51
|
Jahan ST, Sadat SM, Haddadi A. Design and immunological evaluation of anti-CD205-tailored PLGA-based nanoparticulate cancer vaccine. Int J Nanomedicine 2018; 13:367-386. [PMID: 29391795 PMCID: PMC5768188 DOI: 10.2147/ijn.s144266] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The aim of this research was to develop a targeted antigen–adjuvant assembled delivery system that will enable dendritic cells (DCs) to efficiently mature to recognize antigens released from tumor cells. It is important to target the DCs with greater efficiency to prime T cell immune responses. In brief, model antigen, ovalbumin (OV), and monophosphoryl lipid A adjuvant were encapsulated within the nanoparticle (NP) by double emulsification solvent evaporation method. Targeted NPs were obtained through ligand incorporation via physical adsorption or chemical conjugation process. Intracellular uptake of the NPs and the maturation of DCs were evaluated with flow cytometry. Remarkably, the developed delivery system had suitable physicochemical properties, such as particle size, surface charge, OV encapsulation efficiency, biphasic OV release pattern, and safety profile. The ligand modified formulations had higher targeting efficiency than the non-tailored NPs. This was also evident when the targeted formulations expressed comparatively higher fold increase in surface activation markers such as CD40, CD86, and major histocompatibility complex class II molecules. The maturation of DCs was further confirmed through secretion of extracellular cytokines compared to control cells in the DC microenvironment. Physicochemical characterization of NPs was performed based on the polymer end groups, their viscosities, and ligand-NP bonding type. In conclusion, the DC stimulatory response was integrated to develop a relationship between the NP structure and desired immune response. Therefore, the present study narrates a comparative evaluation of some selected parameters to choose a suitable formulation useful for in vivo cancer immunotherapy.
Collapse
Affiliation(s)
- Sheikh Tasnim Jahan
- Division of Pharmacy, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sams Ma Sadat
- Division of Pharmacy, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Azita Haddadi
- Division of Pharmacy, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
52
|
Wang Q, Barry MA, Seid CA, Hudspeth EM, McAtee CP, Heffernan MJ. 3M-052 as an adjuvant for a PLGA microparticle-based Leishmania donovani recombinant protein vaccine. J Biomed Mater Res B Appl Biomater 2017; 106:1587-1594. [PMID: 28804955 DOI: 10.1002/jbm.b.33965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 07/07/2017] [Accepted: 07/21/2017] [Indexed: 02/02/2023]
Abstract
It is believed that an effective vaccine against leishmaniasis will require a T helper type 1 (TH 1) immune response. In this study, we investigated the adjuvanticity of the Toll-like receptor (TLR) 7/8 agonist 3M-052 in combination with the Leishmania donovani 36-kDa nucleoside hydrolase recombinant protein antigen (NH36). NH36 and 3M-052 were encapsulated in separate batches of poly(lactic-co-glycolic acid) (PLGA) microparticles (MPs). The loading efficiency for NH36 was 83% and for 3M-052 was above 95%. In vitro stimulation of bone marrow-derived dendritic cells, measured by IL-12 secretion, demonstrated that 3M-052 (free or MP-formulated) had a concentration-dependent immunostimulatory effect with an optimum concentration of 2 µg/mL. In immunogenicity studies in BALB/c mice, MP-formulated NH36 and 3M-052 elicited the highest serum titers of TH 1-associated IgG2a and IgG2b antibodies and the highest frequency of IFNγ-producing splenocytes. No dose dependency was observed among MP/NH36/3M-052 groups over a dose range of 4-60 µg 3M-052 per injection. The ability of MP-formulated NH36 and 3M-052 to elicit a TH 1-biased immune response indicates the potential for PLGA MP-formulated 3M-052 to be used as an adjuvant for leishmaniasis vaccines. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1587-1594, 2018.
Collapse
Affiliation(s)
- Qian Wang
- Department of Pediatrics (Section of Tropical Medicine), National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital Center for Vaccine Development, Houston, Texas
| | - Meagan A Barry
- Department of Pediatrics (Section of Tropical Medicine), National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital Center for Vaccine Development, Houston, Texas
| | - Christopher A Seid
- Department of Pediatrics (Section of Tropical Medicine), National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital Center for Vaccine Development, Houston, Texas
| | - Elissa M Hudspeth
- Department of Pediatrics (Section of Tropical Medicine), National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital Center for Vaccine Development, Houston, Texas
| | - C Patrick McAtee
- Department of Pediatrics (Section of Tropical Medicine), National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital Center for Vaccine Development, Houston, Texas
| | - Michael J Heffernan
- Department of Pediatrics (Section of Tropical Medicine), National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas.,Texas Children's Hospital Center for Vaccine Development, Houston, Texas
| |
Collapse
|
53
|
|
54
|
Abstract
Vaccines are essential tools for the prevention and control of infectious diseases in animals. One of the most important steps in vaccine development is the selection of a suitable adjuvant. The focus of this review is the adjuvants used in vaccines for animals. We will discuss current commercial adjuvants and experimental formulations with attention to mineral salts, emulsions, bacterial-derived components, saponins, and several other immunoactive compounds. In addition, we will also examine the mechanisms of action for different adjuvants, examples of adjuvant combinations in one vaccine formulation, and challenges in the research and development of veterinary vaccine adjuvants.
Collapse
Affiliation(s)
- Yulia Burakova
- 1 Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University , Manhattan, Kansas.,2 Department of Chemical Engineering, College of Engineering, Kansas State University , Manhattan, Kansas
| | - Rachel Madera
- 1 Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University , Manhattan, Kansas
| | - Scott McVey
- 3 United States Department of Agriculture, Agricultural Research Service, Arthropod Borne Animal Disease Research Unit, Manhattan, Kansas
| | - John R Schlup
- 2 Department of Chemical Engineering, College of Engineering, Kansas State University , Manhattan, Kansas
| | - Jishu Shi
- 1 Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University , Manhattan, Kansas
| |
Collapse
|
55
|
Caetano LA, Figueiredo L, Almeida AJ, Gonçalves LMD. BCG-loaded chitosan microparticles: interaction with macrophages and preliminary in vivo studies. J Microencapsul 2017; 34:203-217. [PMID: 28378596 DOI: 10.1080/02652048.2017.1316325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The aim of this study was to develop a novel BCG-loaded chitosan vaccine with high association efficiency which can afford efficient interaction with APC and elicit local and Th1-type-specific immune response after intranasal administration. Chitosan-suspended BCG and BCG-loaded chitosan-alginate microparticles were prepared by ionotropic gelation. Interaction with APC was evaluated by fluorescence microscopy using rBCG-GFP. Specific immune responses were evaluated following intranasal immunisation of mice. Cellular uptake was approximately two-fold higher for chitosan-suspended BCG. A single dose of BCG-loaded microparticles or chitosan-suspended BCG by intranasal route improved Th1-type response compared with subcutaneous BCG. Chitosan-suspended BCG originated the highest mucosal response in the lungs by intranasal route. These positive results indicate that the proposed approach of whole live BCG microencapsulation in chitosan-alginate for intranasal immunisation was successful in allowing efficient interaction with APC, while improving the cellular immune response, which is of interest for local immunisation against tuberculosis.
Collapse
Affiliation(s)
- Liliana Aranha Caetano
- a Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy , University of Lisbon , Lisbon , Portugal.,b Department of Ciências e Tecnologias Laboratoriais e Saúde Comunitária, ESTeSL - Escola Superior de Tecnologia da Saúde de Lisboa , Instituto Politécnico de Lisboa , Lisbon , Portugal
| | - Lara Figueiredo
- a Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy , University of Lisbon , Lisbon , Portugal
| | - António J Almeida
- a Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy , University of Lisbon , Lisbon , Portugal
| | - L M D Gonçalves
- a Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy , University of Lisbon , Lisbon , Portugal
| |
Collapse
|
56
|
Garapaty A, Champion JA. Tunable particles alter macrophage uptake based on combinatorial effects of physical properties. Bioeng Transl Med 2017; 2:92-101. [PMID: 29313025 PMCID: PMC5689517 DOI: 10.1002/btm2.10047] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 12/31/2022] Open
Abstract
The ability to tune phagocytosis of particle-based therapeutics by macrophages can enhance their delivery to macrophages or reduce their phagocytic susceptibility for delivery to non-phagocytic cells. Since phagocytosis is affected by the physical and chemical properties of particles, it is crucial to identify any interplay between physical properties of particles in altering phagocytic interactions. The combinatorial effect of physical properties size, shape and stiffness was investigated on Fc receptor mediated macrophage interactions by fabrication of layer-by-layer tunable particles of constant surface chemistry. Our results highlight how changing particle stiffness affects phagocytic interaction intricately when combined with varying size or shape. Increase in size plays a dominant role over reduction in stiffness in reducing internalization by macrophages for spherical particles. Internalization of rod-shaped, but not spherical particles, was highly dependent on stiffness. These particles demonstrate the interplay between size, shape and stiffness in interactions of Fc-functionalized particles with macrophages during phagocytosis.
