51
|
Magalhães S, Almeida I, Pereira CD, Rebelo S, Goodfellow BJ, Nunes A. The Long-Term Culture of Human Fibroblasts Reveals a Spectroscopic Signature of Senescence. Int J Mol Sci 2022; 23:ijms23105830. [PMID: 35628639 PMCID: PMC9146002 DOI: 10.3390/ijms23105830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/24/2022] Open
Abstract
Aging is a complex process which leads to progressive loss of fitness/capability/ability, increasing susceptibility to disease and, ultimately, death. Regardless of the organism, there are some features common to aging, namely, the loss of proteostasis and cell senescence. Mammalian cell lines have been used as models to study the aging process, in particular, cell senescence. Thus, the aim of this study was to characterize the senescence-associated metabolic profile of a long-term culture of human fibroblasts using Fourier Transform Infrared and Nuclear Magnetic Resonance spectroscopy. We sub-cultivated fibroblasts from a newborn donor from passage 4 to passage 17 and the results showed deep changes in the spectroscopic profile of cells over time. Late passage cells were characterized by a decrease in the length of fatty acid chains, triglycerides and cholesterol and an increase in lipid unsaturation. We also found an increase in the content of intermolecular β-sheets, possibly indicating an increase in protein aggregation levels in cells of later passages. Metabolic profiling by NMR showed increased levels of extracellular lactate, phosphocholine and glycine in cells at later passages. This study suggests that spectroscopy approaches can be successfully used to study changes concomitant with cell senescence and validate the use of human fibroblasts as a model to monitor the aging process.
Collapse
Affiliation(s)
- Sandra Magalhães
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193 Aveiro, Portugal; (S.M.); (I.A.); (C.D.P.); (S.R.)
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Idália Almeida
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193 Aveiro, Portugal; (S.M.); (I.A.); (C.D.P.); (S.R.)
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Cátia D. Pereira
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193 Aveiro, Portugal; (S.M.); (I.A.); (C.D.P.); (S.R.)
| | - Sandra Rebelo
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193 Aveiro, Portugal; (S.M.); (I.A.); (C.D.P.); (S.R.)
| | - Brian J. Goodfellow
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Alexandra Nunes
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193 Aveiro, Portugal; (S.M.); (I.A.); (C.D.P.); (S.R.)
- Correspondence: ; Tel.: +351-234-324-435
| |
Collapse
|
52
|
Maintenance of Chronological Aging Features in Culture of Normal Human Dermal Fibroblasts from Old Donors. Cells 2022; 11:cells11050858. [PMID: 35269480 PMCID: PMC8909060 DOI: 10.3390/cells11050858] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Chronological aging is defined as a time-dependent decline of tissue homeostasis which severely impacts skin. Understanding the mechanisms of skin aging is an active research area limited by the lack of relevant in vitro models. Being a component of aging, replicative or stress-induced senescence is repeatedly used to mimic skin aging in vitro, thus presenting only a partial view of the complexity of aging. Herein, we aimed to clarify whether primary normal human dermal fibroblasts retained age-related characteristics when cultured in 2D monolayer, and could be used as a relevant model for aging research. We compared three groups of fibroblasts isolated from different aged donors. We observed strongly decreased population doubling capacities, a reduced clonogenic ability, an impairment in extracellular matrix production together with modifications of respiratory metabolism with an increase in age. These disruptions were particularly marked when comparing fibroblasts isolated from old individuals (over 70 years old) to those isolated from young individuals (18–37 years old), while cells from middle-aged donors exhibited an intermediate profile. These alterations of cell features can be related to the signs of dermis aging, thus showing that cultured primary cells indeed retain some characteristics of the original tissue from which they were extracted.
Collapse
|
53
|
Cellular Senescence and Aging in Myotonic Dystrophy. Int J Mol Sci 2022; 23:ijms23042339. [PMID: 35216455 PMCID: PMC8877951 DOI: 10.3390/ijms23042339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/06/2022] [Accepted: 02/12/2022] [Indexed: 01/10/2023] Open
Abstract
Myotonic dystrophy (DM) is a dominantly inherited multisystemic disorder affecting various organs, such as skeletal muscle, heart, the nervous system, and the eye. Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are caused by expanded CTG and CCTG repeats, respectively. In both forms, the mutant transcripts containing expanded repeats aggregate as nuclear foci and sequester several RNA-binding proteins, resulting in alternative splicing dysregulation. Although certain alternative splicing events are linked to the clinical DM phenotypes, the molecular mechanisms underlying multiple DM symptoms remain unclear. Interestingly, multi-systemic DM manifestations, including muscle weakness, cognitive impairment, cataract, and frontal baldness, resemble premature aging. Furthermore, cellular senescence, a critical contributor to aging, is suggested to play a key role in DM cellular pathophysiology. In particular, several senescence inducers including telomere shortening, mitochondrial dysfunction, and oxidative stress and senescence biomarkers such as cell cycle inhibitors, senescence-associated secretory phenotype, chromatin reorganization, and microRNA have been implicated in DM pathogenesis. In this review, we focus on the clinical similarities between DM and aging, and summarize the involvement of cellular senescence in DM and the potential application of anti-aging DM therapies.
Collapse
|
54
|
Protective Role of Melatonin and Its Metabolites in Skin Aging. Int J Mol Sci 2022; 23:ijms23031238. [PMID: 35163162 PMCID: PMC8835651 DOI: 10.3390/ijms23031238] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
The skin, being the largest organ in the human body, is exposed to the environment and suffers from both intrinsic and extrinsic aging factors. The skin aging process is characterized by several clinical features such as wrinkling, loss of elasticity, and rough-textured appearance. This complex process is accompanied with phenotypic and functional changes in cutaneous and immune cells, as well as structural and functional disturbances in extracellular matrix components such as collagens and elastin. Because skin health is considered one of the principal factors representing overall “well-being” and the perception of “health” in humans, several anti-aging strategies have recently been developed. Thus, while the fundamental mechanisms regarding skin aging are known, new substances should be considered for introduction into dermatological treatments. Herein, we describe melatonin and its metabolites as potential “aging neutralizers”. Melatonin, an evolutionarily ancient derivative of serotonin with hormonal properties, is the main neuroendocrine secretory product of the pineal gland. It regulates circadian rhythmicity and also exerts anti-oxidative, anti-inflammatory, immunomodulatory, and anti-tumor capacities. The intention of this review is to summarize changes within skin aging, research advances on the molecular mechanisms leading to these changes, and the impact of the melatoninergic anti-oxidative system controlled by melatonin and its metabolites, targeting the prevention or reversal of skin aging.
Collapse
|
55
|
Frommeyer TC, Rohan CA, Spandau DF, Kemp MG, Wanner MA, Tanzi E, Travers JB. Wounding Therapies for Prevention of Photocarcinogenesis. Front Oncol 2022; 11:813132. [PMID: 35071017 PMCID: PMC8776632 DOI: 10.3389/fonc.2021.813132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/14/2021] [Indexed: 01/01/2023] Open
Abstract
The occurrence of non-melanoma skin cancer (NMSC) is closely linked with advanced age and ultraviolet-B (UVB) exposure. More specifically, the development of NMSC is linked to diminished insulin-like growth factor-1 (IGF-1) signaling from senescent dermal fibroblasts in geriatric skin. Consequently, keratinocyte IGF-1 receptor (IGF-1R) remains inactive, resulting in failure to induce appropriate protective responses including DNA repair and cell cycle checkpoint signaling. This allows UVB-induced DNA damage to proliferate unchecked, which increases the likelihood of malignant transformation. NMSC is estimated to occur in 3.3 million individuals annually. The rising incidence results in increased morbidity and significant healthcare costs, which necessitate identification of effective treatment modalities. In this review, we highlight the pathogenesis of NMSC and discuss the potential of novel preventative therapies. In particular, wounding therapies such as dermabrasion, microneedling, chemical peeling, and fractionated laser resurfacing have been shown to restore IGF-1/IGF-1R signaling in geriatric skin and suppress the propagation of UVB-damaged keratinocytes. This wounding response effectively rejuvenates geriatric skin and decreases the incidence of age-associated NMSC.
Collapse
Affiliation(s)
- Timothy C. Frommeyer
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Craig A. Rohan
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Department of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Dayton Veterans Administration Medical Center, Dayton, OH, United States
| | - Dan F. Spandau
- Departments of Dermatology and Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- Richard A. Roudebush Veterans Administration (VA) Medical Center, Indianapolis, IN, United States
| | - Michael G. Kemp
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Dayton Veterans Administration Medical Center, Dayton, OH, United States
| | - Molly A. Wanner
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, United States
| | | | - Jeffrey B. Travers
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Department of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Dayton Veterans Administration Medical Center, Dayton, OH, United States
| |
Collapse
|
56
|
Directly Reprogrammed Human Neurons to Understand Age-Related Energy Metabolism Impairment and Mitochondrial Dysfunction in Healthy Aging and Neurodegeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5586052. [PMID: 34950417 PMCID: PMC8691983 DOI: 10.1155/2021/5586052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 01/10/2023]
Abstract
Brain aging is characterized by several molecular and cellular changes grouped as the hallmarks or pillars of aging, including organelle dysfunction, metabolic and nutrition-sensor changes, stem cell attrition, and macromolecular damages. Separately and collectively, these features degrade the most critical neuronal function: transmission of information in the brain. It is widely accepted that aging is the leading risk factor contributing to the onset of the most prevalent pathological conditions that affect brain functions, such as Alzheimer's, Parkinson's, and Huntington's disease. One of the limitations in understanding the molecular mechanisms involved in those diseases is the lack of an appropriate cellular model that recapitulates the “aged” context in human neurons. The advent of the cellular reprogramming of somatic cells, i.e., dermal fibroblasts, to obtain directly induced neurons (iNs) and induced pluripotent stem cell- (iPSC-) derived neurons is technical sound advances that could open the avenues to understand better the contribution of aging toward neurodegeneration. In this review, we will summarize the commonalities and singularities of these two approaches for the study of brain aging, with an emphasis on the role of mitochondrial dysfunction and redox biology. We will address the evidence showing that iNs retain age-related features in contrast to iPSC-derived neurons that lose the aging signatures during the reprogramming to pluripotency, rendering iNs a powerful strategy to deepen our knowledge of the processes driving normal cellular function decline and neurodegeneration in a human adult model. We will finally discuss the potential utilization of these novel technologies to understand the differential contribution of genetic and epigenetic factors toward neuronal aging, to identify and develop new drugs and therapeutic strategies.
Collapse
|
57
|
Kim Y, Ji H, Cho E, Park NH, Hwang K, Park W, Lee KS, Park D, Jung E. nc886, a Non-Coding RNA, Is a New Biomarker and Epigenetic Mediator of Cellular Senescence in Fibroblasts. Int J Mol Sci 2021; 22:ijms222413673. [PMID: 34948464 PMCID: PMC8705676 DOI: 10.3390/ijms222413673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 12/01/2022] Open
Abstract
Functional studies of organisms and human models have revealed that epigenetic changes can significantly impact the process of aging. Non-coding RNA (ncRNA), one of epigenetic regulators, plays an important role in modifying the expression of mRNAs and their proteins. It can mediate the phenotype of cells. It has been reported that nc886 (=vtRNA2-1 or pre-miR-886), a long ncRNA, can suppress tumor formation and photo-damages of keratinocytes caused by UVB. The aim of this study was to determine the role of nc886 in replicative senescence of fibroblasts and determine whether substances capable of controlling nc886 expression could regulate cellular senescence. In replicative senescence fibroblasts, nc886 expression was decreased while methylated nc886 was increased. There were changes of senescence biomarkers including SA-β-gal activity and expression of p16INK4A and p21Waf1/Cip1 in senescent cells. These findings indicate that the decrease of nc886 associated with aging is related to cellular senescence of fibroblasts and that increasing nc886 expression has potential to suppress cellular senescence. AbsoluTea Concentrate 2.0 (ATC) increased nc886 expression and ameliorated cellular senescence of fibroblasts by inhibiting age-related biomarkers. These results indicate that nc886 has potential as a new target for anti-aging and that ATC can be a potent epigenetic anti-aging ingredient.
