51
|
Roumani M, Besseau S, Gagneul D, Robin C, Larbat R. Phenolamides in plants: an update on their function, regulation, and origin of their biosynthetic enzymes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2334-2355. [PMID: 33315095 DOI: 10.1093/jxb/eraa582] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Phenolamides represent a family of specialized metabolites, consisting of the association of hydroxycinnamic acid derivatives with aliphatic or aromatic amines. Since the discovery of the first phenolamide in the late 1940s, decades of phytochemical analyses have revealed a high structural diversity for this family and a wide distribution in the plant kingdom. The occurrence of structurally diverse phenolamides in almost all plant organs has led to early hypotheses on their involvement in floral initiation and fertility, as well as plant defense against biotic and abiotic stress. In the present work, we critically review the literature ascribing functional hypotheses to phenolamides and recent evidence on the control of their biosynthesis in response to biotic stress. We additionally provide a phylogenetic analysis of the numerous N-hydroxycinnamoyltransferases involved in the synthesis of phenolamides and discuss the potential role of other enzyme families in their diversification. The data presented suggest multiple evolutionary events that contributed to the extension of the taxonomic distribution and diversity of phenolamides.
Collapse
Affiliation(s)
- Marwa Roumani
- UMR 1121, Laboratoire Agronomie et Environnement (LAE), Université de Lorraine- INRAe, Nancy, France
| | - Sébastien Besseau
- EA 2106, Biomolécules et biotechnologies végétales (BBV), Université de Tours, Tours, France
| | - David Gagneul
- UMR 1158, BioEcoAgro, Université de Lille, INRAe, Université de Liège, UPJV, YNCREA, Université d'Artois, Université Littoral Côte d'Opale, Institut Charles Viollette (ICV), Lille, France
| | - Christophe Robin
- UMR 1121, Laboratoire Agronomie et Environnement (LAE), Université de Lorraine- INRAe, Nancy, France
| | - Romain Larbat
- UMR 1121, Laboratoire Agronomie et Environnement (LAE), Université de Lorraine- INRAe, Nancy, France
| |
Collapse
|
52
|
Mass spectrometry based untargeted metabolomics for plant systems biology. Emerg Top Life Sci 2021; 5:189-201. [DOI: 10.1042/etls20200271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/04/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022]
Abstract
Untargeted metabolomics enables the identification of key changes to standard pathways, but also aids in revealing other important and possibly novel metabolites or pathways for further analysis. Much progress has been made in this field over the past decade and yet plant metabolomics seems to still be an emerging approach because of the high complexity of plant metabolites and the number one challenge of untargeted metabolomics, metabolite identification. This final and critical stage remains the focus of current research. The intention of this review is to give a brief current state of LC–MS based untargeted metabolomics approaches for plant specific samples and to review the emerging solutions in mass spectrometer hardware and computational tools that can help predict a compound's molecular structure to improve the identification rate.
Collapse
|
53
|
Metabolomics Intervention Towards Better Understanding of Plant Traits. Cells 2021; 10:cells10020346. [PMID: 33562333 PMCID: PMC7915772 DOI: 10.3390/cells10020346] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
The majority of the most economically important plant and crop species are enriched with the availability of high-quality reference genome sequences forming the basis of gene discovery which control the important biochemical pathways. The transcriptomics and proteomics resources have also been made available for many of these plant species that intensify the understanding at expression levels. However, still we lack integrated studies spanning genomics–transcriptomics–proteomics, connected to metabolomics, the most complicated phase in phenotype expression. Nevertheless, for the past few decades, emphasis has been more on metabolome which plays a crucial role in defining the phenotype (trait) during crop improvement. The emergence of modern high throughput metabolome analyzing platforms have accelerated the discovery of a wide variety of biochemical types of metabolites and new pathways, also helped in improving the understanding of known existing pathways. Pinpointing the causal gene(s) and elucidation of metabolic pathways are very important for development of improved lines with high precision in crop breeding. Along with other-omics sciences, metabolomics studies have helped in characterization and annotation of a new gene(s) function. Hereby, we summarize several areas in the field of crop development where metabolomics studies have made its remarkable impact. We also assess the recent research on metabolomics, together with other omics, contributing toward genetic engineering to target traits and key pathway(s).
Collapse
|
54
|
Li Q, Xu K, Wang S, Li M, Jiang Y, Liang X, Niu J, Wang C. Enzymatic Browning in Wheat Kernels Produces Symptom of Black Point Caused by Bipolaris sorokiniana. Front Microbiol 2020; 11:526266. [PMID: 33362724 PMCID: PMC7756095 DOI: 10.3389/fmicb.2020.526266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 11/17/2020] [Indexed: 01/17/2023] Open
Abstract
To understand the blackening mechanism in black point diseased kernels, ultraviolet–visible light (UV–Vis) and Fourier-transform infrared (FT-IR) absorbance spectra of extracts made from the blackening parts of black point-affected (BP) kernels and the analogous part of black point-free (BPF) kernels were measured using susceptible wheat genotypes “PZSCL6” inoculated with Bipolaris sorokiniana (the dominant pathogen causing this disease). In addition, metabolite differences between BP and BPF kernels were identified by a method that combines gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-high resolution mass spectrometry (LC-MS). Successively, symptoms of black point were produced in vitro. The results showed (i) the spectroscopic properties of the extracts from BP and BPF kernels were very similar, with an absorption peak at 235 nm and a small shoulder at 280–300 nm in both UV–Vis spectra and shared vibrations at 3400–3300, 2925 and 2852, 1512 and 1463, 1709, 1220, 600–860 cm–1 in FT-IR spectra that are consistent with similar bonding characteristics. In contrast, spectroscopic properties of extracts from wheat kernels were different from those of synthetic melanin and extracellular and intracellular melanin produced by B. sorokiniana. (ii) Levels of 156 metabolites in BP kernels were different from those in BPF kernels. Among those 156 metabolites, levels of phenolic acids (ferulic acid and p-coumaric acid), 11 phenolamides compounds, and four benzoxazinone derivatives were significantly higher in BP kernels than in BPF kernels. (iii) Symptom of black point could be produced in vitro in wheat kernels with supplement of phenol substrate (catechol) and H2O2. This result proved that blackening substance causing symptom of black point was produced by enzymatic browning in wheat kernels instead of by B. sorokiniana.
Collapse
Affiliation(s)
- Qiaoyun Li
- National Engineering Research Centre for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Kaige Xu
- National Engineering Research Centre for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Siyu Wang
- National Engineering Research Centre for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Mengyu Li
- National Engineering Research Centre for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Yumei Jiang
- National Engineering Research Centre for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Xiaolong Liang
- National Engineering Research Centre for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Jishan Niu
- National Engineering Research Centre for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Chenyang Wang
- National Engineering Research Centre for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
55
|
Schaarschmidt S, Fischer A, Lawas LMF, Alam R, Septiningsih EM, Bailey-Serres J, Jagadish SVK, Huettel B, Hincha DK, Zuther E. Utilizing PacBio Iso-Seq for Novel Transcript and Gene Discovery of Abiotic Stress Responses in Oryza sativa L. Int J Mol Sci 2020; 21:ijms21218148. [PMID: 33142722 PMCID: PMC7663775 DOI: 10.3390/ijms21218148] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/20/2020] [Accepted: 10/30/2020] [Indexed: 01/05/2023] Open
Abstract
The wide natural variation present in rice is an important source of genes to facilitate stress tolerance breeding. However, identification of candidate genes from RNA-Seq studies is hampered by the lack of high-quality genome assemblies for the most stress tolerant cultivars. A more targeted solution is the reconstruction of transcriptomes to provide templates to map RNA-seq reads. Here, we sequenced transcriptomes of ten rice cultivars of three subspecies on the PacBio Sequel platform. RNA was isolated from different organs of plants grown under control and abiotic stress conditions in different environments. Reconstructed de novo reference transcriptomes resulted in 37,500 to 54,600 plant-specific high-quality isoforms per cultivar. Isoforms were collapsed to reduce sequence redundancy and evaluated, e.g., for protein completeness (BUSCO). About 40% of all identified transcripts were novel isoforms compared to the Nipponbare reference transcriptome. For the drought/heat tolerant aus cultivar N22, 56 differentially expressed genes in developing seeds were identified at combined heat and drought in the field. The newly generated rice transcriptomes are useful to identify candidate genes for stress tolerance breeding not present in the reference transcriptomes/genomes. In addition, our approach provides a cost-effective alternative to genome sequencing for identification of candidate genes in highly stress tolerant genotypes.
Collapse
Affiliation(s)
- Stephanie Schaarschmidt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; (A.F.); (L.M.F.L.); (D.K.H.)
- Correspondence: (S.S.); (E.Z.)
| | - Axel Fischer
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; (A.F.); (L.M.F.L.); (D.K.H.)
| | - Lovely Mae F. Lawas
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; (A.F.); (L.M.F.L.); (D.K.H.)
