51
|
Chronic agomelatine treatment prevents comorbid depression in the post-status epilepticus model of acquired epilepsy through suppression of inflammatory signaling. Neurobiol Dis 2018; 115:127-144. [PMID: 29653194 DOI: 10.1016/j.nbd.2018.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/08/2018] [Accepted: 04/04/2018] [Indexed: 12/22/2022] Open
Abstract
Inflammatory signal molecules are suggested to be involved in the mechanism underlying comorbid depression in epilepsy. In the present study, we tested the hypothesis that the novel antidepressant agomelatine, a potent melatonin MT1 and MT2 receptor agonist and serotonin 5HT2C receptor antagonist, can prevent depressive symptoms developed during the chronic epileptic phase by suppressing an inflammatory response. Chronic treatment with agomelatine (40 mg/kg, i.p.) was initiated an hour after the kainate acid (KA)-induced status epilepticus (SE) and maintained for a period of 10 weeks in Wistar rats. Registration of spontaneous motor seizures was performed through a video (24 h/day) and EEG monitoring. Antidepressant activity of agomelatine was explored in the splash test, sucrose preference test (SPT) and forced swimming test (FST) while anxiolytic effect was observed through the novelty suppression-feeding test (NSFT) during chronic phase in epileptic rats. The frequency of motor seizures detected by video and EEG recording did not differ between vehicle and Ago group. Rats with registered spontaneous motor seizures showed symptoms typical for depressive behavior that included decreased grooming, anhedonia during the dark period and hopeless-like behavior. Epileptic rats exhibited also anxiety with novelty-induced hypophagia. This behavioral deficit correlated with increased signal markers of inflammation (plasma levels of interleukin (IL)-1β and activated glia in brain), while plasma corticosterone levels were not changed. Agomelatine treatment during epileptogenesis exerted a clear antidepressant effect by suppressing all behavioral hallmarks, reducing plasma IL-1β levels and preventing microgliosis and astrogliosis in specific limbic regions. The present results suggest that agomelatine treatment starting after SE can provide an effective therapy of comorbid depression in chronic epileptic condition through suppression of inflammatory signaling.
Collapse
|
52
|
Aguilar DD, Giuffrida A, Lodge DJ. Adolescent Synthetic Cannabinoid Exposure Produces Enduring Changes in Dopamine Neuron Activity in a Rodent Model of Schizophrenia Susceptibility. Int J Neuropsychopharmacol 2018; 21:393-403. [PMID: 29329382 PMCID: PMC5887672 DOI: 10.1093/ijnp/pyy003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/05/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Epidemiological studies recognize cannabis intake as a risk factor for schizophrenia, yet the majority of adolescents who use marijuana do not develop psychosis. Similarly, the abuse of synthetic cannabinoids poses a risk for psychosis. For these reasons, it is imperative to understand the effects of adolescent cannabinoid exposure in susceptible individuals. METHODS We recently developed a novel rodent model of schizophrenia susceptibility, the F2 methylazoxymethanol acetate rat, where only a proportion (~40%) of rats display a schizophrenia-like phenotype. Using this model, we examined the effects of adolescent synthetic cannabinoid exposure (0.2 mg/kg WIN55, 212-2, i.p.) or adolescent endocannabinoid upregulation (0.3 mg/kg URB597, i.p.) on dopamine neuron activity and amphetamine sensitivity in adulthood. RESULTS Adolescent synthetic cannabinoid exposure significantly increased the proportion of susceptible rats displaying a schizophrenia-like hyperdopaminergic phenotype after puberty without producing any observable alterations in control rats. Furthermore, this acquired phenotype appears to correspond with alterations in parvalbumin interneuron function within the hippocampus. Endocannabinoid upregulation during adolescence also increased the proportion of susceptible rats developing an increase in dopamine neuron activity; however, it did not alter the behavioral response to amphetamine, further emphasizing differences between exogenous and endogenous cannabinoids. CONCLUSIONS Taken together, these studies provide experimental evidence that adolescent synthetic cannabinoid exposure may contribute to psychosis in susceptible individuals.
Collapse
Affiliation(s)
- David D Aguilar
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, Texas,Correspondence: David D. Aguilar, PhD, Boston VA Medical Center, West Roxbury Research, Bldg 3, 2A115 1400 VFW Parkway, West Roxbury, MA, 02132 ()
| | - Andrea Giuffrida
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, Texas
| | - Daniel J Lodge
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, Texas
| |
Collapse
|
53
|
Adolescent cannabinoid exposure effects on natural reward seeking and learning in rats. Psychopharmacology (Berl) 2018; 235:121-134. [PMID: 29022083 PMCID: PMC5790819 DOI: 10.1007/s00213-017-4749-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/19/2017] [Indexed: 02/06/2023]
Abstract
RATIONALE Adolescence is characterized by endocannabinoid (ECB)-dependent refinement of neural circuits underlying emotion, learning, and motivation. As a result, adolescent cannabinoid receptor stimulation (ACRS) with phytocannabinoids or synthetic agonists like "Spice" cause robust and persistent changes in both behavior and circuit architecture in rodents, including in reward-related regions like medial prefrontal cortex and nucleus accumbens (NAc). OBJECTIVES AND METHODS Here, we examine persistent effects of ACRS with the cannabinoid receptor 1/2 specific agonist WIN55-212,2 (WIN; 1.2 mg/kg/day, postnatal day (PD) 30-43), on natural reward-seeking behaviors and ECB system function in adult male Long Evans rats (PD 60+). RESULTS WIN ACRS increased palatable food intake, and altered attribution of incentive salience to food cues in a sign-/goal-tracking paradigm. ACRS also blunted hunger-induced sucrose intake, and resulted in increased anandamide and oleoylethanolamide levels in NAc after acute food restriction not seen in controls. ACRS did not affect food neophobia or locomotor response to a novel environment, but did increase preference for exploring a novel environment. CONCLUSIONS These results demonstrate that ACRS causes long-term increases in natural reward-seeking behaviors and ECB system function that persist into adulthood, potentially increasing liability to excessive natural reward seeking later in life.
Collapse
|
54
|
Meyer HC, Lee FS, Gee DG. The Role of the Endocannabinoid System and Genetic Variation in Adolescent Brain Development. Neuropsychopharmacology 2018; 43:21-33. [PMID: 28685756 PMCID: PMC5719094 DOI: 10.1038/npp.2017.143] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/17/2017] [Accepted: 06/23/2017] [Indexed: 12/19/2022]
Abstract
During adolescence, both rodent and human studies have revealed dynamic changes in the developmental trajectories of corticolimbic structures, which are known to contribute to the regulation of fear and anxiety-related behaviors. The endocannabinoid (eCB) system critically regulates stress responsivity and anxiety throughout the life span. Emerging evidence suggests that during adolescence, changes in eCB signaling contribute to the maturation of local and corticolimbic circuit populations of neurons, such as mediating the balance between excitatory and inhibitory neurotransmission within the prefrontal cortex. This function of the eCB system facilitates efficient communication within and between brain regions and serves a central role in establishing complex and adaptive cognitive and behavioral processing. Although these peri-adolescent changes in eCB signaling promote brain development and plasticity, they also render this period a particularly sensitive one for environmental perturbations to these normative fluctuations in eCB signaling, such as stress, potentially leading to altered developmental trajectories of neural circuits governing emotional behaviors. In this review, we focus on the role of eCB signaling on the regulation of stress and anxiety-related behaviors both during and after adolescence. Moreover, we discuss the functional implications of human genetic variation in the eCB system for the risk for anxiety and consequences of stress across development and into adulthood.
Collapse
Affiliation(s)
- Heidi C Meyer
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA
- Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College, New York, NY, USA
| | - Dylan G Gee
- Department of Psychology, Yale University, New Haven, CT, USA
| |
Collapse
|
55
|
Regulation of noradrenergic and serotonergic systems by cannabinoids: relevance to cannabinoid-induced effects. Life Sci 2018; 192:115-127. [DOI: 10.1016/j.lfs.2017.11.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/29/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022]
|
56
|
Renard J, Rushlow WJ, Laviolette SR. Effects of Adolescent THC Exposure on the Prefrontal GABAergic System: Implications for Schizophrenia-Related Psychopathology. Front Psychiatry 2018; 9:281. [PMID: 30013490 PMCID: PMC6036125 DOI: 10.3389/fpsyt.2018.00281] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022] Open
Abstract
Marijuana is the most commonly used drug of abuse among adolescents. Considerable clinical evidence supports the hypothesis that adolescent neurodevelopmental exposure to high levels of the principal psychoactive component in marijuana, -delta-9-tetrahydrocanabinol (THC), is associated with a high risk of developing psychiatric diseases, such as schizophrenia later in life. This marijuana-associated risk is believed to be related to increasing levels of THC found within commonly used marijuana strains. Adolescence is a highly vulnerable period for the development of the brain, where the inhibitory GABAergic system plays a pivotal role in the maturation of regulatory control mechanisms in the central nervous system (CNS). Specifically, adolescent neurodevelopment represents a critical period wherein regulatory connectivity between higher-order cortical regions and sub-cortical emotional processing circuits such as the mesolimbic dopamine (DA) system is established. Emerging preclinical evidence demonstrates that adolescent exposure to THC selectively targets schizophrenia-related molecular and neuropharmacological signaling pathways in both cortical and sub-cortical regions, including the prefrontal cortex (PFC) and mesolimbic DA pathway, comprising the ventral tegmental area (VTA) and nucleus accumbens (NAc). Prefrontal cortical GABAergic hypofunction is a key feature of schizophrenia-like neuropsychopathology. This GABAergic hypofunction may lead to the loss of control of the PFC to regulate proper sub-cortical DA neurotransmission, thereby leading to schizophrenia-like symptoms. This review summarizes preclinical evidence demonstrating that reduced prefrontal cortical GABAergic neurotransmission has a critical role in the sub-cortical DAergic dysregulation and schizophrenia-like behaviors observed following adolescent THC exposure.
Collapse
Affiliation(s)
- Justine Renard
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Walter J Rushlow
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada.,Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Steven R Laviolette
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada.,Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
57
|
Panlilio LV, Justinova Z. Preclinical Studies of Cannabinoid Reward, Treatments for Cannabis Use Disorder, and Addiction-Related Effects of Cannabinoid Exposure. Neuropsychopharmacology 2018; 43:116-141. [PMID: 28845848 PMCID: PMC5719102 DOI: 10.1038/npp.2017.193] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/17/2017] [Accepted: 08/22/2017] [Indexed: 12/21/2022]
Abstract
Cannabis use has become increasingly accepted socially and legally, for both recreational and medicinal purposes. Without reliable information about the effects of cannabis, people cannot make informed decisions regarding its use. Like alcohol and tobacco, cannabis can have serious adverse effects on health, and some people have difficulty discontinuing their use of the drug. Many cannabis users progress to using and becoming addicted to other drugs, but the reasons for this progression are unclear. The natural cannabinoid system of the brain is complex and involved in many functions, including brain development, reward, emotion, and cognition. Animal research provides an objective and controlled means of obtaining information about: (1) how cannabis affects the brain and behavior, (2) whether medications can be developed to treat cannabis use disorder, and (3) whether cannabis might produce lasting changes in the brain that increase the likelihood of becoming addicted to other drugs. This review explains the tactics used to address these issues, evaluates the progress that has been made, and offers some directions for future research.
