, Simon GM, Alexander JP, Jones TK, Ezekowitz RAB, O’Neill GP, Grice CA. Identification of ABX-1431, a Selective Inhibitor of Monoacylglycerol Lipase and Clinical Candidate for Treatment of Neurological Disorders. J Med Chem 2018; 61:9062-9084. [DOI: 10.1021/acs.jmedchem.8b00951] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Justin S. Cisar
- Abide Therapeutics, 10835 Road to the Cure, Suite 250, San Diego, California 92121, United States
| | - Olivia D. Weber
- Abide Therapeutics, 10835 Road to the Cure, Suite 250, San Diego, California 92121, United States
| | - Jason R. Clapper
- Abide Therapeutics, 10835 Road to the Cure, Suite 250, San Diego, California 92121, United States
| | - Jacqueline L. Blankman
- Abide Therapeutics, 10835 Road to the Cure, Suite 250, San Diego, California 92121, United States
| | - Cassandra L. Henry
- Abide Therapeutics, 10835 Road to the Cure, Suite 250, San Diego, California 92121, United States
| | - Gabriel M. Simon
- Vividion Therapeutics, 3565 General Atomics Court, Suite 100, San Diego, California 92121, United States
| | - Jessica P. Alexander
- Abide Therapeutics, 10835 Road to the Cure, Suite 250, San Diego, California 92121, United States
| | - Todd K. Jones
- Abide Therapeutics, 10835 Road to the Cure, Suite 250, San Diego, California 92121, United States
| | - R. Alan B. Ezekowitz
- Abide Therapeutics, 10835 Road to the Cure, Suite 250, San Diego, California 92121, United States
| | - Gary P. O’Neill
- Abide Therapeutics, 10835 Road to the Cure, Suite 250, San Diego, California 92121, United States
| | - Cheryl A. Grice
- Abide Therapeutics, 10835 Road to the Cure, Suite 250, San Diego, California 92121, United States
| |
Collapse
|
81
|
Monoacylglycerol Lipase Inhibitor is Safe when Combined with Delayed r-tPA Administration in Treatment of Stroke. Inflammation 2018; 41:2052-2059. [DOI: 10.1007/s10753-018-0848-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
82
|
Rahmani MR, Shamsizadeh A, Moghadam-Ahmadi A, Bazmandegan G, Allahtavakoli M. JZL184, as a monoacylglycerol lipase inhibitor, down-regulates inflammation in a cannabinoid pathway dependent manner. Biomed Pharmacother 2018; 103:1720-1726. [DOI: 10.1016/j.biopha.2018.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023] Open
|
83
|
Endocannabinoids in Body Weight Control. Pharmaceuticals (Basel) 2018; 11:ph11020055. [PMID: 29849009 PMCID: PMC6027162 DOI: 10.3390/ph11020055] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/17/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022] Open
Abstract
Maintenance of body weight is fundamental to maintain one's health and to promote longevity. Nevertheless, it appears that the global obesity epidemic is still constantly increasing. Endocannabinoids (eCBs) are lipid messengers that are involved in overall body weight control by interfering with manifold central and peripheral regulatory circuits that orchestrate energy homeostasis. Initially, blocking of eCB signaling by first generation cannabinoid type 1 receptor (CB1) inverse agonists such as rimonabant revealed body weight-reducing effects in laboratory animals and men. Unfortunately, rimonabant also induced severe psychiatric side effects. At this point, it became clear that future cannabinoid research has to decipher more precisely the underlying central and peripheral mechanisms behind eCB-driven control of feeding behavior and whole body energy metabolism. Here, we will summarize the most recent advances in understanding how central eCBs interfere with circuits in the brain that control food intake and energy expenditure. Next, we will focus on how peripheral eCBs affect food digestion, nutrient transformation and energy expenditure by interfering with signaling cascades in the gastrointestinal tract, liver, pancreas, fat depots and endocrine glands. To finally outline the safe future potential of cannabinoids as medicines, our overall goal is to address the molecular, cellular and pharmacological logic behind central and peripheral eCB-mediated body weight control, and to figure out how these precise mechanistic insights are currently transferred into the development of next generation cannabinoid medicines displaying clearly improved safety profiles, such as significantly reduced side effects.
