51
|
Hayes J, Volkoff H. Characterization of the endocrine, digestive and morphological adjustments of the intestine in response to food deprivation and torpor in cunner, Tautogolabrus adspersus. Comp Biochem Physiol A Mol Integr Physiol 2014; 170:46-59. [PMID: 24487303 DOI: 10.1016/j.cbpa.2014.01.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/24/2014] [Accepted: 01/24/2014] [Indexed: 11/16/2022]
Abstract
The cunner, Tautogolabrus adspersus, is a marine teleost endemic to the cold waters of the Northwest Atlantic Ocean. The cunner is non-migratory and is known for its remarkable ability to endure the freezing winter months with little to no food by entering a torpid/dormant state. To evaluate the physiological strategies employed by the cunner's intestinal tract to withstand food deprivation, fish were sampled for their gut after a four-week period of acute food deprivation during their summer (active/feeding) state, as well as after 4months of overwinter fasting. Digestive capacity was evaluated by measuring digestive enzyme activity and related mRNA transcript expression for trypsin, alkaline phosphatase, alanine aminopeptidase and lipase. In order to assess how gut hormones affect/are affected by acute fasting and torpor, we examined the intestinal mRNA expression of several putative appetite regulators, i.e. CCK, apelin, orexin and mTOR. Short-term summer fasting induced a reduction in the activity, but not the transcript expression, of all digestive enzymes examined as well as a reduction in gut apelin mRNA. Torpor induced a reduction in the activity of all enzymes with the exception of alanine aminopeptidase, and a decrease in mRNA levels of alanine aminopeptidase, orexin, CCK and mTOR. Our results suggest that both acute fasting and long-term fasting induce a reduction in the intestinal function of cunner, as evidenced by an overall decrease in the activities of digestive enzymes and mRNA expression of several factors involved in feeding and digestion.
Collapse
Affiliation(s)
- James Hayes
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada; Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Hélène Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada; Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
52
|
Pérez Sirkin DI, Suzuki H, Cánepa MM, Vissio PG. Orexin and neuropeptide Y: tissue specific expression and immunoreactivity in the hypothalamus and preoptic area of the cichlid fish Cichlasoma dimerus. Tissue Cell 2013; 45:452-9. [PMID: 24138942 DOI: 10.1016/j.tice.2013.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 01/28/2023]
Abstract
Neuropeptide Y (NPY) and orexin are neuropeptides involved in the regulation of feeding in vertebrates. In this study we determined the NPY and orexin mRNA tissue expression and their immunoreactivity distribution in both preoptic area and hypothalamus, regions involved in the regulation of feeding behavior. Both peptides presented a wide expression in all tissues examined. The NPY-immunoreactive (ir) cells were localized in the ventral nucleus posterioris periventricularis (NPPv) and numerous ir-NPY fibers were found in the nucleus lateralis tuberis (NLT), the nucleus recess lateralis (NRL) and the neurohypophysis. Ir-orexin cells were observed in the NPPv, dorsal NLT, ventral NLT, lateral NLT (NLTl) and the lateral NRL. Ir-orexin fibers were widespread distributed along all the hypothalamus, especially in the NLTl. Additionally, we observed the presence of ir-orexin immunostaining in adenohypophyseal cells, especially in somatotroph cells and the presence of a few ir-orexin-A fibers in the neurohypophysis. In conclusion, both peptides have an ubiquitous mRNA tissue expression and are similarly distributed in the hypothalamus and preoptic area of Cichlasoma dimerus. The presence of ir-orexin in adenohypohyseal cells and the presence of ir-orexin and NPY fibers in the neurohypophysis suggest that both peptides may play an important neuroendocrine role in anterior pituitary.
Collapse
Affiliation(s)
- D I Pérez Sirkin
- Laboratorio de Neuroendocrinología del Crecimiento y la Reproducción, Dpto. de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina; IBBEA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | | | | | | |
Collapse
|
53
|
Teske JA, Perez-Leighton CE, Billington CJ, Kotz CM. Role of the locus coeruleus in enhanced orexin A-induced spontaneous physical activity in obesity-resistant rats. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1337-45. [PMID: 24089383 DOI: 10.1152/ajpregu.00229.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Orexin/hypocretin terminals innervate noradrenergic locus coeruleus (LC) neurons that project to the prefrontral cortex, which may influence spontaneous physical activity (SPA) and energy balance. Obesity-resistant (OR) rats have higher orexin receptors (OXR) mRNA in the LC and other brain regions, as well as lower adiposity compared with obese rats. These findings led us to hypothesize that orexin activity in the LC is relevant for the OR phenotype. We compared OR rats to Sprague-Dawley rats. We predicted that: 1) brain OXR expression pattern is sufficient to differentiate OR from non-bred Sprague-Dawley rats; 2) nonresting energy expenditure (NREE) and orexin A (OXA)-stimulated SPA after injection in LC would be greater in OR rats; and 3) the effect of OXA on SPA would be greater than its effect on feeding. OXR mRNA from 11 brain sites and the SPA and feeding responses to OXA in the LC were determined. Body composition, basal SPA, and EE were determined. Principal component analysis of the OXR expression pattern differentiates OR and Sprague-Dawley rats and suggests the OXR mRNA in the LC is important in defining the OR phenotype. Compared with Sprague-Dawley rats, OR rats had greater SPA and NREE and lower resting EE and adiposity. SPA responsivity to OXA in the LC was greater in OR rats compared with Sprague-Dawley rats. OXA in the LC did not stimulate feeding in OR or Sprague-Dawley rats. These data suggest that the LC is a prominent site modulating OXA-stimulated SPA, which promotes lower adiposity and higher nonresting EE.
Collapse
Affiliation(s)
- Jennifer A Teske
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona
| | | | | | | |
Collapse
|
54
|
Nguyen M, Yang E, Neelkantan N, Mikhaylova A, Arnold R, Poudel MK, Stewart AM, Kalueff AV. Developing 'integrative' zebrafish models of behavioral and metabolic disorders. Behav Brain Res 2013; 256:172-87. [PMID: 23948218 DOI: 10.1016/j.bbr.2013.08.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 07/31/2013] [Accepted: 08/03/2013] [Indexed: 02/09/2023]
Abstract
Recently, the pathophysiological overlap between metabolic and mental disorders has received increased recognition. Zebrafish (Danio rerio) are rapidly becoming a popular model organism for translational biomedical research due to their genetic tractability, low cost, quick reproductive cycle, and ease of behavioral, pharmacological or genetic manipulation. High homology to mammalian physiology and the availability of well-developed assays also make the zebrafish an attractive organism for studying human disorders. Zebrafish neurobehavioral and endocrine phenotypes show promise for the use of zebrafish in studies of stress, obesity and related behavioral and metabolic disorders. Here, we discuss the parallels between zebrafish and other model species in stress and obesity physiology, as well as outline the available zebrafish models of weight gain, metabolic deficits, feeding, stress, anxiety and related behavioral disorders. Overall, zebrafish demonstrate a strong potential for modeling human behavioral and metabolic disorders, and their comorbidity.
Collapse
Affiliation(s)
- Michael Nguyen
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA 22908, USA; Thomas Jefferson High School for Science and Technology, 6560 Braddock Road, Alexandria, VA 22312, USA
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Babichuk NA, Volkoff H. Changes in expression of appetite-regulating hormones in the cunner (Tautogolabrus adspersus) during short-term fasting and winter torpor. Physiol Behav 2013; 120:54-63. [PMID: 23831740 DOI: 10.1016/j.physbeh.2013.06.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 05/26/2013] [Accepted: 06/26/2013] [Indexed: 11/18/2022]
Abstract
Feeding in vertebrates is controlled by a number of appetite stimulating (orexigenic, e.g., orexin and neuropeptide Y, NPY) and appetite suppressing (anorexigenic, e.g., cholecystokinin, CCK and cocaine- and amphetamine-regulated transcript, CART) hormones. Cunners (Tautogolabrus adspersus) survive the winter in shallow coastal waters by entering a torpor-like state, during which they forgo feeding. In order to better understand the mechanisms regulating appetite/fasting in these fish, quantitative real-time PCR was used to measure transcript expression levels of four appetite-regulating hormones: NPY, CART, orexin and CCK in the forebrain (hypothalamus and telencephalon) and CCK in the gut of fed, short-term summer fasted, and natural winter torpor cunners. Summer fasting induced a decrease in hypothalamic orexin levels and telencephalon NPY, CART and CCK mRNA levels. All brain hormone mRNA levels decreased during natural torpor as compared to fed summer fish. In the gut, CCK expression levels decreased during summer fasting. These results indicate that, in cunner, orexin, NPY, CART and CCK may play a role in appetite regulation and might mediate different physiological responses to short-term summer fasting and torpor-induced long-term fasting.
