51
|
García-Aviles JE, Méndez-Hernández R, Guzmán-Ruiz MA, Cruz M, Guerrero-Vargas NN, Velázquez-Moctezuma J, Hurtado-Alvarado G. Metabolic Disturbances Induced by Sleep Restriction as Potential Triggers for Alzheimer's Disease. Front Integr Neurosci 2021; 15:722523. [PMID: 34539357 PMCID: PMC8447653 DOI: 10.3389/fnint.2021.722523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/26/2021] [Indexed: 01/15/2023] Open
Abstract
Sleep has a major role in learning, memory consolidation, and metabolic function. Although it is known that sleep restriction increases the accumulation of amyloid β peptide (Aβ) and the risk to develop Alzheimer's disease (AD), the mechanism behind these effects remains unknown. In this review, we discuss how chronic sleep restriction induces metabolic and cognitive impairments that could result in the development of AD in late life. Here, we integrate evidence regarding mechanisms whereby metabolic signaling becomes disturbed after short or chronic sleep restriction in the context of cognitive impairment, particularly in the accumulation of Aβ in the brain. We also discuss the role of the blood-brain barrier in sleep restriction with an emphasis on the transport of metabolic signals into the brain and Aβ clearance. This review presents the unexplored possibility that the alteration of peripheral metabolic signals induced by sleep restriction, especially insulin resistance, is responsible for cognitive deficit and, subsequently, implicated in AD development.
Collapse
Affiliation(s)
- Jesús Enrique García-Aviles
- Area of Neurosciences, Biology of Reproduction Department, Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico.,Posgrado en Biología Experimental, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - Rebeca Méndez-Hernández
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Mara A Guzmán-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miguel Cruz
- Instituto Mexicano del Seguro Social, Centro Médico Nacional Siglo XXI, Hospital de Especialidades, Unidad de Investigación Médica en Bioquímica, Mexico City, Mexico
| | - Natalí N Guerrero-Vargas
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Javier Velázquez-Moctezuma
- Area of Neurosciences, Biology of Reproduction Department, Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - Gabriela Hurtado-Alvarado
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| |
Collapse
|
52
|
Energy Balance and Control of Body Weight: Possible Effects of Meal Timing and Circadian Rhythm Dysregulation. Nutrients 2021; 13:nu13093276. [PMID: 34579152 PMCID: PMC8470941 DOI: 10.3390/nu13093276] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Conservation of the energy equilibrium can be considered a dynamic process and variations of one component (energy intake or energy expenditure) cause biological and/or behavioral compensatory changes in the other part of the system. The interplay between energy demand and caloric intake appears designed to guarantee an adequate food supply in variable life contexts. The circadian rhythm plays a major role in systemic homeostasis by acting as “timekeeper” of the human body, under the control of central and peripheral clocks that regulate many physiological functions such as sleep, hunger and body temperature. Clock-associated biological processes anticipate the daily demands imposed by the environment, being synchronized under ideal physiologic conditions. Factors that interfere with the expected demand, including daily distribution of macronutrients, physical activity and light exposure, may disrupt the physiologic harmony between predicted and actual behavior. Such a desynchronization may favor the development of a wide range of disease-related processes, including obesity and its comorbidities. Evidence has been provided that the main components of 24-h EE may be affected by disruption of the circadian rhythm. The sleep pattern, meal timing and meal composition could mediate these effects. An increased understanding of the crosstalk between disruption of the circadian rhythm and energy balance may shed light on the pathophysiologic mechanisms underlying weight gain, which may eventually lead to design effective strategies to fight the obesity pandemic.
Collapse
|
53
|
Wang XL, Li L. Circadian Clock Regulates Inflammation and the Development of Neurodegeneration. Front Cell Infect Microbiol 2021; 11:696554. [PMID: 34595127 PMCID: PMC8476957 DOI: 10.3389/fcimb.2021.696554] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
The circadian clock regulates numerous key physiological processes and maintains cellular, tissue, and systemic homeostasis. Disruption of circadian clock machinery influences key activities involved in immune response and brain function. Moreover, Immune activation has been closely linked to neurodegeneration. Here, we review the molecular clock machinery and the diurnal variation of immune activity. We summarize the circadian control of immunity in both central and peripheral immune cells, as well as the circadian regulation of brain cells that are implicated in neurodegeneration. We explore the important role of systemic inflammation on neurodegeneration. The circadian clock modulates cellular metabolism, which could be a mechanism underlying circadian control. We also discuss the circadian interventions implicated in inflammation and neurodegeneration. Targeting circadian clocks could be a potential strategy for the prevention and treatment of inflammation and neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiao-Lan Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lianjian Li
- Department of Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
54
|
Vargas CA, Guzmán-Guzmán IP, Caamaño-Navarrete F, Jerez-Mayorga D, Chirosa-Ríos LJ, Delgado-Floody P. Syndrome Metabolic Markers, Fitness and Body Fat Is Associated with Sleep Quality in Women with Severe/Morbid Obesity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18179294. [PMID: 34501884 PMCID: PMC8431712 DOI: 10.3390/ijerph18179294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022]
Abstract
Background: Sleep is an important modulator of neuroendocrine function and glucose metabolism. Poor sleep quality is related to metabolic and endocrine alterations, including decreased glucose tolerance, decreased insulin sensitivity, and increased hunger and appetite. Objective: The aim of the present study was to determine the association between sleep quality with metabolic syndrome (MetS) markers, fitness and body fat of women with severe/morbid obesity. Methods: This cross-sectional study included 26 women with severe/morbid obesity. Fasting plasma glucose (FPG), high-density lipids (HDL-c), triglycerides (TGs), and the metabolic outcomes total cholesterol (Tc) and low-density lipids (LDL-c), systolic (SBP) and diastolic blood pressure (DBP), body composition and fitness were measured. Results: Poor sleep quality showed a positive association with body fat (%) ≥ 48.2 (OR; 8.39, 95% CI; 1.13–62.14, p = 0.037), morbid obesity (OR; 8.44, 95% CI; 1.15–66.0, p = 0.036), glucose ≥ 100 mg/dL (OR; 8.44, 95% CI; 1.15–66.0, p = 0.036) and relative handgrip strength ≤ 0.66 (OR; 12.2, 95% CI; 1.79–83.09, p = 0.011). Conclusion: sleep quality is associated with health markers in women with severe/morbid obesity.
Collapse
Affiliation(s)
- Claudia Andrea Vargas
- Department of Physical Education, Sport and Recreation, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Iris Paola Guzmán-Guzmán
- Faculty of Chemical-Biological Sciences, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39087, Mexico;
| | | | - Daniel Jerez-Mayorga
- Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago 7591538, Chile;
| | - Luis Javier Chirosa-Ríos
- Department Physical Education and Sports, Faculty of Sport Sciences, University of Granada, 18011 Granada, Spain;
| | - Pedro Delgado-Floody
- Department of Physical Education, Sport and Recreation, Universidad de La Frontera, Temuco 4780000, Chile;
- Correspondence:
| |
Collapse
|
55
|
Cui WZ, Qiu JF, Dai TM, Chen Z, Li JL, Liu K, Wang YJ, Sima YH, Xu SQ. Circadian Clock Gene Period Contributes to Diapause via GABAeric-Diapause Hormone Pathway in Bombyx mori. BIOLOGY 2021; 10:biology10090842. [PMID: 34571719 PMCID: PMC8469157 DOI: 10.3390/biology10090842] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022]
Abstract
Diapause is a developmental transition in insects based on seasonal adaptation to adversity; it is regulated by a circadian clock system and the endocrine system. However, the molecular node and its mechanism underlying the effects of these systems are still unclear. Here, a mutant of Bombyx mori with the circadian clock gene Period (Per) knocked out was constructed, which dramatically changed the classic diapause-destined pathway. Per-knockout silkworms powerfully attenuated, but could not completely block, the predetermined effects of temperature and photoperiod on diapause determination, and this effect depended on the diapause hormone (DH) pathway. The impaired transcription-translation feedback loop of the circadian clock system lacking the Per gene caused direct up-regulation of the expression of GRD, a receptor of γ-aminobutyric acid (GABA), by changing expression level of Cycle. The synthesis of GABA in the tissue complex of brain-suboesophageal ganglion then increased and restricted the decomposition, which continuously promoted the GABAergic signal to play a role, and finally inhibiting (delaying) the release of DH to the hemolymph, and reducing the diapause-inducing effect of DH. The results provided an example to explain the regulatory mechanism of the circadian clock on endocrine hormones in the silkworm.
Collapse
Affiliation(s)
- Wen-Zhao Cui
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China; (W.-Z.C.); (J.-F.Q.); (T.-M.D.); (Z.C.); (J.-L.L.); (K.L.); (Y.-H.S.)
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Jian-Feng Qiu
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China; (W.-Z.C.); (J.-F.Q.); (T.-M.D.); (Z.C.); (J.-L.L.); (K.L.); (Y.-H.S.)
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Tai-Ming Dai
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China; (W.-Z.C.); (J.-F.Q.); (T.-M.D.); (Z.C.); (J.-L.L.); (K.L.); (Y.-H.S.)
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Zhuo Chen
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China; (W.-Z.C.); (J.-F.Q.); (T.-M.D.); (Z.C.); (J.-L.L.); (K.L.); (Y.-H.S.)
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Jiang-Lan Li
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China; (W.-Z.C.); (J.-F.Q.); (T.-M.D.); (Z.C.); (J.-L.L.); (K.L.); (Y.-H.S.)
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Kai Liu
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China; (W.-Z.C.); (J.-F.Q.); (T.-M.D.); (Z.C.); (J.-L.L.); (K.L.); (Y.-H.S.)
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Yu-Jun Wang
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China;
| | - Yang-Hu Sima
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China; (W.-Z.C.); (J.-F.Q.); (T.-M.D.); (Z.C.); (J.-L.L.); (K.L.); (Y.-H.S.)
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Shi-Qing Xu
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China; (W.-Z.C.); (J.-F.Q.); (T.-M.D.); (Z.C.); (J.-L.L.); (K.L.); (Y.-H.S.)
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
- Correspondence: ; Tel.: +86-512-65880185
| |
Collapse
|
56
|
Hara A, Satake A. Why meals during resting time cause fat accumulation in mammals? Mathematical modeling of circadian regulation on glucose metabolism. J Math Biol 2021; 83:26. [PMID: 34370098 DOI: 10.1007/s00285-021-01645-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/03/2021] [Accepted: 07/17/2021] [Indexed: 11/25/2022]
Abstract
Synchronization of metabolic rhythms regulated by circadian clock and meal timing is essential for maintaining nutrient homeostasis in response to fluctuating food intake in animals. Despite numerous experimental findings on the involvement of circadian regulation of glucose and lipid metabolism, the optimal regulatory strategy for the maintenance of energy homeostasis remains poorly defined. A mathematical framework is useful to assess the circadian regulation of glycogen production/breakdown and de novo lipogenesis/lipolysis by evaluating the contribution of time of the day-dependent activation or the repression of each metabolic process in the maintenance of energy homeostasis. Here, we present a mathematical model that describes the dynamics of glycogen and triglyceride contents, two major forms of energy storage in the body that provide the fuel needed during different phases of food deprivation. By changing peak phases of glycogenesis and fat synthesis, we searched for the optimal phase set that minimizes the risks of two types of possible metabolic dysfunctions: (1) high blood glucose and (2) energy exhaustion. Based on the optimal phase set, we compared the level of fat accumulation between meal timing in the active and resting periods. Our results showed that an increased fat accumulation by food intake in the resting period can be the byproduct of minimizing energy homeostasis risks in the synchronized feeding schedule that animals adopt in nature. Our finding will be useful to schedule an optimal meal timing to prevent metabolic diseases caused by misalignment of biological and social time in modern society.