Collapse
Affiliation(s)
- Leigh V Panlilio
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD, USA
| | - Zuzana Justinova
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD, USA
| |
Collapse
|
58
|
Lichenstein SD, Musselman S, Shaw DS, Sitnick S, Forbes EE. Nucleus accumbens functional connectivity at age 20 is associated with trajectory of adolescent cannabis use and predicts psychosocial functioning in young adulthood. Addiction 2017; 112:1961-1970. [PMID: 28547854 PMCID: PMC5633503 DOI: 10.1111/add.13882] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/29/2016] [Accepted: 05/23/2017] [Indexed: 01/05/2023]
Abstract
AIMS (1) To identify trajectories of cannabis use across adolescence, (2) to measure the influence of cannabis use characteristics on functional connectivity of the nucleus accumbens (NAcc) and (3) to assess whether patterns of functional connectivity related to cannabis use are associated with psychosocial functioning 2 years later. DESIGN The Pitt Mother and Child Project (PMCP) is a prospective, longitudinal study of male youth at high risk for psychopathology based on family income and gender. SETTING Participants were recruited between age 6 and 17 months from the Women, Infants and Children Nutritional Supplement program (WIC) in the Pittsburgh, Pennsylvania area. PARTICIPANTS A total of 158 PMCP young men contributed functional magnetic resonance imaging (fMRI) and substance use data at age 20 years. MEASUREMENTS Latent class growth analysis was used to determine trajectories of cannabis use frequency from age 14 to 19 years. Psychophysiological interaction (PPI) analysis was used to measure functional connectivity between the NAcc and prefrontal cortex (PFC). Adolescent cannabis use trajectory, recent frequency of use and age of initiation were considered as developmental factors. We also tested whether functional connectivity was associated with depressive symptoms, anhedonia and educational attainment at age 22. FINDINGS We identified three distinct trajectories of adolescent cannabis use, characterized by stable high, escalating or stable low use. The cannabis use trajectory group had a significant effect on NAcc functional connectivity to the medial PFC (F = 11.32, Z = 4.04, Pfamily-wise error-corrected (FWE-corr) = 0.000). The escalating trajectory group displayed a pattern of negative NAcc-mPFC connectivity that was linked to higher levels of depressive symptoms (r = -0.17, P < .05), anhedonia (r = -0.19, P < .05) and lower educational attainment (t = -2.77, P < .01) at age 22. CONCLUSIONS Pattern of cannabis use frequency across adolescence in US youth could have consequences for mood symptoms and educational attainment in early adulthood via altered function in neural reward circuitry.
Collapse
Affiliation(s)
- Sarah D. Lichenstein
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, 15213 USA,Center for the Neural Bases of Cognition, University of Pittsburgh, Pittsburgh, PA, 15213 USA
| | - Samuel Musselman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213 USA
| | - Daniel S. Shaw
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, 15213 USA
| | - Stephanie Sitnick
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, 15213 USA
| | - Erika E. Forbes
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, 15213 USA,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213 USA,Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, 15213 USA,Center for the Neural Bases of Cognition, University of Pittsburgh, Pittsburgh, PA, 15213 USA
| |
Collapse
|
59
|
Chesworth R, Karl T. Molecular Basis of Cannabis-Induced Schizophrenia-Relevant Behaviours: Insights from Animal Models. Curr Behav Neurosci Rep 2017. [DOI: 10.1007/s40473-017-0120-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
60
|
Adolescent Exposure to the Synthetic Cannabinoid WIN 55212-2 Modifies Cocaine Withdrawal Symptoms in Adult Mice. Int J Mol Sci 2017. [PMID: 28635664 PMCID: PMC5486147 DOI: 10.3390/ijms18061326] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Chronic cannabinoid consumption is an increasingly common behavior among teenagers and has been shown to cause long-lasting neurobehavioral alterations. Besides, it has been demonstrated that cocaine addiction in adulthood is highly correlated with cannabis abuse during adolescence. Cocaine consumption and subsequent abstinence from it can cause psychiatric symptoms, such as psychosis, cognitive impairment, anxiety, and depression. The aim of the present research was to study the consequences of adolescent exposure to cannabis on the psychiatric-like effects promoted by cocaine withdrawal in adult mice. We pre-treated juvenile mice with the cannabinoid CB1 receptor agonist WIN 55212-2 (WIN) and then subjected them to a chronic cocaine treatment during adulthood. Following these treatments, animals were tested under cocaine withdrawal in the following paradigms: pre-pulse inhibition, object recognition, elevated plus maze, and tail suspension. The long-term psychotic-like actions induced by WIN were not modified after cocaine cessation. Moreover, the memory impairments induced by cocaine withdrawal were not altered by previous adolescent WIN intake. However, WIN pre-treatment prevented the anxiogenic effects observed after cocaine abstinence, and led to greater depressive-like symptoms following cocaine removal in adulthood. This study is the first to show the long-lasting behavioral consequences of juvenile exposure to WIN on cocaine withdrawal in adult mice.
Collapse
|
61
|
Wei D, Allsop S, Tye K, Piomelli D. Endocannabinoid Signaling in the Control of Social Behavior. Trends Neurosci 2017; 40:385-396. [PMID: 28554687 DOI: 10.1016/j.tins.2017.04.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/16/2017] [Accepted: 04/21/2017] [Indexed: 11/25/2022]
Abstract
Many mammalian species, including humans, exhibit social behavior and form complex social groups. Mechanistic studies in animal models have revealed important roles for the endocannabinoid signaling system, comprising G protein-coupled cannabinoid receptors and their endogenous lipid-derived agonists, in the control of neural processes that underpin social anxiety and social reward, two key aspects of social behavior. An emergent insight from these studies is that endocannabinoid signaling in specific circuits of the brain is context dependent and selectively recruited. These insights open new vistas on the neural basis of social behavior and social impairment.
Collapse
Affiliation(s)
- Don Wei
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA; School of Medicine, University of California, Irvine, CA, USA
| | - Stephen Allsop
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - Kay Tye
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA; School of Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
62
|
Zamberletti E, Gabaglio M, Grilli M, Prini P, Catanese A, Pittaluga A, Marchi M, Rubino T, Parolaro D. Long-term hippocampal glutamate synapse and astrocyte dysfunctions underlying the altered phenotype induced by adolescent THC treatment in male rats. Pharmacol Res 2016; 111:459-470. [DOI: 10.1016/j.phrs.2016.07.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/22/2016] [Accepted: 07/06/2016] [Indexed: 12/28/2022]
|
63
|
Martz ME, Trucco EM, Cope LM, Hardee JE, Jester JM, Zucker RA, Heitzeg MM. Association of Marijuana Use With Blunted Nucleus Accumbens Response to Reward Anticipation. JAMA Psychiatry 2016; 73:838-44. [PMID: 27384542 PMCID: PMC4972653 DOI: 10.1001/jamapsychiatry.2016.1161] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
IMPORTANCE Marijuana use may alter ventral striatal response to reward, which might heighten susceptibility to substance use disorder. Longitudinal research is needed to determine the effects of marijuana use on neural function involved in reward response. OBJECTIVE To determine whether marijuana use among young adults prospectively affects nucleus accumbens (NAcc) activation during reward anticipation. DESIGN, SETTING, AND PARTICIPANTS One hundred eight young adults were recruited from the Michigan Longitudinal Study, an ongoing study of youth at high risk for substance use disorder and a contrast sample of control families. Participants underwent 3 consecutive functional magnetic resonance imaging scans at approximate ages of 20 (time 1), 22 (time 2), and 24 (time 3) years. Self-report data on marijuana and other drug use occasions were collected annually since age 11 years. MAIN OUTCOMES AND MEASURES Cross-lagged models were used to test the association of marijuana use with neural response in the NAcc to reward anticipation during a monetary incentive delay task controlling for sex, age, other substance use, and family history of substance use disorder. RESULTS Of 108 participants, 39 (36.1%) were female and mean (SD) age at baseline was 20.1 (1.4) years. Greater marijuana use was associated with later blunted activation in the NAcc during reward anticipation (time 1 to time 2: β = -0.26, P = .04; time 2 to time 3: β = -0.25, P = .01). When the cross-lagged model was tested with the inclusion of previous and concurrent cigarette use, the effect of marijuana use from time 2 to time 3 remained significant (β = -0.29; P = .005) and the effect of cigarette use was nonsignificant. CONCLUSIONS AND RELEVANCE The findings of this study indicate that marijuana use is associated with decreased neural response in the NAcc during the anticipation of nondrug rewards. Over time, marijuana use may alter anticipatory reward processing in the NAcc, which may increase the risk for continued drug use and later addiction.
Collapse
Affiliation(s)
- Meghan E. Martz
- Department of Psychiatry and Addiction Research Center, University of Michigan 4250 Plymouth Rd., Ann Arbor, MI 48109, USA,Department of Psychology, University of Michigan, 530 Church St., Ann Arbor, MI 48108, USA
| | - Elisa M. Trucco
- Department of Psychiatry and Addiction Research Center, University of Michigan 4250 Plymouth Rd., Ann Arbor, MI 48109, USA,Department of Psychology, Center for Children and Families, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Lora M. Cope
- Department of Psychiatry and Addiction Research Center, University of Michigan 4250 Plymouth Rd., Ann Arbor, MI 48109, USA
| | - Jillian E. Hardee
- Department of Psychiatry and Addiction Research Center, University of Michigan 4250 Plymouth Rd., Ann Arbor, MI 48109, USA
| | - Jennifer M. Jester
- Department of Psychiatry and Addiction Research Center, University of Michigan 4250 Plymouth Rd., Ann Arbor, MI 48109, USA
| | - Robert A. Zucker
- Department of Psychiatry and Addiction Research Center, University of Michigan 4250 Plymouth Rd., Ann Arbor, MI 48109, USA,Department of Psychology, University of Michigan, 530 Church St., Ann Arbor, MI 48108, USA
| | - Mary M. Heitzeg
- Department of Psychiatry and Addiction Research Center, University of Michigan 4250 Plymouth Rd., Ann Arbor, MI 48109, USA
| |
Collapse
|
64
|
Spear LP. Consequences of adolescent use of alcohol and other drugs: Studies using rodent models. Neurosci Biobehav Rev 2016; 70:228-243. [PMID: 27484868 DOI: 10.1016/j.neubiorev.2016.07.026] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 07/08/2016] [Accepted: 07/22/2016] [Indexed: 10/21/2022]
Abstract
Studies using animal models of adolescent exposure to alcohol, nicotine, cannabinoids, and the stimulants cocaine, 3,4-methylenedioxymethampethamine and methamphetamine have revealed a variety of persisting neural and behavioral consequences. Affected brain regions often include mesolimbic and prefrontal regions undergoing notable ontogenetic change during adolescence, although it is unclear whether this represents areas of specific vulnerability or particular scrutiny to date. Persisting alterations in forebrain systems critical for modulating reward, socioemotional processing and cognition have emerged, including apparent induction of a hyper-dopaminergic state with some drugs and/or attenuations in neurons expressing cholinergic markers. Disruptions in cognitive functions such as working memory, alterations in affect including increases in social anxiety, and mixed evidence for increases in later drug self-administration has also been reported. When consequences of adolescent and adult exposure were compared, adolescents were generally found to be more vulnerable to alcohol, nicotine, and cannabinoids, but generally not to stimulants. More work is needed to determine how adolescent drug exposure influences sculpting of the adolescent brain, and provide approaches to prevent/reverse these effects.
