51
|
Foulsham W, Coco G, Amouzegar A, Chauhan SK, Dana R. When Clarity Is Crucial: Regulating Ocular Surface Immunity. Trends Immunol 2018; 39:288-301. [PMID: 29248310 PMCID: PMC5880704 DOI: 10.1016/j.it.2017.11.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 12/23/2022]
Abstract
The ocular surface is a unique mucosal immune compartment in which anatomical, physiological, and immunological features act in concert to foster a particularly tolerant microenvironment. These mechanisms are vital to the functional competence of the eye, a fact underscored by the devastating toll of excessive inflammation at the cornea - blindness. Recent data have elucidated the contributions of specific anatomical components, immune cells, and soluble immunoregulatory factors in promoting homeostasis at the ocular surface. We highlight research trends at this distinctive mucosal barrier and identify crucial gaps in our current knowledge.
Collapse
Affiliation(s)
- William Foulsham
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; University College London (UCL) Institute of Ophthalmology, University College London, London, UK
| | - Giulia Coco
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Afsaneh Amouzegar
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Sunil K Chauhan
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
52
|
Zhu S, Xu X, Liu K, Gu Q, Wei F, Yang X. PAPep Inhibits Secretion of Poly(I:C)-Induced Inflammatory Cytokines and ICAM-1 Expression in Corneal Fibroblasts by Suppressing the NF-κB/p38 Pathway. J Ocul Pharmacol Ther 2018; 34:395-402. [PMID: 29583060 DOI: 10.1089/jop.2017.0068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
PURPOSE To assess the anti-inflammatory effect and mechanism of a novel peptide, PAPep, in poly(I:C)-stimulated corneal fibroblasts. METHODS Corneal fibroblasts were treated with poly(I:C) to elicit inflammation. Real-time polymerase chain reaction (PCR) and ELISA were used to measure the mRNA and protein levels of interleukin (IL)-6, monocyte chemotactic factor (MCP)-1, and interferon gamma (IFN-γ). Real-time PCR, immunofluorescence, and immunoblot were performed to determine ICAM-1 expression. Translocation of NF-κB p65 was observed by immunofluorescence. Phosphorylation of IκBα, NF-κB, and mitogen-activated protein kinase (MAPK) (p38, JNK and ERK) were detected by western blot. RESULTS The results showed that PAPep effectively decreased mRNA and protein expression of IL-6, MCP-1, and IFN-γ in corneal fibroblasts exposed to poly(I:C). In addition, PAPep reduced mRNA and protein levels of ICAM-1. The NF-κB and MAPK(p38) pathway were inhibited by PAPep treatment, as indicated by suppression of p65 nuclear translocation, and IκBα, NF-κB, and p38 activation. PAPep showed no effect on JNK or ERK activity. CONCLUSIONS PAPep attenuates the expression of inflammatory cytokines and ICAM-1 in corneal fibroblasts induced by poly(I:C) through blocking the NF-κB and MAPK(p38) pathway. PAPep may be considered a promising therapeutic agent for treating viral keratitis.
Collapse
Affiliation(s)
- Shaopin Zhu
- 1 Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, People's Republic of China .,2 Shanghai Key Laboratory of Fundus Disease , Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xun Xu
- 1 Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, People's Republic of China .,2 Shanghai Key Laboratory of Fundus Disease , Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Kun Liu
- 1 Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, People's Republic of China .,2 Shanghai Key Laboratory of Fundus Disease , Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Qing Gu
- 1 Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, People's Republic of China .,2 Shanghai Key Laboratory of Fundus Disease , Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Fang Wei
- 1 Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, People's Republic of China .,2 Shanghai Key Laboratory of Fundus Disease , Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaolu Yang
- 1 Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, People's Republic of China .,2 Shanghai Key Laboratory of Fundus Disease , Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
53
|
Infection and Transport of Herpes Simplex Virus Type 1 in Neurons: Role of the Cytoskeleton. Viruses 2018; 10:v10020092. [PMID: 29473915 PMCID: PMC5850399 DOI: 10.3390/v10020092] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 12/22/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a neuroinvasive human pathogen that has the ability to infect and replicate within epithelial cells and neurons and establish a life-long latent infection in sensory neurons. HSV-1 depends on the host cellular cytoskeleton for entry, replication, and exit. Therefore, HSV-1 has adapted mechanisms to promote its survival by exploiting the microtubule and actin cytoskeletons to direct its active transport, infection, and spread between neurons and epithelial cells during primary and recurrent infections. This review will focus on the currently known mechanisms utilized by HSV-1 to harness the neuronal cytoskeleton, molecular motors, and the secretory and exocytic pathways for efficient virus entry, axonal transport, replication, assembly, and exit from the distinct functional compartments (cell body and axon) of the highly polarized sensory neurons.
Collapse
|
54
|
Rajasagi NK, Rouse BT. Application of our understanding of pathogenesis of herpetic stromal keratitis for novel therapy. Microbes Infect 2018; 20:526-530. [PMID: 29329934 DOI: 10.1016/j.micinf.2017.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 12/31/2022]
Abstract
HSV-1 ocular infection can cause herpes stromal keratitis (SK), an immunopathological lesion. Frequent recurrences can lead to progressive corneal scaring which can result in vision impairment if left untreated. Currently, the acute and epithelial forms of SK are usually controlled using anti-viral drugs. However, chronic forms of SK which are inflammatory in nature, require the addition of a topical corticosteroid to the anti-viral treatment regimen. In this review, we highlight the essential events involved in SK pathogenesis which can be targeted for improved therapy. We also examine some approaches which can be combined with the current treatments to effectively control SK.
Collapse
Affiliation(s)
- Naveen K Rajasagi
- Biomedical & Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, 37996-0845, United States
| | - Barry T Rouse
- Biomedical & Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, 37996-0845, United States.
| |
Collapse
|
55
|
Are miRNAs critical determinants in herpes simplex virus pathogenesis? Microbes Infect 2017; 20:461-465. [PMID: 29287990 DOI: 10.1016/j.micinf.2017.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/11/2017] [Indexed: 12/21/2022]
Abstract
miRNAs are small noncoding RNA that play a crucial role in gene regulation by inhibiting translation or promoting mRNA degradation. Viruses themselves express miRNAs that can target either the host or viral mRNA transcriptome. Moreover, viral infection of cells causes a drastic change in host miRNAs. This complex interaction between the host and viruses often favors the virus to evade immune elimination and favors the establishment and maintenance of latency. In this review we discuss the function of both host and viral miRNAs in regulating herpes simplex virus pathogenesis and also discuss the prospect of using miRNAs as biomarkers and therapeutic tools.
Collapse
|
56
|
Varanasi SK, Donohoe D, Jaggi U, Rouse BT. Manipulating Glucose Metabolism during Different Stages of Viral Pathogenesis Can Have either Detrimental or Beneficial Effects. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:1748-1761. [PMID: 28768727 PMCID: PMC5584583 DOI: 10.4049/jimmunol.1700472] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/13/2017] [Indexed: 12/16/2022]
Abstract
This report deals with physiological changes and their implication following ocular infection with HSV. This infection usually results in a blinding inflammatory reaction in the cornea, orchestrated mainly by proinflammatory CD4 T cells and constrained in severity by regulatory T cells. In the present report, we make the unexpected finding that blood glucose levels change significantly during the course of infection. Whereas levels remained normal during the early phase of infection when the virus was actively replicating in the cornea, they increased around 2-fold during the time when inflammatory responses to the virus was occurring. We could show that glucose levels influenced the extent of induction of the inflammatory T cell subset in vitro that mainly drives lesions, but not regulatory T cells. Additionally, if glucose utilization was limited in vivo as a consequence of therapy in the inflammatory phase with the drug 2-deoxy-glucose (2DG), lesions were diminished compared with untreated infected controls. In addition, lesions in 2DG-treated animals contained less proinflammatory effectors. Glucose metabolism also influenced the acute phase of infection when the replicating virus was present in the eye. Thus, therapy with 2DG to limit glucose utilization caused mice to become susceptible to the lethal effects of HSV infection, with the virus spreading to the brain causing encephalitis. Taken together, our results indicate that glucose metabolism changed during the course of HSV infection and that modulating glucose levels can influence the outcome of infection, being detrimental or beneficial according to the stage of viral pathogenesis.
Collapse
Affiliation(s)
- Siva Karthik Varanasi
- Department of Genome Science and Technology, College of Arts & Sciences, University of Tennessee, Knoxville, TN 37996
| | - Dallas Donohoe
- Department of Nutrition, College of Education, Health and Human Sciences, University of Tennessee, Knoxville, TN 37996; and
| | - Ujjaldeep Jaggi
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996
| | - Barry T Rouse
- Department of Genome Science and Technology, College of Arts & Sciences, University of Tennessee, Knoxville, TN 37996;
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996
| |
Collapse
|
57
|
Edwards RG, Longnecker R. Herpesvirus Entry Mediator and Ocular Herpesvirus Infection: More than Meets the Eye. J Virol 2017; 91:e00115-17. [PMID: 28404853 PMCID: PMC5469272 DOI: 10.1128/jvi.00115-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As its name suggests, the host receptor herpesvirus entry mediator (HVEM) facilitates herpes simplex virus (HSV) entry through interactions with a viral envelope glycoprotein. HVEM also bridges several signaling networks, binding ligands from both tumor necrosis factor (TNF) and immunoglobulin (Ig) superfamilies with diverse, and often opposing, outcomes. While HVEM was first identified as a viral entry receptor for HSV, it is only recently that HVEM has emerged as an important host factor in immunopathogenesis of ocular HSV type 1 (HSV-1) infection. Surprisingly, HVEM exacerbates disease development in the eye independently of entry. HVEM signaling has been shown to play a variety of roles in modulating immune responses to HSV and other pathogens, and there is increasing evidence that these effects are responsible for HVEM-mediated pathogenesis in the eye. Here, we review the dual branches of HVEM function during HSV infection: entry and immunomodulation. HVEM is broadly expressed; intersects two important immunologic signaling networks; and impacts autoimmunity, infection, and inflammation. We hope that by understanding the complex range of effects mediated by this receptor, we can offer insights applicable to a wide variety of disease states.
