51
|
Cannabidiol prevents depressive-like behaviors through the modulation of neural stem cell differentiation. Front Med 2022; 16:227-239. [PMID: 35212887 DOI: 10.1007/s11684-021-0896-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/04/2021] [Indexed: 11/04/2022]
Abstract
Chronic stress impairs radial neural stem cell (rNSC) differentiation and adult hippocampal neurogenesis (AHN), whereas promoting AHN can increase stress resilience against depression. Therefore, investigating the mechanism of neural differentiation and AHN is of great importance for developing antidepressant drugs. The nonpsychoactive phytocannabinoid cannabidiol (CBD) has been shown to be effective against depression. However, whether CBD can modulate rNSC differentiation and hippocampal neurogenesis is unknown. Here, by using the chronic restraint stress (CRS) mouse model, we showed that hippocampal rNSCs mostly differentiated into astrocytes under stress conditions. Moreover, transcriptome analysis revealed that the FoxO signaling pathway was involved in the regulation of this process. The administration of CBD rescued depressive-like symptoms in CRS mice and prevented rNSCs overactivation and differentiation into astrocyte, which was partly mediated by the modulation of the FoxO signaling pathway. These results revealed a previously unknown neural mechanism for neural differentiation and AHN in depression and provided mechanistic insights into the antidepressive effects of CBD.
Collapse
|
52
|
Kreilaus F, Przybyla M, Ittner L, Karl T. Cannabidiol (CBD) treatment improves spatial memory in 14-month-old female TAU58/2 transgenic mice. Behav Brain Res 2022; 425:113812. [PMID: 35202719 DOI: 10.1016/j.bbr.2022.113812] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 02/13/2022] [Accepted: 02/19/2022] [Indexed: 12/29/2022]
Abstract
Frontotemporal dementia (FTD) and Alzheimer's disease (AD) share the pathological hallmark of intracellular neurofibrillary tangles, which result from the hyperphosphorylation of microtubule associated protein tau. The P301S mutation in human tau carried by TAU58/2 transgenic mice results in brain pathology and behavioural deficits relevant to FTD and AD. The phytocannabinoid cannabidiol (CBD) exhibits properties beneficial for multiple pathological processes evident in dementia. Therefore, 14-month-old female TAU58/2 transgenic and wild type-like (WT) littermates were treated with 100mg/kg CBD or vehicle i.p. starting three weeks prior to conducting behavioural paradigms relevant to FTD and AD. TAU58/2 females exhibited impaired motor function, reduced bodyweight and less anxiety behaviour compared to WT. An impaired spatial reference memory of vehicle-treated transgenic mice were restored by chronic CBD treatment. Chronic CBD also reduced anxiety-like behaviors and decreased contextual fear-associated freezing in all mice. Chronic remedial CBD treatment ameliorated several disease-relevant phenotypes in 14-month-old TAU58/2 transgenic mice, suggesting potential for the treatment of tauopathy-related behavioural impairments including cognitive deficits.
Collapse
Affiliation(s)
- Fabian Kreilaus
- School of Medicine, Western Sydney University, NSW 2560, Australia
| | - Magdalena Przybyla
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie University, NSW 2109, Australia
| | - Lars Ittner
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie University, NSW 2109, Australia
| | - Tim Karl
- School of Medicine, Western Sydney University, NSW 2560, Australia; Neuroscience Research Australia (NeuRA), NSW 2031, Australia; School of Medical Sciences, University of New South Wales, NSW 2052, Australia.
| |
Collapse
|
53
|
Garzón M, Chan J, Mackie K, Pickel VM. Prefrontal cortical distribution of muscarinic M2 and cannabinoid-1 (CB1) receptors in adult male mice with or without chronic adolescent exposure to Δ9-tetrahydrocannabinol. Cereb Cortex 2022; 32:5420-5437. [PMID: 35151230 PMCID: PMC9712711 DOI: 10.1093/cercor/bhac024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/27/2022] Open
Abstract
Chronic adolescent administration of marijuana's major psychoactive compound, ∆9-tetrahydrocannabinol (Δ9-THC), produces adaptive changes in adult social and cognitive functions sustained by prelimbic prefrontal cortex (PL-PFC). Memory and learning processes in PL-PFC neurons can be regulated through cholinergic muscarinic-2 receptors (M2R) and modulated by activation of cannabinoid-1 receptors (CB1Rs) targeted by Δ9-THC. Thus, chronic exposure to Δ9-THC during adolescence may alter the expression and/or distribution of M2Rs in PL-PFC neurons receiving CB1R terminals. We tested this hypothesis by using electron microscopic dual CB1R and M2R immunolabeling in adult C57BL/6 J male mice that had received vehicle or escalating dose of Δ9-THC through adolescence. In vehicle controls, CB1R immunolabeling was mainly localized to axonal profiles virtually devoid of M2R but often apposing M2R-immunoreactive dendrites and dendritic spines. The dendrites received inputs from CB1R-labeled or unlabeled terminals, whereas spines received asymmetric synapses exclusively from axon terminals lacking CB1Rs. Adolescent Δ9-THC significantly increased plasmalemmal M2R-immunogold density exclusively in large dendrites receiving input from CB1R-labeled terminals. In contrast, cytoplasmic M2R-immunogold density decreased in small spines of the Δ9-THC-treated adult mice. We conclude that Δ9-THC engagement of CB1Rs during adolescence increases M2R plasmalemmal accumulation in large proximal dendrites and decreases M2R cytoplasmic expression in small spines of PL-PFC.
Collapse
Affiliation(s)
- Miguel Garzón
- Corresponding author: Department of Anatomy, Histology and Neuroscience, Medical School, Autónoma University of Madrid, Arzobispo Morcillo 4, 28029 Madrid, Spain.
| | - June Chan
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Ken Mackie
- Linda and Jack Gill Center for Biomolecular Science, Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Virginia M Pickel
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| |
Collapse
|
54
|
Corrê MDS, de Freitas BS, Machado GDB, Pires VN, Bromberg E, Hallak JEC, Zuardi AW, Crippa JAS, Schröder N. Cannabidiol reverses memory impairments and activates components of the Akt/GSK3β pathway in an experimental model of estrogen depletion. Behav Brain Res 2022; 417:113555. [PMID: 34450240 DOI: 10.1016/j.bbr.2021.113555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 11/28/2022]
Abstract
Clinical and preclinical evidence has indicated that estrogen depletion leads to memory impairments and increases the susceptibility to neural damage. Here, we have sought to investigate the effects of Cannabidiol (CBD) a non-psychotomimetic compound from Cannabis sativa, on memory deficits induced by estrogen depletion in rats, and its underlying mechanisms. Adult rats were subjected to bilateral ovariectomy, an established estrogen depletion model in rodents, or sham surgery and allowed to recover for three weeks. After that, they received daily injections of CBD (10 mg/kg) for fourteen days. Rats were tested in the inhibitory avoidance task, a type of emotionally-motivated memory. After behavioral testing they were euthanized, and their hippocampi were isolated for analysis of components of the Akt/GSK3β survival pathway and the antiapoptotic protein Bcl2. Results revealed that ovariectomy impaired avoidance memory, and CBD was able to completely reverse estrogen depletion-induced memory impairment. Ovariectomy also reduced Akt/GSK3β pathway's activation by decreasing the phosphorylation levels of Akt and GSK3β and Bcl2 levels, which were ameliorated by CBD. The present results indicate that CBD leads to a functional recovery accompanied by the Akt/GSK3β survival pathway's activation, supporting its potential as a treatment for estrogen decline-induced deterioration of neural functioning and maintenance.