Collapse
Affiliation(s)
- Linda Patia Spear
- Department of Psychology, Developmental Exposure Alcohol Research Center (DEARC), Binghamton University, Binghamton, NY, United States.
| |
Collapse
|
65
|
Renard J, Rushlow WJ, Laviolette SR. What Can Rats Tell Us about Adolescent Cannabis Exposure? Insights from Preclinical Research. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2016; 61:328-34. [PMID: 27254841 PMCID: PMC4872245 DOI: 10.1177/0706743716645288] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Marijuana is the most widely used drug of abuse among adolescents. Adolescence is a vulnerable period for brain development, during which time various neurotransmitter systems such as the glutamatergic, GABAergic, dopaminergic, and endocannabinoid systems undergo extensive reorganization to support the maturation of the central nervous system (CNS). ▵-9-tetrahydrocannabinol (THC), the psychoactive component of marijuana, acts as a partial agonist of CB1 cannabinoid receptors (CB1Rs). CB1Rs are abundant in the CNS and are central components of the neurodevelopmental changes that occur during adolescence. Thus, overactivation of CB1Rs by cannabinoid exposure during adolescence has the ability to dramatically alter brain maturation, leading to persistent and enduring changes in adult cerebral function. Increasing preclinical evidence lends support to clinical evidence suggesting that chronic adolescent marijuana exposure may be associated with a higher risk for neuropsychiatric diseases, including schizophrenia. In this review, we present a broad overview of current neurobiological evidence regarding the long-term consequences of adolescent cannabinoid exposure on adult neuropsychiatric-like disorders.
Collapse
Affiliation(s)
- Justine Renard
- Addiction Research Group, The Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario Department of Anatomy and Cell Biology, The Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario
| | - Walter J Rushlow
- Addiction Research Group, The Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario Department of Anatomy and Cell Biology, The Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario Department of Psychiatry, The Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario
| | - Steven R Laviolette
- Addiction Research Group, The Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario Department of Anatomy and Cell Biology, The Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario Department of Psychiatry, The Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario
| |
Collapse
|
66
|
Rubino T, Parolaro D. The Impact of Exposure to Cannabinoids in Adolescence: Insights From Animal Models. Biol Psychiatry 2016; 79:578-85. [PMID: 26344755 DOI: 10.1016/j.biopsych.2015.07.024] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 07/16/2015] [Accepted: 07/31/2015] [Indexed: 01/10/2023]
Abstract
The regular use of cannabis during adolescence is of particular concern because use by this age group seems to be associated with an increased likelihood of deleterious consequences, as reported by several epidemiologic studies. However, despite their unquestionable value, epidemiologic data are inconclusive. Modeling the adolescent phase in animals appears to be a useful approach to investigate the impact of cannabis use on the adolescent brain. In these models, adolescent cannabinoid exposure has been reported to cause long-term impairment in specific components of learning and memory and to have differential effects on anxiety, social behavior, and depressive-like signs. These findings suggest that it may represent, per se or in association with other hits, a risk factor for developing psychotic-like symptoms in adulthood. The neurobiological bases of this association include the induction of alterations in the maturational events of the endocannabinoid system occurring in the adolescent brain. Alterations in the endocannabinoid system may profoundly dysregulate developmental processes in some neurotransmitter systems, such as gamma-aminobutyric acid and glutamate, mainly in the cortex. The resulting picture strongly resembles the one present in schizophrenic patients, highlighting the translational value of this experimental approach.
Collapse
Affiliation(s)
- Tiziana Rubino
- Department of Theoretical and Applied Sciences, Biomedical Research Division, and Neuroscience Center, University of Insubria, Busto Arsizi, Italy..
| | - Daniela Parolaro
- Department of Theoretical and Applied Sciences, Biomedical Research Division, and Neuroscience Center, University of Insubria, Busto Arsizi, Italy
| |
Collapse
|
67
|
Abboussi O, Said N, Fifel K, Lakehayli S, Tazi A, El Ganouni S. Behavioral effects of D3 receptor inhibition and 5-HT4 receptor activation on animals undergoing chronic cannabinoid exposure during adolescence. Metab Brain Dis 2016; 31:321-7. [PMID: 26497809 DOI: 10.1007/s11011-015-9753-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/21/2015] [Indexed: 01/26/2023]
Abstract
Chronic exposure to cannabinoids during adolescence results in long-lasting behavioral deficits that match some symptomatologic aspects of schizophrenia. The aim of this study was to investigate the reversibility of the emotional and the cognitive effects of chronic exposure to cannabinoids during adolescence, via subsequent modulation of the serotoninergic 5-HT4 and dopaminergic D3 receptors. RS67333 as a 5-HT4 agonist and U-99194A as a D3 antagonist were administered separately at 1 mg/kg and 20 mg/kg, and in combination at 0.5 mg/kg and 10 mg/kg to adult animals undergoing chronic treatment with the synthetic cannabinoid receptor agonist WIN55,212-2 (1 mg/kg) during adolescence. Animals were tested for anxiety-like behavior and episodic-like memory in the open field and novel object recognition tests respectively 30 minutes after the last drug administration. Chronic WIN55,212-2 treated animals exhibited a lasting disruption of episodic memory and increased anxiety levels. The effect on episodic-like memory were partially restored by acute administration of RS67333 and U-99194A and completely by administration of both drugs in combination at lower doses. However, only RS67333 (20 mg/kg) improved the anxiogenic-like effect of WIN55,212-2. These findings give further support that chronic exposure to cannabinoids during adolescence may be used as an animal model for schizophrenia, and highlight D3 and 5-HT4 receptors as potential targets for an enhanced treatment of the cognitive aspect of this disease.
Collapse
Affiliation(s)
- Oualid Abboussi
- Laboratory of Biochemistry and Neurosciences, Faculty of Sciences and Technics, Hassan 1er University, B.P. 577, Route of Casablanca, Settat, Morocco.
| | - Nadia Said
- Department of Pharmacology, Faculty of Medicine, Hassan II University, 19 Rue Tarik Bnou Ziad, Casablanca, Morocco
| | - Karim Fifel
- Laboratory of Neurophysiology, Department of Molecular Cell Biology, Leiden University, Medical Center, PO Box 9600, Mailbox S5-P, 2300 RC, Leiden, The Netherlands
| | - Sara Lakehayli
- Department of Pharmacology, Faculty of Medicine, Hassan II University, 19 Rue Tarik Bnou Ziad, Casablanca, Morocco
| | - Abdelouahhab Tazi
- Department of Pharmacology, Faculty of Medicine, Hassan II University, 19 Rue Tarik Bnou Ziad, Casablanca, Morocco
| | - Soumaya El Ganouni
- Laboratory of Biochemistry and Neurosciences, Faculty of Sciences and Technics, Hassan 1er University, B.P. 577, Route of Casablanca, Settat, Morocco
| |
Collapse
|
68
|
Bambico FR, Duranti A, Nobrega JN, Gobbi G. The fatty acid amide hydrolase inhibitor URB597 modulates serotonin-dependent emotional behaviour, and serotonin1A and serotonin2A/C activity in the hippocampus. Eur Neuropsychopharmacol 2016; 26:578-90. [PMID: 26747370 DOI: 10.1016/j.euroneuro.2015.12.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 11/23/2015] [Accepted: 12/12/2015] [Indexed: 12/21/2022]
Abstract
The fatty acid amide hydrolase (FAAH) inhibitor URB597 increases anandamide, resulting in antidepressant/anxiolytic-like activity, likely via CB1 receptor-mediated modulation of serotonin (5-HT) and norepinephrine (NE) neurotransmission. However, the relative importance of the 5-HT and NE systems in these effects and on effects of URB597 on postsynaptic 5-HT receptors remain to be determined. Using behavioural and electrophysiological approaches, we assessed the effects of acute-single and repeated URB597 treatment on responses predicting antidepressant/anxiolytic activity, and on hippocampal 5-HT1A and 5-HT2A/C receptor sensitivity. Acute-single or serial URB597 treatment, compared to vehicle, reduced immobility in the forced swim test (FST), increased open arm visits in the elevated plus maze and shortened feeding latency in the novelty-suppressed feeding test (NSFT). Repeated URB597 treatment yielded more profound behavioural effects, which were associated with an increase in hippocampal brain-derived neurotrophic factor (BDNF). The 5-HT synthesis inhibitor para-chlorophenylalanine (pCPA), but not the NE neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) prevented URB597-mediated antidepressant/anxiolytic-like response in the FST and NSFT, while DSP4 did not further affect URB597-mediated increase in raphe 5-HT neuron firing. Repeated URB597 administration decreased hippocampal pyramidal firing in response to 5-HT2A/C and 5-HT1A stimulation with 1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane (DOI) and 8-hydroxy-2-dipropylaminotetralin (8-OH-DPAT), respectively, suggesting plastic adaptation of these receptors. The effects of acute-single and repeated URB597 administration on hippocampal cell firing in response to DOI or 8-OH-DPAT were similar in magnitude and intensity to the positive control citalopram. These data indicate that URB597 acts, either directly or indirectly, on the 5-HT system, increases hippocampal BDNF expression, and modifies 5-HT1A and 5-HT2A/C function.
Collapse
Affiliation(s)
- Francis R Bambico
- Neurobiological Psychiatry Unit, McGill University, McGill University Health Center, Montreal, Quebec, Canada; Behavioral Neurobiology Laboratory, Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, Toronto, Ontario, Canada.
| | - Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - José N Nobrega
- Behavioral Neurobiology Laboratory, Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, McGill University, McGill University Health Center, Montreal, Quebec, Canada
| |
Collapse
|
69
|
Sex and age specific effects of delta-9-tetrahydrocannabinol during the periadolescent period in the rat: The unique susceptibility of the prepubescent animal. Neurotoxicol Teratol 2016; 58:88-100. [PMID: 26898326 DOI: 10.1016/j.ntt.2016.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 02/09/2016] [Accepted: 02/15/2016] [Indexed: 11/20/2022]
Abstract
Adolescents who use marijuana are more likely to exhibit anxiety, depression, and other mood disorders, including psychotic-like symptoms. Additionally, the age at onset of use and the stress history of the individual can affect responses to cannabis. To examine the effect of early life experience on adolescent Δ-9-tetrahydrocannabinol (THC) exposure, we exposed adolescent (postnatal day (P) 29-38) male and female rats, either shipped from a supplier or born in our vivarium, to once daily injections of 3mg/kg THC. Our findings suggest that males are more sensitive to the anxiolytic and antidepressant effects of THC, as measured by the elevated plus maze (EPM) and forced swim test (FST), respectively, than females. Exposure to the FST increased plasma corticosterone levels, regardless of drug treatment or origin and females had higher levels than males overall. Shipping increased THC responses in females (acoustic startle habituation) and in males (latency to immobility in FST). No significant effects of THC or shipping on pre-pulse inhibition were observed. Due to differences in timing of puberty in males and females during the P29-38 period of THC treatment, we also dosed female rats between P21-30 (pre-puberty) and male rats between P39-48 (puberty). Pre-pubertal animals showed reductions in anxiety on the EPM, an effect that was not seen in animals treated during puberty. These results suggest that both sexes are more susceptible to changes in emotional behavior when THC exposure occurs just prior to the onset of puberty. Within the animals dosed from P29-38, THC increased cannabinoid receptor 1 (CB1R) mRNA expression and tended to decrease CP55,940 stimulated [35S]GTPγS binding in the central amygdala only of females. Therefore, early stress enhances THC responses in males (in FST) and females (ASR habituation), THC alters CB1R expression and function in females only and prepubescent rats are generally more responsive to THC than pubertal rats. In summary, THC and stress interact with the developing endocannabinoid system in a sex specific manner during the peri-pubertal period.