Collapse
Affiliation(s)
- Rebecca G Edwards
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Richard Longnecker
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
58
|
Edwards RG, Kopp SJ, Ifergan I, Shui JW, Kronenberg M, Miller SD, Longnecker R. Murine Corneal Inflammation and Nerve Damage After Infection With HSV-1 Are Promoted by HVEM and Ameliorated by Immune-Modifying Nanoparticle Therapy. Invest Ophthalmol Vis Sci 2017; 58:282-291. [PMID: 28114589 PMCID: PMC5256684 DOI: 10.1167/iovs.16-20668] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To determine cellular and temporal expression patterns of herpes virus entry mediator (HVEM, Tnfrsf14) in the murine cornea during the course of herpes simplex virus 1 (HSV-1) infection, the impact of this expression on pathogenesis, and whether alterations in HVEM or downstream HVEM-mediated effects ameliorate corneal disease. Methods Corneal HVEM levels were assessed in C57BL/6 mice after infection with HSV-1(17). Leukocytic infiltrates and corneal sensitivity loss were measured in the presence, global absence (HVEM knockout [KO] mice; Tnfrsf14-/-), or partial absence of HVEM (HVEM conditional KO). Effects of immune-modifying nanoparticles (IMPs) on viral replication, corneal sensitivity, and corneal infiltrates were measured. Results Corneal HVEM+ populations, particularly monocytes/macrophages during acute infection (3 days post infection [dpi]) and polymorphonuclear neutrophils (PMN) during the chronic inflammatory phase (14 dpi), increased after HSV-1 infection. Herpes virus entry mediator increased leukocytes in the cornea and corneal sensitivity loss. Ablation of HVEM from CD45+ cells, or intravenous IMP therapy, reduced infiltrates in the chronic phase and maintained corneal sensitivity. Conclusions Herpes virus entry mediator was expressed on two key populations: corneal monocytes/macrophages and PMNs. Herpes virus entry mediator promoted the recruitment of myeloid cells to the cornea in the chronic phase. Herpes virus entry mediator-associated corneal sensitivity loss preceded leukocytic infiltration, suggesting it may play an active role in recruitment. We propose that HVEM on resident corneal macrophages increases nerve damage and immune cell invasion, and we showed that prevention of late-phase infiltration of PMN and CD4+ T cells by IMP therapy improved clinical symptoms and mortality and reduced corneal sensitivity loss caused by HSV-1.
Collapse
Affiliation(s)
- Rebecca G Edwards
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Sarah J Kopp
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Igal Ifergan
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States 2Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Jr-Wen Shui
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States
| | - Stephen D Miller
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States 2Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Richard Longnecker
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| |
Collapse
|
59
|
Chucair-Elliott AJ, Carr MM, Carr DJJ. Long-term consequences of topical dexamethasone treatment during acute corneal HSV-1 infection on the immune system. J Leukoc Biol 2017; 101:1253-1261. [PMID: 28115476 PMCID: PMC5380376 DOI: 10.1189/jlb.4a1116-459r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/03/2017] [Accepted: 01/09/2017] [Indexed: 11/24/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a leading cause of neurotrophic keratitis (NTK). NTK is characterized by decreased corneal sensation from damage to the corneal sensory fibers. We have reported on the regression of corneal nerves and their function during acute HSV-1 infection. That nerve loss is followed by an aberrant process of nerve regeneration during the latent phase of infection that lacks functional recovery. We recently showed the elicited immune response in the infected cornea, and not viral replication itself, is part of the mechanism responsible for the nerve degeneration process after infection. Specifically, we showed infected corneas topically treated with dexamethasone (DEX) significantly retained both structure and sensitivity of the corneal nerve network in comparison to mice treated with control eye drops, consistent with decreased levels of proinflammatory cytokines and reduced influx of macrophages and CD8+ T cells into the cornea. This study was undertaken to analyze the long-term effect of such a localized, immunosuppressive paradigm (DEX drops on the cornea surface during the first 8 d of HSV-1 infection) on the immune system and on corneal pathology. We found the profound immunosuppressive effect of DEX on lymphoid tissue was sustained in surviving mice for up to 30 d postinfection (p.i.). DEX treatment had prolonged effects, preserving corneal innervation and its function and blunting neovascularization, as analyzed at 30 d p.i. Our data support previously reported observations of an association between the persistent presence of inflammatory components in the latently infected cornea and structural and functional nerve defects in NTK.
Collapse
MESH Headings
- Acute Disease
- Administration, Ophthalmic
- Animals
- Anti-Inflammatory Agents/pharmacology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/virology
- Cell Movement/drug effects
- Cornea/blood supply
- Cornea/drug effects
- Cornea/innervation
- Cornea/virology
- Corneal Neovascularization/drug therapy
- Corneal Neovascularization/immunology
- Corneal Neovascularization/mortality
- Corneal Neovascularization/virology
- Dexamethasone/pharmacology
- Herpesvirus 1, Human/drug effects
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/pathogenicity
- Immunity, Innate/drug effects
- Keratitis, Herpetic/drug therapy
- Keratitis, Herpetic/immunology
- Keratitis, Herpetic/mortality
- Keratitis, Herpetic/virology
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/virology
- Mice
- Mice, Inbred C57BL
- Optic Nerve/drug effects
- Optic Nerve/immunology
- Optic Nerve/pathology
- Optic Nerve/virology
- Survival Analysis
- Viral Load/drug effects
Collapse
Affiliation(s)
- Ana J Chucair-Elliott
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; and
| | - Meghan M Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; and
| | - Daniel J J Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; and
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
60
|
Azacytidine Treatment Inhibits the Progression of Herpes Stromal Keratitis by Enhancing Regulatory T Cell Function. J Virol 2017; 91:JVI.02367-16. [PMID: 28100624 DOI: 10.1128/jvi.02367-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/12/2017] [Indexed: 01/07/2023] Open
Abstract
Ocular infection with herpes simplex virus 1 (HSV-1) sets off an inflammatory reaction in the cornea which leads to both virus clearance and chronic lesions that are orchestrated by CD4 T cells. Approaches that enhance the function of regulatory T cells (Treg) and dampen effector T cells can be effective to limit stromal keratitis (SK) lesion severity. In this report, we explore the novel approach of inhibiting DNA methyltransferase activity using 5-azacytidine (Aza; a cytosine analog) to limit HSV-1-induced ocular lesions. We show that therapy begun after infection when virus was no longer actively replicating resulted in a pronounced reduction in lesion severity, with markedly diminished numbers of T cells and nonlymphoid inflammatory cells, along with reduced cytokine mediators. The remaining inflammatory reactions had a change in the ratio of CD4 Foxp3+ Treg to effector Th1 CD4 T cells in ocular lesions and lymphoid tissues, with Treg becoming predominant over the effectors. In addition, compared to those from control mice, Treg from Aza-treated mice showed more suppressor activity in vitro and expressed higher levels of activation molecules. Additionally, cells induced in vitro in the presence of Aza showed epigenetic differences in the Treg-specific demethylated region (TSDR) of Foxp3 and were more stable when exposed to inflammatory cytokines. Our results show that therapy with Aza is an effective means of controlling a virus-induced inflammatory reaction and may act mainly by the effects on Treg.IMPORTANCE HSV-1 infection has been shown to initiate an inflammatory reaction in the cornea that leads to tissue damage and loss of vision. The inflammatory reaction is orchestrated by gamma interferon (IFN-γ)-secreting Th1 cells, and regulatory T cells play a protective role. Hence, novel therapeutics that can rebalance the ratio of regulatory T cells to effectors are a relevant issue. This study opens up a new avenue in treating HSV-induced SK lesions by increasing the stability and function of regulatory T cells using the DNA methyltransferase inhibitor 5-azacytidine (Aza). Aza increased the function of regulatory T cells, leading to enhanced suppressive activity and diminished lesions. Hence, therapy with Aza, which acts mainly by its effects on Treg, can be an effective means to control virus-induced inflammatory lesions.
