51
|
Langer J, Stephan J, Theis M, Rose CR. Gap junctions mediate intercellular spread of sodium between hippocampal astrocytes in situ. Glia 2011; 60:239-52. [DOI: 10.1002/glia.21259] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 09/29/2011] [Indexed: 01/01/2023]
|
52
|
Vaz SH, Jørgensen TN, Cristóvão-Ferreira S, Duflot S, Ribeiro JA, Gether U, Sebastião AM. Brain-derived neurotrophic factor (BDNF) enhances GABA transport by modulating the trafficking of GABA transporter-1 (GAT-1) from the plasma membrane of rat cortical astrocytes. J Biol Chem 2011; 286:40464-76. [PMID: 21969376 DOI: 10.1074/jbc.m111.232009] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The γ-aminobutyric acid (GABA) transporters (GATs) are located in the plasma membrane of neurons and astrocytes and are responsible for termination of GABAergic transmission. It has previously been shown that brain derived neurotrophic factor (BDNF) modulates GAT-1-mediated GABA transport in nerve terminals and neuronal cultures. We now report that BDNF enhances GAT-1-mediated GABA transport in cultured astrocytes, an effect mostly due to an increase in the V(max) kinetic constant. This action involves the truncated form of the TrkB receptor (TrkB-t) coupled to a non-classic PLC-γ/PKC-δ and ERK/MAPK pathway and requires active adenosine A(2A) receptors. Transport through GAT-3 is not affected by BDNF. To elucidate if BDNF affects trafficking of GAT-1 in astrocytes, we generated and infected astrocytes with a functional mutant of the rat GAT-1 (rGAT-1) in which the hemagglutinin (HA) epitope was incorporated into the second extracellular loop. An increase in plasma membrane of HA-rGAT-1 as well as of rGAT-1 was observed when both HA-GAT-1-transduced astrocytes and rGAT-1-overexpressing astrocytes were treated with BDNF. The effect of BDNF results from inhibition of dynamin/clathrin-dependent constitutive internalization of GAT-1 rather than from facilitation of the monensin-sensitive recycling of GAT-1 molecules back to the plasma membrane. We therefore conclude that BDNF enhances the time span of GAT-1 molecules at the plasma membrane of astrocytes. BDNF may thus play an active role in the clearance of GABA from synaptic and extrasynaptic sites and in this way influence neuronal excitability.
Collapse
Affiliation(s)
- Sandra H Vaz
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| | | | | | | | | | | | | |
Collapse
|
53
|
Schousboe A, Sickmann HM, Bak LK, Schousboe I, Jajo FS, Faek SAA, Waagepetersen HS. Neuron-glia interactions in glutamatergic neurotransmission: roles of oxidative and glycolytic adenosine triphosphate as energy source. J Neurosci Res 2011; 89:1926-34. [PMID: 21919035 DOI: 10.1002/jnr.22746] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 06/16/2011] [Accepted: 06/20/2011] [Indexed: 02/01/2023]
Abstract
Glutamatergic neurotransmission accounts for a considerable part of energy consumption related to signaling in the brain. Chemical energy is provided by adenosine triphosphate (ATP) formed in glycolysis and tricarboxylic acid (TCA) cycle combined with oxidative phosphorylation. It is not clear whether ATP generated in these pathways is equivalent in relation to fueling of the energy-requiring processes, i.e., vesicle filling, transport, and enzymatic processing in the glutamatergic tripartite synapse (the astrocyte and pre- and postsynapse). The role of astrocytic glycogenolysis in maintaining theses processes also has not been fully elucidated. Cultured astrocytes and neurons were utilized to monitor these processes related to glutamatergic neurotransmission. Inhibitors of glycolysis and TCA cycle in combination with pathway-selective substrates were used to study glutamate uptake and release monitored with D-aspartate. Western blotting of glyceraldehyde-3-P dehydrogenase (GAPDH) and phosphoglycerate kinase (PGK) was performed to determine whether these enzymes are associated with the cell membrane. We show that ATP formed in glycolysis is superior to that generated by oxidative phosphorylation in providing energy for glutamate uptake both in astrocytes and in neurons. The neuronal vesicular glutamate release was less dependent on glycolytic ATP. Dependence of glutamate uptake on glycolytic ATP may be at least partially explained by a close association in the membrane of GAPDH and PGK and the glutamate transporters. It may be suggested that these enzymes form a complex with the transporters and the Na(+) /K(+) -ATPase, the latter providing the sodium gradient required for the transport process.
Collapse
Affiliation(s)
- A Schousboe
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
54
|
Association of a synonymous GAT3 polymorphism with antiepileptic drug pharmacoresistance. J Hum Genet 2011; 56:640-6. [PMID: 21776001 DOI: 10.1038/jhg.2011.73] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
It would be likely that the genetic variants of the GTA3 gene encoding GAT-3, an astrocytic GABA transporter, may alter gamma-aminobutyric acid (GABA) neurotransmission in the synaptic cleft in the epileptic brain and cause antiepileptic drugs (AEDs) pharmacoresistance. A candidate gene association analysis with fine mapping was performed to dissect the genetic contributions of GAT3 to AEDs pharmacoresistance. Two independent case sample sets were recruited (Samples 1 and 2), and each set was divided into two groups (drug-resistant and drug-responsive) according to the treatment outcomes with AEDs. Sample1 (n=400) was used for the initial exploratory stage of the study and sample 2 (n=435) was used for confirmation of the genetic association in the replication stage of the study. A GAT3 polymorphism (GAT3 c.1572 C>T, rs2272400) was nominally associated with AEDs pharmacoresistance (P(CC) vs P(CT/TT)=0.012, P(allelic)=0.01). The odds ratio (OR) for AED pharmacoresistance was 1.6 (95% confidence interval (CI), 1.11-2.24; P=0.01) in the additive models of inheritance. The statistical significance remained after we adjusted for a confounding factor, the etiology of epilepsy, at 0.012 (adjusted OR: 1.73, 95% CI: 1.13-2.67) and used Bonferroni's correction for multiple comparisons at 0.048. Importantly, the positive association of c.1572 T was reproduced in the replication stage (P(allelic)=0.037, joint P-value of the replication=0.001). The results suggest that GAT3 c.1572T may be one of the contributing factors with a modest effect on AEDs pharmacoresistance in the epileptic brain, shed light on a better understanding of the underlying mechanisms and serve as an impetus for new avenues of treatment for AEDs pharmacoresistance.
Collapse
|
55
|
Goubard V, Fino E, Venance L. Contribution of astrocytic glutamate and GABA uptake to corticostriatal information processing. J Physiol 2011; 589:2301-19. [PMID: 21486792 DOI: 10.1113/jphysiol.2010.203125] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The astrocytes, active elements of the tripartite synapse, remove most of the neurotransmitter that spills over the synaptic cleft. Neurotransmitter uptake operated by astrocytes contributes to the strength and timing of synaptic inputs. The striatum, the main input nucleus of basal ganglia, extracts pertinent cortical signals from the background noise and relays cortical information toward basal ganglia output structures. We investigated the role of striatal astrocytic uptake in the shaping of corticostriatal transmission.We performed dual patch-clamp recordings of striatal output neuron (the medium-sized spiny neurons, MSNs)–astrocyte pairs while stimulating the somatosensory cortex. Cortical activity evoked robust synaptically activated transporter-mediated currents (STCs) in 78% of the recorded astrocytes. STCs originated equally from the activities of glutamate transporters and GABA transporters (GATs). Astrocytic STCs reflected here a presynaptic release of neurotransmitters. STCs displayed a large magnitude associated with fast kinetics, denoting an efficient neurotransmitter clearance at the corticostriatal pathway. Inhibition of glutamate transporters type-1 (GLT-1) and GATs decreased the corticostriatal synaptic transmission, through, respectively, desensitization of AMPA receptors and activation of GABAA receptor. STCs displayed a bidirectional short-term plasticity (facilitation for paired-pulse intervals less than 100 ms and depression up to 1 s).We report a genuine facilitation of STCs for high-frequency cortical activity, which could strengthen the detection properties of cortical activity operated by MSNs. MSN EPSCs showed a triphasic short-term plasticity, which was modified by the blockade of GLT-1 or GATs. We show here that neurotransmitter uptake by astrocytes plays a key role in the corticostriatal information processing.
Collapse
Affiliation(s)
- Valérie Goubard
- Dynamic and Pathophysiology of Neuronal Networks, INSERM U667, College de France, 75005 Paris, France
| | | | | |
Collapse
|
56
|
Knockout of GAD65 has major impact on synaptic GABA synthesized from astrocyte-derived glutamine. J Cereb Blood Flow Metab 2011; 31:494-503. [PMID: 20664610 PMCID: PMC3049505 DOI: 10.1038/jcbfm.2010.115] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
γ-Aminobutyric acid (GABA) synthesis from glutamate is catalyzed by glutamate decarboxylase (GAD) of which two isoforms, GAD65 and GAD67, have been identified. The GAD65 has repeatedly been shown to be important during intensified synaptic activity. To specifically elucidate the significance of GAD65 for maintenance of the highly compartmentalized intracellular and intercellular GABA homeostasis, GAD65 knockout and corresponding wild-type mice were injected with [1-(13)C]glucose and the astrocyte-specific substrate [1,2-(13)C]acetate. Synthesis of GABA from glutamine in the GABAergic synapses was further investigated in GAD65 knockout and wild-type mice using [1,2-(13)C]acetate and in some cases γ-vinylGABA (GVG, Vigabatrin), an inhibitor of GABA degradation. A detailed metabolic mapping was obtained by nuclear magnetic resonance (NMR) spectroscopic analysis of tissue extracts of cerebral cortex and hippocampus. The GABA content in both brain regions was reduced by ∼20%. Moreover, it was revealed that GAD65 is crucial for maintenance of biosynthesis of synaptic GABA particularly by direct synthesis from astrocytic glutamine via glutamate. The GAD67 was found to be important for synthesis of GABA from glutamine both via direct synthesis and via a pathway involving mitochondrial metabolism. Furthermore, a severe neuronal hypometabolism, involving glycolysis and tricarboxylic acid (TCA) cycle activity, was observed in cerebral cortex of GAD65 knockout mice.
