51
|
Improving taste sensitivity in healthy adults using taste recall training: a randomized controlled trial. Sci Rep 2022; 12:13849. [PMID: 35974039 PMCID: PMC9379898 DOI: 10.1038/s41598-022-18255-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Although many patients suffer from taste disorder, methods to improve taste sensitivity are limited. To develop a taste recall training method to improve the perception of taste, 42 healthy individuals were randomly assigned to either the training or the control group. Using the filter paper disc method, participants in the training group were asked to match the four tastes (sweetness, saltiness, sourness, and bitterness) between those of taste recognition thresholds and those of a one-step higher concentration until they get them right. Then, they were asked to match the four tastes between those of one-step lower and one-step higher in concentration from their taste recognition thresholds until they get them right. Finally, they were asked to match the four tastes between those of one-step lower concentration and those of their taste recognition thresholds until they get them right. This training was repeated until perfectly matched. The taste recall training program led to a lowered taste recognition threshold in healthy adults for each taste quality, suggesting the improvement of taste sensitivity. This lowered threshold for each taste was observed with each additional training session. We conclude that this taste recall training method might be a therapeutic approach for treating taste disorder.
Collapse
|
52
|
Fu CW, Horng JL, Chou MY. Fish Behavior as a Neural Proxy to Reveal Physiological States. Front Physiol 2022; 13:937432. [PMID: 35910555 PMCID: PMC9326089 DOI: 10.3389/fphys.2022.937432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Behaviors are the integrative outcomes of the nervous system, which senses and responds to the internal physiological status and external stimuli. Teleosts are aquatic organisms which are more easily affected by the surrounding environment compared to terrestrial animals. To date, behavioral tests have been widely used to assess potential environmental risks using fish as model animals. In this review, we summarized recent studies regarding the effects of internal and external stimuli on fish behaviors. We concluded that behaviors reflect environmental and physiological changes, which have possible implications for environmental and physiological assessments.
Collapse
Affiliation(s)
- Chih-Wei Fu
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- *Correspondence: Ming-Yi Chou,
| |
Collapse
|
53
|
Drozd D, Wolf H, Stemme T. Mechanosensory pathways of scorpion pecten hair sensillae-Adjustment of body height and pecten position. J Comp Neurol 2022; 530:2918-2937. [PMID: 35780514 DOI: 10.1002/cne.25384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/11/2022]
Abstract
Scorpions' sensory abilities are intriguing, especially the rather enigmatic ventral comb-like chemo- and mechanosensory organs, the so-called pectines. Attached ventrally to the second mesosomal segment just posterior to the coxae of the fourth walking leg pair, the pectines consist of the lamellae, the fulcra, and a variable number of pecten teeth. The latter contain the bimodal peg sensillae, used for probing the substrate with regard to chemo- and mechanosensory cues simultaneously. In addition, the lamellae, the fulcra and the pecten teeth are equipped with pecten hair sensillae (PHS) to gather mechanosensory information. Previously, we have analyzed the neuronal pathway associated with the peg sensillae unraveling their somatotopic projection pattern in dedicated pecten neuropils. Little is known, however, regarding the projections of PHS within the scorpion nervous system. Behavioral and electrophysiological assays showed involvement of PHS in reflexive responses but how the information is integrated remains unresolved. Here, we unravel the innervation pattern of the mechanosensory pecten hair afferents in Mesobuthus eupeus and Euscorpius italicus. By using immunofluorescent labeling and injection of Neurobiotin tracer, we identify extensive arborizations of afferents, including (i) ventral neuropils, (ii) somatotopically organized multisegmental sensory tracts, (iii) contralateral branches via commissures, and (iv) direct ipsilateral innervation of walking leg neuromeres 3 and 4. Our results suggest that PHS function as sensors to elicit reflexive adjustment of body height and obstacle avoidance, mediating accurate pecten teeth alignment to guarantee functionality of pectines, which are involved in fundamental capacities like mating or navigation.
Collapse
Affiliation(s)
- Denise Drozd
- Institute of Neurobiology, Ulm University, Ulm, Germany
| | - Harald Wolf
- Institute of Neurobiology, Ulm University, Ulm, Germany
| | - Torben Stemme
- Institute of Neurobiology, Ulm University, Ulm, Germany
| |
Collapse
|
54
|
Martiros N, Kapoor V, Kim SE, Murthy VN. Distinct representation of cue-outcome association by D1 and D2 neurons in the ventral striatum's olfactory tubercle. eLife 2022; 11:e75463. [PMID: 35708179 PMCID: PMC9203051 DOI: 10.7554/elife.75463] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Positive and negative associations acquired through olfactory experience are thought to be especially strong and long-lasting. The conserved direct olfactory sensory input to the ventral striatal olfactory tubercle (OT) and its convergence with dense dopaminergic input to the OT could underlie this privileged form of associative memory, but how this process occurs is not well understood. We imaged the activity of the two canonical types of striatal neurons, expressing D1- or D2-type dopamine receptors, in the OT at cellular resolution while mice learned odor-outcome associations ranging from aversive to rewarding. D1 and D2 neurons both responded to rewarding and aversive odors. D1 neurons in the OT robustly and bidirectionally represented odor valence, responding similarly to odors predicting similar outcomes regardless of odor identity. This valence representation persisted even in the absence of a licking response to the odors and in the absence of the outcomes, indicating a true transformation of odor sensory information by D1 OT neurons. In contrast, D2 neuronal representation of the odor-outcome associations was weaker, contingent on a licking response by the mouse, and D2 neurons were more selective for odor identity than valence. Stimulus valence coding in the OT was modality-sensitive, with separate sets of D1 neurons responding to odors and sounds predicting the same outcomes, suggesting that integration of multimodal valence information happens downstream of the OT. Our results point to distinct representation of identity and valence of odor stimuli by D1 and D2 neurons in the OT.
Collapse
Affiliation(s)
- Nuné Martiros
- Department of Molecular & Cellular Biology and Center for Brain Science, Harvard UniversityCambridgeUnited States
| | - Vikrant Kapoor
- Department of Molecular & Cellular Biology and Center for Brain Science, Harvard UniversityCambridgeUnited States
| | - Spencer E Kim
- Department of Molecular & Cellular Biology and Center for Brain Science, Harvard UniversityCambridgeUnited States
| | - Venkatesh N Murthy
- Department of Molecular & Cellular Biology and Center for Brain Science, Harvard UniversityCambridgeUnited States
| |
Collapse
|
55
|
Yang R, Li D, Yi S, Wang M. Evolutionarily conserved odorant-binding proteins participate in establishing tritrophic interactions. iScience 2022; 25:104664. [PMID: 35811847 PMCID: PMC9263996 DOI: 10.1016/j.isci.2022.104664] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/06/2022] [Accepted: 06/20/2022] [Indexed: 11/15/2022] Open
Abstract
Attracting herbivores and their natural enemies is a standard method where plant volatiles mediate tritrophic interactions. However, it remains unknown whether the shared attraction has a shared chemosensory basis. Here we focus on the odorant-binding proteins (OBPs), a gene family integral to peripheral detection of odoriferous chemicals. Previous evidence suggests that the herbivorous beetle Monochamus alternatus and its parasitoid beetle Dastarcus helophoroides are attracted to stressed pines. In this study, (+)-fenchone, emitted by stressed pines, is found to be attracted to M. alternatus and D. helophoroides in behavioral assays. Meanwhile, two orthologous OBPs with a slower evolutionary rate, respectively, from the two insects are shown to bind with (+)-fenchone, and the attraction is abolished after RNAi. These results show the ability of evolutionarily conserved OBPs from herbivores and their enemies to detect the same plant volatiles, providing an olfactory mechanism of chemical signals–mediated tritrophic relationships. Monochamus alternatus and Dastarcus helophoroides are attracted to (+)-fenchone from host pines They harbor evolutionarily conserved odorant-binding proteins (OBPs) One pair of the conserved OBPs can bind with (+)-fenchone The behavioral preference is lost upon RNAi knockdown of the OBPs
Collapse
Affiliation(s)
- Ruinan Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dongzhen Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Shancheng Yi
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Manqun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Corresponding author
| |
Collapse
|
56
|
Ortiz RJ, Wagler AE, Yee JR, Kulkarni PP, Cai X, Ferris CF, Cushing BS. Functional Connectivity Differences Between Two Culturally Distinct Prairie Vole Populations: Insights Into the Prosocial Network. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:576-587. [PMID: 34839018 DOI: 10.1016/j.bpsc.2021.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/21/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND The goal of this study was to elucidate the fundamental connectivity-resting-state connectivity-within and between nodes in the olfactory and prosocial (PS) cores, which permits the expression of social monogamy in males; and how differential connectivity accounts for differential expression of prosociality and aggression. METHODS Using resting-state functional magnetic resonance imaging, we integrated graph theory analysis to compare functional connectivity between two culturally/behaviorally distinct male prairie voles (Microtusochrogaster). RESULTS Illinois males display significantly higher levels of prosocial behavior and lower levels of aggression than KI (Kansas dam and Illinois sire) males, which are associated with differences in underlying neural mechanisms and brain microarchitecture. Shared connectivity 1) between the anterior hypothalamic area and the paraventricular nucleus and 2) between the medial preoptic area and bed nucleus of the stria terminalis and the nucleus accumbens core suggests essential relationships required for male prosocial behavior. In contrast, Illinois males displayed higher levels of global connectivity and PS intracore connectivity, a greater role for the bed nucleus of the stria terminalis and anterior hypothalamic area, which were degree connectivity hubs, and greater PS and olfactory intercore connectivity. CONCLUSIONS These findings suggest that behavioral differences are associated with PS core degree of connectivity and postsignal induction. This transgenerational system may serve as powerful mental health and drug abuse translational model in future studies.
Collapse
Affiliation(s)
- Richard J Ortiz
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas
| | - Amy E Wagler
- Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, Texas
| | - Jason R Yee
- Department of Psychology, Center for Translational NeuroImaging, Northeastern University, Boston, Massachusetts
| | - Praveen P Kulkarni
- Department of Psychology, Center for Translational NeuroImaging, Northeastern University, Boston, Massachusetts
| | - Xuezhu Cai
- Department of Psychology, Center for Translational NeuroImaging, Northeastern University, Boston, Massachusetts
| | - Craig F Ferris
- Department of Psychology, Center for Translational NeuroImaging, Northeastern University, Boston, Massachusetts
| | - Bruce S Cushing
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas.
| |
Collapse
|
57
|
Chen L, Feng C, Wang R, Nong X, Deng X, Chen X, Yu H. A chromosome-level genome assembly of the pollinating fig wasp Valisia javana. DNA Res 2022; 29:6589890. [PMID: 35595238 PMCID: PMC9160881 DOI: 10.1093/dnares/dsac014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 12/02/2022] Open
Abstract
Fig wasp has always been thought the species-specific pollinator for their host fig (Moraceae, Ficus) and constitute a model system with its host to study co-evolution and co-speciation. The availability of a high-quality genome will help to further reveal the mechanisms underlying these characteristics. Here, we present a high-quality chromosome-level genome for Valisa javana developed by a combination of PacBio long-read and Illumina short-read. The assembled genome size is 296.34 Mb from 13 contigs with a contig N50 length of 26.76 kb. Comparative genomic analysis revealed expanded and positively selected genes related to biological features that aid fig wasps living in syconium of its highly specific host. Protein-coding genes associated with chemosensory, detoxification and venom genes were identified. Several differentially expressed genes in transcriptome data of V. javana between odor-stimulated samples and the controls have been identified in some olfactory signal transduction pathways, e.g. olfactory transduction, cAMP, cGMP-PKG, Calcim, Ras and Rap1. This study provides a valuable genomic resource for a fig wasp, and sheds insight into further revealing the mechanisms underlying their adaptive traits to their hosts in different places and co-speciation with their host.