Collapse
|
70
|
Lee TTY, Hill MN, Lee FS. Developmental regulation of fear learning and anxiety behavior by endocannabinoids. GENES, BRAIN, AND BEHAVIOR 2016; 15:108-24. [PMID: 26419643 PMCID: PMC4713313 DOI: 10.1111/gbb.12253] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/03/2015] [Accepted: 09/14/2015] [Indexed: 12/31/2022]
Abstract
The developing brain undergoes substantial maturation into adulthood and the development of specific neural structures occurs on differing timelines. Transient imbalances between developmental trajectories of corticolimbic structures, which are known to contribute to regulation over fear learning and anxiety, can leave an individual susceptible to mental illness, particularly anxiety disorders. There is a substantial body of literature indicating that the endocannabinoid (eCB) system critically regulates stress responsivity and emotional behavior throughout the life span, making this system a novel therapeutic target for stress- and anxiety-related disorders. During early life and adolescence, corticolimbic eCB signaling changes dynamically and coincides with different sensitive periods of fear learning, suggesting that eCB signaling underlies age-specific fear learning responses. Moreover, perturbations to these normative fluctuations in corticolimbic eCB signaling, such as stress or cannabinoid exposure, could serve as a neural substrate contributing to alterations to the normative developmental trajectory of neural structures governing emotional behavior and fear learning. In this review, we first introduce the components of the eCB system and discuss clinical and rodent models showing eCB regulation of fear learning and anxiety in adulthood. Next, we highlight distinct fear learning and regulation profiles throughout development and discuss the ontogeny of the eCB system in the central nervous system, and models of pharmacological augmentation of eCB signaling during development in the context of fear learning and anxiety.
Collapse
Affiliation(s)
- Tiffany T.-Y. Lee
- Dept. of Psychology, University of British Columbia, Vancouver, Canada, V6T 1Z4
| | - Matthew N. Hill
- Hotchkiss Brain Institute and Mathison Center for Mental Health Research and Education, Departments of Cell Biology and Anatomy & Psychiatry, University of Calgary, Calgary AB, Canada T2N4N1
| | - Francis S. Lee
- Department of Psychiatry, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, New York 10065, USA
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, New York 10065, USA
- Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, New York 10065, USA
| |
Collapse
|
71
|
Lee TTY, Gorzalka BB. Evidence for a Role of Adolescent Endocannabinoid Signaling in Regulating HPA Axis Stress Responsivity and Emotional Behavior Development. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 125:49-84. [PMID: 26638764 DOI: 10.1016/bs.irn.2015.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Adolescence is a period characterized by many distinct physical, behavioral, and neural changes during the transition from child- to adulthood. In particular, adolescent neural changes often confer greater plasticity and flexibility, yet with this comes the potential for heightened vulnerability to external perturbations such as stress exposure or recreational drug use. There is substantial evidence to suggest that factors such as adolescent stress exposure have longer lasting and sometimes more deleterious effects on an organism than stress exposure during adulthood. Moreover, the adolescent neuroendocrine response to stress exposure is different from that of adults, suggesting that further maturation of the adolescent hypothalamic-pituitary-adrenal (HPA) axis is required. The endocannabinoid (eCB) system is a potential candidate underlying these age-dependent differences given that it is an important regulator of the adult HPA axis and neuronal development. Therefore, this review will focus on (1) the functionality of the adolescent HPA axis, (2) eCB regulation of the adult HPA axis, (3) dynamic changes in eCB signaling during the adolescent period, (4) the effects of adolescent stress exposure on the eCB system, and (5) modulation of HPA axis activity and emotional behavior by adolescent cannabinoid treatment. Collectively, the emerging picture suggests that the eCB system mediates interactions between HPA axis stress responsivity, emotionality, and maturational stage. These findings may be particularly relevant to our understanding of the development of affective disorders and the risks of adolescent cannabis consumption on emotional health and stress responsivity.
Collapse
Affiliation(s)
- Tiffany T-Y Lee
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Boris B Gorzalka
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
72
|
Becker MP, Collins PF, Lim KO, Muetzel RL, Luciana M. Longitudinal changes in white matter microstructure after heavy cannabis use. Dev Cogn Neurosci 2015; 16:23-35. [PMID: 26602958 PMCID: PMC4691379 DOI: 10.1016/j.dcn.2015.10.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 10/03/2015] [Accepted: 10/06/2015] [Indexed: 11/28/2022] Open
Abstract
Diffusion tensor imaging (DTI) studies of cannabis users report alterations in brain white matter microstructure, primarily based on cross-sectional research, and etiology of the alterations remains unclear. We report findings from longitudinal voxelwise analyses of DTI data collected at baseline and at a 2-year follow-up on 23 young adult (18-20 years old at baseline) regular cannabis users and 23 age-, sex-, and IQ-matched non-using controls with limited substance use histories. Onset of cannabis use was prior to age 17. Cannabis users displayed reduced longitudinal growth in fractional anisotropy in the central and parietal regions of the right and left superior longitudinal fasciculus, in white matter adjacent to the left superior frontal gyrus, in the left corticospinal tract, and in the right anterior thalamic radiation lateral to the genu of the corpus callosum, along with less longitudinal reduction of radial diffusion in the right central/posterior superior longitudinal fasciculus, corticospinal tract, and posterior cingulum. Greater amounts of cannabis use were correlated with reduced longitudinal growth in FA as was relatively impaired performance on a measure of verbal learning. These findings suggest that continued heavy cannabis use during adolescence and young adulthood alters ongoing development of white matter microstructure, contributing to functional impairment.
Collapse
Affiliation(s)
- Mary P Becker
- Department of Psychology, University of Minnesota, 75 East River Road, Minneapolis, MN 55455, United States; Center for Neurobehavioral Development, University of Minnesota, 717 Delaware Street SE, Ste. 333, Minneapolis, MN 55414, United States.
| | - Paul F Collins
- Department of Psychology, University of Minnesota, 75 East River Road, Minneapolis, MN 55455, United States; Center for Neurobehavioral Development, University of Minnesota, 717 Delaware Street SE, Ste. 333, Minneapolis, MN 55414, United States
| | - Kelvin O Lim
- Department of Psychiatry, University of Minnesota, 2450 Riverside Avenue South, Minneapolis, MN 55454, United States
| | - R L Muetzel
- Department of Psychology, University of Minnesota, 75 East River Road, Minneapolis, MN 55455, United States
| | - M Luciana
- Department of Psychology, University of Minnesota, 75 East River Road, Minneapolis, MN 55455, United States; Center for Neurobehavioral Development, University of Minnesota, 717 Delaware Street SE, Ste. 333, Minneapolis, MN 55414, United States
| |
Collapse
|
73
|
Heitzeg MM, Cope LM, Martz ME, Hardee JE, Zucker RA. Brain activation to negative stimuli mediates a relationship between adolescent marijuana use and later emotional functioning. Dev Cogn Neurosci 2015; 16:71-83. [PMID: 26403581 PMCID: PMC4691419 DOI: 10.1016/j.dcn.2015.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 08/31/2015] [Accepted: 09/07/2015] [Indexed: 01/30/2023] Open
Abstract
This work investigated the impact of heavy marijuana use during adolescence on emotional functioning, as well as the brain functional mediators of this effect. Participants (n=40) were recruited from the Michigan Longitudinal Study (MLS). Data on marijuana use were collected prospectively beginning in childhood as part of the MLS. Participants were classified as heavy marijuana users (n=20) or controls with minimal marijuana use. Two facets of emotional functioning-negative emotionality and resiliency (a self-regulatory mechanism)-were assessed as part of the MLS at three time points: mean age 13.4, mean age 19.6, and mean age 23.1. Functional neuroimaging data during an emotion-arousal word task were collected at mean age 20.2. Negative emotionality decreased and resiliency increased across the three time points in controls but not heavy marijuana users. Compared with controls, heavy marijuana users had less activation to negative words in temporal, prefrontal, and occipital cortices, insula, and amygdala. Activation of dorsolateral prefrontal cortex to negative words mediated an association between marijuana group and later negative emotionality. Activation of the cuneus/lingual gyrus mediated an association between marijuana group and later resiliency. Results support growing evidence that heavy marijuana use during adolescence affects later emotional outcomes.
Collapse
Affiliation(s)
- Mary M Heitzeg
- Department of Psychiatry, Addiction Research Center, University of Michigan, 4250 Plymouth Road, Ann Arbor, MI 48109, USA.
| | - Lora M Cope
- Department of Psychiatry, Addiction Research Center, University of Michigan, 4250 Plymouth Road, Ann Arbor, MI 48109, USA.
| | - Meghan E Martz
- Department of Psychiatry, Addiction Research Center, University of Michigan, 4250 Plymouth Road, Ann Arbor, MI 48109, USA; Department of Psychology, University of Michigan, 2044 East Hall, 530 Church Street, Ann Arbor, MI 48108, USA.
| | - Jillian E Hardee
- Department of Psychiatry, Addiction Research Center, University of Michigan, 4250 Plymouth Road, Ann Arbor, MI 48109, USA.
| | - Robert A Zucker
- Department of Psychiatry, Addiction Research Center, University of Michigan, 4250 Plymouth Road, Ann Arbor, MI 48109, USA; Department of Psychology, University of Michigan, 2044 East Hall, 530 Church Street, Ann Arbor, MI 48108, USA.
| |
Collapse
|
74
|
Silva L, Harte-Hargrove L, Izenwasser S, Frank A, Wade D, Dow-Edwards D. Sex-specific alterations in hippocampal cannabinoid 1 receptor expression following adolescent delta-9-tetrahydrocannabinol treatment in the rat. Neurosci Lett 2015; 602:89-94. [PMID: 26118897 DOI: 10.1016/j.neulet.2015.06.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 06/05/2015] [Accepted: 06/17/2015] [Indexed: 11/24/2022]
Abstract
Marijuana use by adolescents has been on the rise since the early 1990s. With recent legalization and decriminalization acts passed, cannabinoid exposure in adolescents will undoubtedly increase. Human studies are limited in their ability to examine underlying changes in brain biochemistry making rodent models valuable. Studies in adult and adolescent animals show region and sex specific downregulation of the cannabinoid 1 (CB1) receptor following chronic cannabinoid treatment. However, although sex-dependent changes in behavior have been observed during the drug abstinence period following adolescent cannabinoid exposure, little is known about CB1 receptor expression during this critical time. In order to characterize CB1 receptor expression following chronic adolescent Δ-9-tetrahydrocannabinol (THC) exposure, we used [(3)H] CP55,940 binding to assess CB1 receptor expression in the dentate gyrus and areas CA1, CA2, and CA3 of the hippocampus in both male and female adolescent rats at both 24h and 2 weeks post chronic THC treatment. Consistent with other reported findings, we found downregulation of the CB1 receptor in the hippocampal formation at 24h post treatment. While this downregulation persisted in both sexes following two weeks of abstinence in the CA2 region, in females, this downregulation also persisted in areas CA1 and CA3. Expression in the dentate gyrus returned to the normal range by two weeks. These data suggest that selective regions of the hippocampus show persistent reductions in CB1 receptor expression and that these reductions are more widespread in female compared to male adolescents.