Collapse
|
84
|
Jehle J, Schöne B, Bagheri S, Avraamidou E, Danisch M, Frank I, Pfeifer P, Bindila L, Lutz B, Lütjohann D, Zimmer A, Nickenig G. Elevated levels of 2-arachidonoylglycerol promote atherogenesis in ApoE-/- mice. PLoS One 2018; 13:e0197751. [PMID: 29813086 PMCID: PMC5973571 DOI: 10.1371/journal.pone.0197751] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/08/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG) is a known modulator of inflammation and ligand to both, pro-inflammatory cannabinoid receptor 1 (CB1) and anti-inflammatory CB2. While the role of both receptors in atherogenesis has been studied extensively, the significance of 2-AG for atherogenesis is less well characterized. METHODS The impact of 2-AG on atherogenesis was studied in two treatment groups of ApoE-/- mice. One group received the monoacylglycerol lipase (MAGL)-inhibitor JZL184 [5 mg/kg i.p.], which impairs 2-AG degradation and thus causes elevated 2-AG levels, the other group received vehicle for four weeks. Simultaneously, both groups were fed a high-cholesterol diet. The atherosclerotic plaque burden was assessed in frozen sections through the aortic sinus following oil red O staining and infiltrating macrophages were detected by immunofluorescence targeting CD68. In vitro, the effect of 2-AG on B6MCL macrophage migration was assessed by Boyden chamber experiments. Transcription of adhesion molecules and chemokine receptors in macrophages was assessed by qPCR. RESULTS As expected, application of the MAGL-inhibitor JZL184 resulted in a significant increase in 2-AG levels in vascular tissue (98.2 ± 16.1 nmol/g vs. 27.3 ± 4.5 nmol/g; n = 14-16; p < 0.001). ApoE-/- mice with elevated 2-AG levels displayed a significantly increased plaque burden compared to vehicle treated controls (0.44 ± 0.03 vs. 0.31 ± 0.04; n = 14; p = 0.0117). This was accompanied by a significant increase in infiltrating macrophages within the atherosclerotic vessel wall (0.33 ± 0.02 vs. 0.27 ± 0.01; n = 13-14; p = 0.0076). While there was no alteration to the white blood counts of JZL184-treated animals, 2-AG enhanced macrophage migration in vitro by 1.8 ± 0.2 -fold (n = 4-6; p = 0.0393) compared to vehicle, which was completely abolished by co-administration of either CB1- or CB2-receptor-antagonists. qPCR analyses of 2-AG-stimulated macrophages showed an enhanced transcription of the chemokine CCL5 (1.59 ± 0.23 -fold; n = 5-6; p = 0.0589) and its corresponding receptors CCR1 (2.04 ± 0.46 -fold; n = 10-11; p = 0.0472) and CCR5 (2.45 ± 0.62 -fold; n = 5-6; p = 0.0554). CONCLUSION Taken together, elevated 2-AG levels appear to promote atherogenesis in vivo. Our data suggest that 2-AG promotes macrophage migration, possibly by the CCL5-CCR5/CCR1 axis, and thereby contributes to vascular inflammation. Thus, decreasing vascular 2-AG levels might represent a promising therapeutic strategy in patients suffering from atherosclerosis and coronary heart disease.
