51
|
Gulati D, Ray S. Auditory and Visual Gratings Elicit Distinct Gamma Responses. eNeuro 2024; 11:ENEURO.0116-24.2024. [PMID: 38604776 PMCID: PMC11046261 DOI: 10.1523/eneuro.0116-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Sensory stimulation is often accompanied by fluctuations at high frequencies (>30 Hz) in brain signals. These could be "narrowband" oscillations in the gamma band (30-70 Hz) or nonoscillatory "broadband" high-gamma (70-150 Hz) activity. Narrowband gamma oscillations, which are induced by presenting some visual stimuli such as gratings and have been shown to weaken with healthy aging and the onset of Alzheimer's disease, hold promise as potential biomarkers. However, since delivering visual stimuli is cumbersome as it requires head stabilization for eye tracking, an equivalent auditory paradigm could be useful. Although simple auditory stimuli have been shown to produce high-gamma activity, whether specific auditory stimuli can also produce narrowband gamma oscillations is unknown. We tested whether auditory ripple stimuli, which are considered an analog to visual gratings, could elicit narrowband oscillations in auditory areas. We recorded 64-channel electroencephalogram from male and female (18 each) subjects while they either fixated on the monitor while passively viewing static visual gratings or listened to stationary and moving ripples, played using loudspeakers, with their eyes open or closed. We found that while visual gratings induced narrowband gamma oscillations with suppression in the alpha band (8-12 Hz), auditory ripples did not produce narrowband gamma but instead elicited very strong broadband high-gamma response and suppression in the beta band (14-26 Hz). Even though we used equivalent stimuli in both modalities, our findings indicate that the underlying neuronal circuitry may not share ubiquitous strategies for stimulus processing.
Collapse
Affiliation(s)
- Divya Gulati
- Centre for Neuroscience, Indian Institute of Science, Bengaluru 560012, India
| | - Supratim Ray
- Centre for Neuroscience, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
52
|
Noda T, Aschauer DF, Chambers AR, Seiler JPH, Rumpel S. Representational maps in the brain: concepts, approaches, and applications. Front Cell Neurosci 2024; 18:1366200. [PMID: 38584779 PMCID: PMC10995314 DOI: 10.3389/fncel.2024.1366200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/08/2024] [Indexed: 04/09/2024] Open
Abstract
Neural systems have evolved to process sensory stimuli in a way that allows for efficient and adaptive behavior in a complex environment. Recent technological advances enable us to investigate sensory processing in animal models by simultaneously recording the activity of large populations of neurons with single-cell resolution, yielding high-dimensional datasets. In this review, we discuss concepts and approaches for assessing the population-level representation of sensory stimuli in the form of a representational map. In such a map, not only are the identities of stimuli distinctly represented, but their relational similarity is also mapped onto the space of neuronal activity. We highlight example studies in which the structure of representational maps in the brain are estimated from recordings in humans as well as animals and compare their methodological approaches. Finally, we integrate these aspects and provide an outlook for how the concept of representational maps could be applied to various fields in basic and clinical neuroscience.
Collapse
Affiliation(s)
- Takahiro Noda
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University-Mainz, Mainz, Germany
| | - Dominik F. Aschauer
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University-Mainz, Mainz, Germany
| | - Anna R. Chambers
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
- Eaton Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, United States
| | - Johannes P.-H. Seiler
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University-Mainz, Mainz, Germany
| | - Simon Rumpel
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University-Mainz, Mainz, Germany
| |
Collapse
|
53
|
Russell LE, Fişek M, Yang Z, Tan LP, Packer AM, Dalgleish HWP, Chettih SN, Harvey CD, Häusser M. The influence of cortical activity on perception depends on behavioral state and sensory context. Nat Commun 2024; 15:2456. [PMID: 38503769 PMCID: PMC10951313 DOI: 10.1038/s41467-024-46484-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/28/2024] [Indexed: 03/21/2024] Open
Abstract
The mechanistic link between neural circuit activity and behavior remains unclear. While manipulating cortical activity can bias certain behaviors and elicit artificial percepts, some tasks can still be solved when cortex is silenced or removed. Here, mice were trained to perform a visual detection task during which we selectively targeted groups of visually responsive and co-tuned neurons in L2/3 of primary visual cortex (V1) for two-photon photostimulation. The influence of photostimulation was conditional on two key factors: the behavioral state of the animal and the contrast of the visual stimulus. The detection of low-contrast stimuli was enhanced by photostimulation, while the detection of high-contrast stimuli was suppressed, but crucially, only when mice were highly engaged in the task. When mice were less engaged, our manipulations of cortical activity had no effect on behavior. The behavioral changes were linked to specific changes in neuronal activity. The responses of non-photostimulated neurons in the local network were also conditional on two factors: their functional similarity to the photostimulated neurons and the contrast of the visual stimulus. Functionally similar neurons were increasingly suppressed by photostimulation with increasing visual stimulus contrast, correlating with the change in behavior. Our results show that the influence of cortical activity on perception is not fixed, but dynamically and contextually modulated by behavioral state, ongoing activity and the routing of information through specific circuits.
Collapse
Affiliation(s)
- Lloyd E Russell
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Mehmet Fişek
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Zidan Yang
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Lynn Pei Tan
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Adam M Packer
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Henry W P Dalgleish
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | | | | | - Michael Häusser
- Wolfson Institute for Biomedical Research, University College London, London, UK.
| |
Collapse
|
54
|
Morandell K, Yin A, Triana Del Rio R, Schneider DM. Movement-Related Modulation in Mouse Auditory Cortex Is Widespread Yet Locally Diverse. J Neurosci 2024; 44:e1227232024. [PMID: 38286628 PMCID: PMC10941236 DOI: 10.1523/jneurosci.1227-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 01/31/2024] Open
Abstract
Neurons in the mouse auditory cortex are strongly influenced by behavior, including both suppression and enhancement of sound-evoked responses during movement. The mouse auditory cortex comprises multiple fields with different roles in sound processing and distinct connectivity to movement-related centers of the brain. Here, we asked whether movement-related modulation in male mice might differ across auditory cortical fields, thereby contributing to the heterogeneity of movement-related modulation at the single-cell level. We used wide-field calcium imaging to identify distinct cortical fields and cellular-resolution two-photon calcium imaging to visualize the activity of layer 2/3 excitatory neurons within each field. We measured each neuron's responses to three sound categories (pure tones, chirps, and amplitude-modulated white noise) as mice rested and ran on a non-motorized treadmill. We found that individual neurons in each cortical field typically respond to just one sound category. Some neurons are only active during rest and others during locomotion, and those that are responsive across conditions retain their sound-category tuning. The effects of locomotion on sound-evoked responses vary at the single-cell level, with both suppression and enhancement of neural responses, and the net modulatory effect of locomotion is largely conserved across cortical fields. Movement-related modulation in auditory cortex also reflects more complex behavioral patterns, including instantaneous running speed and nonlocomotor movements such as grooming and postural adjustments, with similar patterns seen across all auditory cortical fields. Our findings underscore the complexity of movement-related modulation throughout the mouse auditory cortex and indicate that movement-related modulation is a widespread phenomenon.
Collapse
Affiliation(s)
- Karin Morandell
- Center for Neural Science, New York University, New York, New York 10012
| | - Audrey Yin
- Center for Neural Science, New York University, New York, New York 10012
| | | | - David M Schneider
- Center for Neural Science, New York University, New York, New York 10012
| |
Collapse
|
55
|
Doran PR, Fomin-Thunemann N, Tang RP, Balog D, Zimmerman B, Kilic K, Martin EA, Kura S, Fisher HP, Chabbott G, Herbert J, Rauscher BC, Jiang JX, Sakadzic S, Boas DA, Devor A, Chen IA, Thunemann M. Widefield in vivo imaging system with two fluorescence and two reflectance channels, a single sCMOS detector, and shielded illumination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.07.566086. [PMID: 37986755 PMCID: PMC10659277 DOI: 10.1101/2023.11.07.566086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
SIGNIFICANCE Widefield microscopy of the entire dorsal part of mouse cerebral cortex enables large-scale (mesoscopic) imaging of neuronal activity with fluorescent indicators as well as hemodynamics via oxy- and deoxyhemoglobin absorption. Versatile and cost-effective imaging systems are needed for large-scale, color-multiplexed imaging of multiple fluorescent and intrinsic contrasts. AIM Develop a system for mesoscopic imaging of two fluorescent and two reflectance channels. APPROACH Excitation of red and green fluorescence is achieved through epi-illumination. Hemoglobin absorption imaging is achieved using 525- and 625nm LEDs positioned around the objective lens. An aluminum hemisphere placed between objective and cranial window provides diffuse illumination of the brain. Signals are recorded sequentially by a single sCMOS detector. RESULTS We demonstrate performance of our imaging system by recording large-scale spontaneous and stimulus-evoked neuronal, cholinergic, and hemodynamic activity in awake head-fixed mice with a curved crystal skull window expressing the red calcium indicator jRGECO1a and the green acetylcholine sensor GRABACh3.0 . Shielding of illumination light through the aluminum hemisphere enables concurrent recording of pupil diameter changes. CONCLUSIONS Our widefield microscope design with single camera can be used to acquire multiple aspects of brain physiology and is compatible with behavioral readouts of pupil diameter.
Collapse
|
56
|
Cody P, Kumar M, Tzounopoulos T. Cortical Zinc Signaling Is Necessary for Changes in Mouse Pupil Diameter That Are Evoked by Background Sounds with Different Contrasts. J Neurosci 2024; 44:e0939232024. [PMID: 38242698 PMCID: PMC10941062 DOI: 10.1523/jneurosci.0939-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/29/2023] [Accepted: 01/14/2024] [Indexed: 01/21/2024] Open
Abstract
Luminance-independent changes in pupil diameter (PD) during wakefulness influence and are influenced by neuromodulatory, neuronal, and behavioral responses. However, it is unclear whether changes in neuromodulatory activity in a specific brain area are necessary for the associated changes in PD or whether some different mechanisms cause parallel fluctuations in both PD and neuromodulation. To answer this question, we simultaneously recorded PD and cortical neuronal activity in male and female mice. Namely, we measured PD and neuronal activity during adaptation to sound contrast, which is a well-described adaptation conserved in many species and brain areas. In the primary auditory cortex (A1), increases in the variability of sound level (contrast) induce a decrease in the slope of the neuronal input-output relationship, neuronal gain, which depends on cortical neuromodulatory zinc signaling. We found a previously unknown modulation of PD by changes in background sensory context: high stimulus contrast sounds evoke larger increases in evoked PD compared with low-contrast sounds. To explore whether these changes in evoked PD are controlled by cortical neuromodulatory zinc signaling, we imaged single-cell neural activity in A1, manipulated zinc signaling in the cortex, and assessed PD in the same awake mouse. We found that cortical synaptic zinc signaling is necessary for increases in PD during high-contrast background sounds compared with low-contrast sounds. This finding advances our knowledge about how cortical neuromodulatory activity affects PD changes and thus advances our understanding of the brain states, circuits, and neuromodulatory mechanisms that can be inferred from pupil size fluctuations.