Collapse
Affiliation(s)
- Márcio da Silveira Corrê
- Neurobiology and Developmental Biology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil; Faculty of Medicine, Department of Health, Integrated Regional University of Upper Uruguay and Missions, Erechim, Brazil
| | - Betânia Souza de Freitas
- Neurobiology and Developmental Biology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Gustavo Dalto Barroso Machado
- Neurobiology and Developmental Biology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Vivian Naziaseno Pires
- Neurobiology and Developmental Biology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Elke Bromberg
- Neurobiology and Developmental Biology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil; National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil
| | - Jaime E C Hallak
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil; Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Antônio Waldo Zuardi
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil; Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - José Alexandre S Crippa
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil; Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Nadja Schröder
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil; Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
55
|
Landucci E, Mazzantini C, Lana D, Giovannini MG, Pellegrini-Giampietro DE. Neuronal and Astrocytic Morphological Alterations Driven by Prolonged Exposure with Δ9-Tetrahydrocannabinol but Not Cannabidiol. TOXICS 2022; 10:toxics10020048. [PMID: 35202235 PMCID: PMC8879505 DOI: 10.3390/toxics10020048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 12/24/2022]
Abstract
Cannabis derivatives are largely used in the general population for recreational and medical purposes, with the highest prevalence among adolescents, but chronic use and abuse has raised medical concerns. We investigated the prolonged effects of Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) in organotypic hippocampal slices from P7 rats cultured for 2 weeks. Cell death in the CA1 subregion of slices was quantified by propidium iodide (PI) fluorescence, pre-synaptic and post-synaptic marker proteins were analysed by Western blotting and neurodegeneration and astrocytic alterations by NeuN and GFAP by immunofluorescence and confocal laser microscopy. The statistical significance of differences was analysed using ANOVA with a post hoc Dunnett w-test (PI fluorescence intensities and Western blots) or Newman–Keuls (immunohistochemistry data) for multiple comparisons. A probability value (P) of < 0.05 was considered significant. Prolonged (72 h) THC or CBD incubation did not induce cell death but caused modifications in the expression of synaptic proteins and morphological alterations in neurons and astrocytes. In particular, the expression of PSD95 was reduced following incubation for 72 h with THC and was increased following incubation with CBD. THC for 72 h caused disorganisation of CA1 stratum pyramidalis (SP) and complex morphological modifications in a significant number of pyramidal neurons and in astrocytes. Our results suggest that THC or CBD prolonged exposure induce different effects in the hippocampus. In particular, 72 h of THC exposure induced neuronal and glia alterations that must draw our attention to the effects that relatively prolonged use might cause, especially in adolescents.
Collapse
|
56
|
Silva NR, Gomes FIF, Lopes AHP, Cortez IL, Dos Santos JC, Silva CEA, Mechoulam R, Gomes FV, Cunha TM, Guimarães FS. The Cannabidiol Analog PECS-101 Prevents Chemotherapy-Induced Neuropathic Pain via PPARγ Receptors. Neurotherapeutics 2022; 19:434-449. [PMID: 34904193 PMCID: PMC9130439 DOI: 10.1007/s13311-021-01164-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2021] [Indexed: 01/03/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is the main dose-limiting adverse effect of chemotherapy drugs such as paclitaxel (PTX). PTX causes marked molecular and cellular damage, mainly in the peripheral nervous system, including sensory neurons in the dorsal root ganglia (DRG). Several studies have shown the therapeutic potential of cannabinoids, including cannabidiol (CBD), the major non-psychotomimetic compound found in the Cannabis plant, to treat peripheral neuropathies. Here, we investigated the efficacy of PECS-101 (former HUF-101), a CBD fluorinated analog, on PTX-induced neuropathic pain in mice. PECS-101, administered after the end of treatment with PTX, did not reverse mechanical allodynia. However, PECS-101 (1 mg/kg) administered along with PTX treatment caused a long-lasting relief of the mechanical and cold allodynia. These effects were blocked by a PPARγ, but not CB1 and CB2 receptor antagonists. Notably, the effects of PECS-101 on the relief of PTX-induced mechanical and cold allodynia were not found in macrophage-specific PPARγ-deficient mice. PECS-101 also decreased PTX-induced increase in Tnf, Il6, and Aif1 (Iba-1) gene expression in the DRGs and the loss of intra-epidermal nerve fibers. PECS-101 did not alter motor coordination, produce tolerance, or show abuse potential. In addition, PECS-101 did not interfere with the chemotherapeutic effects of PTX. Thus, PECS-101, a new fluorinated CBD analog, could represent a novel therapeutic alternative to prevent mechanical and cold allodynia induced by PTX potentially through the activation of PPARγ in macrophages.
Collapse
Affiliation(s)
- Nicole Rodrigues Silva
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.
| | | | | | - Isadora Lopes Cortez
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | - Conceição Elidianne Aníbal Silva
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Raphael Mechoulam
- Department of Medicinal Chemistry and Natural Products, Hebrew University Medical Faculty, Jerusalem, Israel
| | - Felipe Villela Gomes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Thiago Mattar Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.
| | - Francisco Silveira Guimarães
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.
- National Institute of Science and Translational Medicine, Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.
| |
Collapse
|
57
|
Enhancing Endocannabinoid Control of Stress with Cannabidiol. J Clin Med 2021; 10:jcm10245852. [PMID: 34945148 PMCID: PMC8704602 DOI: 10.3390/jcm10245852] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 02/08/2023] Open
Abstract
The stress response is a well-defined physiological function activated frequently by life events. However, sometimes the stress response can be inappropriate, excessive, or prolonged; in which case, it can hinder rather than help in coping with the stressor, impair normal functioning, and increase the risk of somatic and mental health disorders. There is a need for a more effective and safe pharmacological treatment that can dampen maladaptive stress responses. The endocannabinoid system is one of the main regulators of the stress response. A basal endocannabinoid tone inhibits the stress response, modulation of this tone permits/curtails an active stress response, and chronic deficiency in the endocannabinoid tone is associated with the pathological complications of chronic stress. Cannabidiol is a safe exogenous cannabinoid enhancer of the endocannabinoid system that could be a useful treatment for stress. There have been seven double-blind placebo controlled clinical trials of CBD for stress on a combined total of 232 participants and one partially controlled study on 120 participants. All showed that CBD was effective in significantly reducing the stress response and was non-inferior to pharmaceutical comparators, when included. The clinical trial results are supported by the established mechanisms of action of CBD (including increased N-arachidonylethanolamine levels) and extensive real-world and preclinical evidence of the effectiveness of CBD for treating stress.
Collapse
|
58
|
Silote GP, Gatto MC, Eskelund A, Guimarães FS, Wegener G, Joca SRL. Strain-, Sex-, and Time-Dependent Antidepressant-like Effects of Cannabidiol. Pharmaceuticals (Basel) 2021; 14:1269. [PMID: 34959670 PMCID: PMC8709491 DOI: 10.3390/ph14121269] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 01/07/2023] Open
Abstract
Cannabidiol (CBD) is a non-intoxicating compound extracted from Cannabis sativa, showing antidepressant-like effects in different rodent models. However, inconsistent results have been described depending on the species and the strain used to assess depressive-like behavior. Moreover, only a few studies investigated the effect of CBD in female rodents. Therefore, we aimed to (i) investigate the effects of CBD in two different strains of mice (Swiss and C57BL/6) and a rat model of depression based on selective breeding (Flinders Sensitive and Resistant Lines, FSL and FRL) subjected to tests predictive of antidepressant-like effects and (ii) investigate the influence of sex in the effects of CBD in both mice and rats. CBD induced an antidepressant-like effect in male Swiss but not in female Swiss or C57BL/6 mice in the tail suspension test (TST). In male FSL rats, CBD produced an antidepressant-like effect 1 h post injection. However, in female FSL, CBD induced a bimodal effect, increasing the immobility time at 1 h and decreasing it at 2 h. In conclusion, strain, sex, and administration time affect CBD's behavioral response to rodents exposed to tests predictive of antidepressant effects.