Collapse
Affiliation(s)
- Julian Jehle
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
- * E-mail:
| | - Benedikt Schöne
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
| | - Sayeh Bagheri
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
| | - Elina Avraamidou
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
| | - Melina Danisch
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
| | - Imke Frank
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
| | - Philipp Pfeifer
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Dieter Lütjohann
- Insitute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Andreas Zimmer
- Department of Molecular Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Georg Nickenig
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
85
|
Enhanced endocannabinoid tone as a potential target of pharmacotherapy. Life Sci 2018; 204:20-45. [PMID: 29729263 DOI: 10.1016/j.lfs.2018.04.054] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/19/2018] [Accepted: 04/28/2018] [Indexed: 12/21/2022]
Abstract
The endocannabinoid system is up-regulated in numerous pathophysiological states such as inflammatory, neurodegenerative, gastrointestinal, metabolic and cardiovascular diseases, pain, and cancer. It has been suggested that this phenomenon primarily serves an autoprotective role in inhibiting disease progression and/or diminishing signs and symptoms. Accordingly, enhancement of endogenous endocannabinoid tone by inhibition of endocannabinoid degradation represents a promising therapeutic approach for the treatment of many diseases. Importantly, this allows for the avoidance of unwanted psychotropic side effects that accompany exogenously administered cannabinoids. The effects of endocannabinoid metabolic pathway modulation are complex, as endocannabinoids can exert their actions directly or via numerous metabolites. The two main strategies for blocking endocannabinoid degradation are inhibition of endocannabinoid-degrading enzymes and inhibition of endocannabinoid cellular uptake. To date, the most investigated compounds are inhibitors of fatty acid amide hydrolase (FAAH), an enzyme that degrades the endocannabinoid anandamide. However, application of FAAH inhibitors (and consequently other endocannabinoid degradation inhibitors) in medicine became questionable due to a lack of therapeutic efficacy in clinical trials and serious adverse effects evoked by one specific compound. In this paper, we discuss multiple pathways of endocannabinoid metabolism, changes in endocannabinoid levels across numerous human diseases and corresponding experimental models, pharmacological strategies for enhancing endocannabinoid tone and potential therapeutic applications including multi-target drugs with additional targets outside of the endocannabinoid system (cyclooxygenase-2, cholinesterase, TRPV1, and PGF2α-EA receptors), and currently used medicines or medicinal herbs that additionally enhance endocannabinoid levels. Ultimately, further clinical and preclinical studies are warranted to develop medicines for enhancing endocannabinoid tone.
Collapse
|
86
|
Rahmani MR, Shamsizadeh A, Moghadam-Ahmadi A, Kaeidi A, Allahtavakoli M. Monoacylglycerol lipase inhibitor, JZL-184, confers neuroprotection in the mice middle cerebral artery occlusion model of stroke. Life Sci 2018; 198:143-148. [DOI: 10.1016/j.lfs.2018.02.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/12/2018] [Accepted: 02/24/2018] [Indexed: 02/07/2023]
|
87
|
Cheng R, Mori W, Ma L, Alhouayek M, Hatori A, Zhang Y, Ogasawara D, Yuan G, Chen Z, Zhang X, Shi H, Yamasaki T, Xie L, Kumata K, Fujinaga M, Nagai Y, Minamimoto T, Svensson M, Wang L, Du Y, Ondrechen MJ, Vasdev N, Cravatt BF, Fowler C, Zhang MR, Liang SH. In Vitro and in Vivo Evaluation of 11C-Labeled Azetidinecarboxylates for Imaging Monoacylglycerol Lipase by PET Imaging Studies. J Med Chem 2018; 61:2278-2291. [PMID: 29481079 PMCID: PMC5966020 DOI: 10.1021/acs.jmedchem.7b01400] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Monoacylglycerol lipase (MAGL) is the principle enzyme for metabolizing endogenous cannabinoid ligand 2-arachidonoyglycerol (2-AG). Blockade of MAGL increases 2-AG levels, resulting in subsequent activation of the endocannabinoid system, and has emerged as a novel therapeutic strategy to treat drug addiction, inflammation, and neurodegenerative diseases. Herein we report a new series of MAGL inhibitors, which were radiolabeled by site-specific labeling technologies, including 11C-carbonylation and spirocyclic iodonium ylide (SCIDY) radiofluorination. The lead compound [11C]10 (MAGL-0519) demonstrated high specific binding and selectivity in vitro and in vivo. We also observed unexpected washout kinetics with these irreversible radiotracers, in which in vivo evidence for turnover of the covalent residue was unveiled between MAGL and azetidine carboxylates. This work may lead to new directions for drug discovery and PET tracer development based on azetidine carboxylate inhibitor scaffold.