Collapse
Affiliation(s)
- Anusha Garapaty
- School of Chemical & Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA30332
| | - Julie A. Champion
- School of Chemical & Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA30332
| |
Collapse
|
57
|
Naggar HME, Madkour MS, Hussein HA. Preparation of mucosal nanoparticles and polymer-based inactivated vaccine for Newcastle disease and H9N2 AI viruses. Vet World 2017; 10:187-193. [PMID: 28344402 PMCID: PMC5352844 DOI: 10.14202/vetworld.2017.187-193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/10/2017] [Indexed: 01/12/2023] Open
Abstract
AIM To develop a mucosal inactivated vaccines for Newcastle disease (ND) and H9N2 viruses to protect against these viruses at sites of infections through mucosal immunity. MATERIALS AND METHODS In this study, we prepared two new formulations for mucosal bivalent inactivated vaccine formulations for Newcastle and Avian Influenza (H9N2) based on the use of nanoparticles and polymer adjuvants. The prepared vaccines were delivered via intranasal and spray routes of administration in specific pathogen-free chickens. Cell-mediated and humoral immune response was measured as well as challenge trial was carried out. In addition, ISA71 water in oil was also evaluated. RESULTS Our results showed that the use of spray route as vaccination delivery method of polymer and nanoparticles Montanide™ adjuvants revealed that it enhanced the cell mediated immune response as indicated by phagocytic activity, gamma interferon and interleukin 6 responses and induced protection against challenge with Newcastle and Avian Influenza (H9N2) viruses. CONCLUSION The results of this study demonstrate the potentiality of polymer compared to nanoparticles adjuvantes when used via spray route. Mass application of such vaccines will add value to improve the vaccination strategies against ND virus and Avian influenza viruses.
Collapse
Affiliation(s)
- Heba M. El Naggar
- Department of Poultry Vaccines Production Unit Veterinary Serum and Vaccine Research Institute, Abbasia 11759, Egypt
| | - Mohamed Sayed Madkour
- Department of Poultry Vaccines Production Unit Veterinary Serum and Vaccine Research Institute, Abbasia 11759, Egypt
| | - Hussein Ali Hussein
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
58
|
Lin W, Yao N, Li H, Hanson S, Han W, Wang C, Zhang L. Co-Delivery of Imiquimod and Plasmid DNA via an Amphiphilic pH-Responsive Star Polymer that Forms Unimolecular Micelles in Water. Polymers (Basel) 2016; 8:E397. [PMID: 30974677 PMCID: PMC6431966 DOI: 10.3390/polym8110397] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 01/03/2023] Open
Abstract
Dual functional unimolecular micelles based on a pH-responsive amphiphilic star polymer β-CD-(PLA-b-PDMAEMA-b-PEtOxMA)21 have been developed for the co-delivery of imiquimod and plasmid DNA to dendritic cells. The star polymer with well-defined triblock arms was synthesized by combining activator regenerated by electron-transfer atom-transfer radical polymerization with ring-opening polymerization. Dissipative particle dynamics simulation showed that core-mesophere-shell-type unimolecular micelles could be formed. Imiquimod-loaded micelles had a drug loading of 1.6 wt % and a larger average size (28 nm) than blank micelles (19 nm). The release of imiquimod in vitro was accelerated at the mildly acidic endolysosomal pH (5.0) in comparison to physiologic pH (7.4). Compared with blank micelles, a higher N:P ratio was required for imiquimod-loaded micelles to fully condense DNA into micelleplexes averaging 200⁻400 nm in size. In comparison to blank micelleplexes, imiquimod-loaded micelleplexes of the same N:P ratio displayed similar or slightly higher efficiency of gene transfection in a mouse dendritic cell line (DC2.4) without cytotoxicity. These results suggest that such pH-responsive unimolecular micelles formed by the well-defined amphiphilic star polymer may serve as promising nano-scale carriers for combined delivery of hydrophobic immunostimulatory drugs (such as imiquimod) and plasmid DNA with potential application in gene-based immunotherapy.
Collapse
Affiliation(s)
- Wenjing Lin
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Na Yao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Hongru Li
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research, College of Pharmacy, Nankai University, Tianjin 300071, China.
| | - Samuel Hanson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Wenqing Han
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Chun Wang
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Lijuan Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
59
|
Li P, Asokanathan C, Liu F, Khaing KK, Kmiec D, Wei X, Song B, Xing D, Kong D. PLGA nano/micro particles encapsulated with pertussis toxoid (PTd) enhances Th1/Th17 immune response in a murine model. Int J Pharm 2016; 513:183-190. [PMID: 27586408 DOI: 10.1016/j.ijpharm.2016.08.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/18/2016] [Accepted: 08/28/2016] [Indexed: 10/21/2022]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) based nano/micro particles were investigated as a potential vaccine platform for pertussis antigen. Presentation of pertussis toxoid as nano/micro particles (NP/MP) gave similar antigen-specific IgG responses in mice compared to soluble antigen. Notably, in cell line based assays, it was found that PLGA based nano/micro particles enhanced the phagocytosis of fluorescent antigen-nano/micro particles by J774.2 murine monocyte/macrophage cells compared to soluble antigen. More importantly, when mice were immunised with the antigen-nano/micro particles they significantly increased antigen-specific Th1 cytokines INF-γ and IL-17 secretion in splenocytes after in vitro re-stimulation with heat killed Bordetalla pertussis, indicating the induction of a Th1/Th17 response. Also, presentation of pertussis antigen in a NP/MP formulation is able to provide protection against respiratory infection in a murine model. Thus, the NP/MP formulation may provide an alternative to conventional acellular vaccines to achieve a more balanced Th1/Th2 immune response.
Collapse
Affiliation(s)
- Pan Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Biomaterial Research, Tianjin 300192, China
| | - Catpagavalli Asokanathan
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Hertfordshire, EN6 3QG, UK
| | - Fang Liu
- Department of Pharmacy, Pharmacology and Postgraduate Medicine, University of Hertfordshire, Hatfield, AL10 9AB, UK.
| | - Kyi Kyi Khaing
- Department of Pharmacy, Pharmacology and Postgraduate Medicine, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Dorota Kmiec
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Hertfordshire, EN6 3QG, UK
| | - Xiaoqing Wei
- Cardiff Institute of Tissue Engineering & Repair, School of Dentistry, Collegeof Biomedical and Life Sciences, Cardiff University, UK
| | - Bing Song
- Cardiff Institute of Tissue Engineering & Repair, School of Dentistry, Collegeof Biomedical and Life Sciences, Cardiff University, UK
| | - Dorothy Xing
- Division of Bacteriology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Hertfordshire, EN6 3QG, UK
| | - Deling Kong
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin Key Laboratory of Biomaterial Research, Tianjin 300192, China.
| |
Collapse
|
60
|
Booth AM, Hansen BH, Frenzel M, Johnsen H, Altin D. Uptake and toxicity of methylmethacrylate-based nanoplastic particles in aquatic organisms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:1641-1649. [PMID: 26011080 DOI: 10.1002/etc.3076] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/19/2015] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
The uptake and toxicity of 2 poly(methylmethacrylate)-based plastic nanoparticles (PNPs) with different surface chemistries (medium and hydrophobic) were assessed using aquatic organisms selected for their relevance based on the environmental behavior of the PNPs. Pure poly(methylmethacrylate) (medium; PMMA PNPs) and poly(methylmethacrylate-co-stearylmethacrylate) copolymer (hydrophobic; PMMA-PSMA PNPs) of 86 nm to 125 nm were synthesized using a miniemulsion polymerization method. Fluorescent analogs of each PNP were also synthesized using monomer 7-[4-(trifluoromethyl)coumarin]acrylamide and studied. Daphnia magna, Corophium volutator, and Vibrio fischeri were employed in a series of standard acute ecotoxicity tests, being exposed to the PNPs at 3 different environmentally realistic concentrations (0.01 mg/L, 0.1 mg/L, and 1.0 mg/L) and a high concentration 500 mg/L to 1000 mg/L. In addition, sublethal effects of PNPs in C. volutator were determined using a sediment reburial test, and the uptake and depuration of fluorescent PNPs was studied in D. magna. The PNPs and fluorescent PNPs did not exhibit any observable toxicity at concentrations up to 500 mg/L to 1000 mg/L in any of the tests except for PMMA-PSMA PNPs and fluorescent PNPs following 48-h exposure to D. magna (median lethal concentration values of 879 mg/L and 887 mg/L, respectively). No significant differences were observed between labeled and nonlabeled PNPs, indicating the suitability of using fluorescent labeling. Significant uptake and rapid excretion of the fluorescent PNPs was observed in D. magna. Environ Toxicol Chem 2016;35:1641-1649. © 2015 SETAC.