Collapse
Affiliation(s)
- Akane Hara
- Faculty of Advanced Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan.
| | - Akiko Satake
- Department of Biology, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
57
|
Hong M, Zhang R, Liu Y, Wu Z, Weng P. The interaction effect between tea polyphenols and intestinal microbiota: Role in ameliorating neurological diseases. J Food Biochem 2021; 46:e13870. [PMID: 34287960 DOI: 10.1111/jfbc.13870] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/17/2021] [Accepted: 06/27/2021] [Indexed: 01/08/2023]
Abstract
Tea polyphenols (TP) are one of the most functional and bioactive substances in tea. The interactions between TP and intestinal microbiota suggest that probiotics intervention is a useful method to ameliorate neurological diseases. Now, numerous researches have suggested that TP plays a significant role in modulating intestinal bacteria, especially in the area of sustaining a stable state of intestinal microbial function and abundance. Furthermore, homeostatic intestinal bacteria can enhance the immunity of the host. The close reciprocity between intestinal microbiota and the central nervous system provides a new chance for TP to modulate neural-related diseases depending on intestinal microbiota. Therefore, based on the bidirectional relationship between the brain and the intestines, this review provides a new clue to solve insomnia symptoms and related neurological diseases that will enable us to better study the bidirectional effects of TP and intestinal microbiota on the improvement of host health. PRACTICAL APPLICATIONS: This review provides a new clue to solve insomnia symptoms and related neurological diseases that will enable us to better study bidirectional effects of TP and intestinal microbiota on the improvement of host health.
Collapse
Affiliation(s)
- Mengyu Hong
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Ruilin Zhang
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Yanan Liu
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Zufang Wu
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Peifang Weng
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| |
Collapse
|
58
|
Wang W, Zhang Y, Ding M, Huang X, Zhang M, Gu Y, Wu L, Zhang C, Lu C, Shen B, Xing C, Song L. Circadian oscillation expression of ornithine carbamoyltransferase and its significance in sleep disturbance. Biochem Biophys Res Commun 2021; 559:217-221. [PMID: 33957483 DOI: 10.1016/j.bbrc.2021.04.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 11/27/2022]
Abstract
Ornithine transcarbamylases (OTC), a key enzyme in urea cycle, is an important marker for some liver injury or diseases. However, whether OTC could be a sensitive indicator for liver dysfunction under sleep disturbance condition remains unknown. The present study aimed to explore the circadian oscillation expression of OTC and its significance in disturbed sleep condition. Sleep disturbance was conducted by a sleep deprivation (SD) instrument. Our results found that SD for 72h induced abnormal increasing of OTC levels in serum and liver of rats. And, serum OTC concentration and liver OTC expression could return to normal levels after recovery sleep following SD. Moreover, hepatic OTC expression showed circadian oscillation in day and night, characterized with occurrence of a peak between ZT 22 and ZT 2, and a nadir between ZT 14 and ZT 18. Further analysis suggested the existence of ROR response element (RORE) for potential RORɑ binding sites in OTC promoter region, and elevated RORɑ expression in rat livers under sleep disturbance condition. Additionally, oscillation expression of OTC induced by serum shock in HepG2 cells was characterized with a peak occurred between ZT 12 and ZT 16, and RORɑ knockdown at ZT 16 significantly lowered OTC expression. The results together indicate that OTC is closely correlated with circadian clock, and could be a sensitive indicator for sleep disturbance stress.
Collapse
Affiliation(s)
- Wei Wang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China; School of Pharmacy, Jiamus University, Jiamusi, 154007, China
| | - Yifan Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Mengnan Ding
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xin Huang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Min Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yu Gu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China; Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200082, China
| | - Lin Wu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Chongchong Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China; School of Basic Medicine, Henan University, Kaifeng, 475004, China
| | - Chunfeng Lu
- School of Pharmacy, Jiamus University, Jiamusi, 154007, China
| | - Beifen Shen
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Chen Xing
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| | - Lun Song
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China; School of Pharmacy, Jiamus University, Jiamusi, 154007, China; Anhui Medical University, 81 Meishan Road, Hefei, 230032, China; College of Life Science, Henan Normal University, 46 Jianshe Road, Xinxiang, 473007, China.
| |
Collapse
|
59
|
Arévalo NB, Castillo-Godoy DP, Espinoza-Fuenzalida I, Rogers NK, Farias G, Delgado C, Henriquez M, Herrera L, Behrens MI, SanMartín CD. Association of Vitamin D Receptor Polymorphisms with Amyloid-β Transporters Expression and Risk of Mild Cognitive Impairment in a Chilean Cohort. J Alzheimers Dis 2021; 82:S283-S297. [DOI: 10.3233/jad-201031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: Amyloid-β peptide (Aβ) deposition in Alzheimer’s disease (AD) is due to an imbalance in its production/clearance rate. Aβ is transported across the blood-brain barrier by LRP1 and P-gp as efflux transporters and RAGE as influx transporter. Vitamin D deficit and polymorphisms of the vitamin D receptor (VDR) gene are associated with high prevalence of mild cognitive impairment (MCI) and AD. Further, vitamin D promotes the expression of LRP1 and P-gp in AD-animal model brains. Objective: To associate VDR polymorphisms Apa I (rs7975232), Taq I (rs731236), and Fok I (rs2228570) with the risk of developing MCI in a Chilean population, and to evaluate the relationship of these polymorphisms to the expression of VDR and Aβ-transporters in peripheral blood mononuclear cells (PBMCs). Methods: VDR polymorphisms Apa I, Taq I, and Fok I were determined in 128 healthy controls (HC) and 66 MCI patients. mRNA levels of VDR and Aβ-transporters were evaluated in subgroups by qPCR. Results: Alleles A of Apa I and C of Taq I were associated with a lower risk of MCI. HC with the Apa I AA genotype had higher mRNA levels of P-gp and LRP1, while the expression of VDR and RAGE were higher in MCI patients and HC. For Fok I, the TC genotype was associated with lower expression levels of Aβ-transporters in both groups. Conclusion: We propose that the response to vitamin D treatment will depend on VDR polymorphisms, being more efficient in carriers of protective alleles of Apa I polymorphism.
Collapse
Affiliation(s)
- Nohela B. Arévalo
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
- Programa de Genética Humana, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | - Nicole K. Rogers
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Gonzalo Farias
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago, Chile
- Centro de Investigación Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Carolina Delgado
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Mauricio Henriquez
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Red para el Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Universidad de Chile, Santiago, Chile
| | - Luisa Herrera
- Programa de Genética Humana, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - María Isabel Behrens
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago, Chile
- Centro de Investigación Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile, Santiago, Chile
- Departamento de Neurología y Psiquiatría, Clínica Alemana de Santiago, Santiago, Chile
| | - Carol D. SanMartín
- Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago, Chile
- Escuela de Tecnologia Médica, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| |
Collapse
|
60
|
Kumari R, Verma V, Kronfeld-Schor N, Singaravel M. Differential response of diurnal and nocturnal mammals to prolonged altered light-dark cycle: a possible role of mood associated endocrine, inflammatory and antioxidant system. Chronobiol Int 2021; 38:1618-1630. [PMID: 34128442 DOI: 10.1080/07420528.2021.1937200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The circadian system maintains internal 24 h oscillation of behavior and physiology, and its misalignment with external light-dark (LD) cycle results in negative health outcomes. In order to elucidate the effect of prolonged constant condition and the differences in the response between nocturnal and diurnal species, we studied the effects of constant light (LL) and constant darkness (DD) on a diurnal (squirrel) and a nocturnal (mouse) rodent species, focusing on the endocrine, inflammatory and antioxidant systems associated with depression-like behavior. Squirrels and mice (n = 10/group) were placed in chronocubicle under 12:12 h LD cycle, LL and DD. After 4 weeks, animals were subjected to sucrose preference test and blood and brain tissues were collected for measuring melatonin, corticosterone, proinflammatory cytokine, tumor necrosis factor-α (TNF-α) and the activity of primary antioxidant enzymes, catalase (CAT) and superoxide dismutase (SOD). The results show that in diurnal squirrels, prolonged constant darkness reduced sucrose preference, CAT, and SOD, increased corticosterone and TNF-α levels, but caused no significant change in the melatonin compared to LD condition. In contrast, in nocturnal mice constant darkness caused no significant changes in sucrose preference and corticosterone levels, increased melatonin, CAT and SOD levels but decreased TNF-α levels. Chronic LL caused a similar response in both squirrels and mice: it decreased sucrose preference, melatonin, CAT and SOD levels but increased corticosterone and TNF-α levels. Together, the study demonstrates differential effects of altered light-dark cycle in a diurnal and a nocturnal rodent on interrelated endocrine, inflammatory and antioxidant systems associated with depression-like behavior, with constant light having adverse effects on both species but constant darkness having a negative effect mainly in the diurnal squirrels.
Collapse
Affiliation(s)
- Ruchika Kumari
- Chronobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Vivek Verma
- Chronobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Noga Kronfeld-Schor
- Ecological and Evolutionary Physiology Laboratory, School of Zoology and Sagol School of Neuroscience, Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
| | - Muniyandi Singaravel
- Chronobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
61
|
Vanderheyden WM, Fang B, Flores CC, Jager J, Gerstner JR. The transcriptional repressor Rev-erbα regulates circadian expression of the astrocyte Fabp7 mRNA. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2. [PMID: 34056625 PMCID: PMC8162199 DOI: 10.1016/j.crneur.2021.100009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The astrocyte brain-type fatty-acid binding protein (Fabp7) circadian gene expression is synchronized in the same temporal phase throughout mammalian brain. Cellular and molecular mechanisms that contribute to this coordinated expression are not completely understood, but likely involve the nuclear receptor Rev-erbα (NR1D1), a transcriptional repressor. We performed ChIP-seq on ventral tegmental area (VTA) and identified gene targets of Rev-erbα, including Fabp7. We confirmed that Rev-erbα binds to the Fabp7 promoter in multiple brain areas, including hippocampus, hypothalamus, and VTA, and showed that Fabp7 gene expression is upregulated in Rev-erbα knock-out mice. Compared to Fabp7 mRNA levels, Fabp3 and Fabp5 mRNA were unaffected by Rev-erbα depletion in hippocampus, suggesting that these effects are specific to Fabp7. To determine whether these effects of Rev-erbα depletion occur broadly throughout the brain, we also evaluated Fabp mRNA expression levels in multiple brain areas, including cerebellum, cortex, hypothalamus, striatum, and VTA in Rev-erbα knock-out mice. While small but significant changes in Fabp5 mRNA expression exist in some of these areas, the magnitude of these effects are minimal to that of Fabp7 mRNA expression, which was over 6-fold across all brain regions. These studies suggest that Rev-erbα is a transcriptional repressor of Fabp7 gene expression throughout mammalian brain. The transcriptional repressor Rev-erbα binds to the Fabp7 promoter across brain areas. Multiple Rev-erbα response element binding sites exist on the Fabp7 promoter. Rev-erbα is required for Fabp7 transcriptional repression and circadian expression. Rev-erbα depletion does not affect other Fabp-type gene expression in brain.