Collapse
Affiliation(s)
- Yuna Kim
- Biospectrum Life Science Institute, A-1805, U-TOWER, Yongin-si 16827, Korea; (Y.K.); (H.J.); (E.C.); (K.-S.L.); (D.P.)
| | - Hyanggi Ji
- Biospectrum Life Science Institute, A-1805, U-TOWER, Yongin-si 16827, Korea; (Y.K.); (H.J.); (E.C.); (K.-S.L.); (D.P.)
| | - Eunae Cho
- Biospectrum Life Science Institute, A-1805, U-TOWER, Yongin-si 16827, Korea; (Y.K.); (H.J.); (E.C.); (K.-S.L.); (D.P.)
| | - Nok-Hyun Park
- Basic Research and Innovation Division, Amorepacific Corporation R&D Center, Youngin-si 17074, Korea; (N.-H.P.); (K.H.); (W.P.)
| | - Kyeonghwan Hwang
- Basic Research and Innovation Division, Amorepacific Corporation R&D Center, Youngin-si 17074, Korea; (N.-H.P.); (K.H.); (W.P.)
| | - Wonseok Park
- Basic Research and Innovation Division, Amorepacific Corporation R&D Center, Youngin-si 17074, Korea; (N.-H.P.); (K.H.); (W.P.)
| | - Kwang-Soo Lee
- Biospectrum Life Science Institute, A-1805, U-TOWER, Yongin-si 16827, Korea; (Y.K.); (H.J.); (E.C.); (K.-S.L.); (D.P.)
| | - Deokhoon Park
- Biospectrum Life Science Institute, A-1805, U-TOWER, Yongin-si 16827, Korea; (Y.K.); (H.J.); (E.C.); (K.-S.L.); (D.P.)
| | - Eunsun Jung
- Biospectrum Life Science Institute, A-1805, U-TOWER, Yongin-si 16827, Korea; (Y.K.); (H.J.); (E.C.); (K.-S.L.); (D.P.)
- Correspondence:
| |
Collapse
|
58
|
Kawagishi-Hotta M, Hasegawa S, Inoue Y, Hasebe Y, Arima M, Iwata Y, Sugiura K, Akamatsu H. Gremlin 2 suppresses differentiation of stem/progenitor cells in the human skin. Regen Ther 2021; 18:191-201. [PMID: 34307797 PMCID: PMC8280529 DOI: 10.1016/j.reth.2021.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/30/2021] [Accepted: 06/24/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The skin is comprised of various kinds of cells and has three layers, the epidermis, dermis and subcutaneous adipose tissue. Stem cells in each tissue duplicate themselves and differentiate to supply new cells that function in the tissue, and thereby maintain the tissue homeostasis. In contrast, senescent cells accumulate with age and secrete senescence-associated secretory phenotype (SASP) factors that impair surrounding cells and tissues, which lowers the capacity to maintain homeostasis in each tissue. Previously, we found Gremlin 2 (GREM2) as a novel SASP factor in the skin and reported that GREM2 suppressed the differentiation of adipose-derived stromal/stem cells. In the present study, we investigated the effects of GREM2 on stem cells in the epidermis and dermis. METHODS To examine whether GREM2 expression and the differentiation levels in the epidermis and dermis are correlated, the expressions of GREM2, stem cell markers, an epidermal differentiation marker Keratin 10 (KRT10) and a dermal differentiation marker type 3 procollagen were examined in the skin samples (n = 14) randomly chosen from the elderly where GREM2 expression level is high and the individual differences of its expression are prominent. Next, to test whether GREM2 affects the differentiation of skin stem cells, cells from two established lines (an epidermal and a dermal stem/progenitor cell model) were cultured and induced to differentiate, and recombinant GREM2 protein was added. RESULTS In the human skin, the expression levels of GREM2 varied among individuals both in the epidermis and dermis. The expression level of GREM2 was not correlated with the number of stem cells, but negatively correlated with those of both an epidermal and a dermal differentiation markers. The expression levels of epidermal differentiation markers were significantly suppressed by the addition of GREM2 in the three-dimensional (3D) epidermis generated with an epidermal stem/progenitor cell model. In addition, by differentiation induction, the expressions of dermal differentiation markers were induced in cells from a dermal stem/progenitor cell model, and the addition of GREM2 significantly suppressed the expressions of the dermal differentiation markers. CONCLUSIONS GREM2 expression level did not affect the numbers of stem cells in the epidermis and dermis but affects the differentiation and maturation levels of the tissues, and GREM2 suppressed the differentiation of stem/progenitor cells in vitro. These findings suggest that GREM2 may contribute to the age-related reduction in the capacity to maintain skin homeostasis by suppressing the differentiation of epidermal and dermal stem/progenitor cells.
Collapse
Affiliation(s)
- Mika Kawagishi-Hotta
- Research Laboratories, Nippon Menard Cosmetic Co., LTD., Japan
- Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Japan
- Department of Applied Cell and Regenerative Medicine, Fujita Health University School of Medicine, Japan
| | - Seiji Hasegawa
- Research Laboratories, Nippon Menard Cosmetic Co., LTD., Japan
- Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Japan
- Department of Dermatology, Fujita Health University School of Medicine, Japan
| | - Yu Inoue
- Research Laboratories, Nippon Menard Cosmetic Co., LTD., Japan
- Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Japan
| | - Yuichi Hasebe
- Research Laboratories, Nippon Menard Cosmetic Co., LTD., Japan
- Nagoya University-MENARD Collaborative Research Chair, Nagoya University Graduate School of Medicine, Japan
| | - Masaru Arima
- Department of Dermatology, Fujita Health University School of Medicine, Japan
| | - Yohei Iwata
- Department of Dermatology, Fujita Health University School of Medicine, Japan
| | - Kazumitsu Sugiura
- Department of Dermatology, Fujita Health University School of Medicine, Japan
| | - Hirohiko Akamatsu
- Department of Applied Cell and Regenerative Medicine, Fujita Health University School of Medicine, Japan
| |
Collapse
|
59
|
Low E, Alimohammadiha G, Smith LA, Costello LF, Przyborski SA, von Zglinicki T, Miwa S. How good is the evidence that cellular senescence causes skin ageing? Ageing Res Rev 2021; 71:101456. [PMID: 34487917 PMCID: PMC8524668 DOI: 10.1016/j.arr.2021.101456] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022]
Abstract
Skin is the largest organ of the body with important protective functions, which become compromised with time due to both intrinsic and extrinsic ageing processes. Cellular senescence is the primary ageing process at cell level, associated with loss of proliferative capacity, mitochondrial dysfunction and significantly altered patterns of expression and secretion of bioactive molecules. Intervention experiments have proven cell senescence as a relevant cause of ageing in many organs. In case of skin, accumulation of senescence in all major compartments with ageing is well documented and might be responsible for most, if not all, the molecular changes observed during ageing. Incorporation of senescent cells into in-vitro skin models (specifically 3D full thickness models) recapitulates changes typically associated with skin ageing. However, crucial evidence is still missing. A beneficial effect of senescent cell ablation on skin ageing has so far only been shown following rather unspecific interventions or in transgenic mouse models. We conclude that evidence for cellular senescence as a relevant cause of intrinsic skin ageing is highly suggestive but not yet completely conclusive.
Collapse
Affiliation(s)
- Evon Low
- Ageing Biology Laboratories, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Ghazaleh Alimohammadiha
- Ageing Biology Laboratories, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Lucy A Smith
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Lydia F Costello
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Stefan A Przyborski
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Thomas von Zglinicki
- Ageing Biology Laboratories, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE4 5PL, UK.
| | - Satomi Miwa
- Ageing Biology Laboratories, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| |
Collapse
|
60
|
Pils V, Ring N, Valdivieso K, Lämmermann I, Gruber F, Schosserer M, Grillari J, Ogrodnik M. Promises and challenges of senolytics in skin regeneration, pathology and ageing. Mech Ageing Dev 2021; 200:111588. [PMID: 34678388 DOI: 10.1016/j.mad.2021.111588] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022]
Abstract
The research of the last two decades has defined a crucial role of cellular senescence in both the physiology and pathology of skin, and senescent cells have been detected in conditions including development, regeneration, aging, and disease. The pathophysiology of cellular senescence in skin is complex as the phenotype of senescence pertains to several different cell types including fibroblasts, keratinocytes and melanocytes, among others. Paradoxically, the transient presence of senescent cells is believed to be beneficial in the context of development and wound healing, while the chronic presence of senescent cells is detrimental in the context of aging, diseases, and chronic wounds, which afflict predominantly the elderly. Identifying strategies to prevent senescence induction or reduce senescent burden in the skin could broadly benefit the aging population. Senolytics, drugs known to specifically eliminate senescent cells while preserving non-senescent cells, are being intensively studied for use in the clinical setting. Here, we review recent research on skin senescence, on the methods for the detection of senescent cells and describe promises and challenges related to the application of senolytic drugs. This article is part of the Special Issue - Senolytics - Edited by Joao Passos and Diana Jurk.
Collapse
Affiliation(s)
- Vera Pils
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence - SKINMAGINE, Vienna, Austria; Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Nadja Ring
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Karla Valdivieso
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Ingo Lämmermann
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Florian Gruber
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence - SKINMAGINE, Vienna, Austria; Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Markus Schosserer
- Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence - SKINMAGINE, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria; Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Johannnes Grillari
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria; Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Mikolaj Ogrodnik
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
61
|
Leal EC, Moura LIF, Pirzgalska RM, Marques-da-Silva D, Ledent C, Köfalvi A, Carvalho E. Diabetes and Cannabinoid CB1 receptor deficiency promote similar early onset aging-like changes in the skin. Exp Gerontol 2021; 154:111528. [PMID: 34437952 DOI: 10.1016/j.exger.2021.111528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/27/2021] [Accepted: 08/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The cannabinoid receptor type-1 (CB1R) is a major regulator of metabolism, growth and inflammation. Yet, its potential role in the skin is not well understood. Our aim was to evaluate the role of CB1R in aging-like diabetic skin changes by using a CB1R knockout mouse model. METHODS We evaluated several signals of skin aging in wild-type control (WT), WT streptozotocin-induced type 1 diabetic mice (WT DM), CB1R knockout (CB1RKO) and CB1RKO DM mice. We quantified markers of inflammation, angiogenesis, antioxidant enzymes and collagen content. Moreover, we evaluate reactive oxygen species (ROS) levels and macrophage phenotype, M1 and M2. RESULTS CB1R expression is decreased in the skin of WT DM mice and collagen levels are decreased in the skin of WT DM, CB1RKO and CB1RKO DM mice. Additionally, the absence of CB1R correlated with higher expression of pro-inflammatory markers, also evident in WT DM or CB1RKO DM mice. Moreover, the M1/M2 macrophage ratio and ROS levels were significantly elevated but in the diabetic WT and the CB1RKO mice, consistent with a significant decrease in the antioxidant capacity of the skin. CONCLUSIONS Our results indicate that CB1R deficiency in the skin may lead to accelerated skin aging due to the increased production of ROS, a decrease in the antioxidant defenses and a higher pro-inflammatory environment. A significant decrease in the CB1R expression may be a significant contributing factor to the early aging-like changes in diabetes.
Collapse
Affiliation(s)
- Ermelindo C Leal
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| | - Liane I F Moura
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Roksana M Pirzgalska
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | | | - Attila Köfalvi
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal; The Portuguese Diabetes Association (APDP), Lisbon, Portugal.
| |
Collapse
|
62
|
Acin-Perez R, Benincá C, Shabane B, Shirihai OS, Stiles L. Utilization of Human Samples for Assessment of Mitochondrial Bioenergetics: Gold Standards, Limitations, and Future Perspectives. Life (Basel) 2021; 11:949. [PMID: 34575097 PMCID: PMC8467772 DOI: 10.3390/life11090949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial bioenergetic function is a central component of cellular metabolism in health and disease. Mitochondrial oxidative phosphorylation is critical for maintaining energetic homeostasis, and impairment of mitochondrial function underlies the development and progression of metabolic diseases and aging. However, measurement of mitochondrial bioenergetic function can be challenging in human samples due to limitations in the size of the collected sample. Furthermore, the collection of samples from human cohorts is often spread over multiple days and locations, which makes immediate sample processing and bioenergetics analysis challenging. Therefore, sample selection and choice of tests should be carefully considered. Basic research, clinical trials, and mitochondrial disease diagnosis rely primarily on skeletal muscle samples. However, obtaining skeletal muscle biopsies requires an appropriate clinical setting and specialized personnel, making skeletal muscle a less suitable tissue for certain research studies. Circulating white blood cells and platelets offer a promising primary tissue alternative to biopsies for the study of mitochondrial bioenergetics. Recent advances in frozen respirometry protocols combined with the utilization of minimally invasive and non-invasive samples may provide promise for future mitochondrial research studies in humans. Here we review the human samples commonly used for the measurement of mitochondrial bioenergetics with a focus on the advantages and limitations of each sample.