Collapse
Affiliation(s)
- Patrick Cody
- Department of Otolaryngology, Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Manoj Kumar
- Department of Otolaryngology, Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Thanos Tzounopoulos
- Department of Otolaryngology, Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
57
|
Wang A, Ferguson KA, Gupta J, Higley MJ, Cardin JA. Developmental trajectory of cortical somatostatin interneuron function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583539. [PMID: 38496673 PMCID: PMC10942364 DOI: 10.1101/2024.03.05.583539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
GABAergic inhibition is critical to the proper development of neocortical circuits. However, GABAergic interneurons are highly diverse and the developmental roles of distinct inhibitory subpopulations remain largely unclear. Dendrite-targeting, somatostatin-expressing interneurons (SST-INs) in the mature cortex regulate synaptic integration and plasticity in excitatory pyramidal neurons (PNs) and exhibit unique feature selectivity. Relatively little is known about early postnatal SST-IN activity or impact on surrounding local circuits. We examined juvenile SST-INs and PNs in mouse primary visual cortex. PNs exhibited stable visual responses and feature selectivity from eye opening onwards. In contrast, SST-INs developed visual responses and feature selectivity during the third postnatal week in parallel with a rapid increase in excitatory synaptic innervation. SST-INs largely exerted a multiplicative effect on nearby PN visual responses at all ages, but this impact increased over time. Our results identify a developmental window for the emergence of an inhibitory circuit mechanism for normalization.
Collapse
Affiliation(s)
| | | | - Jyoti Gupta
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Michael J. Higley
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Jessica A. Cardin
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510 USA
| |
Collapse
|
58
|
Dadarlat MC, Sun YJ, Stryker MP. Activity-dependent recruitment of inhibition and excitation in the awake mammalian cortex during electrical stimulation. Neuron 2024; 112:821-834.e4. [PMID: 38134920 PMCID: PMC10949925 DOI: 10.1016/j.neuron.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 08/04/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Electrical stimulation is an effective tool for mapping and altering brain connectivity, with applications ranging from treating pharmacology-resistant neurological disorders to providing sensory feedback for neural prostheses. Paramount to the success of these applications is the ability to manipulate electrical currents to precisely control evoked neural activity patterns. However, little is known about stimulation-evoked responses in inhibitory neurons nor how stimulation-evoked activity patterns depend on ongoing neural activity. In this study, we used 2-photon imaging and cell-type specific labeling to measure single-cell responses of excitatory and inhibitory neurons to electrical stimuli in the visual cortex of awake mice. Our data revealed strong interactions between electrical stimulation and pre-stimulus activity of single neurons in awake animals and distinct recruitment and response patterns for excitatory and inhibitory neurons. This work demonstrates the importance of cell-type-specific labeling of neurons in future studies.
Collapse
Affiliation(s)
- Maria C Dadarlat
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47906, USA.
| | - Yujiao Jennifer Sun
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Michael P Stryker
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
59
|
Pun TK, Khoshnevis M, Hosman T, Wilson GH, Kapitonava A, Kamdar F, Henderson JM, Simeral JD, Vargas-Irwin CE, Harrison MT, Hochberg LR. Measuring instability in chronic human intracortical neural recordings towards stable, long-term brain-computer interfaces. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582733. [PMID: 38496552 PMCID: PMC10942277 DOI: 10.1101/2024.02.29.582733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Intracortical brain-computer interfaces (iBCIs) enable people with tetraplegia to gain intuitive cursor control from movement intentions. To translate to practical use, iBCIs should provide reliable performance for extended periods of time. However, performance begins to degrade as the relationship between kinematic intention and recorded neural activity shifts compared to when the decoder was initially trained. In addition to developing decoders to better handle long-term instability, identifying when to recalibrate will also optimize performance. We propose a method to measure instability in neural data without needing to label user intentions. Longitudinal data were analyzed from two BrainGate2 participants with tetraplegia as they used fixed decoders to control a computer cursor spanning 142 days and 28 days, respectively. We demonstrate a measure of instability that correlates with changes in closed-loop cursor performance solely based on the recorded neural activity (Pearson r = 0.93 and 0.72, respectively). This result suggests a strategy to infer online iBCI performance from neural data alone and to determine when recalibration should take place for practical long-term use.
Collapse
|
60
|
Meneghetti N, Vannini E, Mazzoni A. Rodents' visual gamma as a biomarker of pathological neural conditions. J Physiol 2024; 602:1017-1048. [PMID: 38372352 DOI: 10.1113/jp283858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
Neural gamma oscillations (indicatively 30-100 Hz) are ubiquitous: they are associated with a broad range of functions in multiple cortical areas and across many animal species. Experimental and computational works established gamma rhythms as a global emergent property of neuronal networks generated by the balanced and coordinated interaction of excitation and inhibition. Coherently, gamma activity is strongly influenced by the alterations of synaptic dynamics which are often associated with pathological neural dysfunctions. We argue therefore that these oscillations are an optimal biomarker for probing the mechanism of cortical dysfunctions. Gamma oscillations are also highly sensitive to external stimuli in sensory cortices, especially the primary visual cortex (V1), where the stimulus dependence of gamma oscillations has been thoroughly investigated. Gamma manipulation by visual stimuli tuning is particularly easy in rodents, which have become a standard animal model for investigating the effects of network alterations on gamma oscillations. Overall, gamma in the rodents' visual cortex offers an accessible probe on dysfunctional information processing in pathological conditions. Beyond vision-related dysfunctions, alterations of gamma oscillations in rodents were indeed also reported in neural deficits such as migraine, epilepsy and neurodegenerative or neuropsychiatric conditions such as Alzheimer's, schizophrenia and autism spectrum disorders. Altogether, the connections between visual cortical gamma activity and physio-pathological conditions in rodent models underscore the potential of gamma oscillations as markers of neuronal (dys)functioning.
Collapse
Affiliation(s)
- Nicolò Meneghetti
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence for Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Eleonora Vannini
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy
| | - Alberto Mazzoni
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence for Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
61
|
Baravalle R, Canavier CC. Synchrony in Networks of Type 2 Interneurons Is More Robust to Noise with Hyperpolarizing Inhibition Compared to Shunting Inhibition in Both the Stochastic Population Oscillator and the Coupled Oscillator Regimes. eNeuro 2024; 11:ENEURO.0399-23.2024. [PMID: 38471777 PMCID: PMC10972736 DOI: 10.1523/eneuro.0399-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Synchronization in the gamma band (25-150 Hz) is mediated by PV+ inhibitory interneurons, and evidence is accumulating for the essential role of gamma oscillations in cognition. Oscillations can arise in inhibitory networks via synaptic interactions between individual oscillatory neurons (mean-driven) or via strong recurrent inhibition that destabilizes the stationary background firing rate in the fluctuation-driven balanced state, causing an oscillation in the population firing rate. Previous theoretical work focused on model neurons with Hodgkin's Type 1 excitability (integrators) connected by current-based synapses. Here we show that networks comprised of simple Type 2 oscillators (resonators) exhibit a supercritical Hopf bifurcation between synchrony and asynchrony and a gradual transition via cycle skipping from coupled oscillators to stochastic population oscillator (SPO), as previously shown for Type 1. We extended our analysis to homogeneous networks with conductance rather than current based synapses and found that networks with hyperpolarizing inhibitory synapses were more robust to noise than those with shunting synapses, both in the coupled oscillator and SPO regime. Assuming that reversal potentials are uniformly distributed between shunting and hyperpolarized values, as observed in one experimental study, converting synapses to purely hyperpolarizing favored synchrony in all cases, whereas conversion to purely shunting synapses made synchrony less robust except at very high conductance strengths. In mature neurons the synaptic reversal potential is controlled by chloride cotransporters that control the intracellular concentrations of chloride and bicarbonate ions, suggesting these transporters as a potential therapeutic target to enhance gamma synchrony and cognition.
Collapse
Affiliation(s)
- Roman Baravalle
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center-New Orleans, New Orleans, Louisiana 70112
| | - Carmen C Canavier
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center-New Orleans, New Orleans, Louisiana 70112
| |
Collapse
|
62
|
Hulsey D, Zumwalt K, Mazzucato L, McCormick DA, Jaramillo S. Decision-making dynamics are predicted by arousal and uninstructed movements. Cell Rep 2024; 43:113709. [PMID: 38280196 PMCID: PMC11016285 DOI: 10.1016/j.celrep.2024.113709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/05/2023] [Accepted: 01/10/2024] [Indexed: 01/29/2024] Open
Abstract
During sensory-guided behavior, an animal's decision-making dynamics unfold through sequences of distinct performance states, even while stimulus-reward contingencies remain static. Little is known about the factors that underlie these changes in task performance. We hypothesize that these decision-making dynamics can be predicted by externally observable measures, such as uninstructed movements and changes in arousal. Here, using computational modeling of visual and auditory task performance data from mice, we uncovered lawful relationships between transitions in strategic task performance states and an animal's arousal and uninstructed movements. Using hidden Markov models applied to behavioral choices during sensory discrimination tasks, we find that animals fluctuate between minutes-long optimal, sub-optimal, and disengaged performance states. Optimal state epochs are predicted by intermediate levels, and reduced variability, of pupil diameter and movement. Our results demonstrate that externally observable uninstructed behaviors can predict optimal performance states and suggest that mice regulate their arousal during optimal performance.
Collapse
Affiliation(s)
- Daniel Hulsey
- Institute of Neuroscience, University of Oregon, Eugene, OR 97405, USA
| | - Kevin Zumwalt
- Institute of Neuroscience, University of Oregon, Eugene, OR 97405, USA
| | - Luca Mazzucato
- Institute of Neuroscience, University of Oregon, Eugene, OR 97405, USA; Department of Biology, University of Oregon, Eugene, OR 97405, USA; Departments of Physics and Mathematics, University of Oregon, Eugene, OR 97405, USA.
| | - David A McCormick
- Institute of Neuroscience, University of Oregon, Eugene, OR 97405, USA; Department of Biology, University of Oregon, Eugene, OR 97405, USA.
| | - Santiago Jaramillo
- Institute of Neuroscience, University of Oregon, Eugene, OR 97405, USA; Department of Biology, University of Oregon, Eugene, OR 97405, USA.
| |
Collapse
|
63
|
Ungurean G, Rattenborg NC. A mammal and bird's-eye-view of the pupil during sleep and wakefulness. Eur J Neurosci 2024; 59:584-594. [PMID: 37038095 DOI: 10.1111/ejn.15983] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/03/2023] [Accepted: 03/30/2023] [Indexed: 04/12/2023]
Abstract
Besides regulating the amount of light that reaches the retina, fluctuations in pupil size also occur in isoluminant conditions during accommodation, during movement and in relation to cognitive workload, attention and emotion. Recent studies in mammals and birds revealed that the pupils are also highly dynamic in the dark during sleep. However, despite exhibiting similar sleep states (rapid eye movement [REM] and non-REM [NREM] sleep), wake and sleep state-dependent changes in pupil size are opposite between mammals and birds, due in part to differences in the type (striated vs. smooth) and control of the iris muscles. Given the link between pupil dynamics and cognitive processes occurring during wakefulness, sleep-related changes in pupil size might indicate when related processes are occurring during sleep. Moreover, the divergent pupillary behaviour observed between mammals and birds raises the possibility that changes in pupil size in birds are a readout of processes not reflected in the mammalian pupil.