Collapse
Affiliation(s)
- William M Vanderheyden
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA. 99202, USA.,Sleep and Performance Research Center, Washington State University, Spokane, WA. 99202, USA
| | - Bin Fang
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Dr, San Diego, CA 92121
| | - Carlos C Flores
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA. 99202, USA
| | - Jennifer Jager
- Université Côte d'Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire (C3M), Cellular and Molecular Physiopathology of Obesity, Nice, France
| | - Jason R Gerstner
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA. 99202, USA.,Sleep and Performance Research Center, Washington State University, Spokane, WA. 99202, USA.,Steve Gleason Institute for Neuroscience, Washington State University, Spokane, WA. 99202, USA
| |
Collapse
|
62
|
Ferric heme as a CO/NO sensor in the nuclear receptor Rev-Erbß by coupling gas binding to electron transfer. Proc Natl Acad Sci U S A 2021; 118:2016717118. [PMID: 33436410 DOI: 10.1073/pnas.2016717118] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Rev-Erbβ is a nuclear receptor that couples circadian rhythm, metabolism, and inflammation. Heme binding to the protein modulates its function as a repressor, its stability, its ability to bind other proteins, and its activity in gas sensing. Rev-Erbβ binds Fe3+-heme more tightly than Fe2+-heme, suggesting its activities may be regulated by the heme redox state. Yet, this critical role of heme redox chemistry in defining the protein's resting state and function is unknown. We demonstrate by electrochemical and whole-cell electron paramagnetic resonance experiments that Rev-Erbβ exists in the Fe3+ form within the cell allowing the protein to be heme replete even at low concentrations of labile heme in the nucleus. However, being in the Fe3+ redox state contradicts Rev-Erb's known function as a gas sensor, which dogma asserts must be Fe2+ This paper explains why the resting Fe3+ state is congruent both with heme binding and cellular gas sensing. We show that the binding of CO/NO elicits a striking increase in the redox potential of the Fe3+/Fe2+ couple, characteristic of an EC mechanism in which the unfavorable Electrochemical reduction of heme is coupled to the highly favorable Chemical reaction of gas binding, making the reduction spontaneous. Thus, Fe3+-Rev-Erbβ remains heme-loaded, crucial for its repressor activity, and undergoes reduction when diatomic gases are present. This work has broad implications for proteins in which ligand-triggered redox changes cause conformational changes influencing its function or interprotein interactions (e.g., between NCoR1 and Rev-Erbβ). This study opens up the possibility of CO/NO-mediated regulation of the circadian rhythm through redox changes in Rev-Erbβ.
Collapse
|
63
|
Al-Badwi MA, Samara EM, Abdoun KA, Al-Haidary AA. Using chrono-physiological management in form of shifting the feeding time has no advantage in goat kids exposed to experimentally induced heat stress. Trop Anim Health Prod 2021; 53:297. [PMID: 33928449 DOI: 10.1007/s11250-021-02716-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
Despite the proven outcomes of implementing chrono-physiological management (CPM) in several animals to promote their production performance, studies on its usefulness in goats are lacking. Twelve healthy Aardi male goat kids (22.60±1.10kg body weight; 6 months of age) were randomly allocated into two groups (morning-fed at 09:00 h and evening-fed at 21:00 h). The physiological and productive advantage of CPM (in form of shifting feeding time) was investigated in both groups while exposed to experimentally induced heat stress for 42 days (daily ambient temperature was cycling from 25 to 45°C). Thermophysiological (rectal, skin, and coat temperatures as well as respiratory rate), blood biochemical (plasma level of albumin, glucose, triacylglycerol, and urea), and production performance (daily feed intake, average daily gain, and feed conversion ratio) measurements were all obtained throughout this period. Current findings collectively revealed that shifting feeding time from 09:00 to 21:00 h had no (P > 0.05) impact on the thermophysiological status and blood metabolites of heat stressed kids. Above all, evidences have indicated that shifting feeding time had failed (P > 0.05) to demonstrate any consequence on promoting growth in these kids, thereby suggesting that shifting feeding time under hot climatic conditions has no advantage in goats. In fact, implementation of such an approach might not to be encouraged for heat-adapted animals. Experiments using other CPM methods (such as simultaneous shift of both feeding time and lighting program) can be however of further interest.
Collapse
Affiliation(s)
- Mohammed A Al-Badwi
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia. .,Department of Animal Production, Ibb University, P.O. Box 70270, Ibb, Yemen.
| | - Emad M Samara
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Khalid A Abdoun
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Ahmed A Al-Haidary
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
64
|
Teng ZW, Yang GQ, Wang LF, Fu T, Lian HX, Sun Y, Han LQ, Zhang LY, Gao TY. Effects of the circadian rhythm on milk composition in dairy cows: Does day milk differ from night milk? J Dairy Sci 2021; 104:8301-8313. [PMID: 33865587 DOI: 10.3168/jds.2020-19679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/04/2021] [Indexed: 11/19/2022]
Abstract
Metabolism in most organisms can show variations between the day and night. These variations may also affect the composition of products derived from livestock. The aim of the present study was to investigate the difference in composition between the day milk and night milk of dairy cows. Ten multiparous Holstein cows (milk yield = 25.2 ± 5.00 kg/d) were randomly selected during mid lactation. Milk samples were collected at 0500 h ("night milk") and 1500 h ("day milk") and analyzed to determine their composition. Mid-infrared spectroscopy was used to analyze macronutrient content of milk. Metabolomics and lipidomics were used to detect and analyze small molecules and fatty acids, respectively. An automatic biochemical analyzer and ELISA kits were used to determine biochemical indicators, as well as antioxidant and immune parameters in the milk. Though milk fat, protein, lactose, and total milk solids were not different between day milk and night milk, small molecules, metabolites and lipids, and hormones and cytokines differed between day milk and night milk. Regarding biochemical and immune-related indicators, the concentrations of malondialdehyde, HSP70, and HSP90 in night milk were lower than that in day milk. However, interferon-γ levels were higher in night milk. Additionally, night milk was naturally rich in melatonin. Lipidomics analyses showed that the levels of some lipids in night milk were higher than those in day milk. Metabolomics analyses identified 36 different metabolites between day milk and night milk. Higher concentrations of N-acetyl-d-glucosamine, cis-aconitate, and d-sorbitol were observed in day milk. However, the other 33 metabolites analyzed, including carbohydrates, lipids, AA, and aromatic compounds, showed lower concentrations in day milk than in night milk. The present findings show that the composition of night milk differs considerably from that of day milk. Notable changes in the circadian rhythm also altered milk composition. These results provide evidence to support the strategic use and classification of day milk and night milk.
Collapse
Affiliation(s)
- Z W Teng
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, People's Republic of China
| | - G Q Yang
- Modern Experimental Technique and Management Centre, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China
| | - L F Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, People's Republic of China.
| | - T Fu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, People's Republic of China
| | - H X Lian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, People's Republic of China
| | - Y Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, People's Republic of China
| | - L Q Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, People's Republic of China
| | - L Y Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, People's Republic of China
| | - T Y Gao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, People's Republic of China
| |
Collapse
|
65
|
Abstract
Many molecular, physiological and behavioural processes display distinct 24-hour rhythms that are directed by the circadian system. The master clock, located in the suprachiasmatic nucleus region of the hypothalamus, is synchronized or entrained by the light-dark cycle and, in turn, synchronizes clocks present in peripheral tissues and organs. Other environmental cues, most importantly feeding time, also synchronize peripheral clocks. In this way, the circadian system can prepare the body for predictable environmental changes such as the availability of nutrients during the normal feeding period. This Review summarizes existing knowledge about the diurnal regulation of gastrointestinal processes by circadian clocks present in the digestive tract and its accessory organs. The circadian control of gastrointestinal digestion, motility, hormones and barrier function as well as of the gut microbiota are discussed. An overview is given of the interplay between different circadian clocks in the digestive system that regulate glucose homeostasis and lipid and bile acid metabolism. Additionally, the bidirectional interaction between the master clock and peripheral clocks in the digestive system, encompassing different entraining factors, is described. Finally, the possible behavioural adjustments or pharmacological strategies for the prevention and treatment of the adverse effects of chronodisruption are outlined.
Collapse
|
66
|
Shankar A, Williams CT. The darkness and the light: diurnal rodent models for seasonal affective disorder. Dis Model Mech 2021; 14:dmm047217. [PMID: 33735098 PMCID: PMC7859703 DOI: 10.1242/dmm.047217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The development of animal models is a critical step for exploring the underlying pathophysiological mechanisms of major affective disorders and for evaluating potential therapeutic approaches. Although most neuropsychiatric research is performed on nocturnal rodents, differences in how diurnal and nocturnal animals respond to changing photoperiods, combined with a possible link between circadian rhythm disruption and affective disorders, has led to a call for the development of diurnal animal models. The need for diurnal models is most clear for seasonal affective disorder (SAD), a widespread recurrent depressive disorder that is linked to exposure to short photoperiods. Here, we briefly review what is known regarding the etiology of SAD and then examine progress in developing appropriate diurnal rodent models. Although circadian disruption is often invoked as a key contributor to SAD, a mechanistic understanding of how misalignment between endogenous circadian physiology and daily environmental rhythms affects mood is lacking. Diurnal rodents show promise as models of SAD, as changes in affective-like behaviors are induced in response to short photoperiods or dim-light conditions, and symptoms can be ameliorated by brief exposure to intervals of bright light coincident with activity onset. One exciting avenue of research involves the orexinergic system, which regulates functions that are disturbed in SAD, including sleep cycles, the reward system, feeding behavior, monoaminergic neurotransmission and hippocampal neurogenesis. However, although diurnal models make intuitive sense for the study of SAD and are more likely to mimic circadian disruption, their utility is currently hampered by a lack of genomic resources needed for the molecular interrogation of potential mechanisms.
Collapse
Affiliation(s)
- Anusha Shankar
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Cory T Williams
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| |
Collapse
|
67
|
Wang L, McFadden JW, Yang G, Zhu H, Lian H, Fu T, Sun Y, Gao T, Li M. Effect of melatonin on visceral fat deposition, lipid metabolism and hepatic lipo-metabolic gene expression in male rats. J Anim Physiol Anim Nutr (Berl) 2021; 105:787-796. [PMID: 33486831 DOI: 10.1111/jpn.13497] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 10/15/2020] [Accepted: 12/16/2020] [Indexed: 12/23/2022]
Abstract
Melatonin (MT) influences lipid metabolism in animals; however, the mechanistic effect of melatonin on liver fat and abdominal adipose deposition requires further clarity. In order to study the effects of melatonin on lipid metabolism, and hepatic fat and abdominal adipose deposition in animals, twenty Sprague-Dawley (SD) rats of 6 weeks of age with similar bodyweight were randomly divided into two groups: control (CTL) and MT-treated (10 mg/kg/day). During a 60-day experiment, food intake and bodyweight were measured daily and weekly respectively. At the end of treatment, blood samples were collected to collect plasma to quantify hormones and metabolic indicators of lipid metabolism. In addition, organ and abdominal adipose depots including liver, and omental, perirenal, and epididymal fat were weighed. Liver tissue was sampled for sectioning, long-chain fatty acid (LCFA) quantification, and gene chip and Real-time quantitative PCR (qPCR) analyses. The results showed that liver weight and index (ratio of liver weight to body weight) in MT group reduced by 20.69% and 9.63% respectively; omentum weight and index reduced by 59.88% and 54.93% respectively, and epididymal fat weight reduced by 45.34% (p = 0.049), relative to CTL. Plasma lipid indices, triglyceride (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL) and total cholesterol (TC) with MT treatment decreased significantly compared with the control. Fat and 8 LCFA content in liver in MT group also decreased. Gene chip and qPCR demonstrated that there were 289 genes up-regulated and 293 genes down-regulated by MT. Further analysis found that the mRNA expression of lipolysis-related genes increased, while the mRNA expression of lipogenesis-related enzymes decreased (p < 0.05) with MT. This study concluded that melatonin greatly affected fat deposition, and hepatic LCFA supply and the expression of genes associated with lipogenesis and lipolysis.