Collapse
Affiliation(s)
- Lianfu Chen
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, The Chinese Academy of Sciences , Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences , Guangzhou 510650, China
| | - Chao Feng
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, The Chinese Academy of Sciences , Guangzhou 510650, China
| | - Rong Wang
- School of Ecological and Environmental Sciences, Tiantong National Station for Forest Ecosystem Research, East China Normal University , Shanghai 200241, China
| | - Xiaojue Nong
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, The Chinese Academy of Sciences , Guangzhou 510650, China
| | - Xiaoxia Deng
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, The Chinese Academy of Sciences , Guangzhou 510650, China
| | - Xiaoyong Chen
- School of Ecological and Environmental Sciences, Tiantong National Station for Forest Ecosystem Research, East China Normal University , Shanghai 200241, China
| | - Hui Yu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, The Chinese Academy of Sciences , Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences , Guangzhou 510650, China
| |
Collapse
|
58
|
Tao YX. Mutations in melanocortin-4 receptor: From fish to men. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:215-257. [PMID: 35595350 DOI: 10.1016/bs.pmbts.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Melanocortin-4 receptor (MC4R), expressed abundantly in the hypothalamus, is a critical regulator of energy homeostasis, including both food intake and energy expenditure. Shortly after the publication in 1997 of the Mc4r knockout phenotypes in mice, including increased food intake and severe obesity, the first mutations in MC4R were reported in humans in 1998. Studies in the subsequent two decades have established MC4R mutation as the most common monogenic form of obesity, especially in early-onset severe obesity. Studies in animals, from fish to mammals, have established the conserved physiological roles of MC4R in all vertebrates in regulating energy balance. Drug targeting MC4R has been recently approved for treating morbid genetic obesity. How the MC4R can be exploited for animal production is highly worthy of active investigation.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States.
| |
Collapse
|
59
|
Zhang YF, Janke E, Bhattarai JP, Wesson DW, Ma M. Self-directed orofacial grooming promotes social attraction in mice via chemosensory communication. iScience 2022; 25:104284. [PMID: 35586067 PMCID: PMC9108505 DOI: 10.1016/j.isci.2022.104284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/21/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Abstract
Self-grooming is a stereotyped behavior displayed by nearly all animals. Among other established functions, self-grooming is implicated in social communication. However, whether self-grooming specifically influences behaviors of nearby individuals has not been directly tested, partly because of the technical challenge of inducing self-grooming in a reliable and temporally controllable manner. We recently found that optogenetic activation of dopamine D3 receptor expressing neurons in the ventral striatal islands of Calleja robustly induces orofacial grooming in mice. Using this optogenetic manipulation, here we demonstrate that observer mice exhibit social preference for mice that groom more regardless of biological sex. Moreover, grooming-induced social attraction depends on volatile chemosensory cues broadcasted from grooming mice. Collectively, our study establishes self-grooming as a means of promoting social attraction among mice via volatile cues, suggesting an additional benefit for animals to allocate a significant amount of time to this behavior. An optogenetic approach induces orofacial grooming with temporal precision in mice Observer mice show social preference toward mice that groom more regardless of sex Preference toward grooming mice requires main olfactory epithelia of observer mice Grooming-induced attraction depends on orofacial secretions from grooming mice
Collapse
Affiliation(s)
- Yun-Feng Zhang
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Corresponding author
| | - Emma Janke
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Janardhan P. Bhattarai
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Daniel W. Wesson
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Corresponding author
| |
Collapse
|
60
|
Ramos B, Cruz B, DeLong A, Pontrelli G, Harris G. Worms like catnip too! Identification of a new odor attractant in C. elegans. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000568. [PMID: 35622505 PMCID: PMC9077463 DOI: 10.17912/micropub.biology.000568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022]
Abstract
Organisms across the phyla are capable of sensing an array of sensory cues to control, or shape behavioral responses in order to survive in a complex environment consisting of an array of attractive and repulsive dangerous cues. Mammalian systems extensively use olfactory and gustatory behavior to fine tune sensory-dependent decision-making behaviors. Despite understanding the importance of behavioral responses to cues in the form of odors in shaping decision-making behavior. The underlying mechanisms that mediate these responses at the level of sensation, processing, integration, and modulation of these sensory dependent responses are not fully understood. To understand these mechanisms we use the invertebrate worm,
C. elegans,
to characterize attraction to mammalian sensed odorant cues. We show that hermaphrodite worms are attracted to catnip oil cues, and identify select sensory mechanisms that mediate this attraction, identifying multiple sensory genes that are involved in this chemosensory response to a sensed cue, that is highly attractive in many cats. We have identified sensory transduction mechanisms, including G-proteins and cyclic nucleotide-gated ion channels, that regulate odor-dependent attraction to mammalian sensed catnip oil cues. We therefore provide a platform to use
C. elegans
as a model for studying olfactory-dependent pathways to mammalian cues. This allows characterization of the neural mechanisms that shape olfactory behavior and decision-making in higher systems.
Collapse
Affiliation(s)
- Brianna Ramos
- California State University Channel Islands, Biology program, Camarillo, Ca, USA
,
Neuroscience Graduate Program, University of Michigan, Michigan, USA
| | - Bryant Cruz
- California State University Channel Islands, Biology program, Camarillo, Ca, USA
| | - Alec DeLong
- California State University Channel Islands, Biology program, Camarillo, Ca, USA
| | - Gianina Pontrelli
- California State University Channel Islands, Biology program, Camarillo, Ca, USA
| | - Gareth Harris
- California State University Channel Islands, Biology program, Camarillo, Ca, USA
,
Correspondence to: Gareth Harris (
)
| |
Collapse
|
61
|
Olfactory Evaluation in Alzheimer’s Disease Model Mice. Brain Sci 2022; 12:brainsci12050607. [PMID: 35624994 PMCID: PMC9139301 DOI: 10.3390/brainsci12050607] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
Olfactory dysfunction is considered a pre-cognitive biomarker of Alzheimer’s disease (AD). Because the olfactory system is highly conserved across species, mouse models corresponding to various AD etiologies have been bred and used in numerous studies on olfactory disorders. The olfactory behavior test is a method required for early olfactory dysfunction detection in AD model mice. Here, we review the olfactory evaluation of AD model mice, focusing on traditional olfactory detection methods, olfactory behavior involving the olfactory cortex, and the results of olfactory behavior in AD model mice, aiming to provide some inspiration for further development of olfactory detection methods in AD model mice.
Collapse
|
62
|
Task D, Lin CC, Vulpe A, Afify A, Ballou S, Brbic M, Schlegel P, Raji J, Jefferis GSXE, Li H, Menuz K, Potter CJ. Chemoreceptor co-expression in Drosophila melanogaster olfactory neurons. eLife 2022; 11:e72599. [PMID: 35442190 PMCID: PMC9020824 DOI: 10.7554/elife.72599] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/07/2022] [Indexed: 12/20/2022] Open
Abstract
Drosophila melanogaster olfactory neurons have long been thought to express only one chemosensory receptor gene family. There are two main olfactory receptor gene families in Drosophila, the odorant receptors (ORs) and the ionotropic receptors (IRs). The dozens of odorant-binding receptors in each family require at least one co-receptor gene in order to function: Orco for ORs, and Ir25a, Ir8a, and Ir76b for IRs. Using a new genetic knock-in strategy, we targeted the four co-receptors representing the main chemosensory families in D. melanogaster (Orco, Ir8a, Ir76b, Ir25a). Co-receptor knock-in expression patterns were verified as accurate representations of endogenous expression. We find extensive overlap in expression among the different co-receptors. As defined by innervation into antennal lobe glomeruli, Ir25a is broadly expressed in 88% of all olfactory sensory neuron classes and is co-expressed in 82% of Orco+ neuron classes, including all neuron classes in the maxillary palp. Orco, Ir8a, and Ir76b expression patterns are also more expansive than previously assumed. Single sensillum recordings from Orco-expressing Ir25a mutant antennal and palpal neurons identify changes in olfactory responses. We also find co-expression of Orco and Ir25a in Drosophila sechellia and Anopheles coluzzii olfactory neurons. These results suggest that co-expression of chemosensory receptors is common in insect olfactory neurons. Together, our data present the first comprehensive map of chemosensory co-receptor expression and reveal their unexpected widespread co-expression in the fly olfactory system.
Collapse
Affiliation(s)
- Darya Task
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Chun-Chieh Lin
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Mortimer B. Zuckermann Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Alina Vulpe
- Physiology & Neurobiology Department, University of ConnecticutMansfieldUnited States
| | - Ali Afify
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Sydney Ballou
- Physiology & Neurobiology Department, University of ConnecticutMansfieldUnited States
| | - Maria Brbic
- Department of Computer Science, Stanford UniversityStanfordUnited States
| | - Philipp Schlegel
- Drosophila Connectomics Group, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Joshua Raji
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Gregory SXE Jefferis
- Drosophila Connectomics Group, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Hongjie Li
- Department of Biology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Karen Menuz
- Physiology & Neurobiology Department, University of ConnecticutMansfieldUnited States
| | - Christopher J Potter
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
63
|
Goyal M, Tomar A, Madhwal S, Mukherjee T. Blood progenitor redox homeostasis through olfaction-derived systemic GABA in hematopoietic growth control in Drosophila. Development 2022; 149:273541. [PMID: 34850846 PMCID: PMC8733872 DOI: 10.1242/dev.199550] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/24/2021] [Indexed: 12/20/2022]
Abstract
The role of reactive oxygen species (ROS) in myeloid development is well established. However, its aberrant generation alters hematopoiesis. Thus, a comprehensive understanding of events controlling ROS homeostasis forms the central focus of this study. We show that, in homeostasis, myeloid-like blood progenitor cells of the Drosophila larvae, which reside in a specialized hematopoietic organ termed the lymph gland, use TCA to generate ROS. However, excessive ROS production leads to lymph gland growth retardation. Therefore, to moderate blood progenitor ROS, Drosophila larvae rely on olfaction and its downstream systemic GABA. GABA internalization and its breakdown into succinate by progenitor cells activates pyruvate dehydrogenase kinase (PDK), which controls inhibitory phosphorylation of pyruvate dehydrogenase (PDH). PDH is the rate-limiting enzyme that connects pyruvate to the TCA cycle and to oxidative phosphorylation. Thus, GABA metabolism via PDK activation maintains TCA activity and blood progenitor ROS homeostasis, and supports normal lymph gland growth. Consequently, animals that fail to smell also fail to sustain TCA activity and ROS homeostasis, which leads to lymph gland growth retardation. Overall, this study describes the requirement of animal odor-sensing and GABA in myeloid ROS regulation and hematopoietic growth control. Summary: Ablation of olfactory receptor neurons reveals that odor-sensing and GABA are involved in myeloid reactive oxygen species regulation and hematopoietic growth control.
Collapse
Affiliation(s)
- Manisha Goyal
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK, Bellary Road, Bangalore 560065, India.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka 560064, India
| | - Ajay Tomar
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK, Bellary Road, Bangalore 560065, India.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka 560064, India
| | - Sukanya Madhwal
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK, Bellary Road, Bangalore 560065, India.,Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Tina Mukherjee
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK, Bellary Road, Bangalore 560065, India
| |
Collapse
|
64
|
Hiratani N, Latham PE. Developmental and evolutionary constraints on olfactory circuit selection. Proc Natl Acad Sci U S A 2022; 119:e2100600119. [PMID: 35263217 PMCID: PMC8931209 DOI: 10.1073/pnas.2100600119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/14/2022] [Indexed: 11/18/2022] Open
Abstract
SignificanceIn this work, we explore the hypothesis that biological neural networks optimize their architecture, through evolution, for learning. We study early olfactory circuits of mammals and insects, which have relatively similar structure but a huge diversity in size. We approximate these circuits as three-layer networks and estimate, analytically, the scaling of the optimal hidden-layer size with input-layer size. We find that both longevity and information in the genome constrain the hidden-layer size, so a range of allometric scalings is possible. However, the experimentally observed allometric scalings in mammals and insects are consistent with biologically plausible values. This analysis should pave the way for a deeper understanding of both biological and artificial networks.