Collapse
Affiliation(s)
- Andy M Booth
- Environmental Technology Department, Foundation for Scientific and Industrial Research (SINTEF) Materials and Chemistry, Trondheim, Norway
| | - Bjørn Henrik Hansen
- Environmental Technology Department, Foundation for Scientific and Industrial Research (SINTEF) Materials and Chemistry, Trondheim, Norway
| | - Max Frenzel
- Environmental Technology Department, Foundation for Scientific and Industrial Research (SINTEF) Materials and Chemistry, Trondheim, Norway
| | - Heidi Johnsen
- Biotechnology and Nanomedicine Department, Foundation for Scientific and Industrial Research (SINTEF) Materials and Chemistry, Trondheim, Norway
| | | |
Collapse
|
61
|
Lebre F, Hearnden CH, Lavelle EC. Modulation of Immune Responses by Particulate Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5525-5541. [PMID: 27167228 DOI: 10.1002/adma.201505395] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/12/2016] [Indexed: 06/05/2023]
Abstract
Many biomaterials that are in both preclinical and clinical use are particulate in nature and there is a growing appreciation that the physicochemical properties of materials have a significant impact on their efficacy. The ability of particulates to modulate adaptive immune responses has been recognized for the past century but it is only in recent decades that a mechanistic understanding of how particulates can regulate these responses has emerged. It is now clear that particulate characteristics including size, charge, shape and porosity can influence the scale and nature of both the innate and adaptive immune responses. The potential to tailor biomaterials in order to regulate the type of innate immune response induced, offers significant opportunities in terms of designing systems with increased immune-mediated efficacy.
Collapse
Affiliation(s)
- Filipa Lebre
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2, D02 PN40, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials Bio-Engineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, D02 PN40, Ireland
| | - Claire H Hearnden
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2, D02 PN40, Ireland
| | - Ed C Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2, D02 PN40, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials Bio-Engineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, D02 PN40, Ireland
| |
Collapse
|
62
|
Wen R, Umeano AC, Francis L, Sharma N, Tundup S, Dhar S. Mitochondrion: A Promising Target for Nanoparticle-Based Vaccine Delivery Systems. Vaccines (Basel) 2016; 4:E18. [PMID: 27258316 PMCID: PMC4931635 DOI: 10.3390/vaccines4020018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/31/2016] [Accepted: 04/08/2016] [Indexed: 02/07/2023] Open
Abstract
Vaccination is one of the most popular technologies in disease prevention and eradication. It is promising to improve immunization efficiency by using vectors and/or adjuvant delivery systems. Nanoparticle (NP)-based delivery systems have attracted increasing interest due to enhancement of antigen uptake via prevention of vaccine degradation in the biological environment and the intrinsic immune-stimulatory properties of the materials. Mitochondria play paramount roles in cell life and death and are promising targets for vaccine delivery systems to effectively induce immune responses. In this review, we focus on NPs-based delivery systems with surfaces that can be manipulated by using mitochondria targeting moieties for intervention in health and disease.
Collapse
Affiliation(s)
- Ru Wen
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| | - Afoma C Umeano
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| | - Lily Francis
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| | - Nivita Sharma
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| | - Smanla Tundup
- School of Medicine, Department of Pulmonary and Critical Care, University of Virginia, Charlottesville, WV 22908, USA.
| | - Shanta Dhar
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
63
|
Zhao L, Mahony D, Cavallaro AS, Zhang B, Zhang J, Deringer JR, Zhao CX, Brown WC, Yu C, Mitter N, Middelberg APJ. Immunogenicity of Outer Membrane Proteins VirB9-1 and VirB9-2, a Novel Nanovaccine against Anaplasma marginale. PLoS One 2016; 11:e0154295. [PMID: 27115492 PMCID: PMC4846087 DOI: 10.1371/journal.pone.0154295] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/12/2016] [Indexed: 11/25/2022] Open
Abstract
Anaplasma marginale is the most prevalent tick-borne livestock pathogen and poses a significant threat to cattle industry. In contrast to currently available live blood-derived vaccines against A. marginale, alternative safer and better-defined subunit vaccines will be of great significance. Two proteins (VirB9-1 and VirB9-2) from the Type IV secretion system of A. marginale have been shown to induce humoral and cellular immunity. In this study, Escherichia coli were used to express VirB9-1 and VirB9-2 proteins. Silica vesicles having a thin wall of 6 nm and pore size of 5.8 nm were used as the carrier and adjuvant to deliver these two antigens both as individual or mixed nano-formulations. High loading capacity was achieved for both proteins, and the mouse immunisation trial with individual as well as mixed nano-formulations showed high levels of antibody titres over 107 and strong T-cell responses. The mixed nano-formulation also stimulated high-level recall responses in bovine T-cell proliferation assays. These results open a promising path towards the development of efficient A. marginale vaccines and provide better understanding on the role of silica vesicles to deliver multivalent vaccines as mixed nano-formulations able to activate both B-cell and T-cell immunity, for improved animal health.
Collapse
Affiliation(s)
- Liang Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Donna Mahony
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Antonino S. Cavallaro
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Bing Zhang
- Animal Science, Queensland Department of Agriculture, Fisheries and Forestry, St Lucia, QLD, 4072, Australia
| | - Jun Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - James R. Deringer
- Department of Veterinary Microbiology and Pathology, Washington State University, College of Veterinary Medicine, P.O. Box 647040, Pullman, WA, 99164–7040, United States of America
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Wendy C. Brown
- Department of Veterinary Microbiology and Pathology, Washington State University, College of Veterinary Medicine, P.O. Box 647040, Pullman, WA, 99164–7040, United States of America
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
- * E-mail: (NM); (APJM)
| | - Anton P. J. Middelberg
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
- * E-mail: (NM); (APJM)
| |
Collapse
|
64
|
Lee JJ, Shim A, Lee SY, Kwon BE, Kim SR, Ko HJ, Cho HJ. Ready-to-use colloidal adjuvant systems for intranasal immunization. J Colloid Interface Sci 2016; 467:121-128. [PMID: 26775242 DOI: 10.1016/j.jcis.2016.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/31/2015] [Accepted: 01/05/2016] [Indexed: 11/19/2022]
Abstract
Adjuvant systems based on oil-in-water (o/w) microemulsions (MEs) for vaccination via intranasal administration were prepared and evaluated. A ready-to-use blank ME system composed of mineral oil (oil), Labrasol (surfactant), Tween 80 (cosurfactant), and water was prepared and blended with antigen (Ag) solution prior to use. The o/w ME system developed exhibited nano-size droplets within the tested range of Ag concentrations and dilution factors. The maintenance of primary, secondary, and tertiary structural stability of ovalbumin (OVA) in ME, compared with OVA in solution, was demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), circular dichroism (CD), and fluorescence intensity measurements, respectively. The uptake efficiency in RAW 264.7 cells, evaluated by flow cytometry, of OVA in the ME group was significantly higher than that of the OVA solution group (p<0.05). In an intranasal immunization study with OVA ME in mice, elevated adjuvant effects in terms of mucosal immunization and Th1-dominant cell-mediated immune responses were identified. Given the convenience of use (simply mixing with Ag solution prior to use) and the adjuvant effects after intranasal immunization, the new o/w ME may be a practical and efficient adjuvant system for intranasal vaccination.