Collapse
Affiliation(s)
- Linfeng Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | | | - Gaiqing Yang
- Modern Experimental Technique and Management Centre, Henan Agricultural University, Zhengzhou, Henan, China
| | - Heshui Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Hongxia Lian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Tong Fu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yu Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Tengyun Gao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
68
|
Regulation of diurnal energy balance by mitokines. Cell Mol Life Sci 2021; 78:3369-3384. [PMID: 33464381 PMCID: PMC7814174 DOI: 10.1007/s00018-020-03748-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
The mammalian system of energy balance regulation is intrinsically rhythmic with diurnal oscillations of behavioral and metabolic traits according to the 24 h day/night cycle, driven by cellular circadian clocks and synchronized by environmental or internal cues such as metabolites and hormones associated with feeding rhythms. Mitochondria are crucial organelles for cellular energy generation and their biology is largely under the control of the circadian system. Whether mitochondrial status might also feed-back on the circadian system, possibly via mitokines that are induced by mitochondrial stress as endocrine-acting molecules, remains poorly understood. Here, we describe our current understanding of the diurnal regulation of systemic energy balance, with focus on fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15), two well-known endocrine-acting metabolic mediators. FGF21 shows a diurnal oscillation and directly affects the output of the brain master clock. Moreover, recent data demonstrated that mitochondrial stress-induced GDF15 promotes a day-time restricted anorexia and systemic metabolic remodeling as shown in UCP1-transgenic mice, where both FGF21 and GDF15 are induced as myomitokines. In this mouse model of slightly uncoupled skeletal muscle mitochondria GDF15 proved responsible for an increased metabolic flexibility and a number of beneficial metabolic adaptations. However, the molecular mechanisms underlying energy balance regulation by mitokines are just starting to emerge, and more data on diurnal patterns in mouse and man are required. This will open new perspectives into the diurnal nature of mitokines and action both in health and disease.
Collapse
|
69
|
Circadian Patterns of Patients with Type 2 Diabetes and Obstructive Sleep Apnea. J Clin Med 2021; 10:jcm10020244. [PMID: 33440893 PMCID: PMC7826782 DOI: 10.3390/jcm10020244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 01/19/2023] Open
Abstract
Sleep apnea, a condition that modifies sleep and circadian rhythms, is highly prevalent in patients with diabetes. However, it is not known if there is an association between sleep apnea, circadian alterations and glycemic regulation in this type of patient. Here, a polysomnographic study was carried out on 21 women and 25 men (mean age = 64.3 ± 1.46 years) with diagnoses of type 2 diabetes to detect the presence of sleep apnea. Moreover, patients wore an actigraph and a temperature sensor on the wrist for one week, to study the manifestation of the circadian rhythms. The correlations of circadian and polysomnographic variables with the severity of apnea, measured by the apnea-hypopnea index, and with glycemic dysregulation, measured by the percentage of glycated hemoglobin, were analyzed. The mean apnea-hypoapnea index of all the participants was 39.6 ± 4.3. Apnea-hypoapnea index correlated with % N1, negatively with % N3, and also the stability of the active circadian rhythm. However, no significant correlation was found between the apnea-hypopnea index and wrist temperature rhythm and glycated hemoglobin. Glycated hemoglobin levels were negatively associated with the percentage of variance explained by the wrist temperature circadian rhythm (calculated via 24 and 12 h rhythms). This association was independent of body mass index and was strongest in patients with severe apnea. In conclusion, patients with diabetes showed altered circadian rhythms associated with a poor glycemic control and this association could partially be related to the coexistence of sleep apnea.
Collapse
|
70
|
OUP accepted manuscript. J Mammal 2021. [DOI: 10.1093/jmammal/gyab168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
71
|
Wang XL, Wolff SEC, Korpel N, Milanova I, Sandu C, Rensen PCN, Kooijman S, Cassel JC, Kalsbeek A, Boutillier AL, Yi CX. Deficiency of the Circadian Clock Gene Bmal1 Reduces Microglial Immunometabolism. Front Immunol 2020; 11:586399. [PMID: 33363534 PMCID: PMC7753637 DOI: 10.3389/fimmu.2020.586399] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/06/2020] [Indexed: 01/25/2023] Open
Abstract
Microglia are brain immune cells responsible for immune surveillance. Microglial activation is, however, closely associated with neuroinflammation, neurodegeneration, and obesity. Therefore, it is critical that microglial immune response appropriately adapts to different stressors. The circadian clock controls the cellular process that involves the regulation of inflammation and energy hemostasis. Here, we observed a significant circadian variation in the expression of markers related to inflammation, nutrient utilization, and antioxidation in microglial cells isolated from mice. Furthermore, we found that the core clock gene-Brain and Muscle Arnt-like 1 (Bmal1) plays a role in regulating microglial immune function in mice and microglial BV-2 cells by using quantitative RT-PCR. Bmal1 deficiency decreased gene expression of pro-inflammatory cytokines, increased gene expression of antioxidative and anti-inflammatory factors in microglia. These changes were also observed in Bmal1 knock-down microglial BV-2 cells under lipopolysaccharide (LPS) and palmitic acid stimulations. Moreover, Bmal1 deficiency affected the expression of metabolic associated genes and metabolic processes, and increased phagocytic capacity in microglia. These findings suggest that Bmal1 is a key regulator in microglial immune response and cellular metabolism.
Collapse
Affiliation(s)
- Xiao-Lan Wang
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Amsterdam, Netherlands
| | - Samantha E. C. Wolff
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Amsterdam, Netherlands
| | - Nikita Korpel
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Amsterdam, Netherlands
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| | - Irina Milanova
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Amsterdam, Netherlands
| | - Cristina Sandu
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Patrick C. N. Rensen
- Department of Medicine, Divison of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Sander Kooijman
- Department of Medicine, Divison of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Jean-Christophe Cassel
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France
- CNRS UMR 7364, LNCA, Strasbourg, France
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Amsterdam, Netherlands
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| | - Anne-Laurence Boutillier
- Université de Strasbourg, Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Strasbourg, France
- CNRS UMR 7364, LNCA, Strasbourg, France
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Endocrinology, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Amsterdam, Netherlands
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| |
Collapse
|
72
|
Wajid F, Poolacherla R, Mim FK, Bangash A, Rutkofsky IH. Therapeutic potential of melatonin as a chronobiotic and cytoprotective agent in diabetes mellitus. J Diabetes Metab Disord 2020; 19:1797-1825. [PMID: 33520862 PMCID: PMC7843808 DOI: 10.1007/s40200-020-00585-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Diabetes mellitus is a complex metabolic disorder characterized by hyperglycemia occurring as a result of dysregulation and balance of various metabolic pathways. In recent years, circadian misalignment (due to altered sleep/wake, feeding/fasting cycles), has been intimately linked with the development of diabetes mellitus. Herein, we review our knowledge of oxidative stress, circadian rhythms control of metabolism, and the effects of its disruption on homeostasis while emphasizing the importance of melatonin, a nocturnally peaking, pineal hormone, as a potential therapeutic drug for the prevention and treatment of diabetes. METHODS PubMed database was systematically searched for related articles and data from all types of studies, including clinical trials, review articles, and case reports were considered without limiting the study to one specific category. RESULTS Experimental and epidemiological evidence indicate melatonin's multifaceted effects in intermediary metabolism via resynchronization of the circadian rhythms and its deficiency is associated with metabolic derangements. As a chronobiotic, it cures insomnia and sleep disorders caused by shift work or jet lag. The antagonistic relationship between melatonin and insulin highlights its influence in regulating insulin secretion, its action, and melatonin treatment successfully improved glucose homeostasis, energy balance, and overall health in diabetes mellitus. Melatonin's cytoprotective role as an antioxidant and free radical scavenger, proved useful in combating oxidative stress, preserving beta-cell function, and influencing the development of diabetic complications. CONCLUSION The therapeutic application of melatonin as a chronobiotic and cytoprotective agent is of promising significance in diabetes mellitus. Future investigations are encouraged to fully explore the efficacy of this ubiquitous molecule in various metabolic disorders.
Collapse
Affiliation(s)
- Fareha Wajid
- California Institute of Behavioural Neuroscience and Psychology, Fairfield, CA USA
| | - Raju Poolacherla
- California Institute of Behavioural Neuroscience and Psychology, Fairfield, CA USA
| | - Fatiha Kabir Mim
- California Institute of Behavioural Neuroscience and Psychology, Fairfield, CA USA
| | - Amna Bangash
- California Institute of Behavioural Neuroscience and Psychology, Fairfield, CA USA
| | - Ian H. Rutkofsky
- California Institute of Behavioural Neuroscience and Psychology, Fairfield, CA USA
| |
Collapse
|
73
|
Peroxisome Proliferator-Activated Receptors as Molecular Links between Caloric Restriction and Circadian Rhythm. Nutrients 2020; 12:nu12113476. [PMID: 33198317 PMCID: PMC7696073 DOI: 10.3390/nu12113476] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The circadian rhythm plays a chief role in the adaptation of all bodily processes to internal and environmental changes on the daily basis. Next to light/dark phases, feeding patterns constitute the most essential element entraining daily oscillations, and therefore, timely and appropriate restrictive diets have a great capacity to restore the circadian rhythm. One of the restrictive nutritional approaches, caloric restriction (CR) achieves stunning results in extending health span and life span via coordinated changes in multiple biological functions from the molecular, cellular, to the whole-body levels. The main molecular pathways affected by CR include mTOR, insulin signaling, AMPK, and sirtuins. Members of the family of nuclear receptors, the three peroxisome proliferator-activated receptors (PPARs), PPARα, PPARβ/δ, and PPARγ take part in the modulation of these pathways. In this non-systematic review, we describe the molecular interconnection between circadian rhythm, CR-associated pathways, and PPARs. Further, we identify a link between circadian rhythm and the outcomes of CR on the whole-body level including oxidative stress, inflammation, and aging. Since PPARs contribute to many changes triggered by CR, we discuss the potential involvement of PPARs in bridging CR and circadian rhythm.
Collapse
|
74
|
Gao WK, Shu YY, Ye J, Pan XL. Circadian clock and liver energy metabolism. Shijie Huaren Xiaohua Zazhi 2020; 28:1025-1035. [DOI: 10.11569/wcjd.v28.i20.1025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Circadian rhythm, generated by the circadian clock, is an internal rhythm that the body evolved to adapt to the diurnal changes in the external environment. Under its influence, mammals have distinct feeding and fasting cycles, which cause rhythmic changes in nutrient supply and demand. In recent years, many studies have shown that biorhythms are closely related to body metabolism. The liver, as the metabolism center of the body, is affected by circadian rhythm. However, with the acceleration of the pace of modern life and the change of life styles, the body's original rhythm is disrupted, resulting in a significant increase in the incidence of liver related metabolic diseases. Meanwhile, the disorder of circadian rhythm can also promote the occurrence and development of these diseases, and affect their prognosis and outcome. This paper reviews the relationship between the function of liver clock genes and the metabolism of liver glucose, lipids, bile acids, protein, etc.
Collapse
Affiliation(s)
- Wen-Kang Gao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Yan-Yun Shu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Jin Ye
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Xiao-Li Pan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
75
|
Song D, Ho CT, Zhang X, Wu Z, Cao J. Modulatory effect of Cyclocarya paliurus flavonoids on the intestinal microbiota and liver clock genes of circadian rhythm disorder mice model. Food Res Int 2020; 138:109769. [PMID: 33292949 DOI: 10.1016/j.foodres.2020.109769] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/24/2020] [Accepted: 09/30/2020] [Indexed: 12/22/2022]
Abstract
Host circadian rhythm and gut microbiota have a bidirectional relationship, indicating that prebiotics or prebiotic-like substance is a possible way to regulate circadian rhythm. The modulatory effect of Cyclocarya paliurus flavonoids (CPF) on the intestinal microbiota and liver clock genes of a circadian rhythm disorder mouse model was investigated in the present study. 16S rDNA sequencing analysis showed that CPF ameliorated the imbalanced intestinal microbial structure induced by circadian rhythm disorder. Compared with the constant darkness (CD) group, the ratio of the relative abundance of Firmicutes to Bacteroidetes was significantly decreased after the intervention of CPF for 4 weeks. In addition, CPF significantly alleviated the disrupted diurnal oscillation and phase shift of the specific intestinal microbes and liver clock genes induced by constant darkness. Moreover, metagenomics analysis of gut microbiota showed that the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched the most differentially expressed genes (DEGs) after CPF administration includes xenobiotics biodegradation and metabolism, carbohydrate metabolism and cell motility. The results suggested that CPF may positively regulate the gut flora disturbed by host circadian rhythm disorder, including its composition, diurnal oscillation and function, as well as affect the expression of liver clock genes, thus improving the host micro-ecology and health.
