51
|
Matosin N, Halldorsdottir T, Binder EB. Understanding the Molecular Mechanisms Underpinning Gene by Environment Interactions in Psychiatric Disorders: The FKBP5 Model. Biol Psychiatry 2018; 83:821-830. [PMID: 29573791 DOI: 10.1016/j.biopsych.2018.01.021] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 12/21/2022]
Abstract
Epidemiologic and genetic studies suggest common environmental and genetic risk factors for a number of psychiatric disorders, including depression, bipolar disorder, and schizophrenia. Genetic and environmental factors, especially adverse life events, not only have main effects on disease development but also may interact to shape risk and resilience. Such gene by adversity interactions have been described for FKBP5, an endogenous regulator of the stress-neuroendocrine system, conferring risk for a number of psychiatric disorders. In this review, we present a molecular and cellular model of the consequences of FKBP5 by early adversity interactions. We illustrate how altered genetic and epigenetic regulation of FKBP5 may contribute to disease risk by covering evidence from clinical and preclinical studies of FKBP5 dysregulation, known cell-type and tissue-type expression patterns of FKBP5 in humans and animals, and the role of FKBP5 as a stress-responsive molecular hub modulating many cellular pathways. FKBP5 presents the possibility to better understand the molecular and cellular factors contributing to a disease-relevant gene by environment interaction, with implications for the development of biomarkers and interventions for psychiatric disorders.
Collapse
Affiliation(s)
- Natalie Matosin
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany; School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Thorhildur Halldorsdottir
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
52
|
|
53
|
Cehofski LJ, Kruse A, Magnusdottir SO, Alsing AN, Nielsen JE, Kirkeby S, Honoré B, Vorum H. Dexamethasone intravitreal implant downregulates PDGFR-α and upregulates caveolin-1 in experimental branch retinal vein occlusion. Exp Eye Res 2018; 171:174-182. [PMID: 29505751 DOI: 10.1016/j.exer.2018.02.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 02/14/2018] [Accepted: 02/28/2018] [Indexed: 11/30/2022]
Abstract
A dexamethasone (DEX) intravitreal implant (OZURDEX) provides an effective treatment of inflammation secondary to branch retinal vein occlusion (BRVO). Retinal proteome changes which mediate the beneficial effects of the implant remain poorly understood. To study retinal proteome changes in BRVO following an intervention with a DEX implant this study combined an experimental model of BRVO with proteomic techniques. In eight Danish Landrace pigs experimental BRVO was induced in both eyes using argon laser. After inducing BRVO a DEX implant was injected into the right eye of each animal while the left control eye was given an identical injection without an implant. Fifteen days after BRVO and DEX implant intervention the retinas were excised and analyzed with tandem mass tag based mass spectrometry. A total of 26 significantly changed proteins were identified. DEX intervention reduced the retinal levels of platelet-derived growth factor receptor-α (PDGFR-α) and vascular endothelial growth factor receptor 2 (VEGFR-2). DEX treatment resulted in increased levels of caveolin-1, peptidyl-prolyl cis-trans isomerase FKBP5 and transgelin. Changes in PDGFR-α and caveolin-1 were confirmed with immunohistochemistry. In BRVO treated with the DEX implant a strong reaction for caveolin-1 was observed in the innermost retinal layers. DEX implant intervention may inhibit PDGF signaling by decreasing the retinal level of PDGFR-α while an increased content of caveolin-1 may help maintain the integrity of the blood-retinal barrier.
Collapse
Affiliation(s)
- Lasse Jørgensen Cehofski
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark; Biomedical Research Laboratory, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| | - Anders Kruse
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
| | - Sigriður Olga Magnusdottir
- Biomedical Research Laboratory, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Alexander Nørgård Alsing
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark; Biomedical Research Laboratory, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | | - Svend Kirkeby
- Department of Odontology, School of Dentistry, University of Copenhagen, Copenhagen, Denmark
| | - Bent Honoré
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Henrik Vorum
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
54
|
Starvaggi Cucuzza L, Biolatti B, Scaglione FE, Cannizzo FT. Role of FKBP51 in the modulation of the expression of the corticosteroid receptors in bovine thymus following glucocorticoid administration. Domest Anim Endocrinol 2018; 62:10-15. [PMID: 28886589 DOI: 10.1016/j.domaniend.2017.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 11/23/2022]
Abstract
The aim of this work was to study the transcriptional effects of glucocorticoids on corticosteroid hormone receptors, prereceptors (11β-hydroxysteroid dehydrogenase 1 and 2, 11β-HSD1 and 2), and chaperones molecules regulating intracellular trafficking of the receptors (FKBP51 and FKBP52) in thymus of veal calves. Moreover, the expression of FKBP51 and FKBP52 gene were investigated in beef cattle thymus. In the cervical thymus of veal calves, dexamethasone administration in combination with estradiol decreased FKBP51 expression (P < 0.01). The same treatment increased mineralocorticoid receptor (MR) (P < 0.01) and 11β-HSD1 expression (P < 0.05) compared to control group in the cervical thymus of veal calves. The thoracic thymus of veal calves treated with dexamethasone and estradiol showed a decrease of FKBP51 (P < 0.05), FKBP52 (P < 0.05), glucocorticoid receptor (P < 0.05), and MR expression (P < 0.05) compared to control group in the thoracic thymus of veal calves. The gene expression of FKBP51 decreased both in cervical (P < 0.01) and thoracic thymus (P < 0.01) of beef cattle treated with dexamethasone and estradiol. In addition, also prednisolone administration reduced FKBP51 expression in the cervical thymus (P < 0.01) and in the thoracic thymus of beef cattle (P < 0.01). The gene expression of FKBP52 increased only in the cervical thymus following dexamethasone administration (P < 0.01). The decrease of FKBP51 gene expression in thymus could be a possible biomarker of illicit dexamethasone administration in bovine husbandry. Moreover, so far, an effective biomarker of prednisolone administration is not identified. In this context, the decrease of FKBP51 gene expression in thymus of beef cattle following prednisolone administration could play an important role in the indirect identification of animals illegally treated with prednisolone.