Collapse
Affiliation(s)
- Rebeca Acin-Perez
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.B.); (B.S.); (O.S.S.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Cristiane Benincá
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.B.); (B.S.); (O.S.S.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Byourak Shabane
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.B.); (B.S.); (O.S.S.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Orian S. Shirihai
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.B.); (B.S.); (O.S.S.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Linsey Stiles
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.B.); (B.S.); (O.S.S.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
63
|
Bocheva G, Slominski RM, Slominski AT. The Impact of Vitamin D on Skin Aging. Int J Mol Sci 2021; 22:ijms22169097. [PMID: 34445803 PMCID: PMC8396468 DOI: 10.3390/ijms22169097] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 12/11/2022] Open
Abstract
The active metabolites of vitamin D3 (D3) and lumisterol (L3) exert a variety of antiaging and photoprotective effects on the skin. These are achieved through immunomodulation and include anti-inflammatory actions, regulation of keratinocytes proliferation, and differentiation programs to build the epidermal barrier necessary for maintaining skin homeostasis. In addition, they induce antioxidative responses, inhibit DNA damage and induce DNA repair mechanisms to attenuate premature skin aging and cancerogenesis. The mechanism of action would involve interaction with multiple nuclear receptors including VDR, AhR, LXR, reverse agonism on RORα and -γ, and nongenomic actions through 1,25D3-MARRS receptor and interaction with the nongenomic binding site of the VDR. Therefore, active forms of vitamin D3 including its canonical (1,25(OH)2D3) and noncanonical (CYP11A1-intitated) D3 derivatives as well as L3 derivatives are promising agents for the prevention, attenuation, or treatment of premature skin aging. They could be administrated orally and/or topically. Other forms of parenteral application of vitamin D3 precursor should be considered to avoid its predominant metabolism to 25(OH)D3 that is not recognized by CYP11A1 enzyme. The efficacy of topically applied vitamin D3 and L3 derivatives needs further clinical evaluation in future trials.
Collapse
Affiliation(s)
- Georgeta Bocheva
- Department of Pharmacology and Toxicology, Medical University of Sofia, 1431 Sofia, Bulgaria
- Correspondence: (G.B.); (A.T.S.)
| | - Radomir M. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Veteran Administration Medical Center, Birmingham, AL 35294, USA
- Correspondence: (G.B.); (A.T.S.)
| |
Collapse
|
64
|
Yu Z, Liu KK. Soft Polymer-Based Technique for Cellular Force Sensing. Polymers (Basel) 2021; 13:2672. [PMID: 34451211 PMCID: PMC8399510 DOI: 10.3390/polym13162672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/03/2023] Open
Abstract
Soft polymers have emerged as a vital type of material adopted in biomedical engineering to perform various biomechanical characterisations such as sensing cellular forces. Distinct advantages of these materials used in cellular force sensing include maintaining normal functions of cells, resembling in vivo mechanical characteristics, and adapting to the customised functionality demanded in individual applications. A wide range of techniques has been developed with various designs and fabrication processes for the desired soft polymeric structures, as well as measurement methodologies in sensing cellular forces. This review highlights the merits and demerits of these soft polymer-based techniques for measuring cellular contraction force with emphasis on their quantitativeness and cell-friendliness. Moreover, how the viscoelastic properties of soft polymers influence the force measurement is addressed. More importantly, the future trends and advancements of soft polymer-based techniques, such as new designs and fabrication processes for cellular force sensing, are also addressed in this review.
Collapse
Affiliation(s)
| | - Kuo-Kang Liu
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK;
| |
Collapse
|
65
|
Go YY, Lee CM, Ju WM, Chae SW, Song JJ. Extracellular Vesicles (Secretomes) from Human Trophoblasts Promote the Regeneration of Skin Fibroblasts. Int J Mol Sci 2021; 22:ijms22136959. [PMID: 34203413 PMCID: PMC8269172 DOI: 10.3390/ijms22136959] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 01/28/2023] Open
Abstract
To date, placental trophoblasts have been of interest in the fields of obstetrics and gynecology, mainly due to their involvement in the formation of a connection between the mother and fetus that aids in placental development and fetal survival. However, the regenerative capacities of trophoblasts for application in regenerative medicine and tissue engineering are poorly understood. Here, we aim to determine the skin regeneration and anti-aging capacities of trophoblast-derived conditioned medium (TB-CM) and exosomes (TB-Exos) using human normal dermal fibroblasts (HNDFs). TB-CM and TB-Exos treatments significantly elevated the migration and proliferation potencies of HNDF cells in a dose- and time-dependent manner. When RNA sequencing (RNA-seq) was used to investigate the mechanism underlying TB-CM-induced cell migration on scratch-wounded HNDFs, the increased expression of genes associated with C-X-C motif ligand (CXCL) chemokines, toll-like receptors, and nuclear factor-kappa B (NF-κB) signaling was observed. Furthermore, treatment of intrinsically/extrinsically senescent HNDFs with TB-CM resulted in an enhanced rejuvenation of HNDFs via both protection and restoration processes. Gene expression of extracellular matrix components in the skin dermis significantly increased in TB-CM- and TB-Exos-treated HNDFs. These components are involved in the TB-CM and Exo-mediated regeneration and anti-aging of HNDFs. Thus, this study demonstrated the regenerative and anti-aging efficacies of trophoblast-derived secretomes, suggesting their potential for use in interventions for skin protection and treatment.
Collapse
Affiliation(s)
- Yoon Young Go
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, Seoul 08308, Korea; (Y.Y.G.); (C.M.L.); (W.M.J.); (S.-W.C.)
- Institute for Health Care Convergence Center, Korea University Guro Hospital, Seoul 08308, Korea
| | - Chan Mi Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, Seoul 08308, Korea; (Y.Y.G.); (C.M.L.); (W.M.J.); (S.-W.C.)
| | - Won Min Ju
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, Seoul 08308, Korea; (Y.Y.G.); (C.M.L.); (W.M.J.); (S.-W.C.)
| | - Sung-Won Chae
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, Seoul 08308, Korea; (Y.Y.G.); (C.M.L.); (W.M.J.); (S.-W.C.)
- Institute for Health Care Convergence Center, Korea University Guro Hospital, Seoul 08308, Korea
| | - Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, Seoul 08308, Korea; (Y.Y.G.); (C.M.L.); (W.M.J.); (S.-W.C.)
- Institute for Health Care Convergence Center, Korea University Guro Hospital, Seoul 08308, Korea
- Correspondence: ; Tel.: +82-2-2626-3186; Fax: +82-2-2626-0475
| |
Collapse
|
66
|
Grotheer V, Skrynecki N, Oezel L, Windolf J, Grassmann J. Osteogenic differentiation of human mesenchymal stromal cells and fibroblasts differs depending on tissue origin and replicative senescence. Sci Rep 2021; 11:11968. [PMID: 34099837 PMCID: PMC8184777 DOI: 10.1038/s41598-021-91501-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
The need for an autologous cell source for bone tissue engineering and medical applications has led researchers to explore multipotent mesenchymal stromal cells (MSC), which show stem cell plasticity, in various human tissues. However, MSC with different tissue origins vary in their biological properties and their capability for osteogenic differentiation. Furthermore, MSC-based therapies require large-scale ex vivo expansion, accompanied by cell type-specific replicative senescence, which affects osteogenic differentiation. To elucidate cell type-specific differences in the osteogenic differentiation potential and replicative senescence, we analysed the impact of BMP and TGF-β signaling in adipose-derived stromal cells (ASC), fibroblasts (FB), and dental pulp stromal cells (DSC). We used inhibitors of BMP and TGF-β signaling, such as SB431542, dorsomorphin and/or a supplemental addition of BMP-2. The expression of high-affinity binding receptors for BMP-2 and calcium deposition with alizarin red S were evaluated to assess osteogenic differentiation potential. Our study demonstrated that TGF-β signaling inhibits osteogenic differentiation of ASC, DSC and FB in the early cell culture passages. Moreover, DSC had the best osteogenic differentiation potential and an activation of BMP signaling with BMP-2 could further enhance this capacity. This phenomenon is likely due to an increased expression of activin receptor-like kinase-3 and -6. However, in DSC with replicative senescence (in cell culture passage 10), osteogenic differentiation sharply decreased, and the simultaneous use of BMP-2 and SB431542 did not result in further improvement of this process. In comparison, ASC retain a similar osteogenic differentiation potential regardless of whether they were in the early (cell culture passage 3) or later (cell culture passage 10) stages. Our study elucidated that ASC, DSC, and FB vary functionally in their osteogenic differentiation, depending on their tissue origin and replicative senescence. Therefore, our study provides important insights for cell-based therapies to optimize prospective bone tissue engineering strategies.
Collapse
Affiliation(s)
- Vera Grotheer
- Clinic for Orthopedics and Trauma Surgery, Medical Faculty of the Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany.
| | - Nadine Skrynecki
- Clinic for Orthopedics and Trauma Surgery, Medical Faculty of the Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Lisa Oezel
- Clinic for Orthopedics and Trauma Surgery, Medical Faculty of the Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Joachim Windolf
- Clinic for Orthopedics and Trauma Surgery, Medical Faculty of the Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Jan Grassmann
- Clinic for Orthopedics and Trauma Surgery, Medical Faculty of the Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
| |
Collapse
|
67
|
Bocheva GS, Slominski RM, Slominski AT. Immunological Aspects of Skin Aging in Atopic Dermatitis. Int J Mol Sci 2021; 22:ijms22115729. [PMID: 34072076 PMCID: PMC8198400 DOI: 10.3390/ijms22115729] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
The cutaneous immune response is important for the regulation of skin aging well as for the development of immune-mediated skin diseases. Aging of the human skin undergoes immunosenescence with immunological alterations and can be affected by environmental stressors and internal factors, thus leading to various epidermal barrier abnormalities. The dysfunctional epidermal barrier, immune dysregulation, and skin dysbiosis in the advanced age, together with the genetic factors, facilitate the late onset of atopic dermatitis (AD) in the elderly, whose cases have recently been on the rise. Controversial to the healthy aged skin, where overproduction of many cytokines is found, the levels of Th2/Th22 related cytokines inversely correlated with age in the skin of older AD patients. As opposed to an endogenously aged skin, the expression of the terminal differentiation markers significantly increases with age in AD. Despite the atenuated barrier disturbances in older AD patients, the aged skin carries an impairment associated with the aging process, which reflects the persistence of AD. The chronicity of AD in older patients might not directly affect skin aging but does not allow spontaneous remission. Thus, adult- and elderly subtypes of AD are considered as a lifelong disease.
Collapse
Affiliation(s)
- Georgeta St. Bocheva
- Department of Pharmacology and Toxicology, Medical University of Sofia, 1431 Sofia, Bulgaria
- Correspondence: (G.S.B.); (A.T.S.)
| | - Radomir M. Slominski
- Division of Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Andrzej T. Slominski
- Department of Dermatology, Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Veteran Administration Medical Center, Birmingham, AL 35294, USA
- Correspondence: (G.S.B.); (A.T.S.)
| |
Collapse
|
68
|
Wilkinson HN, Hardman MJ. A role for estrogen in skin ageing and dermal biomechanics. Mech Ageing Dev 2021; 197:111513. [PMID: 34044023 DOI: 10.1016/j.mad.2021.111513] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 01/11/2023]
Abstract
The skin is the body's primary defence against the external environment, preventing infection and desiccation. Therefore, alterations to skin homeostasis, for example with skin ageing, increase susceptibility to skin disease and injury. Skin biological ageing is uniquely influenced by a combination of intrinsic and extrinsic (primarily photoageing) factors, with differential effects on skin structure and function. Interestingly, skin architecture rapidly changes following the menopause, as a direct result of reduced circulating 17β-estradiol. The traditional clinical benefit of estrogens are supported by recent experimental data, where 17β-estradiol supplementation prevents age-related decline in the skin's structural and mechanical properties. However, the off-target effects of 17β-estradiol continue to challenge therapeutic application. Here we discuss how ageing alters the physiological and structural properties of the dermal extracellular matrix, and explore how estrogen receptor-targeted therapies may restore the mechanical defects associated with skin ageing.