Collapse
|
57
|
Abstract
Since it was first reported approximately 40 years ago that putative amino acid neurotransmitters, including GABA, would likely be inactivated by synaptic high-affinity transporters, there has been an exponential increase in interest in delineating the pharmacological characteristics of these transporters. During the 1980s and 1990s a large series of publications was devoted to a detailed characterization of neuronal and astroglial GABA transporters demonstrating important differences between these, a notion that turned out to be of relevance for the development of anticonvulsants targeting GABA transporters. The cloning era, leading to the identification of four proteins capable of transporting GABA across plasma membranes, has further boosted this research. Ultimately the clinically active antiepileptic drug, tiagabine, was developed and it was established that its mechanism of action involved inhibition of the GABA transporter-1 (GAT1). Current and future research is directed towards a better understanding of how extrasynaptic GABA receptors may be regulated via manipulation of extrasynaptic GABA levels, possibly involving extrasynaptic GABA transporters, most likely non-GAT1 transporters.
Collapse
|
58
|
Brown AM, Skamarauskas J, Lister T, Madjd A, Ray DE. Differential susceptibility of astrocytic and neuronal function to 3-chloropropanediol in the rat inferior colliculus. J Neurochem 2011; 116:996-1004. [PMID: 21155803 DOI: 10.1111/j.1471-4159.2010.07138.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have previously shown that systemic administration of S(+)3-chloropropanediol (3-CPD) produces a morphological loss of astrocytes in specific nuclei of the rodent brain that precedes loss of both neurones and endothelial tight junctions. Here, we have evaluated the differential susceptibility of neuronal and astrocytic function to 3-CPD, in order to see if this parallels the morphological selectivity. To do this, we have developed an in vivo method for monitoring astrocyte function over time by giving hourly 20-min bolus challenge exposures to ammonia via an implanted microdialysis probe and measuring the resulting transient increases in the extracellular glutamine : glutamate ratio. These challenge ammonia exposures evoked a stable response for at least 5 h when the probe was implanted in the rat inferior colliculus, but caused no behavioural response or morphological damage. Although 3-CPD produced a rapid and sustained abolition of the ammonia response within 2 h, the field potential response of inferior collicular neurones to sound fell significantly to 75.0 ± 3.9% pre-dose at up to 8 h but then fell markedly, reaching 20.5 ± 3.7% at 2 days. Blood flow in the inferior colliculus also showed only late changes, increasing substantially at 2 days. Astrocyte damage at the EM level was seen from 3 h, followed by loss of astrocytes from 18 h to a minimum of 7 ± 10% control at 3 days. The rapid abolition of the ammonia response suggests that in addition to selective astrocyte death, 3-CPD also produces an earlier impairment of astrocyte function that precedes loss of neuronal function. This initial functional selectivity of 3-CPD provides a potential investigative tool in neurochemical studies of astrocyte-neuronal interactions.
Collapse
Affiliation(s)
- Angus M Brown
- School of Biomedical Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK.
| | | | | | | | | |
Collapse
|
59
|
Walls AB, Nilsen LH, Eyjolfsson EM, Vestergaard HT, Hansen SL, Schousboe A, Sonnewald U, Waagepetersen HS. GAD65 is essential for synthesis of GABA destined for tonic inhibition regulating epileptiform activity. J Neurochem 2010; 115:1398-408. [PMID: 21039523 DOI: 10.1111/j.1471-4159.2010.07043.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
GABA is synthesized from glutamate by glutamate decarboxylase (GAD), which exists in two isoforms, that is, GAD65 and GAD67. In line with GAD65 being located in the GABAergic synapse, several studies have demonstrated that this isoform is important during sustained synaptic transmission. In contrast, the functional significance of GAD65 in the maintenance of GABA destined for extrasynaptic tonic inhibition is less well studied. Using GAD65-/- and wild type GAD65+/+ mice, this was examined employing the cortical wedge preparation, a model suitable for investigating extrasynaptic GABA(A) receptor activity. An impaired tonic inhibition in GAD65-/- mice was revealed demonstrating a significant role of GAD65 in the synthesis of GABA acting extrasynaptically. The correlation between an altered tonic inhibition and metabolic events as well as the functional and metabolic role of GABA synthesized by GAD65 was further investigated in vivo. Tonic inhibition and the demand for biosynthesis of GABA were augmented by injection of kainate into GAD65-/- and GAD65+/+ mice. Moreover, [1-(13) C]glucose and [1,2-(13) C]acetate were administered to study neuronal and astrocytic metabolism concomitantly. Subsequently, cortical and hippocampal extracts were analyzed by NMR spectroscopy and mass spectrometry, respectively. Although seizure activity was induced by kainate, neuronal hypometabolism was observed in GAD65+/+ mice. In contrast, kainate evoked hypermetabolism in GAD65-/- mice exhibiting deficiencies in tonic inhibition. These findings underline the importance of GAD65 for synthesis of GABA destined for extrasynaptic tonic inhibition, regulating epileptiform activity.
Collapse
Affiliation(s)
- Anne B Walls
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology, Norway
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Zelenina M. Regulation of brain aquaporins. Neurochem Int 2010; 57:468-88. [DOI: 10.1016/j.neuint.2010.03.022] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 03/21/2010] [Accepted: 03/31/2010] [Indexed: 01/27/2023]
|
61
|
Shie FS, Chen YH, Chen CH, Ho IK. Neuroimmune pharmacology of neurodegenerative and mental diseases. J Neuroimmune Pharmacol 2010; 6:28-40. [PMID: 20820930 DOI: 10.1007/s11481-010-9241-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 08/19/2010] [Indexed: 12/20/2022]
Abstract
Neuroimmune pharmacology is a newly emerging field that intersects with neuroscience, immunology, and pharmacology and that is seeking avenues for translational research and better understanding of disease mechanisms. It focuses on the immunity of the central nervous system (CNS) which is greatly influenced by endogenous effectors, such as cytokines and neurotransmitters, and by exogenous substances, including therapeutic compounds, infectious pathogens, and drugs of abuse. In this article, we attempt to raise awareness of the pivotal discovery of how those mediators affect the immunity of the CNS in both physiological conditions and processes of certain mental illnesses, including psychiatric disorders, neurodegenerative diseases, and cerebral dysfunctions due to drugs of abuse. The abnormality in cytokine networks, neurotransmitter homeostasis, and other immune responses may be involved in the neuropathology associated with those mental illnesses, and the therapeutic effects of the potential treatments can be attributed, at least partially, to their immunomodulatory activities. However, the resulting inflammatory cytokines from certain treatments frequently cause psychiatric complications. In addition, the poor neuropathological outcomes frequently found among drug abusers with HIV-1 infection appear to be related to the neurotoxic and immunomodulatory effects of the drugs used. Importantly, glial cells, especially microglia and astrocytes, are key players in the immunomodulatory activities in the CNS, and the functioning CNS is largely dependent upon the reciprocal interactions between neurons and glial cells. Therefore, glia-neuron interactions have become a critical issue for further understanding the disease mechanism. From this review, readers will gain insights into the new field of neuroimmune pharmacology, with a focus on the impacts of CNS immunity on the mental illnesses.
Collapse
Affiliation(s)
- Feng-Shiun Shie
- Division of Mental Health and Addiction Medicine, Institute of Population Health Sciences, Zhunan, Miaoli County, Taiwan, Republic of China
| | | | | | | |
Collapse
|
62
|
Bogen IL, Risa Ø, Haug KH, Sonnewald U, Fonnum F, Walaas SI. Distinct changes in neuronal and astrocytic amino acid neurotransmitter metabolism in mice with reduced numbers of synaptic vesicles. J Neurochem 2010; 105:2524-34. [PMID: 18346203 DOI: 10.1111/j.1471-4159.2008.05344.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The relations between glutamate and GABA concentrations and synaptic vesicle density in nerve terminals were examined in an animal model with 40-50% reduction in synaptic vesicle numbers caused by inactivation of the genes encoding synapsin I and II. Concentrations and synthesis of amino acids were measured in extracts from cerebrum and a crude synaptosomal fraction by HPLC and (13)C nuclear magnetic resonance spectroscopy (NMRS), respectively. Analysis of cerebrum extracts, comprising both neurotransmitter and metabolic pools, showed decreased concentration of GABA, increased concentration of glutamine and unchanged concentration of glutamate in synapsin I and II double knockout (DKO) mice. In contrast, both glutamate and GABA concentrations were decreased in crude synaptosomes isolated from synapsin DKO mice, suggesting that the large metabolic pool of glutamate in the cerebral extracts may overshadow minor changes in the transmitter pool. (13)C NMRS studies showed that the changes in amino acid concentrations in the synapsin DKO mice were caused by decreased synthesis of GABA (20-24%) in cerebral neurons and increased synthesis of glutamine (36%) in astrocytes. In a crude synaptosomal fraction, the glutamate synthesis was reduced (24%), but this reduction could not be detected in cerebrum extracts. We suggest that lack of synaptic vesicles causes down-regulation of neuronal GABA and glutamate synthesis, with a concomitant increase in astrocytic synthesis of glutamine, in order to maintain normal neurotransmitter concentrations in the nerve terminal cytosol.