Collapse
Affiliation(s)
- L Starvaggi Cucuzza
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Turin, Italy
| | - B Biolatti
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Turin, Italy
| | - F E Scaglione
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Turin, Italy
| | - F T Cannizzo
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Turin, Italy.
| |
Collapse
|
55
|
Hao G, Youssef NA, Davis CL, Su S. The role of DNA methylation in the association between childhood adversity and cardiometabolic disease. Int J Cardiol 2017; 255:168-174. [PMID: 29288057 DOI: 10.1016/j.ijcard.2017.12.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/17/2017] [Accepted: 12/16/2017] [Indexed: 02/07/2023]
Abstract
Growing evidence suggests that adverse environmental stimuli, especially during sensitive periods in early life, may lead to cardiometabolic disease in later life. However, the underlying biological mechanisms remain a mystery. Recent studies inferred that epigenetic modifications are likely involved. We review recent studies, primarily focused on the findings from human studies, to indicate the role of DNA methylation in the associations between childhood adversity and cardiometabolic disease in adulthood. In particular, we focused on DNA methylation modifications in genes regulating the hypothalamus-pituitary-adrenal axis as well as the immune system.
Collapse
Affiliation(s)
- Guang Hao
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA, United States.
| | - Nagy A Youssef
- Department of Psychiatry & Health Behavior, Medical College of Georgia, Augusta University, Augusta, GA, United States.
| | - Catherine L Davis
- Department of Population Health Sciences, Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA, United States.
| | - Shaoyong Su
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA, United States.
| |
Collapse
|
56
|
Fries GR, Gassen NC, Rein T. The FKBP51 Glucocorticoid Receptor Co-Chaperone: Regulation, Function, and Implications in Health and Disease. Int J Mol Sci 2017; 18:ijms18122614. [PMID: 29206196 PMCID: PMC5751217 DOI: 10.3390/ijms18122614] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/21/2017] [Accepted: 11/29/2017] [Indexed: 12/27/2022] Open
Abstract
Among the chaperones and co-chaperones regulating the glucocorticoid receptor (GR), FK506 binding protein (FKBP) 51 is the most intensely investigated across different disciplines. This review provides an update on the role of the different co-chaperones of Hsp70 and Hsp90 in the regulation of GR function. The development leading to the focus on FKBP51 is outlined. Further, a survey of the vast literature on the mechanism and function of FKBP51 is provided. This includes its structure and biochemical function, its regulation on different levels—transcription, post-transcription, and post-translation—and its function in signaling pathways. The evidence portraying FKBP51 as a scaffolding protein organizing protein complexes rather than a chaperone contributing to the folding of individual proteins is collated. Finally, FKBP51’s involvement in physiology and disease is outlined, and the promising efforts in developing drugs targeting FKBP51 are discussed.
Collapse
Affiliation(s)
- Gabriel R Fries
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA.
| | - Nils C Gassen
- Department of Translational Science in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| | - Theo Rein
- Department of Translational Science in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany.
| |
Collapse
|
57
|
Balsevich G, Häusl AS, Meyer CW, Karamihalev S, Feng X, Pöhlmann ML, Dournes C, Uribe-Marino A, Santarelli S, Labermaier C, Hafner K, Mao T, Breitsamer M, Theodoropoulou M, Namendorf C, Uhr M, Paez-Pereda M, Winter G, Hausch F, Chen A, Tschöp MH, Rein T, Gassen NC, Schmidt MV. Stress-responsive FKBP51 regulates AKT2-AS160 signaling and metabolic function. Nat Commun 2017; 8:1725. [PMID: 29170369 PMCID: PMC5700978 DOI: 10.1038/s41467-017-01783-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/12/2017] [Indexed: 01/30/2023] Open
Abstract
The co-chaperone FKBP5 is a stress-responsive protein-regulating stress reactivity, and its genetic variants are associated with T2D related traits and other stress-related disorders. Here we show that FKBP51 plays a role in energy and glucose homeostasis. Fkbp5 knockout (51KO) mice are protected from high-fat diet-induced weight gain, show improved glucose tolerance and increased insulin signaling in skeletal muscle. Chronic treatment with a novel FKBP51 antagonist, SAFit2, recapitulates the effects of FKBP51 deletion on both body weight regulation and glucose tolerance. Using shorter SAFit2 treatment, we show that glucose tolerance improvement precedes the reduction in body weight. Mechanistically, we identify a novel association between FKBP51 and AS160, a substrate of AKT2 that is involved in glucose uptake. FKBP51 antagonism increases the phosphorylation of AS160, increases glucose transporter 4 expression at the plasma membrane, and ultimately enhances glucose uptake in skeletal myotubes. We propose FKBP51 as a mediator between stress and T2D development, and potential target for therapeutic approaches.