Collapse
Affiliation(s)
- Lindsay Silva
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450Clarkson Ave, Mail Stop 29, Brooklyn, NY 11203, USA
| | - Lauren Harte-Hargrove
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450Clarkson Ave, Mail Stop 29, Brooklyn, NY 11203, USA
| | - Sari Izenwasser
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, Room 4113A (D-80), Miami, FL 33136 USA
| | - Ashley Frank
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, Room 4113A (D-80), Miami, FL 33136 USA
| | - Dean Wade
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, Room 4113A (D-80), Miami, FL 33136 USA
| | - Diana Dow-Edwards
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450Clarkson Ave, Mail Stop 29, Brooklyn, NY 11203, USA.
| |
Collapse
|
75
|
Higuera-Matas A, Ucha M, Ambrosio E. Long-term consequences of perinatal and adolescent cannabinoid exposure on neural and psychological processes. Neurosci Biobehav Rev 2015; 55:119-46. [PMID: 25960036 DOI: 10.1016/j.neubiorev.2015.04.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 03/30/2015] [Accepted: 04/29/2015] [Indexed: 10/23/2022]
Abstract
Marihuana is the most widely consumed illicit drug, even among adolescents and pregnant women. Given the critical developmental processes that occur in the adolescent and fetal nervous system, marihuana consumption during these stages may have permanent consequences on several brain functions in later adult life. Here, we review what is currently known about the long-term consequences of perinatal and adolescent cannabinoid exposure. The most consistent findings point to long-term impairments in cognitive function that are associated with structural alterations and disturbed synaptic plasticity. In addition, several neurochemical modifications are also evident after prenatal or adolescent cannabinoid exposure, especially in the endocannabinoid, glutamatergic, dopaminergic and opioidergic systems. Important sexual dimorphisms are also evident in terms of the long-lasting effects of cannabinoid consumption during pregnancy and adolescence, and cannabinoids possibly have a protective effect in adolescents who have suffered traumatic life challenges, such as maternal separation or intense stress. Finally, we suggest some future research directions that may encourage further advances in this exciting field.
Collapse
Affiliation(s)
- Alejandro Higuera-Matas
- Department of Psychobiology, School of Psychology, National University of Distance Learning (UNED), C/ Juan del Rosal 10, 28040 Madrid, Spain.
| | - Marcos Ucha
- Department of Psychobiology, School of Psychology, National University of Distance Learning (UNED), C/ Juan del Rosal 10, 28040 Madrid, Spain
| | - Emilio Ambrosio
- Department of Psychobiology, School of Psychology, National University of Distance Learning (UNED), C/ Juan del Rosal 10, 28040 Madrid, Spain
| |
Collapse
|
76
|
Gage SH, Hickman M, Heron J, Munafò MR, Lewis G, Macleod J, Zammit S. Associations of cannabis and cigarette use with depression and anxiety at age 18: findings from the Avon Longitudinal Study of Parents and Children. PLoS One 2015; 10:e0122896. [PMID: 25875443 PMCID: PMC4395304 DOI: 10.1371/journal.pone.0122896] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/24/2015] [Indexed: 01/17/2023] Open
Abstract
Introduction Substance use is associated with common mental health disorders, but the causal effect of specific substances is uncertain. We investigate whether adolescent cannabis and cigarette use is associated with incident depression and anxiety, while attempting to account for confounding and reverse causation. Methods We used data from ALSPAC, a UK birth cohort study, to investigate associations between cannabis or cigarettes (measured at age 16) and depression or anxiety (measured at age 18), before and after adjustment for pre-birth, childhood and adolescent confounders. Our imputed sample size was 4561 participants. Results Both cannabis (unadjusted OR 1.50, 95% CI 1.26, 1.80) and cigarette use (OR 1.37, 95% CI 1.16, 1.61) increased the odds of developing depression. Adjustment for pre-birth and childhood confounders partly attenuated these relationships though strong evidence of association persisted for cannabis use. There was weak evidence of association for cannabis (fully adjusted OR 1.30, 95% CI 0.98, 1.72) and insufficient evidence for association for cigarette use (fully adjusted OR = 0.97, 95% CI 0.75, 1.24) after mutually adjusting for each other, or for alcohol or other substance use. Neither cannabis nor cigarette use were associated with anxiety after adjustment for pre-birth and childhood confounders. Conclusions Whilst evidence of association between cannabis use and depression persisted after adjusting for pre-term and childhood confounders, our results highlight the difficulties in trying to estimate and interpret independent effects of cannabis and tobacco on psychopathology. Complementary methods are required to robustly examine effects of cannabis and tobacco on psychopathology.
Collapse
Affiliation(s)
- Suzanne H. Gage
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
- United Kingdom Centre for Tobacco Control Studies, University of Bristol, Bristol, United Kingdom
- * E-mail:
| | - Matthew Hickman
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Jon Heron
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Marcus R. Munafò
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
- United Kingdom Centre for Tobacco Control Studies, University of Bristol, Bristol, United Kingdom
| | - Glyn Lewis
- Mental Health Sciences Unit, University College London, London, United Kingdom
| | - John Macleod
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Stanley Zammit
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
77
|
Comai S, Ochoa-Sanchez R, Dominguez-Lopez S, Bambico FR, Gobbi G. Melancholic-Like behaviors and circadian neurobiological abnormalities in melatonin MT1 receptor knockout mice. Int J Neuropsychopharmacol 2015; 18:pyu075. [PMID: 25638817 PMCID: PMC4360238 DOI: 10.1093/ijnp/pyu075] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Melancholic depression, described also as endogenous depression, is a mood disorder with distinctive specific psychopathological features and biological homogeneity, including anhedonia, circadian variation of mood, psychomotor activation, weight loss, diurnal cortisol changes, and sleep disturbances. Although several hypotheses have been proposed, the etiology of this disorder is still unknown. METHODS Behavioral, electrophysiological and biochemical approaches were used to characterize the emotional phenotype, serotonergic and noradrenergic electrical activity, and corticosterone in melatonin MT1 receptor knockout mice and their wild type counterparts, during both light and dark phases. RESULTS Melatonin MT1 receptor knockout mice have decreased mobility in the forced swim and tail suspension tests as well as decreased sucrose consumption, mostly during the dark/inactive phase. These mood variations are reversed by chronic treatment with the tricyclic antidepressant desipramine. In addition, MT1 receptor knockout mice exhibit psychomotor disturbances, higher serum levels of corticosterone the dark phase, and a blunted circadian variation of corticosterone levels. In vivo electrophysiological recordings show a decreased burst-firing activity of locus coeruleus norepinephrine neurons during the dark phase. The circadian physiological variation in the spontaneous firing activity of high-firing neuronal subpopulations of both norepinephrine neurons and dorsal raphe serotonin neurons are abolished in MT1 knockout mice. CONCLUSIONS These data demonstrate that melatonin MT1 receptor knockout mice recapitulate several behavioral and neurobiological circadian changes of human melancholic depression and, for the first time, suggest that the MT1 receptor may be implicated in the pathogenesis of melancholic depression and is a potential pharmacological target for this mental condition.
Collapse
Affiliation(s)
| | | | - Sergio Dominguez-Lopez
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University and McGill University Health Center, Montréal, QC, Canada (Drs Comai, Ochoa-Sanchez, Dominguez-Lopez, Bambico, and Gobbi)
| | | | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University and McGill University Health Center, Montréal, QC, Canada (Drs Comai, Ochoa-Sanchez, Dominguez-Lopez, Bambico, and Gobbi).
| |
Collapse
|
78
|
Smaga I, Bystrowska B, Gawliński D, Przegaliński E, Filip M. The endocannabinoid/endovanilloid system and depression. Curr Neuropharmacol 2014; 12:462-74. [PMID: 25426013 PMCID: PMC4243035 DOI: 10.2174/1570159x12666140923205412] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/15/2014] [Accepted: 09/12/2014] [Indexed: 12/20/2022] Open
Abstract
Depression is one of the most frequent causes of disability in the 21st century. Despite the many preclinical and clinical studies that have addressed this brain disorder, the pathophysiology of depression is not well understood and the available antidepressant drugs are therapeutically inadequate in many patients. In recent years, the potential role of lipid-derived molecules, particularly endocannabinoids (eCBs) and endovanilloids, has been highlighted in the pathogenesis of depression and in the action of antidepressants. There are many indications that the eCB/endovanilloid system is involved in the pathogenesis of depression, including the localization of receptors, modulation of monoaminergic transmission, inhibition of the stress axis and promotion of neuroplasticity in the brain. Preclinical pharmacological and genetic studies of eCBs in depression also suggest that facilitating the eCB system exerts antidepressant-like behavioral responses in rodents. In this article, we review the current knowledge of the role of the eCB/endovanilloid system in depression, as well as the effects of its ligands, models of depression and antidepressant drugs in preclinical and clinical settings.
Collapse
Affiliation(s)
- Irena Smaga
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University, College of Medicum, Medyczna 9, PL 30-688 Kraków, Poland
| | - Beata Bystrowska
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University, College of Medicum, Medyczna 9, PL 30-688 Kraków, Poland
| | - Dawid Gawliński
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University, College of Medicum, Medyczna 9, PL 30-688 Kraków, Poland
| | - Edmund Przegaliński
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland
| | - Małgorzata Filip
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University, College of Medicum, Medyczna 9, PL 30-688 Kraków, Poland ; Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland
| |
Collapse
|
79
|
Lubman DI, Cheetham A, Yücel M. Cannabis and adolescent brain development. Pharmacol Ther 2014; 148:1-16. [PMID: 25460036 DOI: 10.1016/j.pharmthera.2014.11.009] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 11/03/2014] [Indexed: 12/14/2022]
Abstract
Heavy cannabis use has been frequently associated with increased rates of mental illness and cognitive impairment, particularly amongst adolescent users. However, the neurobiological processes that underlie these associations are still not well understood. In this review, we discuss the findings of studies examining the acute and chronic effects of cannabis use on the brain, with a particular focus on the impact of commencing use during adolescence. Accumulating evidence from both animal and human studies suggests that regular heavy use during this period is associated with more severe and persistent negative outcomes than use during adulthood, suggesting that the adolescent brain may be particularly vulnerable to the effects of cannabis exposure. As the endocannabinoid system plays an important role in brain development, it is plausible that prolonged use during adolescence results in a disruption in the normative neuromaturational processes that occur during this period. We identify synaptic pruning and white matter development as two processes that may be adversely impacted by cannabis exposure during adolescence. Potentially, alterations in these processes may underlie the cognitive and emotional deficits that have been associated with regular use commencing during adolescence.
Collapse
Affiliation(s)
- Dan I Lubman
- Turning Point, Eastern Health and Eastern Health Clinical School, Monash University, Victoria, Australia.
| | - Ali Cheetham
- Turning Point, Eastern Health and Eastern Health Clinical School, Monash University, Victoria, Australia
| | - Murat Yücel
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Victoria, Australia; Monash Clinical & Imaging Neuroscience, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
80
|
Renard J, Krebs MO, Le Pen G, Jay TM. Long-term consequences of adolescent cannabinoid exposure in adult psychopathology. Front Neurosci 2014; 8:361. [PMID: 25426017 PMCID: PMC4226229 DOI: 10.3389/fnins.2014.00361] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 10/21/2014] [Indexed: 01/10/2023] Open
Abstract
Marijuana is the most widely used illicit drug among adolescents and young adults. Unique cognitive, emotional, and social changes occur during this critical period of development from childhood into adulthood. The adolescent brain is in a state of transition and differs from the adult brain with respect to both anatomy (e.g., neuronal connections and morphology) and neurochemistry (e.g., dopamine, GABA, and glutamate). These changes are thought to support the emergence of adult cerebral processes and behaviors. The endocannabinoid system plays an important role in development by acting on synaptic plasticity, neuronal cell proliferation, migration, and differentiation. Delta-9-tetrahydrocanabinol (THC), the principal psychoactive component in marijuana, acts as a partial agonist of the cannabinoid type 1 receptor (CB1R). Thus, over-activation of the endocannabinoid system by chronic exposure to CB1R agonists (e.g., THC, CP-55,940, and WIN55,212-2) during adolescence can dramatically alter brain maturation and cause long-lasting neurobiological changes that ultimately affect the function and behavior of the adult brain. Indeed, emerging evidence from both human and animal studies demonstrates that early-onset marijuana use has long-lasting consequences on cognition; moreover, in humans, this use is associated with a two-fold increase in the risk of developing a psychotic disorder. Here, we review the relationship between cannabinoid exposure during adolescence and the increased risk of neuropsychiatric disorders, focusing on both clinical and animal studies.