Collapse
Affiliation(s)
- Inger Lise Bogen
- Department of Biochemistry, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
63
|
Obesity and type 2 diabetes in rats are associated with altered brain glycogen and amino-acid homeostasis. J Cereb Blood Flow Metab 2010; 30:1527-37. [PMID: 20424632 PMCID: PMC2949239 DOI: 10.1038/jcbfm.2010.61] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Obesity and type 2 diabetes have reached epidemic proportions; however, scarce information about how these metabolic syndromes influence brain energy and neurotransmitter homeostasis exist. The objective of this study was to elucidate how brain glycogen and neurotransmitter homeostasis are affected by these conditions. [1-(13)C]glucose was administered to Zucker obese (ZO) and Zucker diabetic fatty (ZDF) rats. Sprague-Dawley (SprD), Zucker lean (ZL), and ZDF lean rats were used as controls. Several brain regions were analyzed for glycogen levels along with (13)C-labeling and content of glutamate, glutamine, GABA, aspartate, and alanine. Blood glucose concentrations and (13)C enrichment were determined. (13)C-labeling in glutamate was lower in ZO and ZDF rats in comparison with the controls. The molecular carbon labeling (MCL) ratio between alanine and glutamate was higher in the ZDF rats. The MCL ratios of glutamine and glutamate were decreased in the cerebellum of the ZO and the ZDF rats. Glycogen levels were also lower in this region. These results suggest that the obese and type 2 diabetic models were associated with lower brain glucose metabolism. Glucose metabolism through the TCA cycle was more decreased than glycolytic activity. Furthermore, reduced glutamate-glutamine cycling was also observed in the obese and type 2 diabetic states.
Collapse
|
64
|
Ion changes and signalling in perisynaptic glia. ACTA ACUST UNITED AC 2010; 63:113-29. [DOI: 10.1016/j.brainresrev.2009.10.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 09/23/2009] [Accepted: 10/01/2009] [Indexed: 01/30/2023]
|
65
|
Kc P, Martin RJ. Role of central neurotransmission and chemoreception on airway control. Respir Physiol Neurobiol 2010; 173:213-22. [PMID: 20359553 DOI: 10.1016/j.resp.2010.03.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/14/2010] [Accepted: 03/23/2010] [Indexed: 11/16/2022]
Abstract
This review summarizes work on central neurotransmission, chemoreception and CNS control of cholinergic outflow to the airways. First, we describe the neural transmission of bronchoconstrictive signals from airway afferents to the airway-related vagal preganglionic neurons (AVPNs) via the nucleus of the solitary tract (nTS) and, second, we characterize evidence for a modulatory effect of excitatory glutamatergic, and inhibitory GABAergic, noradrenergic and serotonergic pathways on AVPN output. Excitatory signals arising from bronchopulmonary afferents and/or the peripheral chemosensory system activate second order neurons within the nTS, via a glutamate-AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor signaling pathway. These nTS neurons, using the same neurotransmitter-receptor unit, transmit information to the AVPNs, which in turn convey the central command through descending fibers and airway intramural ganglia to airway smooth muscle, submucosal secretory glands, and the vasculature. The strength and duration of this reflex-induced bronchoconstriction is modulated by GABAergic-inhibitory inputs. In addition, central noradrenergic and serotonergic inhibitory pathways appear to participate in the regulation of cholinergic drive to the tracheobronchial system. Down-regulation of these inhibitory influences results in a shift from inhibitory to excitatory drive, which may lead to increased excitability of AVPNs, heightened airway responsiveness, greater cholinergic outflow to the airways and consequently bronchoconstriction. In summary, centrally coordinated control of airway tone and respiratory drive serve to optimize gas exchange and work of breathing under normal homeostatic conditions. Greater understanding of this process should enhance our understanding of its disruption under pathophysiologic states.
Collapse
Affiliation(s)
- Prabha Kc
- Division of Neonatology, Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106-6010, USA.
| | | |
Collapse
|
66
|
López-Pérez SJ, Ureña-Guerrero ME, Morales-Villagrán A. Monosodium glutamate neonatal treatment as a seizure and excitotoxic model. Brain Res 2010; 1317:246-56. [DOI: 10.1016/j.brainres.2009.12.054] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 12/17/2009] [Accepted: 12/18/2009] [Indexed: 10/20/2022]
|
67
|
Peng XQ, Gardner EL, Xi ZX. Gamma-vinyl GABA increases nonvesicular release of GABA and glutamate in the nucleus accumbens in rats via action on anion channels and GABA transporters. Psychopharmacology (Berl) 2010; 208:511-9. [PMID: 20033132 PMCID: PMC3713230 DOI: 10.1007/s00213-009-1753-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 12/01/2009] [Indexed: 02/06/2023]
Abstract
RATIONALE gamma-Amino butyric acid (GABA) is a well-characterized inhibitory neurotransmitter in the central nervous system, which may also stimulate nonvesicular release of other neurotransmitters under certain conditions. We have recently reported that gamma-vinyl GABA (GVG), an irreversible GABA transaminase inhibitor, elevates extracellular GABA but fails to alter dopamine release in the nucleus accumbens (NAc). OBJECTIVES Here, we investigated the mechanism(s) by which GVG elevates extracellular GABA levels and whether GVG also alters glutamate release in the NAc. MATERIALS AND METHODS In vivo microdialysis was used to simultaneously measure extracellular NAc GABA and glutamate before and after GVG administration in freely moving rats. RESULTS Systemic administration of GVG or intra-NAc local perfusion of GVG significantly increased extracellular NAc GABA and glutamate. GVG-enhanced GABA was completely blocked by intra-NAc local perfusion of 5-nitro-2, 3-(phenylpropylamino)-benzoic acid (NPPB), a selective anion channel blocker and partially blocked by SKF89976A, a type 1 GABA transporter inhibitor. GVG-enhanced glutamate was completely blocked by NPPB or SKF89976A. Tetrodotoxin, a voltage-dependent Na(+)-channel blocker, failed to alter GVG-enhanced GABA and glutamate. CONCLUSIONS These data suggest that GVG-enhanced extracellular GABA and glutamate are mediated predominantly by the opening of anion channels and partially by the reversal of GABA transporters. Enhanced extracellular glutamate may functionally attenuate the pharmacological action of GABA and prevent enhanced GABA-induced excess inhibition.
Collapse
Affiliation(s)
- Xiao-Qing Peng
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
68
|
Langer J, Rose CR. Synaptically induced sodium signals in hippocampal astrocytes in situ. J Physiol 2010; 587:5859-77. [PMID: 19858225 DOI: 10.1113/jphysiol.2009.182279] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Astrocytes are in close contact to excitatory synapses and express transporters which mediate the sodium-dependent uptake of glutamate. In cultured astrocytes, selective activation of glutamate transport results in sodium elevations which stimulate Na(+)/K(+)-ATPase and glucose uptake, indicating that synaptic release of glutamate might couple excitatory neuronal activity to glial sodium homeostasis and metabolism. Here, we analysed intracellular sodium transients evoked by synaptic stimulation in acute mouse hippocampal slices using quantitative sodium imaging with the sodium-sensitive fluorescent indicator dye SBFI (sodium-binding benzofuran isophthalate). We found that short bursts of Schaffer collateral stimulation evoke sodium transients in the millimolar range in both CA1 pyramidal neurons and in SR101-positive astrocytes of the stratum radiatum. At low stimulation intensities, glial sodium transients were confined to one to two primary branches and adjacent fine processes and only weakly invaded the soma. Increasing the number of activated afferent fibres by increasing the stimulation intensity elicited global sodium transients detectable in the processes as well as the somata of astrocytes. Pharmacological analysis revealed that neuronal sodium signals were mainly attributable to sodium influx through ionotropic glutamate receptors. Activation of ionotropic receptors also contributed to glial sodium transients, while TBOA-sensitive glutamate transport was the major pathway responsible for sodium influx into astrocytes. Our results thus establish that glutamatergic synaptic transmission in the hippocampus results in sodium transients in astrocytes that are mainly mediated by activation of glutamate transport. They support the proposed link between excitatory synaptic activity, glutamate uptake and sodium signals in astrocytes of the hippocampus.
Collapse
Affiliation(s)
- Julia Langer
- Institute for Neurobiology, Heinrich-Heine-University Duesseldorf, Universitaetsstrasse 1, 26.02.00, 40225 Duesseldorf, Germany
| | | |
Collapse
|
69
|
Neuronal glutamate transporters regulate synaptic transmission in single synapses on CA1 hippocampal neurons. Brain Res Bull 2010; 81:53-60. [DOI: 10.1016/j.brainresbull.2009.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 07/24/2009] [Accepted: 07/24/2009] [Indexed: 01/09/2023]
|
70
|
Glutamate uptake shapes low-[Mg2+] induced epileptiform activity in juvenile rat hippocampal slices. Brain Res 2009; 1309:172-8. [PMID: 19912995 DOI: 10.1016/j.brainres.2009.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 11/02/2009] [Accepted: 11/03/2009] [Indexed: 11/21/2022]
Abstract
A wide range of data support a role for ambient glutamate (Glu) in epilepsy, although temporal patterns associated with the cellular uptake of Glu have not been addressed in detail. We report on the effects of Glu uptake inhibitors on recurrent seizure-like events (SLEs) evoked by low-[Mg(2+)] condition in juvenile rat hippocampal slices. Effects were compared for inhibitors such as L-trans-pyrrolidine-2,4-dicarboxylate (tPDC), DL-threo-beta-benzyloxyaspartate (DL-TBOA) and dihydrokainic acid (DHK), representing different transporter specificity and transportability profiles. Latency to the first SLE after drug application was shortened by the inhibitors (in % of control: 500 microM tPDC: 54+/-7, 15 microM DL-TBOA: 74+/-5, 50 microM dl-TBOA: 70+/-6, 100 microM DHK: 69+/-4, 300 microM DHK: 71+/-7). Further SLEs were frequently aborted by higher inhibitor concentrations applied (500 microM tPDC: 2/6, 50 microM TBOA: 5/5, 100 microM DHK: 6/8, 300 microM DHK: 3/3). Simultaneous field potential and whole-cell voltage recordings showed depolarization-induced inactivation of CA3 pyramidal neurons during inhibitor application. In the presence of inhibitors, the amplitude of forthcoming SLE was also decreased (in % of control: 500 microM tPDC: 66+/-9, 15 microM dl-TBOA: 88+/-5, 50 microM dl-TBOA: 59+/-6, 100 microM DHK: 67+/-4, 300 microM DHK: 68+/-1). Dependent on type and concentration of the inhibitor, the duration of the first SLE of drug application either increased (100 microM DHK: 375+/-90 %; 100 microM tPDC: 137+/-13 %) or decreased (50 microM TBOA: 62+/-13 %; 300 microM DHK: 60+/-15 %) reflecting differences in subtype-specificity or mechanism of action of the inhibitors. Our findings suggest a role for ambient Glu in the genesis and maintenance of recurrent epileptiform discharges.