Collapse
Affiliation(s)
- Nicole A Babichuk
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | | |
Collapse
|
56
|
Chiu CN, Prober DA. Regulation of zebrafish sleep and arousal states: current and prospective approaches. Front Neural Circuits 2013; 7:58. [PMID: 23576957 PMCID: PMC3620505 DOI: 10.3389/fncir.2013.00058] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 03/14/2013] [Indexed: 01/20/2023] Open
Abstract
Every day, we shift among various states of sleep and arousal to meet the many demands of our bodies and environment. A central puzzle in neurobiology is how the brain controls these behavioral states, which are essential to an animal's well-being and survival. Mammalian models have predominated sleep and arousal research, although in the past decade, invertebrate models have made significant contributions to our understanding of the genetic underpinnings of behavioral states. More recently, the zebrafish has emerged as a promising model system for sleep and arousal research. Here we review experimental evidence that the zebrafish, a diurnal vertebrate, exhibits fundamental behavioral and neurochemical characteristics of mammalian sleep and arousal. We also propose how specific advantages of the zebrafish can be harnessed to advance the field. These include tractable genetics to identify and manipulate molecular and cellular regulators of behavioral states, optical transparency to facilitate in vivo observation of neural structure and function, and amenability to high-throughput drug screens to discover novel therapies for neurological disorders.
Collapse
Affiliation(s)
| | - David A. Prober
- Division of Biology, California Institute of TechnologyPasadena, CA, USA
| |
Collapse
|
57
|
Miranda B, Esposito V, de Girolamo P, Sharp PJ, Wilson PW, Dunn IC. Orexin in the chicken hypothalamus: immunocytochemical localisation and comparison of mRNA concentrations during the day and night, and after chronic food restriction. Brain Res 2013; 1513:34-40. [PMID: 23548597 DOI: 10.1016/j.brainres.2013.03.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 03/17/2013] [Accepted: 03/20/2013] [Indexed: 12/11/2022]
Abstract
In mammals Orexin-A and -B are neuropeptides involved in the hypothalamic regulation of diverse physiological functions including food intake and the sleep-wake cycle. This generalisation was investigated in meat-(broiler) and layer-type juvenile domestic chickens by immunocytochemical localisation of orexin A/B in the hypothalamus, and by measurements of hypothalamic hypocretin mRNA which encodes for orexin A/B after chronic food restriction, and during the sleep-wake cycle. Orexin immunoreactive fibres were observed throughout the hypothalamus with cell bodies in and around the paraventricular nucleus. No differences were observed in the pattern of immunoreactivity using anti- human orexin-A, or -B antisera. The amount of hypothalamic hypocretin mRNA in food -restricted broilers was higher than in broilers fed ad libitum, but the same as in layer- type hens fed ad libitum. Hypothalamic hypocretin mRNA was increased (P<0.01) in 12-week-old broilers fed 25% of their ad libitum intake between 6-12 weeks of age. No difference in hypothalamic hypocretin mRNA was seen in 12-week-old layer- type hens when they were awake (1-2h after lights on) or sleeping (1-2h after lights off). It is concluded that in the chicken, we could not find evidence that hypothalamic orexin plays a role in the sleep-wake cycle and it may be involved in aspects of energy balance.
Collapse
Affiliation(s)
- Bernadette Miranda
- Department of Structures, Functions and Biological Technologies, University of Naples FedericoII, via Delpino1, I-80137 Naples, Italy
| | | | | | | | | | | |
Collapse
|
58
|
Gronquist D, Berges JA. Effects of aquarium-related stressors on the zebrafish: a comparison of behavioral, physiological, and biochemical indicators. JOURNAL OF AQUATIC ANIMAL HEALTH 2013; 25:53-65. [PMID: 23339327 DOI: 10.1080/08997659.2012.747450] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Fishes in aquaria and aquaculture settings may experience a variety of stressors including crowding, different lighting, periods of food deprivation, and vibrations from sources including pumps and tapping of tank sides. The effects of such low-level chronic stress are poorly explored. We used replicate sets of six Zebrafish Danio rerio in four series of experiments to compare the effects of (1) stocking densities ranging from 0.13 to 1.2 fish/L, (2) cool white (6,500 K), warm white (4,100 K), and ultraviolet-enhanced (420 actinic) fluorescent lighting, (3) food deprivation for up to 9 d, and (4) random mechanical tapping on the tank side sufficient to induce a startle response on specific behaviors (fin display, body fluttering, aggression, mouth gaping, and chattering), dissolved cortisol released into aquarium water (collected on a chromatography column and analyzed with an immunoassay), and heat-shock proteins (HSPs 27, 40, 60, and 70) detected immunochemically in western blots of muscle tissue. Of all the treatments, only food deprivation resulted in significant differences between control and treatment fish; dissolved cortisol declined after 120 h of starvation and HSP40 and HSP60 in muscle tissue increased significantly after 216 h. High variability in behaviors and HSP measurements was noted within all controls and treatments, suggesting that effects of treatments were experienced unequally by individuals within a treatment. Social stressors resulting from dominance hierarchies may play a critical role in modifying the effects of aquarium and aquaculture stressors on captive fish.
Collapse
Affiliation(s)
- David Gronquist
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, USA
| | | |
Collapse
|
59
|
Wall A, Volkoff H. Effects of fasting and feeding on the brain mRNA expressions of orexin, tyrosine hydroxylase (TH), PYY and CCK in the Mexican blind cavefish (Astyanax fasciatus mexicanus). Gen Comp Endocrinol 2013; 183:44-52. [PMID: 23305930 DOI: 10.1016/j.ygcen.2012.12.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 10/21/2012] [Accepted: 12/21/2012] [Indexed: 01/16/2023]
Abstract
The effects of fasting and feeding on the brain expression of orexin (OX), tyrosine hydroxylase (TH), peptide Y (PY) and cholecystokinin (CCK) were examined in the blind cavefish Astyanax fasciatus mexicanus. A 10-days fasting period induced increases in both OX and TH brain mRNA expression but had no effect on PYY and CCK expression. Periprandial changes in expression were seen for OX, TH and PYY but not for CCK. OX brain expression peaked 1h prior to a scheduled meal and decreased 1h post feeding in fed fish. A peak in TH expression was seen 1h post feeding in unfed fish whereas a peak in PYY expression was seen 1h post feeding in fed fish. Our result indicates that brain OX, TH and PYY might be involved in the central regulation of feeding of blind cavefish.