Collapse
Affiliation(s)
- Naoki Hiratani
- Gatsby Computational Neuroscience Unit, University College London, London W1T 4JG, United Kingdom
| | - Peter E. Latham
- Gatsby Computational Neuroscience Unit, University College London, London W1T 4JG, United Kingdom
| |
Collapse
|
65
|
Chen J, Li SS, Fang SM, Zhang Z, Yu QY. Olfactory dysfunction and potential mechanisms caused by volatile organophosphate dichlorvos in the silkworm as a model animal. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127940. [PMID: 34896704 DOI: 10.1016/j.jhazmat.2021.127940] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Volatile pesticides impair olfactory function in workers/farmers and insects, but data on molecular responses and mechanisms are poorly understood. This study aims to reveal the mechanisms of olfactory dysfunction in the silkworm after exposure to volatile dichlorvos. Our results demonstrated that acute exposure for 12 h significantly reduced electroantennogram responses, and over 62.50% of the treated male moths cannot locate the pheromone source. Transcriptional and proteomic responses of the antennae and heads were investigated. A total of 101 differentially expressed genes (DEGs) in the antennae, 138 DEGs in the heads, and 43 differentially expressed proteins (DEPs) in the heads including antennae were revealed. We discovered that upregulations of Arrestin1 and nitric oxide synthase1 (NOS1) may inhibit cyclic nucleotide-gated channels and hinder calcium influx in the antennae. In the central nervous systems (CNS), downregulations of tyrosine hydroxylase (TH) and tyrosine decarboxylase (TDC) may inhibit olfactory signal transduction by reducing the second messenger biosynthesis. Meanwhile, an abnormal increase of brain cell apoptosis was revealed by Annexin V-mCherry staining, often leading to persistent neurologic impairment. Taken together, this study highlighted olfactory dysfunction caused by dichlorvos, which may provide a novel perspective for understanding the toxicity mechanism of volatile pesticides in other organisms.
Collapse
Affiliation(s)
- Jie Chen
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Shu-Shang Li
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Shou-Min Fang
- College of Life Science, China West Normal University, Nanchong 637002, Sichuan, China
| | - Ze Zhang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Quan-You Yu
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
66
|
Whitlock KE, Palominos MF. The Olfactory Tract: Basis for Future Evolution in Response to Rapidly Changing Ecological Niches. Front Neuroanat 2022; 16:831602. [PMID: 35309251 PMCID: PMC8927807 DOI: 10.3389/fnana.2022.831602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/01/2022] [Indexed: 01/10/2023] Open
Abstract
Within the forebrain the olfactory sensory system is unique from other sensory systems both in the projections of the olfactory tract and the ongoing neurogenic potential, characteristics conserved across vertebrates. Olfaction plays a crucial role in behaviors such as mate choice, food selection, homing, escape from predators, among others. The olfactory forebrain is intimately associated with the limbic system, the region of the brain involved in learning, memory, and emotions through interactions with the endocrine system and the autonomic nervous system. Previously thought to lack a limbic system, we now know that teleost fishes process emotions, have exceptional memories, and readily learn, behaviors that are often associated with olfactory cues. The association of neuromodulatory hormones, and more recently, the immune system, with odor cues underlies behaviors essential for maintenance and adaptation within natural ecological niches. Increasingly anthropogenic perturbations affecting ecosystems are impacting teleost fishes worldwide. Here we examine the role of the olfactory tract as the neural basis for the integration of environmental cues and resulting behaviors necessary for the regulation of biotic interactions that allow for future adaptation as the climate spins out of control.
Collapse
Affiliation(s)
- Kathleen E. Whitlock
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de ValparaísoValparaíso, Chile
- Instituto de Neurociencia, Universidad de ValparaísoValparaíso, Chile
- *Correspondence: Kathleen E. Whitlock
| | - M. Fernanda Palominos
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de ValparaísoValparaíso, Chile
- Instituto de Neurociencia, Universidad de ValparaísoValparaíso, Chile
| |
Collapse
|
67
|
Jacobs LF. How the evolution of air breathing shaped hippocampal function. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200532. [PMID: 34957846 PMCID: PMC8710879 DOI: 10.1098/rstb.2020.0532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
To make maps from airborne odours requires dynamic respiratory patterns. I propose that this constraint explains the modulation of memory by nasal respiration in mammals, including murine rodents (e.g. laboratory mouse, laboratory rat) and humans. My prior theories of limbic system evolution offer a framework to understand why this occurs. The answer begins with the evolution of nasal respiration in Devonian lobe-finned fishes. This evolutionary innovation led to adaptive radiations in chemosensory systems, including the emergence of the vomeronasal system and a specialization of the main olfactory system for spatial orientation. As mammals continued to radiate into environments hostile to spatial olfaction (air, water), there was a loss of hippocampal structure and function in lineages that evolved sensory modalities adapted to these new environments. Hence the independent evolution of echolocation in bats and toothed whales was accompanied by a loss of hippocampal structure (whales) and an absence of hippocampal theta oscillations during navigation (bats). In conclusion, models of hippocampal function that are divorced from considerations of ecology and evolution fall short of explaining hippocampal diversity across mammals and even hippocampal function in humans. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Lucia F. Jacobs
- Department of Psychology, University of California, 2121 Berkeley Way, Berkeley, CA 94720-1650, USA
| |
Collapse
|
68
|
Wu C, Jeong MY, Kim JY, Lee G, Kim JS, Cheong YE, Kang H, Cho CH, Kim J, Park MK, Shin YK, Kim KH, Seol GH, Koo SH, Ko G, Lee SJ. Activation of ectopic olfactory receptor 544 induces GLP-1 secretion and regulates gut inflammation. Gut Microbes 2022; 13:1987782. [PMID: 34674602 PMCID: PMC8632334 DOI: 10.1080/19490976.2021.1987782] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Olfactory receptors are ectopically expressed in extra-nasal tissues. The gut is constantly exposed to high levels of odorants where ectopic olfactory receptors may play critical roles. Activation of ectopic olfactory receptor 544 (Olfr544) by azelaic acid (AzA), an Olfr544 ligand, reduces adiposity in mice fed a high-fat diet (HFD) by regulating fuel preference to fats. Herein, we investigated the novel function of Olfr544 in the gut. In GLUTag cells, AzA induces the cAMP-PKA-CREB signaling axis and increases the secretion of GLP-1, an enteroendocrine hormone with anti-obesity effects. In mice fed a HFD and orally administered AzA, GLP-1 plasma levels were elevated in mice. The induction of GLP-1 secretion was negated in cells with Olfr544 gene knockdown and in Olfr544-deficient mice. Gut microbiome analysis revealed that AzA increased the levels of Bacteroides acidifaciens and microbiota associated with antioxidant pathways. In fecal metabolomics analysis, the levels of succinate and trehalose, metabolites correlated with a lean phenotype, were elevated by AzA. The function of Olfr544 in gut inflammation, a key feature in obesity, was further investigated. In RNA sequencing analysis, AzA suppressed LPS-induced activation of inflammatory pathways and reduced TNF-α and IL-6 expression, thereby improving intestinal permeability. The effects of AzA on the gut metabolome, microbiome, and colon inflammation were abrogated in Olfr544-KO mice. These results collectively demonstrated that activation of Olfr544 by AzA in the gut exerts multiple effects by regulating GLP-1 secretion, gut microbiome and metabolites, and colonic inflammation in anti-obesogenic phenotypes and, thus, may be applied for obesity therapeutics.
Collapse
Affiliation(s)
- Chunyan Wu
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 Plus, Korea University, Seoul, Republic of Korea
| | - Mi-Young Jeong
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 Plus, Korea University, Seoul, Republic of Korea
| | - Jung Yeon Kim
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 Plus, Korea University, Seoul, Republic of Korea
| | - Giljae Lee
- Department of Environmental Health Sciences, Seoul National University, Seoul, Republic of Korea,Center for Human and Environmental Microbiome, Seoul National University, Seoul, Republic of Korea
| | - Ji-Sun Kim
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 Plus, Korea University, Seoul, Republic of Korea
| | - Yu Eun Cheong
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 Plus, Korea University, Seoul, Republic of Korea
| | - Hyena Kang
- Department of Environmental Health Sciences, Seoul National University, Seoul, Republic of Korea,Center for Human and Environmental Microbiome, Seoul National University, Seoul, Republic of Korea
| | - Chung Hwan Cho
- Department of Environmental Health Sciences, Seoul National University, Seoul, Republic of Korea,Center for Human and Environmental Microbiome, Seoul National University, Seoul, Republic of Korea
| | - Jimin Kim
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 Plus, Korea University, Seoul, Republic of Korea
| | - Min Kyung Park
- Department of Food Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - You Kyoung Shin
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul, Republic of Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 Plus, Korea University, Seoul, Republic of Korea
| | - Geun Hee Seol
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul, Republic of Korea
| | - Seung Hoi Koo
- Division of Biological Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - GwangPyo Ko
- Department of Environmental Health Sciences, Seoul National University, Seoul, Republic of Korea,Center for Human and Environmental Microbiome, Seoul National University, Seoul, Republic of Korea
| | - Sung-Joon Lee
- Department of Biotechnology, School of Life Science and Biotechnology for BK21 Plus, Korea University, Seoul, Republic of Korea,Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea,CONTACT Sung-Joon Lee Department of Biotechnology, School of Life Science and Biotechnology for BK21 Plus, Korea University, Seoul, Republic of Korea
| |
Collapse
|
69
|
Tumkaya T, Burhanudin S, Khalilnezhad A, Stewart J, Choi H, Claridge-Chang A. Most primary olfactory neurons have individually neutral effects on behavior. eLife 2022; 11:e71238. [PMID: 35044905 PMCID: PMC8806191 DOI: 10.7554/elife.71238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Animals use olfactory receptors to navigate mates, food, and danger. However, for complex olfactory systems, it is unknown what proportion of primary olfactory sensory neurons can individually drive avoidance or attraction. Similarly, the rules that govern behavioral responses to receptor combinations are unclear. We used optogenetic analysis in Drosophila to map the behavior elicited by olfactory-receptor neuron (ORN) classes: just one-fifth of ORN-types drove either avoidance or attraction. Although wind and hunger are closely linked to olfaction, neither had much effect on single-class responses. Several pooling rules have been invoked to explain how ORN types combine their behavioral influences; we activated two-way combinations and compared patterns of single- and double-ORN responses: these comparisons were inconsistent with simple pooling. We infer that the majority of primary olfactory sensory neurons have neutral behavioral effects individually, but participate in broad, odor-elicited ensembles with potent behavioral effects arising from complex interactions.
Collapse
Affiliation(s)
- Tayfun Tumkaya
- Institute for Molecular and Cell Biology, A*STARSingaporeSingapore
- Program in Neuroscience and Behavioral Disorders, Duke NUS Graduate Medical SchoolSingaporeSingapore
| | | | | | - James Stewart
- Institute for Molecular and Cell Biology, A*STARSingaporeSingapore
| | - Hyungwon Choi
- Institute for Molecular and Cell Biology, A*STARSingaporeSingapore
- Department of Medicine, National University of SingaporeSingaporeSingapore
| | - Adam Claridge-Chang
- Institute for Molecular and Cell Biology, A*STARSingaporeSingapore
- Program in Neuroscience and Behavioral Disorders, Duke NUS Graduate Medical SchoolSingaporeSingapore
- Department of Physiology, National University of SingaporeSingaporeSingapore
| |
Collapse
|
70
|
Identification and Expression Profile of Chemosensory Receptor Genes in Aromia bungii (Faldermann) Antennal Transcriptome. INSECTS 2022; 13:insects13010096. [PMID: 35055940 PMCID: PMC8781584 DOI: 10.3390/insects13010096] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 01/05/2023]
Abstract
The red-necked longicorn beetle, Aromia bungii (Faldermann) (Coleoptera: Cerambycidae), is a major destructive, wood-boring pest, which is widespread throughout the world. The sex pheromone of A. bungii was reported earlier; however, the chemosensory mechanism of the beetle remains almost unknown. In this study, 45 AbunORs, 6 AbunGRs and 2 AbunIRs were identified among 42,197 unigenes derived from the antennal transcriptome bioinformatic analysis of A. bungii adults. The sequence of putative Orco (AbunOR25) found in this study is highly conserved with the known Orcos from other Coleoptera species, and these Orco genes might be potentially used as target genes for the future development of novel and effective control strategies. Tissue expression analysis showed that 29 AbunOR genes were highly expressed in antennae, especially in the antennae of females, which was consistent with the idea that females might express more pheromone receptors for sensing pheromones, especially the sex pheromones produced by males. AbunOR5, 29, 31 and 37 were clustered with the pheromone receptors of the cerambycid Megacyllene caryae, suggesting that they might be putative pheromone receptors of A. bungii. All six AbunGRs were highly expressed in the mouthparts, indicating that these GRs may be involved in the taste perception process. Both AbunIRs were shown to be female-mouthparts-biased, suggesting that they might also be related to the tasting processes. Our study provides some basic information towards a deeper understanding of the chemosensing mechanism of A. bungii at a molecular level.