Collapse
Affiliation(s)
- Georgia Balsevich
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany
| | - Alexander S Häusl
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany
| | - Carola W Meyer
- Institute of Diabetes and Obesity, Helmholtz Zentrum München, Parkring 13, 85748, Garching, Germany
| | - Stoyo Karamihalev
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany
| | - Xixi Feng
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany
| | - Max L Pöhlmann
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany
| | - Carine Dournes
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany
| | - Andres Uribe-Marino
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany
| | - Sara Santarelli
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany
| | - Christiana Labermaier
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany
| | - Kathrin Hafner
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany
| | - Tianqi Mao
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany
| | | | - Marily Theodoropoulou
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany
| | - Christian Namendorf
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany
| | - Manfred Uhr
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany
| | - Marcelo Paez-Pereda
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany
| | - Gerhard Winter
- Ludwig Maximilians University, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Felix Hausch
- Technical University Darmstadt, Institute of Organic Chemistry and Biochemistry, Alarich-Weiss-Str. 4, 64287, Darmstadt, Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany
| | - Matthias H Tschöp
- Institute of Diabetes and Obesity, Helmholtz Zentrum München, Parkring 13, 85748, Garching, Germany
| | - Theo Rein
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany
| | - Nils C Gassen
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany
| | - Mathias V Schmidt
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany.
| |
Collapse
|
58
|
de Souza Cardoso J, Oliveira PS, Bona NP, Vasconcellos FA, Baldissarelli J, Vizzotto M, Soares MSP, Ramos VP, Spanevello RM, Lencina CL, Tavares RG, Stefanello FM. Antioxidant, antihyperglycemic, and antidyslipidemic effects of Brazilian-native fruit extracts in an animal model of insulin resistance. Redox Rep 2017; 23:41-46. [PMID: 29088999 PMCID: PMC6748693 DOI: 10.1080/13510002.2017.1375709] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Objective: Insulin resistance (IR) plays an important role in the
development of many diseases, such as diabetes mellitus. Therefore, the aim of
the present study was to evaluate the effects of the extracts from fruits native
to Brazil on metabolic parameters and hepatic oxidative markers in an animal
model of insulin resistance induced by dexamethasone (DEX). Methods: Wistar rats received water or extracts of Eugenia
uniflora or Psidium cattleianum, once a day for 21
days. For the last 5 days, the rats received an intraperitoneal injection of
saline or DEX. Results: DEX caused a reduction in body weight gain and relative
pancreatic weight, as well as glucose intolerance, and an increase in serum
glucose and triacylglycerol levels. The extracts were found to prevent
hyperglycemia and hypertriglyceridemia. DEX caused an increase in the levels of
thiobarbituric acid-reactive substances and reactive oxygen species production
in the liver of rats, and both extracts prevented these changes. In addition,
hepatic glutathione peroxidase activity was reduced by DEX. However, total thiol
content and activities of catalase, superoxide dismutase, and
delta-aminolevulinate dehydratase were not altered in any of the tested
groups. Conclusion: Fruit extracts of E. uniflora and
P. cattleianum exhibited considerable
antihyperglycemic, antidyslipidemic, and antioxidant effects, and may be useful
in the therapeutic management of alterations due to IR.
Collapse
Affiliation(s)
- Juliane de Souza Cardoso
- a Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos , Universidade Federal de Pelotas , Pelotas , Brazil
| | - Pathise Souto Oliveira
- a Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos , Universidade Federal de Pelotas , Pelotas , Brazil
| | - Natália Pontes Bona
- a Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos , Universidade Federal de Pelotas , Pelotas , Brazil
| | - Flávia Aleixo Vasconcellos
- b Laboratório de Química Aplicada a Bioativos, Centro de Ciências Químicas, Farmacêuticas e de Alimentos , Universidade Federal de Pelotas , Pelotas , Brazil
| | - Jucimara Baldissarelli
- c Laboratório de Enzimologia Toxicológica, Centro de Ciências Naturais e Exatas , Universidade Federal de Santa Maria , Santa Maria , Brazil
| | - Marcia Vizzotto
- d Empresa Brasileira de Pesquisa Agropecuária , Centro de Pesquisa Agropecuária de Clima Temperado , Pelotas , Brazil
| | - Mayara Sandrielly Pereira Soares
- e Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos , Universidade Federal de Pelotas , Pelotas , Brazil
| | - Vanessa Plasse Ramos
- a Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos , Universidade Federal de Pelotas , Pelotas , Brazil
| | - Roselia Maria Spanevello
- e Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos , Universidade Federal de Pelotas , Pelotas , Brazil
| | - Claiton Leoneti Lencina
- a Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos , Universidade Federal de Pelotas , Pelotas , Brazil
| | - Rejane Giacomelli Tavares
- a Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos , Universidade Federal de Pelotas , Pelotas , Brazil
| | - Francieli Moro Stefanello
- a Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos , Universidade Federal de Pelotas , Pelotas , Brazil