Collapse
Affiliation(s)
- Gabriela P. Silote
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Ribeirão Preto 14040-903, SP, Brazil; (G.P.S.); (M.C.G.)
- Translational Neuropsychiatry Unit (TNU), Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Michelle C. Gatto
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Ribeirão Preto 14040-903, SP, Brazil; (G.P.S.); (M.C.G.)
| | - Amanda Eskelund
- Translational Neuropsychiatry Unit (TNU), Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Francisco S. Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil;
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Gregers Wegener
- Translational Neuropsychiatry Unit (TNU), Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Sâmia R. L. Joca
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Ribeirão Preto 14040-903, SP, Brazil; (G.P.S.); (M.C.G.)
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
59
|
Gallego-Landin I, García-Baos A, Castro-Zavala A, Valverde O. Reviewing the Role of the Endocannabinoid System in the Pathophysiology of Depression. Front Pharmacol 2021; 12:762738. [PMID: 34938182 PMCID: PMC8685322 DOI: 10.3389/fphar.2021.762738] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/11/2021] [Indexed: 01/04/2023] Open
Abstract
Major depressive disorder is a high-impact, debilitating disease and it is currently considered the most prevalent mental illness. It is associated with disability, as well as increased morbidity and mortality. Despite its significant repercussions in our society, its exact pathophysiology remains unclear and therefore, available antidepressant treatment options are limited and, in some cases, ineffective. In the past years, research has focused on the development of a multifactorial theory of depression. Simultaneously, evidence supporting the role of the endocannabinoid system in the neurobiology of neuropsychiatric diseases has emerged. Studies have shown that the endocannabinoid system strongly impacts neurotransmission, and the neuroendocrine and neuroimmune systems, which are known to be dysfunctional in depressive patients. Accordingly, common antidepressants were shown to have a direct impact on the expression of cannabinoid receptors throughout the brain. Therefore, the relationship between the endocannabinoid system and major depressive disorder is worth consideration. Nevertheless, most studies focus on smaller pieces of what is undoubtedly a larger mosaic of interdependent processes. Therefore, the present review summarizes the existing literature regarding the role of the endocannabinoid system in depression aiming to integrate this information into a holistic picture for a better understanding of the relationship between the two.
Collapse
Affiliation(s)
- Ines Gallego-Landin
- Neurobiology of Behaviour Research Group (GReNeC—NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Alba García-Baos
- Neurobiology of Behaviour Research Group (GReNeC—NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Adriana Castro-Zavala
- Neurobiology of Behaviour Research Group (GReNeC—NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC—NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| |
Collapse
|
60
|
Fernandes GG, Costa KCM, Scomparin DS, Freire JB, Guimarães FS, Campos AC. Genetic Ablation of the Inducible Form of Nitric Oxide in Male Mice Disrupts Immature Neuron Survival in the Adult Dentate Gyrus. Front Immunol 2021; 12:782831. [PMID: 34925362 PMCID: PMC8673740 DOI: 10.3389/fimmu.2021.782831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/08/2021] [Indexed: 12/27/2022] Open
Abstract
Inducible nitric oxide synthase (iNOS) is an enzyme upregulated in the brain during neuroimmune stimuli which is associated with an oxidative and pro-inflammatory environment in several brain regions, including the hippocampal formation and the prefrontal cortex. The dentate gyrus of the hippocampal formation is the site of a process known as adult hippocampal neurogenesis (AHN). Although many endogenous and extrinsic factors can modulate AHN, the exact participation of specific proinflammatory mediators such as iNOS in these processes remains to be fully elucidated. Here, we investigated how the total genetic ablation of iNOS impacts the hippocampal neurogenic niche and microglial phenotype and if these changes are correlated to the behavioral alterations observed in iNOS knockout (K.O.) mice submitted or not to the chronic unpredictable stress model (CUS - 21 days protocol). Contrary to our initial hypothesis, at control conditions, iNOS K.O. mice displayed no abnormalities on microglial activation in the dentate gyrus. However, they did exhibit impaired newborn cells and immature neuron survival, which was not affected by CUS. The reduction of AHN in iNOS K.O. mice was accompanied by an increased positive coping response in the tail suspension test and facilitation of anxiety-like behaviors in the novelty suppressed feeding. Next, we investigated whether a pro-neurogenic stimulus would rescue the neurogenic capacity of iNOS K.O. mice by administering in control and CUS groups the antidepressant escitalopram (ESC). The chronic treatment with ESC could not rescue the neurogenic capacity or the behavioral changes observed in iNOS K.O. mice. Besides, in the ventromedial prefrontal (vmPFC) cortex there was no change in the expression or the chronic activation of PV neurons (evaluated by double labeling PV with FOSB) in the prelimbic (PrL) or infralimbic subregions. FOSB expression, however, increased in the PrL of iNOS K.O. mice. Our results suggest that iNOS seems essential for the survival of newborn cells and immature neurons in the hippocampus and seem to partially explain the anxiogenic-like behavior observed in iNOS K.O. mice. On the other hand, the iNOS ablation appears to result in increased activity of the PrL which could explain the antidepressant-like behaviors of iNOS K.O mice.
Collapse
Affiliation(s)
| | | | | | | | | | - Alline C. Campos
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
61
|
Clayton P, Subah S, Venkatesh R, Hill M, Bogoda N. Palmitoylethanolamide: A Potential Alternative to Cannabidiol. J Diet Suppl 2021; 20:505-530. [PMID: 34842030 DOI: 10.1080/19390211.2021.2005733] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The endocannabinoid system (ECS) is a widespread cell signaling network that maintains homeostasis in response to endogenous and exogenous stressors. This has made the ECS an attractive therapeutic target for various disease states. The ECS is a well-known target of exogenous phytocannabinoids derived from cannabis plants, the most well characterized being Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). However, the therapeutic efficacy of cannabis products comes with a risk of toxicity and high abuse potential due to the psychoactivity of THC. CBD, on the other hand, is reported to have beneficial medicinal properties including analgesic, neuroprotective, anxiolytic, anticonvulsant, and antipsychotic activities, while apparently lacking the toxicity of THC. Nevertheless, not only is the currently available scientific data concerning CBD's efficacy insufficient, there is also ambiguity surrounding its regulatory status and safety in humans that brings inherent risks to manufacturers. There is a demand for alternative compounds combining similar effects with a robust safety profile and regulatory approval. Palmitoylethanolamide (PEA) is an endocannabinoid-like lipid mediator, primarily known for its anti-inflammatory, analgesic and neuroprotective properties. It appears to have a multi-modal mechanism of action, by primarily activating the nuclear receptor PPAR-α while also potentially working through the ECS, thus targeting similar pathways as CBD. With proven efficacy in several therapeutic areas, its safety and tolerability profile and the development of formulations that maximize its bioavailability, PEA is a promising alternative to CBD.
Collapse
Affiliation(s)
- Paul Clayton
- Institute of Food, Brain and Behaviour, Oxford, UK
| | - Silma Subah
- Gencor Pacific Limited, Lantau Island, Hong Kong
| | | | - Mariko Hill
- Gencor Pacific Limited, Lantau Island, Hong Kong
| | | |
Collapse
|
62
|
Valeri A, Mazzon E. Cannabinoids and Neurogenesis: The Promised Solution for Neurodegeneration? Molecules 2021; 26:molecules26206313. [PMID: 34684894 PMCID: PMC8541184 DOI: 10.3390/molecules26206313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 01/02/2023] Open
Abstract
The concept of neurons as irreplaceable cells does not hold true today. Experiments and evidence of neurogenesis, also, in the adult brain give hope that some compounds or drugs can enhance this process, helping to reverse the outcomes of diseases or traumas that once were thought to be everlasting. Cannabinoids, both from natural and artificial origins, already proved to have several beneficial effects (e.g., anti-inflammatory, anti-oxidants and analgesic action), but also capacity to increase neuronal population, by replacing the cells that were lost and/or regenerate a damaged nerve cell. Neurogenesis is a process which is not highly represented in literature as neuroprotection, though it is as important as prevention of nervous system damage, because it can represent a possible solution when neuronal death is already present, such as in neurodegenerative diseases. The aim of this review is to resume the experimental evidence of phyto- and synthetic cannabinoids effects on neurogenesis, both in vitro and in vivo, in order to elucidate if they possess also neurogenetic and neurorepairing properties.