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Rejbana Alam
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA; (R.A.); (J.B.-S.)
| | - Endang M. Septiningsih
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Julia Bailey-Serres
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA; (R.A.); (J.B.-S.)
| | - S. V. Krishna Jagadish
- International Rice Research Institute, DAPO Box 7777, Metro Manila 1301, Philippines;
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
| | - Bruno Huettel
- Max Planck Genome Centre Cologne, Carl-von-Linné-Weg 10, 50829 Cologne, Germany;
| | - Dirk K. Hincha
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; (A.F.); (L.M.F.L.); (D.K.H.)
| | - Ellen Zuther
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; (A.F.); (L.M.F.L.); (D.K.H.)
- Correspondence: (S.S.); (E.Z.)
| |
Collapse
|
56
|
Samulski GB, Gontijo DC, Moreira NC, Brandão GC, Braga de Oliveira A. Dereplication of Palicourea sessilis ethanol extracts by UPLC-DAD-ESI-MS/MS discloses the presence of hydroxycinnamic acid amides and the absence of monoterpene indole alkaloids. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
57
|
Roumani M, Duval RE, Ropars A, Risler A, Robin C, Larbat R. Phenolamides: Plant specialized metabolites with a wide range of promising pharmacological and health-promoting interests. Biomed Pharmacother 2020; 131:110762. [PMID: 33152925 DOI: 10.1016/j.biopha.2020.110762] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Phenolamides constitute a family of metabolites, widely represented in the plant kingdom, that can be found in all plant organs with a predominance in flowers and pollen grains. They represent a large and structurally diverse family, resulting from the association of phenolic acids with aliphatic or aromatic amines. Initially revealed as active compounds in several medicinal plant extracts, phenolamides have been extensively studied for their health-promoting and pharmacological properties. Indeed, phenolamides have been shown to exhibit antioxidant, anti-inflammatory, anti-cancer and antimicrobial properties, but also protective effects against metabolic syndrome and neurodegenerative diseases. The purpose of this review is to summarise this large body of literature, including in vitro and in vivo studies, by describing the diversity of their biological properties and our actual knowledge of the molecular mechanisms behind them. With regard to their considerable pharmacological interest, the question of industrial production is also tackled through chemical and biological syntheses in engineered microorganisms. The diversity of biological activities already described, together with the active discovery of the broad structural diversity of this metabolite family, make phenolamides a promising source of new active compounds on which future studies should be focused.
Collapse
Affiliation(s)
- Marwa Roumani
- UMR 1121, Laboratoire Agronomie et Environnement (LAE), Université de Lorraine- INRAe, Nancy, France
| | | | - Armelle Ropars
- Stress Immunity Pathogens Université de Lorraine, Nancy, France
| | - Arnaud Risler
- Université de Lorraine, CNRS, L2CM, F-54000, Nancy, France
| | - Christophe Robin
- UMR 1121, Laboratoire Agronomie et Environnement (LAE), Université de Lorraine- INRAe, Nancy, France
| | - Romain Larbat
- UMR 1121, Laboratoire Agronomie et Environnement (LAE), Université de Lorraine- INRAe, Nancy, France.
| |
Collapse
|
58
|
Ravisankar S, Queiroz VA, Awika JM. Rye flavonoids – Structural profile of the flavones in diverse varieties and effect of fermentation and heat on their structure and antioxidant properties. Food Chem 2020; 324:126871. [DOI: 10.1016/j.foodchem.2020.126871] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/31/2020] [Accepted: 04/18/2020] [Indexed: 12/12/2022]
|
59
|
Liu JY, Li P, Zhang YW, Zuo JF, Li G, Han X, Dunwell JM, Zhang YM. Three-dimensional genetic networks among seed oil-related traits, metabolites and genes reveal the genetic foundations of oil synthesis in soybean. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1103-1124. [PMID: 32344462 DOI: 10.1111/tpj.14788] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/21/2020] [Indexed: 05/11/2023]
Abstract
Although the biochemical and genetic basis of lipid metabolism is clear in Arabidopsis, there is limited information concerning the relevant genes in Glycine max (soybean). To address this issue, we constructed three-dimensional genetic networks using six seed oil-related traits, 52 lipid metabolism-related metabolites and 54 294 SNPs in 286 soybean accessions in total. As a result, 284 and 279 candidate genes were found to be significantly associated with seed oil-related traits and metabolites by phenotypic and metabolic genome-wide association studies and multi-omics analyses, respectively. Using minimax concave penalty (MCP) and smoothly clipped absolute deviation (SCAD) analyses, six seed oil-related traits were found to be significantly related to 31 metabolites. Among the above candidate genes, 36 genes were found to be associated with oil synthesis (27 genes), amino acid synthesis (four genes) and the tricarboxylic acid (TCA) cycle (five genes), and four genes (GmFATB1a, GmPDAT, GmPLDα1 and GmDAGAT1) are already known to be related to oil synthesis. Using this information, 133 three-dimensional genetic networks were constructed, 24 of which are known, e.g. pyruvate-GmPDAT-GmFATA2-oil content. Using these networks, GmPDAT, GmAGT and GmACP4 reveal the genetic relationships between pyruvate and the three major nutrients, and GmPDAT, GmZF351 and GmPgs1 reveal the genetic relationships between amino acids and seed oil content. In addition, GmCds1, along with average temperature in July and the rainfall from June to September, influence seed oil content across years. This study provides a new approach for the construction of three-dimensional genetic networks and reveals new information for soybean seed oil improvement and the identification of gene function.
Collapse
Affiliation(s)
- Jin-Yang Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pei Li
- Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ya-Wen Zhang
- Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian-Fang Zuo
- Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guo Li
- Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xu Han
- Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jim M Dunwell
- School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6AR, UK
| | - Yuan-Ming Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
60
|
Deng M, Zhang X, Luo J, Liu H, Wen W, Luo H, Yan J, Xiao Y. Metabolomics analysis reveals differences in evolution between maize and rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1710-1722. [PMID: 32445406 DOI: 10.1111/tpj.14856] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Metabolites are the intermediate and final products of metabolism, which play essential roles in plant growth, evolution and adaptation to changing climates. However, it is unclear how evolution contributes to metabolic variation in plants. Here, we investigated the metabolomics data from leaf and seed tissues in maize and rice. Using principal components analysis based on leaf metabolites but not seed metabolites, metabolomics data could be clearly separated for rice Indica and Japonica accessions, while two maize subgroups, temperate and tropical, showed more visible admixture. Rice and maize seed exhibited significant interspecific differences in metabolic variation, while within rice, leaf and seed displayed similar metabolic variations. Among 10 metabolic categories, flavonoids had higher variation in maize than rice, indicating flavonoids are a key constituent of interspecific metabolic divergence. Interestingly, metabolic regulation was also found to be reshaped dramatically from positive to negative correlations, indicative of the differential evolutionary processes in maize and rice. Moreover, perhaps due to this divergence significantly more metabolic interactions were identified in rice than maize. Furthermore, in rice, the leaf was found to harbor much more intense metabolic interactions than the seed. Our result suggests that metabolomes are valuable for tracking evolutionary history, thereby complementing and extending genomic insights concerning which features are responsible for interspecific differentiation in maize and rice.
Collapse
Affiliation(s)
- Min Deng
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuehai Zhang
- National Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jingyun Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haijun Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weiwei Wen
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongbing Luo
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingjie Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
61
|
Wang W, Snooks HD, Sang S. The Chemistry and Health Benefits of Dietary Phenolamides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6248-6267. [PMID: 32422049 DOI: 10.1021/acs.jafc.0c02605] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phenolamides, also known as hydroxycinnamic acid amides or phenylamides, have been reported throughout the plant kingdom, while a few of these amine-conjugated hydroxycinnamic acids are unique in foods. The current knowledge of their specific functions in plant development and defense is readily available as is their biosynthesis; however, their functionality in humans is still largely unknown. Of the currently known phenolamides, the most common are avenanthramides, which are unique in oats and similar to the well-known drug Tranilast, which possess anti-inflammatory, antioxidant, anti-itch, and antiatherogenic activities. While recent data have brought to light more information regarding the other known phenolamides, such as hordatines, dimers of agmatine conjugated to hydroxycinnamic acid, and kukoamines, spermine-derived phenolamides, the information is still severely limited, leaving their potential health benefits to speculation. Herein, to highlight the importance of dietary phenolamides to human health, we review and summarize the four major subgroups of phenolamides, including their chemical structures, dietary sources, and reported health benefits. We believe that the studies on phenolamides are still in the infancy stage and additional health benefits of these phenolamides may yet be identified.