Collapse
|
71
|
GABA uptake-dependent Ca(2+) signaling in developing olfactory bulb astrocytes. Proc Natl Acad Sci U S A 2009; 106:17570-5. [PMID: 19805126 DOI: 10.1073/pnas.0809513106] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We studied GABAergic signaling in astrocytes of olfactory bulb slices using confocal Ca(2+) imaging and two-photon Na(+) imaging. GABA evoked Ca(2+) transients in astrocytes that persisted in the presence of GABA(A) and GABA(B) receptor antagonists, but were suppressed by inhibition of GABA uptake by SNAP 5114. Withdrawal of external Ca(2+) blocked GABA-induced Ca(2+) transients, and depletion of Ca(2+) stores with cyclopiazonic acid reduced Ca(2+) transients by approximately 90%. This indicates that the Ca(2+) transients depend on external Ca(2+), but are mainly mediated by intracellular Ca(2+) release, conforming with Ca(2+)-induced Ca(2+) release. Inhibition of ryanodine receptors did not affect GABA-induced Ca(2+) transients, whereas the InsP(3) receptor blocker 2-APB inhibited the Ca(2+) transients. GABA also induced Na(+) increases in astrocytes, potentially reducing Na(+)/Ca(2+) exchange. To test whether reduction of Na(+)/Ca(2+) exchange induces Ca(2+) signaling, we inhibited Na(+)/Ca(2+) exchange with KB-R7943, which mimicked GABA-induced Ca(2+) transients. Endogenous GABA release from neurons, activated by stimulation of afferent axons or NMDA application, also triggered Ca(2+) transients in astrocytes. The significance of GABAergic Ca(2+) signaling in astrocytes for control of blood flow is demonstrated by SNAP 5114-sensitive constriction of blood vessels accompanying GABA uptake. The results suggest that GABAergic signaling is composed of GABA uptake-mediated Na(+) rises that reduce Na(+)/Ca(2+) exchange, thereby leading to a Ca(2+) increase sufficient to trigger Ca(2+)-induced Ca(2+) release via InsP(3) receptors. Hence, GABA transporters not only remove GABA from the extracellular space, but may also contribute to intracellular signaling and astrocyte function, such as control of blood flow.
Collapse
|
72
|
Excitotoxic neonatal damage induced by monosodium glutamate reduces several GABAergic markers in the cerebral cortex and hippocampus in adulthood. Int J Dev Neurosci 2009; 27:845-55. [DOI: 10.1016/j.ijdevneu.2009.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 07/07/2009] [Accepted: 07/29/2009] [Indexed: 11/23/2022] Open
|
73
|
Katz DM, Dutschmann M, Ramirez JM, Hilaire G. Breathing disorders in Rett syndrome: progressive neurochemical dysfunction in the respiratory network after birth. Respir Physiol Neurobiol 2009; 168:101-8. [PMID: 19394452 PMCID: PMC2758855 DOI: 10.1016/j.resp.2009.04.017] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 04/14/2009] [Accepted: 04/17/2009] [Indexed: 12/13/2022]
Abstract
Disorders of respiratory control are a prominent feature of Rett syndrome (RTT), a severely debilitating condition caused by mutations in the gene encoding methyl-CpG-binding protein 2 (MECP2). RTT patients present with a complex respiratory phenotype that can include periods of hyperventilation, apnea, breath holds terminated by Valsalva maneuvers, forced and deep breathing and apneustic breathing, as well as abnormalities of heart rate control and cardiorespiratory integration. Recent studies of mouse models of RTT have begun to shed light on neurologic deficits that likely contribute to respiratory dysfunction including, in particular, defects in neurochemical signaling resulting from abnormal patterns of neurotransmitter and neuromodulator expression. The authors hypothesize that breathing dysregulation in RTT results from disturbances in mechanisms that modulate the respiratory rhythm, acting either alone or in combination with more subtle disturbances in rhythm and pattern generation. This article reviews the evidence underlying this hypothesis as well as recent efforts to translate our emerging understanding of neurochemical defects in mouse models of RTT into preclinical trials of potential treatments for respiratory dysfunction in this disease.
Collapse
Affiliation(s)
- David M Katz
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | | | | | | |
Collapse
|
74
|
Garcia-Garcia AL, Elizalde N, Matrov D, Harro J, Wojcik SM, Venzala E, Ramírez MJ, Del Rio J, Tordera RM. Increased vulnerability to depressive-like behavior of mice with decreased expression of VGLUT1. Biol Psychiatry 2009; 66:275-82. [PMID: 19409534 DOI: 10.1016/j.biopsych.2009.02.027] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 02/11/2009] [Accepted: 02/19/2009] [Indexed: 11/18/2022]
Abstract
BACKGROUND Many studies link depression to an increase in the excitatory-inhibitory ratio in the forebrain. Presynaptic alterations in a shared pathway of the glutamate/gamma-aminobutyric acid (GABA) cycle may account for this imbalance. Evidence suggests that decreased vesicular glutamate transporter 1 (VGLUT1) levels in the forebrain affect the glutamate/GABA cycle and induce helpless behavior. We studied decreased VGLUT1 as a potential factor enhancing a depressive-like phenotype in an animal model. METHODS Glutamate and GABA synthesis as well as oxidative metabolism were studied in heterozygous mice for the VGLUT1+/- and wildtype. The regulation of neurotransmitter levels, proteins involved in the glutamate/GABA cycle, and behavior by both genotype and chronic mild stress (CMS) were studied. Finally, the effect of chronic imipramine on VGLUT1 control and CMS mice was studied. RESULTS VGLUT1+/- mice showed increased neuronal synthesis of glutamate; decreased cortical and hippocampal GABA, VGLUT1, and excitatory amino acid transporter 1 (EAAT1) as well as helplessness and anhedonia. CMS induced an increase of glutamate and a decrease of GABA, the vesicular GABA transporter (VGAT), and glutamic acid decarboxylase 65 (GAD65) in both areas and led to upregulation of EAAT1 in the hippocampus. Moreover, CMS induced anhedonia, helplessness, anxiety, and impaired recognition memory. VGLUT1+/- CMS mice showed a combined phenotype (genotype plus stress) and specific alterations, such as an upregulation of VGLUT2 and hyperlocomotion. Moreover, an increased vulnerability to anhedonia and helplessness reversible by chronic imipramine was shown. CONCLUSIONS These studies highlight a crucial role for decreased VGLUT1 in the forebrain as a biological mediator of increased vulnerability to chronic mild stress.
Collapse
|
75
|
Early breathing defects after moderate hypoxia or hypercapnia in a mouse model of Rett syndrome. Respir Physiol Neurobiol 2009; 168:109-18. [DOI: 10.1016/j.resp.2009.05.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 05/29/2009] [Accepted: 05/29/2009] [Indexed: 12/21/2022]
|
76
|
Schweigert ID, Souza DOGD, Perry MLS. Desnutrição, maturação do sistema nervoso central e doenças neuropsiquiátricas. REV NUTR 2009. [DOI: 10.1590/s1415-52732009000200009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nutrição exerce profundo impacto no desenvolvimento das estruturas e funções cerebrais. Além da programação metabólica induzida pela desnutrição fetal com o propósito de aumentar as chances de sobrevivência do feto e na vida pós-natal, estudos apontam a deficiência nutricional pré-natal como fator de risco para o desenvolvimento de doenças neuropsiquiátricas. Este artigo propõe-se a considerar aspectos da desnutrição relacionados ao desenvolvimento cerebral, à extensão temporal e funcional do impacto que a mesma acarreta, assim como estabelecer correlações com doenças neuropsiquiátricas, considerando artigos disponíveis na base de dados Medline de 1962 a 2005. Fatos derivados da desnutrição precoce apontam, em sua maioria, caráter permanente em algum grau, se não imediato, prospectivo e comprometedor da performance bioquímica, fisiológica e comportamental. Apesar dos denominados atrasos no desenvolvimento de parâmetros neurológicos, estes não constituem apenas erros funcionais isolados, uma vez que as inter-relações e conexões ideais são influenciadas, ampliando os erros temporais de ocorrência de eventos. A impressão da marca da desnutrição no código genético, ao aumentar os horizontes dos efeitos da desnutrição em uma perspectiva multigeneracional, amplifica os seus efeitos. Aspectos caracterizados como mecanismos compensatórios se, por um lado, apontam para uma habilidade em se adaptar ao estresse, por outro poderiam ser comprometidos na contingência de estresse adicional de ordem ambiental ou emocional. Considerações a respeito dos efeitos subliminares ou expressivos das doenças neuropsiquiátricas sobre a qualidade de vida consolidam a importância do desenvolvimento de pesquisas que se dirijam à compreensão dos impactos e mecanismos que modulam os efeitos da desnutrição sobre o neurodesenvolvimento.