Collapse
|
63
|
Kim J, Choi H, Kang EK, Ji GY, Kim Y, Choi IS. In Vitro Studies on Therapeutic Effects of Cannabidiol in Neural Cells: Neurons, Glia, and Neural Stem Cells. Molecules 2021; 26:molecules26196077. [PMID: 34641624 PMCID: PMC8512311 DOI: 10.3390/molecules26196077] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/25/2022] Open
Abstract
(‒)-Cannabidiol (CBD) is one of the major phytocannabinoids extracted from the Cannabis genus. Its non-psychoactiveness and therapeutic potential, partly along with some anecdotal—if not scientific or clinical—evidence on the prevention and treatment of neurological diseases, have led researchers to investigate the biochemical actions of CBD on neural cells. This review summarizes the previously reported mechanistic studies of the CBD actions on primary neural cells at the in vitro cell-culture level. The neural cells are classified into neurons, microglia, astrocytes, oligodendrocytes, and neural stem cells, and the CBD effects on each cell type are described. After brief introduction on CBD and in vitro studies of CBD actions on neural cells, the neuroprotective capability of CBD on primary neurons with the suggested operating actions is discussed, followed by the reported CBD actions on glia and the CBD-induced regeneration from neural stem cells. A summary section gives a general overview of the biochemical actions of CBD on neural cells, with a future perspective. This review will provide a basic and fundamental, but crucial, insight on the mechanistic understanding of CBD actions on neural cells in the brain, at the molecular level, and the therapeutic potential of CBD in the prevention and treatment of neurological diseases, although to date, there seem to have been relatively limited research activities and reports on the cell culture-level, in vitro studies of CBD effects on primary neural cells.
Collapse
Affiliation(s)
- Jungnam Kim
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (J.K.); (H.C.); (E.K.K.)
| | - Hyunwoo Choi
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (J.K.); (H.C.); (E.K.K.)
| | - Eunhye K. Kang
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (J.K.); (H.C.); (E.K.K.)
| | - Gil Yong Ji
- Cannabis Medical, Inc., Sandong-ro 433-31, Eumbong-myeon, Asan-si 31418, Korea; (G.Y.J.); (Y.K.)
| | - Youjeong Kim
- Cannabis Medical, Inc., Sandong-ro 433-31, Eumbong-myeon, Asan-si 31418, Korea; (G.Y.J.); (Y.K.)
| | - Insung S. Choi
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (J.K.); (H.C.); (E.K.K.)
- Correspondence:
| |
Collapse
|
64
|
Alexander C, Vasefi M. Cannabidiol and the corticoraphe circuit in post-traumatic stress disorder. IBRO Neurosci Rep 2021; 11:88-102. [PMID: 34485973 PMCID: PMC8408530 DOI: 10.1016/j.ibneur.2021.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/04/2021] [Accepted: 08/18/2021] [Indexed: 01/06/2023] Open
Abstract
Post-Traumatic Stress Disorder (PTSD), characterized by re-experiencing, avoidance, negative affect, and impaired memory processing, may develop after traumatic events. PTSD is complicated by impaired plasticity and medial prefrontal cortex (mPFC) activity, hyperactivity of the amygdala, and impaired fear extinction. Cannabidiol (CBD) is a promising candidate for treatment due to its multimodal action that enhances plasticity and calms hyperexcitability. CBD’s mechanism in the mPFC of PTSD patients has been explored extensively, but literature on the mechanism in the dorsal raphe nucleus (DRN) is lacking. Following the PRISMA guidelines, we examined current literature regarding CBD in PTSD and overlapping symptomologies to propose a mechanism by which CBD treats PTSD via corticoraphe circuit. Acute CBD inhibits excess 5-HT release from DRN to amygdala and releases anandamide (AEA) onto amygdala inputs. By first reducing amygdala and DRN hyperactivity, CBD begins to ameliorate activity disparity between mPFC and amygdala. Chronic CBD recruits the mPFC, creating harmonious corticoraphe signaling. DRN releases enough 5-HT to ameliorate mPFC hypoactivity, while the mPFC continuously excites DRN 5-HT neurons via glutamate. Meanwhile, AEA regulates corticoraphe activity to stabilize signaling. AEA prevents DRN GABAergic interneurons from inhibiting 5-HT release so the DRN can assist the mPFC in overcoming its hypoactivity. DRN-mediated restoration of mPFC activity underlies CBD’s mechanism on fear extinction and learning of stress coping. CBD reduces PTSD symptoms via the DRN and corticoraphe circuit. Acute effects of CBD reduce DRN-amygdala excitatory signaling to lessen the activity disparity between amygdala and mPFC. Chronic CBD officially resolves mPFC hypoactivity by facilitating 5-HT release from DRN to mPFC. CBD-facilitated endocannabinoid signaling stabilizes DRN activity and restores mPFC inhibitory control. Chronically administered CBD acts via the corticoraphe circuit to favor fear extinction over fear memory reconsolidation.
Collapse
Key Words
- 2-AG, 2-arachidonoylglycerol
- 5-HT, Serotonin
- 5-HT1AR, 5-HT Receptor Type 1A
- 5-HT2AR, 5-HT Receptor Type 2 A
- AEA, Anandamide
- CB1R, Cannabinoid Receptor Type 1
- CB2R, Cannabinoid Receptor Type 2
- CBD, Cannabidiol
- COVID-19, SARS-CoV-2
- Cannabidiol
- DRN, Dorsal Raphe Nucleus
- ERK1/2, Extracellular Signal-Related Kinases Type 1 or Type 2
- FAAH, Fatty Acid Amide Hydrolase
- GABA, Gamma-Aminobutyric Acid
- GPCRs, G-Protein Coupled Receptors
- NMDAR, N-Methyl-D-aspartate Receptors
- PET, Positron Emission Tomography
- PFC, DRN and Raphe
- PFC, Prefrontal Cortex
- PTSD
- PTSD, Post-Traumatic Stress Disorder
- SSNRI, Selective Norepinephrine Reuptake Inhibitor
- SSRI, Selective Serotonin Reuptake Inhibitor
- Serotonin
- TRPV1, Transient Receptor Potential Vanilloid 1 Channels
- Traumatic Stress
- fMRI, Functional Magnetic Resonance Imaging
- mPFC, Medial Prefrontal Cortex
Collapse
Affiliation(s)
- Claire Alexander
- Department of Biology, Lamar University, Beaumont, TX 77710, USA
| | - Maryam Vasefi
- Department of Biology, Lamar University, Beaumont, TX 77710, USA
| |
Collapse
|
65
|
Binge-like Alcohol Exposure in Adolescence: Behavioural, Neuroendocrine and Molecular Evidence of Abnormal Neuroplasticity… and Return. Biomedicines 2021; 9:biomedicines9091161. [PMID: 34572345 PMCID: PMC8470908 DOI: 10.3390/biomedicines9091161] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 01/02/2023] Open
Abstract
Binge alcohol consumption among adolescents affects the developing neural networks underpinning reward and stress processing in the nucleus accumbens (NAc). This study explores in rats the long-lasting effects of early intermittent exposure to intoxicating alcohol levels at adolescence, on: (1) the response to natural positive stimuli and inescapable stress; (2) stress-axis functionality; and (3) dopaminergic and glutamatergic neuroadaptation in the NAc. We also assess the potential effects of the non-intoxicating phytocannabinoid cannabidiol, to counteract (or reverse) the development of detrimental consequences of binge-like alcohol exposure. Our results show that adolescent binge-like alcohol exposure alters the sensitivity to positive stimuli, exerts social and novelty-triggered anxiety-like behaviour, and passive stress-coping during early and prolonged withdrawal. In addition, serum corticosterone and hypothalamic and NAc corticotropin-releasing hormone levels progressively increase during withdrawal. Besides, NAc tyrosine hydroxylase levels increase at late withdrawal, while the expression of dopamine transporter, D1 and D2 receptors is dynamically altered during binge and withdrawal. Furthermore, the expression of markers of excitatory postsynaptic signaling—PSD95; Homer-1 and -2 and the activity-regulated spine-morphing proteins Arc, LIM Kinase 1 and FOXP1—increase at late withdrawal. Notably, subchronic cannabidiol, during withdrawal, attenuates social- and novelty-induced aversion and passive stress-coping and rectifies the hyper-responsive stress axis and NAc dopamine and glutamate-related neuroplasticity. Overall, the exposure to binge-like alcohol levels in adolescent rats makes the NAc, during withdrawal, a locus minoris resistentiae as a result of perturbations in neuroplasticity and in stress-axis homeostasis. Cannabidiol holds a promising potential for increasing behavioural, neuroendocrine and molecular resilience against binge-like alcohol harmful effects.