Collapse
|
61
|
Gaddipati S, Rao P, Jerome AD, Burugula BB, Gerard NP, Suvas S. Loss of Neurokinin-1 Receptor Alters Ocular Surface Homeostasis and Promotes an Early Development of Herpes Stromal Keratitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:4021-4033. [PMID: 27798158 PMCID: PMC5113833 DOI: 10.4049/jimmunol.1600836] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/14/2016] [Indexed: 11/19/2022]
Abstract
Substance P neuropeptide and its receptor, neurokinin-1 receptor (NK1R), are reported to present on the ocular surface. In this study, mice lacking functional NK1R exhibited an excessive desquamation of apical corneal epithelial cells in association with an increased epithelial cell proliferation and increased epithelial cell density, but decreased epithelial cell size. The lack of NK1R also resulted in decreased density of corneal nerves, corneal epithelial dendritic cells (DCs), and a reduced volume of basal tears. Interestingly, massive accumulation of CD11c+CD11b+ conventional DCs was noted in the bulbar conjunctiva and near the limbal area of corneas from NK1R-/- mice. After ocular HSV-1 infection, the number of conventional DCs and neutrophils infiltrating the infected corneas was significantly higher in NK1R-/- than C57BL/6J mice. This was associated with an increased viral load in infected corneas of NK1R-/- mice. As a result, the number of IFN-γ-secreting virus-specific CD4 T cells in the draining lymph nodes of NK1R-/- mice was much higher than in infected C57BL/6J mice. An increased number of CD4 T cells and mature neutrophils (CD11b+Ly6ghigh) in the inflamed corneas of NK1R-/- mice was associated with an early development of severe herpes stromal keratitis. Collectively, our results show that the altered corneal biology of uninfected NK1R-/- mice along with an enhanced immunological response after ocular HSV-1 infection causes an early development of herpes stromal keratitis in NK1R-/- mice.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- Conjunctiva/immunology
- Conjunctiva/pathology
- Conjunctiva/virology
- Cornea/immunology
- Cornea/pathology
- Cornea/virology
- Dendritic Cells/immunology
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/physiology
- Homeostasis
- Interferon-gamma/immunology
- Keratitis, Herpetic/immunology
- Keratitis, Herpetic/physiopathology
- Keratitis, Herpetic/virology
- Lymph Nodes/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Neutrophils/immunology
- Receptors, Neurokinin-1/deficiency
- Receptors, Neurokinin-1/immunology
- Receptors, Neurokinin-1/physiology
- Viral Load
Collapse
Affiliation(s)
- Subhash Gaddipati
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Pushpa Rao
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Andrew David Jerome
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Bala Bharathi Burugula
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Norma P Gerard
- Division of Respiratory Diseases, Department of Medicine, Boston's Children Hospital, Harvard Medical School, Boston, MA 02215; and
| | - Susmit Suvas
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201;
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI 48201
| |
Collapse
|
62
|
Kuffova L, Knickelbein JE, Yu T, Medina C, Amescua G, Rowe AM, Hendricks RL, Forrester JV. High-Risk Corneal Graft Rejection in the Setting of Previous Corneal Herpes Simplex Virus (HSV)-1 Infection. Invest Ophthalmol Vis Sci 2016; 57:1578-87. [PMID: 27050878 PMCID: PMC4824377 DOI: 10.1167/iovs.15-17894] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose The “high-risk phenotype” of corneal graft recipients is considered to be related to preexisting vascularization such as that associated with herpes simplex virus-1 (HSV-1) keratitis (HSK). The purpose of this study was to investigate the immunologic mechanisms underlying accelerated corneal graft rejection using a mouse model of HSK. Methods Herpes simplex virus type 1 keratitis was induced in BALB/c mice. Syngeneic and allogeneic (C57BL/6 mice) corneal grafts were performed in mice with HSK at different times after infection. Some grafts were performed on HSV-infected CD4 T cell–deficient BALB/c mice. Clinical, histologic, immunologic, and virus detection studies were performed on samples of cornea, draining lymph node (LN), and trigeminal ganglion (TG) cells. Results Corneal grafts in mice with HSK rejected with higher frequency and more rapid tempo compared with grafts in uninfected mice. In corneas with HSK and vascularization at the time of grafting, both syngeneic and allogeneic corneal grafts failed with similar frequency and tempo. However, in the absence of preexisting inflammation and vascularization, syngeneic grafts were accepted when the grafts were performed at a late time point after HSV infection (42 days), whereas allografts were rejected at this time. In contrast, syngeneic grafts in nonvascularized HSV-infected recipients failed if they were performed within 10 days of HSV infection, an effect that was dependent on CD4 T cells, as demonstrated using CD4 deficient mice. Importantly, a variably sustained but strongly positive anti-HSV T-cell response was detected in allografted HSK recipients with a similar but lesser response in syngeneic hosts. Conclusions A previous HSV-1 corneal infection predisposes donor grafts to a high risk of failure by both innate and adaptive immune mechanisms in which an anti-HSV CD4 T-cell response plays a prominent role.
Collapse
Affiliation(s)
- Lucia Kuffova
- Division of Applied Medicine, Section of Immunity, Infection and Inflammation (Ocular Immunology), Institute of Medical Sciences, School of Medicine and Dentistry, Foresterhill, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Jared E Knickelbein
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Tian Yu
- Division of Applied Medicine, Section of Immunity, Infection and Inflammation (Ocular Immunology), Institute of Medical Sciences, School of Medicine and Dentistry, Foresterhill, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Carlos Medina
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Guillermo Amescua
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Alexander M Rowe
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Robert L Hendricks
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States 3Departments of Immunology, Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, Unite
| | - John V Forrester
- Division of Applied Medicine, Section of Immunity, Infection and Inflammation (Ocular Immunology), Institute of Medical Sciences, School of Medicine and Dentistry, Foresterhill, University of Aberdeen, Aberdeen, Scotland, United Kingdom 4Ocular Immunology
| |
Collapse
|
63
|
IL-6 Contributes to Corneal Nerve Degeneration after Herpes Simplex Virus Type I Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2665-78. [PMID: 27497323 DOI: 10.1016/j.ajpath.2016.06.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 05/31/2016] [Accepted: 06/09/2016] [Indexed: 11/21/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) is a leading cause of neurotrophic keratitis characterized by decreased corneal sensation because of damage to the corneal sensory fibers. We and others have reported regression of corneal nerves during acute HSV-1 infection. To determine whether denervation is caused directly by the virus or indirectly by the elicited immune response, mice were infected with HSV-1 and topically treated with dexamethasone (DEX) or control eye drops. Corneal sensitivity was measured using a Cochet-Bonnet esthesiometer and nerve network structure via immunohistochemistry. Corneas were assessed for viral content by plaque assay, leukocyte influx by flow cytometry, and content of chemokines and inflammatory cytokines by suspension array. DEX significantly preserved corneal nerve structure and sensitivity on infection. DEX reduced myeloid and T-cell populations in the cornea and did not affect viral contents at 4 and 8 days post infection. The elevated protein contents of chemokines and inflammatory cytokines on infection were greatly suppressed by DEX. Subconjunctival delivery of neutralizing antibody against IL-6 to infected mice resulted in partial preservation of corneal nerve structure and sensitivity. Our study supports a role for the immune response, but not local virus replication in the development of HSV-1-induced neurotrophic keratitis. IL-6 is one of the factors produced by the elicited inflammatory response to HSV-1 infection contributing to nerve regression.
Collapse
|
64
|
Liu G, Wu H, Lu P, Zhang X. Interleukin (IL)-17A Promotes Angiogenesis in an Experimental Corneal Neovascularization Model. Curr Eye Res 2016; 42:368-379. [PMID: 27419340 DOI: 10.1080/02713683.2016.1196705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gaoqin Liu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
- Jiangsu Clinical Immunology Institute, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Hongya Wu
- Jiangsu Clinical Immunology Institute, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Peirong Lu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
- Jiangsu Clinical Immunology Institute, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Xueguang Zhang
- Jiangsu Clinical Immunology Institute, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| |
Collapse
|
65
|
Liu Y, Kan M, Li A, Hou L, Jia H, Xin Y, Liu Y. Inhibitory Effects of Tranilast on Cytokine, Chemokine, Adhesion Molecule, and Matrix Metalloproteinase Expression in Human Corneal Fibroblasts Exposed to Poly(I:C). Curr Eye Res 2016; 41:1400-1407. [PMID: 27115203 DOI: 10.3109/02713683.2015.1127389] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Purpose/Aim: Viral infection of the cornea can result in inflammation and scarring and eventually cause blindness. Polyinosinic-polycytidylic acid [poly(I:C)], an analog of viral double-stranded RNA, induces the synthesis of various cytokines, chemokines, adhesion molecules, and matrix metalloproteinases (MMPs) in corneal fibroblasts. The effects of tranilast on the expression of these molecules in human corneal fibroblasts were examined. MATERIALS AND METHODS Human corneal fibroblasts were cultured with or without poly(I:C) or tranilast. The release of the proinflammatory cytokine interleukin (IL)-6 and of the chemokines IL-8 and monocyte chemotactic protein-1 (MCP-1) was measured with enzyme-linked immunosorbent assays. The expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), MMP-1, and MMP-3 was evaluated by immunoblot or immunofluorescence analysis. The phosphorylation of mitogen-activated protein kinases (MAPKs), c-Jun (a component of the transcription factor AP-1), and IκB-α (an endogenous inhibitor of the transcription factor NF-κB) was examined by immunoblot analysis. RESULTS Tranilast inhibited in a concentration- and time-dependent manner the production of IL-6, IL-8, MCP-1, ICAM-1, VCAM-1, MMP-1, and MMP-3 by corneal fibroblasts exposed to poly(I:C). It also inhibited the poly(I:C)-induced phosphorylation of c-Jun and the MAPK JNK without affecting that of IκB-α or the MAPKs ERK and p38. CONCLUSIONS Tranilast inhibited proinflammatory cytokine, chemokine, adhesion molecule, and MMP expression in human corneal fibroblasts exposed to poly(I:C), with these effects likely being mediated by attenuation of JNK-AP-1 signaling. Tranilast might therefore be expected to limit immune cell infiltration and stromal degradation associated with viral infection of the cornea.
Collapse
Affiliation(s)
- Ye Liu
- a Department of Pathology , First Hospital of Jilin University , Jilin , PR , China
| | - Mujie Kan
- b Department of Biochemistry , College of Basic Medicine, Jilin University , Jilin , PR China
| | - Aipeng Li
- c Department of Ophthalmology , First Hospital of Jilin University , Jilin , PR China
| | - Lulu Hou
- c Department of Ophthalmology , First Hospital of Jilin University , Jilin , PR China
| | - Hui Jia
- c Department of Ophthalmology , First Hospital of Jilin University , Jilin , PR China
| | - Ying Xin
- d Key Laboratory of Pathology, Ministry of Education , Jilin University , Jilin , PR China
| | - Yang Liu
- c Department of Ophthalmology , First Hospital of Jilin University , Jilin , PR China
| |
Collapse
|
66
|
Abdelfattah NS, Amgad M, Zayed AA. Host immune cellular reactions in corneal neovascularization. Int J Ophthalmol 2016; 9:625-33. [PMID: 27162740 DOI: 10.18240/ijo.2016.04.25] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 06/29/2015] [Indexed: 12/23/2022] Open
Abstract
Corneal neovascularization (CNV) is a global important cause of visual impairment. The immune mechanisms leading to corneal heme- and lymphangiogenesis have been extensively studied over the past years as more attempts were made to develop better prophylactic and therapeutic measures. This article aims to discuss immune cells of particular relevance to CNV, with a focus on macrophages, Th17 cells, dendritic cells and the underlying immunology of common pathologies involving neovascularization of the cornea. Hopefully, a thorough understanding of these topics would propel the efforts to halt the detrimental effects of CNV.
