51
|
Rahman A, Hashem A, Nur-A-Tomal S. Potable water quality monitoring of primary schools in Magura district, Bangladesh: children's health risk assessment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:680. [PMID: 27864776 DOI: 10.1007/s10661-016-5692-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 11/08/2016] [Indexed: 06/06/2023]
Abstract
Safe potable water is essential for good health. Worldwide, school-aged children especially in the developing countries are suffering from various water-borne diseases. In the study, drinking water supplies for primary school children were monitored at Magura district, Bangladesh, to ensure safe potable water. APHA standard analytical methods were applied for determining the physicochemical parameters of the water samples. For determination of the essential physicochemical parameters, the samples were collected from 20 randomly selected tube wells of primary schools at Magura. The metal contents, especially arsenic (As), iron (Fe), and manganese (Mn), in the water samples were analyzed by atomic absorption spectroscopy. The range of physicochemical parameters found in water samples were as follows: pH 7.05-9.03, electrical conductivity 400-2340 μS/cm, chloride 10-640 mg/L, hardness 200-535 mg/L as CaCO3, and total dissolved solids 208-1216 mg/L. The level of metals in the tube well water samples were as follows: As 1 to 55 μg/L, Fe 40 to 9890 μg/L, and Mn 10 to 370 μg/L. Drinking water parameters of Magura district did not meet the requirement of the World Health Organization drinking water quality guideline, or the Drinking Water Quality Standards of Bangladesh.
Collapse
Affiliation(s)
- Aminur Rahman
- Department of Public Health Engineering, Zonal Laboratory, Khulna, Bangladesh
| | - Abul Hashem
- Department of Leather Engineering, Khulna University of Engineering & Technology (KUET), Khulna, 9203, Bangladesh.
| | - Shahruk Nur-A-Tomal
- Department of Leather Engineering, Khulna University of Engineering & Technology (KUET), Khulna, 9203, Bangladesh
| |
Collapse
|
52
|
Liu W, Xu Z, Li H, Guo M, Yang T, Feng S, Xu B, Deng Y. Protective effects of curcumin against mercury-induced hepatic injuries in rats, involvement of oxidative stress antagonism, and Nrf2-ARE pathway activation. Hum Exp Toxicol 2016; 36:949-966. [PMID: 27837179 DOI: 10.1177/0960327116677355] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mercury (Hg) represents a ubiquitous environmental heavy metal that could lead to severe toxic effects in a variety of organs usually at a low level. The present study focused on the liver oxidative stress, one of the most important roles playing in Hg hepatotoxicity, by evaluation of different concentrations of mercuric chloride (HgCl2) administration. Moreover, the protective potential of curcumin against Hg hepatotoxic effects was also investigated. Eighty-four rats were randomly divided into six groups for a three-days experiment: control, dimethyl sulfoxide control, HgCl2 treatment (0.6, 1.2, and 2.4 mg kg-1 day-1), and curcumin pretreatment (100 mg kg-1 day-1) groups. Exposure of HgCl2 resulted in acute dose-dependent hepatotoxic effects. Administration of 2.4 mg kg-1 HgCl2 significantly elevated total Hg, nonprotein sulfhydryl, reactive oxygen species formation, malondialdehyde, apoptosis levels, serum lactate dehydrogenase, and alanine transaminase activities, with an impairment of superoxide dismutase and glutathione peroxidase in the liver. Moreover, HgCl2 treatment activated nuclear factor-E2-related factor 2-antioxidant response element (Nrf2-ARE) signaling pathway in further investigation, with a significant upregulation of Nrf2, heme oxygenase-1, and γ-glutamylcysteine synthetase heavy subunit expression, relative to control. Pretreatment with curcumin obviously prevented HgCl2-induced liver oxidative stress, which may be due to its free radical scavenging or Nrf2-ARE pathway-inducing properties. Taking together these data suggest that curcumin counteracts HgCl2 hepatotoxicity through antagonizing liver oxidative stress.
Collapse
Affiliation(s)
- W Liu
- Department of environmental health, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Z Xu
- Department of environmental health, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - H Li
- Department of environmental health, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - M Guo
- Department of environmental health, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - T Yang
- Department of environmental health, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - S Feng
- Department of environmental health, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - B Xu
- Department of environmental health, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Yu Deng
- Department of environmental health, School of Public Health, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
53
|
Ashok A, Rai NK, Raza W, Pandey R, Bandyopadhyay S. Chronic cerebral hypoperfusion-induced impairment of Aβ clearance requires HB-EGF-dependent sequential activation of HIF1α and MMP9. Neurobiol Dis 2016; 95:179-93. [PMID: 27431094 DOI: 10.1016/j.nbd.2016.07.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 07/07/2016] [Accepted: 07/13/2016] [Indexed: 01/25/2023] Open
Abstract
Chronic cerebral hypoperfusion (CCH) manifests Alzheimer's Disease (AD) neuropathology, marked by increased amyloid beta (Aβ). Besides, hypoxia stimulates Heparin-binding EGF-like growth factor (HB-EGF) mRNA expression in the hippocampus. However, involvement of HB-EGF in CCH-induced Aβ pathology remains unidentified. Here, using Bilateral Common Carotid Artery Occlusion mouse model, we explored the mechanism of HB-EGF regulated Aβ induction in CCH. We found that HB-EGF inhibition suppressed, while exogenous-HB-EGF triggered hippocampal Aβ, proving HB-EGF-dependent Aβ increase. We also detected that HB-EGF affected the expression of primary Aβ transporters, receptor for advanced glycation end-products (RAGE) and lipoprotein receptor-related protein-1 (LRP-1), indicating impaired Aβ clearance across the blood-brain barrier (BBB). An HB-EGF-dependent loss in BBB integrity supported impaired Aβ clearance. The effect of HB-EGF on Amyloid Precursor Protein pathway was relatively insignificant, suggesting a lesser effect on Aβ generation. Delving into BBB disruption mechanism demonstrated HB-EGF-mediated stimulation of Matrix metalloprotease-9 (MMP9), which affected BBB via HB-EGF-ectodomain shedding and epidermal growth factor receptor activation. Examining the intersection of HB-EGF-regulated pathway and hypoxia revealed HB-EGF-dependent increase in transcription factor, Hypoxia-inducible factor-1alpha (HIF1α). Further, via binding to hypoxia-responsive elements in MMP9 gene, HIF1α stimulated MMP9 expression, and therefore appeared as a prominent intermediary in HB-EGF-induced BBB damage. Overall, our study reveals the essential role of HB-EGF in triggering CCH-mediated Aβ accumulation. The proposed mechanism involves an HB-EGF-dependent HIF1α increase, generating MMP9 that stimulates soluble-HB-EGF/EGFR-induced BBB disintegration. Consequently, CCH-mediated hippocampal RAGE and LRP-1 deregulation together with BBB damage impair Aβ transport and clearance where HB-EGF plays a pivotal role.
Collapse
Affiliation(s)
- Anushruti Ashok
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India; Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Nagendra Kumar Rai
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India; Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Waseem Raza
- Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Rukmani Pandey
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India; Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Sanghamitra Bandyopadhyay
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India; Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
54
|
Protective Role of Quercetin in Cadmium-Induced Cholinergic Dysfunctions in Rat Brain by Modulating Mitochondrial Integrity and MAP Kinase Signaling. Mol Neurobiol 2016; 54:4560-4583. [PMID: 27389774 DOI: 10.1007/s12035-016-9950-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/06/2016] [Indexed: 12/30/2022]
Abstract
With the increasing evidences of cadmium-induced cognitive deficits associated with brain cholinergic dysfunctions, the present study aimed to decipher molecular mechanisms involved in the neuroprotective efficacy of quercetin in rats. A decrease in the binding of cholinergic-muscarinic receptors and mRNA expression of cholinergic receptor genes (M1, M2, and M4) was observed in the frontal cortex and hippocampus on exposure of rats to cadmium (5.0 mg/kg body weight, p.o.) for 28 days compared to controls. Cadmium exposure resulted to decrease mRNA and protein expressions of choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) and enhance reactive oxygen species (ROS) generation associated with mitochondrial dysfunctions, ultrastructural changes, and learning deficits. Enhanced apoptosis, as evidenced by alterations in key proteins involved in the pro- and anti-apoptotic pathway and mitogen-activated protein (MAP) kinase signaling, was evident on cadmium exposure. Simultaneous treatment with quercetin (25 mg/kg body weight, p.o.) resulted to protect cadmium-induced alterations in cholinergic-muscarinic receptors, mRNA expression of genes (M1, M2, and M4), and expression of ChAT and AChE. The protective effect on brain cholinergic targets was attributed to the antioxidant potential of quercetin, which reduced ROS generation and protected mitochondrial integrity by modulating proteins involved in apoptosis and MAP kinase signaling. The results exhibit that quercetin may modulate molecular targets involved in brain cholinergic signaling and attenuate cadmium neurotoxicity.