Collapse
|
66
|
L’usage du cannabidiol dans le sport : une bonne idée ? Sci Sports 2021. [DOI: 10.1016/j.scispo.2021.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
67
|
García-Baos A, Puig-Reyne X, García-Algar Ó, Valverde O. Cannabidiol attenuates cognitive deficits and neuroinflammation induced by early alcohol exposure in a mice model. Biomed Pharmacother 2021; 141:111813. [PMID: 34126352 DOI: 10.1016/j.biopha.2021.111813] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/17/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022] Open
Abstract
Foetal alcohol spectrum disorder (FASD) is the umbrella term used to describe the physical and mental disabilities induced by alcohol exposure during development. Early alcohol exposure induces cognitive impairments resulting from damage to the central nervous system (CNS). The neuroinflammatory response accompanied by neurodegenerative mechanisms contribute to those detrimental alterations. Cannabidiol (CBD) has recently emerged as an anti-inflammatory drug that might be useful to treat several neuropsychiatric disorders. In our study, we assessed the effects of CBD on long-lasting cognitive deficits induced by early alcohol exposure. Furthermore, we analysed long-term pro-inflammatory and apoptotic markers within the prefrontal cortex and hippocampus. To model alcohol binge drinking during gestational and lactation periods, we used pregnant C57BL/6 female mice with time-limited access to 20% v/v alcohol solution. Following the prenatal and lactation alcohol exposure (PLAE), we treated the male and female offspring with CBD from post-natal day (PD) 25 until PD34, and we evaluated their cognitive performance at PD60. Our results showed that CBD treatment during peri-adolescence period ameliorates cognitive deficits observed in our FASD-like mouse model, without sex differences. Moreover, CBD restores the PLAE-induced increased levels of TNFα and IL-6 in the hippocampus. Thus, our study provides new insights for CBD as a therapeutic agent to counteract cognitive impairments and neuroinflammation caused by early alcohol exposure.
Collapse
Affiliation(s)
- Alba García-Baos
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Xavier Puig-Reyne
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Óscar García-Algar
- Neonatology Unit, ICGON, IDIBAPS, Hospital Clínic-Maternitat, BCNatal, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
68
|
Ahmed M, Boileau I, Le Foll B, Carvalho AF, Kloiber S. The endocannabinoid system in social anxiety disorder: from pathophysiology to novel therapeutics. ACTA ACUST UNITED AC 2021; 44:81-93. [PMID: 34468550 PMCID: PMC8827369 DOI: 10.1590/1516-4446-2021-1926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
Social anxiety disorder (SAD) is a highly prevalent psychiatric disorder that presents with an early age of onset, chronic disease course, and increased risk of psychiatric comorbidity. Current treatment options for SAD are associated with low response rates, suboptimal efficacy, and possible risk of adverse effects. Investigation of new neurobiological mechanisms may aid in the identification of more specific therapeutic targets for the treatment of this disorder. Emerging evidence suggests that the endogenous cannabinoid system, also referred to as the endocannabinoid system (ECS), could play a potential role in the pathophysiology of SAD. This review discusses the known pathophysiological mechanisms of SAD, the potential role of the ECS in this disorder, current drugs targeting the ECS, and the potential of these novel compounds to enhance the therapeutic armamentarium for SAD. Further investigational efforts, specifically in human populations, are warranted to improve our knowledge of the ECS in SAD.
Collapse
Affiliation(s)
- Mashal Ahmed
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Isabelle Boileau
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Bernard Le Foll
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Andre F Carvalho
- Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Innovation in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Deakin University, Geelong, VIC, Australia, 3216
| | - Stefan Kloiber
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
69
|
Salman T, Afroz R, Nawaz S, Mahmood K, Haleem DJ, Zarina S. Differential effects of memory enhancing and impairing doses of methylphenidate on serotonin metabolism and 5-HT1A, GABA, glutamate receptor expression in the rat prefrontal cortex. Biochimie 2021; 191:51-61. [PMID: 34454977 DOI: 10.1016/j.biochi.2021.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 07/28/2021] [Accepted: 08/24/2021] [Indexed: 02/05/2023]
Abstract
Methylphenidate (MPD), a psychostimulant, is a prescription medicine for treating attention deficit hyperactivity disorder (ADHD). Previously we have shown that moderate doses of MPD enhanced learning and memory while higher doses impaired it. To understand neurochemical mechanisms and receptors involved in memory enhancing and impairing effects of MPD, the present study concerns the effects of these doses of MPD on serotonin, 5-HT1A, GABA, and NMDA receptor mRNA expression in the prefrontal cortex (PFC). We found that low doses (2.5 mg/kg) of MPD improved performance in the water-maze test but higher doses (5 mg/kg) impaired memory retention. Animals showing improved performance had high 5-HT metabolism in the PFC while these levels were not affected in the group treated with higher MPD doses and exhibiting impaired memory. There was downregulation of 5-HT1A receptors in the PFC of rats treated with higher dose MPD, which didn't occur in low dose of MPD treated animals. Further, a decrease in GABAAreceptor mRNA expression occurred in low doses of MPD treated animals and GluN2A expression was reduced in higher doses of MPD treated animals. The findings suggest that memory enhancing doses of MPD increase 5-HT and reduce GABAA receptor mRNA expression in the PFC to release excitatory glutamate neurons from the inhibitory influence of GABA. Conversely, higher dose of MPD downregulates 5-HT1A receptor mRNA expression to enhance inhibitory GABA influence on glutamate neurons and impair cognitive performance. The findings show an important role of 5-HT1A heteroreceptors in the PFC for improving therapeutic use of MPD and developing novel cognitive enhancers.