Collapse
Affiliation(s)
- Jeong-Jun Lee
- College of Pharmacy, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Aeri Shim
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Song Yi Lee
- College of Pharmacy, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Bo-Eun Kwon
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Seong Ryeol Kim
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea.
| | - Hyun-Jong Cho
- College of Pharmacy, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| |
Collapse
|
65
|
Abstract
The field of vaccination is moving from the use of attenuated or inactivated pathogens to safer but less immunogenic protein and peptide antigens, which require stronger adjuvant compositions. Antigen delivery carriers appear to play an important role in vaccine development, providing not only antigen protection and controlled release but also an intrinsic adjuvant potential. Among them, carriers based on polymers and lipids are the most representative ones. Patent applications in this area have disclosed, either the design and preparation methods for new biocompatible antigen delivery systems or the application of the previously developed systems for the delivery of novel antigens. Some of them have also reported the use of these technologies for modern therapeutic vaccination approaches.
Collapse
|
66
|
Hu K, Malla T, Zhai Y, Dong L, Tang R. Topical Administration Is a Promising Inoculating Route versus Intramuscular Inoculation for the Nanoparticle-Carried DNA Vaccine to Prevent Corneal Infections. Ophthalmic Res 2015; 55:99-110. [DOI: 10.1159/000441898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/20/2015] [Indexed: 11/19/2022]
|
67
|
Shape and size-dependent immune response to antigen-carrying nanoparticles. J Control Release 2015; 220:141-148. [DOI: 10.1016/j.jconrel.2015.09.069] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/20/2015] [Accepted: 09/30/2015] [Indexed: 11/17/2022]
|
68
|
Micelle-Based Adjuvants for Subunit Vaccine Delivery. Vaccines (Basel) 2015; 3:803-13. [PMID: 26426060 PMCID: PMC4693219 DOI: 10.3390/vaccines3040803] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/08/2015] [Accepted: 09/22/2015] [Indexed: 11/20/2022] Open
Abstract
In the development of subunit vaccines with purified or recombinant antigens for cancer and infectious diseases, the design of improved and safe adjuvants able to efficiently target the antigen presenting cells, such as dendritic cells, represents a crucial challenge. Nanoparticle-based antigen delivery systems have been identified as an innovative strategy to improve the efficacy of subunit vaccines. Among them, self-assembled micellar nanoparticles from amphiphilic (macro)molecules have recently emerged as promising candidates. In this short review, we report on the recent research findings highlighting the versatility and potential of such systems in vaccine delivery.
Collapse
|
69
|
Polymeric micro/nanoparticles: Particle design and potential vaccine delivery applications. Vaccine 2015; 33:5927-36. [PMID: 26263197 DOI: 10.1016/j.vaccine.2015.07.100] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/28/2015] [Accepted: 07/23/2015] [Indexed: 12/13/2022]
Abstract
Particle based adjuvant showed promising signs on delivering antigen to immune cells and acting as stimulators to elicit preventive or therapeutic response. Nevertheless, the wide size distribution of available polymeric particles has so far obscured the immunostimulative effects of particle adjuvant, and compromised the progress in pharmacological researches. To conquer this hurdle, our research group has carried out a series of researches regarding the particulate vaccine, by taking advantage of the successful fabrication of polymeric particles with uniform size. In this review, we highlight the insight and practical progress focused on the effects of physiochemical property (e.g. particle size, charge, hydrophobicity, surface chemical group, and particle shape) and antigen loading mode on the resultant biological/immunological outcome. The underlying mechanisms of how the particles-based vaccine functioned in the immune system are also discussed. Based on the knowledge, particles with high antigen payload and optimized attributes could be designed for expected adjuvant purpose, leading to the development of high efficient vaccine candidates.
Collapse
|
70
|
Bhargava A, Bunkar N, Khare NK, Mishra D, Mishra PK. Nanoengineered strategies to optimize dendritic cells for gastrointestinal tumor immunotherapy: from biology to translational medicine. Nanomedicine (Lond) 2015; 9:2187-202. [PMID: 25405796 DOI: 10.2217/nnm.14.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nanomedicine may play an important role in improving the clinical efficacy of dendritic cell-based immunotherapy against GI tract malignancies. Dendritic cell-based vaccines have proven their effectiveness against different established GI tract tumors, yet their success is mainly hindered by the strong tumor-induced suppressive microenvironment. The sustained and targeted release of tumor antigens to dendritic cells using different nanoengineered approaches would be an efficient strategy to overcome established immune tolerance. Encapsulation would result in low diffusivity, restricted movement, effective crosspresentation and enhanced T-cell responses. These nanotherapy-based approaches will certainly help with the designing of clinically translatable dendritic cell-based therapeutic vaccines and facilitate the selective removal of residual disease in gastrointestinal cancer patients following standard treatments.
Collapse
Affiliation(s)
- Arpit Bhargava
- Translational Research Laboratory, School of Biological Sciences, Dr H. S. Gour Central University, Sagar, India
| | | | | | | | | |
Collapse
|
71
|
Shima F, Akagi T, Shudo M, Mochizuki E, Tsuda T, Kuwabata S, Akashi M. Interaction between living cells and polymeric particles: potential application of ionic liquid for evaluating the cellular uptake of biodegradable polymeric particles composed of poly(amino acid). Polym J 2015. [DOI: 10.1038/pj.2015.40] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
72
|
Epsilon-caprolactone modified polyethylenimine for highly efficient antigen delivery and chemical exchange saturation transfer functional MR imaging. Biomaterials 2015; 56:219-28. [DOI: 10.1016/j.biomaterials.2015.03.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 11/21/2022]
|
73
|
Cordeiro AS, Alonso MJ, de la Fuente M. Nanoengineering of vaccines using natural polysaccharides. Biotechnol Adv 2015; 33:1279-93. [PMID: 26049133 PMCID: PMC7127432 DOI: 10.1016/j.biotechadv.2015.05.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/29/2015] [Accepted: 05/31/2015] [Indexed: 12/14/2022]
Abstract
Currently, there are over 70 licensed vaccines, which prevent the pathogenesis of around 30 viruses and bacteria. Nevertheless, there are still important challenges in this area, which include the development of more active, non-invasive, and thermo-resistant vaccines. Important biotechnological advances have led to safer subunit antigens, such as proteins, peptides, and nucleic acids. However, their limited immunogenicity has demanded potent adjuvants that can strengthen the immune response. Particulate nanocarriers hold a high potential as adjuvants in vaccination. Due to their pathogen-like size and structure, they can enhance immune responses by mimicking the natural infection process. Additionally, they can be tailored for non-invasive mucosal administration (needle-free vaccination), and control the delivery of the associated antigens to a specific location and for prolonged times, opening room for single-dose vaccination. Moreover, they allow co-association of immunostimulatory molecules to improve the overall adjuvant capacity. The natural and ubiquitous character of polysaccharides, together with their intrinsic immunomodulating properties, their biocompatibility, and biodegradability, justify their interest in the engineering of nanovaccines. In this review, we aim to provide a state-of-the-art overview regarding the application of nanotechnology in vaccine delivery, with a focus on the most recent advances in the development and application of polysaccharide-based antigen nanocarriers.
Collapse
Affiliation(s)
- Ana Sara Cordeiro
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), School of Pharmacy, University of Santiago de Compostela, Campus Vida, 15706 Santiago de Compostela, Spain; Nano-oncologicals Lab, Translational Medical Oncology group, Health Research Institute of Santiago de Compostela (IDIS), University Hospital Complex of Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Spain
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), School of Pharmacy, University of Santiago de Compostela, Campus Vida, 15706 Santiago de Compostela, Spain
| | - María de la Fuente
- Nano-oncologicals Lab, Translational Medical Oncology group, Health Research Institute of Santiago de Compostela (IDIS), University Hospital Complex of Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Spain.
| |
Collapse
|
74
|
Protection Provided by an Encapsulated Live Attenuated ΔabcBA Strain of Brucella ovis against Experimental Challenge in a Murine Model. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:789-97. [PMID: 25947146 DOI: 10.1128/cvi.00191-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/30/2015] [Indexed: 11/20/2022]
Abstract
This study aimed to evaluate the Brucella ovis ΔabcBA strain as a vaccine candidate in the murine model. BALB/c mice were subcutaneously or intraperitoneally immunized with a single dose or three doses of the B. ovis ΔabcBA strain and then were challenged with wild-type B. ovis. Single or multiple immunizations provided only mild protection, with significantly smaller numbers of wild-type B. ovis CFU in the livers of immunized mice but not in the spleens. Encapsulation of B. ovis ΔabcBA significantly improved protection against experimental challenges in both BALB/c and C57BL/6 mice. Furthermore, immunization with encapsulated B. ovis ΔabcBA markedly prevented lesions in the spleens and livers of experimentally challenged mice. These results demonstrated that the encapsulated B. ovis ΔabcBA strain confers protection to mice; therefore, this strain has potential as a vaccine candidate for rams.