Collapse
Affiliation(s)
- Holly N Wilkinson
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, The University of Hull, HU6 7RX, United Kingdom
| | - Matthew J Hardman
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, The University of Hull, HU6 7RX, United Kingdom.
| |
Collapse
|
69
|
Arai H, Sato Y, Yanagita M. Fibroblast heterogeneity and tertiary lymphoid tissues in the kidney. Immunol Rev 2021; 302:196-210. [PMID: 33951198 PMCID: PMC8360208 DOI: 10.1111/imr.12969] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 02/06/2023]
Abstract
Fibroblasts reside in various organs and support tissue structure and homeostasis under physiological conditions. Phenotypic alterations of fibroblasts underlie the development of diverse pathological conditions, including organ fibrosis. Recent advances in single‐cell biology have revealed that fibroblasts comprise heterogeneous subpopulations with distinct phenotypes, which exert both beneficial and detrimental effects on the host organs in a context‐dependent manner. In the kidney, phenotypic alterations of resident fibroblasts provoke common pathological conditions of chronic kidney disease (CKD), such as renal anemia and peritubular capillary loss. Additionally, in aged injured kidneys, fibroblasts provide functional and structural supports for tertiary lymphoid tissues (TLTs), which serve as the ectopic site of acquired immune reactions in various clinical contexts. TLTs are closely associated with aging and CKD progression, and the developmental stages of TLTs reflect the severity of renal injury. In this review, we describe the current understanding of fibroblast heterogeneity both under physiological and pathological conditions, with special emphasis on fibroblast contribution to TLT formation in the kidney. Dissecting the heterogeneous characteristics of fibroblasts will provide a promising therapeutic option for fibroblast‐related pathological conditions, including TLT formation.
Collapse
Affiliation(s)
- Hiroyuki Arai
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Sato
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Medical Innovation Center, TMK Project, Kyoto University, Kyoto, Japan
| | - Motoko Yanagita
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| |
Collapse
|
70
|
Kim WS, Seo JH, Lee JI, Ko ES, Cho SM, Kang JR, Jeong JH, Jeong YJ, Kim CY, Cha JD, Ryu YB. The Metabolite Profile in Culture Supernatant of Aster yomena Callus and Its Anti-Photoaging Effect in Skin Cells Exposed to UVB. PLANTS 2021; 10:plants10040659. [PMID: 33808279 PMCID: PMC8066191 DOI: 10.3390/plants10040659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 02/07/2023]
Abstract
Aster yomena (A. yomena) extract has anti-inflammatory, antioxidant, anti-asthma, and anti-atopic effects. However, the commercial use of A. yomena extract requires a long processing time with specific processing steps (including heat treatment and ethanol precipitation), and there are various environmental problems. We aimed to build a system to produce A. yomena extract by culturing the callus in a bioreactor that can allow rapid process scale-up to test the effect of extract (AYC-CS-E) isolated from culture supernatant of A. yomena callus on photoaging of human keratinocytes (HaCaT) caused by ultraviolet B (UVB) exposure. Through screening analysis based on ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS), 17 major metabolites were tentatively identified from AYC-CS-E for the first time. The suppression of cell proliferation caused by UVB was effectively alleviated in UVB-irradiated HaCaT cells treated with AYC-CS-E. Treatment with AYC-CS-E strongly induced the formation of type I procollagen and the inhibition of elastase in UVB-irradiated HaCaT cells and significantly reduced the expression of matrix metalloproteinase (MMP)-1. In addition, treatment of UVB-irradiated HaCaT cells with AYC-CS-E effectively improved various factors associated with an inflammatory reaction, skin damage recovery, skin moisture retention, and hyper-keratinization caused by photoaging, such as reactive oxygen species (ROS), pro-inflammatory cytokines, transforming growth factor beta (TGF-β), MMP-3, MMP-9, filaggrin, hyaluronic acid synthase 2 (HAS-2), keratin 1 (KRT-1), nuclear factor-kappa B (NF-κB), and nuclear factor erythroid 2-related factor 2 (Nrf2) at the gene and protein levels. These results suggest that AYC-CS-E can be used as a cosmetic ingredient for various skin diseases caused by photoaging, and the current callus culture system can be used commercially to supply cosmetic ingredients.
Collapse
Affiliation(s)
- Woo Sik Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si 56212, Korea; (W.S.K.); (J.-I.L.); (Y.J.J.); (C.Y.K.)
| | - Jeong Hun Seo
- Department of Bio-Material and Product Development and R&D Center, General Bio, Namwon-si 55793, Korea; (J.H.S.); (E.-S.K.); (S.-M.C.); (J.-R.K.); (J.-H.J.)
| | - Jae-In Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si 56212, Korea; (W.S.K.); (J.-I.L.); (Y.J.J.); (C.Y.K.)
| | - Eun-Sil Ko
- Department of Bio-Material and Product Development and R&D Center, General Bio, Namwon-si 55793, Korea; (J.H.S.); (E.-S.K.); (S.-M.C.); (J.-R.K.); (J.-H.J.)
| | - Sang-Min Cho
- Department of Bio-Material and Product Development and R&D Center, General Bio, Namwon-si 55793, Korea; (J.H.S.); (E.-S.K.); (S.-M.C.); (J.-R.K.); (J.-H.J.)
| | - Jea-Ran Kang
- Department of Bio-Material and Product Development and R&D Center, General Bio, Namwon-si 55793, Korea; (J.H.S.); (E.-S.K.); (S.-M.C.); (J.-R.K.); (J.-H.J.)
| | - Jong-Hoon Jeong
- Department of Bio-Material and Product Development and R&D Center, General Bio, Namwon-si 55793, Korea; (J.H.S.); (E.-S.K.); (S.-M.C.); (J.-R.K.); (J.-H.J.)
| | - Yu Jeong Jeong
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si 56212, Korea; (W.S.K.); (J.-I.L.); (Y.J.J.); (C.Y.K.)
| | - Cha Young Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si 56212, Korea; (W.S.K.); (J.-I.L.); (Y.J.J.); (C.Y.K.)
| | - Jeong-Dan Cha
- Department of Bio-Material and Product Development and R&D Center, General Bio, Namwon-si 55793, Korea; (J.H.S.); (E.-S.K.); (S.-M.C.); (J.-R.K.); (J.-H.J.)
- Correspondence: (J.-D.C.); (Y.-B.R.); Tel.: +82-63-263-0001 (J.-D.C.); +82-63-570-5171 (Y.-B.R.)
| | - Young-Bae Ryu
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si 56212, Korea; (W.S.K.); (J.-I.L.); (Y.J.J.); (C.Y.K.)
- Correspondence: (J.-D.C.); (Y.-B.R.); Tel.: +82-63-263-0001 (J.-D.C.); +82-63-570-5171 (Y.-B.R.)
| |
Collapse
|
71
|
Letsiou S. Tracing skin aging process: a mini- review of in vitro approaches. Biogerontology 2021; 22:261-272. [PMID: 33721158 DOI: 10.1007/s10522-021-09916-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/04/2021] [Indexed: 12/25/2022]
Abstract
Skin is a rather complex, yet useful organ of our body. Besides, skin aging is a complicated process that gains a growing interest as mediates many molecular processes in our body. Thus, an efficient skin model is important to understand skin aging function as well as to develop an effective innovative product for skin aging treatment. In this mini review, we present in vitro methods for assessments of skin aging in an attempt to pinpoint basic molecular mechanisms behind this process achieving both a better understanding of aging function and an effective evaluation of potential products or ingredients that counteract aging. Specifically, this study presents in vitro assays such as 2D or 3D skin models, to evaluate skin aging-related processes such as skin moisturization, photoaging, wound healing, menopause, and skin microbiome as novel efforts in the designing of efficacy assessments in the development of skincare products.
Collapse
Affiliation(s)
- Sophia Letsiou
- Laboratory of Biochemistry, Research and Development Department, APIVITA S.A., Industrial Park of Markopoulo Mesogaias, Markopoulo Attiki, 19003, Athens, Greece.
| |
Collapse
|
72
|
Simultaneously measuring the methylation of parent and daughter strands of replicated DNA at the single-molecule level by Hammer-seq. Nat Protoc 2021; 16:2131-2157. [PMID: 33686219 DOI: 10.1038/s41596-020-00488-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
The stable maintenance of DNA methylation patterns during mitotic cell division is crucial for cell identity. Precisely determining the maintenance kinetics and dissecting the exact contributions of relevant regulators requires a method to accurately measure parent and daughter strand DNA methylation at the same time, ideally at the single-molecule level. Recently, we developed a method referred to as Hammer-seq (hairpin-assisted mapping of methylation of replicated DNA) that fulfils the above criteria. This method integrates 5-ethynyl-2'-deoxyuridine (EdU) labeling of replicating DNA, biotin conjugation and streptavidin-based affinity purification, and whole-genome hairpin bisulfite sequencing technologies. Hammer-seq offers the unique advantage of simultaneously measuring the methylation status of parent and daughter strands within a single DNA molecule, which makes it possible to determine maintenance kinetics across various genomic regions without averaging effects from bulk measurements and to assess de novo methylation events that accompany methylation maintenance. Importantly, when combined with mutant cell lines in which mechanisms of interest are disrupted, Hammer-seq can be applied to determine the functional contributions of potential regulators to methylation maintenance, with accurate kinetics information that cannot be acquired with other currently available methods. Hammer-seq library preparation requires ~100 ug EdU-labeled genomic DNA as input (~15 million mammalian cells). The whole protocol, from pulse labeling to library construction, can be completed within 2-3 d, depending on the chasing time.
Collapse
|
73
|
4-Hydroxynonenal Contributes to Fibroblast Senescence in Skin Photoaging Evoked by UV-A Radiation. Antioxidants (Basel) 2021; 10:antiox10030365. [PMID: 33670907 PMCID: PMC7997366 DOI: 10.3390/antiox10030365] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/26/2022] Open
Abstract
Solar ultraviolet A (UV-A) radiation promotes a huge variety of damages on connective tissues and dermal fibroblasts, including cellular senescence, a major contributor of skin photoaging. The mechanisms of skin photoaging evoked by UV-A partly involve the generation of reactive oxygen species and lipid peroxidation. We previously reported that 4-hydroxynonenal (HNE), a lipid peroxidation-derived aldehyde, forms adducts on elastin in the skins of UV-A irradiated hairless mice, possibly contributing to actinic elastosis. In the present study, we investigated whether and how HNE promotes fibroblast senescence in skin photoaging. Dermal fibroblasts of skins from UV-A-exposed hairless mice exhibited an increased number of γH2AX foci characteristic of cell senescence, together with an accumulation of HNE adducts partly colocalizing with the cytoskeletal protein vimentin. Murine fibroblasts exposed to UV-A radiation (two cycles of 15 J/cm2), or HNE (30 µM, 4 h), exhibited senescence patterns characterized by an increased γH2AX foci expression, an accumulation of acetylated proteins, and a decreased expression of the sirtuin SIRT1. HNE adducts were detected on vimentin in cultured fibroblasts irradiated by UV-A or incubated with HNE. The HNE scavenger carnosine prevented both vimentin modification and fibroblast senescence evoked by HNE in vitro and in the skins of UV-A-exposed mice. Altogether, these data emphasize the role of HNE and lipid peroxidation-derived aldehydes in fibroblast senescence, and confirm the protective effect of carnosine in skin photoaging.