Collapse
Affiliation(s)
- Weixin Wang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Hunter D Snooks
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| |
Collapse
|
62
|
Bartolić D, Maksimović V, Maksimović JD, Stanković M, Krstović S, Baošić R, Radotić K. Variations in polyamine conjugates in maize (Zea mays L.) seeds contaminated with aflatoxin B1: a dose-response relationship. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2905-2910. [PMID: 32031245 DOI: 10.1002/jsfa.10317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/20/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Cereal seeds, such as maize seeds, are frequently contaminated with aflatoxin B1 (AFB1), one of the most dangerous naturally occurring carcinogens. In plants, phenolamides are involved in biotic stress response. The data on variations of phenolamides in AFB1-containing seeds are limited. RESULTS Five polyamine conjugates, including two spermidine and three putrescine conjugates, were tentatively identified in methanolic extracts, using HPLC-DAD-MS. The ratio of putrescine to spermidine conjugates changed with increasing AFB1 concentration in a logistic dose-response manner, with a ratio of below 1 up to a concentration of 51.51 μg kg-1 , and approximately 2.54 and 3 at higher concentrations of 177.4 and 308.13 μg kg-1 , respectively. The observed variations of the total antioxidant activity and the total phenolic content may support this biphasic behaviour of the seeds against AFB1 stress. CONCLUSIONS The obtained data are a contribution to the understanding of the roles of polyamine conjugates in seed defence to increasing AFB1 concentrations. According to our knowledge, this study reports for the first time the biphasic response of maize seeds to increasing AFB1 contamination level, comprising the induction of polyamine conjugate accumulation and variation in the ratio of conjugates. This dose-response relationship may provide useful information in the field of agricultural and food chemistry as an indicator of AFB1 contamination level and, hence, for selecting an appropriate seed quality. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dragana Bartolić
- Institute for Multidisciplinary Research, Department of Life Sciences, University of Belgrade, Belgrade, Serbia
| | - Vuk Maksimović
- Institute for Multidisciplinary Research, Department of Life Sciences, University of Belgrade, Belgrade, Serbia
| | - Jelena D Maksimović
- Institute for Multidisciplinary Research, Department of Life Sciences, University of Belgrade, Belgrade, Serbia
| | - Mira Stanković
- Institute for Multidisciplinary Research, Department of Life Sciences, University of Belgrade, Belgrade, Serbia
| | - Saša Krstović
- Faculty of Agriculture, Department of Animal Science, University of Novi Sad, Novi Sad, Serbia
| | - Rada Baošić
- Faculty of Chemistry, Department of Analytical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Ksenija Radotić
- Institute for Multidisciplinary Research, Department of Life Sciences, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
63
|
Bertrand A, Rocher S, Claessens A, Bipfubusa M, Papadopoulos Y, Castonguay Y. Biochemical and molecular responses during overwintering of red clover populations recurrently selected for improved freezing tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110388. [PMID: 32005393 DOI: 10.1016/j.plantsci.2019.110388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/27/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Low freezing tolerance reduces the persistence of red clover under northern climate. The incidence of winter damages in perennial crops could increase in the future due to the adverse effects of the predicted warmer fall temperature on plant cold acclimation. To accelerate breeding progress, two cultivars of red clover Christie (C-TF0) and Endure (E-TF0) were exposed to a recurrent selection protocol for freezing tolerance performed indoor. New populations were obtained after five (C-TF5 and E-TF5), six (C-TF6 and E-TF6), and seven (C-TF7 and E-TF7) cycles of recurrent selection. These populations were overwintered under natural conditions and monitored for freezing tolerance and cold-induced molecular traits. Freezing tolerance was improved by up to 6 °C in recurrently selected populations when compared to initial cultivars confirming that further progress are achieved with advanced cycles of selection. Monthly analysis of biochemical changes shows that higher starch concentrations at the onset of the fall hardening period are contributing to the acquisition of superior freezing tolerance through its impact on sucrose accumulation. They also contribute to the vigor of spring regrowth by sustaining more pinitol and proline synthesis. Larger concentrations of these metabolites in populations with higher levels of freezing tolerance (TF7) hint at their involvement in winter survival of red clover. Among genes differentially expressed in response to both cold acclimation and recurrent selection, a concomitant cold induction of APPR9 and cold repression of 1-aminocyclopropane-carboxylate synthase suggests a link between the repression of a pathway regulated by ethylene and the improvement of freezing tolerance in red clover.
Collapse
Affiliation(s)
| | - Solen Rocher
- Agriculture and Agri-Food Canada, Québec City, Canada
| | | | - Marie Bipfubusa
- Centre de Recherche Sur Les Grains Inc. (CÉROM), Beloeil, Canada
| | | | | |
Collapse
|
64
|
Valette M, Rey M, Gerin F, Comte G, Wisniewski-Dyé F. A common metabolomic signature is observed upon inoculation of rice roots with various rhizobacteria. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:228-246. [PMID: 30920733 DOI: 10.1111/jipb.12810] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/20/2019] [Indexed: 05/21/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR), whose growth is stimulated by root exudates, are able to improve plant growth and health. Among those, bacteria of the genus Azospirillum were shown to affect root secondary metabolite content in rice and maize, sometimes without visible effects on root architecture. Transcriptomic studies also revealed that expression of several genes involved in stress and plant defense was affected, albeit with fewer genes when a strain was inoculated onto its original host cultivar. Here, we investigated, via a metabolic profiling approach, whether rice roots responded differently and with gradual intensity to various PGPR, isolated from rice or not. A common metabolomic signature of nine compounds was highlighted, with the reduced accumulation of three alkylresorcinols and increased accumulation of two hydroxycinnamic acid amides (HCAA), identified as N-p-coumaroylputrescine and N-feruloylputrescine. This was accompanied by the increased transcription of two genes involved in the N-feruloylputrescine biosynthetic pathway. Interestingly, exposure to a rice bacterial pathogen triggered a reduced accumulation of these HCAA in roots, a result contrasting with previous reports of increased HCAA content in leaves upon pathogen infection. Accumulation of HCAA, that are potential antimicrobial compounds, might be considered as a primary reaction of plant to bacterial perception.
Collapse
Affiliation(s)
- Marine Valette
- Université de Lyon, Université Lyon1, Ecologie Microbienne, CNRS UMR-5557, INRA UMR-1418, VetAgroSup, 43 boulevard du 11 novembre 1918, 69622, Villeurbanne, France
| | - Marjolaine Rey
- Université de Lyon, Université Lyon1, Ecologie Microbienne, CNRS UMR-5557, INRA UMR-1418, VetAgroSup, 43 boulevard du 11 novembre 1918, 69622, Villeurbanne, France
| | - Florence Gerin
- Université de Lyon, Université Lyon1, Ecologie Microbienne, CNRS UMR-5557, INRA UMR-1418, VetAgroSup, 43 boulevard du 11 novembre 1918, 69622, Villeurbanne, France
| | - Gilles Comte
- Université de Lyon, Université Lyon1, Ecologie Microbienne, CNRS UMR-5557, INRA UMR-1418, VetAgroSup, 43 boulevard du 11 novembre 1918, 69622, Villeurbanne, France
| | - Florence Wisniewski-Dyé
- Université de Lyon, Université Lyon1, Ecologie Microbienne, CNRS UMR-5557, INRA UMR-1418, VetAgroSup, 43 boulevard du 11 novembre 1918, 69622, Villeurbanne, France
| |
Collapse
|
65
|
Hu C, Rao J, Song Y, Chan SA, Tohge T, Cui B, Lin H, Fernie AR, Zhang D, Shi J. Dissection of flag leaf metabolic shifts and their relationship with those occurring simultaneously in developing seed by application of non-targeted metabolomics. PLoS One 2020; 15:e0227577. [PMID: 31978163 PMCID: PMC6980602 DOI: 10.1371/journal.pone.0227577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/20/2019] [Indexed: 11/24/2022] Open
Abstract
Rice flag leaves are major source organs providing more than half of the nutrition needed for rice seed development. The dynamic metabolic changes in rice flag leaves and the detailed metabolic relationship between source and sink organs in rice, however, remain largely unknown. In this study, the metabolic changes of flag leaves in two japonica and two indica rice cultivars were investigated using non-targeted metabolomics approach. Principal component analysis (PCA) revealed that flag leaf metabolomes varied significantly depending on both species and developmental stage. Only a few of the metabolites in flag leaves displayed the same change pattern across the four tested cultivars along the process of seed development. Further association analysis found that levels of 45 metabolites in seeds that are associated with human nutrition and health correlated significantly with their levels in flag leaves. Comparison of metabolomics of flag leaves and seeds revealed that some flavonoids were specific or much higher in flag leaves while some lipid metabolites such as phospholipids were much higher in seeds. This reflected not only the function of the tissue specific metabolism but also the different physiological properties and metabolic adaptive features of these two tissues.
