51
|
Dam V, Sikder T, Santosa S. From neutrophils to macrophages: differences in regional adipose tissue depots. Obes Rev 2016; 17:1-17. [PMID: 26667065 DOI: 10.1111/obr.12335] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/01/2015] [Accepted: 09/23/2015] [Indexed: 12/27/2022]
Abstract
Currently, we do not fully understand the underlying mechanisms of how regional adiposity promotes metabolic dysregulation. As adipose tissue expands, there is an increase in chronic systemic low-grade inflammation due to greater infiltration of immune cells and production of cytokines. This chronic inflammation is thought to play a major role in the development of metabolic complications and disease such as insulin resistance and diabetes. We know that different adipose tissue depots contribute differently to the risk of metabolic disease. People who have an upper body fat distribution around the abdomen are at greater risk of disease than those who tend to store fat in their lower body around the hips and thighs. Thus, it is conceivable that adipose tissue depots contribute differently to the inflammatory milieu as a result of varied infiltration of immune cell types. In this review, we describe the role and function of major resident immune cells in the development of adipose tissue inflammation and discuss their regional differences in the context of metabolic disease risk. We find that although initial studies have found regional differences, a more comprehensive understanding of how immune cells interrupt adipose tissue homeostasis is needed.
Collapse
Affiliation(s)
- V Dam
- Department of Exercise Science, Concordia University, Montreal, QC, Canada.,Nutrition, Obesity, and Metabolism Lab, PERFORM Centre, Concordia University, Montreal, QC, Canada
| | - T Sikder
- Department of Exercise Science, Concordia University, Montreal, QC, Canada.,Nutrition, Obesity, and Metabolism Lab, PERFORM Centre, Concordia University, Montreal, QC, Canada
| | - S Santosa
- Department of Exercise Science, Concordia University, Montreal, QC, Canada.,Nutrition, Obesity, and Metabolism Lab, PERFORM Centre, Concordia University, Montreal, QC, Canada
| |
Collapse
|
52
|
Maladaptive Modulations of NLRP3 Inflammasome and Cardioprotective Pathways Are Involved in Diet-Induced Exacerbation of Myocardial Ischemia/Reperfusion Injury in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:3480637. [PMID: 26788246 PMCID: PMC4691622 DOI: 10.1155/2016/3480637] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/09/2015] [Indexed: 12/22/2022]
Abstract
Excessive fatty acids and sugars intake is known to affect the development of cardiovascular diseases, including myocardial infarction. However, the underlying mechanisms are ill defined. Here we investigated the balance between prosurvival and detrimental pathways within the heart of C57Bl/6 male mice fed a standard diet (SD) or a high-fat high-fructose diet (HFHF) for 12 weeks and exposed to cardiac ex vivo ischemia/reperfusion (IR) injury. Dietary manipulation evokes a maladaptive response in heart mice, as demonstrated by the shift of myosin heavy chain isoform content from α to β, the increased expression of the Nlrp3 inflammasome and markers of oxidative metabolism, and the downregulation of the hypoxia inducible factor- (HIF-)2α and members of the Reperfusion Injury Salvage Kinases (RISK) pathway. When exposed to IR, HFHF mice hearts showed greater infarct size and lactic dehydrogenase release in comparison with SD mice. These effects were associated with an exacerbated overexpression of Nlrp3 inflammasome, resulting in marked caspase-1 activation and a compromised activation of the cardioprotective RISK/HIF-2α pathways. The common mechanisms of damage here reported lead to a better understanding of the cross-talk among prosurvival and detrimental pathways leading to the development of cardiovascular disorders associated with metabolic diseases.
Collapse
|
53
|
Abstract
The crosstalk between adipose tissue and skeletal muscle has gained considerable interest, since this process, specifically in obesity, substantially drives the pathogenesis of muscle insulin resistance. In this review, we discuss novel concepts and targets of this bidirectional organ communication system. This includes adipo-myokines like apelin and FGF21, inflammasomes, autophagy, and microRNAs (miRNAs). Literature analysis shows that the crosstalk between fat and muscle involves both extracellular molecules and intracellular organelles. We conclude that integration of these multiple crosstalk elements into one network will be required to better understand this process.
Collapse
Affiliation(s)
- Ira Indrakusuma
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center (DDZ), Auf'm Hennekamp 65, 40225, Düsseldorf, Germany
| | - Henrike Sell
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center (DDZ), Auf'm Hennekamp 65, 40225, Düsseldorf, Germany.
| | - Jürgen Eckel
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center (DDZ), Auf'm Hennekamp 65, 40225, Düsseldorf, Germany
| |
Collapse
|
54
|
Traba J, Kwarteng-Siaw M, Okoli TC, Li J, Huffstutler RD, Bray A, Waclawiw MA, Han K, Pelletier M, Sauve AA, Siegel RM, Sack MN. Fasting and refeeding differentially regulate NLRP3 inflammasome activation in human subjects. J Clin Invest 2015; 125:4592-600. [PMID: 26529255 DOI: 10.1172/jci83260] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/24/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Activation of the NLRP3 inflammasome is associated with metabolic dysfunction, and intermittent fasting has been shown to improve clinical presentation of NLRP3 inflammasome-linked diseases. As mitochondrial perturbations, which function as a damage-associated molecular pattern, exacerbate NLRP3 inflammasome activation, we investigated whether fasting blunts inflammasome activation via sirtuin-mediated augmentation of mitochondrial integrity. METHODS We performed a clinical study of 19 healthy volunteers. Each subject underwent a 24-hour fast and then was fed a fixed-calorie meal. Blood was drawn during the fasted and fed states and analyzed for NRLP3 inflammasome activation. We enrolled an additional group of 8 healthy volunteers to assess the effects of the sirtuin activator, nicotinamide riboside, on NLRP3 inflammasome activation. RESULTS In the fasting/refeeding study, individuals showed less NLRP3 inflammasome activation in the fasted state compared with that in refed conditions. In a human macrophage line, depletion of the mitochondrial-enriched sirtuin deacetylase SIRT3 increased NLRP3 inflammasome activation in association with excessive mitochondrial ROS production. Furthermore, genetic and pharmacologic SIRT3 activation blunted NLRP3 activity in parallel with enhanced mitochondrial function in cultured cells and in leukocytes extracted from healthy volunteers and from refed individuals but not in those collected during fasting. CONCLUSIONS Together, our data indicate that nutrient levels regulate the NLRP3 inflammasome, in part through SIRT3-mediated mitochondrial homeostatic control. Moreover, these results suggest that deacetylase-dependent inflammasome attenuation may be amenable to targeting in human disease. TRIAL REGISTRATION ClinicalTrials.gov NCT02122575 and NCT00442195. FUNDING Division of Intramural Research, NHLBI of the NIH.
Collapse
|
55
|
Olson NC, Doyle MF, de Boer IH, Huber SA, Jenny NS, Kronmal RA, Psaty BM, Tracy RP. Associations of Circulating Lymphocyte Subpopulations with Type 2 Diabetes: Cross-Sectional Results from the Multi-Ethnic Study of Atherosclerosis (MESA). PLoS One 2015; 10:e0139962. [PMID: 26458065 PMCID: PMC4601795 DOI: 10.1371/journal.pone.0139962] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/18/2015] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Distinct lymphocyte subpopulations have been implicated in the regulation of glucose homeostasis and obesity-associated inflammation in mouse models of insulin resistance. Information on the relationships of lymphocyte subpopulations with type 2 diabetes remain limited in human population-based cohort studies. METHODS Circulating levels of innate (γδ T, natural killer (NK)) and adaptive immune (CD4+ naive, CD4+ memory, Th1, and Th2) lymphocyte subpopulations were measured by flow cytometry in the peripheral blood of 929 free-living participants of the Multi-Ethnic Study of Atherosclerosis (MESA). Cross-sectional relationships of lymphocyte subpopulations with type 2 diabetes (n = 154) and fasting glucose and insulin concentrations were evaluated by generalized linear models. RESULTS Each standard deviation (SD) higher CD4+ memory cells was associated with a 21% higher odds of type 2 diabetes (95% CI: 1-47%) and each SD higher naive cells was associated with a 22% lower odds (95% CI: 4-36%) (adjusted for age, gender, race/ethnicity, and BMI). Among participants not using diabetes medication, higher memory and lower naive CD4+ cells were associated with higher fasting glucose concentrations (p<0.05, adjusted for age, sex, and race/ethnicity). There were no associations of γδ T, NK, Th1, or Th2 cells with type 2 diabetes, glucose, or insulin. CONCLUSIONS A higher degree of chronic adaptive immune activation, reflected by higher memory and lower naive CD4+ cells, was positively associated with type 2 diabetes. These results are consistent with a role of chronic immune activation and exhaustion augmenting chronic inflammatory diseases, and support the importance of prospective studies evaluating adaptive immune activation and type 2 diabetes.