Collapse
Affiliation(s)
- Gianina Ungurean
- Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | | |
Collapse
|
64
|
Neyhart E, Zhou N, Munn BR, Law RG, Smith C, Mridha ZH, Blanco FA, Li G, Li Y, McGinley MJ, Shine JM, Reimer J. Cortical acetylcholine dynamics are predicted by cholinergic axon activity and behavior state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.14.567116. [PMID: 38352527 PMCID: PMC10862699 DOI: 10.1101/2023.11.14.567116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Even under spontaneous conditions and in the absence of changing environmental demands, awake animals alternate between increased or decreased periods of alertness. These changes in brain state can occur rapidly, on a timescale of seconds, and neuromodulators such as acetylcholine (ACh) are thought to play an important role in driving these spontaneous state transitions. Here, we perform the first simultaneous imaging of ACh sensors and GCaMP-expressing axons in vivo, to examine the spatiotemporal properties of cortical ACh activity and release during spontaneous changes in behavioral state. We observed a high correlation between simultaneously recorded basal forebrain axon activity and neuromodulator sensor fluorescence around periods of locomotion and pupil dilation. Consistent with volume transmission of ACh, increases in axon activity were accompanied by increases in local ACh levels that fell off with the distance from the nearest axon. GRAB-ACh fluorescence could be accurately predicted from axonal activity alone, providing the first validation that neuromodulator axon activity is a reliable proxy for nearby neuromodulator levels. Deconvolution of fluorescence traces allowed us to account for the kinetics of the GRAB-ACh sensor and emphasized the rapid clearance of ACh for smaller transients outside of running periods. Finally, we trained a predictive model of ACh fluctuations from the combination of pupil size and running speed; this model performed better than using either variable alone, and generalized well to unseen data. Overall, these results contribute to a growing understanding of the precise timing and spatial characteristics of cortical ACh during fast brain state transitions.
Collapse
Affiliation(s)
- Erin Neyhart
- Neuroscience Department, Baylor College of Medicine, Houston, Texas, USA
| | - Na Zhou
- Neuroscience Department, Baylor College of Medicine, Houston, Texas, USA
| | - Brandon R Munn
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
- Complex Systems Group, School of Physics, Faculty of Science, The University of Sydney, Australia
| | - Robert G Law
- Neuroscience Department, Baylor College of Medicine, Houston, Texas, USA
| | - Cameron Smith
- Neuroscience Department, Baylor College of Medicine, Houston, Texas, USA
| | - Zakir H Mridha
- Neuroscience Department, Baylor College of Medicine, Houston, Texas, USA
| | - Francisco A Blanco
- Neuroscience Department, Baylor College of Medicine, Houston, Texas, USA
| | - Guochuan Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Matthew J McGinley
- Neuroscience Department, Baylor College of Medicine, Houston, Texas, USA
| | - James M Shine
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
- Complex Systems Group, School of Physics, Faculty of Science, The University of Sydney, Australia
| | - Jacob Reimer
- Neuroscience Department, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
65
|
Shi C, Zhang C, Chen JF, Yao Z. Enhancement of low gamma oscillations by volitional conditioning of local field potential in the primary motor and visual cortex of mice. Cereb Cortex 2024; 34:bhae051. [PMID: 38425214 DOI: 10.1093/cercor/bhae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/04/2024] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
Volitional control of local field potential oscillations in low gamma band via brain machine interface can not only uncover the relationship between low gamma oscillation and neural synchrony but also suggest a therapeutic potential to reverse abnormal local field potential oscillation in neurocognitive disorders. In nonhuman primates, the volitional control of low gamma oscillations has been demonstrated by brain machine interface techniques in the primary motor and visual cortex. However, it is not clear whether this holds in other brain regions and other species, for which gamma rhythms might involve in highly different neural processes. Here, we established a closed-loop brain-machine interface and succeeded in training mice to volitionally elevate low gamma power of local field potential in the primary motor and visual cortex. We found that the mice accomplished the task in a goal-directed manner and spiking activity exhibited phase-locking to the oscillation in local field potential in both areas. Moreover, long-term training made the power enhancement specific to direct and adjacent channel, and increased the transcriptional levels of NMDA receptors as well as that of hypoxia-inducible factor relevant to metabolism. Our results suggest that volitionally generated low gamma rhythms in different brain regions share similar mechanisms and pave the way for employing brain machine interface in therapy of neurocognitive disorders.
Collapse
Affiliation(s)
- Chennan Shi
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325001, China
| | - Chenyu Zhang
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jiang-Fan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325001, China
| | - Zhimo Yao
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
66
|
Bottom-Tanzer S, Corella S, Meyer J, Sommer M, Bolaños L, Murphy T, Quiñones S, Heiney S, Shtrahman M, Whalen M, Oren R, Higley MJ, Cardin JA, Noubary F, Armbruster M, Dulla C. Traumatic brain injury disrupts state-dependent functional cortical connectivity in a mouse model. Cereb Cortex 2024; 34:bhae038. [PMID: 38365273 PMCID: PMC11486687 DOI: 10.1093/cercor/bhae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/18/2024] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of death in young people and can cause cognitive and motor dysfunction and disruptions in functional connectivity between brain regions. In human TBI patients and rodent models of TBI, functional connectivity is decreased after injury. Recovery of connectivity after TBI is associated with improved cognition and memory, suggesting an important link between connectivity and functional outcome. We examined widespread alterations in functional connectivity following TBI using simultaneous widefield mesoscale GCaMP7c calcium imaging and electrocorticography (ECoG) in mice injured using the controlled cortical impact (CCI) model of TBI. Combining CCI with widefield cortical imaging provides us with unprecedented access to characterize network connectivity changes throughout the entire injured cortex over time. Our data demonstrate that CCI profoundly disrupts functional connectivity immediately after injury, followed by partial recovery over 3 weeks. Examining discrete periods of locomotion and stillness reveals that CCI alters functional connectivity and reduces theta power only during periods of behavioral stillness. Together, these findings demonstrate that TBI causes dynamic, behavioral state-dependent changes in functional connectivity and ECoG activity across the cortex.
Collapse
Affiliation(s)
- Samantha Bottom-Tanzer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
- MD/PhD Program, Tufts University School of Medicine, Boston, MA 02111, United States
- Neuroscience Program, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, United States
| | - Sofia Corella
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
- MD/PhD Program, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Jochen Meyer
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Mary Sommer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
| | - Luis Bolaños
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Timothy Murphy
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Sadi Quiñones
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
- Neuroscience Program, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, United States
| | - Shane Heiney
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Matthew Shtrahman
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States
| | - Michael Whalen
- Department of Pediatrics, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02115, United States
| | - Rachel Oren
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, United States
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, United States
| | - Michael J Higley
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, United States
| | - Jessica A Cardin
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, United States
| | - Farzad Noubary
- Department of Health Sciences, Northeastern University, Boston, MA 02115, United States
| | - Moritz Armbruster
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
| | - Chris Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
| |
Collapse
|
67
|
Beerendonk L, Mejías JF, Nuiten SA, de Gee JW, Fahrenfort JJ, van Gaal S. A disinhibitory circuit mechanism explains a general principle of peak performance during mid-level arousal. Proc Natl Acad Sci U S A 2024; 121:e2312898121. [PMID: 38277436 PMCID: PMC10835062 DOI: 10.1073/pnas.2312898121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/04/2023] [Indexed: 01/28/2024] Open
Abstract
Perceptual decision-making is highly dependent on the momentary arousal state of the brain, which fluctuates over time on a scale of hours, minutes, and even seconds. The textbook relationship between momentary arousal and task performance is captured by an inverted U-shape, as put forward in the Yerkes-Dodson law. This law suggests optimal performance at moderate levels of arousal and impaired performance at low or high arousal levels. However, despite its popularity, the evidence for this relationship in humans is mixed at best. Here, we use pupil-indexed arousal and performance data from various perceptual decision-making tasks to provide converging evidence for the inverted U-shaped relationship between spontaneous arousal fluctuations and performance across different decision types (discrimination, detection) and sensory modalities (visual, auditory). To further understand this relationship, we built a neurobiologically plausible mechanistic model and show that it is possible to reproduce our findings by incorporating two types of interneurons that are both modulated by an arousal signal. The model architecture produces two dynamical regimes under the influence of arousal: one regime in which performance increases with arousal and another regime in which performance decreases with arousal, together forming an inverted U-shaped arousal-performance relationship. We conclude that the inverted U-shaped arousal-performance relationship is a general and robust property of sensory processing. It might be brought about by the influence of arousal on two types of interneurons that together act as a disinhibitory pathway for the neural populations that encode the available sensory evidence used for the decision.
Collapse
Affiliation(s)
- Lola Beerendonk
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam1001NK, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam1001NK, The Netherlands
| | - Jorge F. Mejías
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam1001NK, The Netherlands
- Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam1098XH, The Netherlands
| | - Stijn A. Nuiten
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam1001NK, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam1001NK, The Netherlands
- Universitäre Psychiatrische Kliniken Basel, Wilhelm Klein-Strasse 27, Basel4002, Switzerland
| | - Jan Willem de Gee
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam1001NK, The Netherlands
- Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam1098XH, The Netherlands
| | - Johannes J. Fahrenfort
- Institute for Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam1081HV, The Netherlands
- Department of Applied and Experimental Psychology, Vrije Universiteit Amsterdam, Amsterdam1081HV, The Netherlands
| | - Simon van Gaal
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam1001NK, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam1001NK, The Netherlands
| |
Collapse
|
68
|
Marriott BA, Do AD, Portet C, Thellier F, Goutagny R, Jackson J. Brain-state-dependent constraints on claustrocortical communication and function. Cell Rep 2024; 43:113620. [PMID: 38159273 DOI: 10.1016/j.celrep.2023.113620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/20/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024] Open
Abstract
Neural activity in the claustrum has been associated with a range of vigilance states, yet the activity patterns and efficacy of synaptic communication of identified claustrum neurons have not been thoroughly determined. Here, we show that claustrum neurons projecting to the retrosplenial cortex are most active during synchronized cortical states such as non-rapid eye movement (NREM) sleep and are suppressed during increased cortical desynchronization associated with arousal, movement, and REM sleep. The efficacy of claustrocortical signaling is increased during NREM and diminished during movement due in part to increased cholinergic tone. Finally, claustrum activation during NREM sleep enhances memory consolidation through the phase resetting of cortical delta waves. Therefore, claustrocortical communication is constrained to function most effectively during cognitive processes associated with synchronized cortical states, such as memory consolidation.
Collapse
Affiliation(s)
- Brian A Marriott
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G2H7, Canada
| | - Alison D Do
- Department of Physiology, University of Alberta, Edmonton, AB T6G2H7, Canada
| | - Coline Portet
- University of Strasbourg, Strasbourg, France; Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS UMR7364, Strasbourg, France
| | - Flora Thellier
- University of Strasbourg, Strasbourg, France; Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS UMR7364, Strasbourg, France
| | - Romain Goutagny
- University of Strasbourg, Strasbourg, France; Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS UMR7364, Strasbourg, France.
| | - Jesse Jackson
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G2H7, Canada; Department of Physiology, University of Alberta, Edmonton, AB T6G2H7, Canada.
| |
Collapse
|
69
|
Syeda A, Zhong L, Tung R, Long W, Pachitariu M, Stringer C. Facemap: a framework for modeling neural activity based on orofacial tracking. Nat Neurosci 2024; 27:187-195. [PMID: 37985801 PMCID: PMC10774130 DOI: 10.1038/s41593-023-01490-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 10/10/2023] [Indexed: 11/22/2023]
Abstract
Recent studies in mice have shown that orofacial behaviors drive a large fraction of neural activity across the brain. To understand the nature and function of these signals, we need better computational models to characterize the behaviors and relate them to neural activity. Here we developed Facemap, a framework consisting of a keypoint tracker and a deep neural network encoder for predicting neural activity. Our algorithm for tracking mouse orofacial behaviors was more accurate than existing pose estimation tools, while the processing speed was several times faster, making it a powerful tool for real-time experimental interventions. The Facemap tracker was easy to adapt to data from new labs, requiring as few as 10 annotated frames for near-optimal performance. We used the keypoints as inputs to a deep neural network which predicts the activity of ~50,000 simultaneously-recorded neurons and, in visual cortex, we doubled the amount of explained variance compared to previous methods. Using this model, we found that the neuronal activity clusters that were well predicted from behavior were more spatially spread out across cortex. We also found that the deep behavioral features from the model had stereotypical, sequential dynamics that were not reversible in time. In summary, Facemap provides a stepping stone toward understanding the function of the brain-wide neural signals and their relation to behavior.