Collapse
Affiliation(s)
- Alicia Wall
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | | |
Collapse
|
60
|
Saeidi N, Nestoridi E, Kucharczyk J, Uygun MK, Yarmush ML, Stylopoulos N. Sleeve gastrectomy and Roux-en-Y gastric bypass exhibit differential effects on food preferences, nutrient absorption and energy expenditure in obese rats. Int J Obes (Lond) 2012; 36:1396-402. [PMID: 23044855 DOI: 10.1038/ijo.2012.167] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE All available treatments directed towards obesity and obesity-related complications are associated with suboptimal effectiveness/invasiveness ratios. Pharmacological, behavioral and lifestyle modification treatments are the least invasive, but also the least effective options, leading to modest weight loss that is difficult to maintain long-term. Gastrointestinal weight loss surgery (GIWLS) is the most effective, leading to >60-70% of excess body weight loss, but also the most invasive treatment available. Sleeve gastrectomy (SGx) and Roux-en-Y gastric bypass (RYGB) are the two most commonly performed GIWLS procedures. The fundamental anatomic difference between SGx and RYGB is that in the former procedure, only the anatomy of the stomach is altered, without surgical reconfiguration of the intestine. Therefore, comparing these two operations provides a unique opportunity to study the ways that different parts of the gastrointestinal (GI) tract contribute to the regulation of physiological processes, such as the regulation of body weight, food intake and metabolism. DESIGN To explore the physiologic mechanisms of the two procedures, we used rodent models of SGx and RYGB to study the effects of these procedures on body weight, food intake and metabolic function. RESULTS Both SGx and RYGB induced a significant weight loss that was sustained over the entire study period. SGx-induced weight loss was slightly lower compared with that observed after RYGB. SGx-induced weight loss primarily resulted from a substantial decrease in food intake and a small increase in locomotor activity. In contrast, rats that underwent RYGB exhibited a substantial increase in non-activity-related (resting) energy expenditure and a modest decrease in nutrient absorption. Additionally, while SGx-treated animals retained their preoperative food preferences, RYGB-treated rats experienced a significant alteration in their food preferences. CONCLUSIONS These results indicate a fundamental difference in the mechanisms of weight loss between SGx and RYGB, suggesting that the manipulation of different parts of the GI tract may lead to different physiologic effects. Understanding the differences in the physiologic mechanisms of action of these effective treatment options could help us develop less invasive new treatments against obesity and obesity-related complications.
Collapse
Affiliation(s)
- N Saeidi
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
61
|
Meyer BM, Froehlich JM, Galt NJ, Biga PR. Inbred strains of zebrafish exhibit variation in growth performance and myostatin expression following fasting. Comp Biochem Physiol A Mol Integr Physiol 2012; 164:1-9. [PMID: 23047051 DOI: 10.1016/j.cbpa.2012.10.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 10/02/2012] [Accepted: 10/02/2012] [Indexed: 12/22/2022]
Abstract
Although the zebrafish (Danio rerio) has been widely utilized as a model organism for several decades, there is little information available on physiological variation underlying genetic variation among the most commonly used inbred strains. This study evaluated growth performance using physiological and molecular markers of growth in response to fasting in six commonly used zebrafish strains [AB, TU, TL, SJA, WIK, and petstore (PET) zebrafish]. Fasting resulted in a standard decrease in whole blood glucose levels, a typical vertebrate glucose metabolism pattern, in AB, PET, TL, and TU zebrafish strains. Alternatively, fasting did not affect glucose levels in SJA and WIK zebrafish strains. Similarly, fasting had no effect on myostatin mRNA levels in AB, PET, TU, and WIK zebrafish strains, but decreased myostatin-1 and -2 mRNA levels in SJA zebrafish. Consistent with previous work, fasting increased myostatin-2 mRNA levels in TL zebrafish. These data demonstrate that variation is present in growth performance between commonly used inbred strains of zebrafish. These data can help future research endeavors by highlighting the attributes of each strain with regard to growth performance so that the most fitting strain may be utilized.
Collapse
Affiliation(s)
- Ben M Meyer
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | | | | | | |
Collapse
|
62
|
Pérez-Jiménez A, Cardenete G, Hidalgo MC, García-Alcázar A, Abellán E, Morales AE. Metabolic adjustments of Dentex dentex to prolonged starvation and refeeding. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:1145-1157. [PMID: 22228074 DOI: 10.1007/s10695-011-9600-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 12/30/2011] [Indexed: 05/20/2023]
Abstract
The particular metabolic strategies of the common dentex (Dentex dentex) to face a period of prolonged starvation and subsequent refeeding were assessed. Plasma metabolites, endogenous reserves, and the activity of key enzymes of intermediary metabolism in liver, white muscle, and heart were evaluated. Plasma glucose, total lipid, triglycerides, total-, HDL- and LDL-cholesterol, and protein levels, liver, and white muscle glycogen, and perivisceral, and muscle fat were significantly reduced by starvation, whereas liver lipid content was surprisingly increased. Those enzymes involved in phosphorylation and oxidation of glucose and lipid synthesis, as well as alanine aminotransferase activity, were significantly depressed in liver of starved fish. The increase in β-hydroxyacyl-CoA dehydrogenase (HOAD) indicated an enhanced fatty acid oxidation during starvation. Part of the acetyl-CoA generated by β-oxidation was oxidized in the hepatic Krebs cycle, as reflected the increased citrate synthase (CS) activity. The oxaloacetate required for the reaction catalized by CS activity would be supplied by aspartate aminotransferase (ASAT) activity whose activity was also enhanced. Glutamate dehydrogenase also increased to deaminate the glutamate produced by transaminases, especially by the increased ASAT activity. Liver gluconeogenesis of starved fish was maintained at the same rate that in controls, with glycerol playing an important role as glucogenic substrate. The increased hepatic β-hydroxybutyrate dehydrogenase (β-OHBDH) activity indicates that part of the acetyl-CoA arriving from β-oxidation was being diverted for ketone bodies production with dentex liver playing an important role in providing ketone bodies as fuels for other tissues under such circumstances. Most enzyme activities in white muscle of starved dentex were significantly depressed. In heart, starvation induced an important inhibition of those enzymes involved in glucose and protein metabolism, whereas CS, HOAD, and β-OHBDH activities were maintained at control levels. Although several biomarkers assayed returned to control values after refeeding, many others did not, which indicate that after 3 weeks of refeeding, pre-starved dentex is still experiencing a transient period of metabolic adjustments directed toward the restoration of body mass.
Collapse
Affiliation(s)
- A Pérez-Jiménez
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, Campus Universitario Fuentenueva s/n, 18071, Granada, Spain
- CIMAR/CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal
| | - G Cardenete
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, Campus Universitario Fuentenueva s/n, 18071, Granada, Spain
| | - M C Hidalgo
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, Campus Universitario Fuentenueva s/n, 18071, Granada, Spain
| | - A García-Alcázar
- Instituto Español de Oceanografía, Centro Oceanográfico de Murcia, 30860, Puerto de Mazarrón, Murcia, Spain
| | - E Abellán
- Instituto Español de Oceanografía, Centro Oceanográfico de Murcia, 30860, Puerto de Mazarrón, Murcia, Spain
| | - A E Morales
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, Campus Universitario Fuentenueva s/n, 18071, Granada, Spain.
| |
Collapse
|
63
|
Amiya N, Mizusawa K, Kobayashi Y, Yamanome T, Amano M, Takahashi A. Food deprivation increases the expression of the prepro-orexin gene in the hypothalamus of the barfin flounder, Verasper moseri. Zoolog Sci 2012; 29:43-8. [PMID: 22233495 DOI: 10.2108/zsj.29.43] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Orexins (orexin-A and -B) are involved in the regulation of food intake in mammals. In the barfin flounder, Verasper moseri, we previously reported that orexin-A-like-immunoreactive (ir) cell bodies are localized in the hypothalamus, which is a possible orexigenic center in fish. However, the physiological roles of orexin in the barfin flounder remain unclear. Here, we cloned prepro-orexin cDNA and examined the effects of feeding status on orexin gene expression in the barfin flounder to obtain a better insight into the roles of orexins in feeding regulation. A molecular cloning study showed that barfin flounder prepro-orexin cDNA encodes a 145 amino acid (aa) polypeptide containing orexin-A (43 aa) and orexin-B (28 aa). Prepro-orexin gene transcripts were detected in the hypothalamus, pituitary, and several peripheral organs such as the eyeball, gills, head kidney, body kidney, spleen, testis, and the skin on the eye-side of the flounder's body. Furthermore, the mean prepro-orexin mRNA expression level in the hypothalamus was significantly higher in fasted than in fed fish. These results show that fasting regulates orexin mRNA in the hypothalamus and suggest that orexin is involved in feeding regulation in barfin flounder.