Collapse
|
71
|
Prelic S, Pal Mahadevan V, Venkateswaran V, Lavista-Llanos S, Hansson BS, Wicher D. Functional Interaction Between Drosophila Olfactory Sensory Neurons and Their Support Cells. Front Cell Neurosci 2022; 15:789086. [PMID: 35069116 PMCID: PMC8777253 DOI: 10.3389/fncel.2021.789086] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/15/2021] [Indexed: 01/14/2023] Open
Abstract
Insects detect volatile chemicals using antennae, which house a vast variety of olfactory sensory neurons (OSNs) that innervate hair-like structures called sensilla where odor detection takes place. In addition to OSNs, the antenna also hosts various support cell types. These include the triad of trichogen, tormogen, and thecogen support cells that lie adjacent to their respective OSNs. The arrangement of OSN supporting cells occurs stereotypically for all sensilla and is widely conserved in evolution. While insect chemosensory neurons have received considerable attention, little is known about the functional significance of the cells that support them. For instance, it remains unknown whether support cells play an active role in odor detection, or only passively contribute to homeostasis, e.g., by maintaining sensillum lymph composition. To investigate the functional interaction between OSNs and support cells, we used optical and electrophysiological approaches in Drosophila. First, we characterized the distribution of various supporting cells using genetic markers. By means of an ex vivo antennal preparation and genetically-encoded Ca2+ and K+ indicators, we then studied the activation of these auxiliary cells during odor presentation in adult flies. We observed acute responses and distinct differences in Ca2+ and K+ fluxes between support cell types. Finally, we observed alterations in OSN responses upon thecogen cell ablation in mature adults. Upon inducible ablation of thecogen cells, we notice a gain in mechanical responsiveness to mechanical stimulations during single-sensillum recording, but a lack of change to the neuronal resting activity. Taken together, these results demonstrate that support cells play a more active and responsive role during odor processing than previously thought. Our observations thus reveal that support cells functionally interact with OSNs and may be important for the extraordinary ability of insect olfactory systems to dynamically and sensitively discriminate between odors in the turbulent sensory landscape of insect flight.
Collapse
Affiliation(s)
- Sinisa Prelic
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Venkatesh Pal Mahadevan
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Vignesh Venkateswaran
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sofia Lavista-Llanos
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- CIFASIS-CONICET Franco-Argentine International Center for Information and Systems Sciences—National Council for Scientific and Technical Research, Rosario, Argentina
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Dieter Wicher
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- *Correspondence: Dieter Wicher
| |
Collapse
|
72
|
Derby CD, McClintock TS, Caprio J. Understanding responses to chemical mixtures: looking forward from the past. Chem Senses 2022; 47:bjac002. [PMID: 35226060 PMCID: PMC8883806 DOI: 10.1093/chemse/bjac002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Our goal in this article is to provide a perspective on how to understand the nature of responses to chemical mixtures. In studying responses to mixtures, researchers often identify "mixture interactions"-responses to mixtures that are not accurately predicted from the responses to the mixture's individual components. Critical in these studies is how to predict responses to mixtures and thus to identify a mixture interaction. We explore this issue with a focus on olfaction and on the first level of neural processing-olfactory sensory neurons-although we use examples from taste systems as well and we consider responses beyond sensory neurons, including behavior and psychophysics. We provide a broadly comparative perspective that includes examples from vertebrates and invertebrates, from genetic and nongenetic animal models, and from literature old and new. In the end, we attempt to recommend how to approach these problems, including possible future research directions.
Collapse
Affiliation(s)
- Charles D Derby
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | | | - John Caprio
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
73
|
Tiraboschi E, Leonardelli L, Segata G, Haase A. Parallel Processing of Olfactory and Mechanosensory Information in the Honey Bee Antennal Lobe. Front Physiol 2021; 12:790453. [PMID: 34950059 PMCID: PMC8691435 DOI: 10.3389/fphys.2021.790453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
In insects, neuronal responses to clean air have so far been reported only episodically in moths. Here we present results obtained by fast two-photon calcium imaging in the honey bee Apis mellifera, indicating a substantial involvement of the antennal lobe, the first olfactory neuropil, in the processing of mechanical stimuli. Clean air pulses generate a complex pattern of glomerular activation that provides a code for stimulus intensity and dynamics with a similar level of stereotypy as observed for the olfactory code. Overlapping the air pulses with odor stimuli reveals a superposition of mechanosensory and odor response codes with high contrast. On the mechanosensitive signal, modulations were observed in the same frequency regime as the oscillatory motion of the antennae, suggesting a possible way to detect odorless airflow directions. The transduction of mechanosensory information via the insect antennae has so far been attributed primarily to Johnston's organ in the pedicel of the antenna. The possibility that the antennal lobe activation by clean air originates from Johnston's organ could be ruled out, as the signal is suppressed by covering the surfaces of the otherwise freely moving and bending antennae, which should leave Johnston's organ unaffected. The tuning curves of individual glomeruli indicate increased sensitivity at low-frequency mechanical oscillations as produced by the abdominal motion in waggle dance communication, suggesting a further potential function of this mechanosensory code. The discovery that the olfactory system can sense both odors and mechanical stimuli has recently been made also in mammals. The results presented here give hope that studies on insects can make a fundamental contribution to the cross-taxa understanding of this dual function, as only a few thousand neurons are involved in their brains, all of which are accessible by in vivo optical imaging.
Collapse
Affiliation(s)
- Ettore Tiraboschi
- Department of Physics, University of Trento, Trento, Italy.,Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | - Luana Leonardelli
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy.,Department of Electrical, Electronic, and Information Engineering, University of Bologna, Bologna, Italy
| | | | - Albrecht Haase
- Department of Physics, University of Trento, Trento, Italy.,Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| |
Collapse
|
74
|
Anatomy of the Nervous System in Chelifer cancroides (Arachnida: Pseudoscorpiones) with a Distinct Sensory Pathway Associated with the Pedipalps. INSECTS 2021; 13:insects13010025. [PMID: 35055868 PMCID: PMC8780800 DOI: 10.3390/insects13010025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Most arthropods (uniting animals such as the chelicerates, e.g., spiders and their kin, as well as millipedes, centipedes, crustaceans, and insects) have distinct sensory appendages at the second head segment, the so-called antennae. The Arachnida (e.g., spiders and scorpions) do not possess antennae, but have evolved highly specialized sensory organs on different body regions. However, very limited information is available concerning pseudoscorpions (false scorpions). These animals do not seem to possess such specialized structures, but show dominant, multifunctional appendages prior to the first walking leg, called pedipalps. Here, we investigate the neuronal pathway of these structures as well as general aspects of the nervous system. We describe new details of typical arthropod brain compartments, such as the arcuate body and a comparatively small mushroom body. Neurons associated with the pedipalps terminate in two regions in the central nervous system of characteristic arrangement: a glomerular and a layered center, which we interpret as a chemo- and a mechanosensory center, respectively. The centers, which fulfill the same function in other animals, show a similar arrangement. These similarities in the sensory systems of different evolutionary origin have to be interpreted as functional prerequisites. Identifying these similarities helps to understand the general functionality of sensory systems, not only within arthropods. Abstract Many arachnid taxa have evolved unique, highly specialized sensory structures such as antenniform legs in Amblypygi (whip spiders), for instance, or mesosomal pectines in scorpions. Knowledge of the neuroanatomy as well as functional aspects of these sensory organs is rather scarce, especially in comparison to other arthropod clades. In pseudoscorpions, no special sensory structures have been discovered so far. Nevertheless, these animals possess dominant, multifunctional pedipalps, which are good candidates for being the primary sensory appendages. However, only little is known about the anatomy of the nervous system and the projection pattern of pedipalpal afferents in this taxon. By using immunofluorescent labeling of neuronal structures as well as lipophilic dye labeling of pedipalpal pathways, we identified the arcuate body, as well as a comparatively small mushroom body, the latter showing some similarities to that of Solifugae (sun spiders and camel spiders). Furthermore, afferents from the pedipalps terminate in a glomerular and a layered neuropil. Due to the innervation pattern and structural appearance, we conclude that these neuropils are the first integration centers of the chemosensory and mechanosensory afferents. Within Arthropoda, but also other invertebrates or even vertebrates, sensory structures show rather similar neuronal arrangement. Thus, these similarities in the sensory systems of different evolutionary origin have to be interpreted as functional prerequisites of the respective modality.
Collapse
|
75
|
Wu C, Zhu P, Liu Y, Du L, Wang P. Field-Effect Sensors Using Biomaterials for Chemical Sensing. SENSORS 2021; 21:s21237874. [PMID: 34883883 PMCID: PMC8659547 DOI: 10.3390/s21237874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/21/2022]
Abstract
After millions of years of evolution, biological chemical sensing systems (i.e., olfactory and taste systems) have become very powerful natural systems which show extreme high performances in detecting and discriminating various chemical substances. Creating field-effect sensors using biomaterials that are able to detect specific target chemical substances with high sensitivity would have broad applications in many areas, ranging from biomedicine and environments to the food industry, but this has proved extremely challenging. Over decades of intense research, field-effect sensors using biomaterials for chemical sensing have achieved significant progress and have shown promising prospects and potential applications. This review will summarize the most recent advances in the development of field-effect sensors using biomaterials for chemical sensing with an emphasis on those using functional biomaterials as sensing elements such as olfactory and taste cells and receptors. Firstly, unique principles and approaches for the development of these field-effect sensors using biomaterials will be introduced. Then, the major types of field-effect sensors using biomaterials will be presented, which includes field-effect transistor (FET), light-addressable potentiometric sensor (LAPS), and capacitive electrolyte–insulator–semiconductor (EIS) sensors. Finally, the current limitations, main challenges and future trends of field-effect sensors using biomaterials for chemical sensing will be proposed and discussed.
Collapse
Affiliation(s)
- Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (C.W.); (P.Z.); (Y.L.); (L.D.)
| | - Ping Zhu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (C.W.); (P.Z.); (Y.L.); (L.D.)
| | - Yage Liu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (C.W.); (P.Z.); (Y.L.); (L.D.)
| | - Liping Du
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (C.W.); (P.Z.); (Y.L.); (L.D.)
| | - Ping Wang
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
- Correspondence:
| |
Collapse
|
76
|
Iliff AJ, Wang C, Ronan EA, Hake AE, Guo Y, Li X, Zhang X, Zheng M, Liu J, Grosh K, Duncan RK, Xu XZS. The nematode C. elegans senses airborne sound. Neuron 2021; 109:3633-3646.e7. [PMID: 34555314 PMCID: PMC8602785 DOI: 10.1016/j.neuron.2021.08.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/21/2021] [Accepted: 08/27/2021] [Indexed: 11/26/2022]
Abstract
Unlike olfaction, taste, touch, vision, and proprioception, which are
widespread across animal phyla, hearing is found only in vertebrates and some
arthropods. The vast majority of invertebrate species are thus considered
insensitive to sound. Here, we challenge this conventional view by showing that
the earless nematode C. elegans senses airborne sound at
frequencies reaching the kHz range. Sound vibrates C. elegans
skin, which acts as a pressure-to-displacement transducer similar to vertebrate
eardrum, activates sound-sensitive FLP/PVD neurons attached to the skin, and
evokes phonotaxis behavior. We identified two nAChRs that transduce sound
signals independently of ACh, revealing an unexpected function of nAChRs in
mechanosensation. Thus, the ability to sense airborne sound is not restricted to
vertebrates and arthropods as previously thought, and might have evolved
multiple times independently in the animal kingdom, suggesting convergent
evolution. Our studies also demonstrate that animals without ears may not be
presumed to be sound insensitive. Hearing is thought to exist only in vertebrates and some arthropods, but
not other animal phyla. Here, Xu and colleagues report that the earless nematode
C. elegans senses airborne sound and engages in phonotaxis.
Thus, hearing might have evolved multiple times independently in the animal
kingdom, suggesting convergent evolution.