Collapse
Affiliation(s)
- Justine Renard
- Laboratoire de Physiopathologie des maladies Psychiatriques, UMR_S894 Institut National de la Santé et de la Recherche Médicale, Centre de Psychiatrie et Neurosciences Paris, France ; Centre Hospitalier Sainte-Anne, Service Hospitalo Universitaire, Faculté de Médecine Paris Descartes, Université Paris Descartes Paris, France
| | - Marie-Odile Krebs
- Laboratoire de Physiopathologie des maladies Psychiatriques, UMR_S894 Institut National de la Santé et de la Recherche Médicale, Centre de Psychiatrie et Neurosciences Paris, France ; Centre Hospitalier Sainte-Anne, Service Hospitalo Universitaire, Faculté de Médecine Paris Descartes, Université Paris Descartes Paris, France
| | - Gwenaëlle Le Pen
- Laboratoire de Physiopathologie des maladies Psychiatriques, UMR_S894 Institut National de la Santé et de la Recherche Médicale, Centre de Psychiatrie et Neurosciences Paris, France ; Centre Hospitalier Sainte-Anne, Service Hospitalo Universitaire, Faculté de Médecine Paris Descartes, Université Paris Descartes Paris, France
| | - Thérèse M Jay
- Laboratoire de Physiopathologie des maladies Psychiatriques, UMR_S894 Institut National de la Santé et de la Recherche Médicale, Centre de Psychiatrie et Neurosciences Paris, France ; Centre Hospitalier Sainte-Anne, Service Hospitalo Universitaire, Faculté de Médecine Paris Descartes, Université Paris Descartes Paris, France
| |
Collapse
|
81
|
Rubino T, Prini P, Piscitelli F, Zamberletti E, Trusel M, Melis M, Sagheddu C, Ligresti A, Tonini R, Di Marzo V, Parolaro D. Adolescent exposure to THC in female rats disrupts developmental changes in the prefrontal cortex. Neurobiol Dis 2014; 73:60-9. [PMID: 25281318 DOI: 10.1016/j.nbd.2014.09.015] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 09/15/2014] [Accepted: 09/24/2014] [Indexed: 01/25/2023] Open
Abstract
Current concepts suggest that exposure to THC during adolescence may act as a risk factor for the development of psychiatric disorders later in life. However, the molecular underpinnings of this vulnerability are still poorly understood. To analyze this, we investigated whether and how THC exposure in female rats interferes with different maturational events occurring in the prefrontal cortex during adolescence through biochemical, pharmacological and electrophysiological means. We found that the endocannabinoid system undergoes maturational processes during adolescence and that THC exposure disrupts them, leading to impairment of both endocannabinoid signaling and endocannabinoid-mediated LTD in the adult prefrontal cortex. THC also altered the maturational fluctuations of NMDA subunits, leading to larger amounts of gluN2B at adulthood. Adult animals exposed to THC during adolescence also showed increased AMPA gluA1 with no changes in gluA2 subunits. Finally, adolescent THC exposure altered cognition at adulthood. All these effects seem to be triggered by the disruption of the physiological role played by the endocannabinoid system during adolescence. Indeed, blockade of CB1 receptors from early to late adolescence seems to prevent the occurrence of pruning at glutamatergic synapses. These results suggest that vulnerability of adolescent female rats to long-lasting THC adverse effects might partly reside in disruption of the pivotal role played by the endocannabinoid system in the prefrontal cortex maturation.
Collapse
Affiliation(s)
- Tiziana Rubino
- Department of Theoretical and Applied Science, Biomedical Research Division, and Neuroscience Center, University of Insubria, 21052 Busto Arsizio, VA, Italy.
| | - Pamela Prini
- Department of Theoretical and Applied Science, Biomedical Research Division, and Neuroscience Center, University of Insubria, 21052 Busto Arsizio, VA, Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, 80078 Pozzuoli, NA, Italy
| | - Erica Zamberletti
- Department of Theoretical and Applied Science, Biomedical Research Division, and Neuroscience Center, University of Insubria, 21052 Busto Arsizio, VA, Italy
| | - Massimo Trusel
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy
| | - Miriam Melis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, CA, Italy
| | - Claudia Sagheddu
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, CA, Italy
| | - Alessia Ligresti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, 80078 Pozzuoli, NA, Italy
| | - Raffaella Tonini
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, 80078 Pozzuoli, NA, Italy
| | - Daniela Parolaro
- Department of Theoretical and Applied Science, Biomedical Research Division, and Neuroscience Center, University of Insubria, 21052 Busto Arsizio, VA, Italy; Zardi Gori Foundation, 21100 Milan, Italy
| |
Collapse
|
82
|
Chronic nandrolone decanoate exposure during adolescence affects emotional behavior and monoaminergic neurotransmission in adulthood. Neuropharmacology 2014; 83:79-88. [PMID: 24721625 DOI: 10.1016/j.neuropharm.2014.03.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 03/25/2014] [Accepted: 03/30/2014] [Indexed: 12/14/2022]
Abstract
Nandrolone decanoate, an anabolic androgen steroid (AAS) illicitly used by adult and adolescent athletes to enhance physical performance and body image, induces psychiatric side effects, such as aggression, depression as well as a spectrum of adverse physiological impairments. Since adolescence represents a neurodevelopmental window that is extremely sensitive to the detrimental effects of drug abuse, we investigated the long-term behavioral and neurophysiological consequences of nandrolone abuse during adolescence. Adolescent rats received daily injections of nandrolone decanoate (15 mg/kg, i.m.) for 14 days (PND 40-53). At early adulthood (PND 68), forced swim, sucrose preference, open field and elevated plus maze tests were performed to assess behavioral changes. In vivo electrophysiological recordings were carried out to monitor changes in electrical activity of serotonergic neurons of the dorsal raphe nucleus (DRN) and noradrenergic neurons of the locus coeruleus (LC). Our results show that after early exposure to nandrolone, rats display depression-related behavior, characterized by increased immobility in the forced swim test and reduced sucrose intake in the sucrose preference test. In addition, adult rats presented anxiety-like behavior characterized by decreased time and number of entries in the central zone of the open field and decreased time spent in the open arms of the elevated plus maze. Nandrolone decreased the firing rate of spontaneously active serotonergic neurons in the DRN while increasing the firing rate of noradrenergic neurons in the LC. These results provide evidence that nandrolone decanoate exposure during adolescence alters the emotional profile of animals in adulthood and significantly modifies both serotonergic and noradrenergic neurotransmission.
Collapse
|
83
|
Binge-like eating attenuates nisoxetine feeding suppression, stress activation, and brain norepinephrine activity. PLoS One 2014; 9:e93610. [PMID: 24695494 PMCID: PMC3973562 DOI: 10.1371/journal.pone.0093610] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/04/2014] [Indexed: 01/14/2023] Open
Abstract
Stress is often associated with binge eating. A critical component of the control of stress is the central norepinephrine system. We investigated how dietary-induced binge eating alters central norepinephrine and related behaviors. Young male Sprague Dawley rats received calorie deprivation (24 h) and /or intermittent sweetened fat (vegetable shortening with sucrose; 30 min) twice a week for 10 weeks. The groups were Restrict Binge (calorie deprivation/sweetened fat), Binge (sweetened fat), Restrict (calorie deprivation), and Naive (no calorie deprivation/no sweetened fat). Dietary-induced binge eating was demonstrated by Restrict Binge and Binge, which showed an escalation in 30-min intake over time. Feeding suppression following nisoxetine (3 mg/kg; IP), a selective norepinephrine reuptake inhibitor, was not evident in Restrict Binge (Restrict Binge: 107±13, Binge: 52±9, Restrict: 80±8, Naive: 59±13% of saline injection at 1 h). In subsequent experiments with Restrict Binge and Naive, Restrict Binge had reduced corticosterone (Restrict Binge: 266±25; Naive: 494±36 ng/ml) and less feeding suppression (Restrict Binge: 81±12, Naive: 50±11% of non-restraint intake at 30 min) following restraint stress (1 h). Dietary-induced binge eating in Restrict Binge was not altered by a dorsal noradrenergic bundle lesion caused by N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4), but frontal cortex norepinephrine was positively correlated with the average 30-min intake post-lesion (0.69; p<0.01). In a separate set of animals, single-unit in vivo electrophysiological recording of locus coeruleus–norepinephrine neural activity demonstrated reduced sensory-evoked response as a consequence of the Restrict Binge schedule (Restrict Binge: 8.1±0.67, Naive: 11.9±1.09 Hz). These results, which suggest that a consequence of dietary-induced binge eating is to attenuate the responsiveness of the brain norepinephrine system, will further our understanding of how highly palatable foods dampen the stress neuraxis.
Collapse
|
84
|
Abstract
BACKGROUND Marijuana is the most commonly used illicit substance in the United States. Use, particularly when it occurs early, has been associated with cognitive impairments in executive functioning, learning, and memory. METHOD This study comprehensively measured cognitive ability as well as comorbid psychopathology and substance use history to determine the neurocognitive profile associated with young adult marijuana use. College-aged marijuana users who initiated use prior to age 17 (n = 35) were compared to demographically matched controls (n = 35). RESULTS Marijuana users were high functioning, demonstrating comparable IQs to controls and relatively better processing speed. Marijuana users demonstrated relative cognitive impairments in verbal memory, spatial working memory, spatial planning, and motivated decision making. Comorbid use of alcohol, which was heavier in marijuana users, was unexpectedly found to be associated with better performance in some of these areas. CONCLUSIONS This study provides additional evidence of neurocognitive impairment in the context of adolescent and young adult marijuana use. Findings are discussed in relation to marijuana's effects on intrinsic motivation and discrete aspects of cognition.
Collapse
Affiliation(s)
- Mary P Becker
- a Department of Psychology, Center for Neurobehavioral Development , University of Minnesota , Minneapolis , MN , USA
| | | | | |
Collapse
|
85
|
Chronic exposure to WIN55,212-2 affects more potently spatial learning and memory in adolescents than in adult rats via a negative action on dorsal hippocampal neurogenesis. Pharmacol Biochem Behav 2014; 120:95-102. [PMID: 24582851 DOI: 10.1016/j.pbb.2014.02.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 02/20/2014] [Accepted: 02/20/2014] [Indexed: 11/20/2022]
Abstract
Several epidemiological studies show an increase in cannabis use among adolescents, especially in Morocco for being one of the major producers in the world. The neurobiological consequences of chronic cannabis use are still poorly understood. In addition, brain plasticity linked to ontogeny portrays adolescence as a period of vulnerability to the deleterious effects of drugs. The aim of this study was to investigate the behavioral neurogenic effects of chronic exposure to the cannabinoid agonist WIN55,212-2 during adolescence, by evaluating the emotional and cognitive performances, and the consequences on neurogenesis along the dorso-ventral axis of the hippocampus in adult rats. WIN55,212 was administered intraperitoneally (i.p.) once daily for 20 days to adolescent (27-30 PND) and adult Wistar rats (54-57 PND) at the dose of 1mg/kg. Following a 20 day washout period, emotional and cognitive functions were assessed by the Morris water maze test and the two-way active avoidance test. Twelve hours after, brains were removed and hippocampal neurogenesis was assessed using the doublecortin (DCX) as a marker for cell proliferation. Our results showed that chronic WIN55,212-2 treatment significantly increased thigmotaxis early in the training process whatever the age of treatment, induced spatial learning and memory deficits in adolescent but not adult rats in the Morris water maze test, while it had no significant effect in the active avoidance test during multitrial training in the shuttle box. In addition, the cognitive deficits assessed in adolescent rats were positively correlated to a decrease in the number of newly generated neurons in dorsal hippocampus. These data suggest that long term exposure to cannabinoids may affect more potently spatial learning and memory in adolescent compared to adult rats via a negative action on hippocampal plasticity.