Collapse
|
55
|
Differential responses of Trans-Resveratrol on proliferation of neural progenitor cells and aged rat hippocampal neurogenesis. Sci Rep 2016; 6:28142. [PMID: 27334554 PMCID: PMC4917886 DOI: 10.1038/srep28142] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/27/2016] [Indexed: 12/29/2022] Open
Abstract
The plethora of literature has supported the potential benefits of Resveratrol (RV) as a life-extending as well as an anticancer compound. However, these two functional discrepancies resulted at different concentration ranges. Likewise, the role of Resveratrol on adult neurogenesis still remains controversial and less understood despite its well documented health benefits. To gather insight into the biological effects of RV on neurogenesis, we evaluated the possible effects of the compound on the proliferation and survival of neural progenitor cells (NPCs) in culture, and in the hippocampus of aged rats. Resveratrol exerted biphasic effects on NPCs; low concentrations (10 μM) stimulated cell proliferation mediated by increased phosphorylation of extracellular signal-regulated kinases (ERKs) and p38 kinases, whereas high concentrations (>20 μM) exhibited inhibitory effects. Administration of Resveratrol (20 mg/kg body weight) to adult rats significantly increased the number of newly generated cells in the hippocampus, with upregulation of p-CREB and SIRT1 proteins implicated in neuronal survival and lifespan extension respectively. We have successfully demonstrated that Resveratrol exhibits dose dependent discrepancies and at a lower concentration can have a positive impact on the proliferation, survival of NPCs and aged rat hippocampal neurogenesis implicating its potential as a candidate for restorative therapies against age related disorders.
Collapse
|
56
|
Jaiswal SK, Siddiqi NJ, Sharma B. Studies on the ameliorative effect of curcumin on carbofuran induced perturbations in the activity of lactate dehydrogenase in wistar rats. Saudi J Biol Sci 2016; 25:1585-1592. [PMID: 30591774 PMCID: PMC6303160 DOI: 10.1016/j.sjbs.2016.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 02/23/2016] [Accepted: 03/05/2016] [Indexed: 11/17/2022] Open
Abstract
Carbofuran is known to inhibit neurotransmission system of insects. The present study was undertaken to evaluate the possible ameliorative effect of curcumin on carbofuran induced alterations in energy metabolism in brain and liver of rats. The results demonstrate that carbofuran caused a significant inhibition of lactate dehydrogenase (LDH) activity in rat liver but an increase in LDH activity in the brain. Increased LDH activity was also observed in the serum indicating organ damage in treated animals. Carbofuran caused an increase in level of pyruvic acid in rat liver but a decrease in the brain. A decrease in the level of soluble protein was also observed in the tissues studied. Pretreatment of animals with curcumin resulted in significant amelioration of the altered indices. These results indicate that carbofuran at sub lethal concentrations may adversely alter energy metabolism in brain and liver of non-target mammalian systems. Pretreatment of animals with curcumin may exhibit a potential to mitigate the carbofuran induced toxicity.
Collapse
Affiliation(s)
- Sunil Kumar Jaiswal
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| | - Nikhat Jamal Siddiqi
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Bechan Sharma
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| |
Collapse
|
57
|
Waseem M, Parvez S. Neuroprotective activities of curcumin and quercetin with potential relevance to mitochondrial dysfunction induced by oxaliplatin. PROTOPLASMA 2016; 253:417-30. [PMID: 26022087 DOI: 10.1007/s00709-015-0821-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 04/15/2015] [Indexed: 05/19/2023]
Abstract
Peripheral neurotoxicity is one of the serious dose-limiting side effects of oxaliplatin (Oxa) when used in the treatment of malignant conditions. It is documented that it elicits major side effects specifically neurotoxicity due to oxidative stress forcing the patients to limit its clinical use in long-term treatment. Oxidative stress has been proven to be involved in Oxa-induced toxicity including neurotoxicity. The mitochondria have recently emerged as targets for anticancer drugs in various kinds of toxicity including neurotoxicity that can lead to neoplastic disease. However, there is paucity of literature involving the role of the mitochondria in mediating Oxa-induced neurotoxicity and its underlying mechanism is still debatable. The purpose of this study was to investigate the dose-dependent damage caused by Oxa on isolated brain mitochondria under in vitro conditions. The study was also designed to investigate the neuroprotective effects of nutraceuticals, curcumin (CMN), and quercetin (QR) on Oxa-induced mitochondrial oxidative stress and respiratory chain complexes in the brain of rats. Oxidative stress biomarkers, levels of nonenzymatic antioxidants, activities of enzymatic antioxidants, and mitochondrial complexes were evaluated against the neurotoxicity induced by Oxa. Pretreatment with CMN and QR significantly replenished the mitochondrial lipid peroxidation levels and protein carbonyl content induced by Oxa. CMN and QR ameliorated altered nonenzymatic and enzymatic antioxidants and complex enzymes of mitochondria. We conclude that CMN and QR, by attenuating oxidative stress as evident by mitochondrial dysfunction, hold promise as agents that can potentially reduce Oxa-induced adverse effects in the brain.
Collapse
Affiliation(s)
- Mohammad Waseem
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, 110 062, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, 110 062, India.
| |
Collapse
|
58
|
Rodríguez V, Limón-Pacheco J, Del Razo L, Giordano M. Effects of inorganic arsenic exposure on glucose transporters and insulin receptor in the hippocampus of C57BL/6 male mice. Neurotoxicol Teratol 2016; 54:68-77. [DOI: 10.1016/j.ntt.2016.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 01/06/2023]
|
59
|
Shukla RK, Gupta R, Srivastava P, Dhuriya YK, Singh A, Chandravanshi LP, Kumar A, Siddiqui MH, Parmar D, Pant AB, Khanna VK. Brain cholinergic alterations in rats subjected to repeated immobilization or forced swim stress on lambda-cyhalothrin exposure. Neurochem Int 2015; 93:51-63. [PMID: 26746386 DOI: 10.1016/j.neuint.2015.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 12/03/2015] [Accepted: 12/28/2015] [Indexed: 02/03/2023]
Abstract
Role of immobilization stress (IMS), a psychological stressor and forced swim stress (FSS), a physical stressor was investigated on the neurobehavioral toxicity of lambda-cyhalothrin (LCT), a new generation type-II synthetic pyrethroid. Pre-exposure of rats to IMS (15 min/day) or FSS (3 min/day) for 28 days on LCT (3.0 mg/kg body weight, p.o.) treatment for 3 days resulted to decrease spatial learning and memory and muscle strength associated with cholinergic-muscarinic receptors in frontal cortex and hippocampus as compared to those exposed to IMS or FSS or LCT alone. Decrease in acetylcholinesterase activity, protein expression of ChAT and PKC-β1 associated with decreased mRNA expression of CHRM2, AChE and ChAT in frontal cortex and hippocampus was also evident in rats pre-exposed to IMS or FSS on LCT treatment, compared to rats exposed to IMS or FSS or LCT alone. Interestingly, changes both in behavioral and neurochemical endpoints were marginal in rats subjected to IMS or FSS for 28 days or those exposed to LCT for 3 days alone, compared to controls. The results suggest that stress is an important contributor in LCT induced cholinergic deficits.