Collapse
Affiliation(s)
- Ran Cheng
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, USA
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Wakana Mori
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Longle Ma
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, USA
| | - Mireille Alhouayek
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87 Umeå, Sweden
| | - Akiko Hatori
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Yiding Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Daisuke Ogasawara
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Gengyang Yuan
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, USA
- Department of Chemistry & Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, MA, 02115, USA
| | - Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, USA
| | - Xiaofei Zhang
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, USA
| | - Hang Shi
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, USA
| | - Tomoteru Yamasaki
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Lin Xie
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Katsushi Kumata
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Masayuki Fujinaga
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Yuji Nagai
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Takafumi Minamimoto
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Mona Svensson
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87 Umeå, Sweden
| | - Lu Wang
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, USA
| | - Yunfei Du
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Mary Jo Ondrechen
- Department of Chemistry & Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, MA, 02115, USA
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, USA
| | - Benjamin F. Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Christopher Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87 Umeå, Sweden
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
88
|
McAllister LA, Butler CR, Mente S, O’Neil SV, Fonseca KR, Piro JR, Cianfrogna JA, Foley TL, Gilbert AM, Harris AR, Helal CJ, Johnson DS, Montgomery JI, Nason DM, Noell S, Pandit J, Rogers BN, Samad TA, Shaffer CL, da Silva RG, Uccello DP, Webb D, Brodney MA. Discovery of Trifluoromethyl Glycol Carbamates as Potent and Selective Covalent Monoacylglycerol Lipase (MAGL) Inhibitors for Treatment of Neuroinflammation. J Med Chem 2018; 61:3008-3026. [DOI: 10.1021/acs.jmedchem.8b00070] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Laura A. McAllister
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Christopher R. Butler
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Scot Mente
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Steven V. O’Neil
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Kari R. Fonseca
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Justin R. Piro
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Julie A. Cianfrogna
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Timothy L. Foley
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Adam M. Gilbert
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Anthony R. Harris
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Christopher J. Helal
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Douglas S. Johnson
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Justin I. Montgomery
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Deane M. Nason
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Stephen Noell
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jayvardhan Pandit
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Bruce N. Rogers
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Tarek A. Samad
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Christopher L. Shaffer
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Rafael G. da Silva
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Daniel P. Uccello
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Damien Webb
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| | - Michael A. Brodney
- Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
89
|
Effects of Distal Mutations on the Structure, Dynamics and Catalysis of Human Monoacylglycerol Lipase. Sci Rep 2018; 8:1719. [PMID: 29379013 PMCID: PMC5789057 DOI: 10.1038/s41598-017-19135-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/20/2017] [Indexed: 02/06/2023] Open
Abstract
An understanding of how conformational dynamics modulates function and catalysis of human monoacylglycerol lipase (hMGL), an important pharmaceutical target, can facilitate the development of novel ligands with potential therapeutic value. Here, we report the discovery and characterization of an allosteric, regulatory hMGL site comprised of residues Trp-289 and Leu-232 that reside over 18 Å away from the catalytic triad. These residues were identified as critical mediators of long-range communication and as important contributors to the integrity of the hMGL structure. Nonconservative replacements of Trp-289 or Leu-232 triggered concerted motions of structurally distinct regions with a significant conformational shift toward inactive states and dramatic loss in catalytic efficiency of the enzyme. Using a multimethod approach, we show that the dynamically relevant Trp-289 and Leu-232 residues serve as communication hubs within an allosteric protein network that controls signal propagation to the active site, and thus, regulates active-inactive interconversion of hMGL. Our findings provide new insights into the mechanism of allosteric regulation of lipase activity, in general, and may provide alternative drug design possibilities.