Collapse
|
86
|
The Directive 2010/63/EU on animal experimentation may skew the conclusions of pharmacological and behavioural studies. Sci Rep 2014; 3:2380. [PMID: 23924859 PMCID: PMC3737502 DOI: 10.1038/srep02380] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/10/2013] [Indexed: 01/17/2023] Open
Abstract
All laboratory animals shall be provided some form of environmental enrichment (EE) in the nearest future (Directive 2010/63/EU). Displacing standard housing with EE entails the possibility that data obtained under traditional housing may be reconsidered. Specifically, while EE often contrasts the abnormalities of consolidated disease models, it also indirectly demonstrates that their validity depends on housing conditions. We mimicked a situation in which the consequences of a novel pharmacological compound were addressed before and after the adoption of the Directive. We sub-chronically exposed standard- or EE-reared adolescent CD1 mice (postnatal days 23-33) to the synthetic compound JWH-018, and evaluated its short- and long-term potential cannabinoid properties on: weight gain, locomotion, analgesia, motor coordination, body temperature, brain metabolism (1H MRI/MRS), anxiety- and depressive-related behaviours. While several parameters are modulated by JWH-018 independently of housing, other effects are environmentally mediated. The transition from standard housing to EE shall be carefully monitored.
Collapse
|
87
|
Anderson DM, Rees DI, Sabia JJ. Medical marijuana laws and suicides by gender and age. Am J Public Health 2014; 104:2369-76. [PMID: 24432945 DOI: 10.2105/ajph.2013.301612] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES We estimated the association between legalizing medical marijuana and suicides. METHODS We obtained state-level suicide data from the National Vital Statistics System's Mortality Detail Files for 1990-2007. We used regression analysis to examine the association between medical marijuana legalization and suicides per 100 000 population. RESULTS After adjustment for economic conditions, state policies, and state-specific linear time trends, the association between legalizing medical marijuana and suicides was not statistically significant at the .05 level. However, legalization was associated with a 10.8% (95% confidence interval [CI] = -17.1%, -3.7%) and 9.4% (95% CI = -16.1%, -2.4%) reduction in the suicide rate of men aged 20 through 29 years and 30 through 39 years, respectively. Estimates for females were less precise and sensitive to model specification. CONCLUSIONS Suicides among men aged 20 through 39 years fell after medical marijuana legalization compared with those in states that did not legalize. The negative relationship between legalization and suicides among young men is consistent with the hypothesis that marijuana can be used to cope with stressful life events. However, this relationship may be explained by alcohol consumption. The mechanism through which legalizing medical marijuana reduces suicides among young men remains a topic for future study.
Collapse
Affiliation(s)
- D Mark Anderson
- D. Mark Anderson is with the Department of Agricultural Economics and Department of Economics, Montana State University, Bozeman. Daniel I. Rees is with the Department of Economics, University of Colorado Denver. Joseph J. Sabia is with the Department of Economics, San Diego State University, San Diego, CA
| | | | | |
Collapse
|
88
|
Bambico FR, Lacoste B, Hattan PR, Gobbi G. Father absence in the monogamous california mouse impairs social behavior and modifies dopamine and glutamate synapses in the medial prefrontal cortex. Cereb Cortex 2013; 25:1163-75. [PMID: 24304503 DOI: 10.1093/cercor/bht310] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The role of the father in psycho-affective development is indispensable. Yet, the neurobehavioral effects of paternal deprivation (PD) are poorly understood. Here, we examined the behavioral consequences of PD in the California mouse, a species displaying monogamous bonding and biparental care, and assessed its impact on dopamine (DA), serotonin (5-HT), and glutamate (GLU) transmission in the medial prefrontal cortex (mPFC). In adult males, deficits in social interaction were observed, when a father-deprived (PD) mouse was matched with a PD partner. In adult females, deficits were observed when matching a PD animal with a non-PD control, and when matching 2 PD animals. PD also increased aggression in females. Behavioral abnormalities in PD females were associated with a sensitized response to the locomotor-activating effect of amphetamine. Following immunocytochemical demonstration of DA, 5-HT, and GLU innervations in the mPFC, we employed in vivo electrophysiology and microiontophoresis, and found that PD attenuated the basal activity of low-spiking pyramidal neurons in females. PD decreased pyramidal responses to DA in females, while enhancing responses to NMDA in both sexes. We thus demonstrate that, during critical neurodevelopmental periods, PD leads to sex-dependent abnormalities in social and reward-related behaviors that are associated with disturbances in cortical DA and GLU neurotransmission.
Collapse
Affiliation(s)
- Francis R Bambico
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University Health Center, McGill University, Montreal, QC H3A 1A1, Canada and Behavioral Neurobiology Laboratory, Center for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Baptiste Lacoste
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University Health Center, McGill University, Montreal, QC H3A 1A1, Canada and
| | - Patrick R Hattan
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University Health Center, McGill University, Montreal, QC H3A 1A1, Canada and
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University Health Center, McGill University, Montreal, QC H3A 1A1, Canada and
| |
Collapse
|
89
|
Fogaça MV, Galve-Roperh I, Guimarães FS, Campos AC. Cannabinoids, Neurogenesis and Antidepressant Drugs: Is there a Link? Curr Neuropharmacol 2013; 11:263-75. [PMID: 24179463 PMCID: PMC3648779 DOI: 10.2174/1570159x11311030003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/14/2012] [Accepted: 01/04/2013] [Indexed: 11/22/2022] Open
Abstract
Similar to clinically used antidepressants, cannabinoids can also regulate anxiety and depressive symptoms. Although the mechanisms of these effects are not completely understood, recent evidence suggests that changes in endocannabinoid system could be involved in some actions of antidepressants. Chronic antidepressant treatment modifies the expression of CB1 receptors and endocannabinoid (EC) content in brain regions related to mood and anxiety control. Moreover, both antidepressant and cannabinoids activate mitogen-activated protein (MAP) kinase and phosphoinositide 3-kinase(PI3-K)/Akt or PKB signaling, intracellular pathways that regulate cell proliferation and neural cell survival. Facilitation of hippocampal neurogenesis is proposed as a common effect of chronic antidepressant treatment. Genetic or pharmacological manipulations of cannabinoid receptors (CB1 and CB2) or enzymes responsible for endocannabinoid-metabolism have also been shown to control proliferation and neurogenesis in the hippocampus. In the present paper we reviewed the studies that have investigated the potential contribution of cannabinoids and neurogenesisto antidepressant effects. Considering the widespread brain distribution of the EC system, a better understanding of this possible interaction could contribute to the development of therapeutic alternatives to mood and anxiety disorders.
Collapse
Affiliation(s)
- Manoela Viar Fogaça
- Department of Pharmacology; School of Medicine of RibeirãoPreto- University of São Paulo, Brazil ; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil
| | | | | | | |
Collapse
|
90
|
Chadwick B, Miller ML, Hurd YL. Cannabis Use during Adolescent Development: Susceptibility to Psychiatric Illness. Front Psychiatry 2013; 4:129. [PMID: 24133461 PMCID: PMC3796318 DOI: 10.3389/fpsyt.2013.00129] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 09/28/2013] [Indexed: 11/13/2022] Open
Abstract
Cannabis use is increasingly pervasive among adolescents today, even more common than cigarette smoking. The evolving policy surrounding the legalization of cannabis reaffirms the need to understand the relationship between cannabis exposure early in life and psychiatric illnesses. cannabis contains psychoactive components, notably Δ(9)-tetrahydrocannabinol (THC), that interfere with the brain's endogenous endocannabinoid system, which is critically involved in both pre- and post-natal neurodevelopment. Consequently, THC and related compounds could potentially usurp normal adolescent neurodevelopment, shifting the brain's developmental trajectory toward a disease-vulnerable state, predisposing early cannabis users to motivational, affective, and psychotic disorders. Numerous human studies, including prospective longitudinal studies, demonstrate that early cannabis use is associated with major depressive disorder and drug addiction. A strong association between schizophrenia and cannabis use is also apparent, especially when considering genetic factors that interact with this environmental exposure. These human studies set a foundation for carefully controlled animal studies which demonstrate similar patterns following early cannabinoid exposure. Given the vulnerable nature of adolescent neurodevelopment and the persistent changes that follow early cannabis exposure, the experimental findings outlined should be carefully considered by policymakers. In order to fully address the growing issues of psychiatric illnesses and to ensure a healthy future, measures should be taken to reduce cannabis use among teens.
Collapse
Affiliation(s)
- Benjamin Chadwick
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | | | | |
Collapse
|
91
|
Fitzgerald PJ. Elevated Norepinephrine may be a Unifying Etiological Factor in the Abuse of a Broad Range of Substances: Alcohol, Nicotine, Marijuana, Heroin, Cocaine, and Caffeine. SUBSTANCE ABUSE-RESEARCH AND TREATMENT 2013; 7:171-83. [PMID: 24151426 PMCID: PMC3798293 DOI: 10.4137/sart.s13019] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A wide range of commonly abused drugs have effects on the noradrenergic neurotransmitter system, including alterations during acute intoxication and chronic use of these drugs. It is not established, however, that individual differences in noradrenergic signaling, which may be present prior to use of drugs, predispose certain persons to substance abuse. This paper puts forth the novel hypothesis that elevated noradrenergic signaling, which may be raised largely due to genetics but also due to environmental factors, is an etiological factor in the abuse of a wide range of substances, including alcohol, nicotine, marijuana, heroin, cocaine, and caffeine. Data are reviewed for each of these drugs comprising their interaction with norepinephrine during acute intoxication, long-term use, subsequent withdrawal, and stress-induced relapse. In general, the data suggest that these drugs acutely boost noradrenergic signaling, whereas long-term use also affects this neurotransmitter system, possibly suppressing it. During acute withdrawal after chronic drug use, noradrenergic signaling tends to be elevated, consistent with the observation that norepinephrine lowering drugs such as clonidine reduce withdrawal symptoms. Since psychological stress can promote relapse of drug seeking in susceptible individuals and stress produces elevated norepinephrine release, this suggests that these drugs may be suppressing noradrenergic signaling during chronic use or instead elevating it only in reward circuits of the brain. If elevated noradrenergic signaling is an etiological factor in the abuse of a broad range of substances, then chronic use of pharmacological agents that reduce noradrenergic signaling, such as clonidine, guanfacine, lofexidine, propranolol, or prazosin, may help prevent or treat drug abuse in general.