Collapse
Affiliation(s)
- Adam J Iliff
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Can Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Elizabeth A Ronan
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alison E Hake
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuling Guo
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xia Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xinxing Zhang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maohua Zheng
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianfeng Liu
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Karl Grosh
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - R Keith Duncan
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - X Z Shawn Xu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
77
|
Understanding the Role of Semiochemicals on the Reproductive Behaviour of Cheetahs ( Acinonyx jubatus)-A Review. Animals (Basel) 2021; 11:ani11113140. [PMID: 34827872 PMCID: PMC8614540 DOI: 10.3390/ani11113140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary This review aims to provide an in-depth overview of the reproductive physiology and behaviour of cheetahs (Acinonyx jubatus). Specifically, it focuses on the role that pheromones (a class of semiochemicals) play by directly affecting the reproductive (e.g., precopulatory and copulatory) behaviour. Furthermore, it aims to critically analyze current research and provide new insights on study areas needing further investigation. It is clear, for instance, that further research is necessary to investigate the role of semiochemicals in the reproductive behaviour of cheetahs in order to rectify the current behavioural difficulties experienced when breeding younger females. This, in turn, would aid in improving captive breeding and the prevention of asymmetric reproductive aging. Abstract The cheetah species (Acinonyx jubatus) is currently listed as vulnerable according to the International Union for Conservation of Nature (IUCN). Captive breeding has long since been used as a method of conservation of the species, with the aim to produce a healthy, strong population of cheetahs with an increased genetic variety when compared to their wild counterparts. This would then increase the likelihood of survivability once released into protected areas. Unfortunately, breeding females have been reported to be difficult due to the age of these animals. Older females are less fertile, have more difficult parturition, and are susceptible to asymmetric reproductive aging whereas younger females tend to show a significantly lower frequency of mating behaviour than that of older females, which negatively affects breeding introductions, and therefore mating. Nonetheless, the experience from breeding methods used in some breeding centres in South Africa and the Netherlands, which also rely on the role that semiochemicals play in breeding, proves that cheetahs can be bred successfully in captivity. This review aims to give the reader an in-depth overview of cheetahs’ reproductive physiology and behaviour, focusing on the role that pheromones play in this species. Furthermore, it aims to provide new insight into the use of semiochemicals to improve conservation strategies through captive breeding.
Collapse
|
78
|
Tuckman H, Patel M, Lei H. Effects of Mechanosensory Input on the Tracking of Pulsatile Odor Stimuli by Moth Antennal Lobe Neurons. Front Neurosci 2021; 15:739730. [PMID: 34690678 PMCID: PMC8529024 DOI: 10.3389/fnins.2021.739730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Air turbulence ensures that in a natural environment insects tend to encounter odor stimuli in a pulsatile fashion. The frequency and duration of odor pulses varies with distance from the source, and hence successful mid-flight odor tracking requires resolution of spatiotemporal pulse dynamics. This requires both olfactory and mechanosensory input (from wind speed), a form of sensory integration observed within the antennal lobe (AL). In this work, we employ a model of the moth AL to study the effect of mechanosensory input on AL responses to pulsatile stimuli; in particular, we examine the ability of model neurons to: (1) encode the temporal length of a stimulus pulse; (2) resolve the temporal dynamics of a high frequency train of brief stimulus pulses. We find that AL glomeruli receiving olfactory input are adept at encoding the temporal length of a stimulus pulse but less effective at tracking the temporal dynamics of a pulse train, while glomeruli receiving mechanosensory input but little olfactory input can efficiently track the temporal dynamics of high frequency pulse delivery but poorly encode the duration of an individual pulse. Furthermore, we show that stronger intrinsic small-conductance calcium-dependent potassium (SK) currents tend to skew cells toward being better trackers of pulse frequency, while weaker SK currents tend to entail better encoding of the temporal length of individual pulses. We speculate a possible functional division of labor within the AL, wherein, for a particular odor, glomeruli receiving strong olfactory input exhibit prolonged spiking responses that facilitate detailed discrimination of odor features, while glomeruli receiving mechanosensory input (but little olfactory input) serve to resolve the temporal dynamics of brief, pulsatile odor encounters. Finally, we discuss how this hypothesis extends to explaining the functional significance of intraglomerular variability in observed phase II response patterns of AL neurons.
Collapse
Affiliation(s)
- Harrison Tuckman
- Department of Mathematics, William & Mary, Williamsburg, VA, United States
| | - Mainak Patel
- Department of Mathematics, William & Mary, Williamsburg, VA, United States
| | - Hong Lei
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
79
|
Zhao H, Peng Z, Huang L, Zhao S, Liu M. Expression Profile and Ligand Screening of a Putative Odorant-Binding Protein, AcerOBP6, from the Asian Honeybee. INSECTS 2021; 12:insects12110955. [PMID: 34821756 PMCID: PMC8622152 DOI: 10.3390/insects12110955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 11/23/2022]
Abstract
Simple Summary The olfactory sensillum, which is located in the antenna of insects, is the basic unit of the olfactory organ. Olfactory-related genes are expressed in the sensillum. It is believed that the process of olfaction recognition is mainly mediated by two gene families, odorant binding proteins (OBPs) and olfactory receptors (ORs). The honeybee possesses a large numbers of ORs, but few OBPs. Up to now, the function of OBPs in the honeybee has not yet been fully elucidated. In order to reveal the specific role of OBPs from Apis cerana cerana, we selected an OBP gene, AcerOBP6, which is highly expressed in the antennae of worker bees, acquired a purified protein via a prokaryotic expression system, and analyzed its function using bioinformatics, molecular biology, and electrophysiology. According to the result, AcerOBP6 was a protein with extensive binding affinity, and we speculated that its function was chiefly related to foraging. Overall, this research not only explains the essential role of OBPs in ligand binding, but also provides valuable resources to help researchers further understand the nature and mechanism of the olfactory system. Abstract Olfaction is essential in some behaviors of honeybee, such as nursing, foraging, attracting a mate, social communication, and kin recognition. OBPs (odorant binding proteins) play a key role in the first step of olfactory perception. Here, we focused on a classic OBP with a PBP-GOBP domain from the Asian honeybee, Apis cerana cerana. Beyond that, the mRNA expression profiles and the binding affinity of AcerOBP6 were researched. According to qRT-PCR analysis, AcerOBP6 transcripts were mainly expressed in the antennae of forager bees. In addition, we found that the expression level of AcerOBP6 was higher than that of AmelOBP6. The fluorescence competitive binding assay indicated that the AcerOBP6 protein had binding affinity with most of the tested odors, including queen pheromone, worker pheromone, and floral volatiles, among which the strongest one was linolenic acid (with a Ki value of 1.67). However, AcerOBP6 was not sensitive to the brood pheromones. A further study based on EAG assay revealed that the antennae had the strongest response to 2-heptanone. The EAG recording values of the selected ligands were all reduced after AcerOBP6 was silenced, with 8 of 14 declining significantly (p < 0.01) given that these odors could specifically bind to AcerOBP6. As revealed in our current study, AcerOBP6 might be a crucial protein involved in olfactory recognition for foraging. Overall, the research provides a foundation for exploring the olfactory mechanism of A. cerana cerana.
Collapse
|
80
|
AlMatrouk A, Lemons K, Ogura T, Lin W. Modification of the Peripheral Olfactory System by Electronic Cigarettes. Compr Physiol 2021; 11:2621-2644. [PMID: 34661289 DOI: 10.1002/cphy.c210007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Electronic cigarettes (e-cigs) are used by millions of adolescents and adults worldwide. Commercial e-liquids typically contain flavorants, propylene glycol, and vegetable glycerin with or without nicotine. These chemical constituents are detected and evaluated by chemosensory systems to guide and modulate vaping behavior and product choices of e-cig users. The flavorants in e-liquids are marketing tools. They evoke sensory percepts of appealing flavors through activation of chemical sensory systems to promote the initiation and sustained use of e-cigs. The vast majority of flavorants in e-liquids are volatile odorants, and as such, the olfactory system plays a dominant role in perceiving these molecules that enter the nasal cavity either orthonasally or retronasally during vaping. In addition to flavorants, e-cig aerosol contains a variety of by-products generated through heating the e-liquids, including odorous irritants, toxicants, and heavy metals. These harmful substances can directly and adversely impact the main olfactory epithelium (MOE). In this article, we first discuss the olfactory contribution to e-cig flavor perception. We then provide information on MOE cell types and their major functions in olfaction and epithelial maintenance. Olfactory detection of flavorants, nicotine, and odorous irritants and toxicants are also discussed. Finally, we discuss the cumulated data on modification of the MOE by flavorant exposure and toxicological impacts of formaldehyde, acrolein, and heavy metals. Together, the information presented in this overview may provide insight into how e-cig exposure may modify the olfactory system and adversely impact human health through the alteration of the chemosensory factor driving e-cig use behavior and product selections. © 2021 American Physiological Society. Compr Physiol 11:2621-2644, 2021.
Collapse
Affiliation(s)
- Abdullah AlMatrouk
- General Department of Criminal Evidence, Forensic Laboratories, Ministry of Interior, Farwaniyah, Kuwait.,Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Kayla Lemons
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Tatsuya Ogura
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Weihong Lin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| |
Collapse
|
81
|
Sania RE, Cardoso JCR, Louro B, Marquet N, Canário AVM. A new subfamily of ionotropic glutamate receptors unique to the echinoderms with putative sensory role. Mol Ecol 2021; 30:6642-6658. [PMID: 34601781 DOI: 10.1111/mec.16206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 11/29/2022]
Abstract
Chemosensation is a critical signalling process in animals and especially important in sea cucumbers, a group of ecologically and economically important marine echinoderms (class Holothuroidea), which lack audio and visual organs and rely on chemical sensing for survival, feeding and reproduction. The ionotropic receptors are a recently identified family of chemosensory receptors in insects and other protostomes, related to the ionotropic glutamate receptor family (iGluR), a large family of membrane receptors in metazoan. Here we characterize the echinoderm iGluR subunits and consider their possible role in chemical communication in sea cucumbers. Sequence similarity searches revealed that sea cucumbers have in general a higher number of iGluR subunits when compared to other echinoderms. Phylogenetic analysis and sequence comparisons revealed GluH as a specific iGluR subfamily present in all echinoderms. Homologues of the vertebrate GluA (aka α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, AMPA), GluK (aka kainate) and GluD (aka delta) were also identified. The GluN (aka N-methyl-d-aspartate, NMDA) as well as the invertebrate deuterostome subfamily GluF (aka phi) are absent in echinoderms. The echinoderm GluH subfamily shares conserved structural protein organization with vertebrate iGluRs and the ligand binding domain (LBD) is the most conserved region; genome analysis indicates evolution via lineage and species-specific tandem gene duplications. GluH genes (named Grih) are the most highly expressed iGluRs subunit genes in tissues in the sea cucumber Holothuria arguinesis, with Griha1, Griha2 and Griha5 exclusively expressed in tentacles, making them candidates to have a chemosensory role in this species. The multiple GluH subunits may provide alternative receptor assembly combinations, thus expanding the functional possibilities and widening the range of compounds detected during aggregation and spawning in echinoderms.
Collapse
Affiliation(s)
- Rubaiyat E Sania
- CCMAR/CIMAR LA, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Faro, Portugal
| | - João C R Cardoso
- CCMAR/CIMAR LA, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Faro, Portugal
| | - Bruno Louro
- CCMAR/CIMAR LA, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Faro, Portugal
| | - Nathalie Marquet
- CCMAR/CIMAR LA, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Faro, Portugal
| | - Adelino V M Canário
- CCMAR/CIMAR LA, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Faro, Portugal
| |
Collapse
|
82
|
Mangiacotti M, Baeckens S, Scali S, Martín J, Van Damme R, Sacchi R. Evolutionary and biogeographical support for species-specific proteins in lizard chemical signals. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
The species-specific components of animal signals can facilitate species recognition and reduce the risks of mismatching and interbreeding. Nonetheless, empirical evidence for species-specific components in chemical signals is scarce and mostly limited to insect pheromones. Based on the proteinaceous femoral gland secretions of 36 lizard species (Lacertidae), we examine the species-specific component potential of proteins in lizard chemical signals. By quantitative comparison of the one-dimensional electrophoretic patterns of the protein fraction from femoral gland secretions, we first reveal that the protein composition is species specific, accounting for a large part of the observed raw variation and allowing us to discriminate species on this basis. Secondly, we find increased protein pattern divergence in sympatric, closely related species. Thirdly, lizard protein profiles show a low phylogenetic signal, a recent and steep increase in relative disparity and a high rate of evolutionary change compared with non-specifically signal traits (i.e. body size and shape). Together, these findings provide support for the species specificity of proteins in the chemical signals of a vertebrate lineage.