Collapse
|
74
|
Xiong M, Zhang Q, Hu W, Zhao C, Lv W, Yi Y, Wang Y, Tang H, Wu M, Wu Y. The novel mechanisms and applications of exosomes in dermatology and cutaneous medical aesthetics. Pharmacol Res 2021; 166:105490. [PMID: 33582246 DOI: 10.1016/j.phrs.2021.105490] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/18/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022]
Abstract
Exposure to the external environment may lead to instability and dysfunction of the skin, resulting in refractory wound, skin aging, pigmented dermatosis, hair loss, some immune-mediated dermatoses, and connective tissue diseases. Nowadays, many skin treatments have not achieved a commendable balance between medical recovery and cosmetic needs. Exosomes are cell-derived nanoscale vesicles carrying various biomolecules, including proteins, nucleic acids, and lipids, with the capability to communicate with adjacent or distant cells. Recent studies have demonstrated that endogenic multiple kinds of exosomes are crucial orchestrators in shaping physiological and pathological development of the skin. Besides, exogenous exosomes, such as stem cell exosomes, can serve as novel treatment options to repair, regenerate, and rejuvenate skin tissue. Herein, we review new insights into the role of endogenic and exogenous exosomes in the skin microenvironment and recent advances in applications of exosomes related to dermatology and cutaneous medical aesthetics. The deep understanding of the mechanisms by which exosomes perform biological functions in skin is of great potential to establish attractive therapeutic methods for the skin.
Collapse
Affiliation(s)
- Mingchen Xiong
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China.
| | - Weijie Hu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China.
| | - Chongru Zhao
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Wenchang Lv
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Yi Yi
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Yichen Wang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Hongbo Tang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China.
| | - Min Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China.
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei, China.
| |
Collapse
|
75
|
Uhler C, Shivashankar GV. Mechanogenomic coupling of lung tissue stiffness, EMT and coronavirus pathogenicity. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2021; 25:100874. [PMID: 33519291 PMCID: PMC7833345 DOI: 10.1016/j.cossms.2020.100874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/19/2020] [Indexed: 06/12/2023]
Abstract
In this Current Opinion, we highlight the importance of the material properties of tissues and how alterations therein, which influence epithelial-to-mesenchymal transitions, represent an important layer of regulation in a number of diseases and potentially also play a critical role in host-pathogen interactions. In light of the current SARS-CoV-2 pandemic, we here highlight the possible role of lung tissue stiffening with ageing and how this might facilitate increased SARS-CoV-2 replication through matrix-stiffness dependent epithelial-to-mesenchymal transitions of the lung epithelium. This emphasizes the need for integrating material properties of tissues in drug discovery programs.
Collapse
Affiliation(s)
- Caroline Uhler
- Department of Biosystems Science & Engineering (D-BSSE), ETH Zurich, Switzerland
| | - G V Shivashankar
- Department of Health Sciences & Technology (D-HEST), ETH Zurich, Switzerland
- Paul Scherrer Institute, Switzerland
| |
Collapse
|
76
|
Krutmann J, Schikowski T, Morita A, Berneburg M. Environmentally-Induced (Extrinsic) Skin Aging: Exposomal Factors and Underlying Mechanisms. J Invest Dermatol 2021; 141:1096-1103. [PMID: 33541724 DOI: 10.1016/j.jid.2020.12.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/29/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022]
Abstract
As a barrier organ, the skin is an ideal model to study environmentally-induced (extrinsic) aging. In this review, we explain the development of extrinsic skin aging as a consequence of skin exposure to specific exposomal factors, their interaction with each other, and the modification of their effects on the skin by genetic factors. We also review the evidence that exposure to these exposomal factors causes extrinsic skin aging by mechanisms that critically involve the accumulation of macromolecular damage and the subsequent development of functionally altered and/or senescent fibroblasts in the dermal compartment of the skin.
Collapse
Affiliation(s)
- Jean Krutmann
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany; Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Human Phenome Institute, Fudan University, Shanghai, China.
| | - Tamara Schikowski
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Akimichi Morita
- Department of Geriatric and Environmental Dermatology, Nagoya City University, Nagoya, Japan
| | - Mark Berneburg
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
77
|
Yu Z, Smith MJ, Siow RCM, Liu KK. Ageing modulates human dermal fibroblast contractility: Quantification using nano-biomechanical testing. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118972. [PMID: 33515646 DOI: 10.1016/j.bbamcr.2021.118972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 12/12/2022]
Abstract
Dermal fibroblasts play a key role in maintaining homoeostasis and functionality of the skin. Their contractility plays a role in changes observed during ageing, especially in processes such as wound healing, inflammation, wrinkling and scar tissue formation as well as structural changes on extracellular matrix. Although alternations in skin physiology and morphology have been previously described, there remains a paucity of information about the influence of chronological ageing on dermal fibroblast contractility. In this study, we applied a novel nano-biomechanical technique on cell-embedded collagen hydrogels in combination with mathematical modelling and numerical simulation to measure contraction forces of normal human dermal fibroblasts (NHDF). We achieved quantitative differentiation of the contractility of cells derived from 'young' (< 30 years old) and 'aged' (> 60 years old) donors. Transforming growth factor β1 (TGF-β1) was used to stimulate the fibroblasts to assess their contractile potential. NHDF from aged donors exhibited a greater basal contractile force, while in contrast, NHDF from young donors have shown a significantly larger contractile force in response to TGF-β1 treatment. These findings validate our nano-biomechanical measurement technique and provide new insights for considering NHDF contractility in regenerative medicine and as a biomarker of dermal ageing processes.
Collapse
Affiliation(s)
- Zhuonan Yu
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - Matthew J Smith
- School of Cardiovascular Medicine & Sciences, King's British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Richard C M Siow
- School of Cardiovascular Medicine & Sciences, King's British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Kuo-Kang Liu
- School of Engineering, University of Warwick, Coventry, United Kingdom.
| |
Collapse
|
78
|
Polygoni Multiflori Radix Preparat Delays Skin Aging by Inducing Mitophagy. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5847153. [PMID: 33511202 PMCID: PMC7822667 DOI: 10.1155/2021/5847153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/26/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022]
Abstract
Background As the skin is the largest organ of the human body, it is aging inevitably and produces cosmetic and psychological problems, and even disease. Therefore, the molecular mechanisms related to the prevention of skin aging need to be further explored. Methods Aging models were constructed by D-galactose. Mice were administrated with polygoni multiflori radix preparat (PMRP), PMRP and 3-methyladenine, or PMRP and rapamycin intragastrically. The apparent and viscera index of aged rats was measured. Then, the physicochemical property, antioxidant ability, histological structure, mitochondrial membrane potential, ATP and ROS levels, and mitophagy of aged skins were determined. Finally, the expression of PINK1, Parkin, P62, and LC3II/I; apoptosis-related proteins; and the percentage of apoptotic cells were measured. Results PMRP relieved skin aging with reducing of thymus index, improvement of pathological damage and histological structure, increase of the expression area of fibrous tissue, the ratio of type I to type III collagen, and antioxidant ability of aged skins. Importantly, PMRP also improved mitochondrial dysfunction with an increase in the content of mitochondrial membrane potential and ATP and a decrease of ROS levels. Moreover, mitophagy was enhanced with the treatment of PMRP when observed using electron microscopy, and the expression of PINK1, Parkin, and LC3I/II was increased with PMRP treatment but P62 expression was decreased. Meanwhile, PMRP alleviated apoptosis with a decrease of apoptotic cell and the expression of Cleaved-cas3, Bax, Cyt-c, AIF, and Smac as well as an increase of Bcl-2 expression. Conclusion The results demonstrated that the polygoni multiflori radix preparata may delay skin aging by inducing mitophagy.
Collapse
|
79
|
Pauty J, Nakano S, Usuba R, Nakajima T, Johmura Y, Omori S, Sakamoto N, Kikuchi A, Nakanishi M, Matsunaga YT. A 3D tissue model-on-a-chip for studying the effects of human senescent fibroblasts on blood vessels. Biomater Sci 2021; 9:199-211. [DOI: 10.1039/d0bm01297a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Senescent cells modify their environment and cause tissue aging that leads to organ dysfunction. Developing strategies for healthy aging rises a need for in vitro models that enables to study senescence and senotherapeutics at a tissue level.
Collapse
Affiliation(s)
- Joris Pauty
- Institute of Industrial Science
- The University of Tokyo
- Tokyo 153-8505
- Japan
| | - Shizuka Nakano
- Institute of Industrial Science
- The University of Tokyo
- Tokyo 153-8505
- Japan
- Department of Materials Science and Technology
| | - Ryo Usuba
- Institute of Industrial Science
- The University of Tokyo
- Tokyo 153-8505
- Japan
| | - Tadaaki Nakajima
- Institute of Industrial Science
- The University of Tokyo
- Tokyo 153-8505
- Japan
| | - Yoshikazu Johmura
- Division of Cancer Cell Biology
- Department of Cancer Biology
- Institute of Medical Science
- The University of Tokyo
- Tokyo 108-8639
| | - Satotaka Omori
- Division of Cancer Cell Biology
- Department of Cancer Biology
- Institute of Medical Science
- The University of Tokyo
- Tokyo 108-8639
| | - Naoya Sakamoto
- Graduate School of Systems Design
- Tokyo Metropolitan University
- Tokyo
- 192-0397
- Japan
| | - Akihiko Kikuchi
- Department of Materials Science and Technology
- Faculty of Industrial Science and Technology
- Tokyo University of Science
- Tokyo 125-8585
- Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology
- Department of Cancer Biology
- Institute of Medical Science
- The University of Tokyo
- Tokyo 108-8639
| | | |
Collapse
|
80
|
Kołodziej-Wojnar P, Borkowska J, Wicik Z, Domaszewska-Szostek A, Połosak J, Cąkała-Jakimowicz M, Bujanowska O, Puzianowska-Kuznicka M. Alterations in the Genomic Distribution of 5hmC in In Vivo Aged Human Skin Fibroblasts. Int J Mol Sci 2020; 22:ijms22010078. [PMID: 33374812 PMCID: PMC7794952 DOI: 10.3390/ijms22010078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
5-Hydroxymethylcytosine (5hmC) is a functionally active epigenetic modification. We analyzed whether changes in DNA 5-hydroxymethylation are an element of age-related epigenetic drift. We tested primary fibroblast cultures originating from individuals aged 22-35 years and 74-94 years. Global quantities of methylation-related DNA modifications were estimated by the dot blot and colorimetric methods. Regions of the genome differentially hydroxymethylated with age (DHMRs) were identified by hMeDIP-seq and the MEDIPS and DiffBind algorithms. Global levels of DNA modifications were not associated with age. We identified numerous DHMRs that were enriched within introns and intergenic regions and most commonly associated with the H3K4me1 histone mark, promoter-flanking regions, and CCCTC-binding factor (CTCF) binding sites. However, only seven DHMRs were identified by both algorithms and all of their settings. Among them, hypo-hydroxymethylated DHMR in the intron of Rab Escort Protein 1 (CHM) coexisted with increased expression in old cells, while increased 5-hydroxymethylation in the bodies of Arginine and Serine Rich Protein 1 (RSRP1) and Mitochondrial Poly(A) Polymerase (MTPAP) did not change their expression. These age-related differences were not associated with changes in the expression of any of the ten-eleven translocation (TET) enzymes or their activity. In conclusion, the distribution of 5hmC in DNA of in vivo aged human fibroblasts underwent age-associated modifications. The identified DHMRs are, likely, marker changes.
Collapse
Affiliation(s)
- Paulina Kołodziej-Wojnar
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland;
- Department of Human Epigenetics, Mossakowski Medical Research Centre, PAS, A. Pawinskiego 5, 02-106 Warsaw, Poland; (J.B.); (Z.W.); (A.D.-S.); (J.P.); (M.C.-J.); (O.B.)
| | - Joanna Borkowska
- Department of Human Epigenetics, Mossakowski Medical Research Centre, PAS, A. Pawinskiego 5, 02-106 Warsaw, Poland; (J.B.); (Z.W.); (A.D.-S.); (J.P.); (M.C.-J.); (O.B.)
| | - Zofia Wicik
- Department of Human Epigenetics, Mossakowski Medical Research Centre, PAS, A. Pawinskiego 5, 02-106 Warsaw, Poland; (J.B.); (Z.W.); (A.D.-S.); (J.P.); (M.C.-J.); (O.B.)
| | - Anna Domaszewska-Szostek
- Department of Human Epigenetics, Mossakowski Medical Research Centre, PAS, A. Pawinskiego 5, 02-106 Warsaw, Poland; (J.B.); (Z.W.); (A.D.-S.); (J.P.); (M.C.-J.); (O.B.)
| | - Jacek Połosak
- Department of Human Epigenetics, Mossakowski Medical Research Centre, PAS, A. Pawinskiego 5, 02-106 Warsaw, Poland; (J.B.); (Z.W.); (A.D.-S.); (J.P.); (M.C.-J.); (O.B.)