Collapse
Affiliation(s)
- Tabinda Salman
- Neuroscience Research Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan.
| | - Rushda Afroz
- Neuroscience Research Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Shazia Nawaz
- Neuroscience Research Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Khalid Mahmood
- Neuroscience Research Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Darakhshan J Haleem
- Neuroscience Research Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Shamshad Zarina
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
70
|
Yu CHJ, Rupasinghe HPV. Cannabidiol-based natural health products for companion animals: Recent advances in the management of anxiety, pain, and inflammation. Res Vet Sci 2021; 140:38-46. [PMID: 34391060 DOI: 10.1016/j.rvsc.2021.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/18/2021] [Accepted: 08/05/2021] [Indexed: 12/21/2022]
Abstract
Recent advances in cannabidiol (CBD) use in canines and felines for anxiety management, pain management, and anti-inflammatory effects were reviewed using a literature search conducted with the following keywords: CBD, anxiety, inflammation, pain, dogs, cats, and companion animals. For decades, research on CBD has been hindered due to the status of cannabis (C. sativa L.) as an illicit drug. Limited safety data show that CBD is well-tolerated in dogs, with insufficient information on the safety profile of CBD in cats. Upon oral supplementation of CBD, elevation in liver enzymes was observed for both dogs and cats, and pharmacokinetics of CBD are different in the two species. There is a significant gap in the literature on the therapeutic use of CBD in cats, with no feline data on anxiety, pain, and inflammation management. There is evidence that chronic osteoarthritic pain in dogs can be reduced by supplementation with CBD. Furthermore, experiments are required to better understand whether CBD has an influence on noise-induced fear and anxiolytic response. Preliminary evidence exists to support the analgesic properties of CBD in treating chronic canine osteoarthritis; however, there are inter- and intra-species differences in pharmacokinetics, tolerance, dosage, and safety of CBD. Therefore, to validate the anxiety management, pain management, and anti-inflammatory efficacy of CBD, it is essential to conduct systematic, randomized, and controlled trials. Further, the safety and efficacious dose of CBD in companion animals warrants investigation.
Collapse
Affiliation(s)
- Cindy H J Yu
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - H P Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada; Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
71
|
Bis-Humbert C, García-Cabrerizo R, García-Fuster MJ. Antidepressant-like effects of cannabidiol in a rat model of early-life stress with or without adolescent cocaine exposure. Pharmacol Rep 2021; 73:1195-1202. [PMID: 34076862 DOI: 10.1007/s43440-021-00285-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND Further studies are needed to better understand the effects of potential novel antidepressants, such as cannabidiol, for the treatment of psychiatric disorders during adolescence. In this context, we evaluated in a rodent model of early-life stress (a single 24-h episode of maternal deprivation, PND 9), the antidepressant-like effects of adolescent cannabidiol alone and/or in combination with adolescent cocaine exposure (given the described beneficial effects of cannabidiol on reducing cocaine effects). METHODS Maternally deprived Sprague-Dawley male rats were treated in adolescence with cannabidiol (with or without concomitant cocaine) and exposed to a battery of behavioral tests (forced-swim, novelty-suppressed feeding, open field, sucrose preference) across time. Putative enduring molecular correlates (CB receptors, BDNF) were evaluated in the hippocampus by western blot. RESULTS Cannabidiol exerted antidepressant- and anxiolytic-like effects in rats exposed to early-life stress. Cocaine did not alter affective-like behavior during adolescence in rats exposed to early-life stress; however, a depressive- and anxiogenic-like phenotype emerged during adulthood, and cannabidiol exerted some behavioral improvements, along with the growing literature supporting its beneficial role for reducing cocaine intake and/or reinstatement in rodents. Finally, cannabidiol did not modulate hippocampal CB receptors or BDNF proteins, and although the data raised interesting questions about the possible role of CB1 receptors on modulating the long-term effects of cocaine, future research is needed to expand these findings. CONCLUSION Cannabidiol showed a promising therapeutic response in terms of ameliorating affect in a rat model of early-life stress during adolescence and up to adulthood.
Collapse
Affiliation(s)
- Cristian Bis-Humbert
- IUNICS, University of the Balearic Islands, Ctra. de Valldemossa km 7.5, 07122, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Rubén García-Cabrerizo
- IUNICS, University of the Balearic Islands, Ctra. de Valldemossa km 7.5, 07122, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - M Julia García-Fuster
- IUNICS, University of the Balearic Islands, Ctra. de Valldemossa km 7.5, 07122, Palma, Spain.
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.
| |
Collapse
|
72
|
Razavi Y, Keyhanfar F, Haghparast A, Shabani R, Mehdizadeh M. Cannabidiol promotes neurogenesis in the dentate gyrus during an abstinence period in rats following chronic exposure to methamphetamine. Metab Brain Dis 2021; 36:1381-1390. [PMID: 34143376 DOI: 10.1007/s11011-021-00774-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
Chronic methamphetamine (meth) abuse can lead to certain deficits in the hippocampal function by affecting the hippocampal neurogenesis and plasticity. To determine whether cannabidiol (CBD) can promote proliferation and maturation of neuronal progenitor cells, this study investigated the CBD effect on neurogenesis in the hippocampal dentate gyrus (DG) following chronic exposure to meth in rats. The rats received 2 mg/kg of meth twice a day for ten days. Next, immunofluorescence was performed to evaluate the effect of intracerebroventricular (ICV) administration of CBD (50 μg/5 μL) over an abstinence period (ten days) on the expression levels of neurogenesis markers, such as Ki67, NeuN, and doublecortin (DCX). Moreover, neuronal degeneration in the hippocampus was assessed using Nissl staining. According to our findings, repeated ICV administration of CBD improved cell proliferation and neurogenesis and increased the number of Ki-67 and DCX-positive cells in the abstinence period. Meanwhile, meth treatment subjects caused a significant decrease in the number of neurogenesis makers, as compared to the control group. The neurogenesis markers (Ki-67 and DCX) could be somewhat reversed, while NeuN did not show any significant increase in the CBD group. Our findings demonstrated that CBD can induce neuroprotective effects by modulating neurogenesis. Therefore, it can provide a promising therapeutic approach to improve cognitive performance following chronic exposure to psychostimulant drugs, including meth.
Collapse
Affiliation(s)
- Yasaman Razavi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fariborz Keyhanfar
- Department of Pharmacology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mehdizadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
73
|
Meyer E, Bonato JM, Mori MA, Mattos BA, Guimarães FS, Milani H, de Campos AC, de Oliveira RMW. Cannabidiol Confers Neuroprotection in Rats in a Model of Transient Global Cerebral Ischemia: Impact of Hippocampal Synaptic Neuroplasticity. Mol Neurobiol 2021; 58:5338-5355. [PMID: 34302281 DOI: 10.1007/s12035-021-02479-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/28/2021] [Indexed: 02/01/2023]
Abstract
Evidence for the clinical use of neuroprotective drugs for the treatment of cerebral ischemia (CI) is still greatly limited. Spatial/temporal disorientation and cognitive dysfunction are among the most prominent long-term sequelae of CI. Cannabidiol (CBD) is a non-psychotomimetic constituent of Cannabis sativa that exerts neuroprotective effects against experimental CI. The present study investigated possible neuroprotective mechanisms of action of CBD on spatial memory impairments that are caused by transient global cerebral ischemia (TGCI) in rats. Hippocampal synaptic plasticity is a fundamental mechanism of learning and memory. Thus, we also evaluated the impact of CBD on neuroplastic changes in the hippocampus after TGCI. Wistar rats were trained to learn an eight-arm aversive radial maze (AvRM) task and underwent either sham or TGCI surgery. The animals received vehicle or 10 mg/kg CBD (i.p.) 30 min before surgery, 3 h after surgery, and then once daily for 14 days. On days 7 and 14, we performed a retention memory test. Another group of rats that received the same pharmacological treatment was tested in the object location test (OLT). Brains were removed and processed to assess neuronal degeneration, synaptic protein levels, and dendritic remodeling in the hippocampus. Cannabidiol treatment attenuated ischemia-induced memory deficits. In rats that were subjected to TGCI, CBD attenuated hippocampal CA1 neurodegeneration and increased brain-derived neurotrophic factor levels. Additionally, CBD protected neurons against the deleterious effects of TGCI on dendritic spine number and the length of dendritic arborization. These results suggest that the neuroprotective effects of CBD against TGCI-induced memory impairments involve changes in synaptic plasticity in the hippocampus.