Collapse
|
90
|
Granchi C, Rizzolio F, Caligiuri I, Macchia M, Martinelli A, Minutolo F, Tuccinardi T. Rational Development of MAGL Inhibitors. Methods Mol Biol 2018; 1824:335-346. [PMID: 30039417 DOI: 10.1007/978-1-4939-8630-9_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hit identification and hit-to-lead optimization are key steps of the early drug discovery program. Starting from the X-ray crystal structure of the human monoacylglycerol lipase (hMAGL), we herein describe the computational and experimental procedures that we applied for identifying and optimizing a new active inhibitor of this target enzyme. A receptor-based virtual screening method is reported in details, together with enzymatic assays and a first round of hit optimization.
Collapse
Affiliation(s)
| | - Flavio Rizzolio
- Division of Experimental and Clinical Pharmacology, Department of Molecular Biology and Translational Research, National Cancer Institute and Center for Molecular Biomedicine, IRCCS, Pordenone, Italy
- Department of Molecular Science and Nanosystems, Ca' Foscari Università di Venezia, Venezia-Mestre, Italy
| | - Isabella Caligiuri
- Division of Experimental and Clinical Pharmacology, Department of Molecular Biology and Translational Research, National Cancer Institute and Center for Molecular Biomedicine, IRCCS, Pordenone, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | | | |
Collapse
|
91
|
Fulmer ML, Thewke DP. The Endocannabinoid System and Heart Disease: The Role of Cannabinoid Receptor Type 2. Cardiovasc Hematol Disord Drug Targets 2018; 18:34-51. [PMID: 29412125 PMCID: PMC6020134 DOI: 10.2174/1871529x18666180206161457] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 01/01/2018] [Accepted: 01/01/2018] [Indexed: 12/24/2022]
Abstract
Decades of research has provided evidence for the role of the endocannabinoid system in human health and disease. This versatile system, consisting of two receptors (CB1 and CB2), their endogenous ligands (endocannabinoids), and metabolic enzymes has been implicated in a wide variety of disease states, ranging from neurological disorders to cancer. CB2 has gained much interest for its beneficial immunomodulatory role that can be obtained without eliciting psychotropic effects through CB1. Recent studies have shed light on a protective role of CB2 in cardiovascular disease, an ailment which currently takes more lives each year in Western countries than any other disease or injury. By use of CB2 knockout mice and CB2-selective ligands, knowledge of how CB2 signaling affects atherosclerosis and ischemia has been acquired, providing a major stepping stone between basic science and translational clinical research. Here, we summarize the current understanding of the endocannabinoid system in human pathologies and provide a review of the results from preclinical studies examining its function in cardiovascular disease, with a particular emphasis on possible CB2-targeted therapeutic interventions to alleviate atherosclerosis.
Collapse
Affiliation(s)
- Makenzie L. Fulmer
- Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Douglas P. Thewke
- Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
92
|
Huang SN, Ruan HZ, Chen MYJ, Zhou G, Qian ZM. Aspirin increases ferroportin 1 expression by inhibiting hepcidin via the JAK/STAT3 pathway in interleukin 6-treated PC-12 cells. Neurosci Lett 2018; 662:1-5. [DOI: 10.1016/j.neulet.2017.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/16/2017] [Accepted: 10/02/2017] [Indexed: 12/31/2022]
|
93
|
Butler CR, Beck EM, Harris A, Huang Z, McAllister LA, am Ende CW, Fennell K, Foley TL, Fonseca K, Hawrylik SJ, Johnson DS, Knafels JD, Mente S, Noell GS, Pandit J, Phillips TB, Piro JR, Rogers BN, Samad TA, Wang J, Wan S, Brodney MA. Azetidine and Piperidine Carbamates as Efficient, Covalent Inhibitors of Monoacylglycerol Lipase. J Med Chem 2017; 60:9860-9873. [DOI: 10.1021/acs.jmedchem.7b01531] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Christopher R. Butler
- Pfizer Worldwide Research and Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Elizabeth M. Beck