Collapse
|
75
|
Mueller SN, Tian S, DeSimone JM. Rapid and Persistent Delivery of Antigen by Lymph Node Targeting PRINT Nanoparticle Vaccine Carrier To Promote Humoral Immunity. Mol Pharm 2015; 12:1356-65. [PMID: 25817072 DOI: 10.1021/mp500589c] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nanoparticle delivery of subunit vaccines may increase vaccine efficacy, leading to a wide variety of safe and effective vaccines beyond those available through dosing inactivated or live, attenuated whole pathogens. Here we present a versatile vaccine delivery platform based on PRINT hydrogels made of biocompatible hydroxy-poly(ethylene glycol) (PEG) that is able to activate the complement system by the alternative pathway. These lymph node targeting nanoparticles (NPs) promote the immunogenicity of a model antigen, ovalbumin, showing comparable adjuvant effect to alum. We demonstrate that an antigen-specific humoral response is correlated with antigen delivery to the draining lymph nodes, in particular, B cell rich regions of the lymph nodes. 80 × 180 nm cylindrical NPs were able to sustain prolonged antigen presentation to antigen presenting cells (APCs) and elicit a stronger immune response than nondraining 1 × 1 μm NPs or rapidly clearing soluble antigen. The 80 × 180 nm NPs also show high levels of uptake by key APCs and efficiently stimulate CD4(+) helper T cell proliferation in vivo, further promoting antibody production. These features together produce a significant humoral immune response, superior to that produced by free antigen alone. The simplicity of the chemistries used in antigen conjugation to PRINT NPs confers versatility to this antigen delivery platform, allowing for potential application to many infectious diseases.
Collapse
Affiliation(s)
| | | | - Joseph M DeSimone
- #Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States.,⊥Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, United States
| |
Collapse
|
76
|
Huang FY, Huang FR, Chen B, Liu Q, Wang H, Zhou SL, Zhao HG, Huang YH, Lin YY, Tan GH. Microencapsulation of tumor lysates and live cell engineering with MIP-3α as an effective vaccine. Biomaterials 2015; 53:554-65. [PMID: 25890751 DOI: 10.1016/j.biomaterials.2015.02.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/25/2015] [Accepted: 02/27/2015] [Indexed: 10/23/2022]
Abstract
The combination of several potential strategies so as to develop new tumor vaccines is an attractive field of translational medicine. Pulsing tumor lysates with dendritic cells (DCs), in-vivo attraction of DCs by macrophage inflammatory protein 3α (MIP-3α), and reversion of the tumor suppressive microenvironment have been tested as strategies to develop tumor vaccines. In this study, we generated an alginate microsphere (named PaLtTcAdMIP3α) that encapsulated tumor lysates, live tumor cells engineering with a recombinant MIP-3α adenovirus and BCG. We used PaLtTcAdMIP3α as a model vaccine to test its antitumor activities. Our results showed that PaLtTcAdMIP3α expressed and excreted MIP-3α, which effectively attracted DCs ex vivo and in vivo. Injection of PaLtTcAdMIP3α into tumor-bearing mice effectively induced both therapeutic and prophylactic antitumor immunities in CT26, Meth A, B16-F10 and H22 models, but without any ensuing increase in adverse effects. Both tumor-specific cellular and humoral immune responses, especially the CD8(+) T cell-dependent cytotoxic T immunity, were found in the mice injected with PaLtTcAdMIP3α. The anti-tumor activity was abrogated completely by depletion of CD8(+) and partially by CD4(+) T lymphocytes. In addition, the number of IFN-γ-producing CD8(+) T cells in spleen and tumor tissues was significantly increased; but the number of CD4(+)CD25(+)FOXP3(+) regulatory T cells (Treg) in tumor tissues was decreased. These data strongly suggest that a combination of multi-current-using strategies such as the novel approach of using our PaLtTcAdMIP3α microspheres could be an effective tumor model vaccine.
Collapse
Affiliation(s)
- Feng-ying Huang
- Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou 571199, China
| | - Feng-ru Huang
- Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou 571199, China
| | - Bin Chen
- Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou 571199, China
| | - Quan Liu
- Oncology Institute, Fourth Affiliated Hospital of Soochow University, Wuxi 214062, China
| | - Hua Wang
- Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou 571199, China
| | - Song-lin Zhou
- Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou 571199, China
| | - Huan-ge Zhao
- Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou 571199, China
| | - Yong-hao Huang
- Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou 571199, China
| | - Ying-ying Lin
- Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou 571199, China
| | - Guang-hong Tan
- Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou 571199, China.
| |
Collapse
|
77
|
Dinjaski N, Prieto MA. Smart polyhydroxyalkanoate nanobeads by protein based functionalization. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:885-99. [PMID: 25720989 PMCID: PMC7106125 DOI: 10.1016/j.nano.2015.01.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 10/11/2014] [Accepted: 01/05/2015] [Indexed: 11/29/2022]
Abstract
The development of innovative medicines and personalized biomedical approaches calls for new generation easily tunable biomaterials that can be manufactured applying straightforward and low-priced technologies. Production of functionalized bacterial polyhydroxyalkanoate (PHA) nanobeads by harnessing their natural carbon-storage granule production system is a thrilling recent development. This branch of nanobiotechnology employs proteins intrinsically binding the PHA granules as tags to immobilize recombinant proteins of interest and design functional nanocarriers for wide range of applications. Additionally, the implementation of new methodological platforms regarding production of endotoxin free PHA nanobeads using Gram-positive bacteria opened new avenues for biomedical applications. This prompts serious considerations of possible exploitation of bacterial cell factories as alternatives to traditional chemical synthesis and sources of novel bioproducts that could dramatically expand possible applications of biopolymers. From the Clinical Editor In the 21st century, we are coming into the age of personalized medicine. There is a growing use of biomaterials in the clinical setting. In this review article, the authors describe the use of natural polyhydroxyalkanoate (PHA) nanoparticulates, which are formed within bacterial cells and can be easily functionalized. The potential uses would include high-affinity bioseparation, enzyme immobilization, protein delivery, diagnostics etc. The challenges of this approach remain the possible toxicity from endotoxin and the high cost of production.
Collapse
Affiliation(s)
- Nina Dinjaski
- Polymer Biotechnology Lab, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - M Auxiliadora Prieto
- Polymer Biotechnology Lab, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain.
| |
Collapse
|
78
|
Robbins GR, Roberts RA, Guo H, Reuter K, Shen T, Sempowski GD, McKinnon KP, Su L, DeSimone JM, Ting JPY. Analysis of human innate immune responses to PRINT fabricated nanoparticles with cross validation using a humanized mouse model. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:589-99. [PMID: 25596079 DOI: 10.1016/j.nano.2014.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/14/2014] [Accepted: 11/25/2014] [Indexed: 12/18/2022]
Abstract
Ideal nanoparticle (NP)-based drug and vaccine delivery vectors should be free of inherent cytotoxic or immunostimulatory properties. Therefore, determining baseline immune responses to nanomaterials is of utmost importance when designing human therapeutics. We characterized the response of human immune cells to hydrogel NPs fabricated using Particle Replication in Non-wetting Templates (PRINT) technology. We found preferential NP uptake by primary CD14(+) monocytes, which was significantly reduced upon PEGylation of the NP surface. Multiplex cytokine analysis of NP treated primary human peripheral blood mononuclear cells suggests that PRINT based hydrogel NPs do not evoke significant inflammatory responses nor induce cytotoxicity or complement activation. We furthered these studies using an in vivo humanized mouse model and similarly found preferential NP uptake by human CD14(+) monocytes without systemic inflammatory cytokine responses. These studies suggest that PRINT hydrogel particles form a desirable platform for vaccine and drug delivery as they neither induce inflammation nor toxicity. From the clinical editor: The authors here fabricated hydrogel nanorods using the PRINT (Particle Replication In Nonwetting Templates) fabrication process. They tested the interaction of human immune cells with these particles and found no immunoreactivity. This finding would suggest that monodisperse PRINT particles of identical shape and size could serve a variety of clinical applications.