Collapse
Affiliation(s)
- Noriko Amiya
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan.
| | | | | | | | | | | |
Collapse
|
64
|
Novak CM, Burghardt PR, Levine JA. The use of a running wheel to measure activity in rodents: relationship to energy balance, general activity, and reward. Neurosci Biobehav Rev 2012; 36:1001-1014. [PMID: 22230703 DOI: 10.1016/j.neubiorev.2011.12.012] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 12/07/2011] [Accepted: 12/22/2011] [Indexed: 12/21/2022]
Abstract
Running wheels are commonly employed to measure rodent physical activity in a variety of contexts, including studies of energy balance and obesity. There is no consensus on the nature of wheel-running activity or its underlying causes, however. Here, we will begin by systematically reviewing how running wheel availability affects physical activity and other aspects of energy balance in laboratory rodents. While wheel running and physical activity in the absence of a wheel commonly correlate in a general sense, in many specific aspects the two do not correspond. In fact, the presence of running wheels alters several aspects of energy balance, including body weight and composition, food intake, and energy expenditure of activity. We contend that wheel-running activity should be considered a behavior in and of itself, reflecting several underlying behavioral processes in addition to a rodent's general, spontaneous activity. These behavioral processes include defensive behavior, predatory aggression, and depression- and anxiety-like behaviors. As it relates to energy balance, wheel running engages several brain systems-including those related to the stress response, mood, and reward, and those responsive to growth factors-that influence energy balance indirectly. We contend that wheel-running behavior represents factors in addition to rodents' tendency to be physically active, engaging additional neural and physiological mechanisms which can then independently alter energy balance and behavior. Given the impact of wheel-running behavior on numerous overlapping systems that influence behavior and physiology, this review outlines the need for careful design and interpretation of studies that utilize running wheels as a means for exercise or as a measurement of general physical activity.
Collapse
Affiliation(s)
- Colleen M Novak
- Department of Biological Sciences, Kent State University, PO Box 5190, 222 Cunningham Hall, Kent, OH 44242, United States
| | | | - James A Levine
- Mayo Clinic, Endocrine Research Unit, Rochester, MN 55905, United States
| |
Collapse
|
65
|
|
66
|
|
67
|
Craig PM, Moon TW. Fasted zebrafish mimic genetic and physiological responses in mammals: a model for obesity and diabetes? Zebrafish 2011; 8:109-17. [PMID: 21854210 DOI: 10.1089/zeb.2011.0702] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
With worldwide rates of obesity and type-II diabetes increasing, it is essential to identify and understand the mechanisms involved during nutrient absorption and fuel allocation. Recent studies demonstrate that nutrients (e.g., lipids and carbohydrates) play a major regulatory role in gene transcription of glycolytic and lipogenic enzymes in addition to hormones, including insulin and glucagon. These nutrients generally exert their effects through key cellular nutrient/energy receptors. Fasting was used to identify these nutrient/energy receptors known from mammalian studies to ascertain if zebrafish (Danio rerio) are a suitable model for the study of metabolic disorders. Zebrafish were subjected to a fasting/re-feeding regime for 3 weeks, and gene expression of sterol responsive binding protein 1 and 2 (SREBP), the mammalian target of rapamycin (mTOR), cAMP response element binding protein 3-like 3 (CREB3l3), and AMP-activated protein kinase alpha (AMPKα) was assessed. Fasted zebrafish lost ∼10% of their body mass over the 3-week experiment, with an associated depression in oxygen consumption. Increases in liver AMPKα and CREB3l3 mRNA transcript level were noted, concurrent with increases in the activities of the β-oxidation and gluconeogenic markers β-hydroxyacyl CoA dehydrogenase and phosphoenolpyruvate carboxykinase, respectively. Conversely, a depression in liver mTOR and SREBP1 and 2 expression was noted, with a decrease in pyruvate kinase and alanine aminotransferase activities and decreases in liver lipid and glycogen contents. Twenty-four hours after re-feeding, zebrafish rapidly recover, and the majority of parameters return to control values. Taken together, these data suggest adult zebrafish are an appropriate model for the further study of human metabolic disorders.
Collapse
Affiliation(s)
- Paul M Craig
- Department of Biology, Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada.
| | | |
Collapse
|
68
|
Yan A, Zhang L, Tang Z, Zhang Y, Qin C, Li B, Li W, Lin H. Orange-spotted grouper (Epinephelus coioides) orexin: molecular cloning, tissue expression, ontogeny, daily rhythm and regulation of NPY gene expression. Peptides 2011; 32:1363-70. [PMID: 21600944 DOI: 10.1016/j.peptides.2011.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 05/04/2011] [Accepted: 05/04/2011] [Indexed: 01/27/2023]
Abstract
Orexin-A and -B, collectively called orexins, are hypothalamic neuropeptides involved in the regulation of food intake, sleep and energy balance. In this study, the full-length cDNA of prepro-orexin was isolated from the hypothalamus of orange-spotted grouper (Epinephelus coioides) using RT-PCR and RACE. The grouper prepro-orexin cDNA is 711 bp in length and encodes a 149-amino acid precursor protein that contains a 46-amino acid signal peptide, a 43-amino acid mature orexin-A peptide, a 27-amino acid mature orexin-B peptide and a 33-amino acid C terminus of unknown function. The tissue distribution and ontogeny of prepro-orexin were examined by quantitative real-time PCR. We found that the prepro-orexin mRNA is widely expressed in brain and peripheral tissues, with abundant expression in the hypothalamus. During the embryonic development, prepro-orexin mRNA was first detected in neurula stage embryos, and its expression gradually increased during the remainder of embryogenesis. Our analysis of grouper hypothalamic prepro-orexin expression showed that prepro-orexin mRNA levels were greater in the light phase than in the dark phase and increased significantly at meal-time. Intraperitoneal injection of orexin-A caused a dose-related increase in hypothalamus NPY mRNA expression level after 4h. Orexin-A also increased NPY mRNA expression level from static hypothalamic fragments incubation. Our results imply that orexin may be involved in feeding in the orange-spotted grouper and orexin-A is a stimulator of NPY mRNA expression in vivo and in vitro.
Collapse
Affiliation(s)
- Aifen Yan
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, China
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Yokobori E, Kojima K, Azuma M, Kang KS, Maejima S, Uchiyama M, Matsuda K. Stimulatory effect of intracerebroventricular administration of orexin A on food intake in the zebrafish, Danio rerio. Peptides 2011; 32:1357-62. [PMID: 21616109 DOI: 10.1016/j.peptides.2011.05.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 05/08/2011] [Accepted: 05/09/2011] [Indexed: 01/21/2023]
Abstract
Orexin is a potent orexigenic neuropeptide implicated in feeding regulation of mammals. However, except for the case of goldfish, the involvement of orexin in the feeding behavior of teleost fish has not well been studied. Therefore, we investigated the role of orexin on food intake using a zebrafish (Danio rerio) model. We examined the effect of feeding status on orexin-like immunoreactivity and the expression level of orexin transcript in the brain. The number of neuronal cells showing orexin-like immunoreactivity in the hypothalamic region, including the posterior tuberal nucleus, was significantly increased in fish fasted for 7days. Orexin precursor mRNA levels in the brain obtained from fish fasted for 7 days were higher than those in fish that had been fed normally. We then investigated the effect of intracerebroventricular (ICV) administration of orexin A on food intake. Cumulative food intake was significantly increased by ICV administration of orexin A (at 0.3 and 3 pmol/g body weight, BW) during a 60-min observation period after treatment. The orexin A-induced orexigenic action (at 0.3 pmol/g BW) was blocked by treatment with an orexin receptor antagonist, SB334867, at 10 pmol/g BW. These results indicate that orexin A acts as feeding regulator in the zebrafish.