- Pfizer Worldwide Research and Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Anthony Harris
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Zhen Huang
- Pfizer Worldwide Research and Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Laura A. McAllister
- Pfizer Worldwide Research and Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Christopher W. am Ende
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Kimberly Fennell
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Timothy L. Foley
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Kari Fonseca
- Pfizer Worldwide Research and Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Steven J. Hawrylik
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Douglas S. Johnson
- Pfizer Worldwide Research and Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - John D. Knafels
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Scot Mente
- Pfizer Worldwide Research and Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - G. Stephen Noell
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jayvardhan Pandit
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Tracy B. Phillips
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Justin R. Piro
- Pfizer Worldwide Research and Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Bruce N. Rogers
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Tarek A. Samad
- Pfizer Worldwide Research and Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Jane Wang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Shuangyi Wan
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Michael A. Brodney
- Pfizer Worldwide Research and Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
94
|
Baba Y, Funakoshi T, Mori M, Emoto K, Masugi Y, Ekmekcioglu S, Amagai M, Tanese K. Expression of monoacylglycerol lipase as a marker of tumour invasion and progression in malignant melanoma. J Eur Acad Dermatol Venereol 2017; 31:2038-2045. [PMID: 28681540 DOI: 10.1111/jdv.14455] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 06/08/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Accumulating evidence suggests that the lipid lytic enzyme monoacylglycerol lipase (MAGL) promotes tumour invasion and metastasis through up-regulation of pro-tumorigenic signalling lipids in several tumour cell lines. However, the expression status of MAGL in clinical melanoma tissues and its clinicopathological significance remain unclear. OBJECTIVE To correlate the tumour expression status of MAGL with the clinicopathological information of patients with malignant melanoma. METHODS Polymerase chain reaction (PCR) array screening was performed, and the results were validated using immunocytochemical analysis of tumour and non-tumour melanocytic cell lines. Immunohistochemical staining for MAGL was performed for 74 melanoma samples, including 48 primary and 26 metastatic tumours, in which the expression of MAGL was determined by evaluating the percentage of MAGL-positive tumour cells and the MAGL staining intensity. Finally, we analysed the association of MAGL expression status with tumour progression, tumour thickness and vascular invasion of the primary lesion. RESULTS Immunocytochemical analysis revealed that MAGL was expressed in all 12 melanoma cell lines, but not in normal human epidermal melanocytes. In the immunohistochemical analysis, positive staining for MAGL was noted in 32 of 48 (64.5%) primary lesions, 14 of 17 (82.4%) lymph node metastatic lesions and 7 of 9 (77.8%) skin metastatic lesions. Metastatic tumours had a significantly higher staining intensity (P = 0.033 for lymph node, P = 0.010 for skin). In the analysis of primary lesions, higher MAGL expression correlated with greater tumour thickness (P = 0.015) and the presence of vascular invasion (P = 0.017). On further evaluation of MAGL-positive primary lesions, staining intensity of MAGL tended to be higher in deeper areas of the tumour mass. CONCLUSIONS The expression of MAGL in tumour cells reflects the aggressiveness of melanoma cells and may serve as a marker of tumour progression.