Collapse
Affiliation(s)
- Nels C. Olson
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Margaret F. Doyle
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Ian H. de Boer
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Kidney Research Institute, University of Washington, Seattle, Washington, United States of America
| | - Sally A. Huber
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Nancy Swords Jenny
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Richard A. Kronmal
- Collaborative Health Studies Coordinating Center, Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Bruce M. Psaty
- Departments of Medicine, Epidemiology, Health Services, and Cardiovascular Health Research Unit, University of Washington, Seattle, Washington, United States of America
- Group Health Research Institute, Group Health Cooperative, Seattle, Washington, United States of America
| | - Russell P. Tracy
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States of America
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
56
|
Wang X, He G, Peng Y, Zhong W, Wang Y, Zhang B. Sodium butyrate alleviates adipocyte inflammation by inhibiting NLRP3 pathway. Sci Rep 2015; 5:12676. [PMID: 26234821 PMCID: PMC4522654 DOI: 10.1038/srep12676] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 07/06/2015] [Indexed: 02/06/2023] Open
Abstract
Insulin resistance (IR) is a common feature of Type II diabetes, metabolic disorders, hypertension and other vascular diseases. Recent studies showed that obesity-induced inflammation may be critical for IR. To investigate the anti-inflammatory effect of sodium butyrate (NaB) on obesity-induced inflammation, the db/db mice were intraperitoneally injected with NaB for 6 weeks. Glucose control was evaluated by glucose tolerance test (GTT) and insulin tolerance test (ITT). Adipose tissue was harvested for gene expression analysis. 3T3-L1 adipocytes were treated with Tnf-α to mimic the inflammatory state and gene expression was detected by realtime PCR and Western blotting. Our results showed that NaB treatment improved glucose control in db/db mice as determined by GTT and ITT tests. Gene expression analysis showed that NaB inhibited cytokines and immunological markers including CD68, Interferon-γ and Mcp in adipose tissues in db/db mice. Moreover, NaB inhibited cytokine releasing in 3T3-L1 adipocytes treated with TNF-α. Further analysis of inflammation pathway showed that NLRP3 was activated in db/db mice, which was efficiently inhibited by NaB treatment. Our data suggest that inhibition of obesity-induced inflammation alleviates IR, and NaB might be a potential anti-inflammatory agent for obesity.
Collapse
Affiliation(s)
- Xukai Wang
- Department of Cardiovascular Internal Medicine, Institute of Field Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Gang He
- Department of Medical Genetics, College of Basic Medicine, Third Military Medical University, Chongqing, China
| | - Yan Peng
- Department of Cardiovascular Internal Medicine, Institute of Field Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Weitian Zhong
- Department of Cardiovascular Internal Medicine, Institute of Field Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yan Wang
- Department of Medical Genetics, College of Basic Medicine, Third Military Medical University, Chongqing, China
| | - Bo Zhang
- Department of Medical Genetics, College of Basic Medicine, Third Military Medical University, Chongqing, China
| |
Collapse
|
57
|
Hocking SL, Stewart RL, Brandon AE, Suryana E, Stuart E, Baldwin EM, Kolumam GA, Modrusan Z, Junutula JR, Gunton JE, Medynskyj M, Blaber SP, Karsten E, Herbert BR, James DE, Cooney GJ, Swarbrick MM. Subcutaneous fat transplantation alleviates diet-induced glucose intolerance and inflammation in mice. Diabetologia 2015; 58:1587-600. [PMID: 25899451 DOI: 10.1007/s00125-015-3583-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/13/2015] [Indexed: 12/26/2022]
Abstract
AIMS/HYPOTHESIS Adipose tissue (AT) distribution is a major determinant of mortality and morbidity in obesity. In mice, intra-abdominal transplantation of subcutaneous AT (SAT) protects against glucose intolerance and insulin resistance (IR), but the underlying mechanisms are not well understood. METHODS We investigated changes in adipokines, tissue-specific glucose uptake, gene expression and systemic inflammation in male C57BL6/J mice implanted intra-abdominally with either inguinal SAT or epididymal visceral AT (VAT) and fed a high-fat diet (HFD) for up to 17 weeks. RESULTS Glucose tolerance was improved in mice receiving SAT after 6 weeks, and this was not attributable to differences in adiposity, tissue-specific glucose uptake, or plasma leptin or adiponectin concentrations. Instead, SAT transplantation prevented HFD-induced hepatic triacylglycerol accumulation and normalised the expression of hepatic gluconeogenic enzymes. Grafted fat displayed a significant increase in glucose uptake and unexpectedly, an induction of skeletal muscle-specific gene expression. Mice receiving subcutaneous fat also displayed a marked reduction in the plasma concentrations of several proinflammatory cytokines (TNF-α, IL-17, IL-12p70, monocyte chemoattractant protein-1 [MCP-1] and macrophage inflammatory protein-1β [ΜIP-1β]), compared with sham-operated mice. Plasma IL-17 and MIP-1β concentrations were reduced from as early as 4 weeks after transplantation, and differences in plasma TNF-α and IL-17 concentrations predicted glucose tolerance and insulinaemia in the entire cohort of mice (n = 40). In contrast, mice receiving visceral fat transplants were glucose intolerant, with increased hepatic triacylglycerol content and elevated plasma IL-6 concentrations. CONCLUSIONS/INTERPRETATION Intra-abdominal transplantation of subcutaneous fat reverses HFD-induced glucose intolerance, hepatic triacylglycerol accumulation and systemic inflammation in mice.
Collapse
Affiliation(s)
- Samantha L Hocking
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, 2010, Sydney, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Tsai S, Clemente-Casares X, Revelo XS, Winer S, Winer DA. Are obesity-related insulin resistance and type 2 diabetes autoimmune diseases? Diabetes 2015; 64:1886-97. [PMID: 25999531 DOI: 10.2337/db14-1488] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity and associated insulin resistance predispose individuals to develop chronic metabolic diseases, such as type 2 diabetes and cardiovascular disease. Although these disorders affect a significant proportion of the global population, the underlying mechanisms of disease remain poorly understood. The discovery of elevated tumor necrosis factor-α in adipose tissue as an inducer of obesity-associated insulin resistance marked a new era of understanding that a subclinical inflammatory process underlies the insulin resistance and metabolic dysfunction that precedes type 2 diabetes. Advances in the field identified components of both the innate and adaptive immune response as key players in regulating such inflammatory processes. As antigen specificity is a hallmark of an adaptive immune response, its role in modulating the chronic inflammation that accompanies obesity and type 2 diabetes begs the question of whether insulin resistance and type 2 diabetes can have autoimmune components. In this Perspective, we summarize current data that pertain to the activation and perpetuation of adaptive immune responses during obesity and discuss key missing links and potential mechanisms for obesity-related insulin resistance and type 2 diabetes to be considered as potential autoimmune diseases.