Collapse
Affiliation(s)
- Eri Yokobori
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama, Toyama 930-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
70
|
|
71
|
Wong KKY, Ng SYL, Lee LTO, Ng HKH, Chow BKC. Orexins and their receptors from fish to mammals: a comparative approach. Gen Comp Endocrinol 2011; 171:124-30. [PMID: 21216246 DOI: 10.1016/j.ygcen.2011.01.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 12/28/2010] [Accepted: 01/01/2011] [Indexed: 12/12/2022]
Abstract
Although recently discovered, orexins have been rapidly established as important neuropeptides in regulating physiological processes including food intake, sleep/wake cycles and reproduction through binding to two class B G protein-coupled receptors (OX1R and OX2R). To date, a handful of sequences for orexins and their receptors ranging from fish to mammalian species have been identified, allowing a glimpse into their evolution. Structurally, the genetic and molecular organization of the peptides and receptors amongst vertebrates are highly similar, underlining the strong evolutionary pressure that has been exerted to preserve structure and ultimately function. Furthermore, the absence of invertebrate orexin-like sequences suggests early vertebrates as the origin from which orexins evolved. With respect to the receptors, OX2R is probably evolutionary more ancient whilst OX1R is specific to mammalian species and evolved only during this later lineage. In common to all vertebrates studied, the hypothalamus remains to be the key brain region in which orexinergic neurons and fibers are localized in, establishing orexin to be an important player in regulating physiological processes especially those related to food intake and energy metabolism. To allow better understanding of the evolution of orexins and their receptors, this review will provide a comparative approach to their structures and functions in vertebrates.
Collapse
Affiliation(s)
- Kari K Y Wong
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
72
|
Löhr H, Hammerschmidt M. Zebrafish in Endocrine Systems: Recent Advances and Implications for Human Disease. Annu Rev Physiol 2011; 73:183-211. [DOI: 10.1146/annurev-physiol-012110-142320] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Heiko Löhr
- Institute for Developmental Biology, University of Cologne, D-50923 Cologne, Germany
| | - Matthias Hammerschmidt
- Institute for Developmental Biology, University of Cologne, D-50923 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CEDAD), University of Cologne, D-50923 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, D-50923 Cologne, Germany;
| |
Collapse
|
73
|
Abbott M, Volkoff H. Thyrotropin Releasing Hormone (TRH) in goldfish (Carassius auratus): role in the regulation of feeding and locomotor behaviors and interactions with the orexin system and cocaine- and amphetamine regulated transcript (CART). Horm Behav 2011; 59:236-45. [PMID: 21192941 DOI: 10.1016/j.yhbeh.2010.12.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/24/2010] [Accepted: 12/19/2010] [Indexed: 01/15/2023]
Abstract
TRH is a peptide produced by the hypothalamus which major function in mammals is the regulation of TSH secretion by the pituitary. In fish, TRH does not appear to affect TSH secretion, suggesting that it might regulate other functions. In this study, we assessed the effects of central (intracerebroventricular, icv) injections of TRH on feeding and locomotor behavior in goldfish. TRH at 10 and 100 ng/g, but not 1 ng/g, significantly increased feeding and locomotor behaviors, as indicated by an increase in food intake and in the number of total feeding acts as compared to saline-injected fish. In order to assess possible interactions between TRH and other appetite regulators, we examined the effects of icv injections of TRH on the hypothalamic expression of orexin, orexin receptor and CART. The mRNA expression levels of all three peptides were significantly increased in fish injected with TRH at 100 ng/g as compared to saline-injected fish. Fasting increased TRH, orexin, and orexin receptor hypothalamic mRNA levels and decreased CART hypothalamic mRNA levels. Our results suggest that TRH is involved in the regulation of feeding/locomotor activity in goldfish and that this action is associated with a stimulation of both the orexin and CART systems.
Collapse
Affiliation(s)
- Meagan Abbott
- Department of Biology, Memorial University of Newfoundland, St John's, NL A1B3X9 Canada
| | | |
Collapse
|
74
|
MacDonald EE, Volkoff H. Molecular cloning and characterization of preproorexin in winter skate (Leucoraja ocellata). Gen Comp Endocrinol 2010; 169:192-6. [PMID: 20875823 DOI: 10.1016/j.ygcen.2010.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 09/10/2010] [Accepted: 09/18/2010] [Indexed: 12/15/2022]
Abstract
A 815 base pairs (bp) cDNA encoding for preproorexin (preproOX) was cloned in winter skate, a cartilaginous fish. Winter skate preproOX is 159 amino acids (aa) long and contains a 34 aa orexin A and 28 aa orexin B. The amino acid sequence of winter skate preproOX is more similar to tetrapod preproOXs (36-40% identity) than teleost preproOXs (23-33% identity). Whereas orexin B appears relatively well conserved among vertebrates, orexin A displays more variability, in particular due to an "insertion sequence" that is present in teleost fish, but not in skate and tetrapods. RT-PCR studies show that preproOX mRNA has a widespread distribution within the brain and is present in several peripheral tissues, including gastrointestinal tract, heart and testes. Fasting induced increases in preproOX expression in the hypothalamus, suggesting that orexin might play a role in the regulation of food intake in winter skate.
Collapse
Affiliation(s)
- Erin E MacDonald
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada A1B 3X9
| | | |
Collapse
|
75
|
Oka T, Nishimura Y, Zang L, Hirano M, Shimada Y, Wang Z, Umemoto N, Kuroyanagi J, Nishimura N, Tanaka T. Diet-induced obesity in zebrafish shares common pathophysiological pathways with mammalian obesity. BMC PHYSIOLOGY 2010; 10:21. [PMID: 20961460 PMCID: PMC2972245 DOI: 10.1186/1472-6793-10-21] [Citation(s) in RCA: 276] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 10/21/2010] [Indexed: 02/07/2023]
Abstract
Background Obesity is a multifactorial disorder influenced by genetic and environmental factors. Animal models of obesity are required to help us understand the signaling pathways underlying this condition. Zebrafish possess many structural and functional similarities with humans and have been used to model various human diseases, including a genetic model of obesity. The purpose of this study was to establish a zebrafish model of diet-induced obesity (DIO). Results Zebrafish were assigned into two dietary groups. One group of zebrafish was overfed with Artemia (60 mg dry weight/day/fish), a living prey consisting of a relatively high amount of fat. The other group of zebrafish was fed with Artemia sufficient to meet their energy requirements (5 mg dry weight/day/fish). Zebrafish were fed under these dietary protocols for 8 weeks. The zebrafish overfed with Artemia exhibited increased body mass index, which was calculated by dividing the body weight by the square of the body length, hypertriglyceridemia and hepatosteatosis, unlike the control zebrafish. Calorie restriction for 2 weeks was applied to zebrafish after the 8-week overfeeding period. The increased body weight and plasma triglyceride level were improved by calorie restriction. We also performed comparative transcriptome analysis of visceral adipose tissue from DIO zebrafish, DIO rats, DIO mice and obese humans. This analysis revealed that obese zebrafish and mammals share common pathophysiological pathways related to the coagulation cascade and lipid metabolism. Furthermore, several regulators were identified in zebrafish and mammals, including APOH, IL-6 and IL-1β in the coagulation cascade, and SREBF1, PPARα/γ, NR1H3 and LEP in lipid metabolism. Conclusion We established a zebrafish model of DIO that shared common pathophysiological pathways with mammalian obesity. The DIO zebrafish can be used to identify putative pharmacological targets and to test novel drugs for the treatment of human obesity.
Collapse
Affiliation(s)
- Takehiko Oka
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Buckley C, MacDonald EE, Tuziak SM, Volkoff H. Molecular cloning and characterization of two putative appetite regulators in winter flounder (Pleuronectes americanus): preprothyrotropin-releasing hormone (TRH) and preproorexin (OX). Peptides 2010; 31:1737-47. [PMID: 20685285 DOI: 10.1016/j.peptides.2010.05.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 05/23/2010] [Accepted: 05/24/2010] [Indexed: 12/15/2022]
Abstract
cDNAs encoding for preproTRH and preproorexin were cloned in winter flounder, a species that undergoes a period of natural fasting during the winter. For both peptides, the deduced amino acid structure of the hormone precursor shows 30-70% similarities with their homologs in other fish species. RT-PCR studies show that these peptides are present not only in the brain, but also in several peripheral tissues, including gastrointestinal tract and testes. Fasting induced increases in both preproorexin and preproTRH expressions in the hypothalamus, but did not affect their expression levels in the telencephalon/preoptic area. In addition, the mRNA expressions of both preproorexin and preproTRH were higher in the winter than in the summer in both hypothalamus and telencephalon/preoptic area. Our results suggest that orexin and thyrotropin-releasing hormone (TRH) might have a role in the seasonal regulation of food intake in winter flounder.