Collapse
Affiliation(s)
- Chaoyang Hu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Key Laboratory of Applied Marine Biotechnology of Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Rao
- Jiangxi Cancer Hospital, Nanchang, China
| | - Yue Song
- Agilent Technologies Incorporated Company, Shanghai, China
| | - Shen-An Chan
- Agilent Technologies Incorporated Company, Shanghai, China
| | - Takayuki Tohge
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Golm, Germany
| | - Bo Cui
- Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Lin
- Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Alisdair R. Fernie
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Golm, Germany
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, SJTU-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
66
|
Zeng X, Yuan H, Dong X, Peng M, Jing X, Xu Q, Tang T, Wang Y, Zha S, Gao M, Li C, Shu C, Wei Z, Qimei W, Basang Y, Dunzhu J, Li Z, Bai L, Shi J, Zheng Z, Yu S, Fernie AR, Luo J, Nyima T. Genome-wide Dissection of Co-selected UV-B Responsive Pathways in the UV-B Adaptation of Qingke. MOLECULAR PLANT 2020; 13:112-127. [PMID: 31669581 DOI: 10.1016/j.molp.2019.10.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/16/2019] [Accepted: 10/15/2019] [Indexed: 05/03/2023]
Abstract
Qingke (Tibetan hulless barley) has long been cultivated and exposed to long-term and strong UV-B radiation on the Tibetan Plateau, which renders it an ideal species for elucidating novel UV-B responsive mechanisms in plants. Here we report a comprehensive metabolite profiling and metabolite-based genome-wide association study (mGWAS) using 196 diverse qingke and barley accessions. Our results demonstrated both constitutive and induced accumulation, and common genetic regulation, of metabolites from different branches of the phenylpropanoid pathway that are involved in UV-B protection. A total of 90 significant mGWAS loci for these metabolites were identified in barley-qingke differentiation regions, and a number of high-level metabolite trait alleles were found to be significantly enriched in qingke, suggesting co-selection of various phenylpropanoids. Upon dissecting the entire phenylpropanoid pathway, we identified some key determinants controlling natural variation of phenylpropanoid content, including three novel proteins, a flavone C-pentosyltransferase, a tyramine hydroxycinnamoyl acyltransferase, and a MYB transcription factor. Our study, furthermore, demonstrated co-selection of both constitutive and induced phenylpropanoids for UV-B protection in qingke.
Collapse
Affiliation(s)
- Xingquan Zeng
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China; Research Institute of Agriculture, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China; Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Hongjun Yuan
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China; Research Institute of Agriculture, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China; Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Xuekui Dong
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, China; National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Peng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; VIB-UGent Center for Plant Systems Biology, Ghent University, Technologiepark-Zwijnaarde, 71, 9052 Ghent, Belgium
| | - Xinyu Jing
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Qijun Xu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China; Research Institute of Agriculture, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China; Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Tang Tang
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, China
| | - Yulin Wang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China; Research Institute of Agriculture, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China; Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Sang Zha
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China; Research Institute of Agriculture, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China; Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Meng Gao
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, China
| | - Congzhi Li
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, China
| | - Chujin Shu
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, China
| | - Zexiu Wei
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China; Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China; Agricultural Resources and Environment Research Institute, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Wangmu Qimei
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China; Research Institute of Agriculture, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China; Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Yuzhen Basang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China; Research Institute of Agriculture, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China; Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Jiabu Dunzhu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China; Research Institute of Agriculture, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China; Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Zeqing Li
- Wuhan Igenebook Biotechnology Co., Ltd., Wuhan, China
| | - Lijun Bai
- Chengdu Life Baseline Technology Co., Ltd, Chengdu, 610041, China
| | - Jian Shi
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, China
| | - Zhigang Zheng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Sibin Yu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 144776, Germany
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; College of Tropical Crops, Hainan University, Haikou, Hainan 572208, China.
| | - Tashi Nyima
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China; Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China.
| |
Collapse
|
67
|
Wang C, Li J, Ma M, Lin Z, Hu W, Lin W, Zhang P. Structural and Biochemical Insights Into Two BAHD Acyltransferases ( AtSHT and AtSDT) Involved in Phenolamide Biosynthesis. FRONTIERS IN PLANT SCIENCE 2020; 11:610118. [PMID: 33519864 PMCID: PMC7838080 DOI: 10.3389/fpls.2020.610118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/17/2020] [Indexed: 05/18/2023]
Abstract
Phenolamides represent one of the largest classes of plant-specialized secondary metabolites and function in diverse physiological processes, including defense responses and development. The biosynthesis of phenolamides requires the BAHD-family acyltransferases, which transfer acyl-groups from different acyl-donors specifically to amines, the acyl-group acceptors. However, the mechanisms of substrate specificity and multisite-acylation of the BAHD-family acyltransferases remain poorly understood. In this study, we provide a structural and biochemical analysis of AtSHT and AtSDT, two representative BAHD-family members that catalyze the multisite acylation of spermidine but show different product profiles. By determining the structures of AtSHT and AtSDT and using structure-based mutagenesis, we identified the residues important for substrate recognition in AtSHT and AtSDT and hypothesized that the acyl acceptor spermidine might adopt a free-rotating conformation in AtSHT, which can undergo mono-, di-, or tri-acylation; while the spermidine molecule in AtSDT might adopt a linear conformation, which only allows mono- or di-acylation to take place. In addition, through sequence similarity network (SSN) and structural modeling analysis, we successfully predicted and verified the functions of two uncharacterized Arabidopsis BAHD acyltransferases, OAO95042.1 and NP_190301.2, which use putrescine as the main acyl-acceptor. Our work provides not only an excellent starting point for understanding multisite acylation in BAHD-family enzymes, but also a feasible methodology for predicting possible acyl acceptor specificity of uncharacterized BAHD-family acyltransferases.
Collapse
Affiliation(s)
- Chengyuan Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jianxu Li
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Miaolian Ma
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Zhaozhu Lin
- Department of Microbiology and Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenli Hu
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Wei Lin
- Department of Microbiology and Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Wei Lin,
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Peng Zhang,
| |
Collapse
|
68
|
Razzaq A, Sadia B, Raza A, Khalid Hameed M, Saleem F. Metabolomics: A Way Forward for Crop Improvement. Metabolites 2019; 9:E303. [PMID: 31847393 PMCID: PMC6969922 DOI: 10.3390/metabo9120303] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/02/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022] Open
Abstract
Metabolomics is an emerging branch of "omics" and it involves identification and quantification of metabolites and chemical footprints of cellular regulatory processes in different biological species. The metabolome is the total metabolite pool in an organism, which can be measured to characterize genetic or environmental variations. Metabolomics plays a significant role in exploring environment-gene interactions, mutant characterization, phenotyping, identification of biomarkers, and drug discovery. Metabolomics is a promising approach to decipher various metabolic networks that are linked with biotic and abiotic stress tolerance in plants. In this context, metabolomics-assisted breeding enables efficient screening for yield and stress tolerance of crops at the metabolic level. Advanced metabolomics analytical tools, like non-destructive nuclear magnetic resonance spectroscopy (NMR), liquid chromatography mass-spectroscopy (LC-MS), gas chromatography-mass spectrometry (GC-MS), high performance liquid chromatography (HPLC), and direct flow injection (DFI) mass spectrometry, have sped up metabolic profiling. Presently, integrating metabolomics with post-genomics tools has enabled efficient dissection of genetic and phenotypic association in crop plants. This review provides insight into the state-of-the-art plant metabolomics tools for crop improvement. Here, we describe the workflow of plant metabolomics research focusing on the elucidation of biotic and abiotic stress tolerance mechanisms in plants. Furthermore, the potential of metabolomics-assisted breeding for crop improvement and its future applications in speed breeding are also discussed. Mention has also been made of possible bottlenecks and future prospects of plant metabolomics.
Collapse
Affiliation(s)
- Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan; (A.R.); (B.S.)
| | - Bushra Sadia
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan; (A.R.); (B.S.)
| | - Ali Raza
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China;
| | - Muhammad Khalid Hameed
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Fozia Saleem
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan; (A.R.); (B.S.)
| |
Collapse
|
69
|
Li K, Wang D, Gong L, Lyu Y, Guo H, Chen W, Jin C, Liu X, Fang C, Luo J. Comparative analysis of metabolome of rice seeds at three developmental stages using a recombinant inbred line population. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:908-922. [PMID: 31355982 PMCID: PMC6899760 DOI: 10.1111/tpj.14482] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/13/2019] [Accepted: 07/23/2019] [Indexed: 05/23/2023]
Abstract
Plants are considered an important food and nutrition source for humans. Despite advances in plant seed metabolomics, knowledge about the genetic and molecular bases of rice seed metabolomes at different developmental stages is still limited. Here, using Zhenshan 97 (ZS97) and Minghui 63 (MH63), we performed a widely targeted metabolic profiling in seeds during grain filling, mature seeds and germinating seeds. The diversity between MH63 and ZS97 was characterized in terms of the content of metabolites and the metabolic shifting across developmental stages. Taking advantage of the ultra-high-density genetic map of a population of 210 recombinant inbred lines (RILs) derived from a cross between ZS97 and MH63, we identified 4681 putative metabolic quantitative trait loci (mQTLs) in seeds across the three stages. Further analysis of the mQTLs for the codetected metabolites across the three stages revealed that the genetic regulation of metabolite accumulation was closely related to developmental stage. Using in silico analyses, we characterized 35 candidate genes responsible for 30 structurally identified or annotated compounds, among which LOC_Os07g04970 and LOC_Os06g03990 were identified to be responsible for feruloylserotonin and l-asparagine content variation across populations, respectively. Metabolite-agronomic trait association and colocation between mQTLs and phenotypic quantitative trait loci (pQTLs) revealed the complexity of the metabolite-agronomic trait relationship and the corresponding genetic basis.