- Institute of Medical Science, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Marta Cąkała-Jakimowicz
- Department of Human Epigenetics, Mossakowski Medical Research Centre, PAS, A. Pawinskiego 5, 02-106 Warsaw, Poland; (J.B.); (Z.W.); (A.D.-S.); (J.P.); (M.C.-J.); (O.B.)
| | - Olga Bujanowska
- Department of Human Epigenetics, Mossakowski Medical Research Centre, PAS, A. Pawinskiego 5, 02-106 Warsaw, Poland; (J.B.); (Z.W.); (A.D.-S.); (J.P.); (M.C.-J.); (O.B.)
| | - Monika Puzianowska-Kuznicka
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland;
- Department of Human Epigenetics, Mossakowski Medical Research Centre, PAS, A. Pawinskiego 5, 02-106 Warsaw, Poland; (J.B.); (Z.W.); (A.D.-S.); (J.P.); (M.C.-J.); (O.B.)
- Correspondence: ; Tel.: +48-22-6086410
| |
Collapse
|
81
|
Brinkmann V, Schiavi A, Shaik A, Puchta DR, Ventura N. Dietary and environmental factors have opposite AhR-dependent effects on C. elegans healthspan. Aging (Albany NY) 2020; 13:104-133. [PMID: 33349622 PMCID: PMC7835051 DOI: 10.18632/aging.202316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022]
Abstract
Genetic, dietary, and environmental factors concurrently shape the aging process. The aryl hydrocarbon receptor (AhR) was discovered as a dioxin-binding transcription factor involved in the metabolism of different environmental toxicants in vertebrates. Since then, the variety of pathophysiological processes regulated by the AhR has grown, ranging from immune response, metabolic pathways, and aging. Many modulators of AhR activity may impact on aging and age-associated pathologies, but, whether their effects are AhR-dependent has never been explored. Here, using Caenorhabditis elegans, as an elective model organism for aging studies, we show for the first time that lack of CeAHR-1 can have opposite effects on health and lifespan in a context-dependent manner. Using known mammalian AhR modulators we found that, ahr-1 protects against environmental insults (benzo(a)pyrene and UVB light) and identified a new role for AhR-bacterial diet interaction in animal lifespan, stress resistance, and age-associated pathologies. We narrowed down the dietary factor to a bacterially extruded metabolite likely involved in tryptophan metabolism. This is the first study clearly establishing C. elegans as a good model organism to investigate evolutionarily conserved functions of AhR-modulators and -regulated processes, indicating it can be exploited to contribute to the discovery of novel information about AhR in mammals.
Collapse
Affiliation(s)
- Vanessa Brinkmann
- Leibniz Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Alfonso Schiavi
- Leibniz Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany.,Institute of Clinical Chemistry and Laboratory Diagnostic, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany
| | - Anjumara Shaik
- Leibniz Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany.,Institute of Clinical Chemistry and Laboratory Diagnostic, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany
| | - Daniel Rüdiger Puchta
- Leibniz Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Natascia Ventura
- Leibniz Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany.,Institute of Clinical Chemistry and Laboratory Diagnostic, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany
| |
Collapse
|
82
|
Georgakopoulou EA, Valsamidi C, Veroutis D, Havaki S. The bright and dark side of skin senescence. Could skin rejuvenation anti-senescence interventions become a "bright" new strategy for the prevention of age-related skin pathologies? Mech Ageing Dev 2020; 193:111409. [PMID: 33249190 DOI: 10.1016/j.mad.2020.111409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/17/2020] [Accepted: 11/20/2020] [Indexed: 01/10/2023]
Abstract
The number of senescent cells in the skin is increasing with age. Numerous studies have attempted to elucidate the role of these cells in normal aging of the skin as well as in age-related skin conditions. In recent years, attempts have also been made to find treatments that aim either to cleanse the skin tissues of senescent cells or to neutralize their effects (referred to as senolytics and senomorphics respectively) and thus prevent the consequences, particularly on the skin's appearance in advanced age. Through this review, we have tried to gather data on the role of senescent cells in the skin, in treatments aimed at removing them, and we are asking a reasonable question as to whether anti-senescence treatments may contribute to the protection against age-related skin pathologies, including skin cancer, such as non-melanoma skin cancer, in addition to their involvement in skin rejuvenation.
Collapse
Affiliation(s)
- Eleni A Georgakopoulou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
| | - Christina Valsamidi
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
| | - Dimitrios Veroutis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
| | - Sophia Havaki
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece.
| |
Collapse
|
83
|
Involvement of 8-O-acetylharpagide for Ajuga taiwanensis mediated suppression of senescent phenotypes in human dermal fibroblasts. Sci Rep 2020; 10:19731. [PMID: 33184359 PMCID: PMC7661503 DOI: 10.1038/s41598-020-76797-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/03/2020] [Indexed: 12/31/2022] Open
Abstract
Herbal medicines are attractive agents for human care. In this study, we found that the alcohol extract of Ajuga taiwanensis (ATE) screened from a chemical bank exhibited potent capacity for suppressing senescence associated biomarkers, including SA-β-gal and up-regulated p53 in old human dermal fibroblasts (HDFs) without induction of significant cytotoxicity up to 100 µg/ml. Concomitantly, cells re-entered the cell cycle by reducing G1 phase arrest and increasing cell growth rate. The ATE was further partitioned to obtain the sub-fractions of n-butanol (BuOH), ethyl acetate (EA) and water. The BuOH and water sub-fractions exhibited less effects on prohibition of cell growth than the EA sub-fraction. All of these sub-fractions exhibited the ability on suppressing SA-β-gal and p53 of old HDFs as low as 5–10 µg/ml. Under the activity guided fractionation and isolation, a major active constituent named AT-1 was isolated. The AT-1 was further identified as 8-O-acetylharpagide by structural analysis, and it could suppress SA-β-gal and p53 of old HDFs below 10 µM. In addition, the intracellular reactive oxygen species (ROS) levels of old HDFs were suppressed by ATE, the sub-fractions of BuOH and water, and AT-1. However, the EA sub-fraction showed little ability on suppression of ROS. Furthermore, we performed an in vivo study using aging mice to be fed with ATE and the sub-fractions followed by immunohistochemical (IHC) staining. The expression of p53 and SA-β-gal was significantly reduced in several tissue sections, including skin, liver, kidney, and spleen. Taken together, current data demonstrated that A. taiwanensis could suppress cellular senescence in HDFs, and might be used for health care.
Collapse
|
84
|
Espada L, Dakhovnik A, Chaudhari P, Martirosyan A, Miek L, Poliezhaieva T, Schaub Y, Nair A, Döring N, Rahnis N, Werz O, Koeberle A, Kirkpatrick J, Ori A, Ermolaeva MA. Loss of metabolic plasticity underlies metformin toxicity in aged Caenorhabditis elegans. Nat Metab 2020; 2:1316-1331. [PMID: 33139960 DOI: 10.1038/s42255-020-00307-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
Current clinical trials are testing the life-extending benefits of the diabetes drug metformin in healthy individuals without diabetes. However, the metabolic response of a non-diabetic cohort to metformin treatment has not been studied. Here, we show in C. elegans and human primary cells that metformin shortens lifespan when provided in late life, contrary to its positive effects in young organisms. We find that metformin exacerbates ageing-associated mitochondrial dysfunction, causing respiratory failure. Age-related failure to induce glycolysis and activate the dietary-restriction-like mobilization of lipid reserves in response to metformin result in lethal ATP exhaustion in metformin-treated aged worms and late-passage human cells, which can be rescued by ectopic stabilization of cellular ATP content. Metformin toxicity is alleviated in worms harbouring disruptions in insulin-receptor signalling, which show enhanced resilience to mitochondrial distortions at old age. Together, our data show that metformin induces deleterious changes of conserved metabolic pathways in late life, which could bring into question its benefits for older individuals without diabetes.
Collapse
Affiliation(s)
- Lilia Espada
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | | | - Prerana Chaudhari
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Asya Martirosyan
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Laura Miek
- Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | | | - Yvonne Schaub
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Ashish Nair
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Nadia Döring
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Norman Rahnis
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Oliver Werz
- Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Andreas Koeberle
- Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
- Michael Popp Research Institute, University of Innsbruck, Innsbruck, Austria
| | | | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Maria A Ermolaeva
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.
| |
Collapse
|
85
|
Mazini L, Rochette L, Malka G. Adipose-Derived Stem Cells (ADSCs) and Growth Differentiation Factor 11 (GDF11): Regenerative and Antiaging Capacity for the Skin. Regen Med 2020. [DOI: 10.5772/intechopen.91233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
86
|
Reynolds WJ, Hanson PS, Critchley A, Griffiths B, Chavan B, Birch‐Machin MA. Exposing human primary dermal fibroblasts to particulate matter induces changes associated with skin aging. FASEB J 2020; 34:14725-14735. [DOI: 10.1096/fj.202001357r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Wil J. Reynolds
- Dermatological Sciences Translational and Clinical Research Institute Newcastle University Newcastle upon Tyne UK
| | - Peter S. Hanson
- Campus for Ageing and Vitality Translational and Clinical Research Institute Newcastle University Newcastle upon Tyne UK
| | | | | | | | - Mark A. Birch‐Machin
- Dermatological Sciences Translational and Clinical Research Institute Newcastle University Newcastle upon Tyne UK
| |
Collapse
|
87
|
Wilkinson HN, Hardman MJ. Senescence in Wound Repair: Emerging Strategies to Target Chronic Healing Wounds. Front Cell Dev Biol 2020; 8:773. [PMID: 32850866 PMCID: PMC7431694 DOI: 10.3389/fcell.2020.00773] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/22/2020] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a fundamental stress response that restrains tumour formation. Yet, senescence cells are also present in non-cancerous states, accumulating exponentially with chronological age and contributing to age- and diabetes-related cellular dysfunction. The identification of hypersecretory and phagocytic behaviours in cells that were once believed to be non-functional has led to a recent explosion of senescence research. Here we discuss the profound, and often opposing, roles identified for short-lived vs. chronic tissue senescence. Transiently induced senescence is required for development, regeneration and acute wound repair, while chronic senescence is widely implicated in tissue pathology. We recently demonstrated that sustained senescence contributes to impaired diabetic healing via the CXCR2 receptor, which when blocked promotes repair. Further studies have highlighted the beneficial effects of targeting a range of senescence-linked processes to fight disease. Collectively, these findings hold promise for developing clinically viable strategies to tackle senescence in chronic wounds and other cutaneous pathologies.