| |
Collapse
|
59
|
Scaroni C, Zilio M, Foti M, Boscaro M. Glucose Metabolism Abnormalities in Cushing Syndrome: From Molecular Basis to Clinical Management. Endocr Rev 2017; 38:189-219. [PMID: 28368467 DOI: 10.1210/er.2016-1105] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 03/15/2017] [Indexed: 12/13/2022]
Abstract
An impaired glucose metabolism, which often leads to the onset of diabetes mellitus (DM), is a common complication of chronic exposure to exogenous and endogenous glucocorticoid (GC) excess and plays an important part in contributing to morbidity and mortality in patients with Cushing syndrome (CS). This article reviews the pathogenesis, epidemiology, diagnosis, and management of changes in glucose metabolism associated with hypercortisolism, addressing both the pathophysiological aspects and the clinical and therapeutic implications. Chronic hypercortisolism may have pleiotropic effects on all major peripheral tissues governing glucose homeostasis. Adding further complexity, both genomic and nongenomic mechanisms are directly induced by GCs in a context-specific and cell-/organ-dependent manner. In this paper, the discussion focuses on established and potential pathologic molecular mechanisms that are induced by chronically excessive circulating levels of GCs and affect glucose homeostasis in various tissues. The management of patients with CS and DM includes treating their hyperglycemia and correcting their GC excess. The effects on glycemic control of various medical therapies for CS are reviewed in this paper. The association between DM and subclinical CS and the role of screening for CS in diabetic patients are also discussed.
Collapse
Affiliation(s)
- Carla Scaroni
- Endocrinology Unit, Department of Medicine, DIMED, University of Padova, Via Ospedale 105, 35128 Padua, Italy
| | - Marialuisa Zilio
- Endocrinology Unit, Department of Medicine, DIMED, University of Padova, Via Ospedale 105, 35128 Padua, Italy
| | - Michelangelo Foti
- Department of Cell Physiology & Metabolism, Centre Médical Universitaire, 1 Rue Michel Servet, 1211 Genèva, Switzerland
| | - Marco Boscaro
- Endocrinology Unit, Department of Medicine, DIMED, University of Padova, Via Ospedale 105, 35128 Padua, Italy
| |
Collapse
|
60
|
Mathur A, Pandey VK, Kakkar P. PHLPP: a putative cellular target during insulin resistance and type 2 diabetes. J Endocrinol 2017; 233:R185-R198. [PMID: 28428363 DOI: 10.1530/joe-17-0081] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 04/20/2017] [Indexed: 12/29/2022]
Abstract
Progressive research in the past decade converges to the impact of PHLPP in regulating the cellular metabolism through PI3K/AKT inhibition. Aberrations in PKB/AKT signaling coordinates with impaired insulin secretion and insulin resistance, identified during T2D, obesity and cardiovascular disorders which brings in the relevance of PHLPPs in the metabolic paradigm. In this review, we discuss the impact of PHLPP isoforms in insulin signaling and its associated cellular events including mitochondrial dysfunction, DNA damage, autophagy and cell death. The article highlights the plausible molecular targets that share the role during insulin-resistant states, whose understanding can be extended into treatment responses to facilitate targeted drug discovery for T2D and allied metabolic syndromes.
Collapse
Affiliation(s)
- Alpana Mathur
- Herbal Research LaboratoryCSIR-Indian Institute of Toxicology Research, Lucknow, India
- Babu Banarasi Das UniversityBBD City, Lucknow, India
| | - Vivek Kumar Pandey
- Herbal Research LaboratoryCSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative ResearchCSIR-IITR, Lucknow, India
| | - Poonam Kakkar
- Herbal Research LaboratoryCSIR-Indian Institute of Toxicology Research, Lucknow, India
- Babu Banarasi Das UniversityBBD City, Lucknow, India
- Academy of Scientific and Innovative ResearchCSIR-IITR, Lucknow, India
| |
Collapse
|
61
|
Perkovic MN, Erjavec GN, Strac DS, Uzun S, Kozumplik O, Pivac N. Theranostic Biomarkers for Schizophrenia. Int J Mol Sci 2017; 18:E733. [PMID: 28358316 PMCID: PMC5412319 DOI: 10.3390/ijms18040733] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia is a highly heritable, chronic, severe, disabling neurodevelopmental brain disorder with a heterogeneous genetic and neurobiological background, which is still poorly understood. To allow better diagnostic procedures and therapeutic strategies in schizophrenia patients, use of easy accessible biomarkers is suggested. The most frequently used biomarkers in schizophrenia are those associated with the neuroimmune and neuroendocrine system, metabolism, different neurotransmitter systems and neurotrophic factors. However, there are still no validated and reliable biomarkers in clinical use for schizophrenia. This review will address potential biomarkers in schizophrenia. It will discuss biomarkers in schizophrenia and propose the use of specific blood-based panels that will include a set of markers associated with immune processes, metabolic disorders, and neuroendocrine/neurotrophin/neurotransmitter alterations. The combination of different markers, or complex multi-marker panels, might help in the discrimination of patients with different underlying pathologies and in the better classification of the more homogenous groups. Therefore, the development of the diagnostic, prognostic and theranostic biomarkers is an urgent and an unmet need in psychiatry, with the aim of improving diagnosis, therapy monitoring, prediction of treatment outcome and focus on the personal medicine approach in order to improve the quality of life in patients with schizophrenia and decrease health costs worldwide.