Collapse
Affiliation(s)
- Rajendra K Shukla
- Developmenatl Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR - Indian Institute of Toxicology Research, Post Box 80, Vishvigyan Bhawan, 31 MG Marg, Lucknow 226 001, India; Department of Biochemistry, Integral Institute of Medical Sciences & Research, Integral University, Lucknow 226 026, India
| | - Richa Gupta
- Developmenatl Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR - Indian Institute of Toxicology Research, Post Box 80, Vishvigyan Bhawan, 31 MG Marg, Lucknow 226 001, India
| | - Pranay Srivastava
- Developmenatl Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR - Indian Institute of Toxicology Research, Post Box 80, Vishvigyan Bhawan, 31 MG Marg, Lucknow 226 001, India
| | - Yogesh K Dhuriya
- Developmenatl Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR - Indian Institute of Toxicology Research, Post Box 80, Vishvigyan Bhawan, 31 MG Marg, Lucknow 226 001, India
| | - Anshuman Singh
- Developmenatl Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR - Indian Institute of Toxicology Research, Post Box 80, Vishvigyan Bhawan, 31 MG Marg, Lucknow 226 001, India
| | - Lalit P Chandravanshi
- Developmenatl Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR - Indian Institute of Toxicology Research, Post Box 80, Vishvigyan Bhawan, 31 MG Marg, Lucknow 226 001, India
| | - Ajay Kumar
- Department of Biochemistry, Integral Institute of Medical Sciences & Research, Integral University, Lucknow 226 026, India
| | - M Haris Siddiqui
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow 226 026, India
| | - Devendra Parmar
- Developmenatl Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR - Indian Institute of Toxicology Research, Post Box 80, Vishvigyan Bhawan, 31 MG Marg, Lucknow 226 001, India
| | - Aditya B Pant
- Developmenatl Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR - Indian Institute of Toxicology Research, Post Box 80, Vishvigyan Bhawan, 31 MG Marg, Lucknow 226 001, India
| | - Vinay K Khanna
- Developmenatl Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR - Indian Institute of Toxicology Research, Post Box 80, Vishvigyan Bhawan, 31 MG Marg, Lucknow 226 001, India.
| |
Collapse
|
60
|
Molecular Mechanism of Switching of TrkA/p75(NTR) Signaling in Monocrotophos Induced Neurotoxicity. Sci Rep 2015; 5:14038. [PMID: 26370177 PMCID: PMC4570211 DOI: 10.1038/srep14038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 08/14/2015] [Indexed: 01/19/2023] Open
Abstract
We demonstrate the role of molecular switching of TrkA/p75(NTR) signaling cascade in organophosphate pesticide-Monocrotophos (MCP) induced neurotoxicity in stem cell derived cholinergic neurons and in rat brain. Our in-silico studies reveal that MCP followed the similar pattern of binding as staurosporine and AG-879 (known inhibitors of TrkA) with TrkA protein (PDB ID: 4AOJ) at the ATP binding sites. This binding of MCP to TrkA led to the conformational change in this protein and triggers the cell death cascades. The in-silico findings are validated by observing the down regulated levels of phosphorylated TrkA and its downstream molecules viz., pERK1/2, pAkt and pCREB in MCP-exposed cells. We observe that these MCP induced alterations in pTrkA and downstream signaling molecules are found to be associated with apoptosis and injury to neurons. The down-regulation of TrkA could be linked to increased p75(NTR). The in-vitro studies could be correlated in the rat model. The switching of TrkA/p75(NTR) signaling plays a central role in MCP-induced neural injury in rBNSCs and behavioral changes in exposed rats. Our studies significantly advance the understanding of the switching of TrkA/p75(NTR) that may pave the way for the application of TrkA inducer/p75(NTR) inhibitor for potential therapeutic intervention in various neurodegenerative disorders.
Collapse
|
61
|
Sun BF, Wang QQ, Yu ZJ, Yu Y, Xiao CL, Kang CS, Ge G, Linghu Y, Zhu JD, Li YM, Li QM, Luo SP, Yang D, Li L, Zhang WY, Tian G. Exercise Prevents Memory Impairment Induced by Arsenic Exposure in Mice: Implication of Hippocampal BDNF and CREB. PLoS One 2015; 10:e0137810. [PMID: 26368803 PMCID: PMC4569337 DOI: 10.1371/journal.pone.0137810] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/20/2015] [Indexed: 11/19/2022] Open
Abstract
High concentrations of arsenic, which can be occasionally found in drinking water, have been recognized as a global health problem. Exposure to arsenic can disrupt spatial memory; however, the underlying mechanism remains unclear. In the present study, we tested whether exercise could interfere with the effect of arsenic exposure on the long-term memory (LTM) of object recognition in mice. Arsenic (0, 1, 3, and 10 mg/ kg, i.g.) was administered daily for 12 weeks. We found that arsenic at dosages of 1, 3, and 10 mg/kg decreased body weight and increased the arsenic content in the brain. The object recognition LTM (tested 24 h after training) was disrupted by 3 mg/ kg and 10 mg/ kg, but not 1 mg/ kg arsenic exposure. Swimming exercise also prevented LTM impairment induced by 3 mg/ kg, but not with 10 mg/ kg, of arsenic exposure. The expression of brain-derived neurotrophic factor (BDNF) and phosphorylated cAMP-response element binding protein (pCREB) in the CA1 and dentate gyrus areas (DG) of the dorsal hippocampus were decreased by 3 mg/ kg and 10 mg/ kg, but not by 1 mg/ kg, of arsenic exposure. The decrease in BDNF and pCREB in the CA1 and DG induced by 3 mg/ kg, but not 10 mg/ kg, of arsenic exposure were prevented by swimming exercise. Arsenic exposure did not affect the total CREB expression in the CA1 or DG. Taken together, these results indicated that swimming exercise prevented the impairment of object recognition LTM induced by arsenic exposure, which may be mediated by BDNF and CREB in the dorsal hippocampus.
Collapse
Affiliation(s)
- Bao-Fei Sun
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Qing-Qing Wang
- Department of Hospital Infection Management, Affiliated Hospital of Guiyang Medical University, Guiyang, 550004, China
| | - Zi-Jiang Yu
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Yan Yu
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Chao-Lun Xiao
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Chao-Sheng Kang
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Guo Ge
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Yan Linghu
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Jun-De Zhu
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Yu-Mei Li
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Qiang-Ming Li
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Shi-Peng Luo
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Dang Yang
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Lin Li
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Wen-Yan Zhang
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Guang Tian
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| |
Collapse
|
62
|
Singh MK, Yadav SS, Yadav RS, Chauhan A, Katiyar D, Khattri S. Protective effect of Emblica-officinalis in arsenic induced biochemical alteration and inflammation in mice. SPRINGERPLUS 2015; 4:438. [PMID: 26312203 PMCID: PMC4545902 DOI: 10.1186/s40064-015-1227-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/10/2015] [Indexed: 12/21/2022]
Abstract
Exposure to arsenic in individuals has been found to be associated with immune related problems. In earlier studies, we have demonstrated that amla protects against arsenic induced oxidative stress and apoptosis in thymus and spleen of mice. In continuation to that the present study has therefore been focused to investigate the
protective efficacy of amla in arsenic induced inflammation and immunotoxicity in mice. The results showed that arsenic treatment significantly increased serum urea levels (69 %), glucose levels (48 %) and triglyceride levels (66 %) as compared to controls. Mice exposed to arsenic exhibited significant increased in TNF-α (4.3-fold), serum Interleukin-1 beta (threefold), Interleukin-6 (3.8-fold) as compared to controls. Arsenic exposure increased the relative frequency of CD8+ (Tc) cells sub-population (18.9 %) and decreased CD4+ (Th) cells (2.6 %). Arsenic exposure also significantly decreased T (CD3) and B (CD19) cells (21.1 %) as compared to controls. Simultaneously treatment with arsenic and amla significantly inhibited serum urea levels (47 %), glucose levels (50 %) and triglyceride levels (14 %). It also significantly decreased the TNF-α (1.1-fold), levels of IL-1β (1.6-fold), levels of Interleukin-6 (1.3-fold) in serum as compared to those treated with arsenic alone. Simultaneously treatment with arsenic and amla restored the alterations in CD8+ and CD4+ cells and also recovered the damages in B and T sub cells population. Results of the present study clearly indicate that arsenic induced immunotoxicity linked with inflammation has been significantly protected through simultaneous treatment with arsenic and amla that was due to anti-inflammatory and antioxidant activity of amla.