Collapse
Affiliation(s)
- Colleen Buckley
- Department of Biology/Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | | | | | | |
Collapse
|
77
|
Volkoff H, Hoskins LJ, Tuziak SM. Influence of intrinsic signals and environmental cues on the endocrine control of feeding in fish: potential application in aquaculture. Gen Comp Endocrinol 2010; 167:352-9. [PMID: 19735660 DOI: 10.1016/j.ygcen.2009.09.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 08/30/2009] [Accepted: 09/02/2009] [Indexed: 01/05/2023]
Abstract
Optimization of food consumption and ultimately growth are major concerns for aquaculture. In fish, food intake is regulated by several hormones produced by both brain and peripheral tissues. Changes in feeding behavior and appetite usually occur through the modulation of the gene expression and/or action of these appetite-regulating hormones and can be due not only to variations in intrinsic factors such as nutritional/metabolic or reproductive status, but also to changes in environmental factors, such as temperature and photoperiod. In addition, the gene expression and/or plasma levels of appetite-regulating hormones might also display daily as well as circannual (seasonal) rhythms. Despite recent advances, our current understanding of the regulation of feeding in fish is still limited. We give here a brief overview of our current knowledge of the endocrine regulation of feeding in fish and describe how a better understanding of appetite-related hormones in fish might lead to the development of sustainable aquaculture.
Collapse
Affiliation(s)
- Hélène Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada.
| | | | | |
Collapse
|
78
|
Bülbül M, Tan R, Gemici B, Ozdem S, Ustünel I, Acar N, Izgüt-Uysal VN. Endogenous orexin-A modulates gastric motility by peripheral mechanisms in rats. Peptides 2010; 31:1099-108. [PMID: 20307611 DOI: 10.1016/j.peptides.2010.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 03/05/2010] [Accepted: 03/05/2010] [Indexed: 12/28/2022]
Abstract
Orexin-A (OXA) and orexin receptor type 1 (OX1R) are found in enteric nervous system and smooth muscle cells in the digestive tract. Fasting is a stimulant for OXA synthesis. The aim of the present study was to investigate central and peripheral effects of endogenous OXA on gastric motility. Endogenous OXA synthesis was induced by 36h fasting. Vagotomy was used to evaluate N.vagus-mediated effects of OXA. Gastric emptying and interdigestive gastric motility were measured by spectrophotometric and manometric methods, respectively. Rats were pretreated with OX1R antagonist SB-334867 prior to measurements. Plasma OXA concentration was assayed with radioimmunoassay while preproorexin (PPO) expression was determined with Western blotting in gastric and hypothalamic tissues. OXA immunoreactivity in antrum was determined with immunohistochemistry. Plasma OXA level, PPO protein expression and OXA immunoreactivity were significantly increased in response to 36h fasting. Endogenous OXA facilitated gastric emptying and inhibited gastric interdigestive motility. As these effects were abolished with SB-334867, it is likely that gastrokinetic effects of OXA are mediated via OX1R. Vagotomy did not alter OXA-mediated effects. According to current data, OXA is up-regulated both centrally and peripherally upon fasting. Endogenous OXA accelerates gastric emptying while it inhibits interdigestive motility.
Collapse
Affiliation(s)
- Mehmet Bülbül
- Akdeniz University, Faculty of Medicine, Department of Physiology, 07070 Antalya, Turkey.
| | | | | | | | | | | | | |
Collapse
|
79
|
Abstract
One hypocretin/orexin (hcrt) gene has been identified in several fish species. The first pufferfish gene was identified in 2002 and the zebrafish gene was cloned in 2004. Its structure is very similar to that of mammals, and it encodes for two active peptides with C-termini similar to those of mammals. The gene is expressed in the brain in only one hypothalamic nucleus, which sends projections to the telencephalon, diencephalon, mesencephalon and rhombencephalon. The terminal fibres are found in close contact with many aminergic cell groups, including those of raphe serotonergic, locus coeruleus noradrenergic, several dopaminergic cell groups and the sole histaminergic hypothalamic cluster. One receptor corresponding to mammalian hcrt 2 receptor has been identified in fish. Overexpression of hcrt in zebrafish has been reported to consolidate wakefulness and inhibit rest. On the other hand, fish lacking the hcrt receptor show short and fragmented sleep instead of sleepiness and cataplexy. Food deprivation increases hcrt mRNA expression in zebrafish brain, and intracerebroventricular hcrt peptides stimulate food consumption and feeding behaviour in goldfish. Hcrt peptides thus have important roles in fish physiology. Many genetic and functional methods available render fish, especially zebrafish, a suitable organism to study new aspects of hcrt physiology in vertebrates.
Collapse
Affiliation(s)
- P Panula
- Neuroscience Center, Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
80
|
Teske JA, Kotz CM. Effect of acute and chronic caloric restriction and metabolic glucoprivation on spontaneous physical activity in obesity-prone and obesity-resistant rats. Am J Physiol Regul Integr Comp Physiol 2009; 297:R176-84. [PMID: 19420294 DOI: 10.1152/ajpregu.90866.2008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Caloric restriction (CR) and metabolic glucoprivation affect spontaneous physical activity (SPA), but it's unknown whether these treatments similarly affect SPA in selectively bred obesity-prone (OP) and -resistant (OR) rats. OR rats have greater basal SPA and are more responsive to treatments that modulate SPA, such as orexin A administration. We hypothesized that OR rats would be more sensitive to other treatments modulating SPA. To test this, continuous 24-h SPA was measured before and during acute (24 h) and chronic (8 wk) CR in OR, OP, and Sprague-Dawley rats. Pharmacological glucoprivation was produced by injection of 2-deoxyglucose (2-DG), and SPA was measured 5 h postinjection. Acute CR increased SPA in all groups; however, the effect was dependent on the index of SPA and time interval during the 24-h time period. In contrast to OR rats, chronic CR increased distance traveled, ambulatory episodes, and time spent in ambulation and stereotypy during the time interval preceding anticipation of food in OP and Sprague-Dawley rats. Although the effects of 2-DG treatment on SPA were minimal, OR rats had significantly greater SPA than OP and Sprague-Dawley rats independent of treatment. That chronic CR failed to result in significant changes in SPA in OR rats suggests that these rats may be especially unresponsive to treatments modulating feeding. This insensitivity coupled with elevated basal SPA levels may in part mediate phenotypic traits of lean rats.
Collapse
Affiliation(s)
- J A Teske
- University of Minnesota, Department of Food Science and Nutrition, St. Paul, Minnesota, USA.
| | | |
Collapse
|
81
|
|
82
|
|
83
|
Drew RE, Rodnick KJ, Settles M, Wacyk J, Churchill E, Powell MS, Hardy RW, Murdoch GK, Hill RA, Robison BD. Effect of starvation on transcriptomes of brain and liver in adult female zebrafish (Danio rerio). Physiol Genomics 2008; 35:283-95. [PMID: 18728227 DOI: 10.1152/physiolgenomics.90213.2008] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We used microarray and quantitative real-time PCR (qRT-PCR) analyses in adult female zebrafish (Danio rerio) to identify metabolic pathways regulated by starvation in the liver and brain. The transcriptome of whole zebrafish brain showed little response to 21 days of starvation. Only agouti-related protein 1 (agrp1) significantly responded, with increased expression in brains of starved fish. In contrast, a 21-day period of starvation significantly downregulated 466 and upregulated 108 transcripts in the liver, indicating an overall decrease in metabolic activity, reduced lipid metabolism, protein biosynthesis, proteolysis, and cellular respiration, and increased gluconeogenesis. Starvation also regulated expression of many components of the unfolded protein response, the first such report in a species other than yeast (Saccharomyces cerevisiae) and mice (Mus musculus). The response of the zebrafish hepatic transcriptome to starvation was strikingly similar to that of rainbow trout (Oncorhynchus mykiss) and less similar to mouse, while the response of common carp (Cyprinus carpio) differed considerably from the other three species.