Collapse
Affiliation(s)
- Sue Tsai
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Xavier Clemente-Casares
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Xavier S Revelo
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Shawn Winer
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Daniel A Winer
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada Department of Pathology, University Health Network, Toronto, Ontario, Canada Division of Endocrinology and Metabolism, Department of Medicine, University Health Network, Toronto, Ontario, Canada Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
59
|
Lee HJ, Hong YS, Jun W, Yang SJ. Nicotinamide Riboside Ameliorates Hepatic Metaflammation by Modulating NLRP3 Inflammasome in a Rodent Model of Type 2 Diabetes. J Med Food 2015; 18:1207-13. [PMID: 25974041 DOI: 10.1089/jmf.2015.3439] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Low-grade chronic inflammation (metaflammation) is a major contributing factor for the onset and development of metabolic diseases, such as type 2 diabetes, obesity, and cardiovascular disease. Nicotinamide riboside (NR), which is present in milk and beer, is a functional vitamin B3 having advantageous effects on metabolic regulation. However, the anti-inflammatory capacity of NR is unknown. This study evaluated whether NR modulates hepatic nucleotide binding and oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome. Male, 8-week-old KK/HlJ mice were allocated to the control or NR group. NR (100 mg/kg/day) or vehicle (phosphate-buffered saline) was administrated by an osmotic pump for 7 days. Glucose control, lipid profiles, NLRP3 inflammasome, and inflammation markers were analyzed, and structural and histological analyses were conducted. NR treatment did not affect body weight gain, food intake, and liver function. Glucose control based on the oral glucose tolerance test and levels of serum insulin and adiponectin was improved by NR treatment. Among tested lipid profiles, NR lowered the total cholesterol concentration in the liver. Histological and structural analysis by hematoxylin and eosin staining and transmission electron microscopy, respectively, showed that NR rescued the disrupted cellular integrity of the mitochondria and nucleus in the livers of obese and diabetic KK mice. In addition, NR treatment significantly improved hepatic proinflammatory markers, including tumor necrosis factor-alpha, interleukin (IL)-6, and IL-1. These ameliorations were accompanied by significant shifts of NLRP3 inflammasome components (NLRP3, ASC, and caspase1). These results demonstrate that NR attenuates hepatic metaflammation by modulating the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Hee Jae Lee
- 1 Division of Food and Nutrition, Human Ecology Research Institute, Chonnam National University , Gwangju, Korea
| | - Young-Shick Hong
- 1 Division of Food and Nutrition, Human Ecology Research Institute, Chonnam National University , Gwangju, Korea
| | - Woojin Jun
- 1 Division of Food and Nutrition, Human Ecology Research Institute, Chonnam National University , Gwangju, Korea
| | - Soo Jin Yang
- 2 Department of Food and Nutrition, Seoul Women's University , Seoul, Korea
| |
Collapse
|
60
|
Tencerová M, Kračmerová J, Krauzová E, Mališová L, Kováčová Z, Wedellová Z, Šiklová M, Štich V, Rossmeislová L. Experimental hyperglycemia induces an increase of monocyte and T-lymphocyte content in adipose tissue of healthy obese women. PLoS One 2015; 10:e0122872. [PMID: 25894202 PMCID: PMC4403863 DOI: 10.1371/journal.pone.0122872] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/24/2015] [Indexed: 01/04/2023] Open
Abstract
Background/Objectives Hyperglycemia represents one of possible mediators for activation of immune system and may contribute to worsening of inflammatory state associated with obesity. The aim of our study was to investigate the effect of a short-term hyperglycemia (HG) on the phenotype and relative content of immune cells in circulation and subcutaneous abdominal adipose tissue (SAAT) in obese women without metabolic complications. Subjects/Methods Three hour HG clamp with infusion of octreotide and control investigations with infusion of octreotide or saline were performed in three groups of obese women (Group1: HG, Group 2: Octreotide, Group 3: Saline, n=10 per group). Before and at the end of the interventions, samples of SAAT and blood were obtained. The relative content of immune cells in blood and SAAT was determined by flow cytometry. Gene expression analysis of immunity-related markers in SAAT was performed by quantitative real-time PCR. Results In blood, no changes in analysed immune cell population were observed in response to HG. In SAAT, HG induced an increase in the content of CD206 negative monocytes/macrophages (p<0.05) and T lymphocytes (both T helper and T cytotoxic lymphocytes, p<0.01). Further, HG promoted an increase of mRNA levels of immune response markers (CCL2, TLR4, TNFα) and lymphocyte markers (CD3g, CD4, CD8a, TBX21, GATA3, FoxP3) in SAAT (p<0.05 and 0.01). Under both control infusions, none of these changes were observed. Conclusions Acute HG significantly increased the content of monocytes and lymphocytes in SAAT of healthy obese women. This result suggests that the short-term HG can modulate an immune status of AT in obese subjects.
Collapse
Affiliation(s)
- Michaela Tencerová
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Charles University in Prague, Prague 10, CZ-100 00 Czech Republic
- Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, Prague, CZ-100 00 Czech Republic
- * E-mail:
| | - Jana Kračmerová
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Charles University in Prague, Prague 10, CZ-100 00 Czech Republic
- Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, Prague, CZ-100 00 Czech Republic
| | - Eva Krauzová
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Charles University in Prague, Prague 10, CZ-100 00 Czech Republic
- Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, Prague, CZ-100 00 Czech Republic
| | - Lucia Mališová
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Charles University in Prague, Prague 10, CZ-100 00 Czech Republic
- Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, Prague, CZ-100 00 Czech Republic
| | - Zuzana Kováčová
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Charles University in Prague, Prague 10, CZ-100 00 Czech Republic
- Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, Prague, CZ-100 00 Czech Republic
| | - Zuzana Wedellová
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Charles University in Prague, Prague 10, CZ-100 00 Czech Republic
- Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, Prague, CZ-100 00 Czech Republic
- Second Internal Medicine Department, Vinohrady Teaching Hospital, Prague, Czech Republic
| | - Michaela Šiklová
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Charles University in Prague, Prague 10, CZ-100 00 Czech Republic
- Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, Prague, CZ-100 00 Czech Republic
| | - Vladimir Štich
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Charles University in Prague, Prague 10, CZ-100 00 Czech Republic
- Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, Prague, CZ-100 00 Czech Republic
| | - Lenka Rossmeislová
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Charles University in Prague, Prague 10, CZ-100 00 Czech Republic
- Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, Prague, CZ-100 00 Czech Republic
| |
Collapse
|
61
|
Shungin D, Winkler TW, Croteau-Chonka DC, Ferreira T, Locke AE, Mägi R, Strawbridge RJ, Pers TH, Fischer K, Justice AE, Workalemahu T, Wu JMW, Buchkovich ML, Heard-Costa NL, Roman TS, Drong AW, Song C, Gustafsson S, Day FR, Esko T, Fall T, Kutalik Z, Luan J, Randall JC, Scherag A, Vedantam S, Wood AR, Chen J, Fehrmann R, Karjalainen J, Kahali B, Liu CT, Schmidt EM, Absher D, Amin N, Anderson D, Beekman M, Bragg-Gresham JL, Buyske S, Demirkan A, Ehret GB, Feitosa MF, Goel A, Jackson AU, Johnson T, Kleber ME, Kristiansson K, Mangino M, Mateo Leach I, Medina-Gomez C, Palmer CD, Pasko D, Pechlivanis S, Peters MJ, Prokopenko I, Stančáková A, Ju Sung Y, Tanaka T, Teumer A, Van Vliet-Ostaptchouk JV, Yengo L, Zhang W, Albrecht E, Ärnlöv J, Arscott GM, Bandinelli S, Barrett A, Bellis C, Bennett AJ, Berne C, Blüher M, Böhringer S, Bonnet F, Böttcher Y, Bruinenberg M, Carba DB, Caspersen IH, Clarke R, Warwick Daw E, Deelen J, Deelman E, Delgado G, Doney ASF, Eklund N, Erdos MR, Estrada K, Eury E, Friedrich N, Garcia ME, Giedraitis V, Gigante B, Go AS, Golay A, Grallert H, Grammer TB, Gräßler J, Grewal J, Groves CJ, Haller T, Hallmans G, Hartman CA, Hassinen M, Hayward C, Heikkilä K, Herzig KH, Helmer Q, Hillege HL, Holmen O, Hunt SC, Isaacs A, Ittermann T, James AL, Johansson I, Juliusdottir T, Kalafati IP, Kinnunen L, Koenig W, Kooner IK, Kratzer W, Lamina C, Leander K, Lee NR, Lichtner P, Lind L, Lindström J, Lobbens S, Lorentzon M, Mach F, Magnusson PKE, Mahajan A, McArdle WL, Menni C, Merger S, Mihailov E, Milani L, Mills R, Moayyeri A, Monda KL, Mooijaart SP, Mühleisen TW, Mulas A, Müller G, Müller-Nurasyid M, Nagaraja R, Nalls MA, Narisu N, Glorioso N, Nolte IM, Olden M, Rayner NW, Renstrom F, Ried JS, Robertson NR, Rose LM, Sanna S, Scharnagl H, Scholtens S, Sennblad B, Seufferlein T, Sitlani CM, Vernon Smith A, Stirrups K, Stringham HM, Sundström