Collapse
Affiliation(s)
- Holly N Wilkinson
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Matthew J Hardman
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, United Kingdom
| |
Collapse
|
88
|
Marine collagen and its derivatives: Versatile and sustainable bio-resources for healthcare. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110963. [DOI: 10.1016/j.msec.2020.110963] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/06/2020] [Accepted: 04/11/2020] [Indexed: 02/07/2023]
|
89
|
The Role of microRNAs in Organismal and Skin Aging. Int J Mol Sci 2020; 21:ijms21155281. [PMID: 32722415 PMCID: PMC7432402 DOI: 10.3390/ijms21155281] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/11/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
The aging process starts directly after birth and lasts for the entire lifespan; it manifests itself with a decline in an organism’s ability to adapt and is linked to the development of age-related diseases that eventually lead to premature death. This review aims to explore how microRNAs (miRNAs) are involved in skin functioning and aging. Recent evidence has suggested that miRNAs regulate all aspects of cutaneous biogenesis, functionality, and aging. It has been noted that some miRNAs were down-regulated in long-lived individuals, such as let-7, miR-17, and miR-34 (known as longevity-related miRNAs). They are conserved in humans and presumably promote lifespan prolongation; conversely, they are up-regulated in age-related diseases, like cancers. The analysis of the age-associated cutaneous miRNAs revealed the increased expression of miR-130, miR-138, and miR-181a/b in keratinocytes during replicative senescence. These miRNAs affected cell proliferation pathways via targeting the p63 and Sirtuin 1 mRNAs. Notably, miR-181a was also implicated in skin immunosenescence, represented by the Langerhans cells. Dermal fibroblasts also expressed increased the levels of the biomarkers of aging that affect telomere maintenance and all phases of the cellular life cycle, such as let-7, miR-23a-3p, 34a-5p, miR-125a, miR-181a-5p, and miR-221/222-3p. Among them, the miR-34 family, stimulated by ultraviolet B irradiation, deteriorates collagen in the extracellular matrix due to the activation of the matrix metalloproteinases and thereby potentiates wrinkle formation. In addition to the pro-aging effects of miRNAs, the plausible antiaging activity of miR-146a that antagonized the UVA-induced inhibition of proliferation and suppressed aging-related genes (e.g., p21WAF-1, p16, and p53) through targeting Smad4 has also been noticed. Nevertheless, the role of miRNAs in skin aging is still not fully elucidated and needs to be further discovered and explained.
Collapse
|
90
|
Huang L, Zhao Z, Wen J, Ling W, Miao Y, Wu J. Cellular senescence: A pathogenic mechanism of pelvic organ prolapse (Review). Mol Med Rep 2020; 22:2155-2162. [PMID: 32705234 PMCID: PMC7411359 DOI: 10.3892/mmr.2020.11339] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 06/22/2020] [Indexed: 02/05/2023] Open
Abstract
Pelvic organ prolapse (POP) is a common symptom of pelvic floor disorders which is characterized by the descent of the uterus, bladder or bowel from their normal anatomical position towards or through the vagina. Among the older population, the incidence of POP increases with age. It is becoming necessary to recognize that POP is a degenerative disease that is correlated with age. In recent years, studies have been performed to improve understanding of the cellular and molecular mechanisms concerning senescent fibroblasts in pelvic tissues, which contribute to the loss of structure supporting the pelvic organs. These mechanisms can be classified into gene and mitochondrial dysfunctions, intrinsic senescence processes, protein imbalance and alterations in stem cells. The present review provides an integrated overview of the current research and concepts regarding POP, in addition to discussing how fibroblasts can be targeted to evade the negative impact of senescence on POP. However, it is probable that other mechanisms that can also cause POP exist during cell senescence, which necessitates further research and provides new directions in the development of novel medical treatment, stem cell therapy and non-surgical interventions for POP.
Collapse
Affiliation(s)
- Liwei Huang
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhiwei Zhao
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jirui Wen
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Wang Ling
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yali Miao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jiang Wu
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
91
|
Chen P, Zhang Q, Zhang H, Gao Y, Zhou Y, Chen Y, Guan L, Jiao T, Zhao Y, Huang M, Bi H. Carnitine palmitoyltransferase 1C reverses cellular senescence of MRC-5 fibroblasts via regulating lipid accumulation and mitochondrial function. J Cell Physiol 2020; 236:958-970. [PMID: 32632982 DOI: 10.1002/jcp.29906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Abstract
Cellular senescence, a state of growth arrest, is involved in various age-related diseases. We previously found that carnitine palmitoyltransferase 1C (CPT1C) is a key regulator of cancer cell proliferation and senescence, but it is unclear whether CPT1C plays a similar role in normal cells. Therefore, this study aimed to investigate the role of CPT1C in cellular proliferation and senescence of human embryonic lung MRC-5 fibroblasts and the involved mechanisms. The results showed that CPT1C could reverse the cellular senescence of MRC-5 fibroblasts, as evidenced by reduced senescence-associated β-galactosidase activity, downregulated messenger RNA (mRNA) expression of senescence-associated secretory phenotype factors, and enhanced bromodeoxyuridine incorporation. Lipidomics analysis further revealed that CPT1C gain-of-function reduced lipid accumulation and reversed abnormal metabolic reprogramming of lipids in late MRC-5 cells. Oil Red O staining and Nile red fluorescence also indicated significant reduction of lipid accumulation after CPT1C gain-of-function. Consequently, CPT1C gain-of-function significantly reversed mitochondrial dysfunction, as evaluated by increased adenosine triphosphate synthesis and mitochondrial transmembrane potential, decreased radical oxygen species, upregulated respiratory capacity and mRNA expression of genes related to mitochondrial function. In summary, CPT1C plays a vital role in MRC-5 cellular proliferation and can reverse MRC-5 cellular senescence through the regulation of lipid metabolism and mitochondrial function, which supports the role of CPT1C as a novel target for intervention into cellular proliferation and senescence and suggests CPT1C as a new strategy for antiaging.
Collapse
Affiliation(s)
- Panpan Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qianbin Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huizhen Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yue Gao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yanying Zhou
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yixin Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lihuan Guan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tingying Jiao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yingyuan Zhao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huichang Bi
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
92
|
Nuryana CT, Haryana SM, Wirohadidjojo YW, Arfian N. Achatina fulica mucous improves cell viability and increases collagen deposition in UVB-irradiated human fibroblast culture. J Stem Cells Regen Med 2020; 16:26-31. [PMID: 32536768 DOI: 10.46582/jsrm.1601005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/23/2020] [Indexed: 11/19/2022]
Abstract
Introduction: Ultraviolet radiation induces skin photoaging by increasing matrix metalloproteinase-1 (MMP-1). MMP-1 degrades type I and III collagen that comprise the dermal connective tissue. Achatina fulica mucous (AFM) is a natural remedy that has protective effects on fibroblasts and collagen. Objective: To investigate the effects of AFM on cell viability and collagen deposition in UVB-irradiated human fibroblast culture. Methods: The mucous was extracted from 50 Achatina fulica snails that were stimulated by a 5-10 Volt electricity shock for 30-60 seconds and converted into powder by the freeze-drying process. The human dermal fibroblast culture was divided into six groups: group 1 were normal fibroblasts without UVB irradiation as normal control, groups 2-5 consisted of 100 mJ/cm2 UVB-irradiated fibroblasts. Group 2 had no treatment as negative control, group 3 was treated by PRP 10% as positive control group and groups 4-6 were treated by various concentrations of AFM (3.9; 15.625 and 62.5 μg/mL). At the end of the experiment, the proliferation was assessed with MTT assay, furthermore collagen deposition was measured by Sirius red assay. Real Time-PCR (RT-PCR) was performed to quantify Coll I, Coll III and MMP-1 mRNA expression, then to measured COL 1/COL III ratio. Results: UVB induced significant lower viability, upregulated MMP-1 and downregulated COL I and COL III mRNA expressions. Meanwhile AFM treated groups demonstrated higher cell viability with downregulation of MMP-1 and upregulation of COL I and COL III mRNA expressions. The ratio of COL I/ III expression was significantly (p<0.05) lower in the AFM treated groups compared to the UVB group. Among AFM treated groups, administration of 62.5 μg/mL AFM represented the best result. Conclusion: AFM may ameliorate viability of UVB-irradiated human fibroblast culture which associates with downregulating MMP-1, upregulating COL I and Col III, and reducing COL I/III ratio.
Collapse
Affiliation(s)
- Ch Tri Nuryana
- Doctoral program of Medicine and Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Sofia Mubarika Haryana
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yohanes Widodo Wirohadidjojo
- Department of Dermatology and Venereology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Nur Arfian
- Department of Anatomy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
93
|
McCabe MC, Hill RC, Calderone K, Cui Y, Yan Y, Quan T, Fisher GJ, Hansen KC. Alterations in extracellular matrix composition during aging and photoaging of the skin. Matrix Biol Plus 2020; 8:100041. [PMID: 33543036 PMCID: PMC7852213 DOI: 10.1016/j.mbplus.2020.100041] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/02/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Human skin is composed of the cell-rich epidermis, the extracellular matrix (ECM) rich dermis, and the hypodermis. Within the dermis, a dense network of ECM proteins provides structural support to the skin and regulates a wide variety of signaling pathways which govern cell proliferation and other critical processes. Both intrinsic aging, which occurs steadily over time, and extrinsic aging (photoaging), which occurs as a result of external insults such as solar radiation, cause alterations to the dermal ECM. In this study, we utilized both quantitative and global proteomics, alongside single harmonic generation (SHG) and two-photon autofluorescence (TPAF) imaging, to assess changes in dermal composition during intrinsic and extrinsic aging. We find that both intrinsic and extrinsic aging result in significant decreases in ECM-supporting proteoglycans and structural ECM integrity, evidenced by decreasing collagen abundance and increasing fibril fragmentation. Intrinsic aging also produces changes distinct from those produced by photoaging, including reductions in elastic fiber and crosslinking enzyme abundance. In contrast, photoaging is primarily defined by increases in elastic fiber-associated protein and pro-inflammatory proteases. Changes associated with photoaging are evident even in young (mid 20s) sun-exposed forearm skin, indicating that proteomic evidence of photoaging is present decades prior to clinical signs of photoaging. GO term enrichment revealed that both intrinsic aging and photoaging share common features of chronic inflammation. The proteomic data has been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD015982. Intrinsic aging and photoaging both decrease ECM-supporting proteoglycans and structural ECM. Intrinsic aging produces reductions in elastic fiber and crosslinking enzyme abundance. Photoaging results in increases in pro-inflammatory proteases and elastic fiber abundance. Intrinsic aging and photoaging share common features associated with chronic inflammation. Proteomic changes associated with photoaging are evident decades prior to clinical aging signs.
Collapse
Key Words
- AUC, area under the curve
- Aging
- CE, cornified envelope
- CNBr, cyanogen bromide
- Collagen
- ECM, extracellular matrix
- Extracellular matrix
- GO, gene ontology
- Photoaging
- Proteomics
- QconCATs, quantitative concatemers
- SHG, single harmonic generation
- Skin
- TPAF, two-photon autofluorescence
- UV, ultraviolet
- iECM, insoluble ECM
- sECM, soluble ECM
Collapse
Affiliation(s)
- Maxwell C. McCabe
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, 12801 E 17th Ave., Aurora, CO 80045, USA
| | - Ryan C. Hill
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, 12801 E 17th Ave., Aurora, CO 80045, USA
| | - Kenneth Calderone
- Department of Dermatology, University of Michigan, 1150 W. Medical Center Drive, Medical Science I R6447, Ann Arbor, MI 48109, USA
| | - Yilei Cui
- Department of Dermatology, University of Michigan, 1150 W. Medical Center Drive, Medical Science I R6447, Ann Arbor, MI 48109, USA
| | - Yan Yan
- Department of Dermatology, University of Michigan, 1150 W. Medical Center Drive, Medical Science I R6447, Ann Arbor, MI 48109, USA
| | - Taihao Quan
- Department of Dermatology, University of Michigan, 1150 W. Medical Center Drive, Medical Science I R6447, Ann Arbor, MI 48109, USA
| | - Gary J. Fisher
- Department of Dermatology, University of Michigan, 1150 W. Medical Center Drive, Medical Science I R6447, Ann Arbor, MI 48109, USA
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, 12801 E 17th Ave., Aurora, CO 80045, USA
- Corresponding author.
| |
Collapse
|
94
|
Solé-Boldo L, Raddatz G, Schütz S, Mallm JP, Rippe K, Lonsdorf AS, Rodríguez-Paredes M, Lyko F. Single-cell transcriptomes of the human skin reveal age-related loss of fibroblast priming. Commun Biol 2020; 3:188. [PMID: 32327715 PMCID: PMC7181753 DOI: 10.1038/s42003-020-0922-4] [Citation(s) in RCA: 246] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 03/31/2020] [Indexed: 12/21/2022] Open
Abstract
Fibroblasts are an essential cell population for human skin architecture and function. While fibroblast heterogeneity is well established, this phenomenon has not been analyzed systematically yet. We have used single-cell RNA sequencing to analyze the transcriptomes of more than 5,000 fibroblasts from a sun-protected area in healthy human donors. Our results define four main subpopulations that can be spatially localized and show differential secretory, mesenchymal and pro-inflammatory functional annotations. Importantly, we found that this fibroblast 'priming' becomes reduced with age. We also show that aging causes a substantial reduction in the predicted interactions between dermal fibroblasts and other skin cells, including undifferentiated keratinocytes at the dermal-epidermal junction. Our work thus provides evidence for a functional specialization of human dermal fibroblasts and identifies the partial loss of cellular identity as an important age-related change in the human dermis. These findings have important implications for understanding human skin aging and its associated phenotypes.