Collapse
Affiliation(s)
| | | | - Dubravka Svob Strac
- Rudjer Boskovic Institute, Division of Molecular Medicine, 10000 Zagreb, Croatia.
| | - Suzana Uzun
- Clinic for Psychiatry Vrapce, 10090 Zagreb, Croatia.
| | | | - Nela Pivac
- Rudjer Boskovic Institute, Division of Molecular Medicine, 10000 Zagreb, Croatia.
| |
Collapse
|
62
|
Sidibeh CO, Pereira MJ, Lau Börjesson J, Kamble PG, Skrtic S, Katsogiannos P, Sundbom M, Svensson MK, Eriksson JW. Role of cannabinoid receptor 1 in human adipose tissue for lipolysis regulation and insulin resistance. Endocrine 2017; 55:839-852. [PMID: 27858284 PMCID: PMC5316391 DOI: 10.1007/s12020-016-1172-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/03/2016] [Indexed: 12/31/2022]
Abstract
We recently showed that the peripheral cannabinoid receptor type 1 (CNR1) gene is upregulated by the synthetic glucocorticoid dexamethasone. CNR1 is highly expressed in the central nervous system and has been a drug target for the treatment of obesity. Here we explore the role of peripheral CNR1 in states of insulin resistance in human adipose tissue. Subcutaneous adipose tissue was obtained from well-controlled type 2 diabetes subjects and controls. Subcutaneous adipose tissue gene expression levels of CNR1 and endocannabinoid synthesizing and degrading enzymes were assessed. Furthermore, paired human subcutaneous adipose tissue and omental adipose tissue from non-diabetic volunteers undergoing kidney donation or bariatric surgery, was incubated with or without dexamethasone. Subcutaneous adipose tissue obtained from volunteers through needle biopsy was incubated with or without dexamethasone and in the presence or absence of the CNR1-specific antagonist AM281. CNR1 gene and protein expression, lipolysis and glucose uptake were evaluated. Subcutaneous adipose tissue CNR1 gene expression levels were 2-fold elevated in type 2 diabetes subjects compared with control subjects. Additionally, gene expression levels of CNR1 and endocannabinoid-regulating enzymes from both groups correlated with markers of insulin resistance. Dexamethasone increased CNR1 expression dose-dependently in subcutaneous adipose tissue and omental adipose tissue by up to 25-fold. Dexamethasone pre-treatment of subcutaneous adipose tissue increased lipolysis rate and reduced glucose uptake. Co-incubation with the CNR1 antagonist AM281 prevented the stimulatory effect on lipolysis, but had no effect on glucose uptake. CNR1 is upregulated in states of type 2 diabetes and insulin resistance. Furthermore, CNR1 is involved in glucocorticoid-regulated lipolysis. Peripheral CNR1 could be an interesting drug target in type 2 diabetes and dyslipidemia.
Collapse
Affiliation(s)
- Cherno O Sidibeh
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Prasad G Kamble
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Stanko Skrtic
- AstraZeneca R&D, Mölndal, Sweden
- Department of Endocrinology, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Magnus Sundbom
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Maria K Svensson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
63
|
Hillard CJ, Beatka M, Sarvaideo J. Endocannabinoid Signaling and the Hypothalamic-Pituitary-Adrenal Axis. Compr Physiol 2016; 7:1-15. [PMID: 28134998 DOI: 10.1002/cphy.c160005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The elucidation of Δ9-tetrahydrocannabinol as the active principal of Cannabis sativa in 1963 initiated a fruitful half-century of scientific discovery, culminating in the identification of the endocannabinoid signaling system, a previously unknown neuromodulatory system. A primary function of the endocannabinoid signaling system is to maintain or recover homeostasis following psychological and physiological threats. We provide a brief introduction to the endocannabinoid signaling system and its role in synaptic plasticity. The majority of the article is devoted to a summary of current knowledge regarding the role of endocannabinoid signaling as both a regulator of endocrine responses to stress and as an effector of glucocorticoid and corticotrophin-releasing hormone signaling in the brain. We summarize data demonstrating that cannabinoid receptor 1 (CB1R) signaling can both inhibit and potentiate the activation of the hypothalamic-pituitary-adrenal axis by stress. We present a hypothesis that the inhibitory arm has high endocannabinoid tone and also serves to enhance recovery to baseline following stress, while the potentiating arm is not tonically active but can be activated by exogenous agonists. We discuss recent findings that corticotropin-releasing hormone in the amygdala enables hypothalamic-pituitary-adrenal axis activation via an increase in the catabolism of the endocannabinoid N-arachidonylethanolamine. We review data supporting the hypotheses that CB1R activation is required for many glucocorticoid effects, particularly feedback inhibition of hypothalamic-pituitary-adrenal axis activation, and that glucocorticoids mobilize the endocannabinoid 2-arachidonoylglycerol. These features of endocannabinoid signaling make it a tantalizing therapeutic target for treatment of stress-related disorders but to date, this promise is largely unrealized. © 2017 American Physiological Society. Compr Physiol 7:1-15, 2017.