Collapse
Affiliation(s)
- Ingrid Dalira Schweigert
- Universidade Regional do Noroeste do Rio Grande do Sul, Brasil; Universidade Federal do Rio Grande do Sul, Brasil
| | | | | |
Collapse
|
77
|
Beurrier C, Bonvento G, Kerkerian-Le Goff L, Gubellini P. Role of glutamate transporters in corticostriatal synaptic transmission. Neuroscience 2009; 158:1608-15. [DOI: 10.1016/j.neuroscience.2008.11.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 11/10/2008] [Accepted: 11/11/2008] [Indexed: 10/21/2022]
|
78
|
White RE, Yin FQ, Jakeman LB. TGF-alpha increases astrocyte invasion and promotes axonal growth into the lesion following spinal cord injury in mice. Exp Neurol 2008; 214:10-24. [PMID: 18647603 PMCID: PMC2895965 DOI: 10.1016/j.expneurol.2008.06.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/02/2008] [Accepted: 06/17/2008] [Indexed: 11/15/2022]
Abstract
Astrocytes respond to environmental cues and play a multifaceted role in the response to trauma in the central nervous system. As the most prevalent contributors to the glial scar, astrocytes are targeted as barriers to regeneration. However, there is also strong evidence that astrocytes are vital for neuroprotection and metabolic support after injury. In addition, consistent with their role during development, astrocytes may be capable of supporting the growth of injured axons. Therefore, we hypothesized that with appropriate stimulation, the reparative functions of endogenous astrocytes could be harnessed to promote axon growth and recovery after spinal cord injury. Transforming growth factor-alpha (TGF-alpha) is a mitogenic growth factor that is active on astrocytes and is poised to contribute to such a strategy. Recombinant TGF-alpha was administered intrathecally to adult C57BL/6 mice for two weeks following a moderate mid-thoracic spinal cord contusion. By three weeks post-injury, TGF-alpha infusion had not affected locomotor recovery, but promoted extensive axon growth and altered the composition of the lesion site. The center of the lesion in the treated mice contained greater numbers of new cells and increased astrocyte invasion. Despite the expression of inhibitory proteoglycans, there was a marked increase in axons expressing neurofilament and GAP-43 immunoreactivity, and the new axons were closely associated with increased laminin expression within and beyond the astrocyte matrix. The results demonstrate that astrocytes are dynamic players in the response to spinal cord injury, and the growth-supportive role of these cells can be enhanced by TGF-alpha infusion.
Collapse
Affiliation(s)
- Robin E White
- The Ohio State University, Neuroscience Graduate Studies Program, OH, USA
| | | | | |
Collapse
|
79
|
Ringel F, Plesnila N. Expression and functional role of potassium-chloride cotransporters (KCC) in astrocytes and C6 glioma cells. Neurosci Lett 2008; 442:219-23. [PMID: 18638521 DOI: 10.1016/j.neulet.2008.07.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 07/08/2008] [Accepted: 07/08/2008] [Indexed: 11/18/2022]
Abstract
Brain edema formation following brain injury is a serious but still poorly treatable medical condition. The understanding of volume regulation in astrocytes, the main cells involved in the formation of cytotoxic brain edema, is key for the development of novel treatment strategies. This study investigates the role of potassium-chloride cotransporters (KCC) for cell volume regulation in glial cells. PCR revealed the expression of KCC isoforms in a glial cell line (C6) and primary cultured astrocytes. Specific inhibition of KCCs caused glial cell swelling and resulted in a complete inhibition of regulatory volume decrease upon hypotonic medium-induced cell swelling. Therefore, our results show that KCCs play an important role in the maintenance and regulation of cell volume in astrocytes.
Collapse
Affiliation(s)
- Florian Ringel
- Institute for Surgical Research, University of Munich Medical Center-Grosshadern, Germany.
| | | |
Collapse
|
80
|
Vaz SH, Cristóvão-Ferreira S, Ribeiro JA, Sebastião AM. Brain-derived neurotrophic factor inhibits GABA uptake by the rat hippocampal nerve terminals. Brain Res 2008; 1219:19-25. [DOI: 10.1016/j.brainres.2008.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 04/03/2008] [Accepted: 04/04/2008] [Indexed: 10/22/2022]
|
81
|
Riera JJ, Schousboe A, Waagepetersen HS, Howarth C, Hyder F. The micro-architecture of the cerebral cortex: functional neuroimaging models and metabolism. Neuroimage 2008; 40:1436-59. [PMID: 18343162 PMCID: PMC4348032 DOI: 10.1016/j.neuroimage.2007.12.051] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 12/19/2007] [Accepted: 12/20/2007] [Indexed: 01/22/2023] Open
Abstract
In order to interpret/integrate data obtained with different functional neuroimaging modalities (e.g. fMRI, EEG/MEG, PET/SPECT, fNIRS), forward-generative models of a diversity of brain mechanisms at the mesoscopic level are considered necessary. For the cerebral cortex, the brain structure with possibly the most relevance for functional neuroimaging, a variety of such biophysical models has been proposed over the last decade. The development of technological tools to investigate in vitro the physiological, anatomical and biochemical principles at the microscopic scale in comparative studies formed the basis for such theoretical progresses. However, with the most recent introduction of systems to record electrical (e.g. miniaturized probes chronically/acutely implantable in the brain), optical (e.g. two-photon laser scanning microscopy) and atomic nuclear spectral (e.g. nuclear magnetic resonance spectroscopy) signals using living laboratory animals, the field is receiving even greater attention. Major advances have been achieved by combining such sophisticated recording systems with new experimental strategies (e.g. transgenic/knock-out animals, high resolution stereotaxic manipulation systems for probe-guidance and cellular-scale chemical-delivery). Theoreticians may now be encouraged to re-consider previously formulated mesoscopic level models in order to incorporate important findings recently made at the microscopic scale. In this series of reviews, we summarize the background at the microscopic scale, which we suggest will constitute the foundations for upcoming representations at the mesoscopic level. In this first part, we focus our attention on the nerve ending particles in order to summarize basic principles and mechanisms underlying cellular metabolism in the cerebral cortex. It will be followed by two parts highlighting major features in its organization/working-principles to regulate both cerebral blood circulation and neuronal activity, respectively. Contemporary theoretical models for functional neuroimaging will be revised in the fourth part, with particular emphasis in their applications, advantages/limitations and future prospects.
Collapse
Affiliation(s)
- Jorge J Riera
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| | | | | | | | | |
Collapse
|
82
|
Konopaske GT, Dorph-Petersen KA, Sweet RA, Pierri JN, Zhang W, Sampson AR, Lewis DA. Effect of chronic antipsychotic exposure on astrocyte and oligodendrocyte numbers in macaque monkeys. Biol Psychiatry 2008; 63:759-65. [PMID: 17945195 PMCID: PMC2386415 DOI: 10.1016/j.biopsych.2007.08.018] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 08/03/2007] [Accepted: 08/28/2007] [Indexed: 11/30/2022]
Abstract
BACKGROUND Both in vivo and postmortem studies suggest that oligodendrocyte and myelination alterations are present in individuals with schizophrenia. However, it is unclear whether prolonged treatment with antipsychotic medications contributes to these disturbances. We recently reported that chronic exposure of macaque monkeys to haloperidol or olanzapine was associated with a 10%-18% lower glial cell number in the parietal grey matter. Consequently, in this study we sought to determine whether the lower glial cell number was due to fewer oligodendrocytes as opposed to lower numbers of astrocytes. METHODS With fluorescent immunocytochemical techniques, we optimized the visualization of each cell type throughout the entire thickness of tissue sections, while minimizing final tissue shrinkage. As a result, we were able to obtain robust stereological estimates of total oligodendrocyte and astrocyte numbers in the parietal grey matter with the optical fractionator method. RESULTS We found a significant 20.5% lower astrocyte number with a non-significant 12.9% lower oligodendrocyte number in the antipsychotic-exposed monkeys. Similar effects were seen in both the haloperidol and olanzapine groups. CONCLUSIONS These findings suggest that studies investigating glial cell alterations in schizophrenia must take into account the effect of antipsychotic treatment.
Collapse
Affiliation(s)
- Glenn T. Konopaske
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Karl-Anton Dorph-Petersen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Psychiatric Research, Aarhus University Hospital, Risskov, Denmark
| | - Robert A. Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph N. Pierri
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wei Zhang
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Allan R. Sampson
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - David A. Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
83
|
Madsen KK, Larsson OM, Schousboe A. Regulation of excitation by GABA neurotransmission: focus on metabolism and transport. Results Probl Cell Differ 2008; 44:201-21. [PMID: 17579816 DOI: 10.1007/400_2007_036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The vast majority of excitatory synapses in the central nervous system (CNS) utilize glutamate as the neurotransmitter. The level of excitation appears to be under regulatory control by the major inhibitory neurotransmitter GABA, which is synthesized from glutamate by its decarboxylation catalysed by glutamate decarboxylase (GAD). The inactivation of GABA is brought about by high affinity GABA transporters located in the presynaptic GABAergic neurons as well as surrounding astrocytes and subsequently GABA may be metabolized by GABA-transaminase (GABA-T) ultimately allowing the carbon skeleton to enter the tricarboxylic acid (TCA) cycle for oxidative metabolism. In the presynaptic GABAergic neuron, GABA taken up seems, however, preferentially to enter the vesicular GABA pool and hence it is recycled as a transmitter. It has become clear that compounds acting as inhibitors at either the transporters or GABA-T are capable of regulating the inhibitory tonus thus controlling excitation. This has led to development of clinically efficatious antiepileptic drugs. This paper shall review recent progress in targeting these pharmacological entities.