Collapse
Affiliation(s)
- Llorenç Solé-Boldo
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120, Heidelberg, Germany
| | - Günter Raddatz
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120, Heidelberg, Germany
| | - Sabrina Schütz
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120, Heidelberg, Germany
| | - Jan-Philipp Mallm
- Division of Chromatin Networks, German Cancer Research Center and Bioquant, 69120, Heidelberg, Germany
| | - Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center and Bioquant, 69120, Heidelberg, Germany
| | - Anke S Lonsdorf
- Department of Dermatology, University Hospital, Ruprecht-Karls University of Heidelberg, 69120, Heidelberg, Germany
| | - Manuel Rodríguez-Paredes
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120, Heidelberg, Germany.
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120, Heidelberg, Germany.
| |
Collapse
|
95
|
Schiavi A, Strappazzon F, Ventura N. Mitophagy and iron: two actors sharing the stage in age-associated neuronal pathologies. Mech Ageing Dev 2020; 188:111252. [PMID: 32330468 DOI: 10.1016/j.mad.2020.111252] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022]
Abstract
Aging is characterized by the deterioration of different cellular and organismal structures and functions. A typical hallmark of the aging process is the accumulation of dysfunctional mitochondria and excess iron, leading to a vicious cycle that promotes cell and tissue damage, which ultimately contribute to organismal aging. Accordingly, altered mitochondrial quality control pathways such as mitochondrial autophagy (mitophagy) as well as altered iron homeostasis, with consequent iron overload, can accelerate the aging process and the development and progression of different age-associated disorders. In this review we first briefly introduce the aging process and summarize molecular mechanisms regulating mitophagy and iron homeostasis. We then provide an overview on how dysfunction of these two processes impact on aging and age-associated neurodegenerative disorders with a focus on Alzheimer's disease, Parkinson's disease and Amyotrophic Lateral Sclerosis. Finally, we summarize some recent evidence showing mechanistic links between iron metabolism and mitophagy and speculate on how regulating the crosstalk between the two processes may provide protective effects against aging and age-associated neuronal pathologies.
Collapse
Affiliation(s)
- Alfonso Schiavi
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; IUF- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | | | - Natascia Ventura
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; IUF- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| |
Collapse
|
96
|
García-Puga M, Saenz-Antoñanzas A, Fernández-Torrón R, Munain ALD, Matheu A. Myotonic Dystrophy type 1 cells display impaired metabolism and mitochondrial dysfunction that are reversed by metformin. Aging (Albany NY) 2020; 12:6260-6275. [PMID: 32310829 PMCID: PMC7185118 DOI: 10.18632/aging.103022] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/03/2020] [Indexed: 12/26/2022]
Abstract
Myotonic dystrophy type 1 (DM1; MIM #160900) is an autosomal dominant disorder, clinically characterized by progressive muscular weakness and multisystem degeneration. The broad phenotypes observed in patients with DM1 resemble the appearance of a multisystem accelerated aging process. However, the molecular mechanisms underlying these phenotypes remain largely unknown. In this study, we characterized the impact of metabolism and mitochondria on fibroblasts and peripheral blood mononuclear cells (PBMCs) derived from patients with DM1 and healthy individuals. Our results revealed a decrease in oxidative phosphorylation system (OXPHOS) activity, oxygen consumption rate (OCR), ATP production, energy metabolism, and mitochondrial dynamics in DM1 fibroblasts, as well as increased accumulation of reactive oxygen species (ROS). PBMCs of DM1 patients also displayed reduced mitochondrial dynamics and energy metabolism. Moreover, treatment with metformin reversed the metabolic and mitochondrial defects as well as additional accelerated aging phenotypes, such as impaired proliferation, in DM1-derived fibroblasts. Our results identify impaired cell metabolism and mitochondrial dysfunction as important drivers of DM1 pathophysiology and, therefore, reveal the efficacy of metformin treatment in a pre-clinical setting.
Collapse
Affiliation(s)
- Mikel García-Puga
- Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Spain.,Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain
| | | | - Roberto Fernández-Torrón
- Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Spain.,Neurology Department, Donostia University Hospital, OSAKIDETZA, San Sebastian, Spain.,CIBERNED, Carlos III Institute, Madrid, Spain
| | - Adolfo Lopez de Munain
- Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Spain.,Neurology Department, Donostia University Hospital, OSAKIDETZA, San Sebastian, Spain.,CIBERNED, Carlos III Institute, Madrid, Spain.,Faculty of Medicine and Nursery, Department of Neurosciences, University of the Basque Country, San Sebastian, Spain
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,CIBERfes, Carlos III Institute, Madrid, Spain
| |
Collapse
|
97
|
Clementi E, Inglin L, Beebe E, Gsell C, Garajova Z, Markkanen E. Persistent DNA damage triggers activation of the integrated stress response to promote cell survival under nutrient restriction. BMC Biol 2020; 18:36. [PMID: 32228693 PMCID: PMC7106853 DOI: 10.1186/s12915-020-00771-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/16/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Base-excision repair (BER) is a central DNA repair mechanism responsible for the maintenance of genome integrity. Accordingly, BER defects have been implicated in cancer, presumably by precipitating cellular transformation through an increase in the occurrence of mutations. Hence, tight adaptation of BER capacity is essential for DNA stability. However, counterintuitive to this, prolonged exposure of cells to pro-inflammatory molecules or DNA-damaging agents causes a BER deficiency by downregulating the central scaffold protein XRCC1. The rationale for this XRCC1 downregulation in response to persistent DNA damage remains enigmatic. Based on our previous findings that XRCC1 downregulation causes wide-ranging anabolic changes, we hypothesised that BER depletion could enhance cellular survival under stress, such as nutrient restriction. RESULTS Here, we demonstrate that persistent single-strand breaks (SSBs) caused by XRCC1 downregulation trigger the integrated stress response (ISR) to promote cellular survival under nutrient-restricted conditions. ISR activation depends on DNA damage signalling via ATM, which triggers PERK-mediated eIF2α phosphorylation, increasing translation of the stress-response factor ATF4. Furthermore, we demonstrate that SSBs, induced either through depletion of the transcription factor Sp1, responsible for XRCC1 levels, or through prolonged oxidative stress, trigger ISR-mediated cell survival under nutrient restriction as well. Finally, the ISR pathway can also be initiated by persistent DNA double-strand breaks. CONCLUSIONS Our results uncover a previously unappreciated connection between persistent DNA damage, caused by a decrease in BER capacity or direct induction of DNA damage, and the ISR pathway that supports cell survival in response to genotoxic stress with implications for tumour biology and beyond.
Collapse
Affiliation(s)
- Elena Clementi
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, 8057, Zürich, Switzerland
| | - Larissa Inglin
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, 8057, Zürich, Switzerland
| | - Erin Beebe
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, 8057, Zürich, Switzerland
| | - Corina Gsell
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, 8057, Zürich, Switzerland
| | - Zuzana Garajova
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, 8057, Zürich, Switzerland
| | - Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, 8057, Zürich, Switzerland.
| |
Collapse
|
98
|
Cao C, Xiao Z, Wu Y, Ge C. Diet and Skin Aging-From the Perspective of Food Nutrition. Nutrients 2020; 12:E870. [PMID: 32213934 PMCID: PMC7146365 DOI: 10.3390/nu12030870] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023] Open
Abstract
We regularly face primary challenges in deciding what to eat to maintain young and healthy skin, defining a healthy diet and the role of diet in aging. The topic that currently attracts maximum attention is ways to maintain healthy skin and delay skin aging. Skin is the primary barrier that protects the body from external aggressions. Skin aging is a complex biological process, categorized as chronological aging and photo-aging, and is affected by internal factors and external factors. With the rapid breakthrough of medicine in prolonging human life and the rapid deterioration of environmental conditions, it has become urgent to find safe and effective methods to treat skin aging. For diet, as the main way for the body to obtain energy and nutrients, people have gradually realized its importance to the skin. Therefore, in this review, we discuss the skin structure, aging manifestations, and possible mechanisms, summarize the research progress, challenges, possible directions of diet management, and effects of foodborne antioxidants on skin aging from the perspective of food and nutrition.
Collapse
Affiliation(s)
- Changwei Cao
- Livestock Product Processing Engineering and Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (C.C.); (Z.X.)
- College of Food Science, Sichuan Agricultural University, Ya’ an, Sichuan 625014, China;
| | - Zhichao Xiao
- Livestock Product Processing Engineering and Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (C.C.); (Z.X.)
- College of Food Science and technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Yinglong Wu
- College of Food Science, Sichuan Agricultural University, Ya’ an, Sichuan 625014, China;
| | - Changrong Ge
- Livestock Product Processing Engineering and Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China; (C.C.); (Z.X.)
| |
Collapse
|
99
|
Swindell WR, Bojanowski K, Chaudhuri RK. A Zingerone Analog, Acetyl Zingerone, Bolsters Matrisome Synthesis, Inhibits Matrix Metallopeptidases, and Represses IL-17A Target Gene Expression. J Invest Dermatol 2020; 140:602-614.e15. [DOI: 10.1016/j.jid.2019.07.715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/02/2019] [Accepted: 07/30/2019] [Indexed: 01/27/2023]
|
100
|
Invasion of Herpes Simplex Virus 1 into Murine Dermis: Role of Nectin-1 and Herpesvirus Entry Mediator as Cellular Receptors during Aging. J Virol 2020; 94:JVI.02046-19. [PMID: 31826998 DOI: 10.1128/jvi.02046-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 12/27/2022] Open
Abstract
Skin is a major target tissue of herpes simplex virus 1 (HSV-1), and we are only beginning to understand how individual receptors contribute to the initiation of infection in tissue. We recently demonstrated the impact of the receptors nectin-1 and herpesvirus entry mediator (HVEM) for entry of HSV-1 into murine epidermis. Here, we focus on viral invasion into the dermis, a further critical target tissue in vivo In principle, murine dermal fibroblasts are highly susceptible to HSV-1, and we previously showed that nectin-1 and HVEM can act as alternative receptors. To characterize their contribution as receptors in dermal tissue, we established an ex vivo infection assay of murine dermis. Only after separation of the epidermis from the dermis, we observed single infected cells in the upper dermis from juvenile mice at 5 h postinfection with increasing numbers of infected cells at later times. While nectin-1-expressing cells were less frequently detected, we found HVEM expressed on most cells of juvenile dermis. The comparison of infection efficiency during aging revealed a strong delay in the onset of infection in the dermis from aged mice. This observation correlated with a decrease in nectin-1-expressing fibroblasts during aging while the number of HVEM-expressing cells remained stable. Accordingly, aged nectin-1-deficient dermis was less susceptible to HSV-1 than the dermis from control mice. Thus, we conclude that the reduced availability of nectin-1 in aged dermis is a key contributor to a decrease in infection efficiency during aging.IMPORTANCE HSV-1 is a prevalent human pathogen which invades skin and mucocutaneous linings. So far, the underlying mechanisms of how the virus invades tissue, reaches its receptors, and initiates infection are still unresolved. To unravel the mechanical prerequisites that limit or favor viral invasion into tissue, we need to understand the contribution of the receptors that are involved in viral internalization. Here, we investigated the invasion process into murine dermis with the focus on receptor availability and found that infection efficiency decreases in aging mice. Based on studies of the expression of the receptors nectin-1 and HVEM, we suggest that the decreasing number of nectin-1-expressing fibroblasts leads to a delayed onset of infection in the dermis from aged compared to juvenile mice. Our results imply that the level of infection efficiency in murine dermis is closely linked to the availability of the receptor nectin-1 and can change during aging.
Collapse
|