Collapse
Affiliation(s)
- Atika Syeda
- HHMI Janelia Research Campus, Ashburn, VA, USA.
| | - Lin Zhong
- HHMI Janelia Research Campus, Ashburn, VA, USA
| | - Renee Tung
- HHMI Janelia Research Campus, Ashburn, VA, USA
| | - Will Long
- HHMI Janelia Research Campus, Ashburn, VA, USA
| | | | | |
Collapse
|
70
|
Benisty H, Barson D, Moberly AH, Lohani S, Tang L, Coifman RR, Crair MC, Mishne G, Cardin JA, Higley MJ. Rapid fluctuations in functional connectivity of cortical networks encode spontaneous behavior. Nat Neurosci 2024; 27:148-158. [PMID: 38036743 PMCID: PMC11316935 DOI: 10.1038/s41593-023-01498-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 10/16/2023] [Indexed: 12/02/2023]
Abstract
Experimental work across species has demonstrated that spontaneously generated behaviors are robustly coupled to variations in neural activity within the cerebral cortex. Functional magnetic resonance imaging data suggest that temporal correlations in cortical networks vary across distinct behavioral states, providing for the dynamic reorganization of patterned activity. However, these data generally lack the temporal resolution to establish links between cortical signals and the continuously varying fluctuations in spontaneous behavior observed in awake animals. Here, we used wide-field mesoscopic calcium imaging to monitor cortical dynamics in awake mice and developed an approach to quantify rapidly time-varying functional connectivity. We show that spontaneous behaviors are represented by fast changes in both the magnitude and correlational structure of cortical network activity. Combining mesoscopic imaging with simultaneous cellular-resolution two-photon microscopy demonstrated that correlations among neighboring neurons and between local and large-scale networks also encode behavior. Finally, the dynamic functional connectivity of mesoscale signals revealed subnetworks not predicted by traditional anatomical atlas-based parcellation of the cortex. These results provide new insights into how behavioral information is represented across the neocortex and demonstrate an analytical framework for investigating time-varying functional connectivity in neural networks.
Collapse
Affiliation(s)
- Hadas Benisty
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Daniel Barson
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew H Moberly
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Sweyta Lohani
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Lan Tang
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Ronald R Coifman
- Program in Applied Mathematics, Yale University, New Haven, CT, USA
| | - Michael C Crair
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Gal Mishne
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, USA
| | - Jessica A Cardin
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Michael J Higley
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
71
|
Blanco-Hernández E, Balsamo G, Preston-Ferrer P, Burgalossi A. Sensory and behavioral modulation of thalamic head-direction cells. Nat Neurosci 2024; 27:28-33. [PMID: 38177338 DOI: 10.1038/s41593-023-01506-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 10/24/2023] [Indexed: 01/06/2024]
Abstract
Head-direction (HD) neurons are thought to exclusively encode directional heading. In awake mice, we found that sensory stimuli evoked robust short-latency responses in thalamic HD cells, but not in non-HD neurons. The activity of HD cells, but not that of non-HD neurons, was tightly correlated to brain-state fluctuations and dynamically modulated during social interactions. These data point to a new role for the thalamic compass in relaying sensory and behavioral-state information.
Collapse
Affiliation(s)
- Eduardo Blanco-Hernández
- Institute of Neurobiology, University of Tübingen, Tübingen, Germany
- Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
| | - Giuseppe Balsamo
- Institute of Neurobiology, University of Tübingen, Tübingen, Germany
- Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Graduate Training Centre of Neuroscience, IMPRS, Tübingen, Germany
| | - Patricia Preston-Ferrer
- Institute of Neurobiology, University of Tübingen, Tübingen, Germany.
- Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany.
| | - Andrea Burgalossi
- Institute of Neurobiology, University of Tübingen, Tübingen, Germany.
- Werner-Reichardt Centre for Integrative Neuroscience, Tübingen, Germany.
| |
Collapse
|
72
|
Liu X, Hike D, Choi S, Man W, Ran C, Zhou XA, Jiang Y, Yu X. Mapping the bioimaging marker of Alzheimer's disease based on pupillary light response-driven brain-wide fMRI in awake mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572613. [PMID: 38187675 PMCID: PMC10769340 DOI: 10.1101/2023.12.20.572613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Pupil dynamics has emerged as a critical non-invasive indicator of brain state changes. In particular, pupillary-light-responses (PLR) in Alzheimer's disease (AD) patients may be used as biomarkers of brain degeneration. To characterize AD-specific PLR and its underlying neuromodulatory sources, we combined high-resolution awake mouse fMRI with real-time pupillometry to map brain-wide event-related correlation patterns based on illumination-driven pupil constriction ( P c ) and post-illumination pupil dilation recovery (amplitude, P d , and time, T ). The P c -driven differential analysis revealed altered visual signal processing coupled with reduced thalamocortical activation in AD mice compared with the wild-type normal mice. In contrast, the post-illumination pupil dilation recovery-based fMRI highlighted multiple brain areas related to AD brain degeneration, including the cingulate cortex, hippocampus, septal area of the basal forebrain, medial raphe nucleus, and pontine reticular nuclei (PRN). Also, brain-wide functional connectivity analysis highlighted the most significant changes in PRN of AD mice, which serves as the major subcortical relay nuclei underlying oculomotor function. This work combined non-invasive pupil-fMRI measurements in preclinical models to identify pupillary biomarkers based on neuromodulatory dysfunction coupled with AD brain degeneration.
Collapse
|
73
|
Krishnan S, Sheffield ME. Reward Expectation Reduces Representational Drift in the Hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572809. [PMID: 38187677 PMCID: PMC10769341 DOI: 10.1101/2023.12.21.572809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Spatial memory in the hippocampus involves dynamic neural patterns that change over days, termed representational drift. While drift may aid memory updating, excessive drift could impede retrieval. Memory retrieval is influenced by reward expectation during encoding, so we hypothesized that diminished reward expectation would exacerbate representational drift. We found that high reward expectation limited drift, with CA1 representations on one day gradually re-emerging over successive trials the following day. Conversely, the absence of reward expectation resulted in increased drift, as the gradual re-emergence of the previous day's representation did not occur. At the single cell level, lowering reward expectation caused an immediate increase in the proportion of place-fields with low trial-to-trial reliability. These place fields were less likely to be reinstated the following day, underlying increased drift in this condition. In conclusion, heightened reward expectation improves memory encoding and retrieval by maintaining reliable place fields that are gradually reinstated across days, thereby minimizing representational drift.
Collapse
|
74
|
Stagkourakis S, Spigolon G, Marks M, Feyder M, Kim J, Perona P, Pachitariu M, Anderson DJ. Anatomically distributed neural representations of instincts in the hypothalamus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568163. [PMID: 38045312 PMCID: PMC10690204 DOI: 10.1101/2023.11.21.568163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Artificial activation of anatomically localized, genetically defined hypothalamic neuron populations is known to trigger distinct innate behaviors, suggesting a hypothalamic nucleus-centered organization of behavior control. To assess whether the encoding of behavior is similarly anatomically confined, we performed simultaneous neuron recordings across twenty hypothalamic regions in freely moving animals. Here we show that distinct but anatomically distributed neuron ensembles encode the social and fear behavior classes, primarily through mixed selectivity. While behavior class-encoding ensembles were spatially distributed, individual ensembles exhibited strong localization bias. Encoding models identified that behavior actions, but not motion-related variables, explained a large fraction of hypothalamic neuron activity variance. These results identify unexpected complexity in the hypothalamic encoding of instincts and provide a foundation for understanding the role of distributed neural representations in the expression of behaviors driven by hardwired circuits.
Collapse
Affiliation(s)
- Stefanos Stagkourakis
- Division of Biology and Biological Engineering 156-29, Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, California 91125, USA
| | - Giada Spigolon
- Biological Imaging Facility, California Institute of Technology, Pasadena, California 91125, USA
| | - Markus Marks
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, USA
| | - Michael Feyder
- Division of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California 94305, USA
| | - Joseph Kim
- Division of Biology and Biological Engineering 156-29, Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, California 91125, USA
| | - Pietro Perona
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, USA
| | - Marius Pachitariu
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
| | - David J. Anderson
- Division of Biology and Biological Engineering 156-29, Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, California 91125, USA
- Howard Hughes Medical Institute, California Institute of Technology, 1200 East California Blvd, Pasadena, California 91125, USA
| |
Collapse
|
75
|
Jeong H, Namboodiri VMK, Jung MW, Andermann ML. Sensory cortical ensembles exhibit differential coupling to ripples in distinct hippocampal subregions. Curr Biol 2023; 33:5185-5198.e4. [PMID: 37995696 PMCID: PMC10842729 DOI: 10.1016/j.cub.2023.10.073] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/29/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
Cortical neurons activated during recent experiences often reactivate with dorsal hippocampal CA1 ripples during subsequent rest. Less is known about cortical interactions with intermediate hippocampal CA1, whose connectivity, functions, and ripple events differ from dorsal CA1. We identified three clusters of putative excitatory neurons in mouse visual cortex that are preferentially excited together with either dorsal or intermediate CA1 ripples or suppressed before both ripples. Neurons in each cluster were evenly distributed across primary and higher visual cortices and co-active even in the absence of ripples. These ensembles exhibited similar visual responses but different coupling to thalamus and pupil-indexed arousal. We observed a consistent activity sequence preceding and predicting ripples: (1) suppression of ripple-suppressed cortical neurons, (2) thalamic silence, and (3) activation of intermediate CA1-ripple-activated cortical neurons. We propose that coordinated dynamics of these ensembles relay visual experiences to distinct hippocampal subregions for incorporation into different cognitive maps.
Collapse
Affiliation(s)
- Huijeong Jeong
- Department of Neurology, University of California, San Francisco, 1651 4th Street, San Francisco, CA 94158, USA; Center for Synaptic Brain Dysfunctions, Institute for Basic Science, 291 Daehak-ro, Daejeon 34141, Republic of Korea; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Vijay Mohan K Namboodiri
- Department of Neurology, University of California, San Francisco, 1651 4th Street, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, 1651 4th Street, San Francisco, CA 94158, USA; Weill Institute for Neuroscience, Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience, University of California, San Francisco, 1651 4th Street, San Francisco, CA 94158, USA.
| | - Min Whan Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, 291 Daehak-ro, Daejeon 34141, Republic of Korea; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea.
| | - Mark L Andermann
- Division of Endocrinology, Metabolism, and Diabetes, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
76
|
Zhang A, Zador AM. Neurons in the primary visual cortex of freely moving rats encode both sensory and non-sensory task variables. PLoS Biol 2023; 21:e3002384. [PMID: 38048367 PMCID: PMC10721203 DOI: 10.1371/journal.pbio.3002384] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/14/2023] [Accepted: 10/17/2023] [Indexed: 12/06/2023] Open
Abstract
Neurons in primary visual cortex (area V1) are strongly driven by both sensory stimuli and non-sensory events. However, although the representation of sensory stimuli has been well characterized, much less is known about the representation of non-sensory events. Here, we characterize the specificity and organization of non-sensory representations in rat V1 during a freely moving visual decision task. We find that single neurons encode diverse combinations of task features simultaneously and across task epochs. Despite heterogeneity at the level of single neuron response patterns, both visual and nonvisual task variables could be reliably decoded from small neural populations (5 to 40 units) throughout a trial. Interestingly, in animals trained to make an auditory decision following passive observation of a visual stimulus, some but not all task features could also be decoded from V1 activity. Our results support the view that even in V1-the earliest stage of the cortical hierarchy-bottom-up sensory information may be combined with top-down non-sensory information in a task-dependent manner.