Collapse
Affiliation(s)
- Karsten K Madsen
- Department of Pharmacology, Danish University of Pharmaceutical Sciences, Universitetsparken 2, 2100 Copenhagen, Denmark
| | | | | |
Collapse
|
84
|
Duce JA, Podvin S, Hollander W, Kipling D, Rosene DL, Abraham CR. Gene profile analysis implicates Klotho as an important contributor to aging changes in brain white matter of the rhesus monkey. Glia 2008; 56:106-17. [PMID: 17963266 DOI: 10.1002/glia.20593] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Conventional studies of brain changes in normal aging have concentrated on gray matter as the locus for cognitive dysfunction. However, there is accumulating evidence from studies of normal aging in the rhesus monkey that changes in white matter may be a more critical factor in cognitive decline. Such changes include ultrastructural and biochemical evidence of myelin breakdown with age, as well as more recent magnetic resonance imaging of global loss of forebrain white matter volume and magnetic resonance diffusion tension imaging evidence of increased diffusivity in white matter. Moreover, many of these white matter changes correlate with age-related cognitive dysfunction. Based on these diverse white matter findings, the present work utilized high-density oligonucleotide microarrays to assess gene profile changes associated with age in the white matter of the corpus callosum. This approach identified several classes of genes that were differentially expressed in aging. Broadly characterized, these genes were predominantly related to an increase in stress factors and a decrease in cell function. The cell function changes included increased cell cycle inhibition and proteolysis, as well as decreased mitochondrial function, signal transduction, and protein translation. While most of these categories have previously been reported in functional brain aging, this is the first time they have been associated directly with white matter. Microarray analysis has also enabled the identification of neuroprotective response pathways activated by age in white matter, as well as several genes implicated in lifespan. Of particular interest was the identification of Klotho, a multifunctional protein that regulates phosphate and calcium metabolism, as well as insulin resistance, and is known to defend against oxidative stress and apoptosis. Combining the findings from the microarray study enabled us to formulate a model of white matter aging where specific genes are suggested as primary factors in disrupting white matter function. In conclusion, the overall changes described in this study could provide an explanation for aging changes in white matter that might be initiated or enhanced by an altered expression of life span associated genes such as Klotho.
Collapse
Affiliation(s)
- James A Duce
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
85
|
Syed N, Martens CA, Hsu WH. Arginine vasopressin increases glutamate release and intracellular Ca2+ concentration in hippocampal and cortical astrocytes through two distinct receptors. J Neurochem 2007; 103:229-37. [PMID: 17877638 DOI: 10.1111/j.1471-4159.2007.04737.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Arginine vasopressin (AVP), released from the CNS, plays an important role in regulating several aspects of CNS functions including aggression, anxiety, and cognition. In this study, we report a novel finding that AVP induces glutamate release from astrocytes isolated from the cerebral cortex and hippocampus. We also investigated the types of AVP receptors involved in the AVP-induced increase in glutamate release from astrocytes isolated from the hippocampus and cortex of neonatal rats. We showed that the AVP (0.1-1000 nmol/L) induced increase in glutamate release and [Ca(2+)](i) is brought about by two distinct subtypes of V(1) receptors (V(1a) and V(1b)). Our results suggested that V(1b) receptors are predominantly expressed in astrocytes isolated from the hippocampus and V(1a) receptors are solely expressed in astrocytes isolated from the cerebral cortex of neonatal rats. The results of the western blot analyses confirmed these pharmacological data. In addition, the AVP-induced increase in glutamate did not contribute to an increase in [Ca(2+)](i), as blockade of metabotropic glutamate receptors did not alter the AVP-induced increase in [Ca(2+)](i). In addition, the administration of a phospholipase A(2) inhibitor failed to alter AVP-induced [Ca(2+)](i) increase suggesting the lack of involvement of this enzyme.
Collapse
Affiliation(s)
- Nasser Syed
- Department of Biomedical Sciences and Interdepartmental Program of Toxicology, Iowa State University, Ames, Iowa, USA
| | | | | |
Collapse
|
86
|
Sierra-Paredes G, Oreiro-García MT, Vázquez-Illanes MD, Sierra-Marcuño G. Effect of eslicarbazepine acetate (BIA 2-093) on latrunculin A-induced seizures and extracellular amino acid concentrations in the rat hippocampus. Epilepsy Res 2007; 77:36-43. [PMID: 17890056 DOI: 10.1016/j.eplepsyres.2007.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 08/20/2007] [Accepted: 08/23/2007] [Indexed: 11/29/2022]
Abstract
PURPOSE Eslicarbazepine acetate (ESL, BIA 2-093) is a novel antiepileptic drug endowed with an anticonvulsant potency similar to that of carbamazepine, and shares with carbamazepine and oxcarbazepine the capability to inhibit voltage-gated sodium channels. ESL is efficacious against maximal electroshock seizure-induced seizures, protects against picrotoxin-induced seizures in mice and rats, and prevents development of kindling in rats. In vivo, latrunculin A microperfusion in the rat hippocampus induces acute epileptic seizures and long-term biochemical changes leading to decreased picrotoxin seizure threshold and spontaneous seizures. We have tested the effect of ESL on latrunculin A-induced seizures, and its effect on the changes in extracellular amino acid levels induced by latrunculin A. METHODS Rat hippocampus was continuously perfused with a latrunculin A solution (4 microM) through CMA/12 microdialysis probes at a flow rate of 2 microl/min during 8 h with continuous EEG and videotape recording for 3 consecutive days. The same protocol was repeated after oral administration of ESL (3, 10 and 30 mg/kg). Samples from the microdialysate were collected and analyzed by HPLC using pre-column derivatization with 6 aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) and fluorescence detection. RESULTS After the administration of 3 mg/kg of ESL, seizures were completely suppressed in the 66.7% of the rats. 10 and 30 mg/kg of ESL did completely suppressed seizures in the 100% of the animals studied. Hippocampal extracellular levels of glutamate, glycine and aspartate were significantly increased during latrunculin A microperfusion, while GABA levels remained unchanged. At the doses studied, ESL reversed the increases in extracellular glutamate and aspartate concentrations to basal levels and significantly reduced glycine levels. CONCLUSIONS ESL, at oral doses of 3, 10 and 30 mg/kg, shows an excellent anticonvulsant effect against seizures induced by latrunculin A microperfusion in the rat, and prevents the increases in glutamate and aspartate induced by latrunculin A.
Collapse
Affiliation(s)
- Germán Sierra-Paredes
- Neuroscience Division, Department of Biochemistry and Molecular Biology, School of Medicine, University of Santiago, San Francisco 1, 15782 Santiago de Compostela, Spain.
| | | | | | | |
Collapse
|
87
|
Oreiro-García MT, Vázquez-Illanes MD, Sierra-Paredes G, Sierra-Marcuño G. Changes in extracellular amino acid concentrations in the rat hippocampus after in vivo actin depolymerization with latrunculin A. Neurochem Int 2007; 50:734-40. [PMID: 17316902 DOI: 10.1016/j.neuint.2007.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 01/09/2007] [Accepted: 01/11/2007] [Indexed: 10/23/2022]
Abstract
The effect of latrunculin A microperfusion on hippocampal extracellular concentrations of glutamate, aspartate, glycine and GABA, as measured by in vivo microdialysis, was investigated. Latrunculin A (4 microg/ml) was perfused for three consecutive days (8h a day) to promote in vivo F-actin depolymerization. Intrahippocampal latrunculin A microdialysis induced seizures during the second and third day of perfusion, and the animals started showing spontaneous seizures 1 month after lartrunculin A administration. Hippocampal glutamate levels were significantly increased during the first day of latrunculin A microperfusion without significant changes during the second and third day of perfusion. Aspartate levels were significantly increased during the first and second days of treatment. The rise on glutamate and asparate levels was partially reversed by perfusion of NMDA antagonist MK-801. Glycine concentrations were significantly increased during the 3 days of latrunculin A microdialyis, but no significant effect was observed on baseline GABA levels. One month after latrunculin A microperfusion, no significant differences in glutamate and aspartate extracellular concentrations were detected as compared to controls, however, significant increases in glycine and GABA extracellular concentrations were observed. The immediate increases in glutamate, aspartate and glycine levels indicate a modulatory effect of the F-actin cytoskeleton on extracellular concentrations of glutamate, aspartate and glycine. The chronic elevations in GABA and glycine levels are more likely to be related with long-term epileptogenesis processes. Our results suggest that the in vivo biochemical study of actin-dependent processes seems to be a promising approach to the neuropathology and neuropharmacology of epileptic seizures.
Collapse
Affiliation(s)
- M Teresa Oreiro-García
- Neuroscience Division, Department of Biochemistry and Molecular Biology, School of Medicine, University of Santiago, San Francisco 1, 15782 Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
88
|
Schousboe A, Waagepetersen HS. GABA: Homeostatic and pharmacological aspects. PROGRESS IN BRAIN RESEARCH 2007; 160:9-19. [PMID: 17499106 DOI: 10.1016/s0079-6123(06)60002-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The central nervous system (CNS) operates by a fine-tuned balance between excitatory and inhibitory signalling. In this context, the inhibitory neurotransmission may be of particular interest as it has been suggested that such neuronal pathways may constitute 'command pathways' and the principle of 'dis-inhibition' leading ultimately to excitation may play a fundamental role (Roberts, E. (1974). Adv. Neurol., 5: 127-143). The neurotransmitter responsible for this signalling is gamma-aminobutyrate (GABA) which was first discovered in the CNS as a curious amino acid (Roberts, E., Frankel, S. (1950). J. Biol. Chem., 187: 55-63) and later proposed as an inhibitory neurotransmitter (Curtis, D.R., Watkins, J.C. (1960). J. Neurochem., 6: 117-141; Krnjevic, K., Schwartz, S. (1967). Exp. Brain Res., 3: 320-336). The present review will describe aspects of GABAergic neurotransmission related to homeostatic mechanisms such as biosynthesis, metabolism, release and inactivation. Additionally, pharmacological and therapeutic aspects of this will be discussed.