J, Swertz MA, Swift AJ, Syvänen AC, Tayo BO, Thorand B, Thorleifsson G, Tomaschitz A, Troffa C, van Oort FVA, Verweij N, Vonk JM, Waite LL, Wennauer R, Wilsgaard T, Wojczynski MK, Wong A, Zhang Q, Hua Zhao J, Brennan EP, Choi M, Eriksson P, Folkersen L, Franco-Cereceda A, Gharavi AG, Hedman ÅK, Hivert MF, Huang J, Kanoni S, Karpe F, Keildson S, Kiryluk K, Liang L, Lifton RP, Ma B, McKnight AJ, McPherson R, Metspalu A, Min JL, Moffatt MF, Montgomery GW, Murabito JM, Nicholson G, Nyholt DR, Olsson C, Perry JRB, Reinmaa E, Salem RM, Sandholm N, Schadt EE, Scott RA, Stolk L, Vallejo EE, Westra HJ, Zondervan KT, Amouyel P, Arveiler D, Bakker SJL, Beilby J, Bergman RN, Blangero J, Brown MJ, Burnier M, Campbell H, Chakravarti A, Chines PS, Claudi-Boehm S, Collins FS, Crawford DC, Danesh J, de Faire U, de Geus EJC, Dörr M, Erbel R, Eriksson JG, Farrall M, Ferrannini E, Ferrières J, Forouhi NG, Forrester T, Franco OH, Gansevoort RT, Gieger C, Gudnason V, Haiman CA, Harris TB, Hattersley AT, Heliövaara M, Hicks AA, Hingorani AD, Hoffmann W, Hofman A, Homuth G, Humphries SE, Hyppönen E, Illig T, Jarvelin MR, Johansen B, Jousilahti P, Jula AM, Kaprio J, Kee F, Keinanen-Kiukaanniemi SM, Kooner JS, Kooperberg C, Kovacs P, Kraja AT, Kumari M, Kuulasmaa K, Kuusisto J, Lakka TA, Langenberg C, Le Marchand L, Lehtimäki T, Lyssenko V, Männistö S, Marette A, Matise TC, McKenzie CA, McKnight B, Musk AW, Möhlenkamp S, Morris AD, Nelis M, Ohlsson C, Oldehinkel AJ, Ong KK, Palmer LJ, Penninx BW, Peters A, Pramstaller PP, Raitakari OT, Rankinen T, Rao DC, Rice TK, Ridker PM, Ritchie MD, Rudan I, Salomaa V, Samani NJ, Saramies J, Sarzynski MA, Schwarz PEH, Shuldiner AR, Staessen JA, Steinthorsdottir V, Stolk RP, Strauch K, Tönjes A, Tremblay A, Tremoli E, Vohl MC, Völker U, Vollenweider P, Wilson JF, Witteman JC, Adair LS, Bochud M, Boehm BO, Bornstein SR, Bouchard C, Cauchi S, Caulfield MJ, Chambers JC, Chasman DI, Cooper RS, Dedoussis G, Ferrucci L, Froguel P, Grabe HJ, Hamsten A, Hui J, Hveem K, Jöckel KH, Kivimaki M, Kuh D, Laakso M, Liu Y, März W, Munroe PB, Njølstad I, Oostra BA, Palmer CNA, Pedersen NL, Perola M, Pérusse L, Peters U, Power C, Quertermous T, Rauramaa R, Rivadeneira F, Saaristo TE, Saleheen D, Sinisalo J, Eline Slagboom P, Snieder H, Spector TD, Thorsteinsdottir U, Stumvoll M, Tuomilehto J, Uitterlinden AG, Uusitupa M, van der Harst P, Veronesi G, Walker M, Wareham NJ, Watkins H, Wichmann HE, Abecasis GR, Assimes TL, Berndt SI, Boehnke M, Borecki IB, Deloukas P, Franke L, Frayling TM, Groop LC, Hunter DJ, Kaplan RC, O’Connell JR, Qi L, Schlessinger D, Strachan DP, Stefansson K, van Duijn CM, Willer CJ, Visscher PM, Yang J, Hirschhorn JN, Carola Zillikens M, McCarthy MI, Speliotes EK, North KE, Fox CS, Barroso I, Franks PW, Ingelsson E, Heid IM, Loos RJF, Cupples LA, Morris AP, Lindgren CM, Mohlke KL. New genetic loci link adipose and insulin biology to body fat distribution. Nature 2015; 518:187-196. [PMID: 25673412 PMCID: PMC4338562 DOI: 10.1038/nature14132] [Citation(s) in RCA: 1100] [Impact Index Per Article: 122.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 12/02/2014] [Indexed: 12/17/2022]
Abstract
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, we conducted genome-wide association meta-analyses of waist and hip circumference-related traits in up to 224,459 individuals. We identified 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (WHRadjBMI) and an additional 19 loci newly associated with related waist and hip circumference measures (P<5×10−8). Twenty of the 49 WHRadjBMI loci showed significant sexual dimorphism, 19 of which displayed a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation, and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
Collapse
|
62
|
The impact of adiposity on adipose tissue-resident lymphocyte activation in humans. Int J Obes (Lond) 2014; 39:762-9. [PMID: 25388403 PMCID: PMC4424387 DOI: 10.1038/ijo.2014.195] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/30/2014] [Accepted: 10/13/2014] [Indexed: 01/01/2023]
Abstract
Background/objectives: The presence of T lymphocytes in human adipose tissue has only recently been demonstrated and relatively little is known of their potential relevance in the development of obesity-related diseases. We aimed to further characterise these cells and in particular to investigate how they interact with modestly increased levels of adiposity typical of common overweight and obesity. Subjects/methods: Subcutaneous adipose tissue and fasting blood samples were obtained from healthy males aged 35–55 years with waist circumferences in lean (<94 cm), overweight (94–102 cm) and obese (>102 cm) categories. Adipose tissue-resident CD4+ and CD8+ T lymphocytes together with macrophages were identified by gene expression and flow cytometry. T lymphocytes were further characterised by their expression of activation markers CD25 and CD69. Adipose tissue inflammation was investigated using gene expression analysis and tissue culture. Results: Participants reflected a range of adiposity from lean to class I obesity. Expression of CD4 (T-helper cells) and CD68 (macrophage), as well as FOXP3 RNA transcripts, was elevated in subcutaneous adipose tissue with increased levels of adiposity (P<0.001, P<0.001 and P=0.018, respectively). Flow cytometry revealed significant correlations between waist circumference and levels of CD25 and CD69 expression per cell on activated adipose tissue-resident CD4+ and CD8+ T lymphocytes (P-values ranging from 0.053 to <0.001). No such relationships were found with blood T lymphocytes. This increased T lymphocyte activation was related to increased expression and secretion of various pro- and anti-inflammatory cytokines from subcutaneous whole adipose tissue explants. Conclusions: This is the first study to demonstrate that even modest levels of overweight/obesity elicit modifications in adipose tissue immune function. Our results underscore the importance of T lymphocytes during adipose tissue expansion, and the presence of potential compensatory mechanisms that may work to counteract adipose tissue inflammation, possibly through an increased number of T-regulatory cells.
Collapse
|
63
|
Abstract
Adipose tissue (AT) lies at the crossroad of nutrition, metabolism, and immunity; AT inflammation was proposed as a central mechanism connecting obesity with its metabolic and vascular complications. Resident immune cells constitute the second largest AT cellular component after adipocytes and as such play important roles in the maintenance of AT homeostasis. Obesity-induced changes in their number and activity result in the activation of local and later systemic inflammatory response, marking the transition from simple adiposity to diseases such as type 2 diabetes mellitus, arterial hypertension, and ischemic heart disease. This review has focused on the various subsets of immune cells in AT and their role in the development of AT inflammation and obesity-induced insulin resistance.
Collapse
Affiliation(s)
- Milos Mraz
- Third Department of Medicine - Department of Endocrinology and MetabolismGeneral University Hospital, First Faculty of Medicine of Charles University in Prague, U nemocnice 1, 128 00 Prague 2, Czech Republic
| | - Martin Haluzik
- Third Department of Medicine - Department of Endocrinology and MetabolismGeneral University Hospital, First Faculty of Medicine of Charles University in Prague, U nemocnice 1, 128 00 Prague 2, Czech Republic
| |
Collapse
|
64
|
Legrand-Poels S, Esser N, L'homme L, Scheen A, Paquot N, Piette J. Free fatty acids as modulators of the NLRP3 inflammasome in obesity/type 2 diabetes. Biochem Pharmacol 2014; 92:131-41. [PMID: 25175736 DOI: 10.1016/j.bcp.2014.08.013] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/15/2014] [Accepted: 08/15/2014] [Indexed: 12/13/2022]
Abstract
Free fatty acids (FFAs) are metabolic intermediates that may be obtained through the diet or synthesized endogenously. In addition to serving as an important source of energy, they produce a variety of both beneficial and detrimental effects. They play essential roles as structural components of all cell membranes and as signaling molecules regulating metabolic pathways through binding to nuclear or membrane receptors. However, under conditions of FFAs overload, they become toxic, inducing ROS production, ER stress, apoptosis and inflammation. SFAs (saturated fatty acids), unlike UFAs (unsaturated fatty acids), have recently been proposed as triggers of the NLRP3 inflammasome, a molecular platform mediating the processing of IL-1β in response to infection and stress conditions. Interestingly, UFAs, especially ω-3 FAs, inhibit NLRP3 inflammasome activation in various settings. We focus on emerging models of NLRP3 inflammasome activation with a special emphasis on the molecular mechanisms by which FFAs modulate the activation of this complex. Taking into consideration the current literature and FFA properties, we discuss the putative involvement of mitochondria and the role of cardiolipin, a mitochondrial phospholipid, proposed to be sensed by NLRP3 after release, exposure and/or oxidation. Finally, we review how this SFA-mediated NLRP3 inflammasome activation contributes to the development of both insulin resistance and deficiency associated with obesity/type 2 diabetes. In this context, we highlight the potential clinical use of ω-3 FAs as anti-inflammatory compounds.