Collapse
Affiliation(s)
- Dan Song
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, United States
| | - Xin Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China.
| | - Zufang Wu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Jinxuan Cao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
76
|
Kato H, Ogasawara J, Takakura H, Shirato K, Sakurai T, Kizaki T, Izawa T. Exercise Training-Enhanced Lipolytic Potency to Catecholamine Depends on the Time of the Day. Int J Mol Sci 2020; 21:ijms21186920. [PMID: 32967199 PMCID: PMC7554872 DOI: 10.3390/ijms21186920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/16/2020] [Accepted: 09/19/2020] [Indexed: 12/22/2022] Open
Abstract
Exercise training is well known to enhance adipocyte lipolysis in response to hormone challenge. However, the existence of a relationship between the timing of exercise training and its effect on adipocyte lipolysis is unknown. To clarify this issue, Wistar rats were run on a treadmill for 9 weeks in either the early part (E-EX) or late part of the active phase (L-EX). L-EX rats exhibited greater isoproterenol-stimulated lipolysis expressed as fold induction over basal lipolysis, with greater protein expression levels of hormone-sensitive lipase (HSL) phosphorylated at Ser 660 compared to E-EX rats. Furthermore, we discovered that Brain and muscle Arnt-like (BMAL)1 protein can associate directly with several protein kinase A (PKA) regulatory units (RIα, RIβ, and RIIβ) of protein kinase, its anchoring protein (AKAP)150, and HSL, and that the association of BMAL1 with the regulatory subunits of PKA, AKAP150, and HSL was greater in L-EX than in E-EX rats. In contrast, comparison between E-EX and their counterpart sedentary control rats showed a greater co-immunoprecipitation only between BMAL1 and ATGL. Thus, both E-EX and L-EX showed an enhanced lipolytic response to isoproterenol, but the mechanisms underlying exercise training-enhanced lipolytic response to isoproterenol were different in each group.
Collapse
Affiliation(s)
- Hisashi Kato
- Organization for Research Initiatives and Development, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe City, Kyoto 610-0394, Japan;
- Faculty of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe City, Kyoto 610-0394, Japan;
| | - Junetsu Ogasawara
- Department of Health Science, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan;
| | - Hisashi Takakura
- Faculty of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe City, Kyoto 610-0394, Japan;
| | - Ken Shirato
- Department of Molecular Predictive Medicine and Sport Science, Kyorin University of School Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan; (K.S.); (T.S.); (T.K.)
| | - Takuya Sakurai
- Department of Molecular Predictive Medicine and Sport Science, Kyorin University of School Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan; (K.S.); (T.S.); (T.K.)
| | - Takako Kizaki
- Department of Molecular Predictive Medicine and Sport Science, Kyorin University of School Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan; (K.S.); (T.S.); (T.K.)
| | - Tetsuya Izawa
- Faculty of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe City, Kyoto 610-0394, Japan;
- Graduate School of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyotanabe City, Kyoto 610-0394, Japan
- Correspondence: ; Tel.: +81-424-65-6721; Fax: +81-424-65-6729
| |
Collapse
|
77
|
Dim Light at Night Disturbs Molecular Pathways of Lipid Metabolism. Int J Mol Sci 2020; 21:ijms21186919. [PMID: 32967195 PMCID: PMC7555372 DOI: 10.3390/ijms21186919] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 12/13/2022] Open
Abstract
Dim light at night (dLAN) is associated with metabolic risk but the specific effects on lipid metabolism have only been evaluated to a limited extent. Therefore, to explore whether dLAN can compromise lipid metabolic homeostasis in healthy individuals, we exposed Wistar rats to dLAN (~2 lx) for 2 and 5 weeks and analyzed the main lipogenic pathways in the liver and epididymal fat pad, including the control mechanisms at the hormonal and molecular level. We found that dLAN promoted hepatic triacylglycerol accumulation, upregulated hepatic genes involved in de novo synthesis of fatty acids, and elevated glucose and fatty acid uptake. These observations were paralleled with suppressed fatty acid synthesis in the adipose tissue and altered plasma adipokine levels, indicating disturbed adipocyte metabolic function with a potential negative impact on liver metabolism. Moreover, dLAN-exposed rats displayed an elevated expression of two peroxisome proliferator-activated receptor family members (Pparα and Pparγ) in the liver and adipose tissue, suggesting the deregulation of important metabolic transcription factors. Together, our results demonstrate that an impaired balance of lipid biosynthetic pathways caused by dLAN can increase lipid storage in the liver, thereby accounting for a potential linking mechanism between dLAN and metabolic diseases.
Collapse
|
78
|
Flor KC, Barnett WH, Karlen-Amarante M, Molkov YI, Zoccal DB. Inhibitory control of active expiration by the Bötzinger complex in rats. J Physiol 2020; 598:4969-4994. [PMID: 32621515 DOI: 10.1113/jp280243] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/21/2020] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Contraction of abdominal muscles at the end of expiration during metabolic challenges (such as hypercapnia and hypoxia) improves pulmonary ventilation. The emergence of this active expiratory pattern requires the recruitment of the expiratory oscillator located on the ventral surface of the medulla oblongata. Here we show that an inhibitory circuitry located in the Bötzinger complex is an important source of inhibitory drive to the expiratory oscillator. This circuitry, mediated by GABAergic and glycinergic synapses, provides expiratory inhibition that restrains the expiratory oscillator under resting condition and regulates the formation of abdominal expiratory activity during active expiration. By combining experimental and modelling approaches, we propose the organization and connections within the respiratory network that control the changes in the breathing pattern associated with elevated metabolic demand. ABSTRACT The expiratory neurons of the Bötzinger complex (BötC) provide inhibitory inputs to the respiratory network, which, during eupnoea, are critically important for respiratory phase transition and duration control. Here, we investigated how the BötC neurons interact with the expiratory oscillator located in the parafacial respiratory group (pFRG) and control the abdominal activity during active expiration. Using the decerebrated, arterially perfused in situ preparations of juvenile rats, we recorded the activity of expiratory neurons and performed pharmacological manipulations of the BötC and pFRG during hypercapnia or after the exposure to short-term sustained hypoxia - conditions that generate active expiration. The experimental data were integrated in a mathematical model to gain new insights into the inhibitory connectome within the respiratory central pattern generator. Our results indicate that the BötC neurons may establish mutual connections with the pFRG, providing expiratory inhibition during the first stage of expiration and receiving excitatory inputs during late expiration. Moreover, we found that application of GABAergic and glycinergic antagonists in the BötC caused opposing effects on abdominal expiratory activity, suggesting complex inhibitory circuitry within the BötC. Using mathematical modelling, we propose that the BötC network organization and its interactions with the pFRG restrain abdominal activity under resting conditions and contribute to abdominal expiratory pattern formation during active expiration observed during hypercapnia or after the exposure to short-term sustained hypoxia.
Collapse
Affiliation(s)
- Karine C Flor
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara, Brazil
| | - William H Barnett
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, USA
| | - Marlusa Karlen-Amarante
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara, Brazil
| | - Yaroslav I Molkov
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, USA.,Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
79
|
Deura C, Kimura Y, Nonoyama T, Moriyama R. Gpr120 mRNA expression in gonadotropes in the mouse pituitary gland is regulated by free fatty acids. J Reprod Dev 2020; 66:249-254. [PMID: 32115468 PMCID: PMC7297631 DOI: 10.1262/jrd.2019-166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
GPR120 is a long-chain fatty acid (LCFA) receptor that is specifically expressed in gonadotropes in the anterior pituitary gland in mice. The aim of this study was to investigate
whether GPR120 is activated by free fatty acids in the pituitary of mice and mouse immortalized gonadotrope LβT2 cells. First, the effects of palmitate on GPR120, gonadotropic
hormone b-subunits, and GnRH-receptor expression in gonadotropes were investigated in vitro. We observed palmitate-induced an increase in Gpr120
mRNA expression and a decrease in follicle-stimulating hormone b-subunit (Fshb) expression in LβT2 cells. Furthermore, palmitate exposure caused the
phosphorylation of ERK1/2 in LβT2 cells, but no significant changes were observed in the expression levels of luteinizing hormone b-subunit (Lhb) and gonadotropin
releasing hormone-receptor (Gnrh-r) mRNA and number of GPR120 immunoreactive cells. Next, diurnal variation in Gpr120 mRNA expression in the male
mouse pituitary gland was investigated using ad libitum and night-time restricted feeding (active phase from 1900 to 0700 h) treatments. In ad
libitum feeding group mice, Gpr120 mRNA expression at 1700 h was transiently higher than that measured at other times, and the peak blood non-esterified
fatty acid (NEFA) levels were observed from 1300 to 1500 h. These results were not observed in night-time-restricted feeding group mice. These results suggest that GPR120 is
activated by LCFAs to regulate follicle stimulating hormone (FSH) synthesis in the mouse gonadotropes.
Collapse
Affiliation(s)
- Chikaya Deura
- Laboratory of Environmental Physiology, Department of Life Science, School of Science and Engineering, Kindai University, Higashiosaka 577-8502, Japan
| | - Yusuke Kimura
- Laboratory of Environmental Physiology, Department of Life Science, School of Science and Engineering, Kindai University, Higashiosaka 577-8502, Japan
| | - Takumi Nonoyama
- Laboratory of Environmental Physiology, Department of Life Science, School of Science and Engineering, Kindai University, Higashiosaka 577-8502, Japan
| | - Ryutaro Moriyama
- Laboratory of Environmental Physiology, Department of Life Science, School of Science and Engineering, Kindai University, Higashiosaka 577-8502, Japan
| |
Collapse
|
80
|
de Luis DA, Izaola O, Primo D, Aller R. A circadian rhythm-related MTNR1B genetic variant (rs10830963) modulate body weight change and insulin resistance after 9 months of a high protein/low carbohydrate vs a standard hypocaloric diet. J Diabetes Complications 2020; 34:107534. [PMID: 32057567 DOI: 10.1016/j.jdiacomp.2020.107534] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS The risk allele (G) of rs10830963 in the melatonin receptor 1 B (MTNR1B) gene presents an association with biochemical parameters and obesity. We study the effect of this SNP on insulin resistance and weight loss secondary to two hypocaloric diets. METHODS 270 obese subjects were randomly allocated during 9 months (Diet HP: a high protein/low carbohydrate vs. Diet S: a standard severe hypocaloric diets). Anthropometric parameters, fasting blood glucose, C-reactive protein (CRP), insulin concentration, insulin resistance (HOMA-IR), lipid profile and adipocytokines levels were measured. Genotype of MTNR1B gene polymorphism (rs10830963) was evaluated. RESULTS All adiposity parameters, systolic blood pressure and leptin levels decreased in all subjects after both diets. This improvement of adiposity parameters was higher in non-G allele carriers than G allele carriers. After weight loss with Diet HP, (CC vs. CG + GG at 9 months); total cholesterol (delta: -9.9 ± 2.4 mg/dl vs. -4.8 ± 2.2 mg/dl:p < 0.05), LDL-cholesterol (delta: -8.3 ± 1.9 mg/dl vs. -5.1 ± 2.2 mg/dl: p < 0.05), insulin (delta: -4.7 ± 0.8 UI/L vs. -0.9 ± 1.0 UI/L: p < 0.05), triglycerides (delta: -17.7 ± 3.9 mg/dl vs. -6.1 ± 2.8 mg/dl: p < 0.05) and HOMA IR (delta: -0.8 ± 0.2 units vs. -0.2 ± 0.1 units: p < 0.05) improved only in no G allele carriers. After weight loss with Diet S in non G allele carriers, insulin levels (delta (CC vs. CG + GG): -3.4 ± 0.6 UI/L vs. -1.2 ± 0.4 UI/L: p < 0.05), triglycerides (delta: -29.2 ± 3.4 mg/dl vs. -8.2 ± 3.8 mg/dl: p < 0.05), HOMA-IR (delta (CC vs. CG + GG): -1.1 ± 0.2 units vs. -0.1 ± 0.1 units: p < 0.05), total cholesterol (delta: -15.9 ± 7.4 mg/dl vs. -5.8 ± 2.9 mg/dl:ns) and LDL-cholesterol (delta: -13.7 ± 5.9 mg/dl vs. -6.0 ± 2.9 mg/dl: ns) decreased, too. CONCLUSIONS our study detected a relationship of rs10830963 variant of MTNR1B gene with adiposity changes, cholesterol changes and insulin resistance modification induced by two different hypocaloric during 9 months.