Collapse
Affiliation(s)
- Arne Schousboe
- Department of Pharmacology and Pharmacotherapy, The Faculty of Pharmaceutical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| | | |
Collapse
|
89
|
Iversen L. Neurotransmitter transporters and their impact on the development of psychopharmacology. Br J Pharmacol 2006; 147 Suppl 1:S82-8. [PMID: 16402124 PMCID: PMC1760736 DOI: 10.1038/sj.bjp.0706428] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The synaptic actions of most neurotransmitters are inactivated by reuptake into the nerve terminals from which they are released, or by uptake into adjacent cells. A family of more than 20 transporter proteins is involved. In addition to the plasma membrane transporters, vesicular transporters in the membranes of neurotransmitter storage vesicles are responsible for maintaining vesicle stores and facilitating exocytotic neurotransmitter release. The cell membrane monoamine transporters are important targets for CNS drugs. The transporters for noradrenaline and serotonin are key targets for antidepressant drugs. Both noradrenaline-selective and serotonin-selective reuptake inhibitors are effective against major depression and a range of other psychiatric illnesses. As the newer drugs are safer in overdose than the first-generation tricyclic antidepressants, their use has greatly expanded. The dopamine transporter (DAT) is a key target for amphetamine and methylphenidate, used in the treatment of attention deficit hyperactivity disorder. Psychostimulant drugs of abuse (amphetamines and cocaine) also target DAT. The amino-acid neurotransmitters are inactivated by other families of neurotransmitter transporters, mainly located on astrocytes and other non-neural cells. Although there are many different transporters involved (four for GABA; two for glycine/D-serine; five for L-glutamate), pharmacology is less well developed in this area. So far, only one new amino-acid transporter-related drug has become available: the GABA uptake inhibitor tiagabine as a novel antiepileptic agent.
Collapse
Affiliation(s)
- Leslie Iversen
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT.
| |
Collapse
|
90
|
Abstract
Mitochondria are central for various cellular processes that include ATP production, intracellular Ca(2+) signaling, and generation of reactive oxygen species. Neurons critically depend on mitochondrial function to establish membrane excitability and to execute the complex processes of neurotransmission and plasticity. While much information about mitochondrial properties is available from studies on isolated mitochondria and dissociated cell cultures, less is known about mitochondrial function in intact neurons in brain tissue. However, a detailed description of the interactions between mitochondrial function, energy metabolism, and neuronal activity is crucial for the understanding of the complex physiological behavior of neurons, as well as the pathophysiology of various neurological diseases. The combination of new fluorescence imaging techniques, electrophysiology, and brain slice preparations provides a powerful tool to study mitochondrial function during neuronal activity, with high spatiotemporal resolution. This review summarizes recent findings on mitochondrial Ca(2+) transport, mitochondrial membrane potential (DeltaPsi(m)), and energy metabolism during neuronal activity. We will first discuss interactions of these parameters for experimental stimulation conditions that can be related to the physiological range. We will then describe how mitochondrial and metabolic dysfunction develops during pathological neuronal activity, focusing on temporal lobe epilepsy and its experimental models. The aim is to illustrate that 1) the structure of the mitochondrial compartment is highly dynamic in neurons, 2) there is a fine-tuned coupling between neuronal activity and mitochondrial function, and 3) mitochondria are of central importance for the complex behavior of neurons.
Collapse
Affiliation(s)
- Oliver Kann
- Institut für Neurophysiologie, Charité-Universitätsmedizin Berlin, Tucholskystrasse 2, 10117 Berlin, Germany.
| | | |
Collapse
|
91
|
Nasser Y, Fernandez E, Keenan CM, Ho W, Oland LD, Tibbles LA, Schemann M, MacNaughton WK, Rühl A, Sharkey KA. Role of enteric glia in intestinal physiology: effects of the gliotoxin fluorocitrate on motor and secretory function. Am J Physiol Gastrointest Liver Physiol 2006; 291:G912-27. [PMID: 16798727 DOI: 10.1152/ajpgi.00067.2006] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The role of enteric glia in gastrointestinal physiology remains largely unexplored. We examined the actions of the gliotoxin fluorocitrate (FC) on intestinal motility, secretion, and inflammation after assessing its efficacy and specificity in vitro. FC (100 microM) caused a significant decrease in the phosphorylation of the glucose analog 2-[N-(7-nitrobenz-2-oxa-1,3-diaz-4-yl)amino]-2-deoxyglucose in enteric glial cultures and a reduction in glial uptake of the fluorescent dipeptide Ala-Lys-7-amino-4-methylcoumarin-3-acetic acid in both the ileum and colon. Dipeptide uptake by resident murine macrophages or guinea pig myenteric neurons was unaffected by FC. Incubation of isolated guinea pig ileal segments with FC caused a specific and significant increase in glial expression of the phosphorylated form of ERK-1/2. Disruption of enteric glial function with FC in mice reduced small intestinal motility in vitro, including a significant decrease in basal tone and the amplitude of contractility in response to electrical field stimulation. Mice treated with 10 or 20 micromol/kg FC twice daily for 7 days demonstrated a concentration-dependent decrease in small intestinal transit. In contrast, no changes in colonic transit or ion transport in vitro were observed. There were no changes in glial or neuronal morphology, any signs of inflammation in the FC-treated mice, or any change in the number of myenteric nitric oxide synthase-expressing neurons. We conclude that FC treatment causes enteric glial dysfunction, without causing intestinal inflammation. Our data suggest that enteric glia are involved in the modulation of enteric neural circuits underlying the regulation of intestinal motility.
Collapse
Affiliation(s)
- Yasmin Nasser
- Institute for Infection, Immunity and Inflammation, University of Calgary, Alberta, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Bak LK, Schousboe A, Sonnewald U, Waagepetersen HS. Glucose is necessary to maintain neurotransmitter homeostasis during synaptic activity in cultured glutamatergic neurons. J Cereb Blood Flow Metab 2006; 26:1285-97. [PMID: 16467783 DOI: 10.1038/sj.jcbfm.9600281] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glucose is the primary energy substrate for the adult mammalian brain. However, lactate produced within the brain might be able to serve this purpose in neurons. In the present study, the relative significance of glucose and lactate as substrates to maintain neurotransmitter homeostasis was investigated. Cultured cerebellar (primarily glutamatergic) neurons were superfused in medium containing [U-13C]glucose (2.5 mmol/L) and lactate (1 or 5 mmol/L) or glucose (2.5 mmol/L) and [U-13C]lactate (1 mmol/L), and exposed to pulses of N-methyl-D-aspartate (300 micromol/L), leading to synaptic activity including vesicular release. The incorporation of 13C label into intracellular lactate, alanine, succinate, glutamate, and aspartate was determined by mass spectrometry. The metabolism of [U-13C]lactate under non-depolarizing conditions was high compared with that of [U-13C]glucose; however, it decreased significantly during induced depolarization. In contrast, at both concentrations of extracellular lactate, the metabolism of [U-13C]glucose was increased during neuronal depolarization. The role of glucose and lactate as energy substrates during vesicular release as well as transporter-mediated influx and efflux of glutamate was examined using preloaded D-[3H]aspartate as a glutamate tracer and DL-threo-beta-benzyloxyaspartate to inhibit glutamate transporters. The results suggest that glucose is essential to prevent depolarization-induced reversal of the transporter (efflux), whereas vesicular release was unaffected by the choice of substrate. In conclusion, the present study shows that glucose is a necessary substrate to maintain neurotransmitter homeostasis during synaptic activity and that synaptic activity does not induce an upregulation of lactate metabolism in glutamatergic neurons.
Collapse
Affiliation(s)
- Lasse K Bak
- Department of Pharmacology and Pharmacotherapy, Danish University of Pharmaceutical Sciences, Copenhagen, Denmark
| | | | | | | |
Collapse
|
93
|
Mavroudis G, Prior MJW, Lister T, Nolan CC, Ray DE. Neurochemical and oedematous changes in 1,3-dinitrobenzene-induced astroglial injury in rat brain from a 1H-nuclear magnetic resonance perspective. J Neural Transm (Vienna) 2006; 113:1263-78. [PMID: 16362630 DOI: 10.1007/s00702-005-0395-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Accepted: 10/09/2005] [Indexed: 12/19/2022]
Abstract
1,3-Dinitrobenzene (1,3-DNB), an intermediate used in the chemical industry, has toxic effects in the brain and testes. It produces focal lesions with marked astroglial necrosis in the rat brain upon repeated administration. Astrocytic death occurs in parallel with elevated local blood flow and is followed by damage to the cerebral vasculature and neurones. (1)H-nuclear magnetic resonance spectroscopic analysis before the onset of astrocytic damage, showed a global elevation of lactate, whereas choline containing compounds increased in the non-vulnerable cerebral cortex, yet decreased in the vulnerable brainstem. Similarly, glutamate increased in the cerebral cortex, cerebellum and midbrain, but decreased in the susceptible brainstem. In vivo T2-weighted NMR imaging showed high signal intensities in brain nuclei shown to develop astroglial loss by conventional neuropathology at 24 hours after completion of dosing, but not at 6-10 hours. Hence the early neurochemical changes in susceptible areas contribute to the aetiology of degeneration, and those seen elsewhere may represent adaptive responses dependent on the particular phenotype of different cell groups and underlying metabolic relationships.