Collapse
Affiliation(s)
- Sylvie Legrand-Poels
- University of Liege, GIGA-Signal Transduction, Laboratory of Virology and Immunology, Liege 4000, Belgium.
| | - Nathalie Esser
- University of Liege, GIGA-Signal Transduction, Laboratory of Virology and Immunology, Liege 4000, Belgium; University of Liege Hospital, Division of Diabetes, Nutrition, and Metabolic Disorders, Liege 4000, Belgium
| | - Laurent L'homme
- University of Liege, GIGA-Signal Transduction, Laboratory of Virology and Immunology, Liege 4000, Belgium
| | - André Scheen
- University of Liege Hospital, Division of Diabetes, Nutrition, and Metabolic Disorders, Liege 4000, Belgium
| | - Nicolas Paquot
- University of Liege Hospital, Division of Diabetes, Nutrition, and Metabolic Disorders, Liege 4000, Belgium
| | - Jacques Piette
- University of Liege, GIGA-Signal Transduction, Laboratory of Virology and Immunology, Liege 4000, Belgium
| |
Collapse
|
65
|
Yin Z, Deng T, Peterson LE, Yu R, Lin J, Hamilton DJ, Reardon PR, Sherman V, Winnier GE, Zhan M, Lyon CJ, Wong STC, Hsueh WA. Transcriptome analysis of human adipocytes implicates the NOD-like receptor pathway in obesity-induced adipose inflammation. Mol Cell Endocrinol 2014; 394:80-7. [PMID: 25011057 PMCID: PMC4219530 DOI: 10.1016/j.mce.2014.06.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/15/2014] [Accepted: 06/30/2014] [Indexed: 11/21/2022]
Abstract
Adipose tissue inflammation increases with obesity, but adipocyte vs. immune cell contributions are unclear. In the present study, transcriptome analyses were performed on highly-purified subcutaneous adipocytes from lean and obese women, and differentially expressed genes/pathways were determined in both adipocyte and stromal vascular fraction (SVF) samples. Adipocyte but not SVF expression of NOD-like receptor pathway genes, including NLRP3 and PYCARD, which regulate caspase-1-mediated IL-1β secretion, correlated with adiposity phenotypes and adipocyte class II major histocompatibility complex (MHCII) gene expression, but only MHCII remained after adjusting for age and body mass index. IFNγ stimulated adipocyte MHCII, NLRP3 and caspase-1 expression, while adipocyte MHCII-mediated CD4(+) T cell activation, an important factor in adipose inflammation, induced IFNγ-dependent adipocyte IL-1β secretion. These results uncover a dialogue regulated by interactions among T cell IFNγ and adipocyte MHCII and NLRP3 inflammasome activity that appears to initiate and escalate adipose tissue inflammation during obesity.
Collapse
Affiliation(s)
- Zheng Yin
- Houston Methodist Research Institute, Center for Diabetes Research, Weill Cornell Medical College, Houston, TX 77030, USA; Houston Methodist Research Institute, Department of Systems Medicine and Bioengineering, Data Science Laboratory, Weill Cornell Medical College, Houston, TX 77030, USA
| | - Tuo Deng
- Houston Methodist Research Institute, Center for Diabetes Research, Weill Cornell Medical College, Houston, TX 77030, USA
| | - Leif E Peterson
- Houston Methodist Research Institute, Center for Biostatistics, Houston, TX 77030, USA
| | - Richeng Yu
- Houston Methodist Research Institute, Center for Diabetes Research, Weill Cornell Medical College, Houston, TX 77030, USA; Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Jianxin Lin
- Houston Methodist Research Institute, Center for Diabetes Research, Weill Cornell Medical College, Houston, TX 77030, USA
| | - Dale J Hamilton
- Houston Methodist Research Institute, Center for Diabetes Research, Weill Cornell Medical College, Houston, TX 77030, USA
| | - Patrick R Reardon
- Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Vadim Sherman
- Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Glenn E Winnier
- Houston Methodist Research Institute, Center for Diabetes Research, Weill Cornell Medical College, Houston, TX 77030, USA
| | - Ming Zhan
- Houston Methodist Research Institute, Department of Systems Medicine and Bioengineering, Data Science Laboratory, Weill Cornell Medical College, Houston, TX 77030, USA
| | - Christopher J Lyon
- Houston Methodist Research Institute, Center for Diabetes Research, Weill Cornell Medical College, Houston, TX 77030, USA
| | - Stephen T C Wong
- Houston Methodist Research Institute, Department of Systems Medicine and Bioengineering, Data Science Laboratory, Weill Cornell Medical College, Houston, TX 77030, USA.
| | - Willa A Hsueh
- Houston Methodist Research Institute, Center for Diabetes Research, Weill Cornell Medical College, Houston, TX 77030, USA.
| |
Collapse
|
66
|
Robbins GR, Wen H, Ting JPY. Inflammasomes and metabolic disorders: old genes in modern diseases. Mol Cell 2014; 54:297-308. [PMID: 24766894 DOI: 10.1016/j.molcel.2014.03.029] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Modern medical and hygienic practices have greatly improved human health and longevity; however, increased human life span occurs concomitantly with the emergence of metabolic and age-related diseases. Studies over the past decade have strongly linked host inflammatory responses to the etiology of several metabolic diseases including atherosclerosis, type 2 diabetes (T2D), obesity, and gout. A common immunological factor to these diseases is the activation of the inflammasome and release of proinflammatory cytokines that promote disease progression. Here we review the molecular mechanism(s) of inflammasome activation in response to metabolic damage-associated molecular patterns (DAMPs) and discuss potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Gregory R Robbins
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Haitao Wen
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jenny P-Y Ting
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
67
|
Dalmas E, Venteclef N, Caer C, Poitou C, Cremer I, Aron-Wisnewsky J, Lacroix-Desmazes S, Bayry J, Kaveri SV, Clément K, André S, Guerre-Millo M. T cell-derived IL-22 amplifies IL-1β-driven inflammation in human adipose tissue: relevance to obesity and type 2 diabetes. Diabetes 2014; 63:1966-77. [PMID: 24520123 DOI: 10.2337/db13-1511] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proinflammatory cytokines are critically involved in the alteration of adipose tissue biology leading to deterioration of glucose homeostasis in obesity. Here we show a pronounced proinflammatory signature of adipose tissue macrophages in type 2 diabetic obese patients, mainly driven by increased NLRP3-dependent interleukin (IL)-1β production. IL-1β release increased with glycemic deterioration and decreased after gastric bypass surgery. A specific enrichment of IL-17- and IL-22-producing CD4(+) T cells was found in adipose tissue of type 2 diabetic obese patients. Coculture experiments identified the effect of macrophage-derived IL-1β to promote IL-22 and IL-17 production by human adipose tissue CD4(+) T cells. Reciprocally, adipose tissue macrophages express IL-17 and IL-22 receptors, making them sensitive to IL-17 and IL-22. IL-22 increased IL-1β release by inducing pro-IL-1β transcription through activation of C-Jun pathways in macrophages. In sum, these human data identified IL-1β and the T-cell cytokine IL-22 as key players of a paracrine inflammatory pathway previously unidentified in adipose tissue, with a pathological relevance to obesity-induced type 2 diabetes. These results provide an additional rationale for targeting IL-1β in obesity-linked type 2 diabetes and may have important implications for the conception of novel combined anti-IL-1β and anti-IL-22 immunotherapy in human obesity.
Collapse
Affiliation(s)
- Elise Dalmas
- INSERM, UMR-S 1166 and 1138, Paris, FranceSorbonne Universités, Pierre et Marie Curie-Paris6, Paris, FranceUniversité Paris Descartes, Paris, FranceInstitute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Nicolas Venteclef
- INSERM, UMR-S 1166 and 1138, Paris, FranceSorbonne Universités, Pierre et Marie Curie-Paris6, Paris, FranceUniversité Paris Descartes, Paris, FranceInstitute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Charles Caer
- INSERM, UMR-S 1166 and 1138, Paris, FranceSorbonne Universités, Pierre et Marie Curie-Paris6, Paris, FranceUniversité Paris Descartes, Paris, FranceInstitute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Christine Poitou
- INSERM, UMR-S 1166 and 1138, Paris, FranceSorbonne Universités, Pierre et Marie Curie-Paris6, Paris, FranceUniversité Paris Descartes, Paris, FranceInstitute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, FranceAssistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Nutrition and Endocrinology Department, Paris, France
| | - Isabelle Cremer
- INSERM, UMR-S 1166 and 1138, Paris, FranceSorbonne Universités, Pierre et Marie Curie-Paris6, Paris, FranceUniversité Paris Descartes, Paris, France
| | - Judith Aron-Wisnewsky
- INSERM, UMR-S 1166 and 1138, Paris, FranceSorbonne Universités, Pierre et Marie Curie-Paris6, Paris, FranceUniversité Paris Descartes, Paris, FranceInstitute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, FranceAssistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Nutrition and Endocrinology Department, Paris, France
| | - Sébastien Lacroix-Desmazes
- INSERM, UMR-S 1166 and 1138, Paris, FranceSorbonne Universités, Pierre et Marie Curie-Paris6, Paris, FranceUniversité Paris Descartes, Paris, France
| | - Jagadeesh Bayry
- INSERM, UMR-S 1166 and 1138, Paris, FranceSorbonne Universités, Pierre et Marie Curie-Paris6, Paris, FranceUniversité Paris Descartes, Paris, France
| | - Srinivas V Kaveri
- INSERM, UMR-S 1166 and 1138, Paris, FranceSorbonne Universités, Pierre et Marie Curie-Paris6, Paris, FranceUniversité Paris Descartes, Paris, France
| | - Karine Clément
- INSERM, UMR-S 1166 and 1138, Paris, FranceSorbonne Universités, Pierre et Marie Curie-Paris6, Paris, FranceUniversité Paris Descartes, Paris, FranceInstitute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, FranceAssistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Nutrition and Endocrinology Department, Paris, France
| | - Sébastien André
- INSERM, UMR-S 1166 and 1138, Paris, FranceSorbonne Universités, Pierre et Marie Curie-Paris6, Paris, FranceUniversité Paris Descartes, Paris, FranceInstitute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| | - Michèle Guerre-Millo
- INSERM, UMR-S 1166 and 1138, Paris, FranceSorbonne Universités, Pierre et Marie Curie-Paris6, Paris, FranceUniversité Paris Descartes, Paris, FranceInstitute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
68
|
Moraes-Vieira PM, Yore MM, Dwyer PM, Syed I, Aryal P, Kahn BB. RBP4 activates antigen-presenting cells, leading to adipose tissue inflammation and systemic insulin resistance. Cell Metab 2014; 19:512-26. [PMID: 24606904 PMCID: PMC4078000 DOI: 10.1016/j.cmet.2014.01.018] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/05/2013] [Accepted: 01/22/2014] [Indexed: 12/22/2022]
Abstract
Insulin resistance is a major cause of diabetes and is highly associated with adipose tissue (AT) inflammation in obesity. RBP4, a retinol transporter, is elevated in insulin resistance and contributes to increased diabetes risk. We aimed to determine the mechanisms for RBP4-induced insulin resistance. Here we show that RBP4 elevation causes AT inflammation by activating innate immunity that elicits an adaptive immune response. RBP4-overexpressing mice (RBP4-Ox) are insulin resistant and glucose intolerant and have increased AT macrophage and CD4 T cell infiltration. In RBP4-Ox, AT CD206(+) macrophages express proinflammatory markers and activate CD4 T cells while maintaining alternatively activated macrophage markers. These effects result from direct activation of AT antigen-presenting cells (APCs) by RBP4 through a JNK-dependent pathway. Transfer of RBP4-activated APCs into normal mice is sufficient to induce AT inflammation, insulin resistance, and glucose intolerance. Thus, RBP4 causes insulin resistance, at least partly, by activating AT APCs that induce CD4 T cell Th1 polarization and AT inflammation.