Collapse
Affiliation(s)
- Anqi Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- Cold Spring Harbor Laboratory School of Biological Sciences, Cold Spring Harbor, New York, United States of America
| | - Anthony M. Zador
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| |
Collapse
|
77
|
Nuiten SA, de Gee JW, Zantvoord JB, Fahrenfort JJ, van Gaal S. Catecholaminergic neuromodulation and selective attention jointly shape perceptual decision-making. eLife 2023; 12:RP87022. [PMID: 38038722 PMCID: PMC10691802 DOI: 10.7554/elife.87022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
Perceptual decisions about sensory input are influenced by fluctuations in ongoing neural activity, most prominently driven by attention and neuromodulator systems. It is currently unknown if neuromodulator activity and attention differentially modulate perceptual decision-making and/or whether neuromodulatory systems in fact control attentional processes. To investigate the effects of two distinct neuromodulatory systems and spatial attention on perceptual decisions, we pharmacologically elevated cholinergic (through donepezil) and catecholaminergic (through atomoxetine) levels in humans performing a visuo-spatial attention task, while we measured electroencephalography (EEG). Both attention and catecholaminergic enhancement improved decision-making at the behavioral and algorithmic level, as reflected in increased perceptual sensitivity and the modulation of the drift rate parameter derived from drift diffusion modeling. Univariate analyses of EEG data time-locked to the attentional cue, the target stimulus, and the motor response further revealed that attention and catecholaminergic enhancement both modulated pre-stimulus cortical excitability, cue- and stimulus-evoked sensory activity, as well as parietal evidence accumulation signals. Interestingly, we observed both similar, unique, and interactive effects of attention and catecholaminergic neuromodulation on these behavioral, algorithmic, and neural markers of the decision-making process. Thereby, this study reveals an intricate relationship between attentional and catecholaminergic systems and advances our understanding about how these systems jointly shape various stages of perceptual decision-making.
Collapse
Affiliation(s)
- Stijn A Nuiten
- Department of Psychology, University of AmsterdamAmsterdamNetherlands
- Amsterdam Brain & Cognition, University of AmsterdamAmsterdamNetherlands
- Department of Psychiatry (UPK), University of BaselBaselSwitzerland
| | - Jan Willem de Gee
- Amsterdam Brain & Cognition, University of AmsterdamAmsterdamNetherlands
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdamNetherlands
| | - Jasper B Zantvoord
- Department of Psychiatry, Amsterdam UMC location University of AmsterdamAmsterdamNetherlands
- Amsterdam NeuroscienceAmsterdamNetherlands
| | - Johannes J Fahrenfort
- Department of Psychology, University of AmsterdamAmsterdamNetherlands
- Amsterdam Brain & Cognition, University of AmsterdamAmsterdamNetherlands
- Institute for Brain and Behavior Amsterdam, Vrije Universiteit AmsterdamAmsterdamNetherlands
- Department of Experimental and Applied Psychology - Cognitive Psychology, Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - Simon van Gaal
- Department of Psychology, University of AmsterdamAmsterdamNetherlands
- Amsterdam Brain & Cognition, University of AmsterdamAmsterdamNetherlands
| |
Collapse
|
78
|
Cowley BR, Stan PL, Pillow JW, Smith MA. Compact deep neural network models of visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568315. [PMID: 38045255 PMCID: PMC10690296 DOI: 10.1101/2023.11.22.568315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
A powerful approach to understanding the computations carried out in visual cortex is to develop models that predict neural responses to arbitrary images. Deep neural network (DNN) models have worked remarkably well at predicting neural responses [1, 2, 3], yet their underlying computations remain buried in millions of parameters. Have we simply replaced one complicated system in vivo with another in silico? Here, we train a data-driven deep ensemble model that predicts macaque V4 responses ~50% more accurately than currently-used task-driven DNN models. We then compress this deep ensemble to identify compact models that have 5,000x fewer parameters yet equivalent accuracy as the deep ensemble. We verified that the stimulus preferences of the compact models matched those of the real V4 neurons by measuring V4 responses to both 'maximizing' and adversarial images generated using compact models. We then analyzed the inner workings of the compact models and discovered a common circuit motif: Compact models share a similar set of filters in early stages of processing but then specialize by heavily consolidating this shared representation with a precise readout. This suggests that a V4 neuron's stimulus preference is determined entirely by its consolidation step. To demonstrate this, we investigated the compression step of a dot-detecting compact model and found a set of simple computations that may be carried out by dot-selective V4 neurons. Overall, our work demonstrates that the DNN models currently used in computational neuroscience are needlessly large; our approach provides a new way forward for obtaining explainable, high-accuracy models of visual cortical neurons.
Collapse
Affiliation(s)
- Benjamin R. Cowley
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Patricia L. Stan
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Jonathan W. Pillow
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Matthew A. Smith
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| |
Collapse
|
79
|
Purandare C, Mehta M. Mega-scale movie-fields in the mouse visuo-hippocampal network. eLife 2023; 12:RP85069. [PMID: 37910428 PMCID: PMC10619982 DOI: 10.7554/elife.85069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Natural visual experience involves a continuous series of related images while the subject is immobile. How does the cortico-hippocampal circuit process a visual episode? The hippocampus is crucial for episodic memory, but most rodent single unit studies require spatial exploration or active engagement. Hence, we investigated neural responses to a silent movie (Allen Brain Observatory) in head-fixed mice without any task or locomotion demands, or rewards. Surprisingly, a third (33%, 3379/10263) of hippocampal -dentate gyrus, CA3, CA1 and subiculum- neurons showed movie-selectivity, with elevated firing in specific movie sub-segments, termed movie-fields, similar to the vast majority of thalamo-cortical (LGN, V1, AM-PM) neurons (97%, 6554/6785). Movie-tuning remained intact in immobile or spontaneously running mice. Visual neurons had >5 movie-fields per cell, but only ~2 in hippocampus. The movie-field durations in all brain regions spanned an unprecedented 1000-fold range: from 0.02s to 20s, termed mega-scale coding. Yet, the total duration of all the movie-fields of a cell was comparable across neurons and brain regions. The hippocampal responses thus showed greater continuous-sequence encoding than visual areas, as evidenced by fewer and broader movie-fields than in visual areas. Consistently, repeated presentation of the movie images in a fixed, but scrambled sequence virtually abolished hippocampal but not visual-cortical selectivity. The preference for continuous, compared to scrambled sequence was eight-fold greater in hippocampal than visual areas, further supporting episodic-sequence encoding. Movies could thus provide a unified way to probe neural mechanisms of episodic information processing and memory, even in immobile subjects, across brain regions, and species.
Collapse
Affiliation(s)
- Chinmay Purandare
- Department of Bioengineering, University of California, Los AngelesLos AngelesUnited States
- W.M. Keck Center for Neurophysics, Department of Physics and Astronomy, University of California, Los AngelesLos AngelesUnited States
- Department of Neurology, University of California, Los AngelesLos AngelesUnited States
| | - Mayank Mehta
- W.M. Keck Center for Neurophysics, Department of Physics and Astronomy, University of California, Los AngelesLos AngelesUnited States
- Department of Neurology, University of California, Los AngelesLos AngelesUnited States
- Department of Electrical and Computer Engineering, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
80
|
Talluri BC, Kang I, Lazere A, Quinn KR, Kaliss N, Yates JL, Butts DA, Nienborg H. Activity in primate visual cortex is minimally driven by spontaneous movements. Nat Neurosci 2023; 26:1953-1959. [PMID: 37828227 PMCID: PMC10620084 DOI: 10.1038/s41593-023-01459-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/08/2023] [Indexed: 10/14/2023]
Abstract
Organisms process sensory information in the context of their own moving bodies, an idea referred to as embodiment. This idea is important for developmental neuroscience, robotics and systems neuroscience. The mechanisms supporting embodiment are unknown, but a manifestation could be the observation in mice of brain-wide neuromodulation, including in the primary visual cortex, driven by task-irrelevant spontaneous body movements. We tested this hypothesis in macaque monkeys (Macaca mulatta), a primate model for human vision, by simultaneously recording visual cortex activity and facial and body movements. We also sought a direct comparison using an analogous approach to those used in mouse studies. Here we found that activity in the primate visual cortex (V1, V2 and V3/V3A) was associated with the animals' own movements, but this modulation was largely explained by the impact of the movements on the retinal image, that is, by changes in visual input. These results indicate that visual cortex in primates is minimally driven by spontaneous movements and may reflect species-specific sensorimotor strategies.
Collapse
Affiliation(s)
- Bharath Chandra Talluri
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Incheol Kang
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Adam Lazere
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katrina R Quinn
- Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Nicholas Kaliss
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jacob L Yates
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, Berkeley, CA, USA
- Department of Biology and Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Daniel A Butts
- Department of Biology and Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Hendrikje Nienborg
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
81
|
Dearnley B, Jones M, Dervinis M, Okun M. Brain state transitions primarily impact the spontaneous rate of slow-firing neurons. Cell Rep 2023; 42:113185. [PMID: 37773749 DOI: 10.1016/j.celrep.2023.113185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/02/2023] [Accepted: 09/12/2023] [Indexed: 10/01/2023] Open
Abstract
The spontaneous firing of neurons is modulated by brain state. Here, we examine how such modulation impacts the overall distribution of firing rates in neuronal populations of neocortical, hippocampal, and thalamic areas across natural and pharmacologically driven brain state transitions. We report that across all the examined combinations of brain area and state transition category, the structure of rate modulation is similar, with almost all fast-firing neurons experiencing proportionally weak modulation, while slow-firing neurons exhibit high inter-neuron variability in the modulation magnitude, leading to a stronger modulation on average. We further demonstrate that this modulation structure is linked to the left-skewed distribution of firing rates on the logarithmic scale and is recapitulated by bivariate log-gamma, but not Gaussian, distributions. Our findings indicate that a preconfigured log-rate distribution with rigid fast-firing neurons and a long left tail of malleable slow-firing neurons is a generic property of forebrain neuronal circuits.