Collapse
Affiliation(s)
- Kang Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant ResearchHuazhong Agricultural UniversityWuhan430070China
| | - Dehong Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant ResearchHuazhong Agricultural UniversityWuhan430070China
| | - Liang Gong
- The Jackson Laboratory for Genomic MedicineFarmingtonCTUSA
| | - Yuanyuan Lyu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant ResearchHuazhong Agricultural UniversityWuhan430070China
| | - Hao Guo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant ResearchHuazhong Agricultural UniversityWuhan430070China
| | - Wei Chen
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Cheng Jin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant ResearchHuazhong Agricultural UniversityWuhan430070China
| | - Xianqing Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourceCollege of Tropical CropsHainan UniversityHaikou570288China
| | - Chuanying Fang
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourceCollege of Tropical CropsHainan UniversityHaikou570288China
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant ResearchHuazhong Agricultural UniversityWuhan430070China
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourceCollege of Tropical CropsHainan UniversityHaikou570288China
| |
Collapse
|
70
|
Yang Y, Zhang JL, Zhou Q, Wang L, Huang W, Wang RD. Effect of ultrasonic and ball-milling treatment on cell wall, nutrients, and antioxidant capacity of rose (Rosa rugosa) bee pollen, and identification of bioactive components. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5350-5357. [PMID: 31049985 DOI: 10.1002/jsfa.9774] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/26/2019] [Accepted: 04/27/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Bee pollen has been regarded as a complete nutritional human dietary supplement but its nutrient absorption and biological effects may be restricted by the complex pollen wall. The aim of this study was to explore the effects of ultrasonic and ball-milling treatment on the release of nutritional components and on in vitro and in vivo antioxidant effects of rose (Rosa rugosa) bee pollen. RESULTS Bee pollen walls were broken to varying degrees, nutrients were released, and in vitro and in vivo antioxidant effects of bee pollen were improved. The scavenging effects of 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazolone-6-sulfonic acid) (ABTS) radicals, and oxygen radical absorbance capacity (ORAC) were improved. In aging mice, wall-breaking treatment led to better organ recovery, enhanced superoxide dismutase (SOD) and catalase (CAT) effects, and malondialdehyde (MDA) reduction. Eight compounds of rose bee pollen ethanol extract, including isorhamnetin 3-O-diglucoside and N', N″, N‴-dicaffeoyl p-coumaroyl spermidine were identified by ultra-performance liquid chromatography electrospray ionization quadrupole time of flight mass spectrometry (UPLC-ESI-QTOF-MS/MS) assay. CONCLUSION This study showed that ultrasonic treatment had greater wall-disruption effects of bee pollen on nutrient release and antioxidant effect promotion. In conclusion, rose bee pollen, with wall-breaking treatments, may have potential value as an ingredient in functional food processing. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Yang
- Department of Food Nutrition, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiu-Liang Zhang
- Department of Food Nutrition, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qing Zhou
- Department of Pharmacy, Wuhan City Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Wang
- Hubei Institute for Drug Control, Wuhan, China
| | - Wei Huang
- Hubei Institute for Drug Control, Wuhan, China
| | - Rui-Dan Wang
- Department of Food Nutrition, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
71
|
Wang S, Alseekh S, Fernie AR, Luo J. The Structure and Function of Major Plant Metabolite Modifications. MOLECULAR PLANT 2019; 12:899-919. [PMID: 31200079 DOI: 10.1016/j.molp.2019.06.001] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/27/2019] [Accepted: 06/04/2019] [Indexed: 05/23/2023]
Abstract
Plants produce a myriad of structurally and functionally diverse metabolites that play many different roles in plant growth and development and in plant response to continually changing environmental conditions as well as abiotic and biotic stresses. This metabolic diversity is, to a large extent, due to chemical modification of the basic skeletons of metabolites. Here, we review the major known plant metabolite modifications and summarize the progress that has been achieved and the challenges we are facing in the field. We focus on discussing both technical and functional aspects in studying the influences that various modifications have on biosynthesis, degradation, transport, and storage of metabolites, as well as their bioactivity and toxicity. Finally, we discuss some emerging insights into the evolution of metabolic pathways and metabolite functionality.
Collapse
Affiliation(s)
- Shouchuang Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 572208, China
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany; Centre of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany; Centre of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria.
| | - Jie Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 572208, China; National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
72
|
Peng H, Meyer RS, Yang T, Whitaker BD, Trouth F, Shangguan L, Huang J, Litt A, Little DP, Ke H, Jurick WM. A novel hydroxycinnamoyl transferase for synthesis of hydroxycinnamoyl spermine conjugates in plants. BMC PLANT BIOLOGY 2019; 19:261. [PMID: 31208339 PMCID: PMC6580504 DOI: 10.1186/s12870-019-1846-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/22/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Hydroxycinnamoyl-spermine conjugates (HCSpm) are a class of hydroxycinnamic acid amides (HCAAs), which not only are instrumental in plant development and stress response, but also benefit human health. However, HCSpm are not commonly produced in plants, and the mechanism of their biosynthesis remains unclear. In previous investigations of phenolics in Solanum fruits related to eggplant (Solanum melongena L.), we discovered that Solanum richardii, an African wild relative of eggplant, was rich in HCSpms in fruits. RESULTS The putative spermine hydroxycinnamoyl transferase (HT) SpmHT was isolated from S. richardii and eggplant. SrSpmHT expression was high in flowers and fruit, and was associated with HCSpm accumulation in S. richardii; however, SpmHT was hardly detected in eggplant cultivars and other wild relatives. Recombinant SpmHT exclusively selected spermine as the acyl acceptor substrate, while showing donor substrate preference in the following order: caffeoyl-CoA, feruloyl-CoA, and p-coumaroyl-CoA. Molecular docking revealed that substrate binding pockets of SpmHT could properly accommodate spermine but not the shorter, more common spermidine. CONCLUSION SrSpmHT is a novel spermine hydroxycinnamoyl transferase that uses Spm exclusively as the acyl acceptor substrate to produce HCSpms. Our findings shed light on the HCSpm biosynthetic pathway that may allow an increase of health beneficial metabolites in Solanum crops via methods such as introgression or engineering HCAA metabolism.
Collapse
Affiliation(s)
- Hui Peng
- Food Quality Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service of U.S. Department of Agriculture, Beltsville, MD 20705 USA
- The Genome Center and Department of Plant Sciences, University of California, Davis, CA 95616 USA
| | - Rachel S. Meyer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Tianbao Yang
- Food Quality Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service of U.S. Department of Agriculture, Beltsville, MD 20705 USA
| | - Bruce D. Whitaker
- Food Quality Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service of U.S. Department of Agriculture, Beltsville, MD 20705 USA
| | - Frances Trouth
- Food Quality Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service of U.S. Department of Agriculture, Beltsville, MD 20705 USA
| | - Lingfei Shangguan
- Food Quality Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service of U.S. Department of Agriculture, Beltsville, MD 20705 USA
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Jingbing Huang
- College of Food Science and Engineering, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Amy Litt
- College of Natural and Agricultural Sciences, University of California, Riverside, CA 92521 USA
| | - Damon P. Little
- Cullman Program for Molecular Systematics, New York Botanical Garden, 2900 Southern Boulevard, Bronx, New York, NY 10458 USA
| | - Hengming Ke
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Wayne M. Jurick
- Food Quality Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service of U.S. Department of Agriculture, Beltsville, MD 20705 USA
| |
Collapse
|
73
|
Fang C, Luo J. Metabolic GWAS-based dissection of genetic bases underlying the diversity of plant metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:91-100. [PMID: 30231195 DOI: 10.1111/tpj.14097] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 05/21/2023]
Abstract
Plants have served as sources providing humans with metabolites for food and nutrition, biomaterials for living, and treatment for pain and disease. Plants produce a huge array of metabolites, with an immense diversity at both the population and individual levels. Dissection of the genetic bases for metabolic diversity has attracted increasing research attention. The concept of genome-wide association study (GWAS) was extended to studies on the diversity of plant metabolome that benefitted from the development of mass-spectrometry-based analytical systems and genome sequencing technologies. Metabolic genome-wide association study (mGWAS) is one of the most powerful tools for global identification of genetic determinants for diversity of plant metabolism. Recently, mGWAS has been performed for various species with continuous improvements, providing deeper insights into the genetic bases of metabolic diversity. In this review, we discuss fully the achievements to date and remaining challenges that are associated with both mGWAS and mGWAS-based multi-dimensional analysis. We begin with a summary of GWAS and its development based on statistical methods and populations. As variation in targeted traits is essential for GWAS, we review metabolic diversity and its rise at both the population and individual levels. Subsequently, the application of mGWAS for plants and its corresponding achievements are fully discussed. We address the current knowledge on mGWAS-based multi-dimensional analysis and emerging insights into the diversity of metabolism.
Collapse
Affiliation(s)
- Chuanying Fang
- Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 470228, China
| | - Jie Luo
- Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 470228, China
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
74
|
Fang C, Fernie AR, Luo J. Exploring the Diversity of Plant Metabolism. TRENDS IN PLANT SCIENCE 2019; 24:83-98. [PMID: 30297176 DOI: 10.1016/j.tplants.2018.09.006] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/05/2018] [Accepted: 09/11/2018] [Indexed: 05/23/2023]
Abstract
Plants produce a huge array of metabolites, far more than those produced by most other organisms. Unraveling this diversity and its underlying genetic variation has attracted increasing research attention. Post-genomic profiling platforms have enabled the marriage and mining of the enormous amount of phenotypic and genetic diversity. We review here achievements to date and challenges remaining that are associated with plant metabolic research using multi-omic strategies. We focus mainly on strategies adopted in investigating the diversity of plant metabolism and its underlying features. Recent advances in linking metabotypes with phenotypic and genotypic traits are also discussed. Taken together, we conclude that exploring the diversity of metabolism could provide new insights into plant evolution and domestication.