Collapse
Affiliation(s)
- Erika Meyer
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, Maringá, Paraná, 5790, 87020-900, Brazil
| | - Jéssica Mendes Bonato
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, Maringá, Paraná, 5790, 87020-900, Brazil
| | - Marco Aurélio Mori
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, Maringá, Paraná, 5790, 87020-900, Brazil
| | - Bianca Andretto Mattos
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, Maringá, Paraná, 5790, 87020-900, Brazil
| | - Francisco Silveira Guimarães
- Department of Pharmacology, School of Medicine, USP, Av. Bandeirantes, Ribeirão Preto, São Paulo, 14015-000, Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, Maringá, Paraná, 5790, 87020-900, Brazil
| | - Alline Cristina de Campos
- Department of Pharmacology, School of Medicine, USP, Av. Bandeirantes, Ribeirão Preto, São Paulo, 14015-000, Brazil
| | - Rúbia Maria Weffort de Oliveira
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, Maringá, Paraná, 5790, 87020-900, Brazil.
| |
Collapse
|
74
|
Perez M, Cartarozzi LP, Chiarotto GB, Guimarães FS, Oliveira ALRD. Short and long-term neuroprotective effects of cannabidiol after neonatal peripheral nerve axotomy. Neuropharmacology 2021; 197:108726. [PMID: 34303725 DOI: 10.1016/j.neuropharm.2021.108726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/05/2021] [Accepted: 07/18/2021] [Indexed: 11/18/2022]
Abstract
Neonatal rat sciatic nerve crush mimics obstetric axonotmesis, leading to extensive loss of motor and sensory neurons. The present study aimed to investigate the neuroprotective potential of cannabidiol (CBD) and the role of cannabinoid receptors after sciatic nerve crush in neonatal rats. For that, two-day-old Wistar rats were used, organized into the following experimental groups: sciatic nerve crush plus CBD treatment (CBD), crush plus vehicle treatment (VE), crush + CBD + AM251 treatment (AM251 - CB1 inverse agonist), crush + CBD + AM630 treatment (AM630 - CB2 antagonist). Spinal motoneuron survival was evaluated by Nissl staining of the lumbar spinal cord, 5- and 56-days following injury. CBD treatment enhanced neuronal survival by ~54 % both 5 days and 8 weeks after injury. However, AM251 and AM630 treatment decreased neuronal rescue by 30 % when compared to the CBD group, suggesting that CBD acts partially through such pathways. However, in the long term, only the CB1 blockade reverted CBD positive results. Synaptic preservation was evaluated by anti-synaptophysin immunolabeling. Five days after the lesion, CBD treatment preserved ~35 % of synapses in the ventral horn, and such effect was partially reversed by CB1 inactivation. Additionally, CBD treatment reduced astroglial reaction both at 5 days (39 %, compared to VE) and 8 weeks (31 %, compared to VE) after lesion. The microglial response was acutely reduced by 62 % after CBD treatment. Overall, the results herein show that CBD is neuroprotective, increasing neuronal survival and reducing glial reaction after neonatal axotomy. Such effects require CB1 and CB2 receptors to be effective, in turn influencing neuroprotection, glial reactivity, and functional recovery.
Collapse
Affiliation(s)
- Matheus Perez
- Laboratory of Nerve Regeneration, University of Campinas - UNICAMP, Cidade Universitaria "Zeferino Vaz", Rua Monteiro Lobato, 255, 13083-970, Campinas, SP, Brazil; School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, 14040-907, Ribeirão Preto, SP, Brazil
| | - Luciana Politti Cartarozzi
- Laboratory of Nerve Regeneration, University of Campinas - UNICAMP, Cidade Universitaria "Zeferino Vaz", Rua Monteiro Lobato, 255, 13083-970, Campinas, SP, Brazil
| | - Gabriela Bortolança Chiarotto
- Laboratory of Nerve Regeneration, University of Campinas - UNICAMP, Cidade Universitaria "Zeferino Vaz", Rua Monteiro Lobato, 255, 13083-970, Campinas, SP, Brazil
| | - Francisco Silveira Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, 14040-907, Ribeirão Preto, SP, Brazil
| | - Alexandre Leite Rodrigues de Oliveira
- Laboratory of Nerve Regeneration, University of Campinas - UNICAMP, Cidade Universitaria "Zeferino Vaz", Rua Monteiro Lobato, 255, 13083-970, Campinas, SP, Brazil.
| |
Collapse
|
75
|
Camacho-Rivera M, Islam JY, Rodriguez DL, Vidot DC. Cannabis Use among Cancer Survivors amid the COVID-19 Pandemic: Results from the COVID-19 Cannabis Health Study. Cancers (Basel) 2021; 13:3495. [PMID: 34298708 PMCID: PMC8303109 DOI: 10.3390/cancers13143495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 12/18/2022] Open
Abstract
Clinical indications for medicinal cannabis use include those with cancer, a subgroup advised to avoid exposure to COVID-19. This study aims to identify changes to cannabis use, methods of cannabis delivery, and coping strategies among cancer survivors since the pandemic by cancer status. Chi-squared tests were used for univariate comparisons of demographic characteristics, cannabis use patterns, COVID-19 symptoms, and coping behaviors by cancer survivor status. Data included 158 responses between 21 March 2020 and 23 March 2021, from medicinal cannabis users, categorized as cancer survivors (n = 79) along with age-matched medicinal cannabis users without a history of cancer (n = 79). Compared to adults without a history of cancer, cancer survivors were more likely to report use of cannabis as a way of managing nausea/vomiting (40.5% versus 20.3%, p = 0.006), headaches or migraines (35.4% versus 19.0%, p = 0.020), seizures (8.9% versus 1.3%, p = 0.029), and sleep problems (70.9% versus 54.4%, p = 0.033), or as an appetite stimulant (39.2% versus 17.7%, p = 0.003). Nearly 23% of cancer survivors reported an advanced cannabis supply of more than 3 months compared to 14.3% of adults without a history of cancer (p = 0.002); though the majority of cancer survivors reported less than a one-month supply. No statistically significant differences were observed by cancer survivor status by cannabis dose, delivery, or sharing of electronic vaping devices, joints, or blunts. Cancer survivors were more likely to report a fear of being diagnosed with COVID-19 compared to adults without a history of cancer (58.2% versus 40.5%, p = 0.026). Given the frequency of mental and physical health symptoms reported among cancer survivors, clinicians should consider conversations about cannabis use with their patients, in particular among cancer survivors.
Collapse
Affiliation(s)
- Marlene Camacho-Rivera
- Department of Community Health Sciences, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA;
| | - Jessica Y. Islam
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA;
| | - Diane L. Rodriguez
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA;
| | - Denise C. Vidot
- School of Nursing and Health Studies, University of Miami, Coral Gables, FL 33146, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
76
|
Netzahualcoyotzi C, Rodríguez-Serrano LM, Chávez-Hernández ME, Buenrostro-Jáuregui MH. Early Consumption of Cannabinoids: From Adult Neurogenesis to Behavior. Int J Mol Sci 2021; 22:7450. [PMID: 34299069 PMCID: PMC8306314 DOI: 10.3390/ijms22147450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 01/31/2023] Open
Abstract
The endocannabinoid system (ECS) is a crucial modulatory system in which interest has been increasing, particularly regarding the regulation of behavior and neuroplasticity. The adolescent-young adulthood phase of development comprises a critical period in the maturation of the nervous system and the ECS. Neurogenesis occurs in discrete regions of the adult brain, and this process is linked to the modulation of some behaviors. Since marijuana (cannabis) is the most consumed illegal drug globally and the highest consumption rate is observed during adolescence, it is of particular importance to understand the effects of ECS modulation in these early stages of adulthood. Thus, in this article, we sought to summarize recent evidence demonstrating the role of the ECS and exogenous cannabinoid consumption in the adolescent-young adulthood period; elucidate the effects of exogenous cannabinoid consumption on adult neurogenesis; and describe some essential and adaptive behaviors, such as stress, anxiety, learning, and memory. The data summarized in this work highlight the relevance of maintaining balance in the endocannabinoid modulatory system in the early and adult stages of life. Any ECS disturbance may induce significant modifications in the genesis of new neurons and may consequently modify behavioral outcomes.