Collapse
Affiliation(s)
- Daniel Antonio de Luis
- Endocrinology and Nutrition Research Center, School of Medicine, Department of Endocrinology and Nutrition, Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain.
| | - Olatz Izaola
- Endocrinology and Nutrition Research Center, School of Medicine, Department of Endocrinology and Nutrition, Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain
| | - David Primo
- Endocrinology and Nutrition Research Center, School of Medicine, Department of Endocrinology and Nutrition, Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain
| | - Rocio Aller
- Endocrinology and Nutrition Research Center, School of Medicine, Department of Endocrinology and Nutrition, Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain
| |
Collapse
|
81
|
Low Body Mass Index for Early Screening of Adolescent Idiopathic Scoliosis: A Comparison Based on Standardized Body Mass Index Classifications. Asian Nurs Res (Korean Soc Nurs Sci) 2020; 14:24-29. [DOI: 10.1016/j.anr.2019.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/25/2019] [Accepted: 12/26/2019] [Indexed: 01/25/2023] Open
|
82
|
Song D, Yang CS, Zhang X, Wang Y. The relationship between host circadian rhythms and intestinal microbiota: A new cue to improve health by tea polyphenols. Crit Rev Food Sci Nutr 2020; 61:139-148. [PMID: 31997655 DOI: 10.1080/10408398.2020.1719473] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Under the control of the host circadian rhythms, intestinal microbiota undergoes dietary-dependent diurnal fluctuations in composition and function. In addition, microbiome plays a critical role in maintaining the host circadian rhythms and metabolic homeostasis. The interactions between host circadian rhythms and intestinal microbiota suggest that intervention with prebiotics or probiotic is a possible way to alleviate circadian rhythm misalignment and related metabolic diseases. This review discusses the circadian rhythm oscillations of gut flora, relationship between host circadian rhythms and microbiome and related effects on metabolism. The influence on circadian rhythms by the interactions between tea polyphenols (TP) and intestinal microbiota is highlighted.
Collapse
Affiliation(s)
- Dan Song
- Department of Food Science and Engineering, Ningbo University, Ningbo University, Ningbo, P.R. China
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo University, Ningbo, P.R. China.,State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, P.R. China
| | - Ying Wang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, P.R. China
| |
Collapse
|
83
|
Vetter C. Circadian disruption: What do we actually mean? Eur J Neurosci 2020; 51:531-550. [PMID: 30402904 PMCID: PMC6504624 DOI: 10.1111/ejn.14255] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 12/14/2022]
Abstract
The circadian system regulates physiology and behavior. Acute challenges to the system, such as those experienced when traveling across time zones, will eventually result in re-synchronization to local environmental time cues, but this re-synchronization is oftentimes accompanied by adverse short-term consequences. When such challenges are experienced chronically, adaptation may not be achieved, as for example in the case of rotating night shift workers. The transient and chronic disturbance of the circadian system is most frequently referred to as "circadian disruption", but many other terms have been proposed and used to refer to similar situations. It is now beyond doubt that the circadian system contributes to health and disease, emphasizing the need for clear terminology when describing challenges to the circadian system and their consequences. The goal of this review is to provide an overview of the terms used to describe disruption of the circadian system, discuss proposed quantifications of disruption in experimental and observational settings with a focus on human research, and highlight limitations and challenges of currently available tools. For circadian research to advance as a translational science, clear, operationalizable, and scalable quantifications of circadian disruption are key, as they will enable improved assessment and reproducibility of results, ideally ranging from mechanistic settings, including animal research, to large-scale randomized clinical trials.
Collapse
Affiliation(s)
- Céline Vetter
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| |
Collapse
|
84
|
Zheng PP, Zhang LN, Zhang J, Chang XM, Ding S, Xiao F, Guo LX. Evaluating the Effects of Different Sleep Supplement Modes in Attenuating Metabolic Consequences of Night Shift Work Using Rat Model. Nat Sci Sleep 2020; 12:1053-1065. [PMID: 33244284 PMCID: PMC7685379 DOI: 10.2147/nss.s271318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/04/2020] [Indexed: 01/05/2023] Open
Abstract
PURPOSE To study the effects of chronic-simulated night shift work using the rat model and examines if a particular sleep supplement mode could be better in alleviating the effects. METHODS The male Wistar rats were randomly divided into the control (CTL: 8 rats) and night shift work (NW: 24 rats) groups of rats. Based on the sleep supplement strategy, the NW group was further segregated into three subgroups (8 rats each); late sleep supplement group (LSS), early sleep supplement group (ESS), and intermittent sleep supplement group (ISS). Sleep deprivation was achieved using the standard small-platform-over water method. Parameters such as animal body weight and food intake were measured daily. The intraperitoneal glucose tolerance test, fasting plasma insulin concentration, insulin resistance index and insulin sensitivity were measured twice, in the 4th and 8th weeks of the study. Plasma corticosterone concentration and pathological changes in islets (insulitis) were measured at the end of the 8th week. RESULTS In NW group, night work resulted in a gain of body weight and albeit lower than that of the CTL group. NW rats also had higher food intake, showed impaired glucose metabolism and higher plasma corticosterone concentration. The sleep supplement experiments suggested that compared to the other modes, intermittent sleep supplement had significantly low changes in the body weight, glucose metabolism and the islet cells. CONCLUSION Similar to previous studies, we also found that night shift work adversely impacts the body weight and glucose metabolism in rats. However, upon evaluating different sleep supplement strategies, we found the intermittent sleep supplement strategy to be most effective.
Collapse
Affiliation(s)
- Pei-Pei Zheng
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, People's Republic of China.,Peking University Fifth School of Clinical Medicine, Beijing 100730, People's Republic of China
| | - Li-Na Zhang
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, People's Republic of China
| | - Jie Zhang
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, People's Republic of China
| | - Xin-Miao Chang
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, People's Republic of China
| | - Shan Ding
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, People's Republic of China
| | - Fei Xiao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Bejing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, 100730, People's Republic of China
| | - Li-Xin Guo
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, People's Republic of China
| |
Collapse
|
85
|
de Luis DA, Izaola O, Primo D, Aller R. Dietary-fat effect of the rs10830963 polymorphism in MTNR1B on insulin resistance in response to 3 months weight-loss diets. ENDOCRINOLOGÍA, DIABETES Y NUTRICIÓN (ENGLISH ED.) 2020. [DOI: 10.1016/j.endien.2019.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
86
|
Dissi M, Ibrahim S, Tanko Y, Mohammed A. Models of modern-day circadian rhythm disruption and their diabetogenic potentials in adult male Wistar rats. SAUDI JOURNAL FOR HEALTH SCIENCES 2020. [DOI: 10.4103/sjhs.sjhs_69_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
87
|
Dibner C. The importance of being rhythmic: Living in harmony with your body clocks. Acta Physiol (Oxf) 2020; 228:e13281. [PMID: 30980501 DOI: 10.1111/apha.13281] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 02/06/2023]
Abstract
Circadian rhythms have developed in all light-sensitive organisms, including humans, as a fundamental anticipatory mechanism that enables proactive adaptation to environmental changes. The circadian system is organized in a highly hierarchical manner, with clocks operative in most cells of the body ensuring the temporal coordination of physiological processes. Circadian misalignment, stemming from modern life style, draws increasing attention due to its tight association with the development of metabolic, cardiovascular, inflammatory and mental diseases as well as cancer. This review highlights recent findings emphasizing the role of the circadian system in the temporal orchestration of physiology, with a particular focus on implications of circadian misalignment in human pathologies.
Collapse
Affiliation(s)
- Charna Dibner
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Medicine University Hospital of Geneva Geneva Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine University of Geneva Geneva Switzerland
- Diabetes Center, Faculty of Medicine University of Geneva Geneva Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3) Geneva Switzerland
| |
Collapse
|
88
|
Pan X, Mota S, Zhang B. Circadian Clock Regulation on Lipid Metabolism and Metabolic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:53-66. [PMID: 32705594 PMCID: PMC8593891 DOI: 10.1007/978-981-15-6082-8_5] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The basic helix-loop-helix-PAS transcription factor (CLOCK, Circadian locomotor output cycles protein kaput) was discovered in 1994 as a circadian clock. Soon after its discovery, the circadian clock, Aryl hydrocarbon receptor nuclear translocator-like protein 1 (ARNTL, also call BMAL1), was shown to regulate adiposity and body weight by controlling on the brain hypothalamic suprachiasmatic nucleus (SCN). Farther, circadian clock genes were determined to exert several of lipid metabolic and diabetes effects, overall indicating that CLOCK and BMAL1 act as a central master circadian clock. A master circadian clock acts through the neurons and hormones, with expression in the intestine, liver, kidney, lung, heart, SCN of brain, and other various cell types of the organization. Among circadian clock genes, numerous metabolic syndromes are the most important in the regulation of food intake (via regulation of circadian clock genes or clock-controlled genes in peripheral tissue), which lead to a variation in plasma phospholipids and tissue phospholipids. Circadian clock genes affect the regulation of transporters and proteins included in the regulation of phospholipid metabolism. These genes have recently received increasing recognition because a pharmacological target of circadian clock genes may be of therapeutic worth to make better resistance against insulin, diabetes, obesity, metabolism syndrome, atherosclerosis, and brain diseases. In this book chapter, we focus on the regulation of circadian clock and summarize its phospholipid effect as well as discuss the chemical, physiology, and molecular value of circadian clock pathway regulation for the treatment of plasma lipids and atherosclerosis.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY, USA.
- Diabetes and Obesity Research Center, New York University Winthrop Hospital, Mineola, NY, USA.
| | - Samantha Mota
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY, USA
- Diabetes and Obesity Research Center, New York University Winthrop Hospital, Mineola, NY, USA
| | - Boyang Zhang
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY, USA
- Diabetes and Obesity Research Center, New York University Winthrop Hospital, Mineola, NY, USA
| |
Collapse
|
89
|
Fine J, Lackner R, Samudrala R, Chopra G. Computational chemoproteomics to understand the role of selected psychoactives in treating mental health indications. Sci Rep 2019; 9:13155. [PMID: 31511563 PMCID: PMC6739337 DOI: 10.1038/s41598-019-49515-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 07/31/2019] [Indexed: 12/17/2022] Open
Abstract
We have developed the Computational Analysis of Novel Drug Opportunities (CANDO) platform to infer homology of drug behaviour at a proteomic level by constructing and analysing structural compound-proteome interaction signatures of 3,733 compounds with 48,278 proteins in a shotgun manner. We applied the CANDO platform to predict putative therapeutic properties of 428 psychoactive compounds that belong to the phenylethylamine, tryptamine, and cannabinoid chemical classes for treating mental health indications. Our findings indicate that these 428 psychoactives are among the top-ranked predictions for a significant fraction of mental health indications, demonstrating a significant preference for treating such indications over non-mental health indications, relative to randomized controls. Also, we analysed the use of specific tryptamines for the treatment of sleeping disorders, bupropion for substance abuse disorders, and cannabinoids for epilepsy. Our innovative use of the CANDO platform may guide the identification and development of novel therapies for mental health indications and provide an understanding of their causal basis on a detailed mechanistic level. These predictions can be used to provide new leads for preclinical drug development for mental health and other neurological disorders.