Collapse
Affiliation(s)
- Marco Mangiacotti
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
- Museo di Storia Naturale di Milano, Milano, Italy
| | - Simon Baeckens
- Laboratory for Functional Morphology, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | | | - José Martín
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Raoul Van Damme
- Laboratory for Functional Morphology, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Roberto Sacchi
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
83
|
Bowen M, Miles C, Hegseth R, Anderson CM, Brandon CS, Langford ML, Wolovich CK. The potential interplay between the glandular microbiome and scent marking behavior in owl monkeys (Aotus nancymaae). Am J Primatol 2021; 83:e23324. [PMID: 34492124 DOI: 10.1002/ajp.23324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 11/12/2022]
Abstract
In mammals, scent marking behavior is a pervasive form of chemical communication that regulates social interactions within and between groups. Glandular microbiota consist of bacterial communities capable of producing chemical cues used in olfactory communication. Despite countless studies on scent marking in primates, few have examined the microbiota associated with glandular secretions. Nancy Ma's owl monkeys (Aotus nancymaae) are nocturnal, socially monogamous primates that frequently scent mark using their subcaudal glands. Previous analyses revealed that unique chemical signatures of Aotus may convey information about sex and age. We used positive reinforcement to sample the subcaudal glands of 23 captive owl monkeys to describe their glandular microbiomes and examine how patterns in these bacterial communities vary with age, sex, rearing environment and/or social group (pair identity). We coupled these analyses with behavioral observations to examine patterns in their scent marking behavior. We isolated 31 bacterial species from Phyla Firmicutes, Proteobacteria, and Actinobacteria, consistent with the dermal and glandular microbiomes of other primates. Several bacterial taxa we identified produce volatile organic compounds, which may contribute to olfactory communication. These bacterial communities are best predicted by an interaction between sex, rearing environment and pair identity rather than any of these variables alone. Within mated pairs of A. nancymaae, males and females scent mark their nest boxes at similar frequencies. In some pairs, rates of scent marking by males and females fluctuated over time in a similar manner. Pairs that had been together longer tended to exhibit the greatest similarities in their rates of scent marking. Together, these findings suggest that scent marking behavior and close social interactions with pair mates in Aotus may influence bacterial transmission and their glandular microbiomes. Chemical communication, including coordinated scent marking, may play a role in strengthening pair bonds, signaling pair status and/or in mate guarding in this socially monogamous primate.
Collapse
Affiliation(s)
- Malique Bowen
- Department of Biology, Florida Southern College, Lakeland, Florida, USA
| | - Carly Miles
- Department of Biology, Florida Southern College, Lakeland, Florida, USA
| | - Ryan Hegseth
- Department of Biology, Florida Southern College, Lakeland, Florida, USA
| | | | | | | | | |
Collapse
|
84
|
Datta S, Singh J, Singh J, Singh S, Singh S. Avoidance behavior of Eisenia fetida and Metaphire posthuma towards two different pesticides, acephate and atrazine. CHEMOSPHERE 2021; 278:130476. [PMID: 33839384 DOI: 10.1016/j.chemosphere.2021.130476] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/22/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
The avoidance behavior is regarded as the method that provides first hand information about the behavior of an organism in the presence of contaminants in the soil. Very little data is found in literature regarding the effect of pesticides on tropical earthworms. Two pesticides, acephate and atrazine which are widely used in Indian tropical area were investigated for their avoidance behavior on standard species, E. fetida (ISO 2007) and on a tropical species, M. posthuma. The avoidance tests are rarely replicated on tropical species, M. posthuma in comparison to standard species, E. fetida or E. andrei. The standard avoidance test (ISO 2007) was taken into consideration for two different species of earthworm. Significant difference in the distribution of earthworms in the control and test soils was found depicting that soil composition plays a vital role in affecting the distribution of worms. The results also show higher sensitivity of E. fetida in comparison to M. posthuma in terms of avoidance response for both the pesticides. For risk assessment, the soil types and indigenous soil species of earthworms must be taken into consideration for evaluation of soil contamination. Avoidance tests forms the basis to study the molecular mechanisms underlying the receptor proteins responsible for the process of chemesthesis in annelids.
Collapse
Affiliation(s)
- Shivika Datta
- Department of Zoology, Doaba College, Jalandhar, Punjab, 144001, India; School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144402, India.
| | - Jaswinder Singh
- Department of Zoology, Khalsa College Amritsar, Punjab, 143002, India.
| | - Joginder Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144402, India
| | - Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICwaR), Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Sharanpreet Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| |
Collapse
|
85
|
Errbii M, Keilwagen J, Hoff KJ, Steffen R, Altmüller J, Oettler J, Schrader L. Transposable elements and introgression introduce genetic variation in the invasive ant Cardiocondyla obscurior. Mol Ecol 2021; 30:6211-6228. [PMID: 34324751 DOI: 10.1111/mec.16099] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022]
Abstract
Introduced populations of invasive organisms have to cope with novel environmental challenges, while having reduced genetic variation caused by founder effects. The mechanisms associated with this "genetic paradox of invasive species" has received considerable attention, yet few studies have examined the genomic architecture of invasive species. Populations of the heart node ant Cardiocondyla obscurior belong to two distinct lineages, a New World lineage so far only found in Latin America and a more globally distributed Old World lineage. In the present study, we use population genomic approaches to compare populations of the two lineages with apparent divergent invasive potential. We find that the strong genetic differentiation of the two lineages began at least 40,000 generations ago and that activity of transposable elements (TEs) has contributed significantly to the divergence of both lineages, possibly linked to the very unusual genomic distribution of TEs in this species. Furthermore, we show that introgression from the Old World lineage is a dominant source of genetic diversity in the New World lineage, despite the lineages' strong genetic differentiation. Our study uncovers mechanisms underlying novel genetic variation in introduced populations of C. obscurior that could contribute to the species' adaptive potential.
Collapse
Affiliation(s)
- Mohammed Errbii
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Jens Keilwagen
- Institute for Biosafety in Plant Biotechnology, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| | - Katharina J Hoff
- Institute of Mathematics and Computer Science, University of Greifswald, Greifswald, Germany.,Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Raphael Steffen
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, Institute of Human Genetics, University of Cologne, Cologne, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Facility Genomics, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Jan Oettler
- Lehrstuhl für Zoologie/Evolutionsbiologie, University Regensburg, Regensburg, Germany
| | - Lukas Schrader
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
86
|
Porteus CS, Roggatz CC, Velez Z, Hardege JD, Hubbard PC. Acidification can directly affect olfaction in marine organisms. J Exp Biol 2021; 224:270986. [PMID: 34310682 DOI: 10.1242/jeb.237941] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the past decade, many studies have investigated the effects of low pH/high CO2 as a proxy for ocean acidification on olfactory-mediated behaviours of marine organisms. The effects of ocean acidification on the behaviour of fish vary from very large to none at all, and most of the maladaptive behaviours observed have been attributed to changes in acid-base regulation, leading to changes in ion distribution over neural membranes, and consequently affecting the functioning of gamma-aminobutyric acid-mediated (GABAergic) neurotransmission. Here, we highlight a possible additional mechanism by which ocean acidification might directly affect olfaction in marine fish and invertebrates. We propose that a decrease in pH can directly affect the protonation, and thereby, 3D conformation and charge distribution of odorants and/or their receptors in the olfactory organs of aquatic animals. This can sometimes enhance signalling, but most of the time the affinity of odorants for their receptors is reduced in high CO2/low pH; therefore, the activity of olfactory receptor neurons decreases as measured using electrophysiology. The reduced signal reception would translate into reduced activation of the olfactory bulb neurons, which are responsible for processing olfactory information in the brain. Over longer exposures of days to weeks, changes in gene expression in the olfactory receptors and olfactory bulb neurons cause these neurons to become less active, exacerbating the problem. A change in olfactory system functioning leads to inappropriate behavioural responses to odorants. We discuss gaps in the literature and suggest some changes to experimental design in order to improve our understanding of the underlying mechanisms and their effects on the associated behaviours to resolve some current controversy in the field regarding the extent of the effects of ocean acidification on marine fish.
Collapse
Affiliation(s)
- Cosima S Porteus
- Cell and Systems Biology, University of Toronto, 25 Harbour St, Toronto, ON, M5S 3G5, Canada.,Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Christina C Roggatz
- Energy and Environment Institute, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - Zelia Velez
- Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Jörg D Hardege
- Department of Biological and Marine Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - Peter C Hubbard
- Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| |
Collapse
|
87
|
Manzini I, Schild D, Di Natale C. Principles of odor coding in vertebrates and artificial chemosensory systems. Physiol Rev 2021; 102:61-154. [PMID: 34254835 DOI: 10.1152/physrev.00036.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall I-O relationships. Up to this point, our account of the systems goes along similar lines. The next processing steps differ considerably: while in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers were little studied. Only recently there has been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little connected fields.
Collapse
Affiliation(s)
- Ivan Manzini
- Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Gießen, Gießen, Germany
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
88
|
Prichard A, Chhibber R, King J, Athanassiades K, Spivak M, Berns GS. Decoding Odor Mixtures in the Dog Brain: An Awake fMRI Study. Chem Senses 2021; 45:833-844. [PMID: 33179730 DOI: 10.1093/chemse/bjaa068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In working and practical contexts, dogs rely upon their ability to discriminate a target odor from distracting odors and other sensory stimuli. Using awake functional magnetic resonance imaging (fMRI) in 18 dogs, we examined the neural mechanisms underlying odor discrimination between 2 odors and a mixture of the odors. Neural activation was measured during the presentation of a target odor (A) associated with a food reward, a distractor odor (B) associated with nothing, and a mixture of the two odors (A+B). Changes in neural activation during the presentations of the odor stimuli in individual dogs were measured over time within three regions known to be involved with odor processing: the caudate nucleus, the amygdala, and the olfactory bulbs. Average activation within the amygdala showed that dogs maximally differentiated between odor stimuli based on the stimulus-reward associations by the first run, while activation to the mixture (A+B) was most similar to the no-reward (B) stimulus. To clarify the neural representation of odor mixtures in the dog brain, we used a random forest classifier to compare multilabel (elemental) versus multiclass (configural) models. The multiclass model performed much better than the multilabel (weighted-F1 0.44 vs. 0.14), suggesting the odor mixture was processed configurally. Analysis of the subset of high-performing dogs' brain classification metrics revealed a network of olfactory information-carrying brain regions that included the amygdala, piriform cortex, and posterior cingulate. These results add further evidence for the configural processing of odor mixtures in dogs and suggest a novel way to identify high-performers based on brain classification metrics.
Collapse
Affiliation(s)
| | | | - Jon King
- Psychology Department, Emory University, Atlanta, GA, USA
| | | | - Mark Spivak
- Comprehensive Pet Therapy, Inc., Sandy Springs, GA, USA.,Dog Star Technologies, LLC, Sandy Springs, GA, USA
| | | |
Collapse
|
89
|
Niewiadomska-Cimicka A, Doussau F, Perot JB, Roux MJ, Keime C, Hache A, Piguet F, Novati A, Weber C, Yalcin B, Meziane H, Champy MF, Grandgirard E, Karam A, Messaddeq N, Eisenmann A, Brouillet E, Nguyen HHP, Flament J, Isope P, Trottier Y. SCA7 Mouse Cerebellar Pathology Reveals Preferential Downregulation of Key Purkinje Cell-Identity Genes and Shared Disease Signature with SCA1 and SCA2. J Neurosci 2021; 41:4910-4936. [PMID: 33888607 PMCID: PMC8260160 DOI: 10.1523/jneurosci.1882-20.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is an inherited neurodegenerative disease mainly characterized by motor incoordination because of progressive cerebellar degeneration. SCA7 is caused by polyglutamine expansion in ATXN7, a subunit of the transcriptional coactivator SAGA, which harbors histone modification activities. Polyglutamine expansions in specific proteins are also responsible for SCA1-SCA3, SCA6, and SCA17; however, the converging and diverging pathomechanisms remain poorly understood. Using a new SCA7 knock-in mouse, SCA7140Q/5Q, we analyzed gene expression in the cerebellum and assigned gene deregulation to specific cell types using published datasets. Gene deregulation affects all cerebellar cell types, although at variable degree, and correlates with alterations of SAGA-dependent epigenetic marks. Purkinje cells (PCs) are by far the most affected neurons and show reduced expression of 83 cell-type identity genes, including these critical for their spontaneous firing activity and synaptic functions. PC gene downregulation precedes morphologic alterations, pacemaker dysfunction, and motor incoordination. Strikingly, most PC genes downregulated in SCA7 have also decreased expression in SCA1 and SCA2 mice, revealing converging pathomechanisms and a common disease signature involving cGMP-PKG and phosphatidylinositol signaling pathways and LTD. Our study thus points out molecular targets for therapeutic development, which may prove beneficial for several SCAs. Furthermore, we show that SCA7140Q/5Q males and females exhibit the major disease features observed in patients, including cerebellar damage, cerebral atrophy, peripheral nerves pathology, and photoreceptor dystrophy, which account for progressive impairment of behavior, motor, and visual functions. SCA7140Q/5Q mice represent an accurate model for the investigation of different aspects of SCA7 pathogenesis.SIGNIFICANCE STATEMENT Spinocerebellar ataxia 7 (SCA7) is one of the several forms of inherited SCAs characterized by cerebellar degeneration because of polyglutamine expansion in specific proteins. The ATXN7 involved in SCA7 is a subunit of SAGA transcriptional coactivator complex. To understand the pathomechanisms of SCA7, we determined the cell type-specific gene deregulation in SCA7 mouse cerebellum. We found that the Purkinje cells are the most affected cerebellar cell type and show downregulation of a large subset of neuronal identity genes, critical for their spontaneous firing and synaptic functions. Strikingly, the same Purkinje cell genes are downregulated in mouse models of two other SCAs. Thus, our work reveals a disease signature shared among several SCAs and uncovers potential molecular targets for their treatment.