Collapse
Affiliation(s)
- Cecilia J Hillard
- Department of Pharmacology and Toxicology, and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Margaret Beatka
- Department of Pharmacology and Toxicology, and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jenna Sarvaideo
- Department of Medicine, and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
64
|
Michopoulos V, Vester A, Neigh G. Posttraumatic stress disorder: A metabolic disorder in disguise? Exp Neurol 2016; 284:220-229. [PMID: 27246996 PMCID: PMC5056806 DOI: 10.1016/j.expneurol.2016.05.038] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/24/2016] [Accepted: 05/26/2016] [Indexed: 12/30/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a heterogeneous psychiatric disorder that affects individuals exposed to trauma and is highly co-morbid with other adverse health outcomes, including cardiovascular disease and obesity. The unique pathophysiological feature of PTSD is the inability to inhibit fear responses, such that individuals suffering from PTSD re-experience traumatic memories and are unable to control psychophysiological responses to trauma-associated stimuli. However, underlying alterations in sympathetic nervous system activity, neuroendocrine systems, and metabolism associated with PTSD are similar to those present in traditional metabolic disorders, such as obesity and diabetes. The current review highlights existing clinical, translational, and preclinical data that support the notion that underneath the primary indication of impaired fear inhibition, PTSD is itself also a metabolic disorder and proposes altered function of inflammatory responses as a common underlying mechanism. The therapeutic implications of treating PTSD as a whole-body condition are significant, as targeting any underlying biological system whose activity is altered in both PTSD and metabolic disorders, (i.e. HPA axis, sympathetic nervous systems, inflammation) may elicit symptomatic relief in individuals suffering from these whole-body adverse outcomes.
Collapse
Affiliation(s)
- Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States; Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Aimee Vester
- Department of Environmental Health Sciences, Rollins School of Public Health, Atlanta, GA, United States
| | - Gretchen Neigh
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States; Yerkes National Primate Research Center, Atlanta, GA, United States; Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
65
|
Stechschulte LA, Qiu B, Warrier M, Hinds TD, Zhang M, Gu H, Xu Y, Khuder SS, Russo L, Najjar SM, Lecka-Czernik B, Yong W, Sanchez ER. FKBP51 Null Mice Are Resistant to Diet-Induced Obesity and the PPARγ Agonist Rosiglitazone. Endocrinology 2016; 157:3888-3900. [PMID: 27442117 PMCID: PMC5045506 DOI: 10.1210/en.2015-1996] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
FK506-binding protein-51 (FKBP51) is a molecular cochaperone recently shown to be a positive regulator of peroxisome proliferator-activated receptor (PPAR)γ, the master regulator of adipocyte differentiation and function. In cellular models of adipogenesis, loss of FKBP51 not only reduced PPARγ activity but also reduced lipid accumulation, suggesting that FKBP51 knock-out (KO) mice might have insufficient development of adipose tissue and lipid storage ability. This model was tested by examining wild-type (WT) and FKBP51-KO mice under regular and high-fat diet conditions. Under both diets, FKBP51-KO mice were resistant to weight gain, hepatic steatosis, and had greatly reduced white adipose tissue (WAT) but higher amounts of brown adipose tissue. Under high-fat diet, KO mice were highly resistant to adiposity and exhibited reduced plasma lipids and elevated glucose and insulin tolerance. Profiling of perigonadal and sc WAT revealed elevated expression of brown adipose tissue lineage genes in KO mice that correlated increased energy expenditure and a shift of substrate oxidation to carbohydrates, as measured by indirect calorimetry. To directly test PPARγ involvement, WT and KO mice were fed rosiglitazone agonist. In WT mice, rosiglitazone induced whole-body weight gain, increased WAT mass, a shift of substrate oxidation to lipids, and elevated expression of PPARγ-regulated lipogenic genes in WAT. In contrast, KO mice had reduced rosiglitazone responses for these parameters. Our results identify FKBP51 as an important regulator of PPARγ in WAT and as a potential new target in the treatment of obesity and diabetes.
Collapse
|
66
|
Shimoide T, Kawao N, Tamura Y, Morita H, Kaji H. Novel roles of FKBP5 in muscle alteration induced by gravity change in mice. Biochem Biophys Res Commun 2016; 479:602-606. [PMID: 27680313 DOI: 10.1016/j.bbrc.2016.09.126] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 09/24/2016] [Indexed: 01/06/2023]
Abstract
Skeletal muscle hypertrophy and wasting are induced by hypergravity and microgravity, respectively. However, the mechanisms by which gravity change regulates muscle mass still remain unclear. We previously reported that hypergravity increases muscle mass via the vestibular system in mice. In this study, we performed comparative DNA microarray analysis of the soleus muscle from mice kept in 1 or 3 g environments with or without vestibular lesions. Mice were kept in 1 g or 3 g environment for 4 weeks by using a centrifuge 14 days after surgical bilateral vestibular lesions. FKBP5 was extracted as a gene whose expression was enhanced by hypergravity through the vestibular system. Stable FKBP5 overexpression increased the phosphorylations of Akt and p70 S6 kinase (muscle protein synthesis pathway) and myosin heavy chain, a myotube gene, mRNA level in mouse myoblastic C2C12 cells, although it reduced the mRNA levels of atrogin-1 and MuRF1, muscle protein degradation-related genes. In conclusion, we first showed that FKBP5 is induced by hypergravity through the vestibular system in anti-gravity muscle of mice. Our data suggest that FKBP5 might increase muscle mass through the enhancements of muscle protein synthesis and myotube differentiation as well as an inhibition of muscle protein degradation in mice.