Collapse
Affiliation(s)
- Pedro M Moraes-Vieira
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Mark M Yore
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Peter M Dwyer
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Ismail Syed
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Pratik Aryal
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Barbara B Kahn
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
69
|
Skeldon AM, Faraj M, Saleh M. Caspases and inflammasomes in metabolic inflammation. Immunol Cell Biol 2014; 92:304-13. [DOI: 10.1038/icb.2014.5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 12/23/2013] [Accepted: 01/06/2014] [Indexed: 12/22/2022]
Affiliation(s)
| | - May Faraj
- Institut de Recherches Cliniques de Montréal (IRCM), Faculty of Medicine, Université de MontréalMontréalQuébecCanada
| | - Maya Saleh
- Department of Biochemistry, McGill UniversityMontréalQuébecCanada
- Department of Medicine, McGill UniversityMontréalQuébecCanada
| |
Collapse
|
70
|
Alemán JO, Eusebi LH, Ricciardiello L, Patidar K, Sanyal AJ, Holt PR. Mechanisms of obesity-induced gastrointestinal neoplasia. Gastroenterology 2014; 146:357-373. [PMID: 24315827 PMCID: PMC3978703 DOI: 10.1053/j.gastro.2013.11.051] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/30/2013] [Accepted: 11/14/2013] [Indexed: 02/06/2023]
Abstract
Obesity is among the fastest growing diseases worldwide; treatment is inadequate, and associated disorders, including gastrointestinal cancers, have high morbidity and mortality. An increased understanding of the mechanisms of obesity-induced carcinogenesis is required to develop methods to prevent or treat these cancers. In this report, we review the mechanisms of obesity-associated colorectal, esophageal, gastric, and pancreatic cancers and potential treatment strategies.
Collapse
Affiliation(s)
| | - Leonardo H. Eusebi
- Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - Luigi Ricciardiello
- Department of Medical and Surgical Sciences, and Center for Applied Biomedical Research (CRBA), University of Bologna, Italy
| | - Kavish Patidar
- Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Arun J. Sanyal
- Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | | |
Collapse
|
71
|
Lappas M. Activation of inflammasomes in adipose tissue of women with gestational diabetes. Mol Cell Endocrinol 2014; 382:74-83. [PMID: 24055273 DOI: 10.1016/j.mce.2013.09.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 11/16/2022]
Abstract
Gestational diabetes mellitus (GDM) is characterised by maternal peripheral insulin resistance, increased inflammation, and increasing levels of circulating free fatty acids (FFAs) and advanced glycation endproducts (AGEs). Caspase-1 is a key component of the inflammasome, which is activated upon cellular infection or stress to trigger the maturation IL-1β, a pro-inflammatory cytokine that mediated insulin resistance. The aim of this study was to determine whether the inflammasome is activated in adipose tissue from women with gestational diabetes mellitus (GDM) and if it interferes with the insulin signalling pathway leading to the insulin resistance that is evident in GDM. Protein expression of active caspase-1 and mature IL-1β secretion was increased in adipose tissue of women with GDM. Treatment of adipose tissue with IL-1β decreased insulin-stimulated phosphorylation of IRS-1, GLUT-4 expression and glucose uptake. Low-grade inflammation (induced by LPS), the FFA palmitate and AGE conjugated to BSA (AGE-BSA), induced IL-1β secretion via inflammasome activation. In conclusion, the present findings describe an important role for adipose tissue inflammasome activation in the development of insulin resistance associated in pregnancies complicated by GDM.
Collapse
Affiliation(s)
- Martha Lappas
- Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia; Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia.
| |
Collapse
|
72
|
Castanon N, Lasselin J, Capuron L. Neuropsychiatric comorbidity in obesity: role of inflammatory processes. Front Endocrinol (Lausanne) 2014; 5:74. [PMID: 24860551 PMCID: PMC4030152 DOI: 10.3389/fendo.2014.00074] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 05/02/2014] [Indexed: 01/22/2023] Open
Abstract
Neuropsychiatric symptoms are frequent in obesity. In addition to their substantial economic and health impact, these symptoms significantly interfere with the quality of life and social function of obese individuals. While the pathophysiological mechanisms underlying obesity-related neuropsychiatric symptoms are still under investigation and remain to be clearly identified, there is increasing evidence for a role of inflammatory processes. Obesity is characterized by a chronic low-grade inflammatory state that is likely to influence neuropsychiatric status given the well-known and highly documented effects of inflammation on brain activity/function and behavior. This hypothesis is supported by recent findings emanating from clinical investigations in obese subjects and from experimentations conducted in animal models of obesity. These studies converge to show that obesity-related inflammatory processes, originating either from the adipose tissue or gut microbiota environment, spread to the brain where they lead to substantial changes in neurocircuitry, neuroendocrine activity, neurotransmitter metabolism and activity, and neurogenesis. Together, these alterations contribute to shape the propitious bases for the development of obesity-related neuropsychiatric comorbidities.
Collapse
Affiliation(s)
- Nathalie Castanon
- UMR 1286, Laboratory of Nutrition and Integrative Neurobiology (NutriNeuro), French National Institute for Agricultural Research (INRA), Bordeaux, France
- UMR 1286, Laboratory of Nutrition and Integrative Neurobiology (NutriNeuro), University of Bordeaux, Bordeaux, France
| | - Julie Lasselin
- UMR 1286, Laboratory of Nutrition and Integrative Neurobiology (NutriNeuro), French National Institute for Agricultural Research (INRA), Bordeaux, France
- UMR 1286, Laboratory of Nutrition and Integrative Neurobiology (NutriNeuro), University of Bordeaux, Bordeaux, France
- Stress Research Institute (Stressforskningsinstitutet), Stockholm University, Stockholm, Sweden
| | - Lucile Capuron
- UMR 1286, Laboratory of Nutrition and Integrative Neurobiology (NutriNeuro), French National Institute for Agricultural Research (INRA), Bordeaux, France
- UMR 1286, Laboratory of Nutrition and Integrative Neurobiology (NutriNeuro), University of Bordeaux, Bordeaux, France
- *Correspondence: Lucile Capuron, UMR 1286, Laboratory of Nutrition and Integrative Neurobiology (NutriNeuro), INRA, University of Bordeaux, 146 rue Léo Saignat, F-33076 Bordeaux, France e-mail:
| |
Collapse
|
73
|
Raval FM, Nikolajczyk BS. The Bidirectional Relationship between Metabolism and Immune Responses. Discoveries (Craiova) 2013; 1:e6. [PMID: 26366435 PMCID: PMC4563811 DOI: 10.15190/d.2013.6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Immunometabolism investigates the multiple links between the immune system and metabolism. One main focus of immunometabolism investigates how obesity impacts the immune system and pro-inflammatory immune cell function, leading to metabolic diseases, including type 2 diabetes (T2D). The second focus stresses the metabolic changes that dictate immune cell activation. Several groups have studied these two arms of the field individually, but work that integrates both topics will be required to develop an accurate understanding of how immune cells and metabolic pathways collaborate in obesity and obesity-associated T2D. Investigations of the relationships among obesity-induced changes in the nutritional environment, immune cell activation, and immune cell metabolism may lead to novel and efficacious therapies for obesity-associated disorders such as insulin resistance (IR) and T2D. This review outlines recent insights into two related processes: 1. the role that energy utilization plays in immune responses and 2. the immune cell functions that drive obesity and T2D. Herein, we begin to consider how shifts in available fuel sources in obesity and T2D impact the immune response to both pathogens and chronic over nutrition.