Collapse
Affiliation(s)
- Jonathan Fine
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Rachel Lackner
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Ram Samudrala
- Department of Biomedical Informatics, SUNY, Buffalo, NY, USA.
| | - Gaurav Chopra
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
- Purdue Institute for Drug Discovery, Purdue Institute for Integrative Neuroscience, Purdue Institute for Integrative Neuroscience, Purdue Institute for Immunology, Inflammation and Infectious Disease, Integrative Data Science Initiative, Purdue Center for Cancer Research, West Lafayette, IN, USA.
| |
Collapse
|
90
|
Irregularity in breakfast consumption and daily meal timing patterns in association with body weight status and inflammation. Br J Nutr 2019; 122:1192-1200. [PMID: 31637978 DOI: 10.1017/s0007114519002125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Irregular breakfast consumption and food timing patterns in relation to weight status and inflammation were investigated in a cross-sectional manner among 644 participants in the Cancer Prevention Study-3 Diet Assessment Sub-study. Breakfast consumption, and the individual means and the intra-individual standard deviation (isd) of time at first intake of the day, duration of daily intake window and midpoint of daily intake window were collected via six 24-h recalls and examined in relation to BMI, waist circumference (WC) and inflammation (glycoprotein acetyl (GlycA)). Compared with consuming breakfast on all six recalls, linear regression models showed those who consumed breakfast on 4 or 5 of the days had a 1·29 (95 % CI 0·19, 2·38) and 1·64 (95 % CI 0·12, 3·16) kg/m2 higher BMI; no association was found for consuming breakfast ≤3 d. At 1 h later, the average time of first intake was associated with a 0·44 (95 % CI 0·04, 0·84) kg/m2 higher BMI. A 1-h increase in the isd of first intake was associated with a 1·12 (95 % CI 0·49, 1·75) kg/m2 higher BMI; isd in duration and midpoint of intake window were significant prior to additional adjustment for isd in the first intake. One-hour increases in isd for the first intake time (β: 0·15; 95 % CI 0·04, 0·26) and the midpoint of intake window (β: 0·16; 95 % CI 0·02, 0·31) were associated with higher GlycA. No associations were observed for WC independent of BMI. The results provide evidence that irregularity in breakfast consumption and daily intake timing patterns, particularly early in the day, may be related to weight status and inflammation.
Collapse
|
91
|
Hozer C, Pifferi F, Aujard F, Perret M. The Biological Clock in Gray Mouse Lemur: Adaptive, Evolutionary and Aging Considerations in an Emerging Non-human Primate Model. Front Physiol 2019; 10:1033. [PMID: 31447706 PMCID: PMC6696974 DOI: 10.3389/fphys.2019.01033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/26/2019] [Indexed: 01/04/2023] Open
Abstract
Circadian rhythms, which measure time on a scale of 24 h, are genetically generated by the circadian clock, which plays a crucial role in the regulation of almost every physiological and metabolic process in most organisms. This review gathers all the available information about the circadian clock in a small Malagasy primate, the gray mouse lemur (Microcebus murinus), and reports 30 years data from the historical colony at Brunoy (France). Although the mouse lemur has long been seen as a "primitive" species, its clock displays high phenotypic plasticity, allowing perfect adaptation of its biological rhythms to environmental challenges (seasonality, food availability). The alterations of the circadian timing system in M. murinus during aging show many similarities with those in human aging. Comparisons are drawn with other mammalian species (more specifically, with rodents, other non-human primates and humans) to demonstrate that the gray mouse lemur is a good complementary and alternative model for studying the circadian clock and, more broadly, brain aging and pathologies.
Collapse
|
92
|
Cederroth CR, Albrecht U, Bass J, Brown SA, Dyhrfjeld-Johnsen J, Gachon F, Green CB, Hastings MH, Helfrich-Förster C, Hogenesch JB, Lévi F, Loudon A, Lundkvist GB, Meijer JH, Rosbash M, Takahashi JS, Young M, Canlon B. Medicine in the Fourth Dimension. Cell Metab 2019; 30:238-250. [PMID: 31390550 PMCID: PMC6881776 DOI: 10.1016/j.cmet.2019.06.019] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/08/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022]
Abstract
The importance of circadian biology has rarely been considered in pre-clinical studies, and even more when translating to the bedside. Circadian biology is becoming a critical factor for improving drug efficacy and diminishing drug toxicity. Indeed, there is emerging evidence showing that some drugs are more effective at nighttime than daytime, whereas for others it is the opposite. This suggests that the biology of the target cell will determine how an organ will respond to a drug at a specific time of the day, thus modulating pharmacodynamics. Thus, it is now time that circadian factors become an integral part of translational research.
Collapse
Affiliation(s)
- Christopher R Cederroth
- Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Urs Albrecht
- Department of Biology, Unit of Biochemistry, University of Fribourg, Fribourg, Switzerland
| | - Joseph Bass
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Steven A Brown
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | | | - Frederic Gachon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Carla B Green
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Michael H Hastings
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Biocenter, Theodor-Boveri Institute, University of Würzburg, Würzburg, Germany
| | - John B Hogenesch
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Francis Lévi
- Cancer Chronotherapy Team, School of Medicine, University of Warwick, Coventry, UK; Warwick University on "Personalized Cancer Chronotherapeutics through System Medicine" (C2SysMed), European Associated Laboratory of the Unité Mixte de Recherche Scientifique 935, Institut National de la Santé et de la Recherche Médicale and Paris-Sud University, Villejuif, France; Department of Medical Oncology, Paul Brousse Hospital, Assistance Publique-Hopitaux de Paris, 94800 Villejuif, France
| | - Andrew Loudon
- School of Medicine, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | | | - Johanna H Meijer
- Department of Neurophysiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, the Netherlands
| | - Michael Rosbash
- Department of Biology, Howard Hughes Medical Institute and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02453, USA
| | - Joseph S Takahashi
- Howard Hughes Medical Institute, Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael Young
- Laboratory of Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Barbara Canlon
- Experimental Audiology, Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
93
|
Nakano M, Ikegame M, Igarashi-Migitaka J, Maruyama Y, Suzuki N, Hattori A. Suppressive effect of melatonin on osteoclast function via osteocyte calcitonin. J Endocrinol 2019; 242:13-23. [PMID: 31042672 DOI: 10.1530/joe-18-0707] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 04/30/2019] [Indexed: 01/13/2023]
Abstract
Many studies have investigated the actions of melatonin on osteoblasts and osteoclasts. However, the underlying mechanisms, especially regarding osteocyte function, remain largely unknown. Therefore, this study aimed to clarify the underlying mechanisms of melatonin action on bone tissue via osteocyte function. Chick calvariae were employed as a model. In ovo injection of melatonin (5, 50 and 500 µg) dose-dependently decreased the mRNA expression levels of cathepsin K and matrix metalloproteinase 9 (MMP9) in chick calvariae without affecting the expression levels of receptor activator of NF-κB ligand or osteoprotegerin. Surprisingly enough, the expression of calcitonin mRNA in chick calvariae was significantly raised. After 3 days of in vitro treatment of melatonin (10-7 and 10-5 M) on newly hatched chick calvariae, both calcitonin mRNA expression in calvariae and the concentration of calcitonin in cultured medium were augmented in a dose-dependent manner, coincident with the decreased mRNA expression levels of cathepsin K and MMP9. Immunohistochemical analyses revealed expression of melatonin receptors and calcitonin by osteocytes buried in bone matrix. Moreover, the mRNA expression levels of melatonin receptors, calcitonin and sclerostin (a marker of osteocyte), were strongly and positively correlated. In conclusion, we demonstrated the expression of melatonin receptors and calcitonin expression in osteocytes for the first time and suggest a new mechanism underlying the suppressive effect of melatonin on osteoclasts via upregulation of calcitonin secretion by osteocytes.
Collapse
Affiliation(s)
- Masaki Nakano
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Chiba, Japan
- Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| | - Mika Ikegame
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Junko Igarashi-Migitaka
- Department of Anatomy and Cell Biology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yusuke Maruyama
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Chiba, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ishikawa, Japan
| | - Atsuhiko Hattori
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Chiba, Japan
| |
Collapse
|
94
|
Zimmet P, Alberti KGMM, Stern N, Bilu C, El‐Osta A, Einat H, Kronfeld‐Schor N. The Circadian Syndrome: is the Metabolic Syndrome and much more! J Intern Med 2019; 286:181-191. [PMID: 31081577 PMCID: PMC6851668 DOI: 10.1111/joim.12924] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Metabolic Syndrome is a cluster of cardio-metabolic risk factors and comorbidities conveying high risk of both cardiovascular disease and type 2 diabetes. It is responsible for huge socio-economic costs with its resulting morbidity and mortality in most countries. The underlying aetiology of this clustering has been the subject of much debate. More recently, significant interest has focussed on the involvement of the circadian system, a major regulator of almost every aspect of human health and metabolism. The Circadian Syndrome has now been implicated in several chronic diseases including type 2 diabetes and cardiovascular disease. There is now increasing evidence connecting disturbances in circadian rhythm with not only the key components of the Metabolic Syndrome but also its main comorbidities including sleep disturbances, depression, steatohepatitis and cognitive dysfunction. Based on this, we now propose that circadian disruption may be an important underlying aetiological factor for the Metabolic Syndrome and we suggest that it be renamed the 'Circadian Syndrome'. With the increased recognition of the 'Circadian Syndrome', circadian medicine, through the timing of exercise, light exposure, food consumption, dispensing of medications and sleep, is likely to play a much greater role in the maintenance of both individual and population health in the future.