Collapse
Affiliation(s)
- Yuko Baba
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - T Funakoshi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - M Mori
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - K Emoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Y Masugi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - S Ekmekcioglu
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - K Tanese
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
95
|
Granchi C, Caligiuri I, Minutolo F, Rizzolio F, Tuccinardi T. A patent review of Monoacylglycerol Lipase (MAGL) inhibitors (2013-2017). Expert Opin Ther Pat 2017; 27:1341-1351. [DOI: 10.1080/13543776.2018.1389899] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Isabella Caligiuri
- Unit of Pathology, Department of Molecular Biology and Translational Research, National Cancer Institute and Center for Molecular Biomedicine, Aviano, Pordenone, Italy
| | | | - Flavio Rizzolio
- Department of Molecular Science and Nanosystems, Ca’ Foscari Università di Venezia, Venezia-Mestre, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
96
|
Granchi C, Caligiuri I, Bertelli E, Poli G, Rizzolio F, Macchia M, Martinelli A, Minutolo F, Tuccinardi T. Development of terphenyl-2-methyloxazol-5(4H)-one derivatives as selective reversible MAGL inhibitors. J Enzyme Inhib Med Chem 2017; 32:1240-1252. [PMID: 28936880 PMCID: PMC6009861 DOI: 10.1080/14756366.2017.1375484] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Monoacylglycerol lipase is a serine hydrolase that plays a major role in the degradation of the endocannabinoid neurotransmitter 2-arachidonoylglycerol. A wide number of MAGL inhibitors are reported in literature; however, many of them are characterised by an irreversible mechanism of action and this behavior determines an unwanted chronic MAGL inactivation, which acquires a functional antagonism of the endocannabinoid system. The possible use of reversible MAGL inhibitors has only recently been explored, due to the lack of known compounds possessing efficient reversible inhibitory activities. In this work, we report a new series of terphenyl-2-methyloxazol-5(4H)-one derivatives characterised by a reversible MAGL-inhibition mechanism. Among them, compound 20b showed to be a potent MAGL reversible inhibitor (IC50 = 348 nM) with a good MAGL/FAAH selectivity. Furthermore, this compound showed antiproliferative activities against two different cancer cell lines that overexpress MAGL.
Collapse
Affiliation(s)
| | - Isabella Caligiuri
- b Unit of Pathology, Department of Molecular Biology and Translational Research , National Cancer Institute and Center for Molecular Biomedicine , Aviano , Pordenone , Italy
| | | | - Giulio Poli
- a Department of Pharmacy , University of Pisa , Pisa , Italy
| | - Flavio Rizzolio
- c Department of Molecular Sciences and Nanosystems , Ca' Foscari Università di Venezia , Venezia-Mestre , Italy
| | - Marco Macchia
- a Department of Pharmacy , University of Pisa , Pisa , Italy
| | | | | | - Tiziano Tuccinardi
- a Department of Pharmacy , University of Pisa , Pisa , Italy.,d Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology , Temple University , Philadelphia , PA , USA
| |
Collapse
|
97
|
Greco R, Demartini C, Zanaboni AM, Berliocchi L, Piomelli D, Tassorelli C. Inhibition of monoacylglycerol lipase: Another signalling pathway for potential therapeutic targets in migraine? Cephalalgia 2017; 38:1138-1147. [DOI: 10.1177/0333102417727537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Drugs that modulate endocannabinoid signalling are effective in reducing nociception in animal models of pain and may be of value in the treatment of migraine. Methods We investigated the anti-nociceptive effects of inhibition of monoacylglycerol lipase (MGL), a key enzyme in the hydrolysis of the 2-arachidonoylglycerol, in a rat model of migraine based on nitroglycerin (NTG) administration. We evaluated c-fos expression in specific brain areas and nociceptive behavior in trigeminal and extra-trigeminal body areas. Results URB602, a reversible MGL inhibitor, did not show any analgesic effect in the tail flick test, but it inhibited NTG-induced hyperalgesia in both the tail flick test and the formalin test applied to the hind paw or to the orofacial area. Quite unexpectedly, URB602 potentiated formalin-induced hyperalgesia in the trigeminal area when used alone. The latter result was also confirmed using a structurally distinct, irreversible MGL inhibitor, JZL184. URB602 did not induce neuronal activation in the area of interest, but significantly reduced the NTG-induced neuronal activation in the ventrolateral column of the periaqueductal grey and the nucleus trigeminalis caudalis. Conclusions These findings support the hypothesis that modulation of the endocannabinoid system may be a valuable approach for the treatment of migraine. The topographically segregated effect of MGL inhibition in trigeminal/extra-trigeminal areas calls for further mechanistic research.