Collapse
Affiliation(s)
- Takeshi Shimoide
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Yukinori Tamura
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Hironobu Morita
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan.
| |
Collapse
|
67
|
Zannas AS, Balsevich G, Gassen NC. The emerging role of FKBP5 in the regulation of metabolism and body weight. Surg Obes Relat Dis 2016; 12:1560-1561. [PMID: 27444859 DOI: 10.1016/j.soard.2016.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 05/11/2016] [Indexed: 01/24/2023]
Affiliation(s)
- Anthony S Zannas
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Georgia Balsevich
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Nils C Gassen
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
68
|
Kamble PG, Pereira MJ, Sidibeh CO, Amini S, Sundbom M, Börjesson JL, Eriksson JW. Lipocalin 2 produces insulin resistance and can be upregulated by glucocorticoids in human adipose tissue. Mol Cell Endocrinol 2016; 427:124-32. [PMID: 26973291 DOI: 10.1016/j.mce.2016.03.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/11/2016] [Accepted: 03/08/2016] [Indexed: 01/09/2023]
Abstract
The adipokine lipocalin 2 is linked to obesity and metabolic disorders. However, its role in human adipose tissue glucose and lipid metabolism is not explored. Here we show that the synthetic glucocorticoid dexamethasone dose-dependently increased lipocalin 2 gene expression in subcutaneous and omental adipose tissue from pre-menopausal females, while it had no effect in post-menopausal females or in males. Subcutaneous adipose tissue from both genders treated with recombinant human lipocalin 2 showed a reduction in protein levels of GLUT1 and GLUT4 and in glucose uptake in isolated adipocytes. In subcutaneous adipose tissue, lipocalin 2 increased IL-6 gene expression whereas expression of PPARγ and adiponectin was reduced. Our findings suggest that lipocalin 2 can contribute to insulin resistance in human adipose tissue. In pre-menopausal females, it may partly mediate adverse metabolic effects exerted by glucocorticoid excess.
Collapse
Affiliation(s)
- Prasad G Kamble
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Cherno O Sidibeh
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Sam Amini
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Magnus Sundbom
- Department of Surgery, Uppsala University, Uppsala, Sweden
| | | | - Jan W Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
69
|
The Interactome of the Glucocorticoid Receptor and Its Influence on the Actions of Glucocorticoids in Combatting Inflammatory and Infectious Diseases. Microbiol Mol Biol Rev 2016; 80:495-522. [PMID: 27169854 DOI: 10.1128/mmbr.00064-15] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoids (GCs) have been widely used for decades as a first-line treatment for inflammatory and autoimmune diseases. However, their use is often hampered by the onset of adverse effects or resistance. GCs mediate their effects via binding to glucocorticoid receptor (GR), a transcription factor belonging to the family of nuclear receptors. An important aspect of GR's actions, including its anti-inflammatory capacity, involves its interactions with various proteins, such as transcription factors, cofactors, and modifying enzymes, which codetermine receptor functionality. In this review, we provide a state-of-the-art overview of the protein-protein interactions (PPIs) of GR that positively or negatively affect its anti-inflammatory properties, along with mechanistic insights, if known. Emphasis is placed on the interactions that affect its anti-inflammatory effects in the presence of inflammatory and microbial diseases.
Collapse
|
70
|
Hartmann IB, Fries GR, Bücker J, Scotton E, von Diemen L, Kauer-Sant'Anna M. The FKBP5 polymorphism rs1360780 is associated with lower weight loss after bariatric surgery: 26 months of follow-up. Surg Obes Relat Dis 2016; 12:1554-1560. [PMID: 27421688 DOI: 10.1016/j.soard.2016.04.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/26/2016] [Accepted: 04/17/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Bariatric surgery is the most effective treatment choice for severe obesity. Recent literature indicates that FK506-binding protein 51 (FKBP51) could play a role in energy homeostasis, influencing adipogenesis and weight. OBJECTIVE To evaluate if the presence of the T allele of the FKBP5 SNP rs1360780, associated with increased FKBP51 expression, could influence weight loss after bariatric surgery. SETTING Hospital de Clínicas de Porto Alegre, Brazil. METHODS Forty-two patients awaiting bariatric surgery were included, and the presence of the FKBP5 rs1360780 polymorphism was evaluated. During the postoperative period, a 26-month follow-up of weight loss was performed (n = 42, 36, 35, 35, and 30, from the first to fifth postoperative evaluation, respectively; loss to follow-up: 28.6%). RESULTS Carriers of the T allele presented significantly lower weight loss compared with patients with the C/C genotype after the 12th to 14th month follow-up period. Differences in weight loss between genotypes ranged from 14.2% to 19.9% of excess weight loss (P = .045 and .004, respectively) and from 7.6% to 9.0% of total weight loss (P = .002 for both comparisons). Furthermore, carriers of the T allele also presented an earlier cessation of weight loss after surgery. CONCLUSION The presence of the T allele of the FKBP5 SNP rs1360780 was associated with weight loss after bariatric surgery. Bariatric surgery can interact with genes involved in metabolic regulation, leading to different weight loss outcomes.