Collapse
Affiliation(s)
- Bradley Dearnley
- Department of Psychology and Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK; School of Biological Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Melissa Jones
- Department of Psychology and Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK; School of Biological Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Martynas Dervinis
- Department of Psychology and Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK; School of Biological Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Michael Okun
- Department of Psychology and Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK; School of Biological Sciences, University of Leicester, Leicester LE1 7RH, UK; School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
82
|
Chari T, Hernandez A, Portera-Cailliau C. A Novel Head-Fixed Assay for Social Touch in Mice Uncovers Aversive Responses in Two Autism Models. J Neurosci 2023; 43:7158-7174. [PMID: 37669860 PMCID: PMC10601375 DOI: 10.1523/jneurosci.0226-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
Social touch, an important aspect of social interaction and communication, is essential to kinship across animal species. How animals experience and respond to social touch has not been thoroughly investigated, in part because of the lack of appropriate assays. Previous studies that examined social touch in freely moving rodents lacked the necessary temporal and spatial control over individual touch interactions. We designed a novel head-fixed assay for social touch in mice, in which the experimenter has complete control to elicit highly stereotyped bouts of social touch between two animals. The user determines the number, duration, context, and type of social touch interactions, while monitoring an array of complex behavioral responses with high resolution cameras. We focused on social touch to the face because of its high translational relevance to humans. We validated this assay in two different models of autism spectrum disorder (ASD), the Fmr1 knock-out (KO) model of Fragile X syndrome (FXS) and maternal immune activation (MIA) mice. We observed higher rates of avoidance running, hyperarousal, and aversive facial expressions (AFEs) to social touch than to object touch, in both ASD models compared with controls. Fmr1 KO mice showed more AFEs to mice of the same sex but whether they were stranger or familiar mice mattered less. Because this new social touch assay for head-fixed mice can be used to record neural activity during repeated bouts of social touch it could be used to uncover underlying circuit differences.SIGNIFICANCE STATEMENT Social touch is important for communication in animals and humans. However, it has not been extensively studied and current assays to measure animals' responses to social touch have limitations. We present a novel head-fixed assay to quantify how mice respond to social facial touch with another mouse. We validated this assay in autism mouse models since autistic individuals exhibit differences in social interaction and touch sensitivity. We find that mouse models of autism exhibit more avoidance, hyperarousal, and aversive facial expressions (AFEs) to social touch compared with controls. Thus, this novel assay can be used to investigate behavioral responses to social touch and the underlying brain mechanisms in rodent models of neurodevelopmental conditions, and to evaluate therapeutic responses in preclinical studies.
Collapse
Affiliation(s)
- Trishala Chari
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
- Neuroscience Interdepartmental Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Ariana Hernandez
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|
83
|
Maldonado PE, Concha-Miranda M, Schwalm M. Autogenous cerebral processes: an invitation to look at the brain from inside out. Front Neural Circuits 2023; 17:1253609. [PMID: 37941893 PMCID: PMC10629273 DOI: 10.3389/fncir.2023.1253609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/26/2023] [Indexed: 11/10/2023] Open
Abstract
While external stimulation can reliably trigger neuronal activity, cerebral processes can operate independently from the environment. In this study, we conceptualize autogenous cerebral processes (ACPs) as intrinsic operations of the brain that exist on multiple scales and can influence or shape stimulus responses, behavior, homeostasis, and the physiological state of an organism. We further propose that the field should consider exploring to what extent perception, arousal, behavior, or movement, as well as other cognitive functions previously investigated mainly regarding their stimulus-response dynamics, are ACP-driven.
Collapse
Affiliation(s)
- Pedro E. Maldonado
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile
- National Center for Artificial Intelligence (CENIA), Santiago, Chile
| | - Miguel Concha-Miranda
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Miriam Schwalm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
84
|
Wang Y, You L, Tan K, Li M, Zou J, Zhao Z, Hu W, Li T, Xie F, Li C, Yuan R, Ding K, Cao L, Xin F, Shang C, Liu M, Gao Y, Wei L, You Z, Gao X, Xiong W, Cao P, Luo M, Chen F, Li K, Wu J, Hong B, Yuan K. A common thalamic hub for general and defensive arousal control. Neuron 2023; 111:3270-3287.e8. [PMID: 37557180 DOI: 10.1016/j.neuron.2023.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/25/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023]
Abstract
The expression of defensive responses to alerting sensory cues requires both general arousal and a specific arousal state associated with defensive emotions. However, it remains unclear whether these two forms of arousal can be regulated by common brain regions. We discovered that the medial sector of the auditory thalamus (ATm) in mice is a thalamic hub controlling both general and defensive arousal. The spontaneous activity of VGluT2-expressing ATm (ATmVGluT2+) neurons was correlated with and causally contributed to wakefulness. In sleeping mice, sustained ATmVGluT2+ population responses were predictive of sensory-induced arousal, the likelihood of which was markedly decreased by inhibiting ATmVGluT2+ neurons or multiple downstream pathways. In awake mice, ATmVGluT2+ activation led to heightened arousal accompanied by excessive anxiety and avoidance behavior. Notably, blocking their neurotransmission abolished alerting stimuli-induced defensive behaviors. These findings may shed light on the comorbidity of sleep disturbances and abnormal sensory sensitivity in specific brain disorders.
Collapse
Affiliation(s)
- Yiwei Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China
| | - Ling You
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China
| | - KaMun Tan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China
| | - Meijie Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China
| | - Jingshan Zou
- Hospital of Chengdu University of Traditional Chinese Medicine, Traditional Chinese Medicine Hospital of Sichuan Province, Chengdu 610036, China
| | - Zhifeng Zhao
- IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China; Department of Automation, Tsinghua University, Beijing 100084, China
| | - Wenxin Hu
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Tianyu Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China
| | - Fenghua Xie
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua Laboratory of Brain and Intelligence (THBI), Beijing 100084, China
| | - Caiqin Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China
| | - Ruizhi Yuan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Kai Ding
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Lingwei Cao
- Zhili College, Tsinghua University, Beijing 100084, China
| | - Fengyuan Xin
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China
| | - Congping Shang
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Miaomiao Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; Laboratory Animal Resources Center, Tsinghua University, Beijing 100084, China
| | - Yixiao Gao
- IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Liqiang Wei
- IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Zhiwei You
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Xiaorong Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China; Tsinghua Laboratory of Brain and Intelligence (THBI), Beijing 100084, China
| | - Wei Xiong
- IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Peng Cao
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Minmin Luo
- National Institute of Biological Sciences (NIBS), Beijing 102206, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Feng Chen
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Kun Li
- IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Jiamin Wu
- IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China; Department of Automation, Tsinghua University, Beijing 100084, China
| | - Bo Hong
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua Laboratory of Brain and Intelligence (THBI), Beijing 100084, China.
| | - Kexin Yuan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China; Tsinghua Laboratory of Brain and Intelligence (THBI), Beijing 100084, China.
| |
Collapse
|
85
|
Xie Y, Sadeh S. Computational assessment of visual coding across mouse brain areas and behavioural states. Front Comput Neurosci 2023; 17:1269019. [PMID: 37899886 PMCID: PMC10613063 DOI: 10.3389/fncom.2023.1269019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Our brain is bombarded by a diverse range of visual stimuli, which are converted into corresponding neuronal responses and processed throughout the visual system. The neural activity patterns that result from these external stimuli vary depending on the object or scene being observed, but they also change as a result of internal or behavioural states. This raises the question of to what extent it is possible to predict the presented visual stimuli from neural activity across behavioural states, and how this varies in different brain regions. Methods To address this question, we assessed the computational capacity of decoders to extract visual information in awake behaving mice, by analysing publicly available standardised datasets from the Allen Brain Institute. We evaluated how natural movie frames can be distinguished based on the activity of units recorded in distinct brain regions and under different behavioural states. This analysis revealed the spectrum of visual information present in different brain regions in response to binary and multiclass classification tasks. Results Visual cortical areas showed highest classification accuracies, followed by thalamic and midbrain regions, with hippocampal regions showing close to chance accuracy. In addition, we found that behavioural variability led to a decrease in decoding accuracy, whereby large behavioural changes between train and test sessions reduced the classification performance of the decoders. A generalised linear model analysis suggested that this deterioration in classification might be due to an independent modulation of neural activity by stimulus and behaviour. Finally, we reconstructed the natural movie frames from optimal linear classifiers, and observed a strong similarity between reconstructed and actual movie frames. However, the similarity was significantly higher when the decoders were trained and tested on sessions with similar behavioural states. Conclusion Our analysis provides a systematic assessment of visual coding in the mouse brain, and sheds light on the spectrum of visual information present across brain areas and behavioural states.
Collapse
Affiliation(s)
| | - Sadra Sadeh
- Department of Brain Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
86
|
Neske GT, Cardin JA. Transthalamic input to higher-order cortex selectively conveys state information. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.08.561424. [PMID: 37873181 PMCID: PMC10592671 DOI: 10.1101/2023.10.08.561424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Communication among different neocortical areas is largely thought to be mediated by long-range synaptic interactions between cortical neurons, with the thalamus providing only an initial relay of information from the sensory periphery. Higher-order thalamic nuclei receive strong synaptic inputs from the cortex and send robust projections back to other cortical areas, providing a distinct and potentially critical route for cortico-cortical communication. However, the relative contributions of corticocortical and thalamocortical inputs to higher-order cortical function remain unclear. Using imaging of cortical neurons and projection axon terminals in combination with optogenetic manipulations, we find that the higher-order visual thalamus of mice conveys a specialized stream of information to higher-order visual cortex. Whereas corticocortical projections from lower cortical areas convey robust visual information, higher-order thalamocortical projections convey strong behavioral state information. Together, these findings suggest a key role for higher-order thalamus in providing contextual signals that flexibly modulate sensory processing in higher-order cortex.
Collapse
Affiliation(s)
- Garrett T. Neske
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Neuroscience Institute, Yale University, New Haven, CT, USA
- Present address: Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Jessica A. Cardin
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Neuroscience Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
87
|
Yang Y, Leopold DA, Duyn JH, Sipe GO, Liu X. Intrinsic forebrain arousal dynamics governs sensory stimulus encoding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.04.560900. [PMID: 37986990 PMCID: PMC10659438 DOI: 10.1101/2023.10.04.560900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The neural encoding of sensory stimuli is subject to the brain's internal circuit dynamics. Recent work has demonstrated that the resting brain exhibits widespread, coordinated activity that plays out over multisecond timescales in the form of quasi-periodic spiking cascades. Here we demonstrate that these intrinsic dynamics persist during the presentation of visual stimuli and markedly influence the efficacy of feature encoding in the visual cortex. During periods of passive viewing, the sensory encoding of visual stimuli was determined by quasi-periodic cascade cycle evolving over several seconds. During this cycle, high efficiency encoding occurred during peak arousal states, alternating in time with hippocampal ripples, which were most frequent in low arousal states. However, during bouts of active locomotion, these arousal dynamics were abolished: the brain remained in a state in which visual coding efficiency remained high and ripples were absent. We hypothesize that the brain's observed dynamics during awake, passive viewing reflect an adaptive cycle of alternating exteroceptive sensory sampling and internal mnemonic function.
Collapse
Affiliation(s)
- Yifan Yang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - David A. Leopold
- Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological. Disorders and Stroke, and National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeff H. Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grayson O. Sipe
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Xiao Liu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Institute for Computational and Data Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
88
|
Baravalle R, Canavier CC. Synchrony in Networks of Type 2 Interneurons is More Robust to Noise with Hyperpolarizing Inhibition Compared to Shunting Inhibition in Both the Stochastic Population Oscillator and the Coupled Oscillator Regimes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560219. [PMID: 37873166 PMCID: PMC10592850 DOI: 10.1101/2023.09.29.560219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Synchronization in the gamma band (30-80 Hz) is mediated by PV+ inhibitory interneurons, and evidence is accumulating for the essential role of gamma oscillations in cognition. Oscillations can arise in inhibitory networks via synaptic interactions between individual oscillatory neurons (mean-driven) or via strong recurrent inhibition that destabilizes the stationary background firing rate in the fluctuation-driven balanced state, causing an oscillation in the population firing rate. Previous theoretical work focused on model neurons with Hodgkin's type 1 excitability (integrators) connected by current-based synapses. Here we show that networks comprised of simple type 2 oscillators (resonators) exhibit a supercritical Hopf bifurcation between synchrony and asynchrony and a gradual transition via cycle skipping from coupled oscillators to stochastic population oscillator, as previously shown for type 1. We extended our analysis to homogeneous networks with conductance rather than current based synapses and found that networks with hyperpolarizing inhibitory synapses were more robust to noise than those with shunting synapses, both in the coupled oscillator and stochastic population oscillator regime. Assuming that reversal potentials are uniformly distributed between shunting and hyperpolarized values, as observed in one experimental study, converting synapses to purely hyperpolarizing favored synchrony in all cases, whereas conversion to purely shunting synapses made synchrony less robust except at very high conductance strengths. In mature neurons the synaptic reversal potential is controlled by chloride cotransporters that control the intracellular concentrations of chloride and bicarbonate ions, suggesting these transporters as a potential therapeutic target to enhance gamma synchrony and cognition. Significance Statement Brain rhythms in the gamma frequency band (30-80 Hz) depend on the activity of inhibitory interneurons and evidence for a causal role for gamma oscillations in cognitive functions is accumulating. Here we extend previous studies on synchronization mechanisms to interneurons that have an abrupt threshold frequency below which they cannot sustain firing. In addition to current based synapses, we examined inhibitory networks with conductance based synapses. We found that if the reversal potential for inhibition was below the average membrane potential (hyperpolarizing), synchrony was more robust to noise than if the reversal potential was very close to the average potential (shunting). These results have implications for therapies to ameliorate cognitive deficits.