Collapse
Affiliation(s)
- Gregory R Robbins
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Reid A Roberts
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Haitao Guo
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kevin Reuter
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tammy Shen
- Department of Pharmaceutical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gregory D Sempowski
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Karen P McKinnon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lishan Su
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joseph M DeSimone
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pharmaceutical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Chemical and Biomolecular Engineering, NC State University, Raleigh, NC, USA; Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Jenny P-Y Ting
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Center for Translational Immunology and Institute of Inflammatory Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
79
|
Kim OY, Choi SJ, Jang SC, Park KS, Kim SR, Choi JP, Lim JH, Lee SW, Park J, Di Vizio D, Lötvall J, Kim YK, Gho YS. Bacterial protoplast-derived nanovesicles as vaccine delivery system against bacterial infection. NANO LETTERS 2015; 15:266-274. [PMID: 25506626 DOI: 10.1021/nl503508h] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The notion that widespread infectious diseases could be best managed by developing potent, adjuvant-free vaccines has resulted in the use of various biological immune-stimulating components as new vaccine candidates. Recently, extracellular vesicles, also known as exosomes and microvesicles in mammalian cells and outer membrane vesicles in Gram-negative bacteria, have gained attention for the next generation vaccine. However, the more invasive and effective the vaccine is in delivery, the more risk it holds for severe immune toxicity. Here, in optimizing the current vaccine delivery system, we designed bacterial protoplast-derived nanovesicles (PDNVs), depleted of toxic outer membrane components to generate a universal adjuvant-free vaccine delivery system. These PDNVs exhibited significantly higher productivity and safety than the currently used vaccine delivery vehicles and induced strong antigen-specific humoral and cellular immune responses. Moreover, immunization with PDNVs loaded with bacterial antigens conferred effective protection against bacterial sepsis in mice. These nonliving nanovesicles derived from bacterial protoplast open up a new avenue for the creation of next generation, adjuvant-free, less toxic vaccines to be used to prevent infectious diseases.
Collapse
Affiliation(s)
- Oh Youn Kim
- Department of Life Sciences, Pohang University of Science and Technology , Pohang 790-784, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Gross BP, Wongrakpanich A, Francis MB, Salem AK, Norian LA. A therapeutic microparticle-based tumor lysate vaccine reduces spontaneous metastases in murine breast cancer. AAPS J 2014; 16:1194-203. [PMID: 25224145 PMCID: PMC4389752 DOI: 10.1208/s12248-014-9662-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/29/2014] [Indexed: 11/30/2022] Open
Abstract
Metastatic breast cancer is currently incurable, and available therapies are associated with severe toxicities. Induction of protective anti-tumor immunity is a promising therapeutic approach for disseminated breast cancer, as immune responses are (i) systemic; (ii) antigen-specific; and (iii) capable of generating long-lived "memory" populations that protect against future tumor recurrences. Pursuant with this approach, we have developed a novel heterologous prime/boost vaccination regimen that reduces spontaneous lung metastases in mice with established murine 4T1 adenocarcinoma breast tumors. In our studies, mice were orthotopically challenged with luciferase-expressing 4T1 tumor cells; luciferase expression was retained in vivo, enabling us to quantitatively track metastatic tumor growth via bioluminescent imaging. On day 6 post-challenge, mice received a therapeutic "prime" consisting of bulk tumor lysates encapsulated in poly(lactic-co-glycolic) acid (PLGA) microparticles (MPs). On day 11, mice received a "boost" composed of free tumor lysates plus a cocktail of Toll-like receptor (TLR)-stimulating adjuvants. Tumor progression was monitored in vaccinated and untreated mice for 25 days, a time at which 100% of untreated mice had detectable lung tumors. PLGA MPs injected subcutaneously trafficked to draining lymph nodes and were efficiently phagocytosed by dendritic cells (DCs) within 48 h. Our combination therapy reduced metastatic lung tumor burdens by 42% and did not induce autoimmunity. These findings illustrate that vaccines based upon MP delivery of tumor lysates can form the basis of an effective treatment for metastatic breast cancer and suggest that similar approaches may be both efficacious and well-tolerated in the clinic.
Collapse
Affiliation(s)
- Brett P. Gross
- />Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa 52242 USA
- />Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242 USA
| | - Amaraporn Wongrakpanich
- />Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242 USA
| | - Meghan B. Francis
- />Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242 USA
| | - Aliasger K. Salem
- />Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242 USA
- />Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242 USA
| | - Lyse A. Norian
- />Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa 52242 USA
- />Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa 52242 USA
- />Department of Urology and Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242 USA
| |
Collapse
|
81
|
OVA-bound nanoparticles induce OVA-specific IgG1, IgG2a, and IgG2b responses with low IgE synthesis. Vaccine 2014; 32:5918-24. [DOI: 10.1016/j.vaccine.2014.08.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/18/2014] [Accepted: 08/30/2014] [Indexed: 11/22/2022]
|
82
|
Jiménez-Sánchez G, Pavot V, Chane-Haong C, Handké N, Terrat C, Gigmes D, Trimaille T, Verrier B. Preparation and In Vitro Evaluation of Imiquimod Loaded Polylactide-based Micelles as Potential Vaccine Adjuvants. Pharm Res 2014; 32:311-20. [DOI: 10.1007/s11095-014-1465-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/24/2014] [Indexed: 10/24/2022]
|
83
|
Joshi VB, Geary SM, Gross BP, Wongrakpanich A, Norian LA, Salem AK. Tumor lysate-loaded biodegradable microparticles as cancer vaccines. Expert Rev Vaccines 2014; 13:9-15. [PMID: 24219096 DOI: 10.1586/14760584.2014.851606] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cancer vaccines that use tumor lysate (TL) as a source of tumor-associated antigens (TAAs) have significant potential for generating therapeutic anti-tumor immune responses. Vaccines encompassing TL bypass the limitations of single antigen vaccines by simultaneously stimulating immunity against multiple TAAs, thereby broadening the repertoire of TAA-specific T-cell clones available for activation. Administration of TL in particulate form, such as when encapsulated in biodegradable microparticles, increases its immunostimulatory capacity and produces more robust immune responses than when TL is given in soluble form. These effects can be further enhanced by co-administering TL with adjuvants. A number of recent studies using polymeric microparticle delivery of TL, with or without adjuvants, have produced promising results in preclinical studies. In this review, we will discuss current experimental approaches involving TL being pursued in the oncoimmunology field, and comment on strategies such as combining specific chemotherapeutic agents with TL microparticle delivery that may eventually lead to improved survival outcomes for cancer patients.
Collapse
Affiliation(s)
- Vijaya B Joshi
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
84
|
Chen X, Liu Y, Wang L, Liu Y, Zhang W, Fan B, Ma X, Yuan Q, Ma G, Su Z. Enhanced Humoral and Cell-Mediated Immune Responses Generated by Cationic Polymer-Coated PLA Microspheres with Adsorbed HBsAg. Mol Pharm 2014; 11:1772-84. [DOI: 10.1021/mp400597z] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xiaoming Chen
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- Graduated University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yuying Liu
- College
of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Lianyan Wang
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yuan Liu
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- Graduated University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Weifeng Zhang
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- Graduated University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Bei Fan
- Hualan Biological Engineering Inc., Henan 453003, PR China
| | - Xiaowei Ma
- Hualan Biological Engineering Inc., Henan 453003, PR China
| | - Qipeng Yuan
- College
of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Guanghui Ma
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Zhiguo Su
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| |
Collapse
|
85
|
Salvador A, Igartua M, Hernández RM, Pedraz JL. Designing improved poly lactic-co-glycolic acid microspheres for a malarial vaccine: incorporation of alginate and polyinosinic-polycytidilic acid. J Microencapsul 2014; 31:560-6. [PMID: 24697189 DOI: 10.3109/02652048.2014.885608] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vaccination using proteins and peptides is currently gaining importance. One of the major drawbacks of this approach is the lack of an efficient immune response when the antigens are administered without adjuvants. In this study, we have taken the advantage of a combined adjuvant system in order to improve the immunogenicity of the SPf66 malarial antigen. For that purpose, we have combined poly (lactic-co-glycolic) acid microspheres, alginate, and polyinosinic polycytidilic acid. Our results show that microspheres can enhance the IgG production obtained with Freund's complete adjuvant. We have attributed this improvement to the presence of polyinosinic polycytidilic acid, since formulations comprising this adjuvant overcame the immune response from the others. In addition, our microspheres produced both IgG1 and IgG2a, leading to mixed Th1/Th2 activation, optimal for malaria vaccination. In conclusion, we have designed a preliminary formulation with a high potential for the treatment of malaria.