Collapse
Affiliation(s)
- Robert E Drew
- Department of Biological Sciences and Initiative for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
Feeding behavior is a complex behavior that is closely associated with food intake. Fish have a wide variety of feeding habits and feeding patterns making them good experimental models for the study of the regulation of feeding behavior. The aquatic nature of fish often creates challenges in the study of feeding behavior and different approaches have been used by researchers, including field studies, observations of free-living animals, and laboratory experiments. Feeding behavior is regulated by a number of environmental factors and also by complex homeostatic mechanisms that involve central and peripheral hormonal factors as well as metabolites. This review summarizes our current knowledge on the control of feeding behavior of fish, with emphasis on the methodology used and on the endocrine and metabolic regulation of feeding.
Collapse
Affiliation(s)
- Helene Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland NL A1B 3X9, Canada.
| | | |
Collapse
|
85
|
Novak CM, Levine JA. Central neural and endocrine mechanisms of non-exercise activity thermogenesis and their potential impact on obesity. J Neuroendocrinol 2007; 19:923-40. [PMID: 18001322 DOI: 10.1111/j.1365-2826.2007.01606.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The rise in obesity is associated with a decline in the amount of physical activity in which people engage. The energy expended through everyday non-exercise activity, called non-exercise activity thermogenesis (NEAT), has a considerable potential impact on energy balance and weight gain. Comparatively little attention has been paid to the central mechanisms of energy expenditure and how decreases in NEAT might contribute to obesity. In this review, we first examine the sensory and endocrine mechanisms through which energy availability and energy balance are detected that may influence NEAT. Second, we describe the neural pathways that integrate these signals. Lastly, we consider the effector mechanisms that modulate NEAT through the alteration of activity levels as well as through changes in the energy efficiency of movement. Systems that regulate NEAT according to energy balance may be linked to neural circuits that modulate sleep, addiction and the stress response. The neural and endocrine systems that control NEAT are potential targets for the treatment of obesity.
Collapse
Affiliation(s)
- C M Novak
- Mayo Clinic, Endocrine Research Unit, Rochester, MN, USA.
| | | |
Collapse
|
86
|
Novak CM, Zhang M, Levine JA. Sensitivity of the hypothalamic paraventricular nucleus to the locomotor-activating effects of neuromedin U in obesity. Brain Res 2007; 1169:57-68. [PMID: 17706946 PMCID: PMC2735201 DOI: 10.1016/j.brainres.2007.06.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 06/15/2007] [Accepted: 06/25/2007] [Indexed: 11/25/2022]
Abstract
Obesity is associated with a decrease in energy expenditure relative to energy intake. The decrease in physical activity associated with obesity in several species, including humans, contributes to decreased energy expenditure. Several hormones and neuropeptides that affect appetite also modulate physical activity, including neuromedin U (NMU), a peptide found in the gut and brain. We have demonstrated that NMU microinjected into the hypothalamic paraventricular nucleus (PVN) in rats increases the energy expenditure associated with physical activity, called non-exercise activity thermogenesis (NEAT). Here we examined whether obesity in rats is related to decreased sensitivity of the PVN to the locomotor-activating effect of NMU. Diet-induced obese (DIO) rats and lean, diet-resistant (DR) rats were given PVN microinjections of increasing doses of NMU both before and after 1 month on a high-fat diet. We found that NMU increases physical activity, energy expenditure, and NEAT in a dose-dependent manner in both DR and DIO rats, both before and after 1 month on the high-fat diet. Before high-fat feeding, the obesity-prone and lean rats showed similar levels of physical activity after intra-PVN microinjections of NMU. After 1 month of the high-fat diet, however, the obesity-resistant rats showed significantly more NMU-induced physical activity compared to the obese DIO rats. Taken together with previous studies, these results suggest that obesity may represent a state associated with decreased central sensitivity to neuropeptides such as NMU that increase physical activity and therefore energy expenditure.
Collapse
Affiliation(s)
- Colleen M Novak
- Mayo Clinic, Endocrine Research Unit, St Marys Hospital, Joseph 5-194, 200 1st St. SW, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
87
|
Food deprivation attenuates seizures through CaMKII and EAG K+ channels. PLoS Genet 2007; 3:1622-32. [PMID: 17941711 PMCID: PMC1976334 DOI: 10.1371/journal.pgen.0030156] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 07/27/2007] [Indexed: 11/19/2022] Open
Abstract
Accumulated research has demonstrated the beneficial effects of dietary restriction on extending lifespan and increasing cellular stress resistance. However, reducing nutrient intake has also been shown to direct animal behaviors toward food acquisition. Under food-limiting conditions, behavioral changes suggest that neuronal and muscle activities in circuits that are not involved in nutrient acquisition are down-regulated. These dietary-regulated mechanisms, if understood better, might provide an approach to compensate for defects in molecules that regulate cell excitability. We previously reported that a neuromuscular circuit used in Caenorhabditis elegans male mating behavior is attenuated under food-limiting conditions. During periods between matings, sex-specific muscles that control movements of the male's copulatory spicules are kept inactive by UNC-103 ether-a-go-go-related gene (ERG)-like K(+) channels. Deletion of unc-103 causes approximately 30%-40% of virgin males to display sex-muscle seizures; however, when food is deprived from males, the incidence of spontaneous muscle contractions drops to 9%-11%. In this work, we used genetics and pharmacology to address the mechanisms that act parallel with UNC-103 to suppress muscle seizures in males that lack ERG-like K(+) channel function. We identify calcium/calmodulin-dependent protein kinase II as a regulator that uses different mechanisms in food and nonfood conditions to compensate for reduced ERG-like K(+) channel activity. We found that in food-deprived conditions, calcium/calmodulin-dependent protein kinase II acts cell-autonomously with ether-a-go-go K(+) channels to inhibit spontaneous muscle contractions. Our work suggests that upregulating mechanisms used by food deprivation can suppress muscle seizures.
Collapse
|
88
|
Xu M, Volkoff H. Molecular characterization of prepro-orexin in Atlantic cod (Gadus morhua): cloning, localization, developmental profile and role in food intake regulation. Mol Cell Endocrinol 2007; 271:28-37. [PMID: 17434256 DOI: 10.1016/j.mce.2007.03.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 03/13/2007] [Indexed: 11/18/2022]
Abstract
A full-length cDNA encoding for prepro-orexin (prepro-OX) was cloned from Atlantic cod (Gadus morhua) hypothalamus using reverse transcription and rapid amplification of cDNA ends (RACE). The 143 amino acids (aa) prepro-OX contains a 38 aa signal peptide, a 50 aa orexin-A peptide and a 29 aa orexin-B peptide. Semi-quantitative RT-PCR shows that prepro-OX mRNA is present in brain and pituitary and in peripheral tissues, including gill, spleen, stomach and gut. Within the brain, high expression levels are seen in the hypothalamus. During development, prepro-OX is expressed from the cleavage stage up to the hatched larvae. Slot blot analysis shows that prepro-OX expression levels are higher in fish fed low (0.2% BW) and medium (0.8% BW) rations than in fish fed high rations (1.5% BW). Fish fed low and medium rations also display periprandial changes in prepro-OX expression, with higher expression levels at meal time (0 h) compared to 2h before and 2h after feeding. Our results suggest that orexins might be involved in development and feeding regulation in Atlantic cod.