Collapse
|
92
|
Micale V, Di Marzo V, Sulcova A, Wotjak CT, Drago F. Endocannabinoid system and mood disorders: Priming a target for new therapies. Pharmacol Ther 2013; 138:18-37. [DOI: 10.1016/j.pharmthera.2012.12.002] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
93
|
Campos AC, de Paula Soares V, Carvalho MC, Ferreira FR, Vicente MA, Brandão ML, Zuardi AW, Zangrossi H, Guimarães FS. Involvement of serotonin-mediated neurotransmission in the dorsal periaqueductal gray matter on cannabidiol chronic effects in panic-like responses in rats. Psychopharmacology (Berl) 2013; 226:13-24. [PMID: 23007604 DOI: 10.1007/s00213-012-2878-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 09/06/2012] [Indexed: 11/30/2022]
Abstract
RATIONALE Cannabidiol (CBD) is a non-psychotomimetic constituent of Cannabis sativa plant that promotes antianxiety and anti-panic effects in animal models after acute systemic or intra-dorsal periaqueductal gray (DPAG) administration. However, the effects of CBD repeated administration, and the possible mechanisms involved, in animal models of anxiety- and panic-related responses remain poorly understood. OBJECTIVE The present study evaluates the role of the serotonergic neurotransmission within the DPAG in the modulation of escape responses of rats chronically treated with CBD. METHODS Male Wistar rats received acute or repeated (5 mg/Kg/daily/21 days) administration of CBD and were submitted to the elevated T-maze (ETM). We also investigated if CBD effects on the ETM depend on facilitation of 5-HT1A-mediated neurotransmission in the DPAG. To this latter aim, we verified if these effects would be prevented by intra-DPAG injection of the 5-HT1A receptor antagonist WAY100635 (0.37 nmol/0.2 μL). Also, we verified, by in vivo microdialysis, if CBD chronic treatment increases serotonin (5-HT) release and, by quantitative polymerase chain reaction, if there are changes in 5HT-1A or 5HT-2C mRNA expression in DPAG. RESULTS The results showed that repeated but not acute peripheral administration of CBD decreases escape responses in the ETM, suggesting a panicolytic effect. This treatment did not change 5HT-1A or 5-HT-2C receptor mRNA expression nor modify serotonin extracellular concentrations in the DPAG. CBD effects were prevented by DPAG injection of the 5-HT1A receptor antagonist. CONCLUSIONS Together, these findings suggest that repeated treatment with CBD induces anti-panic effects by acting on 5-HT1A receptors in DPAG.
Collapse
Affiliation(s)
- Alline Cristina Campos
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, 3900 Bandeirantes av., Monte Alegre, Ribeirão Preto, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Neumeister A. The endocannabinoid system provides an avenue for evidence-based treatment development for PTSD. Depress Anxiety 2013; 30:93-6. [PMID: 23225490 DOI: 10.1002/da.22031] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Alexander Neumeister
- Molecular Imaging Program for Mood and Anxiety Disorders, New York University Langone Medical Center, USA.
| |
Collapse
|
95
|
Bambico FR, Belzung C. Novel insights into depression and antidepressants: a synergy between synaptogenesis and neurogenesis? Curr Top Behav Neurosci 2013; 15:243-291. [PMID: 23271325 DOI: 10.1007/7854_2012_234] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Major depressive disorder has been associated with manifold pathophysiological changes. These include metabolic abnormalities in discreet brain areas; modifications in the level of stress hormones, neurotransmitters, and neurotrophic factors; impaired spinogenesis and synaptogenesis in crucial brain areas, such as the prefrontal cortex and the hippocampus; and impaired neurogenesis in the hippocampus. Antidepressant therapy facilitates remission by reversing most of these disturbances, indicating that these dysfunctions may participate causally in depressive symptomatology. However, few attempts have been made to integrate these different pathophysiologies into one model. The present chapter endeavors (1) to review the extant literature in the field, with particular focus on the role of neurogenesis and synaptogenesis in depression; (2) and to suggest a possible interplay between these two processes, as well as, describe the ways by which improving both neurogenesis and synaptogenesis may enable effective recovery by acting on a larger neuronal network.
Collapse
Affiliation(s)
- Francis Rodriguez Bambico
- Behavioural Neurobiology Laboratory, Research Neuroimaging Division, Center for Addiction and Mental Health, University of Toronto, 250 College Street, Toronto, ON, M5T 1R8, Canada,
| | | |
Collapse
|
96
|
Ochoa-Sanchez R, Rainer Q, Comai S, Spadoni G, Bedini A, Rivara S, Fraschini F, Mor M, Tarzia G, Gobbi G. Anxiolytic effects of the melatonin MT(2) receptor partial agonist UCM765: comparison with melatonin and diazepam. Prog Neuropsychopharmacol Biol Psychiatry 2012; 39:318-25. [PMID: 22789661 DOI: 10.1016/j.pnpbp.2012.07.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 06/21/2012] [Accepted: 07/02/2012] [Indexed: 11/25/2022]
Abstract
Melatonin (MLT) is a neurohormone known to be involved in the regulation of anxiety. Most of the physiological actions of MLT in the brain are mediated by two high-affinity G-protein-coupled receptors, denoted MT(1) and MT(2). However, the particular role of these receptors in anxiety remains to be defined. Here we used a novel MT(2)-selective partial agonist, UCM765 to evaluate the involvement of MT(2) receptors in anxiety. Adult male rats were acutely injected with UCM765 (5-10-20mg/kg), MLT (20mg/kg) or diazepam (DZ, 1mg/kg). Anxiety-related behaviors were assessed in the elevated plus maze test (EPMT), novelty suppressed feeding test (NSFT) and open field test (OFT). UCM765 at the dose of 10mg/kg showed anxiolytic-like properties by increasing the time spent in the open arm of the EPMT, and by reducing the latency to eat in a novel environment in the NSFT. In the EPMT, animals treated with UCM765 (10mg/kg) or MLT (20mg/kg) spent more time in the open arms compared to vehicle-treated animals, but to a lesser extent compared to DZ (1mg/kg). In the NSFT, all treatments similarly decreased the latency to eat in a novel environment compared to vehicle. UCM765 and MLT did not affect the total time and the number of entries into the central area of the OFT, but unlike DZ, did not impair locomotion. The anxiolytic effects of UCM765 and MLT in the EPMT and the NSFT were blocked using a pre-treatment with the MT(1)/MT(2) antagonist luzindole (10mg/kg) or the MT(2) antagonist 4P-PDOT (10mg/kg). These results demonstrated, for the first time, the anxiolytic properties of UCM765 and suggest that MT(2)-receptors may be considered a novel target for the development of anxiolytic drugs.
Collapse
Affiliation(s)
- Rafael Ochoa-Sanchez
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University and McGill University Health Center, Montreal, QC, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Gururajan A, Manning EE, Klug M, van den Buuse M. Drugs of abuse and increased risk of psychosis development. Aust N Z J Psychiatry 2012; 46:1120-35. [PMID: 22833579 DOI: 10.1177/0004867412455232] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE There is considerable evidence to suggest that the abuse of illicit drugs, particularly cannabis and methamphetamine, has aetiological roles in the pathogenesis of psychosis and schizophrenia. Factors that may increase susceptibility to the propsychotic effects of these drugs include the age at which the abuse starts as well as family history of genetic polymorphisms relevant to the pathophysiology of this disorder. However, the neurobiological mechanisms involved in drug abuse-associated psychosis remain largely unclear. METHODS AND RESULTS This paper presents an overview of the available evidence, including clinical, animal model, and molecular studies, with a focus on brain regions and neurotransmitters systems, such as dopamine and glutamate, previously implicated in psychosis. CONCLUSION It is clear that further studies are urgently needed to provide a greater insight into the mechanisms that mediate the long-term and neurodevelopmental effects of cannabis and methamphetamine. A dialogue between basic science and clinical research may help to identify at-risk individuals and novel pathways for treatment and prevention.
Collapse
Affiliation(s)
- Anand Gururajan
- Mental Health Research Institute, University of Melbourne, Melbourne, Australia
| | | | | | | |
Collapse
|
98
|
Adolescent amphetamine exposure elicits dose-specific effects on monoaminergic neurotransmission and behaviour in adulthood. Int J Neuropsychopharmacol 2012; 15:1319-30. [PMID: 22053980 DOI: 10.1017/s1461145711001544] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Despite the growing non-medical consumption of amphetamine (Amph) during adolescence, its long-term neurobiological and behavioural effects have remained largely unexplored. The present research sought to characterize the behavioural profile and electrophysiological properties of midbrain monoaminergic neurons in adult rodents after Amph exposure during adolescence. Adolescent rats were administered vehicle, 0.5, 1.5, or 5.0 mg/kg.d Amph from postnatal day (PND) 30-50. At adulthood (PND 70), rats were tested in an open-field test (OFT) and elevated plus maze (EPM), paralleled by in-vivo extracellular recordings of serotonin (5-HT), dopamine (DA) and norepinephrine (NE) neurons from the dorsal raphe nucleus, ventral tegmental area, and locus coeruleus, respectively. 5-HT firing in adulthood was increased in rats that had received Amph (1.5 mg/kg.d) during adolescence. At this regimen, DA firing activity was increased, but not NE firing. Conversely, the highest Amph dose regimen (5.0 mg/kg.d) enhanced NE firing, but not DA or 5-HT firing rates. In the OFT, Amph (1.5 mg/kg.d) significantly increased the total distance travelled, while the other doses were ineffective. In the EPM, all three Amph doses increased time spent in the open arms and central platform, as well as the number of stretch-attend postures made. Repeated adolescent exposure to Amph differentially augments monoaminergic neuronal firing in a dose-specific fashion in adulthood, with corresponding alterations in locomotion, risk assessment (stretch-attend postures and central platform occupancy) and risk-taking behaviours (open-arm exploration). Thus, adolescent Amph exposure induces long-lasting neurophysiological alterations that may have implications for drug-seeking behaviour in the future.
Collapse
|
99
|
Iemolo A, Valenza M, Tozier L, Knapp CM, Kornetsky C, Steardo L, Sabino V, Cottone P. Withdrawal from chronic, intermittent access to a highly palatable food induces depressive-like behavior in compulsive eating rats. Behav Pharmacol 2012; 23:593-602. [PMID: 22854309 PMCID: PMC3934429 DOI: 10.1097/fbp.0b013e328357697f] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The increased availability of highly palatable foods is a major contributing factor toward the development of compulsive eating in obesity and eating disorders. It has been proposed that compulsive eating may develop as a form of self-medication to alleviate the negative emotional state associated with withdrawal from highly palatable foods. This study was aimed at determining whether withdrawal from chronic, intermittent access to a highly palatable food was responsible for the emergence of depressive-like behavior. For this purpose, a group of male Wistar rats was provided a regular chow diet 7 days a week (Chow/Chow), whereas a second group of rats was provided chow for 5 days a week, followed by a 2-day access to a highly palatable sucrose diet (Chow/Palatable). Following 7 weeks of diet alternation, depressive-like behavior was assessed during withdrawal from the highly palatable diet and following renewed access to it, using the forced swim test, the sucrose consumption test, and the intracranial self-stimulation threshold procedure. It was found that Chow/Palatable rats withdrawn from the highly palatable diet showed increased immobility time in the forced swim test and decreased sucrose intake in the sucrose consumption test compared with the control Chow/Chow rats. Interestingly, the increased immobility in the forced swim test was abolished by renewing access to the highly palatable diet. No changes were observed in the intracranial self-stimulation threshold procedure. These results validate the hypothesis that withdrawal from highly palatable food is responsible for the emergence of depressive-like behavior, and they also show that compulsive eating relieves the withdrawal-induced negative emotional state.
Collapse
Affiliation(s)
- Attilio Iemolo
- Laboratory of Addictive Disorders, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Marta Valenza
- Laboratory of Addictive Disorders, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Pharmacology and Human Physiology, University of Bari, Bari
| | - Lisa Tozier
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Clifford M. Knapp
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Conan Kornetsky
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Luca Steardo
- Department of Physiology and Pharmacology, University of Rome La Sapienza, Rome, Italy
| | - Valentina Sabino
- Laboratory of Addictive Disorders, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Pietro Cottone
- Laboratory of Addictive Disorders, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
100
|
Klug M, van den Buuse M. Chronic cannabinoid treatment during young adulthood induces sex-specific behavioural deficits in maternally separated rats. Behav Brain Res 2012; 233:305-13. [DOI: 10.1016/j.bbr.2012.05.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/04/2012] [Accepted: 05/08/2012] [Indexed: 01/07/2023]
|