Collapse
|
89
|
Kim JH, Yin C, Merriam EP, Roth ZN. Pupil Size Is Sensitive to Low-Level Stimulus Features, Independent of Arousal-Related Modulation. eNeuro 2023; 10:ENEURO.0005-23.2023. [PMID: 37699706 PMCID: PMC10585606 DOI: 10.1523/eneuro.0005-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/10/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Similar to a camera aperture, pupil size adjusts to the surrounding luminance. Unlike a camera, pupil size is additionally modulated both by stimulus properties and by cognitive processes, including attention and arousal, though the interdependence of these factors is unclear. We hypothesized that different stimulus properties interact to jointly modulate pupil size while remaining independent from the impact of arousal. We measured pupil responses from human observers to equiluminant stimuli during a demanding rapid serial visual presentation (RSVP) task at fixation and tested how response amplitude depends on contrast, spatial frequency, and reward level. We found that under constant luminance, unattended stimuli evoke responses that are separable from changes caused by general arousal or attention. We further uncovered a double-dissociation between task-related responses and stimulus-evoked responses, suggesting that different sources of pupil size modulation are independent of one another. Our results shed light on neural pathways underlying pupillary response.
Collapse
Affiliation(s)
- June Hee Kim
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Christine Yin
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Elisha P Merriam
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Zvi N Roth
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
90
|
Ferguson KA, Salameh J, Alba C, Selwyn H, Barnes C, Lohani S, Cardin JA. VIP interneurons regulate cortical size tuning and visual perception. Cell Rep 2023; 42:113088. [PMID: 37682710 PMCID: PMC10618959 DOI: 10.1016/j.celrep.2023.113088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/12/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Cortical circuit function is regulated by extensively interconnected, diverse populations of GABAergic interneurons that may play key roles in shaping circuit operation according to behavioral context. A specialized population of interneurons that co-express vasoactive intestinal peptides (VIP-INs) are activated during arousal and innervate other INs and pyramidal neurons (PNs). Although state-dependent modulation of VIP-INs has been extensively studied, their role in regulating sensory processing is less well understood. We examined the impact of VIP-INs in the primary visual cortex of awake behaving mice. Loss of VIP-IN activity alters the behavioral state-dependent modulation of somatostatin-expressing INs (SST-INs) but not PNs. In contrast, reduced VIP-IN activity globally disrupts visual feature selectivity for stimulus size. Moreover, the impact of VIP-INs on perceptual behavior varies with context and is more acute for small than large visual cues. VIP-INs thus contribute to both state-dependent modulation of cortical activity and sensory context-dependent perceptual performance.
Collapse
Affiliation(s)
- Katie A Ferguson
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jenna Salameh
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Christopher Alba
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Hannah Selwyn
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Clayton Barnes
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Sweyta Lohani
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jessica A Cardin
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
91
|
Pennartz CMA, Oude Lohuis MN, Olcese U. How 'visual' is the visual cortex? The interactions between the visual cortex and other sensory, motivational and motor systems as enabling factors for visual perception. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220336. [PMID: 37545313 PMCID: PMC10404929 DOI: 10.1098/rstb.2022.0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/13/2023] [Indexed: 08/08/2023] Open
Abstract
The definition of the visual cortex is primarily based on the evidence that lesions of this area impair visual perception. However, this does not exclude that the visual cortex may process more information than of retinal origin alone, or that other brain structures contribute to vision. Indeed, research across the past decades has shown that non-visual information, such as neural activity related to reward expectation and value, locomotion, working memory and other sensory modalities, can modulate primary visual cortical responses to retinal inputs. Nevertheless, the function of this non-visual information is poorly understood. Here we review recent evidence, coming primarily from studies in rodents, arguing that non-visual and motor effects in visual cortex play a role in visual processing itself, for instance disentangling direct auditory effects on visual cortex from effects of sound-evoked orofacial movement. These findings are placed in a broader framework casting vision in terms of predictive processing under control of frontal, reward- and motor-related systems. In contrast to the prevalent notion that vision is exclusively constructed by the visual cortical system, we propose that visual percepts are generated by a larger network-the extended visual system-spanning other sensory cortices, supramodal areas and frontal systems. This article is part of the theme issue 'Decision and control processes in multisensory perception'.
Collapse
Affiliation(s)
- Cyriel M. A. Pennartz
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Matthijs N. Oude Lohuis
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Champalimaud Research, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Umberto Olcese
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
92
|
Parajuli A, Gutnisky D, Tandon N, Dragoi V. Endogenous fluctuations in cortical state selectively enhance different modes of sensory processing in human temporal lobe. Nat Commun 2023; 14:5591. [PMID: 37696880 PMCID: PMC10495466 DOI: 10.1038/s41467-023-41406-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 08/31/2023] [Indexed: 09/13/2023] Open
Abstract
The degree of synchronized fluctuations in neocortical network activity can vary widely during alertness. One influential idea that has emerged over the past few decades is that perceptual decisions are more accurate when the state of population activity is desynchronized. This suggests that optimal task performance may occur during a particular cortical state - the desynchronized state. Here we show that, contrary to this view, cortical state can both facilitate and suppress perceptual performance in a task-dependent manner. We performed electrical recordings from surface-implanted grid electrodes in the temporal lobe while human subjects completed two perceptual tasks. We found that when local population activity is in a synchronized state, network and perceptual performance are enhanced in a detection task and impaired in a discrimination task, but these modulatory effects are reversed when population activity is desynchronized. These findings indicate that the brain has adapted to take advantage of endogenous fluctuations in the state of neural populations in temporal cortex to selectively enhance different modes of sensory processing during perception in a state-dependent manner.
Collapse
Affiliation(s)
- Arun Parajuli
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas at Houston, Houston, TX, USA
| | - Diego Gutnisky
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas at Houston, Houston, TX, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, University of Texas Medical School, Houston, TX, USA
| | - Valentin Dragoi
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas at Houston, Houston, TX, USA.
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA.
| |
Collapse
|
93
|
Roethler O, Zohar E, Cohen-Kashi Malina K, Bitan L, Gabel HW, Spiegel I. Single genomic enhancers drive experience-dependent GABAergic plasticity to maintain sensory processing in the adult cortex. Neuron 2023; 111:2693-2708.e8. [PMID: 37354902 DOI: 10.1016/j.neuron.2023.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/29/2023] [Accepted: 05/30/2023] [Indexed: 06/26/2023]
Abstract
Experience-dependent plasticity of synapses modulates information processing in neural circuits and is essential for cognitive functions. The genome, via non-coding enhancers, was proposed to control information processing and circuit plasticity by regulating experience-induced transcription of genes that modulate specific sets of synapses. To test this idea, we analyze here the cellular and circuit functions of the genomic mechanisms that control the experience-induced transcription of Igf1 (insulin-like growth factor 1) in vasoactive intestinal peptide (VIP) interneurons (INs) in the visual cortex of adult mice. We find that two sensory-induced enhancers selectively and cooperatively drive the activity-induced transcription of Igf1 to thereby promote GABAergic inputs onto VIP INs and to homeostatically control the ratio between excitation and inhibition (E/I ratio)-in turn, this restricts neural activity in VIP INs and principal excitatory neurons and maintains spatial frequency tuning. Thus, enhancer-mediated activity-induced transcription maintains sensory processing in the adult cortex via homeostatic modulation of E/I ratio.
Collapse
Affiliation(s)
- Ori Roethler
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Zohar
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Katayun Cohen-Kashi Malina
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Lidor Bitan
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Harrison Wren Gabel
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Ivo Spiegel
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
94
|
Brændholt M, Kluger DS, Varga S, Heck DH, Gross J, Allen MG. Breathing in waves: Understanding respiratory-brain coupling as a gradient of predictive oscillations. Neurosci Biobehav Rev 2023; 152:105262. [PMID: 37271298 DOI: 10.1016/j.neubiorev.2023.105262] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/03/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
Breathing plays a crucial role in shaping perceptual and cognitive processes by regulating the strength and synchronisation of neural oscillations. Numerous studies have demonstrated that respiratory rhythms govern a wide range of behavioural effects across cognitive, affective, and perceptual domains. Additionally, respiratory-modulated brain oscillations have been observed in various mammalian models and across diverse frequency spectra. However, a comprehensive framework to elucidate these disparate phenomena remains elusive. In this review, we synthesise existing findings to propose a neural gradient of respiratory-modulated brain oscillations and examine recent computational models of neural oscillations to map this gradient onto a hierarchical cascade of precision-weighted prediction errors. By deciphering the computational mechanisms underlying respiratory control of these processes, we can potentially uncover new pathways for understanding the link between respiratory-brain coupling and psychiatric disorders.
Collapse
Affiliation(s)
- Malthe Brændholt
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark
| | - Daniel S Kluger
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Germany.
| | - Somogy Varga
- School of Culture and Society, Aarhus University, Denmark; The Centre for Philosophy of Epidemiology, Medicine and Public Health, University of Johannesburg, South Africa
| | - Detlef H Heck
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN
| | - Joachim Gross
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany
| | - Micah G Allen
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark; Cambridge Psychiatry, University of Cambridge, UK
| |
Collapse
|
95
|
Rowland JM, van der Plas TL, Loidolt M, Lees RM, Keeling J, Dehning J, Akam T, Priesemann V, Packer AM. Propagation of activity through the cortical hierarchy and perception are determined by neural variability. Nat Neurosci 2023; 26:1584-1594. [PMID: 37640911 PMCID: PMC10471496 DOI: 10.1038/s41593-023-01413-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/18/2023] [Indexed: 08/31/2023]
Abstract
Brains are composed of anatomically and functionally distinct regions performing specialized tasks, but regions do not operate in isolation. Orchestration of complex behaviors requires communication between brain regions, but how neural dynamics are organized to facilitate reliable transmission is not well understood. Here we studied this process directly by generating neural activity that propagates between brain regions and drives behavior, assessing how neural populations in sensory cortex cooperate to transmit information. We achieved this by imaging two densely interconnected regions-the primary and secondary somatosensory cortex (S1 and S2)-in mice while performing two-photon photostimulation of S1 neurons and assigning behavioral salience to the photostimulation. We found that the probability of perception is determined not only by the strength of the photostimulation but also by the variability of S1 neural activity. Therefore, maximizing the signal-to-noise ratio of the stimulus representation in cortex relative to the noise or variability is critical to facilitate activity propagation and perception.