Collapse
Affiliation(s)
- Manish K Singh
- Department of Pharmacology, King George Medical University, Lucknow, 226 003 UP India
| | - Suraj Singh Yadav
- Department of Pharmacology, King George Medical University, Lucknow, 226 003 UP India
| | - Rajesh Singh Yadav
- Department of Criminology and Forensic Science, School of Applied Sciences, Dr. Harisingh Gour Central University, Sagar, 470 003 MP India
| | - Abhishek Chauhan
- Department of Pharmacology, King George Medical University, Lucknow, 226 003 UP India
| | - Devendra Katiyar
- Department of Pharmacology, King George Medical University, Lucknow, 226 003 UP India
| | - Sanjay Khattri
- Department of Pharmacology, King George Medical University, Lucknow, 226 003 UP India
| |
Collapse
|
63
|
Andrade VL, Mateus ML, Batoréu MC, Aschner M, Marreilha dos Santos AP. Lead, Arsenic, and Manganese Metal Mixture Exposures: Focus on Biomarkers of Effect. Biol Trace Elem Res 2015; 166:13-23. [PMID: 25693681 PMCID: PMC4470849 DOI: 10.1007/s12011-015-0267-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/04/2015] [Indexed: 10/24/2022]
Abstract
The increasing exposure of human populations to excessive levels of metals continues to represent a matter of public health concern. Several biomarkers have been studied and proposed for the detection of adverse health effects induced by lead (Pb), arsenic (As), and manganese (Mn); however, these studies have relied on exposures to each single metal, which fails to replicate real-life exposure scenarios. These three metals are commonly detected in different environmental, occupational, and food contexts and they share common neurotoxic effects, which are progressive and once clinically apparent may be irreversible. Thus, chronic exposure to low levels of a mixture of these metals may represent an additive risk of toxicity. Building upon their shared mechanisms of toxicity, such as oxidative stress, interference with neurotransmitters, and effects on the hematopoietic system, we address putative biomarkers, which may assist in assessing the onset of neurological diseases associated with exposure to this metal mixture.
Collapse
Affiliation(s)
- VL Andrade
- Instituto de Investigação do Medicamento, iMed.UL, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - ML Mateus
- Instituto de Investigação do Medicamento, iMed.UL, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - MC Batoréu
- Instituto de Investigação do Medicamento, iMed.UL, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - M Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 10461 NY, USA
| | - AP Marreilha dos Santos
- Instituto de Investigação do Medicamento, iMed.UL, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Corresponding author – , Tel – 351217946400, Fax - 351217946470
| |
Collapse
|
64
|
Oz M, Nurullahoglu Atalik KE, Yerlikaya FH, Demir EA. Curcumin alleviates cisplatin-induced learning and memory impairments. Neurobiol Learn Mem 2015; 123:43-9. [PMID: 25982942 DOI: 10.1016/j.nlm.2015.05.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/02/2015] [Accepted: 05/05/2015] [Indexed: 11/26/2022]
Abstract
The present study has been designed to investigate the role of curcumin on cisplatin-inducedcognitive impairment and to reveal mechanisms of cisplatin's detrimental actions on cognition in rats. Animals were treated with cisplatin (5mg/kg/week) and/or curcumin (300mg/kg/day) for 5weeks. Morris water maze test was used to assess spatial learning and memory. Enzymatic activities of acetylcholinesterase (AChE) and superoxide dismutase (SOD) were evaluated from hippocampus and plasma samples, and malondialdehyde (MDA), which is the end-product of lipid peroxidation, was determined by a colorimetric method. Our results showed that cisplatin (5mg/kg/week, 5weeks) caused learning and memory deficits, elevated MDA content, decreased SOD activity in the hippocampus and plasma, and AChE activity in the hippocampus. Curcumin improved learning and memory in rats with administration of cisplatin. In addition, curcumin significantly reduced the level of MDA and increased the activities of SOD and AChE. Taken together, our findings indicate that curcumin ameliorates cisplatin-induced spatial learning and memory impairment, possibly through restored cholinergic function and enhanced oxidative status.
Collapse
Affiliation(s)
- Mehmet Oz
- School of Health Services, Mevlana (Rumi) University, Konya, Turkey.
| | | | - F Humeyra Yerlikaya
- Department of Biochemistry, Faculty of Meram Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Enver Ahmet Demir
- Department of Physiology, Faculty of Medicine, Mustafa Kemal University, Hatay, Turkey
| |
Collapse
|
65
|
Cox KHM, Pipingas A, Scholey AB. Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population. J Psychopharmacol 2015; 29:642-51. [PMID: 25277322 DOI: 10.1177/0269881114552744] [Citation(s) in RCA: 216] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Curcumin possesses many properties which may prevent or ameliorate pathological processes underlying age-related cognitive decline, dementia or mood disorders. These benefits in preclinical studies have not been established in humans. This randomized, double-blind, placebo-controlled trial examined the acute (1 and 3 h after a single dose), chronic (4 weeks) and acute-on-chronic (1 and 3 h after single dose following chronic treatment) effects of solid lipid curcumin formulation (400 mg as Longvida®) on cognitive function, mood and blood biomarkers in 60 healthy adults aged 60-85. One hour after administration curcumin significantly improved performance on sustained attention and working memory tasks, compared with placebo. Working memory and mood (general fatigue and change in state calmness, contentedness and fatigue induced by psychological stress) were significantly better following chronic treatment. A significant acute-on-chronic treatment effect on alertness and contentedness was also observed. Curcumin was associated with significantly reduced total and LDL cholesterol and had no effect on hematological safety measures. To our knowledge this is the first study to examine the effects of curcumin on cognition and mood in a healthy older population or to examine any acute behavioral effects in humans. Results highlight the need for further investigation of the potential psychological and cognitive benefits of curcumin in an older population.
Collapse
Affiliation(s)
- Katherine H M Cox
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Andrew Pipingas
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Andrew B Scholey
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| |
Collapse
|
66
|
Lee J, Jo DG, Park D, Chung HY, Mattson MP. Adaptive cellular stress pathways as therapeutic targets of dietary phytochemicals: focus on the nervous system. Pharmacol Rev 2015; 66:815-68. [PMID: 24958636 DOI: 10.1124/pr.113.007757] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
During the past 5 decades, it has been widely promulgated that the chemicals in plants that are good for health act as direct scavengers of free radicals. Here we review evidence that favors a different hypothesis for the health benefits of plant consumption, namely, that some phytochemicals exert disease-preventive and therapeutic actions by engaging one or more adaptive cellular response pathways in cells. The evolutionary basis for the latter mechanism is grounded in the fact that plants produce natural antifeedant/noxious chemicals that discourage insects and other organisms from eating them. However, in the amounts typically consumed by humans, the phytochemicals activate one or more conserved adaptive cellular stress response pathways and thereby enhance the ability of cells to resist injury and disease. Examplesof such pathways include those involving the transcription factors nuclear factor erythroid 2-related factor 2, nuclear factor-κB, hypoxia-inducible factor 1α, peroxisome proliferator-activated receptor γ, and forkhead box subgroup O, as well as the production and action of trophic factors and hormones. Translational research to develop interventions that target these pathways may lead to new classes of therapeutic agents that act by stimulating adaptive stress response pathways to bolster endogenous defenses against tissue injury and disease. Because neurons are particularly sensitive to potentially noxious phytochemicals, we focus on the nervous system but also include findings from other cell types in which actions of phytochemicals on specific signal transduction pathways have been more thoroughly studied.