Collapse
Affiliation(s)
- Forum M Raval
- Boston University School of Medicine, Department of Microbiology, Boston, MA, USA
| | | |
Collapse
|
74
|
Macciò A, Madeddu C. The role of interleukin-6 in the evolution of ovarian cancer: clinical and prognostic implications--a review. J Mol Med (Berl) 2013; 91:1355-68. [PMID: 24057813 DOI: 10.1007/s00109-013-1080-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 08/16/2013] [Accepted: 08/21/2013] [Indexed: 12/22/2022]
Abstract
An increasing number of studies emphasize the role of inflammation and metabolic changes in the induction of cancer-related symptoms, which can affect cancer evolution and prognosis. These changes result from the interactions between the tumor and the host. To date, however, markers of this peculiar condition, which can help clinicians to manage patients better, have still not been identified with certainty. Epithelial ovarian cancer (EOC) appears to be particularly appropriate to study these interactions because of its biological characteristics, its peculiar evolution, and the relevant scientific evidence available. Immunosuppression, anemia, depression, and weight loss affect the evolution of EOC and appear to be directly related to the immune-metabolic changes. In light of the aforementioned evidence, our review will focus on interleukin-6 (IL-6) and its role as potential marker of the patients' immune-metabolic status, to better monitor disease outcome and identify the most appropriate therapeutic strategy in EOC. Furthermore, leptin will be discussed as a sensor of the changes of energy metabolism induced by IL-6.
Collapse
Affiliation(s)
- Antonio Macciò
- Department of Gynecologic Oncology, "A. Businco" Hospital, Regional Referral Center for Cancer Disease, via Edward Jenner, 09121, Cagliari, Italy,
| | | |
Collapse
|
75
|
Neuroendocrine and cardiac metabolic dysfunction and NLRP3 inflammasome activation in adipose tissue and pancreas following chronic spinal cord injury in the mouse. ASN Neuro 2013; 5:243-55. [PMID: 23924318 PMCID: PMC3789215 DOI: 10.1042/an20130021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
CVD (cardiovascular disease) represents a leading cause of mortality in chronic SCI (spinal cord injury). Several component risk factors are observed in SCI; however, the underlying mechanisms that contribute to these risks have not been defined. Central and peripheral chronic inflammation is associated with metabolic dysfunction and CVD, including adipokine regulation of neuroendocrine and cardiac function and inflammatory processes initiated by the innate immune response. We use female C57 Bl/6 mice to examine neuroendocrine, cardiac, adipose and pancreatic signaling related to inflammation and metabolic dysfunction in response to experimentally induced chronic SCI. Using immuno-histochemical, -precipitation, and -blotting analysis, we show decreased POMC (proopiomelanocortin) and increased NPY (neuropeptide-Y) expression in the hypothalamic ARC (arcuate nucleus) and PVN (paraventricular nucleus), 1-month post-SCI. Long-form leptin receptor (Ob-Rb), JAK2 (Janus kinase)/STAT3 (signal transducer and activator of transcription 3)/p38 and RhoA/ROCK (Rho-associated kinase) signaling is significantly increased in the heart tissue post-SCI, and we observe the formation and activation of the NLRP3 (NOD-like receptor family, pyrin domain containing 3) inflammasome in VAT (visceral adipose tissue) and pancreas post-SCI. These data demonstrate neuroendocrine signaling peptide alterations, associated with central inflammation and metabolic dysfunction post-SCI, and provide evidence for the peripheral activation of signaling mechanisms involved in cardiac, VAT and pancreatic inflammation and metabolic dysfunction post-SCI. Further understanding of biological mechanisms contributing to SCI-related inflammatory processes and metabolic dysfunction associated with CVD pathology may help to direct therapeutic and rehabilitation countermeasures.
Collapse
|
76
|
Activation of the Nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates beta cell loss in type 2 diabetes. Nat Med 2013; 19:1132-40. [PMID: 23955712 DOI: 10.1038/nm.3265] [Citation(s) in RCA: 309] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 06/10/2013] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes mellitus (T2DM) progresses from compensated insulin resistance to beta cell failure resulting in uncompensated hyperglycemia, a process replicated in the Zucker diabetic fatty (ZDF) rat. The Nlrp3 inflammasome has been implicated in obesity-induced insulin resistance and beta cell failure. Endocannabinoids contribute to insulin resistance through activation of peripheral CB1 receptors (CB₁Rs) and also promote beta cell failure. Here we show that beta cell failure in adult ZDF rats is not associated with CB₁R signaling in beta cells, but rather in M1 macrophages infiltrating into pancreatic islets, and that this leads to activation of the Nlrp3-ASC inflammasome in the macrophages. These effects are replicated in vitro by incubating wild-type human or rodent macrophages, but not macrophages from CB₁R-deficient (Cnr1(-/-)) or Nlrp3(-/-) mice, with the endocannabinoid anandamide. Peripheral CB₁R blockade, in vivo depletion of macrophages or macrophage-specific knockdown of CB₁R reverses or prevents these changes and restores normoglycemia and glucose-induced insulin secretion. These findings implicate endocannabinoids and inflammasome activation in beta cell failure and identify macrophage-expressed CB₁R as a therapeutic target in T2DM.
Collapse
|
77
|
McIntosh KR, Frazier T, Rowan BG, Gimble JM. Evolution and future prospects of adipose-derived immunomodulatory cell therapeutics. Expert Rev Clin Immunol 2013; 9:175-84. [PMID: 23390948 DOI: 10.1586/eci.12.96] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the past two decades, tissue engineering and regenerative medicine have evolved from what many considered a theoretical science to what is now a clinical reality. Tissue engineering combines biomaterial scaffolds, growth factors and stem or progenitor cells to repair damaged tissues. Adipose tissue, an abundant and easily accessed tissue, is a potential source of stromal/stem cells for regenerative therapeutic applications. Like bone marrow-derived mesenchymal stem cells, adipose-derived stromal/stem cells display both immunomodulatory and immunosuppressive properties. The adipose cells exert these actions, in part, through their secretion of paracrine growth factors. This review highlights recent developments in the isolation, characterization and preclinical application of adipose-derived cells and the challenges facing their translation into clinical practice.
Collapse
|
78
|
Ruderman NB, Carling D, Prentki M, Cacicedo JM. AMPK, insulin resistance, and the metabolic syndrome. J Clin Invest 2013; 123:2764-72. [PMID: 23863634 DOI: 10.1172/jci67227] [Citation(s) in RCA: 616] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Insulin resistance (IR) and hyperinsulinemia are hallmarks of the metabolic syndrome, as are central adiposity, dyslipidemia, and a predisposition to type 2 diabetes, atherosclerotic cardiovascular disease, hypertension, and certain cancers. Regular exercise and calorie restriction have long been known to increase insulin sensitivity and decrease the prevalence of these disorders. The subsequent identification of AMP-activated protein kinase (AMPK) and its activation by exercise and fuel deprivation have led to studies of the effects of AMPK on both IR and metabolic syndrome-related diseases. In this review, we evaluate this body of literature, with special emphasis on the hypothesis that dysregulation of AMPK is both a pathogenic factor for these disorders in humans and a target for their prevention and therapy.
Collapse
Affiliation(s)
- Neil B Ruderman
- Diabetes and Metabolism Research Unit, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | | | | | |
Collapse
|
79
|
The NLRP3 Inflammasome as a novel player of the intercellular crosstalk in metabolic disorders. Mediators Inflamm 2013; 2013:678627. [PMID: 23843683 PMCID: PMC3697790 DOI: 10.1155/2013/678627] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/13/2013] [Accepted: 05/22/2013] [Indexed: 01/13/2023] Open
Abstract
The combination of obesity and type 2 diabetes is a serious health problem, which is projected to afflict 300 million people worldwide by 2020. Both clinical and translational laboratory studies have demonstrated that chronic inflammation is associated with obesity and obesity-related conditions such as insulin resistance. However, the precise etiopathogenetic mechanisms linking obesity to diabetes remain to be elucidated, and the pathways that mediate this phenomenon are not fully characterized. One of the most recently identified signaling pathways, whose activation seems to affect many metabolic disorders, is the “inflammasome,” a multiprotein complex composed of NLRP3 (nucleotide-binding domain and leucine-rich repeat protein 3), ASC (apoptosis-associated speck-like protein containing a CARD), and procaspase-1. NLRP3 inflammasome activation leads to the processing and secretion of the proinflammatory cytokines interleukin- (IL-) 1β and IL-18. The goal of this paper is to review new insights on the effects of the NLRP3 inflammasome activation in the complex mechanisms of crosstalk between different organs, for a better understanding of the role of chronic inflammation in metabolic disease pathogenesis. We will provide here a perspective on the current research on NLRP3 inflammasome, which may represent an innovative therapeutic target to reverse the detrimental metabolic consequences of the metabolic inflammation.