Collapse
Affiliation(s)
- Nizar S Abdelfattah
- Doheny Eye Institute, University of California, Los Angeles, CA 90033, USA; Ophthalmology Department, David Geffen School of Medicine, University of California, Los Angeles, CA 90033, USA
| | - Mohamed Amgad
- Faculty of Medicine, Cairo University, Cairo 11956, Egypt
| | - Amira A Zayed
- Department of Surgery, Mayo Clinic, Rochester, Minnesota 55904, USA
| |
Collapse
|
67
|
Gimenez F, Mulik S, Veiga-Parga T, Bhela S, Rouse BT. Robo 4 Counteracts Angiogenesis in Herpetic Stromal Keratitis. PLoS One 2015; 10:e0141925. [PMID: 26720197 PMCID: PMC4697792 DOI: 10.1371/journal.pone.0141925] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 10/14/2015] [Indexed: 02/03/2023] Open
Abstract
The cornea is a complex tissue that must preserve its transparency to maintain optimal vision. However, in some circumstances, damage to the eye can result in neovascularization that impairs vision. This outcome can occur when herpes simplex virus type 1 (HSV-1) causes the immunoinflammatory lesion stromal keratitis (SK). Potentially useful measures to control the severity of SK are to target angiogenesis which with herpetic SK invariably involves VEGF. One such way to control angiogenesis involves the endothelial receptor Robo4 (R4), which upon interaction with another protein activates an antiangiogenic pathway that counteracts VEGF downstream signaling. In this study we show that mice unable to produce R4 because of gene knockout developed significantly higher angiogenesis after HSV-1 ocular infection than did infected wild type (WT) controls. Moreover, providing additional soluble R4 (sR4) protein by subconjunctival administration to R4 KO HSV-1 infected mice substantially rescued the WT phenotype. Finally, administration of sR4 to WT HSV-1 infected mice diminished the extent of corneal angiogenesis compared to WT control animals. Our results indicate that sR4 could represent a useful therapeutic tool to counteract corneal angiogenesis and help control the severity of SK.
Collapse
MESH Headings
- Animals
- Corneal Neovascularization/drug therapy
- Corneal Neovascularization/genetics
- Disease Models, Animal
- Female
- Genetic Predisposition to Disease
- Herpesvirus 1, Human
- Keratitis, Herpetic/drug therapy
- Keratitis, Herpetic/genetics
- Keratitis, Herpetic/pathology
- Mice
- Mice, Knockout
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/genetics
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/pharmacology
- Phenotype
- Receptors, Cell Surface
- Receptors, Immunologic/genetics
- Signal Transduction/drug effects
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Fernanda Gimenez
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN, 37996, United States of America
| | - Sachin Mulik
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN, 37996, United States of America
- Immune Disease Institute and Program in Cellular and Molecular Medicine, Children’s Hospital Boston, Harvard Medical School, Boston, MA, United States of America
| | - Tamara Veiga-Parga
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN, 37996, United States of America
| | - Siddheshvar Bhela
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN, 37996, United States of America
| | - Barry T. Rouse
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN, 37996, United States of America
- * E-mail:
| |
Collapse
|
68
|
Gimenez F, Bhela S, Dogra P, Harvey L, Varanasi SK, Jaggi U, Rouse BT. The inflammasome NLRP3 plays a protective role against a viral immunopathological lesion. J Leukoc Biol 2015; 99:647-57. [PMID: 26516184 DOI: 10.1189/jlb.3hi0715-321r] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/18/2015] [Indexed: 12/12/2022] Open
Abstract
Herpes simplex 1 infection of the eye can cause blindness with lesions in the corneal stroma largely attributable to inflammatory events that include components of both adaptive and innate immunity. Several innate immune responses are triggered by herpes simplex 1, but it is unclear how such innate events relate to the subsequent development of stromal keratitis. In this study, we compared the outcome of herpes simplex 1 ocular infection in mice unable to express NLRP3 because of gene knockout (NLRP3(-/-)) to that of wild-type mice. The NLRP3(-/-) mice developed more-severe and earlier stromal keratitis lesions and had higher angiogenesis scores than did infected wild-type animals. In addition, NLRP3(-/-) mice generated an increased early immune response with heightened chemokines and cytokines, including interleukin-1β and interleukin-18, and elevated recruitment of neutrophils. Increased numbers of CD4(+) T cells were seen at later stages of the disease in NLRP3(-/-) animals. Reduction in neutrophils prevented early onset of the disease in NLRP3(-/-) animals and lowered levels of bioactive interleukin-1β but did not lower bioactive interleukin-18. In conclusion, our results indicate that NLRP3 has a regulatory and beneficial role in herpetic stromal keratitis pathogenesis.
Collapse
Affiliation(s)
- Fernanda Gimenez
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Siddheshvar Bhela
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Pranay Dogra
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA; and
| | - Lorena Harvey
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Siva Karthik Varanasi
- Department of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee, USA
| | - Ujjaldeep Jaggi
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Barry T Rouse
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee, USA;
| |
Collapse
|
69
|
Dendritic Cell Autophagy Contributes to Herpes Simplex Virus-Driven Stromal Keratitis and Immunopathology. mBio 2015; 6:e01426-15. [PMID: 26507231 PMCID: PMC4626854 DOI: 10.1128/mbio.01426-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Herpetic stromal keratitis (HSK) is a blinding ocular disease that is initiated by HSV-1 and characterized by chronic inflammation in the cornea. Although HSK immunopathology of the cornea is well documented in animal models, events preceding this abnormal inflammatory cascade are poorly understood. In this study, we have examined the activation of pathological CD4+ T cells in the development of HSK. Dendritic cell autophagy (DC-autophagy) is an important pathway regulating major histocompatibility complex class II (MHCII)-dependent antigen presentation and proper CD4+ T cell activation during infectious diseases. Using DC-autophagy-deficient mice, we found that DC-autophagy significantly and specifically contributes to HSK disease without impacting early innate immune infiltration, viral clearance, or host survival. Instead, the observed phenotype was attributable to the abrogated activation of CD4+ T cells and reduced inflammation in HSK lesions. We conclude that DC-autophagy is an important contributor to primary HSK immunopathology upstream of CD4+ T cell activation. Herpetic stromal keratitis (HSK) is the leading cause of infectious blindness in the United States and a rising cause worldwide. HSK is induced by herpes simplex virus 1 but is considered a disease of inappropriately sustained inflammation driven by CD4+ T cells. In this study, we investigated whether pathways preceding CD4+ T cell activation affect disease outcome. We found that autophagy in dendritic cells significantly contributed to the incidence of HSK. Dendritic cell autophagy did not alter immune control of the virus or neurological disease but specifically augmented CD4+ T cell activation and pathological corneal inflammation. This study broadens our understanding of the immunopathology that drives HSK and implicates the autophagy pathway as a new target for therapeutic intervention against this incurable form of infectious blindness.
Collapse
|
70
|
Herpesvirus entry mediator on radiation-resistant cell lineages promotes ocular herpes simplex virus 1 pathogenesis in an entry-independent manner. mBio 2015; 6:e01532-15. [PMID: 26489863 PMCID: PMC4620471 DOI: 10.1128/mbio.01532-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ocular herpes simplex virus 1 (HSV-1) infection leads to a potentially blinding immunoinflammatory syndrome, herpes stromal keratitis (HSK). Herpesvirus entry mediator (HVEM), a widely expressed tumor necrosis factor (TNF) receptor superfamily member with diverse roles in immune signaling, facilitates viral entry through interactions with viral glycoprotein D (gD) and is important for HSV-1 pathogenesis. We subjected mice to corneal infection with an HSV-1 mutant in which HVEM-mediated entry was specifically abolished and found that the HVEM-entry mutant produced clinical disease comparable to that produced by the control virus. HVEM-mediated induction of corneal cytokines, which correlated with an HVEM-dependent increase in levels of corneal immune cell infiltrates, was also gD independent. Given the complexity of HVEM immune signaling, we used hematopoietic chimeric mice to determine which HVEM-expressing cells mediate HSV-1 pathogenesis in the eye. Regardless of whether the donor was a wild-type (WT) or HVEM knockout (KO) strain, HVEM KO recipients were protected from ocular HSV-1, suggesting that HVEM on radiation-resistant cell types, likely resident cells of the cornea, confers wild-type-like susceptibility to disease. Together, these data indicate that HVEM contributes to ocular pathogenesis independently of entry and point to an immunomodulatory role for this protein specifically on radiation-resistant cells. Immune privilege is maintained in the eye in order to protect specialized ocular tissues, such as the translucent cornea, from vision-reducing damage. Ocular herpes simplex virus 1 (HSV-1) infection can disrupt this immune privilege, provoking a host response that ultimately brings about the majority of the damage seen with the immunoinflammatory syndrome herpes stromal keratitis (HSK). Our previous work has shown that HVEM, a host TNF receptor superfamily member that also serves as a viral entry receptor, is a critical component contributing to ocular HSV-1 pathogenesis, although its precise role in this process remains unclear. We hypothesized that HVEM promotes an inflammatory microenvironment in the eye through immunomodulatory actions, enhancing disease after ocular inoculation of HSV-1. Investigating the mechanisms responsible for orchestrating this aberrant immune response shed light on the initiation and maintenance of HSK, one of the leading causes of infectious blindness in the developed world.
Collapse
|
71
|
Kaur A, Kumar V, Singh S, Singh J, Upadhyay N, Datta S, Singla S, Kumar V. Toll-like receptor-associated keratitis and strategies for its management. 3 Biotech 2015; 5:611-619. [PMID: 28324534 PMCID: PMC4569616 DOI: 10.1007/s13205-015-0280-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/27/2015] [Indexed: 11/16/2022] Open
Abstract
Keratitis is an inflammatory condition, characterized by involvement of corneal tissues. Most recurrent challenge of keratitis is infection. Bacteria, virus, fungus and parasitic organism have potential to cause infection. TLR are an important class of protein which has a major role in innate immune response to combat with pathogens. In last past years, extensive research efforts have provided considerable abundance information regarding the role of TLR in various types of keratitis. This paper focuses to review the recent literature illustrating amoebic, bacterial, fungal and viral keratitis associated with Toll-like receptor molecules and summarize existing thoughts on pathogenesis and treatment besides future probabilities for prevention against TLR-associated keratitis.