Collapse
Affiliation(s)
- Jaewon Lee
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Dong-Gyu Jo
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Daeui Park
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Mark P Mattson
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| |
Collapse
|
67
|
Maurya SK, Mishra J, Abbas S, Bandyopadhyay S. Cypermethrin Stimulates GSK3β-Dependent Aβ and p-tau Proteins and Cognitive Loss in Young Rats: Reduced HB-EGF Signaling and Downstream Neuroinflammation as Critical Regulators. Mol Neurobiol 2015; 53:968-982. [PMID: 25575682 DOI: 10.1007/s12035-014-9061-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
Abstract
Pesticide exposure is recognized as a risk factor for Alzheimer's disease (AD). We investigated early signs of AD-like pathology upon exposure to a pyrethroid pesticide, cypermethrin, reported to impair neurodevelopment. We treated weanling rats with cypermethrin (10 and 25 mg/kg) and detected dose-dependent increase in the key proteins of AD, amyloid beta (Aβ), and phospho-tau, in frontal cortex and hippocampus as early as postnatal day 45. Upregulation of Aβ pathway involved an increase in amyloid precursor protein (APP) and its pro-amyloidogenic processing through beta-secretase (BACE) and gamma-secretase. Tau pathway entailed elevation in tau and glycogen-synthase kinase-3-beta (GSK3β)-dependent, phospho-tau. GSK3β emerged as a molecular link between the two pathways, evident from reduction in phospho-tau as well as BACE upon treating GSK3β inhibitor, lithium chloride. Exploring the mechanism revealed an attenuated heparin-binding epidermal growth factor (HB-EGF) signaling and downstream astrogliosis-mediated neuroinflammation to be responsible for inducing Aβ and phospho-tau. Cypermethrin caused a proximal reduction in HB-EGF, which promoted astrocytic nuclear factor kappa B signaling and astroglial activation close to Aβ and phospho-tau. Glial activation stimulated generation of interleukin-1 (IL-1), which upregulated GSK3β, and APP and tau as well, resulting in co-localization of Aβ and phospho-tau with IL-1 receptor. Intracerebral insertion of exogenous HB-EGF restored its own signaling and suppressed neuroinflammation and thereby Aβ and phospho-tau in cypermethrin-exposed rats, proving a central role of reduced HB-EGF signaling in cypermethrin-mediated neurodegeneration. Furthermore, cypermethrin stimulated cognitive impairments, which could be prevented by exogenous HB-EGF. Our data demonstrate that cypermethrin induces premature upregulation of GSK3β-dependent Aβ and tau pathways, where HB-EGF signaling and neuroinflammation serve as essential regulators.
Collapse
Affiliation(s)
- Shailendra Kumar Maurya
- Developmental Toxicology, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, 226001, India
| | - Juhi Mishra
- Developmental Toxicology, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, 226001, India
| | - Sabiya Abbas
- Food and Chemical Toxicology, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, 226001, India
| | - Sanghamitra Bandyopadhyay
- Developmental Toxicology, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, 226001, India.
| |
Collapse
|
68
|
Ashok A, Rai NK, Tripathi S, Bandyopadhyay S. Exposure to As-, Cd-, and Pb-mixture induces Aβ, amyloidogenic APP processing and cognitive impairments via oxidative stress-dependent neuroinflammation in young rats. Toxicol Sci 2014; 143:64-80. [PMID: 25288670 DOI: 10.1093/toxsci/kfu208] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Environmental pollutants act as risk factors for Alzheimer's disease (AD), mainly affecting the aging population. We investigated early manifestations of AD-like pathology by a mixture of arsenic (As), cadmium (Cd), and lead (Pb), reported to impair neurodevelopment. We treated rats with As+Cd+Pb at their concentrations detected in groundwater of India, ie, 0.38, 0.098, and 0.22 ppm or 10 times of each, respectively, from gestation-05 to postnatal day-180. We identified dose-dependent increase in amyloid-beta (Aβ) in frontal cortex and hippocampus as early as post-weaning. The effect was strongly significant during early-adulthood, reaching levels comparable to an Aβ-infused AD-like rat model. The metals activated the proamyloidogenic pathway, mediated by increase in amyloid precursor protein (APP), and subsequent beta secretase (BACE) and presenilin (PS)-mediated APP-processing. Investigating the mechanism of Aβ-induction revealed an augmentation in oxidative stress-dependent neuroinflammation that stimulated APP expression through interleukin-responsive-APP-mRNA 5'-untranslated region. We then examined the effects of individual metals and binary mixtures in comparison with the tertiary. Among individual metals, Pb triggered maximum induction of Aβ, whereas individual As or Cd had a relatively non-significant effect on Aβ despite enhanced APP, owing to reduced induction of BACE and PS. Interestingly, when combined the metals demonstrated synergism, with a major contribution by As. The synergistic effect was significant and consistent in tertiary mixture, resulting in the augmentation of Aβ. Eventually, increase in Aβ culminated in cognitive impairments in the young rats. Together, our data demonstrate that exposure to As+Cd+Pb induces premature manifestation of AD-like pathology that is synergistic, and oxidative stress and inflammation dependent.
Collapse
Affiliation(s)
- Anushruti Ashok
- *Academy of Scientific and Innovative Research, CSIR-IITR campus, Lucknow and Developmental Toxicology Division, CSIR-IITR Campus, Lucknow 226001, India *Academy of Scientific and Innovative Research, CSIR-IITR campus, Lucknow and Developmental Toxicology Division, CSIR-IITR Campus, Lucknow 226001, India
| | - Nagendra Kumar Rai
- *Academy of Scientific and Innovative Research, CSIR-IITR campus, Lucknow and Developmental Toxicology Division, CSIR-IITR Campus, Lucknow 226001, India *Academy of Scientific and Innovative Research, CSIR-IITR campus, Lucknow and Developmental Toxicology Division, CSIR-IITR Campus, Lucknow 226001, India
| | - Sachin Tripathi
- *Academy of Scientific and Innovative Research, CSIR-IITR campus, Lucknow and Developmental Toxicology Division, CSIR-IITR Campus, Lucknow 226001, India
| | - Sanghamitra Bandyopadhyay
- *Academy of Scientific and Innovative Research, CSIR-IITR campus, Lucknow and Developmental Toxicology Division, CSIR-IITR Campus, Lucknow 226001, India *Academy of Scientific and Innovative Research, CSIR-IITR campus, Lucknow and Developmental Toxicology Division, CSIR-IITR Campus, Lucknow 226001, India
| |
Collapse
|
69
|
Ameliorative Action of Curcumin in Cisplatin-mediated Hepatotoxicity: An In Vivo Study in Wistar Rats. Arch Med Res 2014; 45:462-8. [DOI: 10.1016/j.arcmed.2014.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 07/16/2014] [Indexed: 12/14/2022]
|
70
|
Srivastava P, Yadav RS, Chandravanshi LP, Shukla RK, Dhuriya YK, Chauhan LKS, Dwivedi HN, Pant AB, Khanna VK. Unraveling the mechanism of neuroprotection of curcumin in arsenic induced cholinergic dysfunctions in rats. Toxicol Appl Pharmacol 2014; 279:428-440. [PMID: 24952339 DOI: 10.1016/j.taap.2014.06.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/06/2014] [Accepted: 06/07/2014] [Indexed: 12/20/2022]
Abstract
Earlier, we found that arsenic induced cholinergic deficits in rat brain could be protected by curcumin. In continuation to this, the present study is focused to unravel the molecular mechanisms associated with the protective efficacy of curcumin in arsenic induced cholinergic deficits. Exposure to arsenic (20mg/kg body weight, p.o) for 28 days in rats resulted to decrease the expression of CHRM2 receptor gene associated with mitochondrial dysfunctions as evident by decrease in the mitochondrial membrane potential, activity of mitochondrial complexes and enhanced apoptosis both in the frontal cortex and hippocampus in comparison to controls. The ultrastructural images of arsenic exposed rats, assessed by transmission electron microscope, exhibited loss of myelin sheath and distorted cristae in the mitochondria both in the frontal cortex and hippocampus as compared to controls. Simultaneous treatment with arsenic (20mg/kg body weight, p.o) and curcumin (100mg/kg body weight, p.o) for 28 days in rats was found to protect arsenic induced changes in the mitochondrial membrane potential and activity of mitochondrial complexes both in frontal cortex and hippocampus. Alterations in the expression of pro- and anti-apoptotic proteins and ultrastructural damage in the frontal cortex and hippocampus following arsenic exposure were also protected in rats simultaneously treated with arsenic and curcumin. The data of the present study reveal that curcumin could protect arsenic induced cholinergic deficits by modulating the expression of pro- and anti-apoptotic proteins in the brain. More interestingly, arsenic induced functional and ultrastructural changes in the brain mitochondria were also protected by curcumin.