Collapse
Affiliation(s)
- Anna Niewiadomska-Cimicka
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Frédéric Doussau
- Université de Strasbourg, Illkirch 67404, France
- Centre National de la Recherche Scientifique UPR3212, Strasbourg 67000, France
| | - Jean-Baptiste Perot
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Direction de la Recherche Fondamentale, Institut de biologie François Jacob, Molecular Imaging Research Center, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses 92260, France
| | - Michel J Roux
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Celine Keime
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Antoine Hache
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Françoise Piguet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Ariana Novati
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen 72076, Germany
- Department of Human Genetics, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Chantal Weber
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Binnaz Yalcin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Hamid Meziane
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
- Celphedia, Phenomin, Institut Clinique de la Souris, Illkirch 67404, France
| | - Marie-France Champy
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
- Celphedia, Phenomin, Institut Clinique de la Souris, Illkirch 67404, France
| | - Erwan Grandgirard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Alice Karam
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Nadia Messaddeq
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Aurélie Eisenmann
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Emmanuel Brouillet
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Direction de la Recherche Fondamentale, Institut de biologie François Jacob, Molecular Imaging Research Center, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses 92260, France
| | - Hoa Huu Phuc Nguyen
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen 72076, Germany
- Department of Human Genetics, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Julien Flament
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Direction de la Recherche Fondamentale, Institut de biologie François Jacob, Molecular Imaging Research Center, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses 92260, France
| | - Philippe Isope
- Université de Strasbourg, Illkirch 67404, France
- Centre National de la Recherche Scientifique UPR3212, Strasbourg 67000, France
| | - Yvon Trottier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| |
Collapse
|
90
|
Polinski JM, Zimin AV, Clark KF, Kohn AB, Sadowski N, Timp W, Ptitsyn A, Khanna P, Romanova DY, Williams P, Greenwood SJ, Moroz LL, Walt DR, Bodnar AG. The American lobster genome reveals insights on longevity, neural, and immune adaptations. SCIENCE ADVANCES 2021; 7:7/26/eabe8290. [PMID: 34162536 PMCID: PMC8221624 DOI: 10.1126/sciadv.abe8290] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 05/07/2021] [Indexed: 05/30/2023]
Abstract
The American lobster, Homarus americanus, is integral to marine ecosystems and supports an important commercial fishery. This iconic species also serves as a valuable model for deciphering neural networks controlling rhythmic motor patterns and olfaction. Here, we report a high-quality draft assembly of the H. americanus genome with 25,284 predicted gene models. Analysis of the neural gene complement revealed extraordinary development of the chemosensory machinery, including a profound diversification of ligand-gated ion channels and secretory molecules. The discovery of a novel class of chimeric receptors coupling pattern recognition and neurotransmitter binding suggests a deep integration between the neural and immune systems. A robust repertoire of genes involved in innate immunity, genome stability, cell survival, chemical defense, and cuticle formation represents a diversity of defense mechanisms essential to thrive in the benthic marine environment. Together, these unique evolutionary adaptations contribute to the longevity and ecological success of this long-lived benthic predator.
Collapse
Affiliation(s)
| | - Aleksey V Zimin
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - K Fraser Clark
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Nova Scotia B2N 5E3, Canada
| | - Andrea B Kohn
- The Whitney Laboratory for Marine Bioscience and Department of Neuroscience, University of Florida, Gainesville and St. Augustine, FL 32080-8623, USA
| | - Norah Sadowski
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Winston Timp
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Andrey Ptitsyn
- Gloucester Marine Genomics Institute, Gloucester, MA 01930, USA
| | - Prarthana Khanna
- Genetics Program, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Daria Y Romanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow 117485, Russia
| | - Peter Williams
- The Whitney Laboratory for Marine Bioscience and Department of Neuroscience, University of Florida, Gainesville and St. Augustine, FL 32080-8623, USA
| | - Spencer J Greenwood
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island C1A 4P3, Canada
| | - Leonid L Moroz
- The Whitney Laboratory for Marine Bioscience and Department of Neuroscience, University of Florida, Gainesville and St. Augustine, FL 32080-8623, USA
| | - David R Walt
- Gloucester Marine Genomics Institute, Gloucester, MA 01930, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Andrea G Bodnar
- Gloucester Marine Genomics Institute, Gloucester, MA 01930, USA.
| |
Collapse
|
91
|
Tzeng WY, Figarella K, Garaschuk O. Olfactory impairment in men and mice related to aging and amyloid-induced pathology. Pflugers Arch 2021; 473:805-821. [PMID: 33608800 PMCID: PMC7895745 DOI: 10.1007/s00424-021-02527-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/07/2021] [Accepted: 01/28/2021] [Indexed: 12/31/2022]
Abstract
Olfaction, or the sense of smell, is one of the most ancient senses in men and mice, important for a large variety of innate and acquired behaviors. Clinical data reveal an early impairment of olfaction during normal aging and in the course of neurodegenerative diseases, but the underlying cellular/molecular mechanisms remain obscure. In the current review, we compare different aspects of the aging- and Alzheimer's disease related impairment of olfaction in men and mice, aiming at the identification of common morbidities and biomarkers, which can be analyzed in detail in the appropriate mouse models. We also identify common, often interdependent (patho)physiological pathways, including but not limited to extracellular amyloid depositions, neuroinflammation, ɛ4 allele of the apolipoprotein E, CNS insulin resistance, and the impairment of adult neurogenesis, to be targeted by basic and clinical research.
Collapse
Affiliation(s)
- Wen-Yu Tzeng
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, Keplerstr. 15, 72074, Tübingen, Germany
| | - Katherine Figarella
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, Keplerstr. 15, 72074, Tübingen, Germany
| | - Olga Garaschuk
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, Keplerstr. 15, 72074, Tübingen, Germany.
| |
Collapse
|
92
|
Oh Y, Kwon OS, Min SS, Shin YB, Oh MK, Kim M. Olfactory Detection of Toluene by Detection Rats for Potential Screening of Lung Cancer. SENSORS 2021; 21:s21092967. [PMID: 33922694 PMCID: PMC8123061 DOI: 10.3390/s21092967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/02/2022]
Abstract
Early detection is critical to successfully eradicating a variety of cancers, so the development of a new cancer primary screening system is essential. Herein, we report an animal nose sensor system for the potential primary screening of lung cancer. To establish this, we developed an odor discrimination training device based on operant conditioning paradigms for detection of toluene, an odor indicator component of lung cancer. The rats (N = 15) were trained to jump onto a floating ledge in response to toluene-spiked breath samples. Twelve rats among 15 trained rats reached performance criterion in 12 consecutive successful tests within a given set, or over 12 sets, with a success rate of over 90%. Through a total of 1934 tests, the trained rats (N = 3) showed excellent performance for toluene detection with 82% accuracy, 83% sensitivity, 81% specificity, 80% positive predictive value (PPV) and 83% negative predictive value (NPV). The animals also acquired considerable performance for odor discrimination even in rigorous tests, validating odor specificity. Since environmental and long-term stability are important factors that can influence the sensing results, the performance of the trained rats was studied under specified temperature (20, 25, and 30 °C) and humidity (30%, 45%, and 60% RH) conditions, and monitored over a period of 45 days. At given conditions of temperature and humidity, the animal sensors showed an average accuracy within a deviation range of ±10%, indicating the excellent environmental stability of the detection rats. Surprisingly, the trained rats did not differ in retention of last odor discrimination when tested 45 days after training, denoting that the rats’ memory for trained odor is still available over a long period of time. When taken together, these results indicate that our odor discrimination training system can be useful for non-invasive breath testing and potential primary screening of lung cancer.
Collapse
Affiliation(s)
- Yunkwang Oh
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahang-ro, Yuseong-gu, Daejeon 34141, Korea; (Y.O.); (Y.-B.S.)
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Sungbuk-gu, Seoul 02841, Korea
| | - Oh-Seok Kwon
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahang-ro, Yuseong-gu, Daejeon 34141, Korea;
| | - Sun-Seek Min
- Department of Physiology and Biophysics, Eulji University School of Medicine, 77 Gyeryong-ro, Jung-gu, Daejeon 34824, Korea;
| | - Yong-Beom Shin
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahang-ro, Yuseong-gu, Daejeon 34141, Korea; (Y.O.); (Y.-B.S.)
- KRIBB School, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Sungbuk-gu, Seoul 02841, Korea
- Correspondence: (M.-K.O.); (M.K.); Tel.: +82-2-3290-3308 (M.-K.O.); +82-42-8798447 (M.K.); Fax: +82-2-926-6102 (M.-K.O.); +82-42-879-8594 (M.K.)
| | - Moonil Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahang-ro, Yuseong-gu, Daejeon 34141, Korea; (Y.O.); (Y.-B.S.)
- KRIBB School, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
- Correspondence: (M.-K.O.); (M.K.); Tel.: +82-2-3290-3308 (M.-K.O.); +82-42-8798447 (M.K.); Fax: +82-2-926-6102 (M.-K.O.); +82-42-879-8594 (M.K.)
| |
Collapse
|
93
|
Kim HT, Park JY. Morphology and histology of the olfactory organ of two African lungfishes, Protopterus amphibius and P. dolloi (Lepidosirenidae, Dipnoi). Appl Microsc 2021; 51:5. [PMID: 33864537 PMCID: PMC8053140 DOI: 10.1186/s42649-021-00054-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/07/2021] [Indexed: 05/31/2023] Open
Abstract
The olfactory organs of two African lungfishes, Protopterus amphibius and P. dolloi, were investigated using a stereo microscope and a compound light microscope and were described anatomically, histologically, and histochemically. Like other lungfishes, these species present the following general features: i) elongated olfactory chamber (OC), ii) anterior nostril at the ventral tip of the upper lip, iii) posterior nostril on the palate of the oral cavity, iv) lamellae with multiple cell types such as olfactory receptor neurons, supporting cells, basal cells, lymphatic cells, and mucous cells (MC), and vi) vomero-like epithelial crypt (VEC) made of glandular epithelium (GE) and crypt sensory epithelium. Some of these features exhibit differences between species: MCs are abundant in both the lamellar and inner walls of the OC in P. amphibius but occur only in lamellae in P. dolloi. On the other hand, some between feature differences are consistent across species: the GE of both P. amphibius and P. dolloi is strongly positive for Alcian blue (pH 2.5)-periodic acid Schiff (deep violet coloration), and positive with hematoxylin and eosin and with Masson's trichrome (reddish-brown staining), unlike the MCs of the two species which stain dark red with both Alcian blue (pH 2.5)-periodic acid Schiff and Masson's trichrome but respond faintly to hematoxylin and eosin. The differing abundance of MCs in the two lungfishes might reflect different degrees in aerial exposure of the olfactory organ, while the neutral and acid mucopolysaccharide-containing VEC, as indicated by staining properties of the MCs, is evolutionary evidence that P. amphibius and P. dolloi are the closest living relatives to tetrapods, at least in the order Dipnoi.