Collapse
Affiliation(s)
- Meiyu Xu
- Department of Biology, Memorial University of Newfoundland, St. John's, Nfld A1B 3X9, Canada
| | | |
Collapse
|
89
|
Braida D, Limonta V, Pegorini S, Zani A, Guerini-Rocco C, Gori E, Sala M. Hallucinatory and rewarding effect of salvinorin A in zebrafish: kappa-opioid and CB1-cannabinoid receptor involvement. Psychopharmacology (Berl) 2007; 190:441-8. [PMID: 17219220 DOI: 10.1007/s00213-006-0639-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 11/03/2006] [Indexed: 01/02/2023]
Abstract
RATIONALE The hallucinatory effect and potential abuse of salvinorin A, the major ingredient of Salvia divinorum, has not been documented in animals. OBJECTIVE The effects of salvinorin A on the zebrafish (Danio rerio) model, through its swimming behavior and conditioned place preference (CPP) task, was studied. MATERIALS AND METHODS Swimming activity was determined in a squared observational chamber after an i.m. treatment of salvinorin A (0.1-10 microg/kg). For the CPP test, zebrafish were given salvinorin A (0.2 and 1 microg/kg) or vehicle and evaluated in a two-compartment chamber. RESULTS Salvinorin A (0.1 and 0.2 microg/kg) induced accelerated swimming behavior in comparison with vehicle, whereas a "trance-like" effect, at doses as 5 and 10 microg/kg, was obtained. Pretreatment with the kappa-opioid antagonist, nor-binaltorphimine (nor-BNI; 10 mg/kg) and the cannabinoid type 1 (CB(1)) antagonist, rimonabant (1 mg/kg), blocked salvinorin A-induced both stimulating and depressive effects obtained at a dose of 0.2 and 10 microg/kg, respectively. In the CPP test, salvinorin A (0.2 and 0.5 microg/kg) produced an increase in the time spent in the drug-associated compartment. A dose of 1 microg/kg produced no effect, whereas a dose of 80 microg/kg induced aversion. Pretreatment with nor-BNI or rimonabant fully reversed the reinforcing properties of salvinorin A (0.5 microg/kg). CONCLUSIONS Taken together, these results indicate that salvinorin A, as is sometimes reported in humans, exhibits rewarding effects, independently from its motor activity, suggesting the usefulness of the zebrafish model to study addictive behavior. These effects appear mediated by activation of both kappa-opioid and cannabinoid CB(1) receptors.
Collapse
MESH Headings
- Animals
- Behavior, Addictive/metabolism
- Behavior, Animal/drug effects
- Conditioning, Psychological/drug effects
- Diterpenes/pharmacology
- Diterpenes, Clerodane
- Dose-Response Relationship, Drug
- Hallucinogens/pharmacology
- Models, Animal
- Motor Activity/drug effects
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Piperidines/pharmacology
- Pyrazoles/pharmacology
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/metabolism
- Receptors, Opioid, kappa/drug effects
- Receptors, Opioid, kappa/metabolism
- Reinforcement, Psychology
- Reproducibility of Results
- Reward
- Rimonabant
- Swimming
- Time Factors
- Zebrafish/metabolism
Collapse
Affiliation(s)
- Daniela Braida
- Department of Pharmacology, Chemotherapy and Medical Toxicology, University of Milan, Via Vanvitelli 32, 20129, Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
90
|
Volkoff H. The role of neuropeptide Y, orexins, cocaine and amphetamine-related transcript, cholecystokinin, amylin and leptin in the regulation of feeding in fish. Comp Biochem Physiol A Mol Integr Physiol 2006; 144:325-31. [PMID: 16326123 DOI: 10.1016/j.cbpa.2005.10.026] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2005] [Revised: 10/24/2005] [Accepted: 10/24/2005] [Indexed: 11/26/2022]
Abstract
In fish, as in all vertebrates, the brain is the primary center of regulation of food intake. Afferent signals continuously inform the central nervous system about changes in energy homeostasis. The brain interprets and integrates these signals and responds with efferent signals that help maintain a constant energy balance. Neuropeptides that originate from the hypothalamus regulate food intake either by stimulating (orexigenic factors) or inhibiting (anorexigenic factors) appetite. Studies using brain or peripheral peptide injections have shown that neuropeptide Y (NPY) and orexins are potent orexigenic factors in fish, whereas cocaine and amphetamine-related transcript (CART) peptides decrease food intake. Complex interactions exist between these central neuropeptide systems. For example, NPY and orexins have synergistic effects on food intake and they are both modulated by CART peptides. These systems are also influenced by endocrine factors from the periphery, including hormones from the gut, such as cholecystokinin (CCK), the pancreatic hormone amylin and the adipocyte hormone leptin. Fasting or ingestion of a meal induces changes in the mRNA expression of NPY, orexins and CART, suggesting that nutritional status modulates the action of these systems. This brief review will focus on our current knowledge on the structure and role of these six appetite-regulating peptides in fish.
Collapse
Affiliation(s)
- Hélène Volkoff
- Department of Biology, Memorial University of Newfoundland, St John's, NL, A1B 3X9, Canada.
| |
Collapse
|
91
|
Abstract
Spontaneous physical activity is activity that is non-volitional, or subconscious, such as fidgeting and shifting in one's seat, and time spent moving (standing and ambulating). Recent evidence indicates that spontaneous physical activity, and the resulting thermogenesis (non-exercise activity thermogenesis) may be regulated by brain systems. A large number of brain areas, with their associated neurotransmitter populations and connectivity, participate in the regulation of feeding behavior by acting as energy sensing and modulating centers. Although less well characterized, it is likely that a multitude of neurotransmitters and brain areas act to mediate spontaneous physical activity. These two behaviors, feeding and spontaneous physical activity, affect energy intake and expenditure and thus are important to body weight. Interestingly, often the two behaviors are affected simultaneously; when feeding is affected, so too is spontaneous physical activity, and both food intake and physical activity (whether spontaneous or volitional) influence activity of brain areas important to both. Several brain areas and neuropeptides are important to feeding and spontaneous physical activity. The lateral hypothalamus is one area that appears important to both behaviors, as stimulation or lesion of this region produces alterations in feeding behavior and spontaneous physical activity. Orexin neurons, with their central location in the lateral hypothalamus, widespread projections and connectivity to other brain areas important to energy homeostasis, are well situated to perform an integrative function. This review focuses on how hypothalamic orexins participate in both feeding and spontaneous physical activity, and provides potential models for the integration of signals important to both.
Collapse
Affiliation(s)
- Catherine M Kotz
- Veterans Affairs Medical Center, One Veterans Drive, GRECC (11G), Minneapolis, MN 55417, USA.
| |
Collapse
|
92
|
Novak CM, Kotz CM, Levine JA. Central orexin sensitivity, physical activity, and obesity in diet-induced obese and diet-resistant rats. Am J Physiol Endocrinol Metab 2006; 290:E396-403. [PMID: 16188908 DOI: 10.1152/ajpendo.00293.2005] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nonexercise activity thermogenesis (NEAT), the most variable component of energy expenditure, can account for differential capacities for human weight gain. Also highly variable, spontaneous physical activity (SPA) may similarly affect weight balance in animals. In the following study, we utilized the rat model of obesity, the diet-induced obese (DIO) rat, as well as the diet-resistant (DR) rat strain, to investigate how access to a high-fat diet alters SPA and the associated energy expenditure (i.e., NEAT). DIO and DR rats showed no differences in the amount of SPA before access to the high-fat diet. After 29 days on a high-fat diet, the DIO rats showed significant decreases in SPA, whereas the DR rats did not. Next, we wanted to determine whether the DIO and DR rats showed differential sensitivity to microinjections of orexin into the paraventricular nucleus of the hypothalamus (PVN). Unilateral guide cannulae were implanted, aimed at the PVN. Orexin A (0, 0.125, 0.25, and 1.0 nmol in 500 nl) was microinjected through the guide cannula into the PVN, then SPA and energy expenditure were measured for 2 h. Using the response to vehicle as a baseline, the DR rats showed significantly greater increase in NEAT compared with the DIO rats. These data indicate that diet-induced obesity is associated with decreases in SPA and a lack of increase in NEAT. A putative mechanism for changes in NEAT that accompany obesity is a decreased sensitivity to the NEAT-activating effects of neuropeptides such as orexin.
Collapse
Affiliation(s)
- Colleen M Novak
- Endocrine Research Unit, Mayo Clinic, 200 1st St. SW, Rochester, MN 55905, USA
| | | | | |
Collapse
|