Collapse
Affiliation(s)
- Chuanying Fang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 144776, Germany; Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria.
| | - Jie Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570288, China; National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
75
|
Li Z, Zhao C, Zhao X, Xia Y, Sun X, Xie W, Ye Y, Lu X, Xu G. Deep Annotation of Hydroxycinnamic Acid Amides in Plants Based on Ultra-High-Performance Liquid Chromatography-High-Resolution Mass Spectrometry and Its In Silico Database. Anal Chem 2018; 90:14321-14330. [PMID: 30453737 DOI: 10.1021/acs.analchem.8b03654] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hydroxycinnamic acid amides (HCAAs), diversely distributed secondary metabolites in plants, play essential roles in plant growth and developmental processes. Most current approaches can be used to analyze a few known HCAAs in a given plant. A novel method for comprehensive detection of plant HCAAs is urgently needed. In this study, a deep annotation method of HCAAs was proposed on the basis of ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) and its in silico database of HCAAs. To construct an in silico UHPLC-HRMS HCAAs database, a total of 846 HCAAs were generated from the most common phenolic acid and polyamine/aromatic monoamine substrates according to possible biosynthesis reactions, which represent the structures of plant-specialized HCAAs. The characteristic MS/MS fragmentation patterns of HCAAs were extracted from reference mixtures. Four quantitative structure-retention relationship (QSRR) models were developed to predict retention times of mono-trans-HCAAs (aromatic amines conjugates), mono-trans-HCAAs (aliphatic amines conjugates), bis-HCAAs, and tris-HCAAs. The developed method was applied for identifying HCAAs in seeds (maize, wheat, and rice), roots (rice), and leaves (rice and tobacco). A total of 79 HCAAs were detected: 42 of them were identified in these plants for the first time, and 20 of them have never been reported to exist in plants. The results showed that the developed method can be used to identify HCAAs in a plant without prior knowledge of HCAA distributions. To the best of our knowledge, it is the first UHPLC-HRMS database developed for effective deep annotation of HCAAs from nontargeted UHPLC-HRMS data. It is useful for the identification of novel HCAAs in plants.
Collapse
Affiliation(s)
- Zaifang Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Chunxia Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Xinjie Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Yueyi Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiaoshan Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Wenyan Xie
- Shanghai Tobacco Group Co. Ltd, Technology Center , Shanghai 200082 , China
| | - Yaorui Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| |
Collapse
|
76
|
Wu Q, Ni M, Wang G, Liu Q, Yu M, Tang J. Omics for understanding the tolerant mechanism of Trichoderma asperellum TJ01 to organophosphorus pesticide dichlorvos. BMC Genomics 2018; 19:596. [PMID: 30089471 PMCID: PMC6083568 DOI: 10.1186/s12864-018-4960-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/24/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUD Though it is toxic to humans, dichlorvos is a widely used chemical pesticide and plays an important role in the control of plant pests. The application of a combination of the biocontrol agent Trichoderma with dichlorvos may reduce the need for chemical pesticides. Therefore, revealing the specific molecular mechanism of Trichoderma tolerance to dichlorvos has become particularly important. RESULTS In this study, using transcriptome and metabolome analyses, changes in primary and secondary metabolisms in Trichoderma asperellum TJ01 were comprehensively studied in the presence of dichlorvos. A novel C2H2 zinc finger protein gene, zinc finger chimera 1 (zfc1), was discovered to be upregulated, along with a large number of oxidoreductase genes and ABC transporter genes under dichlorvos stress. In addition, gas chromatography-mass spectrometry (GC-TOF-MS), and liquid chromatography-mass spectrometry (LC-QQQ-MS) data revealed the global primary and secondary metabolic changes that occur in T. asperellum TJ01 under dichlorvos stress. CONCLUSIONS The tolerance mechanism of T. asperellum TJ01 to dichlorvos was proposed. In addition, the absorption and residue of dichlorvos were analyzed, laying the foundation for elucidation of the mechanism by which T. asperellum TJ01 degrades pesticide residues.
Collapse
Affiliation(s)
- Qiong Wu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236037, Anhui, China
| | - Mi Ni
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236037, Anhui, China
| | - Guisheng Wang
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236037, Anhui, China
| | - Qianqian Liu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236037, Anhui, China
| | - Meixia Yu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236037, Anhui, China
| | - Jun Tang
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236037, Anhui, China.
| |
Collapse
|
77
|
Wang Q, Zeng S, Wu X, Lei H, Wang Y, Tang H. Interspecies Developmental Differences in Metabonomic Phenotypes of Lycium ruthenicum and L. barbarum Fruits. J Proteome Res 2018; 17:3223-3236. [DOI: 10.1021/acs.jproteome.8b00349] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Qi Wang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai 200438, China
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Shaohua Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China
| | - Xiangyu Wu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Hehua Lei
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai 200438, China
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| |
Collapse
|
78
|
Hydrothermal stability of phenolic extracts of brown rice. Food Chem 2018; 271:114-121. [PMID: 30236655 DOI: 10.1016/j.foodchem.2018.07.180] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/15/2018] [Accepted: 07/25/2018] [Indexed: 12/17/2022]
Abstract
The phenolics were extracted and purified from brown rice and twenty-seven compounds were identified, including six phenolic acids, four phenolic acid glycosides, and eight flavonoid glycosides. Afterwards, the hydrothermal stability of phenolic extracts of brown rice was investigated after treatment at 60, 80, or 100 °C for 120 min. After hydrothermal treatment, ferulic acid, p-coumaric acid and free glucose were increased, while the phenolic glycosides were decreased. In addition, the total phenolic and total flavonoid content were decreased by 5.7%-9.2% and 3.5%-5.8% after initial 30 min, and then they were slightly recovered after treatment for 120 min. Consequently, there was a slight reduction (<10%) in the total antioxidant activity of the phenolic extracts after hydrothermal treatment. These results suggest that hydrothermal treatment of phenolic extracts of brown rice made some phenolic glycosides deglycosylated, but does not lead to a large reduction in their overall antioxidant activity.
Collapse
|
79
|
Li S, Dong X, Fan G, Yang Q, Shi J, Wei W, Zhao F, Li N, Wang X, Wang F, Feng X, Zhang X, Song G, Shi G, Zhang W, Qiu F, Wang D, Li X, Zhang Y, Zhao Z. Comprehensive Profiling and Inheritance Patterns of Metabolites in Foxtail Millet. FRONTIERS IN PLANT SCIENCE 2018; 9:1716. [PMID: 30542359 PMCID: PMC6277888 DOI: 10.3389/fpls.2018.01716] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 11/05/2018] [Indexed: 05/03/2023]
Abstract
Metabolomics aims at determining a sample's metabolites profile and hence provides a straight functional statement of an organism's physiological condition. Here, we investigated comprehensive profiling, natural variation and species-specific accumulation of both primary and secondary metabolites in foxtail millet using LC-MS, and inheritance patterns of metabolome in millet hybrids. The application of a broad target metabolomics method facilitated the simultaneous identification and quantification of more than 300 metabolites. The metabolic analysis of these compounds, such as flavonoids, phenolamides, hydrocinnamoyl derivatives, vitamins and LPCs, revealed their developmentally controlled accumulation, and natural variation in different tissues/varieties. Species-specific accumulation of secondary metabolites was observed based on a comparative metabolic analysis between millet and rice, such as flavonoid O-rutinosides/neohesperidosides and malonylated flavonoid O-glycosides. In analyzing the metabolic variations between hybrid progenies and their parental lines, including a photothermo-sensitive genic male sterility line and five Zhangzagu varieties, metabolic overdominant, and dominant patterns of inheritance could be observed. For example, hydrocinnamoyl derivatives and feruloylated flavonoids were identified as over-parent heterosis (overdominant) metabolites in milet hybrids. Our work paves the way for developing predictors of hybrid performance and the future analysis of the biosynthesis and regulation of relevant metabolic pathways in millet.