Collapse
Affiliation(s)
- Amandeep Kaur
- Department of Biotechnology, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Vijay Kumar
- Department of Chemistry, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Simranjeet Singh
- Department of Biotechnology, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Joginder Singh
- Department of Chemistry, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Niraj Upadhyay
- Department of Chemistry, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Shivika Datta
- Department of Zoology, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Sourav Singla
- Department of Biotechnology, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Virender Kumar
- Department of Chemistry, Lovely Professional University, Phagwara, 144411, Punjab, India
| |
Collapse
|
72
|
Zhou H, Jiang S, Chen J, Su SB. Suberoylanilide hydroxamic acid suppresses inflammation-induced neovascularization. Can J Physiol Pharmacol 2015; 92:879-85. [PMID: 25272091 DOI: 10.1139/cjpp-2014-0117] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Histone deacetylases (HDACs) regulate gene transcription by modifying the acetylation of histone and nonhistone proteins. Deregulated expression of HDACs has been implicated in tumorigenesis and angiogenesis. In this study, we examined the effect of suberoylanilide hydroxamic acid (SAHA), a potent inhibitor of HDACs, on inflammatory corneal angiogenesis. In a mouse model of alkali-induced corneal neovascularization (CNV), topical application of SAHA to the injured corneas attenuated CNV. In addition, in vivo treatment with SAHA downregulated the expression of the pro-angiogenic factors vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), transforming growth factor beta 1 (TGFβ1), and epidermal growth factor (EGF), but upregulated the expression of the anti-angiogenic factors thrombospondin (TSP)-1, TSP-2, and ADAMTS-1 in the injured corneas. Furthermore, SAHA inhibited the expression of pro-angiogenic factors, migration, proliferation, and tube formation by human microvascular endothelial cells (HEMC-1) in vitro. These data indicate that SAHA has therapeutic potential for CNV.
Collapse
Affiliation(s)
- Hongyan Zhou
- a The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Sun Yat-sen University, 54 S Xianlie Road, Guangzhou 510060, China
| | | | | | | |
Collapse
|
73
|
Bhela S, Mulik S, Gimenez F, Reddy PBJ, Richardson RL, Varanasi SK, Jaggi U, Xu J, Lu PY, Rouse BT. Role of miR-155 in the pathogenesis of herpetic stromal keratitis. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1073-84. [PMID: 25700796 PMCID: PMC4380872 DOI: 10.1016/j.ajpath.2014.12.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 12/12/2014] [Accepted: 12/18/2014] [Indexed: 12/21/2022]
Abstract
Ocular infection with herpes simplex virus 1 can result in a chronic immunoinflammatory stromal keratitis (SK) lesion that is a significant cause of human blindness. A key to controlling SK lesion severity is to identify cellular and molecular events responsible for tissue damage and to manipulate them therapeutically. Potential targets for therapy are miRNAs, but these are minimally explored especially in responses to infection. Here, we demonstrated that Mir155 expression was up-regulated after ocular herpes simplex virus 1 infection, with the increased Mir155 expression occurring mainly in macrophages and CD4(+) T cells and to a lesser extent in neutrophils. In vivo studies indicated that Mir155 knockout mice were more resistant to herpes SK with marked suppression of T helper cells type 1 and 17 responses both in the ocular lesions and the lymphoid organs. The reduced SK lesion severity was reflected by increased phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase 1 and interferon-γ receptor α-chain levels in activated CD4(+) T cells in the lymph nodes. Finally, in vivo silencing of miR-155 by the provision of antagomir-155 nanoparticles to herpes simplex virus 1-infected mice led to diminished SK lesions and corneal vascularization. In conclusion, our results indicate that miR-155 contributes to the pathogenesis of SK and represents a promising target to control SK severity.
Collapse
Affiliation(s)
- Siddheshvar Bhela
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee
| | - Sachin Mulik
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee; Immune Disease Institute and Program in Cellular and Molecular Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts
| | - Fernanda Gimenez
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee
| | - Pradeep B J Reddy
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee; Department of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia
| | - Raphael L Richardson
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee
| | - Siva Karthik Varanasi
- Department of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee
| | - Ujjaldeep Jaggi
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee
| | - John Xu
- Sirnaomics, Inc., Gaithersburg, Maryland
| | | | - Barry T Rouse
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee.
| |
Collapse
|
74
|
Molesworth-Kenyon SJ, Milam A, Rockette A, Troupe A, Oakes JE, Lausch RN. Expression, Inducers and Cellular Sources of the Chemokine MIG (CXCL 9), During Primary Herpes Simplex Virus Type-1 Infection of the Cornea. Curr Eye Res 2014; 40:800-8. [PMID: 25207638 DOI: 10.3109/02713683.2014.957779] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To investigate the production of monokine induced by gamma-interferon (MIG) during a primary Herpes simplex virus type 1 (HSV-1) infection of the cornea. We hypothesize that multiple CXCR3 ligands are involved in T cell recruitment during HSV-1 corneal infection and that neutrophils have the potential to contribute to their production. MATERIALS AND METHODS Levels of MIG were evaluated in an in vivo murine model of HSV-1 corneal infection by quantitative ELISA. Cultured murine corneal fibroblast (MCF) cells and purified neutrophils were stimulated in vitro with IFN-γ and IL-1α to determine inducers of MIG. Cellular sources of MIG production in vivo were investigated via cellular depletion studies. Additionally, MIG production resulting from interaction between resident human corneal cells and neutrophils was evaluated in an ex vivo model of human corneal infection. RESULTS MIG was significantly elevated on days 2-6 and on day 8 following corneal infection. MCF and neutrophils secreted MIG in response to IFN-γ, but not IL-1α stimulation. Co-stimulation with IFN-γ and IL-1α induced a four-fold increase in MIG production by MCF. However, the same combination led to a three-fold decrease in MIG production by neutrophils. In vivo, a 52% reduction in MIG levels was observed in the neutrophil depleted host. In the human ex vivo model, MIG levels were significantly elevated in response to communication between HSV-1 infected corneal tissue and neutrophils. CONCLUSIONS Here, we report the evidence for the production of MIG, a second CXCR3 ligand, during the primary immune response to HSV-1 corneal infection. Our results support the hypothesis that both neutrophils and resident corneal cells contribute to MIG production in vivo. However, neutrophils produce MIG in response to communication with HSV-1-infected resident corneal cells more efficiently than by direct interaction with virus. In addition, we found that MIG production by neutrophils and resident corneal cells was differentially regulated by IL-1α.
Collapse
|
75
|
Rolinski J, Hus I. Immunological aspects of acute and recurrent herpes simplex keratitis. J Immunol Res 2014; 2014:513560. [PMID: 25276842 PMCID: PMC4170747 DOI: 10.1155/2014/513560] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/22/2014] [Accepted: 08/20/2014] [Indexed: 12/25/2022] Open
Abstract
Herpes simplex keratitis (HSK) belongs to the major causes of visual morbidity worldwide and available methods of treatment remain unsatisfactory. Primary infection occurs usually early in life and is often asymptomatic. Chronic visual impairment and visual loss are caused by corneal scaring, thinning, and vascularization connected with recurrent HSV infections. The pathogenesis of herpetic keratitis is complex and is still not fully understood. According to the current knowledge, corneal scarring and vascularization are the result of chronic inflammatory reaction against HSV antigens. In this review we discuss the role of innate and adaptive immunities in acute and recurrent HSV ocular infection and present the potential future targets for novel therapeutical options based on immune interventions.
Collapse
Affiliation(s)
- Jacek Rolinski
- Chair and Department of Clinical Immunology, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland
| | - Iwona Hus
- Department of Clinical Transplantology, Medical University of Lublin, Staszica 11, 20-081 Lublin, Poland
| |
Collapse
|
76
|
Uso de terapia antifactor de crecimiento vascular endotelial en patología corneal. REVISTA MEXICANA DE OFTALMOLOGÍA 2014. [DOI: 10.1016/j.mexoft.2014.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
77
|
|
78
|
Park PJ, Chang M, Garg N, Zhu J, Chang JH, Shukla D. Corneal lymphangiogenesis in herpetic stromal keratitis. Surv Ophthalmol 2014; 60:60-71. [PMID: 25444520 DOI: 10.1016/j.survophthal.2014.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 05/23/2014] [Accepted: 06/04/2014] [Indexed: 12/26/2022]
Abstract
Corneal lymphangiogenesis is the extension of lymphatic vessels into the normally alymphatic cornea, a process that compromises the cornea's immune-privileged state and facilitates herpetic stromal keratitis (HSK). HSK results most commonly from infection by herpes simplex virus-1 (HSV-1) and is characterized by immune- and inflammation-mediated damage to the deep layers of the cornea. Current research demonstrates the potential of anti-lymphangiogenic therapy to decrease and prevent herpes-induced lymphangiogenesis.
Collapse
Affiliation(s)
- Paul J Park
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Michael Chang
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Nitin Garg
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jimmy Zhu
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA; Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA; Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA; Department Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.
| |
Collapse
|
79
|
Tranylcypromine reduces herpes simplex virus 1 infection in mice. Antimicrob Agents Chemother 2014; 58:2807-15. [PMID: 24590478 DOI: 10.1128/aac.02617-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) infects the majority of the human population and establishes latency by maintaining viral genomes in neurons of sensory ganglia. Latent virus can undergo reactivation to cause recurrent infection. Both primary and recurrent infections can cause devastating diseases, including encephalitis and corneal blindness. Acyclovir is used to treat patients, but virus resistance to acyclovir is frequently reported. Recent in vitro findings reveal that pretreatment of cells with tranylcypromine (TCP), a drug widely used in the clinic to treat neurological disorders, restrains HSV-1 gene transcription by inhibiting the histone-modifying enzyme lysine-specific demethylase 1. The present study was designed to examine the anti-HSV-1 efficacy of TCP in vivo because of the paucity of reports on this issue. Using the murine model, we found that TCP decreased the severity of wild-type-virus-induced encephalitis and corneal blindness, infection with the acyclovir-resistant (thymidine kinase-negative) HSV-1 mutant, and tissue viral loads. Additionally, TCP blocked in vivo viral reactivation in trigeminal ganglia. These results support the therapeutic potential of TCP for controlling HSV-1 infection.