Collapse
Affiliation(s)
- Ingrid Borba Hartmann
- Laboratory of Molecular Psychiatry, National Institute for Translational Medicine, CNPq/INCT-TM, Hospital de Clínicas de Porto Alegre (HCPA) and Programa de Pós-graduação em Psiquiatria e Ciências do Comportamento, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Gabriel Rodrigo Fries
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth) Medical School, Houston, Texas
| | - Joana Bücker
- Laboratory of Molecular Psychiatry, National Institute for Translational Medicine, CNPq/INCT-TM, Hospital de Clínicas de Porto Alegre (HCPA) and Programa de Pós-graduação em Psiquiatria e Ciências do Comportamento, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Ellen Scotton
- Laboratory of Molecular Psychiatry, National Institute for Translational Medicine, CNPq/INCT-TM, Hospital de Clínicas de Porto Alegre (HCPA) and Programa de Pós-graduação em Psiquiatria e Ciências do Comportamento, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Lisia von Diemen
- Addiction Unit, Hospital de Clínicas de Porto Alegre (HCPA) and Programa de Pós-graduação em Psiquiatria e Ciências do Comportamento, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Marcia Kauer-Sant'Anna
- Laboratory of Molecular Psychiatry, National Institute for Translational Medicine, CNPq/INCT-TM, Hospital de Clínicas de Porto Alegre (HCPA) and Programa de Pós-graduação em Psiquiatria e Ciências do Comportamento, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| |
Collapse
|
71
|
Neuron-derived FGF10 ameliorates cerebral ischemia injury via inhibiting NF-κB-dependent neuroinflammation and activating PI3K/Akt survival signaling pathway in mice. Sci Rep 2016; 6:19869. [PMID: 26813160 PMCID: PMC4728497 DOI: 10.1038/srep19869] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/18/2015] [Indexed: 12/19/2022] Open
Abstract
FGF10 is a member of fibroblast growth factors (FGFs). We previously showed that FGF10 protects neuron against oxygen-glucose deprivation injury in vitro; however, the effect of FGF10 in ischemic stroke in vivo is unknown. In the present study, we showed that FGF10 was mainly expressed in neurons but not astrocytes, and detected FGF10 in mouse cerebrospinal fluid. The FGF10 levels in neurons culture medium and cell lysate were much higher than those in astrocytes. FGF10 expression in brain tissue and FGF10 level in CSF were increased in mouse middle cerebral artery occlusion (MCAO) model. Administration of FGF10 into lateral cerebroventricle not only decreased MCAO-induced brain infarct volume and neurological deficit, but also reduced the number of TUNEL-positive cells and activities of Caspases. Moreover, FGF10 treatment depressed the triggered inflammatory factors (TNF-α and IL-6) and NF-κB signaling pathway, and increased phosphorylation of PI3K/Akt signaling pathway. Blockade of PI3K/Akt signaling pathway by wortmannin and Akt1/2-kinase inhibitor, partly compromised the neuroprotection of FGF10. However, blockade of PI3K/Akt signaling pathway did not impair the anti-inflammation action of FGF10. Collectively, our results demonstrate that neuron-derived FGF10 ameliorates cerebral ischemia injury via inhibiting NF-κB-dependent neuroinflammation and activating PI3K/Akt survival signaling pathway in mice.
Collapse
|
72
|
Gene-Stress-Epigenetic Regulation of FKBP5: Clinical and Translational Implications. Neuropsychopharmacology 2016; 41:261-74. [PMID: 26250598 PMCID: PMC4677131 DOI: 10.1038/npp.2015.235] [Citation(s) in RCA: 358] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 12/13/2022]
Abstract
Stress responses and related outcomes vary markedly across individuals. Elucidating the molecular underpinnings of this variability is of great relevance for developing individualized prevention strategies and treatments for stress-related disorders. An important modulator of stress responses is the FK506-binding protein 51 (FKBP5/FKBP51). FKBP5 acts as a co-chaperone that modulates not only glucocorticoid receptor activity in response to stressors but also a multitude of other cellular processes in both the brain and periphery. Notably, the FKBP5 gene is regulated via complex interactions among environmental stressors, FKBP5 genetic variants, and epigenetic modifications of glucocorticoid-responsive genomic sites. These interactions can result in FKBP5 disinhibition that has been shown to contribute to a number of aberrant phenotypes in both rodents and humans. Consequently, FKBP5 blockade may hold promise as treatment intervention for stress-related disorders, and recently developed selective FKBP5 blockers show encouraging results in vitro and in rodent models. Although risk for stress-related disorders is conferred by multiple environmental and genetic factors, the findings related to FKBP5 illustrate how a deeper understanding of the molecular and systemic mechanisms underlying specific gene-environment interactions may provide insights into the pathogenesis of stress-related disorders.
Collapse
|