Collapse
Affiliation(s)
- Aiala Salvador
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country, Vitoria, Spain and
| | | | | | | |
Collapse
|
86
|
Activation of the NLRP3 inflammasome is not a feature of all particulate vaccine adjuvants. Immunol Cell Biol 2014; 92:535-42. [PMID: 24687021 DOI: 10.1038/icb.2014.21] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 12/28/2022]
Abstract
Particulate vaccine formulations, designed to improve the delivery of antigens to antigen-presenting cells (APCs) and to stimulate an immune response, have been shown to activate the NLRP3 inflammasome. This leads to the processing and secretion of interleukin (IL)-1β, which supports the recruitment of pro-inflammatory immune cells into the tissue and can therefore be beneficial for vaccine potency. Recent work suggested that this may be a common mechanism of action for all particulate formulations. The aim of this study was to investigate whether the activation of the NLRP3 inflammasome was common to many delivery systems. We prepared polymer-based chitosan nanoparticles (CNPs), lipid-based cubosomes, a water in oil emulsion of incomplete Freund's adjuvant (IFA) and alum formulations and examined inflammasome activation in vitro using murine bone-marrow-derived dendritic cells and human peripheral blood mononuclear cells and in vivo in mice. The formulations differed in their morphology, size and zeta-potential. Only the positively charged particles (CNPs and alum) were able to activate the inflammasome and increase the secretion of IL-1β. A decrease in the activation of the inflammasome with these particulates was observed when cathepsin B-mediated effects were blocked, implying a role of lysosomal rupture in the activation process. These findings demonstrate a role for the surface charge of particulates in the activation of the NLRP3 inflammasome, which should be considered when designing a novel vaccine formulation.
Collapse
|
87
|
Ulanova LS, Isapour G, Maleki A, Fanaian S, Zhu K, Hoenen A, Xu C, Evensen Ø, Griffiths G, Nyström B. Development of methods for encapsulation of viruses into polymeric nano- and microparticles for aquaculture vaccines. J Appl Polym Sci 2014. [DOI: 10.1002/app.40714] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lilia S. Ulanova
- Department of Molecular Biosciences; University of Oslo; N-0316 Oslo Norway
| | - Golnaz Isapour
- Department of Chemistry; University of Oslo; N-0315 Oslo Norway
| | - Atoosa Maleki
- Department of Chemistry; University of Oslo; N-0315 Oslo Norway
| | - Shirin Fanaian
- Department of Chemistry; University of Oslo; N-0315 Oslo Norway
| | - Kaizheng Zhu
- Department of Chemistry; University of Oslo; N-0315 Oslo Norway
| | - Antje Hoenen
- Department of Molecular Biosciences; University of Oslo; N-0316 Oslo Norway
| | - Cheng Xu
- Department of Basic Sciences and Aquatic Medicine; Norwegian School of Veterinary Science; Oslo Norway
| | - Øystein Evensen
- Department of Basic Sciences and Aquatic Medicine; Norwegian School of Veterinary Science; Oslo Norway
| | - Gareth Griffiths
- Department of Molecular Biosciences; University of Oslo; N-0316 Oslo Norway
| | - Bo Nyström
- Department of Chemistry; University of Oslo; N-0315 Oslo Norway
| |
Collapse
|
88
|
Prashant CK, Bhat M, Srivastava SK, Saxena A, Kumar M, Singh A, Samim M, Ahmad FJ, Dinda AK. Fabrication of nanoadjuvant with poly-ε-caprolactone (PCL) for developing a single-shot vaccine providing prolonged immunity. Int J Nanomedicine 2014; 9:937-50. [PMID: 24611010 PMCID: PMC3928464 DOI: 10.2147/ijn.s55892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose The aim of the study was to load a model antigen, tetanus toxoid (TT), in poly-ε-caprolactone nanoparticles (PCL NPs) of two size ranges, ie, mean 61.2 nm (small) and 467.6 nm (large), and study its effect on macrophage polarization as well as antigen presentation in human monocyte-derived macrophages in vitro, along with humoral and cell-mediated immune (CMI) response generated in Swiss albino mice following immunization with the TT-loaded NPs. Materials and methods PCL NPs were synthesized by solvent evaporation. The antigen-loaded PCL NPs were characterized for size, zeta potential, and protein-release kinetics. Swiss albino mice were immunized with the antigen-loaded PCL NPs. Flow cytometry was used to quantify interferon-γ- and interleukin-4-secreting cluster of differentiation (CD)4+ and CD8+ T cells in the spleen, and enzyme-linked immunosorbent assay was used to quantify anti-TT antibody levels in the serum of immunized mice. Results Small PCL NPs generated an M1/M2 type polarization of human blood monocyte-derived macrophages and T helper (Th)1/Th2 polarization of autologous CD4+ T cells. Efficient CD8+ T-cell responses were also elicited. Large PCL NPs failed to cause any type of macrophage polarization. They did not elicit efficient CD8+ T-cell responses. Conclusion TT-loaded small PCL NPs were able to generate persistent and strong CMI and humoral responses against TT 2 months after single injection in mice without booster dose. This biodegradable nanoadjuvant system may help to develop single-shot immunization for prolonged immunity without booster doses. The capability of enhanced CMI response may have high translational potential for immunization against intracellular infection.
Collapse
Affiliation(s)
| | - Madhusudan Bhat
- Department of Pathology, All India Institute of Medical Sciences, Jamia Hamdard, New Delhi, India
| | - Sandeep Kumar Srivastava
- Department of Pathology, All India Institute of Medical Sciences, Jamia Hamdard, New Delhi, India
| | - Ankit Saxena
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, Jamia Hamdard, New Delhi, India
| | - Manoj Kumar
- Centre for Biomedical Engineering, Indian Institute of Technology, Jamia Hamdard, New Delhi, India
| | - Amar Singh
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, Jamia Hamdard, New Delhi, India
| | - Mohammed Samim
- Department of Chemistry, Faculty of Sciences, Jamia Hamdard, New Delhi, India
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Amit Kumar Dinda
- Department of Pathology, All India Institute of Medical Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
89
|
Kupferschmidt N, Qazi KR, Kemi C, Vallhov H, Garcia-Bennett AE, Gabrielsson S, Scheynius A. Mesoporous silica particles potentiate antigen-specific T-cell responses. Nanomedicine (Lond) 2014; 9:1835-46. [PMID: 25325240 DOI: 10.2217/nnm.13.170] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
AIM To study the adjuvant effect of mesoporous silica particles and their capability of modifying an already existing allergic Th2-like immune response. MATERIALS & METHODS The adjuvant effect of Santa Barbara Amorphous-15 (SBA-15) mesoporous silica particles was studied in an antigen-specific ovalbumin (OVA) system in vitro and in vivo. The capacity of the OVA-loaded SBA-15 particles (SBA-15-OVA) to modify an existing immune response was assessed in a murine allergy model. RESULTS SBA-15-OVA induced significantly stronger OVA-specific splenocyte proliferation compared with OVA alone. Significantly higher IFN-γ production was observed in ex vivo OVA-stimulated splenocytes from SBA-15-OVA-immunized mice compared with mice injected with only SBA-15 or OVA. Treatment of OVA-sensitized mice with SBA-15-OVA modified the immune response with significantly lower serum levels of OVA-specific IgE and higher IgG levels compared with the alum-OVA-treated group. CONCLUSION The results are promising for the continued development of mesoporous silica materials for therapeutic applications.
Collapse
Affiliation(s)
- Natalia Kupferschmidt
- Nanotechnology & Functional Materials, Department of Engineering Sciences, the Ångström Laboratory, Uppsala University, 751 21 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
90
|
A trifunctional dextran-based nanovaccine targets and activates murine dendritic cells, and induces potent cellular and humoral immune responses in vivo. PLoS One 2013; 8:e80904. [PMID: 24339889 PMCID: PMC3855172 DOI: 10.1371/journal.pone.0080904] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 10/17/2013] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) constitute an attractive target for specific delivery of nanovaccines for immunotherapeutic applications. Here we tested nano-sized dextran (DEX) particles to serve as a DC-addressing nanocarrier platform. Non-functionalized DEX particles had no immunomodulatory effect on bone marrow (BM)-derived murine DCs in vitro. However, when adsorbed with ovalbumine (OVA), DEX particles were efficiently engulfed by BM-DCs in a mannose receptor-dependent manner. A DEX-based nanovaccine containing OVA and lipopolysaccharide (LPS) as a DC stimulus induced strong OVA peptide-specific CD4(+) and CD8(+) T cell proliferation both in vitro and upon systemic application in mice, as well as a robust OVA-specific humoral immune response (IgG1>IgG2a) in vivo. Accordingly, this nanovaccine also raised both a more pronounced delayed-type hypersensitivity response and a stronger induction of cytotoxic CD8(+) T cells than obtained upon administration of OVA and LPS in soluble form. Therefore, DEX-based nanoparticles constitute a potent, versatile and easy to prepare nanovaccine platform for immunotherapeutic approaches.