Collapse
Affiliation(s)
- Shuangdong Li
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Xuekui Dong
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, China
| | - Guangyu Fan
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | | | - Jian Shi
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, China
| | - Wei Wei
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Fang Zhao
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Ning Li
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, China
| | - Xiaoming Wang
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Feng Wang
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Xiaolei Feng
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Xiaolei Zhang
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Guoliang Song
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Gaolei Shi
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Wenying Zhang
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Fengcang Qiu
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Dequan Wang
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Xinru Li
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Yali Zhang
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
| | - Zhihai Zhao
- Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China
- *Correspondence: Zhihai Zhao
| |
Collapse
|
80
|
Swain-Lenz D, Nikolskiy I, Cheng J, Sudarsanam P, Nayler D, Staller MV, Cohen BA. Causal Genetic Variation Underlying Metabolome Differences. Genetics 2017; 206:2199-2206. [PMID: 28652377 PMCID: PMC5560816 DOI: 10.1534/genetics.117.203752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 06/21/2017] [Indexed: 11/18/2022] Open
Abstract
An ongoing challenge in biology is to predict the phenotypes of individuals from their genotypes. Genetic variants that cause disease often change an individual's total metabolite profile, or metabolome. In light of our extensive knowledge of metabolic pathways, genetic variants that alter the metabolome may help predict novel phenotypes. To link genetic variants to changes in the metabolome, we studied natural variation in the yeast Saccharomyces cerevisiae We used an untargeted mass spectrometry method to identify dozens of metabolite Quantitative Trait Loci (mQTL), genomic regions containing genetic variation that control differences in metabolite levels between individuals. We mapped differences in urea cycle metabolites to genetic variation in specific genes known to regulate amino acid biosynthesis. Our functional assays reveal that genetic variation in two genes, AUA1 and ARG81, cause the differences in the abundance of several urea cycle metabolites. Based on knowledge of the urea cycle, we predicted and then validated a new phenotype: sensitivity to a particular class of amino acid isomers. Our results are a proof-of-concept that untargeted mass spectrometry can reveal links between natural genetic variants and metabolome diversity. The interpretability of our results demonstrates the promise of using genetic variants underlying natural differences in the metabolome to predict novel phenotypes from genotype.
Collapse
Affiliation(s)
- Devjanee Swain-Lenz
- Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, Missouri 63110
- Department of Genetics, Washington University in St. Louis School of Medicine, Missouri 63110
| | - Igor Nikolskiy
- Department of Chemistry, Washington University in St. Louis, Missouri 63130
| | - Jiye Cheng
- Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, Missouri 63110
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Priya Sudarsanam
- Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, Missouri 63110
- Department of Genetics, Washington University in St. Louis School of Medicine, Missouri 63110
| | - Darcy Nayler
- Department of Genetics, Washington University in St. Louis School of Medicine, Missouri 63110
| | - Max V Staller
- Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, Missouri 63110
- Department of Genetics, Washington University in St. Louis School of Medicine, Missouri 63110
| | - Barak A Cohen
- Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, Missouri 63110
- Department of Genetics, Washington University in St. Louis School of Medicine, Missouri 63110
| |
Collapse
|
81
|
Metabolic and transcriptional alternations for defense by interfering OsWRKY62 and OsWRKY76 transcriptions in rice. Sci Rep 2017; 7:2474. [PMID: 28559550 PMCID: PMC5449406 DOI: 10.1038/s41598-017-02643-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/18/2017] [Indexed: 01/10/2023] Open
Abstract
Metabolomic and transcriptomic approaches were used to dissect the enhanced disease resistance in the plants harbouring a RNA interfering construct of OsWRKY62 and OsWRKY76 (dsOW62/76) genes. The primary metabolic pathways were activated in dsOW62/76 compared with wild-type (ZH17) plants, revealed by increased accumulation of amino acids and constituents of citric acid cycle etc. Contents of phenolic acids derived from phenylpropanoid pathway were elevated in dsOW62/76 plants. Importantly, phenolamides, conjugates of the phenolic acids with amines, were detected in large number and mostly at higher levels in dsOW62/76 compared with ZH17 plants; however, the free pools of flavonoids were mostly decreased in dsOW62/76. Salicylic acid (SA) and jasmonic acid (JA)/JA-Ile contents were increased in dsOW62/76 and knockout lines of individual OsWRKY62 and OsWRKY76 genes. Transcription of isochorismate synthase (OsICS1) gene was suppressed in dsOW62/76 and in MeJA-treated rice plants, whereas the transcription level of cinnamoyl-CoA hydratase-dehydrogenase (OsCHD) gene for β-oxidation in peroxisome was increased. The calli with OsCHD mutation showed markedly decreased SA accumulation. These results indicate that OsWRKY62 and OsWRKY76 function as negative regulators of biosynthetic defense-related metabolites and provide evidence for an important role of phenylpropanoid pathway in SA production in rice.
Collapse
|
82
|
Tanabe K, Hojo Y, Shinya T, Galis I. Molecular evidence for biochemical diversification of phenolamide biosynthesis in rice plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:903-913. [PMID: 27015846 DOI: 10.1111/jipb.12480] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/24/2016] [Indexed: 05/29/2023]
Abstract
Two phenolamides (PAs), p-coumaroylputrescine and feruloylputrescine strongly accumulate in rice (Oryza sativa cv. Nipponbare) leaves subjected to attack of chewing and sucking herbivores. Here we identified and characterized in vitro three novel rice genes that mediated coumaroyl-CoA/feruloyl-CoA conjugation to polyamines, putrescine and agmatine. Interestingly, two genes were highly specific for their polyamine substrates, encoding putrescine N-hydroxycinnamoyltransferase and agmatine N-hydroxycinnamoyltransferase, while the third enzyme could use both polyamines and it was therefore annotated as putrescine/agmatine N-hydroxycinnamoyltransferase. All genes were preferentially expressed in rice roots and developing flowers, and in addition, the putrescine/agmatine N-hydroxycinnamoyltransferase transcripts were strongly induced by wounding in the young rice leaves. Because the wound response of this gene was only partially suppressed in the jasmonoyl-L-isoleucine deficient plants (Osjar1), it suggests that its upregulation (as well as inducible PAs in rice) may be largely independent of jasmonoyl-L-isoleucine signaling pathway. The finding of three closely related genes with a similar and/or overlapping activity in PA biosynthesis provides another striking example of rapid diversification of plant metabolism in response to environmental stresses in nature.
Collapse
Affiliation(s)
- Kimiaki Tanabe
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan.
| |
Collapse
|
83
|
Comparative and parallel genome-wide association studies for metabolic and agronomic traits in cereals. Nat Commun 2016; 7:12767. [PMID: 27698483 PMCID: PMC5059443 DOI: 10.1038/ncomms12767] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 07/29/2016] [Indexed: 01/19/2023] Open
Abstract
The plant metabolome is characterized by extensive diversity and is often regarded as a bridge between genome and phenome. Here we report metabolic and phenotypic genome-wide studies (mGWAS and pGWAS) in rice grain that, in addition to previous metabolic GWAS in rice leaf and maize kernel, show both distinct and overlapping aspects of genetic control of metabolism within and between species. We identify new candidate genes potentially influencing important metabolic and/or morphological traits. We show that the differential genetic architecture of rice metabolism between different tissues is in part determined by tissue specific expression. Using parallel mGWAS and pGWAS we identify new candidate genes potentially responsible for variation in traits such as grain colour and size, and provide evidence of metabotype-phenotype linkage. Our study demonstrates a powerful strategy for interactive functional genomics and metabolomics in plants, especially the cloning of minor QTLs for complex phenotypic traits.
Collapse
|
84
|
Tenenboim H, Brotman Y. Omic Relief for the Biotically Stressed: Metabolomics of Plant Biotic Interactions. TRENDS IN PLANT SCIENCE 2016; 21:781-791. [PMID: 27185334 DOI: 10.1016/j.tplants.2016.04.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/08/2016] [Accepted: 04/19/2016] [Indexed: 05/19/2023]
Abstract
Many aspects of the way plants protect themselves against pathogen attack, or react upon such an attack, are realized by metabolites. The ambitious aim of metabolomics, namely the identification and annotation of the entire cellular metabolome, still poses a considerable challenge due to the high diversity of the metabolites in the cell. Recent advances in analytical methods and data analysis have resulted in improved sensitivity, accuracy, and capacity, allowing the analysis of several hundreds or even thousands of compounds within one sample. Investigators have only recently begun to acknowledge and harness the power of metabolomics to elucidate key questions in the study of plant biotic interactions; we review trends and developments in the field.
Collapse
Affiliation(s)
- Hezi Tenenboim
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Yariv Brotman
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel.
| |
Collapse
|
85
|
Hong J, Yang L, Zhang D, Shi J. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science. Int J Mol Sci 2016; 17:ijms17060767. [PMID: 27258266 PMCID: PMC4926328 DOI: 10.3390/ijms17060767] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 11/16/2022] Open
Abstract
As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality.
Collapse
Affiliation(s)
- Jun Hong
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Litao Yang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
- Plant Genomics Center, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia.
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
86
|
Okazaki Y, Saito K. Integrated metabolomics and phytochemical genomics approaches for studies on rice. Gigascience 2016; 5:11. [PMID: 26937280 PMCID: PMC4774183 DOI: 10.1186/s13742-016-0116-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/06/2016] [Indexed: 01/10/2023] Open
Abstract
Metabolomics is widely employed to monitor the cellular metabolic state and assess the quality of plant-derived foodstuffs because it can be used to manage datasets that include a wide range of metabolites in their analytical samples. In this review, we discuss metabolomics research on rice in order to elucidate the overall regulation of the metabolism as it is related to the growth and mechanisms of adaptation to genetic modifications and environmental stresses such as fungal infections, submergence, and oxidative stress. We also focus on phytochemical genomics studies based on a combination of metabolomics and quantitative trait locus (QTL) mapping techniques. In addition to starch, rice produces many metabolites that also serve as nutrients for human consumers. The outcomes of recent phytochemical genomics studies of diverse natural rice resources suggest there is potential for using further effective breeding strategies to improve the quality of ingredients in rice grains.