Collapse
|
80
|
Bhela S, Mulik S, Reddy PBJ, Richardson RL, Gimenez F, Rajasagi NK, Veiga-Parga T, Osmand AP, Rouse BT. Critical role of microRNA-155 in herpes simplex encephalitis. THE JOURNAL OF IMMUNOLOGY 2014; 192:2734-43. [PMID: 24516198 DOI: 10.4049/jimmunol.1302326] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
HSV infection of adult humans occasionally results in life-threatening herpes simplex encephalitis (HSE) for reasons that remain to be defined. An animal system that could prove useful to model HSE could be microRNA-155 knockout (miR-155KO) mice. Thus, we observe that mice with a deficiency of miR-155 are highly susceptible to HSE with a majority of animals (75-80%) experiencing development of HSE after ocular infection with HSV-1. The lesions appeared to primarily represent the destructive consequences of viral replication, and animals could be protected from HSE by acyclovir treatment provided 4 d after ocular infection. The miR-155KO animals were also more susceptible to development of zosteriform lesions, a reflection of viral replication and dissemination within the nervous system. One explanation for the heightened susceptibility to HSE and zosteriform lesions could be because miR-155KO animals develop diminished CD8 T cell responses when the numbers, functionality, and homing capacity of effector CD8 T cell responses were compared. Indeed, adoptive transfer of HSV-immune CD8 T cells to infected miR-155KO mice at 24 h postinfection provided protection from HSE. Deficiencies in CD8 T cell numbers and function also explained the observation that miR-155KO animals were less able than control animals to maintain HSV latency. To our knowledge, our observations may be the first to link miR-155 expression with increased susceptibility of the nervous system to virus infection.
Collapse
Affiliation(s)
- Siddheshvar Bhela
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996-0845
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Abstract
In herpetic stromal keratitis (HSK), herpes simplex virus type-1 DNA fragments and herpes simplex virus-immunoglobulin G immune complexes are present in corneas long after the infective virus has disappeared. These viral components are highly immunogenic and potentiate the production of proinflammatory cytokines and chemokines via Toll-like receptors expressed on corneal cells and macrophages. In addition, angiogenic factors, such as the vascular endothelium growth factor and the tissue-damaging enzyme, matrix metalloproteinase 9, are induced by corneal cells and macrophages through the recognition of these viral components in the pathogenesis of HSK. Upon neovascularization, robust infiltration of leukocytes via leaky new vessels is elicited. Activated polymorphonuclear leukocytes (PMNs) secrete hydrogen peroxide and myeloperoxidase, which inhibit viral growth. PMNs also produce tumor necrosis factor, monokine-induced by interferon-γ (CXCL9), and nitric oxide. These factors provide a local environment that can induce the differentiation of peripheral CD4* T cells to induce Th1-predominant immunopathology. Thus, strategies developed to alter these pathways should lead to new preventative and therapeutic measures for the treatment of HSK.
Collapse
|
82
|
Rajasagi NK, Reddy PBJ, Mulik S, Gjorstrup P, Rouse BT. Neuroprotectin D1 reduces the severity of herpes simplex virus-induced corneal immunopathology. Invest Ophthalmol Vis Sci 2013; 54:6269-79. [PMID: 23942967 DOI: 10.1167/iovs.13-12152] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Neuroprotectin D1 (NPD1) is an anti-inflammatory and proresolving lipid mediator biosynthesized from the omega-3-polyunsaturated fatty acid docosahexaenoic acid (DHA). The purpose of this study is to test the therapeutic potential of NPD1 for the treatment of herpes simplex virus (HSV)-induced stromal keratitis (SK) using a mouse model. METHODS C57BL/6 mice were infected ocularly with HSV-1 strain RE. Infected animals were treated topically with methyl ester prodrug NPD1 (300 ng/eye, 5-μL drop). Development of SK lesions, infiltration of inflammatory cells into the cornea, and production of proinflammatory cytokines, chemokines, and angiogenic factors were compared to untreated animals using slit-lamp biomicroscopy, flow cytometry, ELISA, and quantitative PCR (qPCR). RESULTS Topical administration of NPD1 resulted in a significant reduction in the severity and incidence of SK, as well as the extent of corneal neovascularization in the NPD1-treated animals compared to their untreated counterparts. Infiltration of fewer neutrophils and pathogenic CD4⁺ T cells into the cornea, along with a lower number of cells that could be induced ex vivo to produce IFN-γ and IL-17, occurred with NPD1 treatment. Additionally, treatment with NPD1 diminished the production of proinflammatory cytokines, chemokines, and angiogenic factors, such as IL-6, CXCL1, CXCL-10, CCL-20, VEGF-A, MMP-2, and MMP-9 in the corneas of infected animals. Importantly, treatment with NPD1 increased the production of the anti-inflammatory cytokine, IL-10. CONCLUSIONS Our novel findings demonstrate that NPD1 treatment could represent a valuable therapeutic approach to control SK lesions.
Collapse
Affiliation(s)
- Naveen K Rajasagi
- Biomedical & Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, Tennessee
| | | | | | | | | |
Collapse
|
83
|
Veiga-Parga T, Giménez F, Mulik S, Chiang EY, Grogan JL, Rouse BT. Controlling herpetic stromal keratitis by modulating lymphotoxin-alpha-mediated inflammatory pathways. Microbes Infect 2013; 15:677-87. [PMID: 23850656 DOI: 10.1016/j.micinf.2013.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/28/2013] [Accepted: 07/02/2013] [Indexed: 11/18/2022]
Abstract
Herpes simplex virus 1 infection of the eye can result in stromal keratitis, a chronic immunoinflammatory lesion that is a significant cause of human blindness. A key to controlling the severity of lesions is to identify cellular and molecular events responsible for tissue damage. This report evaluates the role of lymphotoxin-α, a proinflammatory cytokine that could be involved during stromal keratitis. We demonstrate that after infection, both lymphotoxin-α and lymphotoxin-β transcripts are detectable at high levels 48 h postinfection, suggesting roles for the secreted homotrimer lymphotoxin-α3 and the membrane-bound lymphotoxin-α1β2 heterotrimer in stromal keratitis. Using a corneal stromal fibroblast cell line, lymphotoxin-α3 and lymphotoxin-α1β2 were found to have proinflammatory roles by stimulating production of chemokines. Treatment of mice with a depleting anti-lymphotoxin-α mAb during the clinical phase of the disease significantly attenuated stromal keratitis lesions. In treated mice, expression of proinflammatory molecules and chemokines was reduced, as were numbers of cornea-infiltrating proinflammatory cells, particularly Th1 cells. The protective effect of anti-lymphotoxin-α mAb was highly reduced with a mutant version of the mAb that lacks Fc receptor binding activity, indicating that depletion of lymphotoxin-expressing cells was mainly responsible for efficacy, with LT-α3 contributing minimally to inflammation. These data demonstrate that lymphotoxin-expressing cells, such as Th1 cells, mediate stromal keratitis.
Collapse
Affiliation(s)
- Tamara Veiga-Parga
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 1414 Cumberland Avenue, Rm. F403, Knoxville, TN 37996, USA
| | | | | | | | | | | |
Collapse
|
84
|
Absence of CXCL10 aggravates herpes stromal keratitis with reduced primary neutrophil influx in mice. J Virol 2013; 87:8502-10. [PMID: 23720717 DOI: 10.1128/jvi.01198-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) replication initiates inflammation and angiogenesis responses in the cornea to result in herpetic stromal keratitis (HSK), which is a leading cause of infection-induced vision impairment. Chemokines are secreted to modulate HSK by recruiting leukocytes, which affect virus growth, and by influencing angiogenesis. The present study used a murine infection model to investigate the significance of the chemokine CXC chemokine ligand 10 (CXCL10; gamma interferon-inducible protein 10 [IP-10]) in HSK. Here, we show that HSV-1 infection of the cornea induced CXCL10 protein expression in epithelial cells. The corneas of mice with a targeted disruption of the gene encoding CXCL10 displayed decreases in levels of neutrophil-attracting cytokine (interleukin-6), primary neutrophil influx, and viral clearance 2 or 3 days postinfection. Subsequently, absence of CXCL10 aggravated HSK with elevated levels of interleukin-6, chemokines for CD4(+) T cells and/or neutrophils (macrophage inflammatory protein-1α and macrophage inflammatory protein-2), angiogenic factor (vascular endothelial growth factor A), and secondary neutrophil influx, as well as infiltration of CD4(+) T cells to exacerbate opacity and angiogenesis in the cornea at 14 and up to 28 days postinfection. Our results collectively show that endogenous CXCL10 contributes to recruit the primary neutrophil influx and to affect the expression of cytokines, chemokines, and angiogenic factors as well as to reduce the viral titer and HSK severity.
Collapse
|
85
|
Zapata G, Racca L, Tau J, Berra A. Topical use of rapamycin in herpetic stromal keratitis. Ocul Immunol Inflamm 2013; 20:354-9. [PMID: 23030354 DOI: 10.3109/09273948.2012.709575] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To evaluate and compare the efficacy of rapamycin used topically in a mouse model of herpetic stromal keratitis. METHODS The corneas were infected with herpes simplex virus type-1 strain KOS. Animals were divided into: control (CG), rapamycin (RAPA), cyclosporine (CsA), and dexamethasone (DEXA). The evolution of the disease was assessed clinically and histologically. RESULTS On day 10 postinfection (pi), the RAPA group showed only a significantly lower angiogenic development than the CG. On day 14 pi, the treated groups had significantly lower scores for angiogenesis and necrosis than the CG. Also, on day 14 pi, the RAPA and DEXA groups showed significantly lower histopathological scores compared to the CG. CONCLUSIONS The topical application of 0.05% rapamycin showed greater efficacy than 0.5% cyclosporine and similar efficacy to 0.1% dexamethasone to minimize the immuno-inflammatory process. Also, rapamycin showed early inhibition of the formation of new vessels.