Collapse
Affiliation(s)
- James M Rowland
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Thijs L van der Plas
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Matthias Loidolt
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Robert M Lees
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
- Science and Technology Facilities Council, Octopus Imaging Facility, Research Complex at Harwell, Harwell Campus, Oxfordshire, UK
| | - Joshua Keeling
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Jonas Dehning
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Thomas Akam
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Viola Priesemann
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute for the Dynamics of Complex Systems, University of Göttingen, Göttingen, Germany
| | - Adam M Packer
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
96
|
Komiyama T, Takedomi H, Aoyama C, Goya R, Shimegi S. Acute exercise has specific effects on the formation process and pathway of visual perception in healthy young men. Eur J Neurosci 2023; 58:3239-3252. [PMID: 37424403 DOI: 10.1111/ejn.16082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023]
Abstract
Visual perception is formed over time through the formation process and visual pathway. Exercise improves visual perception, but it is unclear whether exercise modulates nonspecifically or specifically the formation process and pathway of visual perception. Healthy young men performed the visual detection task in a backward masking paradigm before and during cycling exercise at a mild intensity or rest (control). The task presented gratings of a circular patch (target) and annulus (mask) arranged concentrically as a visual stimulus and asked if the presence and striped pattern (feature) of the target were detected. The relationship between the orientations of the gratings of the target and the mask included iso-orientation and orthogonal orientation to investigate the orientation selectivity of the masking effect. The masking effect was evaluated by perceptual suppressive index (PSI). Exercise improved feature detection (∆PSI; Exercise: -20.6%, Control: 1.7%) but not presence detection (∆PSI; Exercise: 8.9%, Control: 29.6%) compared to the control condition, and the improving effect resulted from the attenuation of the non-orientation-selective (∆PSI; Exercise: -29.0%, Control: 16.8%) but not orientation-selective masking effect (∆PSI; Exercise: -3.1%, Control: 11.7%). These results suggest that exercise affects the formation process of the perceptual feature of the target stimulus by suppressively modulating the neural networks responsible for the non-orientation-selective surround interaction in the subcortical visual pathways, whose effects are inherited by the cortical visual pathways necessary for perceptual image formation. In conclusion, our findings suggest that acute exercise improves visual perception transiently through the modulation of a specific formation process of visual processing.
Collapse
Affiliation(s)
- Takaaki Komiyama
- Laboratory of Brain Information Science in Sports, Center for Education in Liberal Arts and Science, Osaka University, Toyonaka, Japan
| | - Hiromasa Takedomi
- Graduate School of Frontier of Biosciences, Osaka University, Toyonaka, Japan
| | - Chisa Aoyama
- Graduate School of Medicine, Osaka University, Toyonaka, Japan
| | - Ryoma Goya
- Graduate School of Frontier of Biosciences, Osaka University, Toyonaka, Japan
- Faculty of Sports Science, Fukuoka University, Fukuoka, Japan
| | - Satoshi Shimegi
- Laboratory of Brain Information Science in Sports, Center for Education in Liberal Arts and Science, Osaka University, Toyonaka, Japan
- Graduate School of Frontier of Biosciences, Osaka University, Toyonaka, Japan
- Graduate School of Medicine, Osaka University, Toyonaka, Japan
| |
Collapse
|
97
|
Perrenoud Q, Cardin JA. Beyond rhythm - a framework for understanding the frequency spectrum of neural activity. Front Syst Neurosci 2023; 17:1217170. [PMID: 37719024 PMCID: PMC10500127 DOI: 10.3389/fnsys.2023.1217170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Cognitive and behavioral processes are often accompanied by changes within well-defined frequency bands of the local field potential (LFP i.e., the voltage induced by neuronal activity). These changes are detectable in the frequency domain using the Fourier transform and are often interpreted as neuronal oscillations. However, aside some well-known exceptions, the processes underlying such changes are difficult to track in time, making their oscillatory nature hard to verify. In addition, many non-periodic neural processes can also have spectra that emphasize specific frequencies. Thus, the notion that spectral changes reflect oscillations is likely too restrictive. In this study, we use a simple yet versatile framework to understand the frequency spectra of neural recordings. Using simulations, we derive the Fourier spectra of periodic, quasi-periodic and non-periodic neural processes having diverse waveforms, illustrating how these attributes shape their spectral signatures. We then show how neural processes sum their energy in the local field potential in simulated and real-world recording scenarios. We find that the spectral power of neural processes is essentially determined by two aspects: (1) the distribution of neural events in time and (2) the waveform of the voltage induced by single neural events. Taken together, this work guides the interpretation of the Fourier spectrum of neural recordings and indicates that power increases in specific frequency bands do not necessarily reflect periodic neural activity.
Collapse
Affiliation(s)
- Quentin Perrenoud
- Department of Neuroscience, Yale School of Medicine, Kavli Institute for Neuroscience, Wu Tsai Institute, New Haven, CT, United States
| | | |
Collapse
|
98
|
Vivaldo CA, Lee J, Shorkey M, Keerthy A, Rothschild G. Auditory cortex ensembles jointly encode sound and locomotion speed to support sound perception during movement. PLoS Biol 2023; 21:e3002277. [PMID: 37651461 PMCID: PMC10499203 DOI: 10.1371/journal.pbio.3002277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 09/13/2023] [Accepted: 07/26/2023] [Indexed: 09/02/2023] Open
Abstract
The ability to process and act upon incoming sounds during locomotion is critical for survival and adaptive behavior. Despite the established role that the auditory cortex (AC) plays in behavior- and context-dependent sound processing, previous studies have found that auditory cortical activity is on average suppressed during locomotion as compared to immobility. While suppression of auditory cortical responses to self-generated sounds results from corollary discharge, which weakens responses to predictable sounds, the functional role of weaker responses to unpredictable external sounds during locomotion remains unclear. In particular, whether suppression of external sound-evoked responses during locomotion reflects reduced involvement of the AC in sound processing or whether it results from masking by an alternative neural computation in this state remains unresolved. Here, we tested the hypothesis that rather than simple inhibition, reduced sound-evoked responses during locomotion reflect a tradeoff with the emergence of explicit and reliable coding of locomotion velocity. To test this hypothesis, we first used neural inactivation in behaving mice and found that the AC plays a critical role in sound-guided behavior during locomotion. To investigate the nature of this processing, we used two-photon calcium imaging of local excitatory auditory cortical neural populations in awake mice. We found that locomotion had diverse influences on activity of different neurons, with a net suppression of baseline-subtracted sound-evoked responses and neural stimulus detection, consistent with previous studies. Importantly, we found that the net inhibitory effect of locomotion on baseline-subtracted sound-evoked responses was strongly shaped by elevated ongoing activity that compressed the response dynamic range, and that rather than reflecting enhanced "noise," this ongoing activity reliably encoded the animal's locomotion speed. Decoding analyses revealed that locomotion speed and sound are robustly co-encoded by auditory cortical ensemble activity. Finally, we found consistent patterns of joint coding of sound and locomotion speed in electrophysiologically recorded activity in freely moving rats. Together, our data suggest that rather than being suppressed by locomotion, auditory cortical ensembles explicitly encode it alongside sound information to support sound perception during locomotion.
Collapse
Affiliation(s)
- Carlos Arturo Vivaldo
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Joonyeup Lee
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - MaryClaire Shorkey
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ajay Keerthy
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gideon Rothschild
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
- Kresge Hearing Research Institute and Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
99
|
Denagamage S, Morton MP, Hudson NV, Reynolds JH, Jadi MP, Nandy AS. Laminar mechanisms of saccadic suppression in primate visual cortex. Cell Rep 2023; 42:112720. [PMID: 37392385 PMCID: PMC10528056 DOI: 10.1016/j.celrep.2023.112720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 04/15/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023] Open
Abstract
Saccadic eye movements are known to cause saccadic suppression, a temporary reduction in visual sensitivity and visual cortical firing rates. While saccadic suppression has been well characterized at the level of perception and single neurons, relatively little is known about the visual cortical networks governing this phenomenon. Here we examine the effects of saccadic suppression on distinct neural subpopulations within visual area V4. We find subpopulation-specific differences in the magnitude and timing of peri-saccadic modulation. Input-layer neurons show changes in firing rate and inter-neuronal correlations prior to saccade onset, and putative inhibitory interneurons in the input layer elevate their firing rate during saccades. A computational model of this circuit recapitulates our empirical observations and demonstrates that an input-layer-targeting pathway can initiate saccadic suppression by enhancing local inhibitory activity. Collectively, our results provide a mechanistic understanding of how eye movement signaling interacts with cortical circuitry to enforce visual stability.
Collapse
Affiliation(s)
- Sachira Denagamage
- Department of Neuroscience, Yale University, New Haven, CT 06511, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Mitchell P Morton
- Department of Neuroscience, Yale University, New Haven, CT 06511, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Nyomi V Hudson
- Department of Neuroscience, Yale University, New Haven, CT 06511, USA
| | - John H Reynolds
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Monika P Jadi
- Department of Neuroscience, Yale University, New Haven, CT 06511, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA; Department of Psychiatry, Yale University, New Haven, CT 06511, USA; Kavli Institute for Neuroscience, Yale University, New Haven, CT 06511, USA; Wu Tsai Institute, Yale University, New Haven, CT 06511, USA.
| | - Anirvan S Nandy
- Department of Neuroscience, Yale University, New Haven, CT 06511, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA; Kavli Institute for Neuroscience, Yale University, New Haven, CT 06511, USA; Wu Tsai Institute, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
100
|
Rimehaug AE, Stasik AJ, Hagen E, Billeh YN, Siegle JH, Dai K, Olsen SR, Koch C, Einevoll GT, Arkhipov A. Uncovering circuit mechanisms of current sinks and sources with biophysical simulations of primary visual cortex. eLife 2023; 12:e87169. [PMID: 37486105 PMCID: PMC10393295 DOI: 10.7554/elife.87169] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023] Open
Abstract
Local field potential (LFP) recordings reflect the dynamics of the current source density (CSD) in brain tissue. The synaptic, cellular, and circuit contributions to current sinks and sources are ill-understood. We investigated these in mouse primary visual cortex using public Neuropixels recordings and a detailed circuit model based on simulating the Hodgkin-Huxley dynamics of >50,000 neurons belonging to 17 cell types. The model simultaneously captured spiking and CSD responses and demonstrated a two-way dissociation: firing rates are altered with minor effects on the CSD pattern by adjusting synaptic weights, and CSD is altered with minor effects on firing rates by adjusting synaptic placement on the dendrites. We describe how thalamocortical inputs and recurrent connections sculpt specific sinks and sources early in the visual response, whereas cortical feedback crucially alters them in later stages. These results establish quantitative links between macroscopic brain measurements (LFP/CSD) and microscopic biophysics-based understanding of neuron dynamics and show that CSD analysis provides powerful constraints for modeling beyond those from considering spikes.
Collapse
Affiliation(s)
| | | | - Espen Hagen
- Department of Physics, University of OsloOsloNorway
- Department of Data Science, Norwegian University of Life SciencesÅsNorway
| | | | - Josh H Siegle
- MindScope Program, Allen InstituteSeattleUnited States
| | - Kael Dai
- MindScope Program, Allen InstituteSeattleUnited States
| | - Shawn R Olsen
- MindScope Program, Allen InstituteSeattleUnited States
| | - Christof Koch
- MindScope Program, Allen InstituteSeattleUnited States
| | - Gaute T Einevoll
- Department of Physics, University of OsloOsloNorway
- Department of Physics, Norwegian University of Life SciencesÅsNorway
| | | |
Collapse
|