Collapse
Affiliation(s)
- P. Zimmet
- Department of DiabetesCentral Clinical SchoolMonash UniversityMelbourneVic.Australia
- Sagol Center for Epigenetics and MetabolismTel Aviv Medical CenterTel AvivIsrael
| | | | - N. Stern
- Sagol Center for Epigenetics and MetabolismTel Aviv Medical CenterTel AvivIsrael
| | - C. Bilu
- School of ZoologyTel Aviv UniversityTel AvivIsrael
| | - A. El‐Osta
- Department of DiabetesCentral Clinical SchoolMonash UniversityMelbourneVic.Australia
- Department of PathologyThe University of MelbourneParkvilleVic.Australia
- Hong Kong Institute of Diabetes and ObesityPrince of Wales HospitalThe Chinese University of Hong KongHong Kong SARChina
| | - H. Einat
- School of Behavioral SciencesTel Aviv‐Yaffo Academic CollegeTel AvivIsrael
| | | |
Collapse
|
95
|
Wang S, Lin Y, Zhou Z, Gao L, Yang Z, Li F, Wu B. Circadian Clock Gene Bmal1 Regulates Bilirubin Detoxification: A Potential Mechanism of Feedback Control of Hyperbilirubinemia. Theranostics 2019; 9:5122-5133. [PMID: 31410205 PMCID: PMC6691581 DOI: 10.7150/thno.35773] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/23/2019] [Indexed: 01/12/2023] Open
Abstract
Controlling bilirubin to a low level is necessary in physiology because of its severe neurotoxicity. Therefore, it is of great interest to understand the regulatory mechanisms for bilirubin homeostasis. In this study, we uncover a critical role for circadian clock in regulation of bilirubin detoxification and homeostasis. Methods: The mRNA and protein levels of Bmal1 (a core clock gene), metabolic enzymes and transporters were measured by qPCR and Western blotting, respectively. Luciferase reporter, mobility shift and chromatin immunoprecipitation were used to investigate transcriptional gene regulation. Experimental hyperbilirubinemia was induced by injection of bilirubin or phenylhydrazine. Unconjugated bilirubin (UCB) and conjugated bilirubin were assessed by ELISA. Results: We first demonstrated diurnal variations in plasma UCB levels and in main bilirubin-detoxifying genes Ugt1a1 and Mrp2. Of note, the circadian UCB levels were antiphase to the circadian expressions of Ugt1a1 and Mrp2. Bmal1 ablation abrogated the circadian rhythms of UCB and bilirubin-induced hepatotoxicity in mice. Bmal1 ablation also decreased mRNA and protein expressions of both Ugt1a1 and Mrp2 in mouse livers, and blunted their circadian rhythms. A combination of luciferase reporter, mobility shift, and chromatin immunoprecipitation assays revealed that Bmal1 trans-activated Ugt1a1 and Mrp2 through specific binding to the E-boxes in the promoter region. Further, Bmal1 ablation caused a loss of circadian time-dependency in bilirubin clearance and sensitized mice to chemical induced-hyperbilirubinemia. Moreover, bilirubin stimulated Bmal1 expression through antagonism of Rev-erbα, constituting a feedback mechanism in bilirubin detoxification. Conclusion: These data supported a dual role for circadian clock in regulation of bilirubin detoxification, generating circadian variations in bilirubin level via direct transactivation of detoxifying genes Ugt1a1 and Mrp2, and defending the body against hyperbilirubinemia via Rev-erbα antagonism. Thereby, our study provided a potential mechanism for management of bilirubin related diseases.
Collapse
Affiliation(s)
- Shuai Wang
- Reserach Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- Integrated Chinese and Western Medicine Postdoctoral research station, Jinan University, 601 Huangpu Avenue West, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yanke Lin
- Reserach Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Ziyue Zhou
- Reserach Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Lu Gao
- Reserach Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zemin Yang
- Reserach Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Feng Li
- Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, 601 Huangpu Avenue West, Guangzhou, China
| | - Baojian Wu
- Reserach Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
96
|
Mármol-Sánchez E, Quintanilla R, Cardoso TF, Jordana Vidal J, Amills M. Polymorphisms of the cryptochrome 2 and mitoguardin 2 genes are associated with the variation of lipid-related traits in Duroc pigs. Sci Rep 2019; 9:9025. [PMID: 31227735 PMCID: PMC6588565 DOI: 10.1038/s41598-019-45108-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 05/24/2019] [Indexed: 01/06/2023] Open
Abstract
The genetic factors determining the phenotypic variation of porcine fatness phenotypes are still largely unknown. We investigated whether the polymorphism of eight genes (MIGA2, CRY2, NPAS2, CIART, ARNTL2, PER1, PER2 and PCK1), which display differential expression in the skeletal muscle of fasted and fed sows, is associated with the variation of lipid and mRNA expression phenotypes in Duroc pigs. The performance of an association analysis with the GEMMA software demonstrated that the rs330779504 SNP in the MIGA2 gene is associated with LDL concentration at 190 days (LDL2, corrected P-value = 0.057). Moreover, the rs320439526 SNP of the CRY2 gene displayed a significant association with stearic acid content in the longissimus dorsi muscle (LD C18:0, corrected P-value = 0.015). Both SNPs were also associated with the mRNA levels of the corresponding genes in the gluteus medius skeletal muscle. From a biological perspective these results are meaningful because MIGA2 protein plays an essential role in mitochondrial fusion, a process tightly connected with the energy status of the cell, while CRY2 is a fundamental component of the circadian clock. However, inclusion of these two SNPs in chromosome-wide association analyses demonstrated that they are not located at the peaks of significance for the two traits under study (LDL2 for rs330779504 and LD C18:0 for rs320439526), thus implying that these two SNPs do not have causal effects.
Collapse
Affiliation(s)
- Emilio Mármol-Sánchez
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Raquel Quintanilla
- Animal Breeding and Genetics Programme, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, Caldes de Montbui, Spain
| | - Taina F Cardoso
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain.,CAPES Foundation, Ministry of Education of Brazil, Brasilia, D. F., Brazil
| | - Jordi Jordana Vidal
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Marcel Amills
- Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain. .,Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
97
|
Škrlec I, Milić J, Cilenšek I, Petrovič D, Wagner J, Peterlin B. Circadian clock genes and myocardial infarction in patients with type 2 diabetes mellitus. Gene 2019; 701:98-103. [PMID: 30905809 DOI: 10.1016/j.gene.2019.03.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023]
Abstract
Disruption of circadian clock may trigger the onset of diabetes mellitus and myocardial infarction. Type 2 diabetes mellitus (T2DM) is well-known risk factors for cardiovascular diseases and myocardial infarction. We performed a case-control study, where we explored the possible association between single nucleotide polymorphisms in three circadian rhythm genes (ARNTL, CLOCK, and PER2) and myocardial infarction in 657 patients with T2DM. The study group consisted of 231 patients with myocardial infarction and T2DM and a control group of 426 T2DM patients. We hypothesized that variations in the circadian rhythm genes in patients with T2DM could be an additional risk factor for myocardial infarction. The statistically significant difference was found in allelic (p = 1.1 × 10-5) and genotype distribution (p = 1.42 × 10-4) between two groups of the rs12363415 at the ARNTL gene locus. We provide evidence that genetic variability in the ARNTL gene might be associated with myocardial infarction in patients with T2DM.
Collapse
Affiliation(s)
- Ivana Škrlec
- Department of Biology, Faculty of Dental Medicine and Health, J. J. Strossmayer University of Osijek, Croatia; Faculty of Medicine, J. J. Strossmayer University of Osijek, Croatia.
| | - Jakov Milić
- Faculty of Medicine, J. J. Strossmayer University of Osijek, Croatia
| | - Ines Cilenšek
- Institute of Histology and Embryology, Faculty of Medicine, University Ljubljana, Ljubljana, Slovenia
| | - Daniel Petrovič
- Institute of Histology and Embryology, Faculty of Medicine, University Ljubljana, Ljubljana, Slovenia
| | - Jasenka Wagner
- Faculty of Medicine, J. J. Strossmayer University of Osijek, Croatia
| | - Borut Peterlin
- Clinical Institute of Medical Genetics, University Medical Center Ljubljana, Slovenia
| |
Collapse
|
98
|
Goni L, Sun D, Heianza Y, Wang T, Huang T, Martínez JA, Shang X, Bray GA, Smith SR, Sacks FM, Qi L. A circadian rhythm-related MTNR1B genetic variant modulates the effect of weight-loss diets on changes in adiposity and body composition: the POUNDS Lost trial. Eur J Nutr 2019; 58:1381-1389. [PMID: 29516223 PMCID: PMC6128782 DOI: 10.1007/s00394-018-1660-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 03/05/2018] [Indexed: 11/29/2022]
Abstract
PURPOSE A common variant of the melatonin receptor 1B (MTNR1B) gene has been related to increased signaling of melatonin, a hormone previously associated with body fatness mainly through effects on energy metabolism. We examined whether the MTNR1B variant affects changes of body fatness and composition in response to a dietary weight loss intervention. METHODS The MTNR1B rs10830963 variant was genotyped for 722 overweight and obese individuals, who were randomly assigned to one of four diets varying in macronutrient composition. Anthropometric and body composition measurements (DXA scan) were collected at baseline and at 6 and 24 months of follow-up. RESULTS Statistically significant interactions were observed between the MTNR1B genotype and low-/high-fat diet on changes in weight, body mass index (BMI), waist circumference (WC) and total body fat (p interaction = 0.01, 0.02, 0.002 and 0.04, respectively), at 6 months of dietary intervention. In the low-fat diet group, increasing number of the sleep disruption-related G allele was significantly associated with a decrease in weight (p = 0.004), BMI (p = 0.005) and WC (p = 0.001). In the high-fat diet group, carrying the G allele was positively associated with changes in body fat (p = 0.03). At 2 years, the associations remained statistically significant for changes in body weight (p = 0.02), BMI (p = 0.02) and WC (p = 0.048) in the low-fat diet group, although the gene-diet interaction became less significant. CONCLUSIONS The results suggest that carriers of the G allele of the MTNR1B rs10830963 may have a greater improvement in body adiposity and fat distribution when eating a low-fat diet.
Collapse
Affiliation(s)
- Leticia Goni
- Department of Nutrition, Food Sciences and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Navarra, Spain
- Faculty of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Navarra, Spain
| | - Dianjianyi Sun
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Tiange Wang
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Tao Huang
- Epidemiology Domain, Saw Swee Hock School of Public Health and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - J Alfredo Martínez
- Department of Nutrition, Food Sciences and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Navarra, Spain
- Faculty of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Navarra, Spain
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
- Navarra Institute for Health Research, Pamplona, Navarra, Spain
| | - Xiaoyun Shang
- Children's Hospital New Orleans, New Orleans, LA, USA
| | - George A Bray
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Steven R Smith
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Frank M Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
99
|
Yang Y, Zhou R, Li W, Liu Y, Zhang Y, Ao H, Li H, Li K. Dynamic Transcriptome Analysis Reveals Potential Long Non-coding RNAs Governing Postnatal Pineal Development in Pig. Front Genet 2019; 10:409. [PMID: 31130986 PMCID: PMC6510172 DOI: 10.3389/fgene.2019.00409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/15/2019] [Indexed: 12/25/2022] Open
Abstract
Postnatal development and maturation of pineal gland is a highly dynamic period of tissue remodeling and phenotype maintenance, which is genetically controlled by programmed gene expression regulations. However, limited molecular characterization, particularly regarding long noncoding RNAs (lncRNA), is available for postnatal pineal at a whole transcriptome level. The present study first characterized the comprehensive pineal transcriptome profiles using strand-specific RNA-seq to illustrate the dynamic mRNA/lncRNA expression at three developmental stages (infancy, puberty, and adulthood). The results showed that 21,448 mRNAs and 8,166 novel lncRNAs were expressed in pig postnatal pineal gland. Among these genes, 3,573 mRNAs and 851 lncRNAs, including the 5-hydroxytryptamine receptors, exhibited significant dynamic regulation along maturation process, while the expression of homeobox genes didn't show significant differences. Gene Ontology analysis revealed that the differentially expressed genes (DEGs) were significantly enriched in ion transport and synaptic transmission, highlighting the critical role of calcium signaling in postnatal pineal development. Additionally, co-expression analysis revealed the DEGs could be grouped into 12 clusters with distinct expression patterns. Many differential lncRNAs were functionally enriched in co-expressed clusters of genes related to ion transport, transcription regulation, DNA binding, and visual perception. Our study first provided an overview of postnatal pineal transcriptome dynamics in pig and demonstrated that dynamic lncRNA regulation of developmental transitions impact pineal physiology.
Collapse
Affiliation(s)
- Yalan Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Rong Zhou
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wentong Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Sciences and Engineering, Foshan University, Foshan, China
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanmin Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hong Ao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Kui Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Sciences and Engineering, Foshan University, Foshan, China
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
100
|
Liu Y, Wan D, Zhou X, Ruan Z, Zhang T, Wu X, Yin Y. Effects of dynamic feeding low- and high-methionine diets on the variation of glucose and lipid metabolism-related genes in the liver of laying hens. Poult Sci 2019; 98:2231-2240. [DOI: 10.3382/ps/pey589] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 12/18/2018] [Indexed: 12/23/2022] Open
|