Collapse
Affiliation(s)
- Gustavo Zapata
- Laboratorio de Investigaciones Oculares, Departamento de Patología, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
86
|
Sun Y, Su L, Wang Z, Xu Y, Xu X. H-RN, a peptide derived from hepatocyte growth factor, inhibits corneal neovascularization by inducing endothelial apoptosis and arresting the cell cycle. BMC Cell Biol 2013; 14:8. [PMID: 23433118 PMCID: PMC3598793 DOI: 10.1186/1471-2121-14-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The goal of this study was to investigate the anti-angiogenic activity of a novel peptide H-RN, derived from the hepatocyte growth factor kringle 1 domain (HGF K1), in a mouse model of corneal neovascularization. The anti-angiogenic effect of H-RN on vascular endothelial growth factor (VEGF)-stimulated cell proliferation, cell migration and endothelial cell tube formation was assessed in vitro using Human Umbilical Vein Endothelial Cells (HUVECs) and in vivo using a mouse cornea micropocket assay. Apoptosis and cell cycle arrest were assessed by flow cytometry. A scrambled peptide was used as a negative control. RESULTS H-RN effectively inhibited VEGF-stimulated HUVEC proliferation, migration and tube formation on Matrigel, while a scrambled peptide exerted no effect. In the mouse model of corneal angiogenesis, VEGF-stimulated angiogenesis was significantly inhibited by H-RN compared to a scrambled peptide that had no such activity. VEGF protected HUVECs from apoptosis, while H-RN inhibited this protective effect of VEGF. VEGF significantly increased the proportion of cells in the S phase compared to control treated cells (p<0.05). Treatment with H-RN (1.5 mM) induced the accumulation of cells in G0/G1 phase, while the proportion of cells in the S phase and G2/M phase decreased significantly compared to control group (p<0.05). CONCLUSIONS H-RN has anti-angiogenic activity in HUVECs and in a mouse model of VEGF-induced corneal neovascularization. The anti-angiogenic activity of H-RN was related to apoptosis and cell cycle arrest, indicating a potential strategy for anti-angiogenic treatment in the cornea.
Collapse
Affiliation(s)
- Ye Sun
- Department of Biology, Shanghai Institute of Technology, 200235, Shanghai, P.R. China
| | - Li Su
- Department of Ophthalmology, Shanghai First People’s Hospital, Shanghai JiaoTong University, Haining Road 100, 200080, Shanghai, P.R. China
| | - Zhongxiao Wang
- Department of Ophthalmology, Shanghai First People’s Hospital, Shanghai JiaoTong University, Haining Road 100, 200080, Shanghai, P.R. China
| | - Yi Xu
- Department of Ophthalmology, Shanghai First People’s Hospital, Shanghai JiaoTong University, Haining Road 100, 200080, Shanghai, P.R. China
| | - Xun Xu
- Department of Ophthalmology, Shanghai First People’s Hospital, Shanghai JiaoTong University, Haining Road 100, 200080, Shanghai, P.R. China
| |
Collapse
|
87
|
Mulik S, Bhela S, Rouse BT. Potential function of miRNAs in herpetic stromal keratitis. Invest Ophthalmol Vis Sci 2013; 54:563-73. [PMID: 23329734 DOI: 10.1167/iovs.12-11094] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs (miRNAs), the newly discovered regulators of gene expression, act by promoting degradation of mRNA and/or by inhibiting protein expression. Dysregulation of miRNA expression has been noted in an expanding number of diseases; and in some instances, manipulating miRNA expression holds promise as a new form of therapy. Herpetic stromal keratitis (HSK) is an important vision-impairing lesion and currently any role that miRNA dysregulation plays during its pathogenesis is only just beginning to be investigated. In this review, we discuss the likely participation of specific miRNAs during HSK and discuss the prospect of modulating their expression as a means of therapy.
Collapse
Affiliation(s)
- Sachin Mulik
- Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | | | | |
Collapse
|
88
|
Host defenses to viruses. Clin Immunol 2013. [PMCID: PMC7150138 DOI: 10.1016/b978-0-7234-3691-1.00017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
89
|
Michelini FM, Zorrilla P, Robello C, Alché LE. Immunomodulatory activity of an anti-HSV-1 synthetic stigmastane analog. Bioorg Med Chem 2013; 21:560-8. [DOI: 10.1016/j.bmc.2012.10.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/17/2012] [Accepted: 10/25/2012] [Indexed: 10/27/2022]
|
90
|
Veiga-Parga T, Suryawanshi A, Mulik S, Giménez F, Sharma S, Sparwasser T, Rouse BT. On the role of regulatory T cells during viral-induced inflammatory lesions. THE JOURNAL OF IMMUNOLOGY 2012; 189:5924-33. [PMID: 23129753 DOI: 10.4049/jimmunol.1202322] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ocular HSV-1 infection can result in stromal keratitis, a blinding immunoinflammatory lesion that represents an immunopathological response to the infection. CD4(+) T cells are the main orchestrators, and lesions are more severe if the regulatory T cell (Treg) response is compromised from the onset of infection. Little is known about the role of Foxp3(+)CD4(+) Tregs during ongoing inflammatory reactions, which is the topic of this article. We used DEREG mice and depleted Tregs at different times postinfection. We show that lesions became more severe even when depletion was begun in the clinical phase of the disease. This outcome was explained both by Tregs' influence on the activity of inflammatory effector T cells at the lesion site and by an effect in lymphoid tissues that led to reduced numbers of effectors and less trafficking of T cells and neutrophils to the eye. Our results demonstrate that Tregs can beneficially influence the impact of ongoing tissue-damaging responses to a viral infection and imply that therapies boosting Treg function in the clinical phase hold promise for controlling a lesion that is an important cause of human blindness.
Collapse
Affiliation(s)
- Tamara Veiga-Parga
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | | | | | | | |
Collapse
|
91
|
Bueno CA, Lombardi MG, Sales ME, Alché LE. A natural antiviral and immunomodulatory compound with antiangiogenic properties. Microvasc Res 2012; 84:235-41. [PMID: 23006904 DOI: 10.1016/j.mvr.2012.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 08/18/2012] [Accepted: 09/13/2012] [Indexed: 12/20/2022]
Abstract
Meliacine (MA), an antiviral principle present in partially purified leaf extracts of Melia azedarach L., reduces viral load and abolishes the inflammatory reaction and neovascularization during the development of herpetic stromal keratitis in mice. 1-cinnamoyl-3,11-dihydroxymeliacarpin (CDM), obtained from MA, displays anti-herpetic and immunomodulatory activities in vitro. We investigated whether CDM interferes with the angiogenic process. CDM impeded VEGF transcription in LPS-stimulated and HSV-1-infected cells. It proved to have neither cytotoxic nor antiproliferative effect in HUVEC and to restrain HUVEC migration and formation of capillary-like tubes. Moreover, MA inhibits LMM3 tumor-induced neovascularization in vivo. We postulate that the antiangiogenic activity of CDM displayed in vitro as a consequence of their immunomodulatory properties is responsible for the antiangiogenic activity of MA in vivo, which would be associated with the lack of neovascularization in murine HSV-1-induced ocular disease.
Collapse
Affiliation(s)
- Carlos A Bueno
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Piso 4°, Ciudad Universitaria, C-1428GBA, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
92
|
Orita T, Kimura K, Nishida T, Sonoda KH. Cytokine and chemokine secretion induced by poly(I:C) through NF-κB and phosphoinositide 3-kinase signaling pathways in human corneal fibroblasts. Curr Eye Res 2012; 38:53-9. [PMID: 22954322 DOI: 10.3109/02713683.2012.721044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE/AIM Viral infection of the cornea can result in inflammation and scarring and eventually lead to blindness. Polyinosinic-polycytidylic acid [poly(I:C)], an analog of viral double-stranded RNA, induces the secretion of cytokines and chemokines from cultured corneal fibroblasts. We have now investigated the role of nuclear factor (NF)-κB and phosphoinositide 3-kinase (PI3K) signaling pathways in poly(I:C)-induced cytokine and chemokine secretion from corneal fibroblasts. MATERIALS AND METHODS Human corneal fibroblasts were cultured with poly(I:C) in the absence or presence of IKK-2 inhibitor or LY294002, which are inhibitors of NF-κB and PI3K signaling, respectively. The release of the pro-inflammatory cytokine interleukin (IL)-6 and the chemokines IL-8, IP-10, and RANTES from the cells was measured with an enzyme-linked immunosorbent assay. RESULTS Poly(I:C) induced the secretion of IL-6, IL-8, IP-10, and RANTES from corneal fibroblasts. Whereas the poly(I:C)-induced secretion of IL-6, IP-10, and RANTES was inhibited by both IKK-2 inhibitor and LY294002, that of IL-8 was blocked only by IKK-2 inhibitor. CONCLUSIONS The poly(I:C)-induced secretion of IL-6, IP-10, and RANTES from human corneal fibroblasts is mediated by both NF-κB and PI3K signaling pathways, whereas that of IL-8 is mediated by the NF-κB pathway. These signaling pathways thus likely contribute to local inflammation in the corneal stroma induced by viral infection.
Collapse
Affiliation(s)
- Tomoko Orita
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube City, Yamaguchi 755-8505, Japan
| | | | | | | |
Collapse
|
93
|
Abstract
Herpes simplex virus-1 (HSV-1) infects the majority of the world's population. These infections are often asymptomatic, but ocular HSV-1 infections cause multiple pathologies with perhaps the most destructive being herpes stromal keratitis (HSK). HSK lesions, which are immunoinflammatory in nature, can recur throughout life and often cause progressive corneal scaring resulting in visual impairment. Current treatment involves broad local immunosuppression with topical steroids along with antiviral coverage. Unfortunately, the immunopathologic mechanisms defined in animal models of HSK have not yet translated into improved therapy. Herein, we review the clinical epidemiology and pathology of the disease and summarize the large amount of basic research regarding the immunopathology of HSK. We examine the role of the innate and adaptive immune system in the clearance of virus and the destruction of the normal corneal architecture that is typical of HSK. Our goal is to define current knowledge of the pathogenic mechanisms and recurrent nature of HSK and identify areas that require further study.