Collapse
Affiliation(s)
- Pranay Srivastava
- CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001, India
| | - Rajesh S Yadav
- CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001, India; Department of Crimnology and Forensic Science, Harisingh Gour University, Sagar 470 003, India
| | - Lalit P Chandravanshi
- CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001, India
| | - Rajendra K Shukla
- CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001, India
| | - Yogesh K Dhuriya
- CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001, India
| | - Lalit K S Chauhan
- CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001, India
| | - Hari N Dwivedi
- Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 227 015, India
| | - Aditiya B Pant
- CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001, India
| | - Vinay K Khanna
- CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001, India.
| |
Collapse
|
71
|
García-Niño WR, Pedraza-Chaverrí J. Protective effect of curcumin against heavy metals-induced liver damage. Food Chem Toxicol 2014; 69:182-201. [PMID: 24751969 DOI: 10.1016/j.fct.2014.04.016] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/05/2014] [Accepted: 04/08/2014] [Indexed: 02/06/2023]
Abstract
Occupational or environmental exposures to heavy metals produce several adverse health effects. The common mechanism determining their toxicity and carcinogenicity is the generation of oxidative stress that leads to hepatic damage. In addition, oxidative stress induced by metal exposure leads to the activation of the nuclear factor (erythroid-derived 2)-like 2/Kelch-like ECH-associated protein 1/antioxidant response elements (Nrf2/Keap1/ARE) pathway. Since antioxidant and chelating agents are generally used for the treatment of heavy metals poisoning, this review is focused on the protective role of curcumin against liver injury induced by heavy metals. Curcumin has shown, in clinical and preclinical studies, numerous biological activities including therapeutic efficacy against various human diseases and anti-hepatotoxic effects against environmental or occupational toxins. Curcumin reduces the hepatotoxicity induced by arsenic, cadmium, chromium, copper, lead and mercury, prevents histological injury, lipid peroxidation and glutathione (GSH) depletion, maintains the liver antioxidant enzyme status and protects against mitochondrial dysfunction. The preventive effect of curcumin on the noxious effects induced by heavy metals has been attributed to its scavenging and chelating properties, and/or to the ability to induce the Nrf2/Keap1/ARE pathway. However, additional research is needed in order to propose curcumin as a potential protective agent against liver damage induced by heavy metals.
Collapse
Affiliation(s)
- Wylly Ramsés García-Niño
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), University City, 04510 D.F., Mexico
| | - José Pedraza-Chaverrí
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), University City, 04510 D.F., Mexico.
| |
Collapse
|
72
|
Tyler CR, Allan AM. The Effects of Arsenic Exposure on Neurological and Cognitive Dysfunction in Human and Rodent Studies: A Review. Curr Environ Health Rep 2014; 1:132-147. [PMID: 24860722 PMCID: PMC4026128 DOI: 10.1007/s40572-014-0012-1] [Citation(s) in RCA: 332] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Arsenic toxicity is a worldwide health concern as several millions of people are exposed to this toxicant via drinking water, and exposure affects almost every organ system in the body including the brain. Recent studies have shown that even low concentrations of arsenic impair neurological function, particularly in children. This review will focus on the current epidemiological evidence of arsenic neurotoxicity in children and adults, with emphasis on cognitive dysfunction, including learning and memory deficits and mood disorders. We provide a cohesive synthesis of the animal studies that have focused on neural mechanisms of dysfunction after arsenic exposure including altered epigenetics; hippocampal function; glucocorticoid and hypothalamus-pituitary-adrenal axis (HPA) pathway signaling; glutamatergic, cholinergic and monoaminergic signaling; adult neurogenesis; and increased Alzheimer’s-associated pathologies. Finally, we briefly discuss new studies focusing on therapeutic strategies to combat arsenic toxicity including the use of selenium and zinc.
Collapse
Affiliation(s)
- Christina R Tyler
- Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, NM USA
| | - Andrea M Allan
- Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, NM USA
| |
Collapse
|
73
|
Yadav RS, Tiwari NK. Lipid integration in neurodegeneration: an overview of Alzheimer's disease. Mol Neurobiol 2014; 50:168-76. [PMID: 24590317 DOI: 10.1007/s12035-014-8661-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/11/2014] [Indexed: 12/14/2022]
Abstract
Various types of lipids and their metabolic products associated with the biological membrane play a crucial role in signal transduction, modulation, and activation of receptors and as precursors of bioactive lipid mediators. Dysfunction in the lipid homeostasis in the brain could be a risk factor for the many types of neurodegenerative disorders, including Alzheimer's disease, Huntington's disease, Parkinson's disease, and amyotrophic lateral sclerosis. These neurodegenerative disorders are marked by extensive neuronal apoptosis, gliosis, and alteration in the differentiation, proliferation, and development of neurons. Sphingomyelin, a constituent of plasma membrane, as well as its primary metabolite ceramide acts as a potential lipid second messenger molecule linked with the modulation of various cellular signaling pathways. Excessive production of reactive oxygen species associated with enhanced oxidative stress has been implicated with these molecules and involved in the regulation of a variety of different neurodegenerative and neuroinflammatory disorders. Studies have shown that alterations in the levels of plasma lipid/cholesterol concentration may result to neurodegenerative diseases. Alteration in the levels of inflammatory cytokines and mediators in the brain has also been found to be implicated in the pathophysiology of neurodegenerative diseases. Although several mechanisms involved in neuronal apoptosis have been described, the molecular mechanisms underlying the correlation between lipid metabolism and the neurological deficits are not clearly understood. In the present review, an attempt has been made to provide detailed information about the association of lipids in neurodegeneration especially in Alzheimer's disease.
Collapse
Affiliation(s)
- Rajesh Singh Yadav
- Department of Criminology and Forensic Science, School of Applied Sciences, Dr. Harisingh Gour Central University, Sagar, MP, 470003, India
| | | |
Collapse
|
74
|
Chandravanshi LP, Yadav RS, Shukla RK, Singh A, Sultana S, Pant AB, Parmar D, Khanna VK. Reversibility of changes in brain cholinergic receptors and acetylcholinesterase activity in rats following early life arsenic exposure. Int J Dev Neurosci 2014; 34:60-75. [DOI: 10.1016/j.ijdevneu.2014.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/25/2014] [Accepted: 01/31/2014] [Indexed: 11/27/2022] Open
Affiliation(s)
| | - Rajesh S. Yadav
- CSIR‐Indian Institute of Toxicology ResearchPost Box 80, MG MargLucknow226 001India
- Department of Criminology and Forensic ScienceHarisingh Gour UniversitySagar470003India
| | - Rajendra K. Shukla
- CSIR‐Indian Institute of Toxicology ResearchPost Box 80, MG MargLucknow226 001India
| | - Anshuman Singh
- CSIR‐Indian Institute of Toxicology ResearchPost Box 80, MG MargLucknow226 001India
| | - Sarwat Sultana
- Neurotoxicology LaboratoryDepartment of Medical Elementology and ToxicologyJamia HamdardNew Delhi110 062India
| | - Aditya B. Pant
- CSIR‐Indian Institute of Toxicology ResearchPost Box 80, MG MargLucknow226 001India
| | - Devendra Parmar
- CSIR‐Indian Institute of Toxicology ResearchPost Box 80, MG MargLucknow226 001India
| | - Vinay K. Khanna
- CSIR‐Indian Institute of Toxicology ResearchPost Box 80, MG MargLucknow226 001India
| |
Collapse
|
75
|
Singh MK, Dwivedi S, Yadav SS, Sharma P, Khattri S. Arsenic-Induced Hepatic Toxicity and Its Attenuation by Fruit Extract of Emblica officinalis (Amla) in Mice. Indian J Clin Biochem 2014; 29:29-37. [PMID: 24478546 PMCID: PMC3903921 DOI: 10.1007/s12291-013-0353-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 05/30/2013] [Indexed: 10/26/2022]
Abstract
Arsenic a metalloid and environmental contaminated has been found to be associated with public health problems in the affected areas. It is naturally occurred in groundwater and its accumulation in plant and animals leads to toxicity in several tissues most notably hepatic organ. Arsenic exposures (3 mg/kg body weight/day for 30 days) in mice exhibited increased arsenic and Zn levels in hepatocytes associated with enhanced oxidative stress in hepatocytes while there were no significantly changes were observed in Cu level. An increase in the lipid peroxidation and decrease in the levels of reduced glutathione and activity of superoxide dismutase, catalase, and glutathione peroxidase were observed in arsenic treated mice as compared to controls. Arsenic exposure in mice also caused a significant change in serum biomarkers in the SGOT, SGPT and creatinine as compared to the controls. There were no significant changes in the serum levels of total protein in these mice. Co-administration of arsenic and fruit extract of amla (500 mg/kg body weight/day for 30 days) caused a significant reduction of arsenic transference associated with significantly decreases hepatic arsenic levels and balanced the antioxidant enzyme and levels of serum hepatic enzymes like SGOT and SGPT. The results of the present study clearly demonstrate the antioxidant property of amla that could be responsible for its protective efficacy in arsenic induced hepatic toxicity.