Collapse
Affiliation(s)
- G Mavroudis
- MRC Toxicology Unit, University of Leicester, Hodgkin Building, Leicester, United Kingdom.
| | | | | | | | | |
Collapse
|
94
|
Bak LK, Schousboe A, Waagepetersen HS. The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 2006; 98:641-53. [PMID: 16787421 DOI: 10.1111/j.1471-4159.2006.03913.x] [Citation(s) in RCA: 803] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurons are metabolically handicapped in the sense that they are not able to perform de novo synthesis of neurotransmitter glutamate and gamma-aminobutyric acid (GABA) from glucose. A metabolite shuttle known as the glutamate/GABA-glutamine cycle describes the release of neurotransmitter glutamate or GABA from neurons and subsequent uptake into astrocytes. In return, astrocytes release glutamine to be taken up into neurons for use as neurotransmitter precursor. In this review, the basic properties of the glutamate/GABA-glutamine cycle will be discussed, including aspects of transport and metabolism. Discussions of stoichiometry, the relative role of glutamate vs. GABA and pathological conditions affecting the glutamate/GABA-glutamine cycling are presented. Furthermore, a section is devoted to the accompanying ammonia homeostasis of the glutamate/GABA-glutamine cycle, examining the possible means of intercellular transfer of ammonia produced in neurons (when glutamine is deamidated to glutamate) and utilized in astrocytes (for amidation of glutamate) when the glutamate/GABA-glutamine cycle is operating. A main objective of this review is to endorse the view that the glutamate/GABA-glutamine cycle must be seen as a bi-directional transfer of not only carbon units but also nitrogen units.
Collapse
Affiliation(s)
- Lasse K Bak
- Department of Pharmacology and Pharmacotherapy, The Danish University of Pharmaceutical Sciences, Copenhagen, Denmark.
| | | | | |
Collapse
|
95
|
Clausen RP, Frølund B, Larsson OM, Schousboe A, Krogsgaard-Larsen P, White HS. A novel selective γ-aminobutyric acid transport inhibitor demonstrates a functional role for GABA transporter subtype GAT2/BGT-1 in the CNS. Neurochem Int 2006; 48:637-42. [PMID: 16517017 DOI: 10.1016/j.neuint.2005.12.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 11/30/2005] [Accepted: 12/01/2005] [Indexed: 10/24/2022]
Abstract
The system of GABA transporters in neural cells constitutes an efficient mechanism for terminating inhibitory GABAergic neurotransmission. This transport system is an important therapeutical target in epileptic disorders, but potentially also in other neurological disorders. Thus, selective intervention in GABA uptake has been the subject of extensive research for several decades. In a series of lipophilic diaromatic derivatives of (RS)-3-hydroxy-4-amino-4,5,6,7-tetrahydro-1,2-benzisoxazole (exo-THPO), N-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]-3-hydroxy-4-(methylamino)-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol (EF1502) turned out to be an equipotent inhibitor at the mouse transporters GAT1 and GAT2 (BGT-1) but inactive at GAT3 and GAT4. This novel pharmacological profile among GABA uptake inhibitors prompted a thorough investigation of the in vivo properties of this compound. These investigations have for the first time demonstrated a functional role for GABA transporter subtype GAT2/BGT-1, which points to the therapeutic relevance of inhibiting this transporter subtype. An overview of the development and characterisation of EF1502 is presented here.
Collapse
Affiliation(s)
- Rasmus P Clausen
- Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
96
|
Zhang P, Furukawa K, Opresko PL, Xu X, Bohr VA, Mattson MP. TRF2 dysfunction elicits DNA damage responses associated with senescence in proliferating neural cells and differentiation of neurons. J Neurochem 2006; 97:567-81. [PMID: 16539655 DOI: 10.1111/j.1471-4159.2006.03779.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Telomeres are specialized structures at the ends of chromosomes that consist of tandem repeats of the DNA sequence TTAGGG and several proteins that protect the DNA and regulate the plasticity of the telomeres. The telomere-associated protein TRF2 (telomeric repeat binding factor 2) is critical for the control of telomere structure and function; TRF2 dysfunction results in the exposure of the telomere ends and activation of ATM (ataxia telangiectasin mutated)-mediated DNA damage response. Recent findings suggest that telomere attrition can cause senescence or apoptosis of mitotic cells, but the function of telomeres in differentiated neurons is unknown. Here, we examined the impact of telomere dysfunction via TRF2 inhibition in neurons (primary embryonic hippocampal neurons) and mitotic neural cells (astrocytes and neuroblastoma cells). We demonstrate that telomere dysfunction induced by adenovirus-mediated expression of dominant-negative TRF2 (DN-TRF2) triggers a DNA damage response involving the formation of nuclear foci containing phosphorylated histone H2AX and activated ATM in each cell type. In mitotic neural cells DN-TRF2 induced activation of both p53 and p21 and senescence (as indicated by an up-regulation of beta-galactosidase). In contrast, in neurons DN-TRF2 increased p21, but neither p53 nor beta-galactosidase was induced. In addition, TRF2 inhibition enhanced the morphological, molecular and biophysical differentiation of hippocampal neurons. These findings demonstrate divergent molecular and physiological responses to telomere dysfunction in mitotic neural cells and neurons, indicate a role for TRF2 in regulating neuronal differentiation, and suggest a potential therapeutic application of inhibition of TRF2 function in the treatment of neural tumors.
Collapse
Affiliation(s)
- Peisu Zhang
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
97
|
Poulsen CF, Schousboe I, Sarup A, White HS, Schousboe A. Effect of topiramate and dBcAMP on expression of the glutamate transporters GLAST and GLT-1 in astrocytes cultured separately, or together with neurons. Neurochem Int 2006; 48:657-61. [PMID: 16524645 DOI: 10.1016/j.neuint.2006.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 01/11/2006] [Accepted: 01/13/2006] [Indexed: 11/21/2022]
Abstract
The mechanism of the antiepileptic drug topiramate is not fully understood, but interaction with the excitatory neurotransmission, e.g. glutamate receptors, is believed to be part of its anticonvulsant effect. The glutamate transporters GLAST and GLT-1 are responsible for the inactivation of glutamate as a neurotransmitter and it was therefore investigated if topiramate might affect the expression of GLAST and GLT-1 in astrocytes cultured separately or together with neurons. Since expression and membrane trafficking of glutamate transporters are affected by the protein kinase C system as well as by dBcAMP it was also investigated if these signalling pathways might play a role. In astrocyte cultures expressing mainly GLAST treatment with dBcAMP (0.25 mM) led to an increased expression of the total amount of GLAST as well as of its membrane association. The enhanced expression in the membrane was particularly pronounced for the oligomeric form of GLAST. No detectable effect on the expression of GLAST in astrocytes treated with topiramate in the presence and absence of protein kinase C activators or inhibitors was observed. Astrocytes co-cultured with neurons expressed both GLAST and GLT-1. In these cultures prolonged exposure to 30 muM topiramate (10 days) led to a statistically significant increase (P<0.025) in the membrane expression of GLAST. In case of GLT-1, culture in the presence of 30 microM topiramate for 1 and 10 days led to alterations in the total, cytoplamic and membrane expression of the oligomeric form of the transporter.
Collapse
Affiliation(s)
- C F Poulsen
- Department of Pharmacology and Pharmacotherapy, Danish University of Pharmaceutical Sciences, Copenhagen, DK, Denmark
| | | | | | | | | |
Collapse
|
98
|
Alexander SPH, Mathie A, Peters JA. GABA. Br J Pharmacol 2006. [DOI: 10.1038/sj.bjp.0706486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
99
|
Wu Q, Wada M, Shimada A, Yamamoto A, Fujita T. Functional characterization of Zn2(+)-sensitive GABA transporter expressed in primary cultures of astrocytes from rat cerebral cortex. Brain Res 2006; 1075:100-9. [PMID: 16466645 DOI: 10.1016/j.brainres.2005.12.109] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 12/26/2005] [Accepted: 12/27/2005] [Indexed: 11/26/2022]
Abstract
The extracellular levels of gamma-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the mammalian cerebral cortex, are regulated by specific high-affinity Na(+)/Cl(-) dependent transporters (GATs). GAT1 mainly expressed in cerebrocortical neurons is thought to play an important role for clearance of GABA in the extracellular fluid, whereas there is a little information available for pharmacological importance for astrocytic GABA transporters. In the present study, we therefore described the functional characterization of GABA transport in primary cultures of astrocytes from rat cerebral cortex and the identification of GABA transporter subtype(s). GABA transport was Na(+) and Cl(-) dependent and saturable with a Michaelis constant (K(t)) of 9.3+/-2.8 microM. Na(+)- and Cl(-)- activation kinetics revealed that the Na(+)-Cl(-)-to-GABA stoichiometry was 2:1:1 and concentrations of Na(+) and Cl(-) necessary for half-maximal transport (K(0.5)(Na) and K(0.5)(Cl)) were 78+/-28 mM and 9.6+/-2.6 mM, respectively. Na(+)-dependent GABA transport was competitively inhibited by various GABA transport inhibitors, especially GAT2- or GAT3-selective inhibitor. In addition, Zn(2+), which has been reported to be a potent inhibitor of GAT3, was found to have a significantly but partially inhibitory effect on the Na(+)-dependent GABA transport in a concentration-dependent manner. Furthermore, reverse transcription-PCR and Western blot analyses revealed that GAT2 and GAT3 are expressed in primary cultures of astrocytes. These results clearly showed that zinc is a useful reagent for separating GAT3 activity from GAT1- and GAT2-activities in CNS. To our knowledge, the present study represents the first report on the inhibitory effect of zinc on the Na(+)-dependent GABA transport in rat cerebrocortical astrocytes.
Collapse
Affiliation(s)
- Qiang Wu
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina, Kyoto 607-8414, Japan
| | | | | | | | | |
Collapse
|
100
|
Clausen RP, Madsen K, Larsson OM, Frølund B, Krogsgaard-Larsen P, Schousboe A. Structure–Activity Relationship and Pharmacology of γ‐Aminobutyric Acid (GABA) Transport Inhibitors. GABA 2006; 54:265-84. [PMID: 17175818 DOI: 10.1016/s1054-3589(06)54011-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Rasmus Praetorius Clausen
- Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, 2 Universitetsparken, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|