Collapse
|
94
|
Giménez F, Suryawanshi A, Rouse BT. Pathogenesis of herpes stromal keratitis--a focus on corneal neovascularization. Prog Retin Eye Res 2012; 33:1-9. [PMID: 22892644 DOI: 10.1016/j.preteyeres.2012.07.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/20/2012] [Accepted: 07/25/2012] [Indexed: 12/28/2022]
Abstract
The cornea is a complex sensory organ that must maintain its transparency for optimal vision. Infections such as with herpes simplex virus can result in blinding immunoinflammatory reactions referred to as herpes stromal keratitis (HSK). In this review we discuss the pathogenesis of HSK referring to work mainly done using animal model systems. We briefly discuss the role of multiple cell types and soluble mediators but focus on the critical role of corneal vascularization (CV) in contributing to corneal damage. We describe how VEGF and other angiogenic molecules are induced following infection and discuss the many ways by which CV can be controlled. Speculations are made regarding future approaches that could improve the management of HSK.
Collapse
Affiliation(s)
- Fernanda Giménez
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN 37996, USA
| | | | | |
Collapse
|
95
|
Mulik S, Xu J, Reddy PBJ, Rajasagi NK, Gimenez F, Sharma S, Lu PY, Rouse BT. Role of miR-132 in angiogenesis after ocular infection with herpes simplex virus. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:525-34. [PMID: 22659469 DOI: 10.1016/j.ajpath.2012.04.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/29/2012] [Accepted: 04/05/2012] [Indexed: 11/17/2022]
Abstract
MicroRNAs (miRNAs) are small regulatory molecules that control diverse biological processes that include angiogenesis. Herpes simplex virus (HSV) causes a chronic immuno-inflammatory response in the eye that may result in corneal neovascularization during blinding immunopathological lesion stromal keratitis (SK). miR-132 is a highly conserved miRNA that is induced in endothelial cells in response to growth factors, such as vascular endothelial growth factor (VEGF). In this study, we show that miR-132 expression was up-regulated (10- to 20-fold) after ocular infection with HSV, an event that involved the production of both VEGF-A and IL-17. Consequently, blockade of VEGF-A activity using soluble VEGF receptor 1 resulted in significantly lower levels of corneal miR-132 after HSV infection. In addition, low levels of corneal miR-132 were detected in IL-17 receptor knockout mice after HSV infection. In vivo silencing of miR-132 by the provision of anti-miR-132 (antagomir-132) nanoparticles to HSV-infected mice led to reduced corneal neovascularization and diminished SK lesions. The anti-angiogenic effect of antagomir-132 was reflected by a reduction in angiogenic Ras activity in corneal CD31-enriched cells (presumably blood vessel endothelial cells) during SK. To our knowledge, this is one of the first reports of miRNA involvement in an infectious ocular disease. Manipulating miRNA expression holds promise as a therapeutic approach to control an ocular lesion that is an important cause of human blindness.
Collapse
MESH Headings
- Animals
- Cornea/blood supply
- Cornea/metabolism
- Cornea/pathology
- Cornea/virology
- Corneal Neovascularization/complications
- Corneal Neovascularization/metabolism
- Corneal Neovascularization/pathology
- Corneal Neovascularization/virology
- Eye Infections/complications
- Eye Infections/genetics
- Eye Infections/pathology
- Eye Infections/virology
- Female
- Gene Expression Regulation/drug effects
- Gene Knockdown Techniques
- Gene Silencing/drug effects
- Humans
- Interleukin-17/metabolism
- Keratitis, Herpetic/complications
- Keratitis, Herpetic/genetics
- Keratitis, Herpetic/pathology
- Keratitis, Herpetic/virology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- MicroRNAs/antagonists & inhibitors
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Models, Biological
- Nanoparticles
- Neovascularization, Pathologic/complications
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Oligoribonucleotides/administration & dosage
- Oligoribonucleotides/pharmacology
- Receptors, Interleukin-17/metabolism
- Simplexvirus/drug effects
- Simplexvirus/physiology
- Vascular Endothelial Growth Factor A/antagonists & inhibitors
- Vascular Endothelial Growth Factor A/metabolism
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Sachin Mulik
- Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Suppression of transcription factor early growth response 1 reduces herpes simplex virus 1-induced corneal disease in mice. J Virol 2012; 86:8559-67. [PMID: 22647700 DOI: 10.1128/jvi.00505-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Herpes simplex virus 1 replication initiates angiogenesis and inflammation in the cornea. This can result in herpetic stromal keratitis (HSK), which is a leading cause of infection-induced corneal blindness. Host cellular factors mediate the progression of HSK, but little is known about these cellular factors and their mechanisms of action. We show here that the expression of the cellular transcription factor early growth response 1 (Egr-1) in HSV-1-infected mouse corneas was enhanced. Enhanced Egr-1 expression aggravated HSK by increasing viral replication and subsequent neovascularization with high levels of potent angiogenic factors, fibroblast growth factor 2, and vascular endothelial growth factor. Furthermore, Egr-1 deficiency due to a targeted disruption of the gene or knockdown of Egr-1 expression topically using a DNA-based enzyme significantly reduced HSK by decreasing both viral replication and the angiogenic response. The present study provides the first evidence that endogenous Egr-1 aggravates HSK and that blocking Egr-1 reduces corneal damage.
Collapse
|
97
|
Hayashi K, Hooper LC, Okuno T, Takada Y, Hooks JJ. Inhibition of HSV-1 by chemoattracted neutrophils: supernatants of corneal epithelial cells (HCE) and macrophages (THP-1) treated with virus components chemoattract neutrophils (PMN), and supernatants of PMN treated with these conditioned media inhibit viral growth. Arch Virol 2012; 157:1377-81. [PMID: 22527863 PMCID: PMC3384783 DOI: 10.1007/s00705-012-1306-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/10/2012] [Indexed: 01/06/2023]
Abstract
The role of PMNs (neutrophils) in corneal herpes was studied using an in vitro system. Human corneal cells (HCE) and macrophages (THP-1) infected with HSV-1 or treated with virus components (DNA or virus immune complexes) released chemokines, which attracted PMNs. Highly reactive oxygen species were detected in PMNs. PMNs inhibited HSV when overlaid onto infected HCE cells (50:1). PMNs incubated with the supernatants of HCE cells treated with virus components released H2O2 and myeloperoxidase. These inhibited virus growth. PMNs released NO and MIG, which may differentiate CD4 T cells to Th1. PMNs participate in innate immune responses, limit virus growth, and initiate immunopathology.
Collapse
Affiliation(s)
- Kozaburo Hayashi
- Immunology and Virology Section, Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
98
|
Altenburger AE, Bachmann B, Seitz B, Cursiefen C. Morphometric analysis of postoperative corneal neovascularization after high-risk keratoplasty: herpetic versus non-herpetic disease. Graefes Arch Clin Exp Ophthalmol 2012; 250:1663-71. [DOI: 10.1007/s00417-012-1988-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 01/30/2012] [Accepted: 02/27/2012] [Indexed: 10/28/2022] Open
|
99
|
Resident Corneal Cells Communicate with Neutrophils Leading to the Production of IP-10 during the Primary Inflammatory Response to HSV-1 Infection. Int J Inflam 2012; 2012:810359. [PMID: 22518343 PMCID: PMC3317199 DOI: 10.1155/2012/810359] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/28/2011] [Accepted: 12/19/2011] [Indexed: 01/17/2023] Open
Abstract
In this study we show that murine and human neutrophils are capable of secreting IP-10 in response to communication from the HSV-1 infected cornea and that they do so in a time frame associated with the recruitment of CD8+ T cells and CXCR3-expressing cells. Cellular markers were used to establish that neutrophil influx corresponded in time to peak IP-10 production, and cellular depletion confirmed neutrophils to be a significant source of IP-10 during HSV-1 corneal infection in mice. A novel ex vivo model for human corneal tissue infection with HSV-1 was used to confirm that cells resident in the cornea are also capable of stimulating neutrophils to secrete IP-10. Our results support the hypothesis that neutrophils play a key role in T-cell recruitment and control of viral replication during HSV-1 corneal infection through the production of the T-cell recruiting chemokine IP-10.
Collapse
|
100
|
Suryawanshi A, Veiga-Parga T, Reddy PBJ, Rajasagi NK, Rouse BT. IL-17A differentially regulates corneal vascular endothelial growth factor (VEGF)-A and soluble VEGF receptor 1 expression and promotes corneal angiogenesis after herpes simplex virus infection. THE JOURNAL OF IMMUNOLOGY 2012; 188:3434-46. [PMID: 22379030 DOI: 10.4049/jimmunol.1102602] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ocular infection with HSV causes corneal neovascularization (CV), an essential step in the pathogenesis of the blinding immunoinflammatory lesion stromal keratitis. The infection results in IL-17A production, which contributes to CV in ways that together serve to shift the balance between corneal concentrations of vascular endothelial growth factor A (VEGF-A) and the soluble vascular endothelial growth factor receptor 1 molecule, which binds to VEGF-A and blocks its function (a so-called VEGF trap). Accordingly, animals lacking responses to IL-17A signaling, either because of IL-17 receptor A knockout or wild-type animals that received neutralizing mAb to IL-17A, had diminished CV, compared with controls. The procedures reduced VEGF-A protein levels but had no effect on the levels of soluble vascular endothelial growth factor receptor 1. Hence the VEGF trap was strengthened. IL-17A also caused increased CXCL1/KC synthesis, which attracts neutrophils to the inflammatory site. Neutrophils further influenced the extent of CV by acting as an additional source of VEGF-A, as did metalloproteinase enzymes that degrade the soluble receptor, inhibiting its VEGF-blocking activity. Our results indicate that suppressing the expression of IL-17A, or increasing the activity of the VEGF trap, represents a useful approach to inhibiting CV and the control of an ocular lesion that is an important cause of human blindness.
Collapse
Affiliation(s)
- Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996-0854, USA.
| | | | | | | | | |
Collapse
|