Collapse
Affiliation(s)
- Manish K. Singh
- />Department of Pharmacology, King George’s Medical University, Lucknow, 226 003 India
| | - Shailendra Dwivedi
- />Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 India
| | - Suraj S. Yadav
- />Department of Pharmacology, King George’s Medical University, Lucknow, 226 003 India
| | - Praveen Sharma
- />Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 India
| | - Sanjay Khattri
- />Department of Pharmacology, King George’s Medical University, Lucknow, 226 003 India
| |
Collapse
|
76
|
Ali Hussei S, El-Said Az M, Kamal El-S S. Protective Effect of Curcumin on Antioxidant Defense System and Oxidative Stress in Liver Tissue of Iron Overloading Rats. ACTA ACUST UNITED AC 2013. [DOI: 10.3923/ajcn.2014.1.17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
77
|
Rashid K, Sinha K, Sil PC. An update on oxidative stress-mediated organ pathophysiology. Food Chem Toxicol 2013; 62:584-600. [PMID: 24084033 DOI: 10.1016/j.fct.2013.09.026] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/29/2013] [Accepted: 09/19/2013] [Indexed: 12/29/2022]
Abstract
Exposure to environmental pollutants and drugs can result in pathophysiological situations in the body. Research in this area is essential as the knowledge on cellular survival and death would help in designing effective therapeutic strategies that are needed for the maintenance of the normal physiological functions of the body. In this regard, naturally occurring bio-molecules can be considered as potential therapeutic targets as they are normally available in commonly consumed foodstuffs and are thought to have minimum side effects. This review article describes the detailed mechanisms of oxidative stress-mediated organ pathophysiology and the ultimate fate of the cells either to survive or to undergo necrotic or apoptotic death. The mechanisms underlying the beneficial role of a number of naturally occurring bioactive molecules in oxidative stress-mediated organ pathophysiology have also been included in the review. The review provides useful information about the recent progress in understanding the mechanism(s) of various types of organ pathophysiology, the complex cross-talk between these pathways, as well as their modulation in stressed conditions. Additionally, it suggests possible therapeutic applications of a number of naturally occurring bioactive molecules in conditions involving oxidative stress.
Collapse
Affiliation(s)
- Kahkashan Rashid
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Calcutta 700054, West Bengal, India
| | | | | |
Collapse
|
78
|
Tyler CR, Allan AM. Adult hippocampal neurogenesis and mRNA expression are altered by perinatal arsenic exposure in mice and restored by brief exposure to enrichment. PLoS One 2013; 8:e73720. [PMID: 24019935 PMCID: PMC3760820 DOI: 10.1371/journal.pone.0073720] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/23/2013] [Indexed: 01/30/2023] Open
Abstract
Arsenic is a common and pervasive environmental contaminant found in drinking water in varying concentrations depending on region. Exposure to arsenic induces behavioral and cognitive deficits in both human populations and in rodent models. The Environmental Protection Agency (EPA) standard for the allotment of arsenic in drinking water is in the parts-per-billion range, yet our lab has shown that 50 ppb arsenic exposure during development can have far-reaching consequences into adulthood, including deficits in learning and memory, which have been linked to altered adult neurogenesis. Given that the morphological impact of developmental arsenic exposure on the hippocampus is unknown, we sought to evaluate proliferation and differentiation of adult neural progenitor cells in the dentate gyrus after 50 ppb arsenic exposure throughout the perinatal period of development in mice (equivalent to all three trimesters in humans) using a BrdU pulse-chase assay. Proliferation of the neural progenitor population was decreased by 13% in arsenic-exposed mice, but was not significant. However, the number of differentiated cells was significantly decreased by 41% in arsenic-exposed mice compared to controls. Brief, daily exposure to environmental enrichment significantly increased proliferation and differentiation in both control and arsenic-exposed animals. Expression levels of 31% of neurogenesis-related genes including those involved in Alzheimer's disease, apoptosis, axonogenesis, growth, Notch signaling, and transcription factors were altered after arsenic exposure and restored after enrichment. Using a concentration previously considered safe by the EPA, perinatal arsenic exposure altered hippocampal morphology and gene expression, but did not inhibit the cellular neurogenic response to enrichment. It is possible that behavioral deficits observed during adulthood in animals exposed to arsenic during development derive from the lack of differentiated neural progenitor cells necessary for hippocampal-dependent learning. This study is the first to determine the impact of arsenic exposure during development on adult hippocampal neurogenesis and related gene expression.
Collapse
Affiliation(s)
- Christina R. Tyler
- Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Andrea M. Allan
- Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
79
|
Curcumin attenuates arsenic-induced hepatic injuries and oxidative stress in experimental mice through activation of Nrf2 pathway, promotion of arsenic methylation and urinary excretion. Food Chem Toxicol 2013; 59:739-47. [DOI: 10.1016/j.fct.2013.07.032] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 07/09/2013] [Accepted: 07/11/2013] [Indexed: 12/30/2022]
|
80
|
Sharma B, Sharma PM. Arsenic toxicity induced endothelial dysfunction and dementia: pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors. Toxicol Appl Pharmacol 2013; 273:180-8. [PMID: 23921152 DOI: 10.1016/j.taap.2013.07.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 07/18/2013] [Accepted: 07/19/2013] [Indexed: 12/11/2022]
Abstract
Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment of learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate & brain GSH levels along with increase in serum & brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia.
Collapse
Affiliation(s)
- Bhupesh Sharma
- Department of Pharmacology and Toxicology, School of Pharmacy, Bharat Institute of Technology, Partapur Bypass, Meerut, Uttar Pradesh, India.
| | | |
Collapse
|
81
|
Singh MK, Yadav SS, Gupta V, Khattri S. Immunomodulatory role of Emblica officinalis in arsenic induced oxidative damage and apoptosis in thymocytes of mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:193. [PMID: 23889914 PMCID: PMC3733846 DOI: 10.1186/1472-6882-13-193] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/25/2013] [Indexed: 12/27/2022]
Abstract
BACKGROUND Arsenic is widely distributed in the environment and has been found to be associated with the various health related problems including skin lesions, cancer, cardiovascular and immunological disorders. The fruit extract of Emblica officinalis (amla) has been shown to have anti-oxidative and immunomodulatory properties. In view of increasing health risk of arsenic, the present study has been carried out to investigate the protective effect of amla against arsenic induced oxidative stress and apoptosis in thymocytes of mice. METHODS Mice were exposed to arsenic (sodium arsenite 3 mg/kg body weight p.o.) or amla (500 mg/kg body weight p.o.) or simultaneously with arsenic and amla for 28 days. The antioxidant enzyme assays were carried out using spectrophotometer and generation of ROS, apoptotic parameters, change in cell cycle were carried out using flow cytometer following the standard protocols. RESULTS Arsenic exposure to mice caused a significant increase in the lipid peroxidation, ROS production and decreased cell viability, levels of reduced glutathione, the activity of superoxide dismutase, catalase, cytochrome c oxidase and mitochondrial membrane potential in the thymus as compared to controls. Increased activity of caspase-3 linked with apoptosis assessed by the cell cycle analysis and annexin V/PI binding was also observed in mice exposed to arsenic as compared to controls. Co-treatment with arsenic and amla decreased the levels of lipid peroxidation, ROS production, activity of caspase-3, apoptosis and increased cell viability, levels of antioxidant enzymes, cytochrome c oxidase and mitochondrial membrane potential as compared to mice treated with arsenic alone. CONCLUSIONS The results of the present study exhibits that arsenic induced oxidative stress and apoptosis significantly protected by co-treatment with amla that could be due to its strong antioxidant potential.