Collapse
Affiliation(s)
- Hyun Tae Kim
- Department of Biological Science and Institute for Biodiversity Research, College of Natural Sciences, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Jong Young Park
- Department of Biological Science and Institute for Biodiversity Research, College of Natural Sciences, Jeonbuk National University, Jeonju, 54896, South Korea.
| |
Collapse
|
94
|
Olfactory encoding within the insect antennal lobe: The emergence and role of higher order temporal correlations in the dynamics of antennal lobe spiking activity. J Theor Biol 2021; 522:110700. [PMID: 33819477 DOI: 10.1016/j.jtbi.2021.110700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 11/22/2022]
Abstract
In this review, we focus on the antennal lobe (AL) of three insect species - the fruit fly, sphinx moth, and locust. We first review the experimentally elucidated anatomy and physiology of the early olfactory system of each species; empirical studies of AL activity, however, often focus on assessing firing rates (averaged over time scales of about 100 ms), and hence the AL odor code is often analyzed in terms of a temporally evolving vector of firing rates. However, such a perspective necessarily misses the possibility of higher order temporal correlations in spiking activity within a single cell and across multiple cells over shorter time scales (of about 10 ms). Hence, we then review our prior theoretical work, where we constructed biophysically detailed, species-specific AL models within the fly, moth, and locust, finding that in each case higher order temporal correlations in spiking naturally emerge from model dynamics (i.e., without a prioriincorporation of elements designed to produce correlated activity). We therefore use our theoretical work to argue the perspective that temporal correlations in spiking over short time scales, which have received little experimental attention to-date, may provide valuable coding dimensions (complementing the coding dimensions provided by the vector of firing rates) that nature has exploited in the encoding of odors within the AL. We further argue that, if the AL does indeed utilize temporally correlated activity to represent odor information, such an odor code could be naturally and easily deciphered within the Mushroom Body.
Collapse
|
95
|
Derby CD. The Crustacean Antennule: A Complex Organ Adapted for Lifelong Function in Diverse Environments and Lifestyles. THE BIOLOGICAL BULLETIN 2021; 240:67-81. [PMID: 33939945 DOI: 10.1086/713537] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
AbstractThe crustacean first antenna, or antennule, has been an experimental model for studying sensory biology for over 150 years. Investigations have led to a clearer understanding of the functional organization of the antennule as an olfactory organ but also to a realization that the antennule is much more than that. Across the Crustacea, the antennules take on many forms and functions. As an example, the antennule of reptantian decapods has many types of sensilla, each with distinct structure and function and with hundreds of thousands of chemosensory neurons expressing hundreds of genes that code for diverse classes of receptor proteins. Together, these antennular sensilla represent multiple chemosensory pathways, each with its own central connections and functions. The antennule also has a diversity of sensors of mechanical stimuli, including vibrations, touch, water flow, and the animal's own movements. The antennule likely also detects other environmental cues, such as temperature, oxygen, pH, salinity, and noxious stimuli. Furthermore, the antennule is a motor organ-it is flicked to temporally and spatially sample the animal's chemo-mechanical surroundings-and this information is used in resolving the structure of chemical plumes and locating the odor source. The antennule is also adapted to maintain lifelong function in a changing environment. For example, it has specific secretory glands, grooming structures, and behaviors to stay clean and functional. Antennular sensilla and the annuli on which they reside are also added and replaced, leading to a complete turnover of the antennule over several molts. Thus, the antennule is a complex and dynamic sensory-motor integrator that is intricately engaged in most aspects of the lives of crustaceans.
Collapse
|
96
|
Brokaw AF, Smotherman M. Olfactory tracking strategies in a neotropical fruit bat. J Exp Biol 2021; 224:jeb231829. [PMID: 33536298 PMCID: PMC7904095 DOI: 10.1242/jeb.231829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/11/2021] [Indexed: 11/20/2022]
Abstract
Many studies have characterized olfactory-tracking behaviors in animals, and it has been proposed that search strategies may be generalizable across a wide range of species. Olfaction is important for fruit- and nectar-feeding bats, but it is uncertain whether existing olfactory search models can predict the strategies of flying mammals that emit echolocation pulses through their nose. Quantitative assessments of how well echolocating bats track and localize odor sources are lacking, so we developed a behavioral assay to characterize the olfactory detection and tracking behavior of crawling northern yellow-shouldered bats (Sturnira parvidens), a common neotropical frugivore. Trained bats were presented with a choice between control and banana-odor-infused solutions in a series of experiments that confirmed that bats are able to locate a reward based on odor cues alone and examined the effect of odor concentration on olfactory search behaviors. Decision distance (the distance from which bats made their change in direction before directly approaching the target) was distinctly bimodal, with an observed peak that coincided with an inflection point in the odor concentration gradient. We observed two main search patterns that are consistent with both serial sampling and learned route-following strategies. These results support the hypothesis that bats can combine klinotaxis with spatial awareness of experimental conditions to locate odor sources, similar to terrestrial mammals. Contrary to existing models, bats did not display prominent head-scanning behaviors during their final approach, which may be due to constraints of nasal-emitted biosonar for orientation.
Collapse
Affiliation(s)
- Alyson F Brokaw
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX, USA
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Michael Smotherman
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX, USA
- Department of Biology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
97
|
Hanson E, Brandel-Ankrapp KL, Arenkiel BR. Dynamic Cholinergic Tone in the Basal Forebrain Reflects Reward-Seeking and Reinforcement During Olfactory Behavior. Front Cell Neurosci 2021; 15:635837. [PMID: 33603646 PMCID: PMC7884767 DOI: 10.3389/fncel.2021.635837] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Sensory perception underlies how we internalize and interact with the external world. In order to adapt to changing circumstances and interpret signals in a variety of contexts, sensation needs to be reliable, but perception of sensory input needs to be flexible. An important mediator of this flexibility is top-down regulation from the cholinergic basal forebrain. Basal forebrain projection neurons serve as pacemakers and gatekeepers for downstream neural networks, modulating circuit activity across diverse neuronal populations. This top-down control is necessary for sensory cue detection, learning, and memory, and is disproportionately disrupted in neurodegenerative diseases associated with cognitive decline. Intriguingly, cholinergic signaling acts locally within the basal forebrain to sculpt the activity of basal forebrain output neurons. To determine how local cholinergic signaling impacts basal forebrain output pathways that participate in top-down regulation, we sought to define the dynamics of cholinergic signaling within the basal forebrain during motivated behavior and learning. Toward this, we utilized fiber photometry and the genetically encoded acetylcholine indicator GAChR2.0 to define temporal patterns of cholinergic signaling in the basal forebrain during olfactory-guided, motivated behaviors and learning. We show that cholinergic signaling reliably increased during reward seeking behaviors, but was strongly suppressed by reward delivery in a go/no-go olfactory-cued discrimination task. The observed transient reduction in cholinergic tone was mirrored by a suppression in basal forebrain GABAergic neuronal activity. Together, these findings suggest that cholinergic tone in the basal forebrain changes rapidly to reflect reward-seeking behavior and positive reinforcement and may impact downstream circuitry that modulates olfaction.
Collapse
Affiliation(s)
- Elizabeth Hanson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Katie L. Brandel-Ankrapp
- Postbaccalaureate Research Education Program, Baylor College of Medicine, Houston, TX, United States
| | - Benjamin R. Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
98
|
Marachlian E, Klappenbach M, Locatelli F. Learning-dependent plasticity in the antennal lobe improves discrimination and recognition of odors in the honeybee. Cell Tissue Res 2021; 383:165-175. [PMID: 33511470 DOI: 10.1007/s00441-020-03396-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022]
Abstract
Honeybees are extensively used to study olfactory learning and memory processes thanks to their ability to discriminate and remember odors and because of their advantages for optophysiological recordings of the circuits involved in memory and odor perception. There are evidences that the encoding of odors in areas of primary sensory processing is not rigid, but undergoes changes caused by olfactory experience. The biological meaning of these changes is focus of intense discussions. Along this review, we present evidences of plasticity related to different forms of learning and discuss its function in the context of olfactory challenges that honeybees have to solve. So far, results in honeybees are consistent with a model in which changes in early olfactory processing contributes to the ability of an animal to recognize the presence of relevant odors and facilitates the discrimination of odors in a way adjusted to its own experience.
Collapse
Affiliation(s)
- Emiliano Marachlian
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris, France
| | - Martin Klappenbach
- Departamento de Fisiología, Biología Molecular y Celular e Instituto de Fisiología, Facultad de Ciencias Exactas y Naturales, Biología Molecular y Neurociencias, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina
| | - Fernando Locatelli
- Departamento de Fisiología, Biología Molecular y Celular e Instituto de Fisiología, Facultad de Ciencias Exactas y Naturales, Biología Molecular y Neurociencias, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
99
|
Karpe SD, Tiwari V, Ramanathan S. InsectOR-Webserver for sensitive identification of insect olfactory receptor genes from non-model genomes. PLoS One 2021; 16:e0245324. [PMID: 33465132 PMCID: PMC7815150 DOI: 10.1371/journal.pone.0245324] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 12/29/2020] [Indexed: 11/18/2022] Open
Abstract
Insect Olfactory Receptors (ORs) are diverse family of membrane protein receptors responsible for most of the insect olfactory perception and communication, and hence they are of utmost importance for developing repellents or pesticides. Accurate gene prediction of insect ORs from newly sequenced genomes is an important but challenging task. We have developed a dedicated webserver, 'insectOR', to predict and validate insect OR genes using multiple gene prediction algorithms, accompanied by relevant validations. It is possible to employ this server nearly automatically and perform rapid prediction of the OR gene loci from thousands of OR-protein-to-genome alignments, resolve gene boundaries for tandem OR genes and refine them further to provide more complete OR gene models. InsectOR outperformed the popular genome annotation pipelines (MAKER and NCBI eukaryotic genome annotation) in terms of overall sensitivity at base, exon and locus level, when tested on two distantly related insect genomes. It displayed more than 95% nucleotide level precision in both tests. Finally, given the same input data and parameters, InsectOR missed less than 2% gene loci, in contrast to 55% loci missed by MAKER for Drosophila melanogaster. The webserver is freely available on the web at http://caps.ncbs.res.in/insectOR/ and the basic package can be downloaded from https://github.com/sdk15/insectOR for local use. This tool will allow biologists to perform quick preliminary identification of insect olfactory receptor genes from newly sequenced genomes and also assist in their further detailed annotation. Its usage can also be extended to other divergent gene families.
Collapse
Affiliation(s)
- Snehal Dilip Karpe
- National Centre for Biological Sciences (NCBS), TIFR, Bengaluru, Karnataka, India
| | - Vikas Tiwari
- National Centre for Biological Sciences (NCBS), TIFR, Bengaluru, Karnataka, India
| | - Sowdhamini Ramanathan
- National Centre for Biological Sciences (NCBS), TIFR, Bengaluru, Karnataka, India
- * E-mail:
| |
Collapse
|
100
|
Dibattista M, Al Koborssy D, Genovese F, Reisert J. The functional relevance of olfactory marker protein in the vertebrate olfactory system: a never-ending story. Cell Tissue Res 2021; 383:409-427. [PMID: 33447880 DOI: 10.1007/s00441-020-03349-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022]
Abstract
Olfactory marker protein (OMP) was first described as a protein expressed in olfactory receptor neurons (ORNs) in the nasal cavity. In particular, OMP, a small cytoplasmic protein, marks mature ORNs and is also expressed in the neurons of other nasal chemosensory systems: the vomeronasal organ, the septal organ of Masera, and the Grueneberg ganglion. While its expression pattern was more easily established, OMP's function remained relatively vague. To date, most of the work to understand OMP's role has been done using mice lacking OMP. This mostly phenomenological work has shown that OMP is involved in sharpening the odorant response profile and in quickening odorant response kinetics of ORNs and that it contributes to targeting of ORN axons to the olfactory bulb to refine the glomerular response map. Increasing evidence shows that OMP acts at the early stages of olfactory transduction by modulating the kinetics of cAMP, the second messenger of olfactory transduction. However, how this occurs at a mechanistic level is not understood, and it might also not be the only mechanism underlying all the changes observed in mice lacking OMP. Recently, OMP has been detected outside the nose, including the brain and other organs. Although no obvious logic has become apparent regarding the underlying commonality between nasal and extranasal expression of OMP, a broader approach to diverse cellular systems might help unravel OMP's functions and mechanisms of action inside and outside the nose.
Collapse
Affiliation(s)
- Michele Dibattista
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari "A. Moro", Bari, Italy
| | | | | | | |
Collapse
|