Collapse
Affiliation(s)
- Yozo Okazaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045 Japan ; Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813 Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045 Japan ; Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675 Japan
| |
Collapse
|
87
|
Dan Z, Hu J, Zhou W, Yao G, Zhu R, Zhu Y, Huang W. Metabolic prediction of important agronomic traits in hybrid rice (Oryza sativa L.). Sci Rep 2016; 6:21732. [PMID: 26907211 PMCID: PMC4764848 DOI: 10.1038/srep21732] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/29/2016] [Indexed: 11/09/2022] Open
Abstract
Hybrid crops have contributed greatly to improvements in global food and fodder production over the past several decades. Nevertheless, the growing population and changing climate have produced food crises and energy shortages. Breeding new elite hybrid varieties is currently an urgent task, but present breeding procedures are time-consuming and labour-intensive. In this study, parental metabolic information was utilized to predict three polygenic traits in hybrid rice. A complete diallel cross population consisting of eighteen rice inbred lines was constructed, and the hybrids’ plant height, heading date and grain yield per plant were predicted using 525 metabolites. Metabolic prediction models were built using the partial least square regression method, with predictive abilities ranging from 0.858 to 0.977 for the hybrid phenotypes, relative heterosis, and specific combining ability. Only slight changes in predictive ability were observed between hybrid populations, and nearly no changes were detected between reciprocal hybrids. The outcomes of prediction of the three highly polygenic traits demonstrated that metabolic prediction was an accurate (high predictive abilities) and efficient (unaffected by population genetic structures) strategy for screening promising superior hybrid rice. Exploitation of this pre-hybridization strategy may contribute to rice production improvement and accelerate breeding programs.
Collapse
Affiliation(s)
- Zhiwu Dan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Engineering Research Center for Plant Biotechnology and Germplasm Utilization, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Jun Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Engineering Research Center for Plant Biotechnology and Germplasm Utilization, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Wei Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Engineering Research Center for Plant Biotechnology and Germplasm Utilization, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Guoxin Yao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Engineering Research Center for Plant Biotechnology and Germplasm Utilization, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Renshan Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Engineering Research Center for Plant Biotechnology and Germplasm Utilization, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Yingguo Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Engineering Research Center for Plant Biotechnology and Germplasm Utilization, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Wenchao Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Engineering Research Center for Plant Biotechnology and Germplasm Utilization, Ministry of Education, Wuhan University, Wuhan 430072, China
| |
Collapse
|
88
|
Scossa F, Brotman Y, de Abreu E Lima F, Willmitzer L, Nikoloski Z, Tohge T, Fernie AR. Genomics-based strategies for the use of natural variation in the improvement of crop metabolism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 242:47-64. [PMID: 26566824 DOI: 10.1016/j.plantsci.2015.05.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/29/2015] [Accepted: 05/31/2015] [Indexed: 05/08/2023]
Abstract
Next-generation genomics holds great potential in the study of plant phenotypic variation. With several crop reference genomes now available, the affordable costs of de novo genome assembly or target resequencing offer the opportunity to mine the enormous amount of genetic diversity hidden in crop wild relatives. Wide introgressions from these wild ancestors species or land races represent a possible strategy to improve cultivated varieties. In this review, we discuss the mechanisms underlying metabolic diversity within plant species and the possible strategies (and barriers) to introgress novel metabolic traits into cultivated varieties. We show how deep genomic surveys uncover various types of structural variants from extended gene pools of major crops and highlight how this variation may be used for the improvement of crop metabolism.
Collapse
Affiliation(s)
- Federico Scossa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Germany; Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per la Frutticoltura, Via di Fioranello 52, 00134 Rome, Italy.
| | - Yariv Brotman
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | | | - Lothar Willmitzer
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Zoran Nikoloski
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Takayuki Tohge
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
89
|
Elejalde-Palmett C, de Bernonville TD, Glevarec G, Pichon O, Papon N, Courdavault V, St-Pierre B, Giglioli-Guivarc'h N, Lanoue A, Besseau S. Characterization of a spermidine hydroxycinnamoyltransferase in Malus domestica highlights the evolutionary conservation of trihydroxycinnamoyl spermidines in pollen coat of core Eudicotyledons. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:7271-85. [PMID: 26363642 DOI: 10.1093/jxb/erv423] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Phenolamides, so called hydroxycinnamic acid amides, are specialized metabolites produced in higher plants, involved in development, reproduction and serve as defence compounds in biotic interactions. Among them, trihydroxycinnamoyl spermidine derivatives were initially found to be synthetized by a spermidine hydroxycinnamoyltransferase (AtSHT) in Arabidopsis thaliana and to accumulate in the pollen coat. This study reports the identification, in Malus domestica, of an acyltransferase able to complement the sht mutant of Arabidopsis. The quantitative RT-PCR expression profile of MdSHT reveals a specific expression in flowers coordinated with anther development and tapetum cell activities. Three phenolamides including N (1),N (5),N (10)-tricoumaroyl spermidine and N (1),N (5)-dicoumaroyl-N (10)-caffeoyl spermidine identified by LC/MS, were shown to accumulate specifically in pollen grain coat of apple tree. Moreover, in vitro biochemical characterization confirmed MdSHT capacity to synthesize tri-substituted spermidine derivatives with a substrate specificity restricted to p-coumaroyl-CoA and caffeoyl-CoA as an acyl donor. Further investigations of the presence of tri-substituted hydroxycinnamoyl spermidine conjugates in higher plants were performed by targeted metabolic analyses in pollens coupled with bioinformatic analyses of putative SHT orthologues in a wide range of available plant genomes. This work highlights a probable early evolutionary appearance in the common ancestral core Eudicotyledons of a novel enzyme from the BAHD acyltransferase superfamily, dedicated to the synthesis of trihydroxycinnamoyl spermidines in pollen coat. This pathway was maintained in most species; however, recent evolutionary divergences have appeared among Eudicotyledons, such as an organ reallocation of SHT gene expression in Fabales and a loss of SHT in Malvales and Cucurbitales.
Collapse
Affiliation(s)
- Carolina Elejalde-Palmett
- Biomolécules et Biotechnologies Végétales, EA 2106, Université François Rabelais de Tours, F-37200 Tours, France
| | - Thomas Dugé de Bernonville
- Biomolécules et Biotechnologies Végétales, EA 2106, Université François Rabelais de Tours, F-37200 Tours, France
| | - Gaëlle Glevarec
- Biomolécules et Biotechnologies Végétales, EA 2106, Université François Rabelais de Tours, F-37200 Tours, France
| | - Olivier Pichon
- Biomolécules et Biotechnologies Végétales, EA 2106, Université François Rabelais de Tours, F-37200 Tours, France
| | - Nicolas Papon
- Biomolécules et Biotechnologies Végétales, EA 2106, Université François Rabelais de Tours, F-37200 Tours, France
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, EA 2106, Université François Rabelais de Tours, F-37200 Tours, France
| | - Benoit St-Pierre
- Biomolécules et Biotechnologies Végétales, EA 2106, Université François Rabelais de Tours, F-37200 Tours, France
| | - Nathalie Giglioli-Guivarc'h
- Biomolécules et Biotechnologies Végétales, EA 2106, Université François Rabelais de Tours, F-37200 Tours, France
| | - Arnaud Lanoue
- Biomolécules et Biotechnologies Végétales, EA 2106, Université François Rabelais de Tours, F-37200 Tours, France
| | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, EA 2106, Université François Rabelais de Tours, F-37200 Tours, France
| |
Collapse
|
90
|
Wang S, Tu H, Wan J, Chen W, Liu X, Luo J, Xu J, Zhang H. Spatio-temporal distribution and natural variation of metabolites in citrus fruits. Food Chem 2015; 199:8-17. [PMID: 26775938 DOI: 10.1016/j.foodchem.2015.11.113] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 10/23/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
Abstract
To study the natural variation and spatio-temporal accumulation of citrus metabolites, liquid chromatography tandem mass spectrometry (LC-MS) based metabolome analysis was performed on four fruit tissues (flavedo, albedo, segment membrane and juice sacs) and different Citrus species (lemon, pummelo and grapefruit, sweet orange and mandarin). Using a non-targeted metabolomics approach, more than 2000 metabolite signals were detected, from which more than 54 metabolites, including amino acids, flavonoids and limonoids, were identified/annotated. Differential accumulation patterns of both primary metabolites and secondary metabolites in various tissues and species were revealed by our study. Further investigation indicated that flavedo accumulates more flavonoids while juice sacs contain more amino acids. Besides this, cluster analysis based on the levels of metabolites detected in 47 individual Citrus accessions clearly grouped them into four distinct clusters: pummelos and grapefruits, lemons, sweet oranges and mandarins, while the cluster of pummelos and grapefruits lay distinctly apart from the other three species.
Collapse
Affiliation(s)
- Shouchuang Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Tu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Wan
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xianqing Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hongyan Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
91
|
Luo J. Metabolite-based genome-wide association studies in plants. CURRENT OPINION IN PLANT BIOLOGY 2015; 24:31-8. [PMID: 25637954 DOI: 10.1016/j.pbi.2015.01.006] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 05/18/2023]
|