Collapse
Affiliation(s)
- Manish K Singh
- Department of Pharmacology, King George Medical University, Lucknow, Chowk 226 003, India
| | - Suraj S Yadav
- Department of Pharmacology, King George Medical University, Lucknow, Chowk 226 003, India
| | - Vineeta Gupta
- Department of Pharmacology, King George Medical University, Lucknow, Chowk 226 003, India
| | - Sanjay Khattri
- Department of Pharmacology, King George Medical University, Lucknow, Chowk 226 003, India
| |
Collapse
|
82
|
Orhan IE. Nature: a substantial source of auspicious substances with acetylcholinesterase inhibitory action. Curr Neuropharmacol 2013; 11:379-87. [PMID: 24381529 PMCID: PMC3744902 DOI: 10.2174/1570159x11311040003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 12/26/2022] Open
Abstract
Acetylcholinesterase (AChE) (EC 3.1.1.7) is an important enzyme that breaks down of acetylcholine in synaptic cleft in neuronal junctions. Inhibition of AChE is associated with treatment of several diseases such as Alzheimer's disease (AD), myasthenia gravis, and glaucoma as well as the mechanisms of insecticide and anthelmintic drugs. Several AChE inhibitors are available in clinical use currently for the treatment of AD; however, none of them has ability, yet, to seize progress of the disease. Consequently, an extensive research has been going on finding new AChE inhibitors. In this sense, natural inhibitors have gained great attention due to their encouraging effects toward AChE. In this review, promising candidate molecules with marked AChE inhibition from both plant and animal sources will be underlined.
Collapse
Affiliation(s)
- Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Eastern Mediterranean University, Gazimagosa, The Northern Cyprus via Turkey
| |
Collapse
|
83
|
Hishikawa N, Takahashi Y, Amakusa Y, Tanno Y, Tuji Y, Niwa H, Murakami N, Krishna UK. Effects of turmeric on Alzheimer's disease with behavioral and psychological symptoms of dementia. Ayu 2013; 33:499-504. [PMID: 23723666 PMCID: PMC3665200 DOI: 10.4103/0974-8520.110524] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
We describe here three patients with the Alzheimer's Disease (AD) whose behavioral symptoms were improved remarkably as a result of the turmeric treatment, which is the traditional Indian medicine. Their cognitive decline and Behavioral and Psychological Symptoms of Dementia (BPSD) were very severe. All three patients exhibited irritability, agitation, anxiety, and apathy, two patients suffer from urinary incontinence and wonderings. They were prescribed turmeric powder capsules and started recovering from these symptoms without any adverse reaction in the clinical symptom and laboratory data. After 12 weeks of the treatment, total score of the Neuro-Psychiatric Inventory-brief questionnaire decreased significantly in both acuity of symptoms and burden of caregivers. In one case, the Mini-Mental State Examination (MMSE) score was up five points, from 12/30 to 17/30. In the other two cases, no significant change was seen in the MMSE; however, they came to recognize their family within 1 year treatment. All cases have been taking turmeric for more than 1 year, re-exacerbation of BPSD was not seen. The present cases suggest a significant improvement of the behavioral symptoms in the AD with the turmeric treatment, leading to probable benefit of the use of turmeric in individuals with the AD with BPSD.
Collapse
Affiliation(s)
- Nozomi Hishikawa
- Chief Physician, Department of Neurology, Kariya Toyota General Hospital, Kariya City, Aichi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Das J, Roy A, Sil PC. Mechanism of the protective action of taurine in toxin and drug induced organ pathophysiology and diabetic complications: a review. Food Funct 2013; 3:1251-64. [PMID: 22930035 DOI: 10.1039/c2fo30117b] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Taurine (2-aminoethanesulfonic acid), a conditionally essential amino acid, is found in large concentrations in all mammalian tissues and is particularly abundant in aquatic foods. Taurine exhibits membrane stabilizing, osmoregulatory and cytoprotective effects, antioxidative properties, regulates intracellular Ca(2+) concentration, modulates ion movement and neurotransmitters, reduce the levels of pro-inflammatory cytokines in various organs and controls blood pressure. Recently, emerging evidence from the literature shows the effectiveness of taurine as a protective agent against several environmental toxins and drug-induced multiple organ injuries as the outcome of hepatotoxicity, nephrotoxicity, neurotoxicity, testicular toxicity and cardiotoxicity in several animal models. Besides, taurine is also effective in combating diabetes and its associated complications, including cardiomyopathy, nephropathy, neuropathy, retinopathy and atherosclerosis. These beneficial effects appear to be due to the multiple actions of taurine on cellular functions. This review summarizes the mechanism of the prophylactic role of taurine against several environmental toxins and drug-induced organ pathophysiology and diabetes.
Collapse
Affiliation(s)
- Joydeep Das
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India
| | | | | |
Collapse
|
85
|
Waseem M, Parvez S. Mitochondrial dysfunction mediated cisplatin induced toxicity: Modulatory role of curcumin. Food Chem Toxicol 2013; 53:334-42. [DOI: 10.1016/j.fct.2012.11.055] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/29/2012] [Accepted: 11/30/2012] [Indexed: 01/30/2023]
|
86
|
Mendonça LM, da Silva Machado C, Teixeira CCC, de Freitas LAP, Bianchi MDLP, Antunes LMG. Curcumin reduces cisplatin-induced neurotoxicity in NGF-differentiated PC12 cells. Neurotoxicology 2012; 34:205-11. [PMID: 23036615 DOI: 10.1016/j.neuro.2012.09.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 09/18/2012] [Accepted: 09/25/2012] [Indexed: 10/27/2022]
Abstract
The potential neuroprotective benefits of curcumin against cisplatin neurotoxicity were investigated. Curcumin is a polyphenol derived from the rhizome of Curcuma longa whose pharmacological effects include antioxidant, anti-inflammatory and anti-cancer properties. Cisplatin is a potent chemotherapeutic drug with activity against a wide variety of tumors, although it has notorious side effects. Cisplatin neurotoxicity is clinically evident in patients that have undergone a full course of chemotherapy and develop a peripheral neuropathy that may affect the treatment regimen and the patient's qualify of life. In this study, we examined whether curcumin can protect against cisplatin neurite outgrowth inhibition in PC12 cells, which is an indicator of the protective potential against neuropathy. We also investigated whether curcumin affects cisplatin effectiveness by analyzing the modulation of p53 gene expression and its effect on cisplatin cytotoxicity in HepG2 tumor cells. Non-cytotoxic concentrations of curcumin reduced in vitro neurotoxicity of cisplatin in PC12 cells. The treatment of PC12 cells with cisplatin (10μg/mL) significantly reduced neurite outgrowth. The tested concentration of curcumin (1.0 and 10μg/mL) did not result in neurite toxicity but nevertheless diminished cisplatin-induced inhibition of neurite outgrowth by up to 50% (p<0.05). Our results indicate that curcumin does not compromise cisplatin's anticancer activity. Curcumin neither suppressed p53 mRNA transcription nor protected tumor cells against cisplatin cytotoxicity. These results indicate that curcumin may reduce cisplatin-induced neurotoxicity, and clinical studies should potentially be considered.
Collapse
Affiliation(s)
- Leonardo Meneghin Mendonça
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
87
|
Promising therapeutics with natural bioactive compounds for improving learning and memory--a review of randomized trials. Molecules 2012; 17:10503-39. [PMID: 22945029 PMCID: PMC6268692 DOI: 10.3390/molecules170910503] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 08/06/2012] [Accepted: 08/27/2012] [Indexed: 12/19/2022] Open
Abstract
Cognitive disorders can be associated with brain trauma, neurodegenerative disease or as a part of physiological aging. Aging in humans is generally associated with deterioration of cognitive performance and, in particular, learning and memory. Different therapeutic approaches are available to treat cognitive impairment during physiological aging and neurodegenerative or psychiatric disorders. Traditional herbal medicine and numerous plants, either directly as supplements or indirectly in the form of food, improve brain functions including memory and attention. More than a hundred herbal medicinal plants have been traditionally used for learning and memory improvement, but only a few have been tested in randomized clinical trials. Here, we will enumerate those medicinal plants that show positive effects on various cognitive functions in learning and memory clinical trials. Moreover, besides natural products that show promising effects in clinical trials, we briefly discuss medicinal plants that have promising experimental data or initial clinical data and might have potential to reach a clinical trial in the near future.
Collapse
|