Collapse
Affiliation(s)
- Rosaria Greco
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, “C. Mondino” National Neurological Institute, Pavia, Italy
| | - Chiara Demartini
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, “C. Mondino” National Neurological Institute, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Anna Maria Zanaboni
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, “C. Mondino” National Neurological Institute, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Laura Berliocchi
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, USA
| | - Cristina Tassorelli
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, “C. Mondino” National Neurological Institute, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| |
Collapse
|
98
|
Ahamed M, Attili B, van Veghel D, Ooms M, Berben P, Celen S, Koole M, Declercq L, Savinainen JR, Laitinen JT, Verbruggen A, Bormans G. Synthesis and preclinical evaluation of [ 11 C]MA-PB-1 for in vivo imaging of brain monoacylglycerol lipase (MAGL). Eur J Med Chem 2017; 136:104-113. [DOI: 10.1016/j.ejmech.2017.04.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 01/19/2023]
|
99
|
Abstract
Toxoplasmosis is a serious zoonoses disease and opportunistic, and can be life-threatening. Dexamethasone (DEX) is widely used in the clinic for treatment of inflammatory and autoimmune diseases. However, long-term use of DEX is often easy to lead to acute toxoplasmosis in patients, and the potential molecular mechanism is still not very clear. The aims of this study were to investigate the effect of DEX on proliferation of Toxoplasma and its molecular mechanisms, and to establish the corresponding control measures. All the results showed that dexamethasone could enhance the proliferation of Toxoplasma gondii tachyzoites. After 72 h of DEX treatment, 566 (±7) tachyzoites were found in 100 host cells, while only 86 (±8) tachyzoites were counted from the non-treated control cells (P < 0·01). Gas chromatography (GC) analysis showed changes in level and composition of fatty acids in DEX-treated host cells, and T. gondii. Fish oil was added as a modulator of lipid metabolism in experimental mice. It was found that mice fed with fish oil did not develop the disease after infection with T. gondii, and the structure of fatty acids in plasma changed significantly. The metabolism of fatty acid in the parasites was limited, and the desaturase gene expression was downregulated. These results indicate that the molecular mechanism of dexamethasone to promote the proliferation of T. gondii may be that dexamethasone induces the change of fatty acids composition of tachyzoites and host cells. Therefore, we recommend supplementation of fatty acid in immunosuppressive and immunocompromised patients in order to inhibit toxoplasmosis.
Collapse
|
100
|
Hasenoehrl C, Storr M, Schicho R. Cannabinoids for treating inflammatory bowel diseases: where are we and where do we go? Expert Rev Gastroenterol Hepatol 2017; 11:329-337. [PMID: 28276820 PMCID: PMC5388177 DOI: 10.1080/17474124.2017.1292851] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fifty years after the discovery of Δ9-tetrahydrocannabinol (THC) as the psychoactive component of Cannabis, we are assessing the possibility of translating this herb into clinical treatment of inflammatory bowel diseases (IBDs). Here, a discussion on the problems associated with a potential treatment is given. From first surveys and small clinical studies in patients with IBD we have learned that Cannabis is frequently used to alleviate diarrhea, abdominal pain, and loss of appetite. Single ingredients from Cannabis, such as THC and cannabidiol, commonly described as cannabinoids, are responsible for these effects. Synthetic cannabinoid receptor agonists are also termed cannabinoids, some of which, like dronabinol and nabilone, are already available with a narcotic prescription. Areas covered: Recent data on the effects of Cannabis/cannabinoids in experimental models of IBD and in clinical trials with IBD patients have been reviewed using a PubMed database search. A short background on the endocannabinoid system is also provided. Expert commentary: Cannabinoids could be helpful for certain symptoms of IBD, but there is still a lack of clinical studies to prove efficacy, tolerability and safety of cannabinoid-based medication for IBD patients, leaving medical professionals without evidence and guidelines.
Collapse
Affiliation(s)
- Carina Hasenoehrl
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Martin Storr
- Department of Medicine, Ludwig-Maximilians University, Munich, Germany,Zentrum für Endoskopie, Starnberg, Germany,CONTACT Martin Storr Walter Brendel Centre of Experimental Medicine, Marchioninistr. 15, Munich81377, Germany
| | - Rudolf Schicho
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| |
Collapse
|