Collapse
|
80
|
Cildir G, Akıncılar SC, Tergaonkar V. Chronic adipose tissue inflammation: all immune cells on the stage. Trends Mol Med 2013; 19:487-500. [PMID: 23746697 DOI: 10.1016/j.molmed.2013.05.001] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 12/12/2022]
Abstract
Inflammation is indispensable for host homeostasis against invading pathogens and efficient wound healing upon tissue malfunction and has to be tightly controlled by various mechanisms to limit excess responses harmful to host tissues. A myriad of disease conditions ranging from type 2 diabetes (T2D) to neurodegenerative and cardiovascular disorders are now shown to progress due to persistent, unresolved inflammation in metabolic tissues such as adipose, liver, pancreas, muscle, and brain. However, their underlying mechanisms are incompletely understood. The actions of innate and adaptive immune cells in these ailments are increasingly appreciated so much so that a new research area called 'immunometabolism' has emerged. In this review, we will highlight the fundamental roles of various immune cells in adipose tissue during the initiation and progression of obesity-induced inflammation and discuss potential anti-inflammatory therapies from different mechanistic points of view.
Collapse
Affiliation(s)
- Gökhan Cildir
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | | | | |
Collapse
|
81
|
B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an inflammatory cytokine profile. Proc Natl Acad Sci U S A 2013; 110:5133-8. [PMID: 23479618 DOI: 10.1073/pnas.1215840110] [Citation(s) in RCA: 359] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Patients with type 2 diabetes (T2D) have disease-associated changes in B-cell function, but the role these changes play in disease pathogenesis is not well established. Data herein show B cells from obese mice produce a proinflammatory cytokine profile compared with B cells from lean mice. Complementary in vivo studies show that obese B cell-null mice have decreased systemic inflammation, inflammatory B- and T-cell cytokines, adipose tissue inflammation, and insulin resistance (IR) compared with obese WT mice. Reduced inflammation in obese/insulin resistant B cell-null mice associates with an increased percentage of anti-inflammatory regulatory T cells (Tregs). This increase contrasts with the sharply decreased percentage of Tregs in obese compared with lean WT mice and suggests that B cells may be critical regulators of T-cell functions previously shown to play important roles in IR. We demonstrate that B cells from T2D (but not non-T2D) subjects support proinflammatory T-cell function in obesity/T2D through contact-dependent mechanisms. In contrast, human monocytes increase proinflammatory T-cell cytokines in both T2D and non-T2D analyses. These data support the conclusion that B cells are critical regulators of inflammation in T2D due to their direct ability to promote proinflammatory T-cell function and secrete a proinflammatory cytokine profile. Thus, B cells are potential therapeutic targets for T2D.
Collapse
|
82
|
Combined B- and T-cell deficiency does not protect against obesity-induced glucose intolerance and inflammation. Cytokine 2013; 62:96-103. [PMID: 23478176 DOI: 10.1016/j.cyto.2013.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/31/2013] [Accepted: 02/11/2013] [Indexed: 01/25/2023]
Abstract
Obesity-induced inflammation is associated with insulin resistance and morphologically characterized by macrophage influx into the adipose tissue. Recently, various other immune cells, including B- and T-cells, have been shown to participate in modulating adipose tissue inflammation during the development of obesity. We show that HFD-feeding modulates the influx of B and T-cells into adipose tissue of obese animals, suggestive of a role of the adaptive immune system in the development of adipose tissue inflammation. Despite a lower bodyweight after HFD-feeding, gene expression levels of CD68, F4/80 and MCP-1 in white adipose tissue were enhanced in SCID animals that lack B- and T-cells. Moreover, conditioned medium from adipose tissue explants of HFD-fed SCID mice revealed increased release of IL-6 and CXCL1 compared to WT animals. Compared to WT mice, glucose tolerance was impaired in B- and T-cell deficient mice after HFD-feeding. Thus, complete B- and T-cell deficiency does not protect against HFD-induced adipose tissue inflammation and glucose intolerance. In contrast, SCID mice showed an increased pro-inflammatory status at the level of the adipose tissue in some cytokines. Our findings suggest that a delicate balance between various B- and T-cell populations controls adipose tissue inflammation.
Collapse
|
83
|
Grant RW, Dixit VD. Mechanisms of disease: inflammasome activation and the development of type 2 diabetes. Front Immunol 2013; 4:50. [PMID: 23483669 PMCID: PMC3592198 DOI: 10.3389/fimmu.2013.00050] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/10/2013] [Indexed: 12/23/2022] Open
Abstract
Over the recent past, the importance of aberrant immune cell activation as one of the contributing mechanisms to the development of insulin-resistance and type 2 diabetes (T2D) has been recognized. Among the panoply of pro-inflammatory cytokines that are linked to chronic metabolic diseases, new data suggests that interleukin-1β (IL-1β) may play an important role in initiating and sustaining inflammation-induced organ dysfunction in T2D. Therefore, factors that control secretion of bioactive IL-1β have therapeutic implications. In this regard, the identification of multiprotein scaffolding complexes, "inflammasomes," has been a great advance in our understanding of this process. The secretion of bioactive IL-1β is predominantly controlled by activation of caspase-1 through assembly of a multiprotein scaffold, "inflammasome" that is composed of NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3) ASC (apoptosis associated speck-like protein containing a CARD) and procaspase-1. The NLRP3 inflammasome appears to be an important sensor of metabolic dysregulation and controls obesity-associated insulin resistance and pancreatic beta cell dysfunction. Initial clinical "proof of concept" studies suggest that blocking IL-1β may favorably modulate factors related to development and treatment of T2D. However, this potential therapeutic approach remains to be fully substantiated through phase-II clinical studies. Here, we outline the new immunological mechanisms that link metabolic dysfunction to the emergence of chronic inflammation and discuss the opportunities and challenges of future therapeutic approaches to dampen NLRP3 inflammasome activation or IL-1β signaling for controlling type 2 diabetes.
Collapse
Affiliation(s)
- Ryan W Grant
- Immunobiology Laboratory, Pennington Biomedical Research Center, Louisiana State University System Baton Rouge, LA, USA
| | | |
Collapse
|
84
|
Nikolajczyk BS, Jagannathan-Bogdan M, Denis GV. The outliers become a stampede as immunometabolism reaches a tipping point. Immunol Rev 2013; 249:253-75. [PMID: 22889227 DOI: 10.1111/j.1600-065x.2012.01142.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Obesity and Type 2 diabetes mellitus (T2D) are characterized by pro-inflammatory alterations in the immune system including shifts in leukocyte subset differentiation and in cytokine/chemokine balance. The chronic, low-grade inflammation resulting largely from changes in T-cell, B-cell, and myeloid compartments promotes and/or exacerbates insulin resistance (IR) that, together with pancreatic islet failure, defines T2D. Animal model studies show that interruption of immune cell-mediated inflammation by any one of several methods almost invariably results in the prevention or delay of obesity and/or IR. However, anti-inflammatory therapies have had a modest impact on established T2D in clinical trials. These seemingly contradictory results indicate that a more comprehensive understanding of human IR/T2D-associated immune cell function is needed to leverage animal studies into clinical treatments. Important outstanding analyses include identifying potential immunological checkpoints in disease etiology, detailing immune cell/adipose tissue cross-talk, and defining strengths/weaknesses of model organism studies to determine whether we can harness the promising new field of immunometabolism to curb the global obesity and T2D epidemics.
Collapse
|
85
|
Abstract
Turmeric has been long recognized for its anti-inflammatory and health-promoting properties. Curcumin is one of the principal anti-inflammatory and healthful components of turmeric comprising 2-8% of most turmeric preparations. Experimental evidence supports the activity of curcumin in promoting weight loss and reducing the incidence of obesity-related diseases. With the discovery that obesity is characterized by chronic low-grade metabolic inflammation, phytochemicals like curcumin which have anti-inflammatory activity are being intensely investigated. Recent scientific research reveals that curcumin directly interacts with white adipose tissue to suppress chronic inflammation. In adipose tissue, curcumin inhibits macrophage infiltration and nuclear factor κB (NF-κB) activation induced by inflammatory agents. Curcumin reduces the expression of the potent proinflammatory adipokines tumor necrosis factor-α (TNFα), monocyte chemoattractant protein-1 (MCP-1), and plasminogen activator inhibitor type-1 (PAI-1), and it induces the expression of adiponectin, the principal anti-inflammatory agent secreted by adipocytes. Curcumin also has effects to inhibit adipocyte differentiation and to promote antioxidant activities. Through these diverse mechanisms curcumin reduces obesity and curtails the adverse health effects of obesity.
Collapse
Affiliation(s)
- Peter G Bradford
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214-3000, USA.
| |
Collapse
|
86
|
Affiliation(s)
- Vishwa Deep Dixit
- Immunobiology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA.
| |
Collapse
|
87
|
|