Collapse
|
91
|
|
92
|
Pedersen C, Vallhov H, Engqvist H, Scheynius A, Strømme M. Nanoscale size control of protein aggregates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:3320-3326. [PMID: 23606559 DOI: 10.1002/smll.201300149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/14/2013] [Indexed: 06/02/2023]
Abstract
Herein, a novel method to synthesize soluble, sub-micrometer sized protein aggregates is demonstrated by mixing native and denatured proteins without using bacteria and contaminating proteins. Ovalbumin (OVA) is employed as a model protein. The average size of the formed aggregates can be controlled by adjusting the fraction of denatured protein in the sample and it is possible to make unimodal size distributions of protein aggregates. OVA aggregates with a size of ∼95 nm are found to be more immunogenic compared to native OVA in a murine splenocyte proliferation assay. These results suggest that the novel method of engineering size specific sub-micrometer sized aggregates may constitute a potential route to increasing the efficacy of protein vaccines. The protein aggregates may also be promising for use in other applications including the surface functionalization of biomaterials and as industrial catalysis materials.
Collapse
Affiliation(s)
- Christian Pedersen
- Department of Engineering Sciences, Nanotechnology and Functional Materials, The Ångström Laboratory, Uppsala University, 751 21 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
93
|
Bovine serum albumin nanoparticle vaccine reduces lung pathology induced by live Pseudomonas aeruginosa infection in mice. Vaccine 2013; 31:5062-6. [DOI: 10.1016/j.vaccine.2013.08.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 08/10/2013] [Accepted: 08/27/2013] [Indexed: 02/05/2023]
|
94
|
Chen CK, Jones CH, Mistriotis P, Yu Y, Ma X, Ravikrishnan A, Jiang M, Andreadis ST, Pfeifer BA, Cheng C. Poly(ethylene glycol)-block-cationic polylactide nanocomplexes of differing charge density for gene delivery. Biomaterials 2013; 34:9688-99. [PMID: 24034497 DOI: 10.1016/j.biomaterials.2013.08.063] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 08/20/2013] [Indexed: 12/17/2022]
Abstract
Representing a new type of biodegradable cationic block copolymer, well-defined poly(ethylene glycol)-block-cationic polylactides (PEG-b-CPLAs) with tertiary amine-based cationic groups were synthesized by thiol-ene functionalization of an allyl-functionalized diblock precursor. Subsequently the application of PEG-b-CPLAs as biodegradable vectors for the delivery of plasmid DNAs (pDNAs) was investigated. Via the formation of PEG-b-CPLA:pDNA nanocomplexes by spontaneous electrostatic interaction, pDNAs encoding luciferase or enhanced green fluorescent protein were successfully delivered to four physiologically distinct cell lines (including macrophage, fibroblast, epithelial, and stem cell). Formulated nanocomplexes demonstrated high levels of transfection with low levels of cytotoxicity and hemolysis when compared to a positive control. Biophysical characterization of charge densities of nanocomplexes at various polymer:pDNA weight ratios revealed a positive correlation between surface charge and gene delivery. Nanocomplexes with high surface charge densities were utilized in an in vitro serum gene delivery inhibition assay, and effective gene delivery was observed despite high levels of serum. Overall, these results help to elucidate the influence of charge, size, and PEGylation of nanocomplexes upon the delivery of nucleic acids in physiologically relevant conditions.
Collapse
Affiliation(s)
- Chih-Kuang Chen
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Joshi VB, Geary SM, Salem AK. Biodegradable particles as vaccine antigen delivery systems for stimulating cellular immune responses. Hum Vaccin Immunother 2013; 9:2584-90. [PMID: 23978910 DOI: 10.4161/hv.26136] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
There is a need for both new and improved vaccination formulations for a range of diseases for which current vaccines are either inadequate or non-existent. Biodegradable polymer-based vaccines fulfill many of the desired properties in achieving effective long-term protection in a manner that is safe, economical, and potentially more practicable on a global scale. Here we discuss some of the work performed with micro/nanoparticles made from either synthetic (poly[lactic-co-glycolic acid] [PLGA] and polyanhydrides) or natural (chitosan) biodegradable polymers. Our attention is focused on, but not limited to, the generation of antitumor immunity where we stress the importance of particle size and co-delivery of antigen and adjuvant.
Collapse
Affiliation(s)
- Vijaya B Joshi
- Department of Pharmaceutical Sciences and Experimental Therapeutics; College of Pharmacy; University of Iowa; Iowa City, IA USA
| | - Sean M Geary
- Department of Pharmaceutical Sciences and Experimental Therapeutics; College of Pharmacy; University of Iowa; Iowa City, IA USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics; College of Pharmacy; University of Iowa; Iowa City, IA USA
| |
Collapse
|
96
|
Orozco VH, Palacio J, Sierra J, López BL. Increased covalent conjugation of a model antigen to poly(lactic acid)-g-maleic anhydride nanoparticles compared to bare poly(lactic acid) nanoparticles. Colloid Polym Sci 2013. [DOI: 10.1007/s00396-013-3023-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
97
|
Cui J, De Rose R, Best JP, Johnston APR, Alcantara S, Liang K, Such GK, Kent SJ, Caruso F. Mechanically tunable, self-adjuvanting nanoengineered polypeptide particles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:3468-3472. [PMID: 23661596 DOI: 10.1002/adma.201300981] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 03/22/2013] [Indexed: 06/02/2023]
Abstract
DNA-loaded polypeptide particles are prepared via templated assembly of mesoporous silica for the delivery of adjuvants. The elasticity and cargo-loading capacity of the obtained particles can be tuned by the amount of cross-linker used to stabilize the polypeptide particles. The use of polypeptide particles as biocarriers provides a promising method for vaccine delivery.
Collapse
Affiliation(s)
- Jiwei Cui
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Bioley G, Zehn D, Lassus A, Terrettaz J, Tranquart F, Corthésy B. The effect of vaccines based on ovalbumin coupled to gas-filled microbubbles for reducing infection by ovalbumin-expressing Listeria monocytogenes. Biomaterials 2013; 34:5423-30. [DOI: 10.1016/j.biomaterials.2013.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/03/2013] [Indexed: 02/08/2023]
|
99
|
López Y, Pastor M, Infante JF, Díaz D, Oliva R, Fernández S, Cedré B, Hernández T, Campos L, Esquisabel A, Pedraz JL, Perez V, Talavera A. Repeated dose toxicity study ofVibrio cholerae-loaded gastro-resistant microparticles. J Microencapsul 2013; 31:86-92. [DOI: 10.3109/02652048.2013.808278] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
100
|
Nanotechnological Approaches for Genetic Immunization. DNA AND RNA NANOBIOTECHNOLOGIES IN MEDICINE: DIAGNOSIS AND TREATMENT OF DISEASES 2013. [PMCID: PMC7121080 DOI: 10.1007/978-3-642-36853-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Genetic immunization is one of the important findings that provide multifaceted immunological response against infectious diseases. With the advent of r-DNA technology, it is possible to construct vector with immunologically active genes against specific pathogens. Nevertheless, site-specific delivery of constructed genetic material is an important contributory factor for eliciting specific cellular and humoral immune response. Nanotechnology has demonstrated immense potential for the site-specific delivery of biomolecules. Several polymeric and lipidic nanocarriers have been utilized for the delivery of genetic materials. These systems seem to have better compatibility, low toxicity, economical and capable to delivering biomolecules to intracellular site for the better expression of desired antigens. Further, surface engineering of nanocarriers and targeting approaches have an ability to offer better presentation of antigenic material to immunological cells. This chapter gives an overview of existing and emerging nanotechnological approaches for the delivery of genetic materials.
Collapse
|