Collapse
Affiliation(s)
- Citlalli Netzahualcoyotzi
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Prolongación Paseo de la Reforma 880, Lomas de Santa Fé, Ciudad de México 01219, Mexico; (C.N.); (L.M.R.-S.); (M.E.C.-H.)
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan 52786, Mexico
| | - Luis Miguel Rodríguez-Serrano
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Prolongación Paseo de la Reforma 880, Lomas de Santa Fé, Ciudad de México 01219, Mexico; (C.N.); (L.M.R.-S.); (M.E.C.-H.)
- Laboratorio de Neurobiología de la alimentación, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - María Elena Chávez-Hernández
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Prolongación Paseo de la Reforma 880, Lomas de Santa Fé, Ciudad de México 01219, Mexico; (C.N.); (L.M.R.-S.); (M.E.C.-H.)
| | - Mario Humberto Buenrostro-Jáuregui
- Laboratorio de Neurociencias, Departamento de Psicología, Universidad Iberoamericana Ciudad de México, Prolongación Paseo de la Reforma 880, Lomas de Santa Fé, Ciudad de México 01219, Mexico; (C.N.); (L.M.R.-S.); (M.E.C.-H.)
| |
Collapse
|
77
|
Cannabidiol prevents lipopolysaccharide-induced sickness behavior and alters cytokine and neurotrophic factor levels in the brain. Pharmacol Rep 2021; 73:1680-1693. [PMID: 34218397 PMCID: PMC8254454 DOI: 10.1007/s43440-021-00301-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022]
Abstract
Background Major depressive disorder (MDD) affects millions of people worldwide. While the exact pathogenesis is yet to be elucidated, the role of neuro-immune signaling has recently emerged. Despite major advances in pharmacotherapy, antidepressant use is marred by limited efficacy and potential side effects. Cannabidiol (CBD), a phytocannabinoid, exerts antidepressant-like effects in experimental animals. This study investigated the impact of CBD on sickness behavior (SB), a measure of depressive-like response, and neuro-immune changes induced by lipopolysaccharides (LPS) in mice. Methods Socially isolated rodents were administered with LPS to trigger SB. and treated with CBD or its vehicle. Animals were submitted to forced swimming test, to evaluate depressive-like behavior, and to open field test, to evaluate locomotory activity. Immediately after behavioral analyses, animals were euthanized and had their hypothalamus, prefrontal cortex and hippocampus dissected, to proceed neurotrophins and cytokines analyses. ELISA was used to detect IL-1β, BDNF and NGF; and cytometric beads array to measure IL-2, IL-4, IL-6, IFN-γ, TNF-α and IL-10 levels. Results CBD effectively prevented SB-induced changes in the forced swim test without altering spontaneous locomotion. This phytocannabinoid also partially reversed LPS-evoked IL-6 increase in both the hypothalamus and hippocampus. In addition, CBD prevented endotoxin-induced increase in BDNF and NGF levels in the hippocampus of SB animals. Conclusions Apparently, CBD prevents both behavioral and neuro-immunological changes associated with LPS-induced SB, which reinforces its potential use as an antidepressant which modulates neuroinflammation. This opens up potentially new therapeutic avenues in MDD. Supplementary Information The online version contains supplementary material available at 10.1007/s43440-021-00301-8.
Collapse
|
78
|
Malvestio RB, Medeiros P, Negrini-Ferrari SE, Oliveira-Silva M, Medeiros AC, Padovan CM, Luongo L, Maione S, Coimbra NC, de Freitas RL. Cannabidiol in the prelimbic cortex modulates the comorbid condition between the chronic neuropathic pain and depression-like behaviour in rats: The role of medial prefrontal cortex 5-HT 1A and CB 1 receptors. Brain Res Bull 2021; 174:323-338. [PMID: 34192579 DOI: 10.1016/j.brainresbull.2021.06.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/21/2021] [Accepted: 06/24/2021] [Indexed: 01/06/2023]
Abstract
The prelimbic division (PrL) of the medial prefrontal cortex (mPFC) is a cerebral division that is putatively implicated in the chronic pain and depression. We investigated the activity of PrL cortex neurons in Wistar rats that underwent chronic constriction injury (CCI) of sciatic nerve and were further subjected to the forced swimming (FS) test and mechanical allodynia (by von Frey test). The effect of blockade of synapses with cobalt chloride (CoCl2), and the treatment of the PrL cortex with cannabidiol (CBD), the CB1 receptor antagonist AM251 and the 5-HT1A receptor antagonist WAY-100635 were also investigated. Our results showed that CoCl2 decreased the time spent immobile during the FS test but did not alter mechanical allodynia. CBD (at 15, 30 and 60 nmol) in the PrL cortex also decreased the frequency and duration of immobility; however, only the dose of 30 nmol of CBD attenuated mechanical allodynia in rats with chronic NP. AM251 and WAY-100635 in the PrL cortex attenuated the antidepressive and analgesic effect caused by CBD but did not alter the immobility and the mechanical allodynia when administered alone. These data show that the PrL cortex is part of the neural substrate underlying the comorbidity between NP and depression. Also, the previous blockade of CB1 cannabinoid receptors and 5-HT1A serotonergic receptors in the PrL cortex attenuated the antidepressive and analgesics effect of the CBD. They also suggest that CBD could be a potential medicine for the treatment of depressive and pain symptoms in patients with chronic NP/depression comorbidity.
Collapse
Affiliation(s)
- R B Malvestio
- Neuroelectrophysiology Multiuser Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - P Medeiros
- Neuroelectrophysiology Multiuser Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, 14050-220, São Paulo, Brazil
| | - S E Negrini-Ferrari
- Neuroelectrophysiology Multiuser Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - M Oliveira-Silva
- Neuroelectrophysiology Multiuser Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - A C Medeiros
- Neuroelectrophysiology Multiuser Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, 14050-220, São Paulo, Brazil
| | - C M Padovan
- Laboratory of Neurobiology of Stress and Depression, Department of Psychology, Ribeirão Preto School of Philosophy, Sciences and Literature of the University of São Paulo (FFCLRP-USP), Ribeirão Preto, 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, 14050-220, São Paulo, Brazil
| | - L Luongo
- Department of Experimental Medicine, Division of Pharmacology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy; IRCCS Neuromed, 86077, Pozzilli-Caserta, Italy
| | - S Maione
- Department of Experimental Medicine, Division of Pharmacology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy; IRCCS Neuromed, 86077, Pozzilli-Caserta, Italy
| | - N C Coimbra
- Neuroelectrophysiology Multiuser Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, 14050-220, São Paulo, Brazil
| | - R L de Freitas
- Neuroelectrophysiology Multiuser Centre, Department of Surgery and Anatomy, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neurosciences of Pain & Emotions, Department of Surgery and Anatomy, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, FMRP-USP, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil; Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, 14050-220, São Paulo, Brazil; Biomedical Sciences Institute (ICB), Federal University of Alfenas (UNIFAL-MG), Str. Gabriel Monteiro da Silva, 700, Alfenas, 37130-000, Minas Gerais, Brazil.
| |
Collapse
|
79
|
G-Protein-Coupled Receptors and Ischemic Stroke: a Focus on Molecular Function and Therapeutic Potential. Mol Neurobiol 2021; 58:4588-4614. [PMID: 34120294 DOI: 10.1007/s12035-021-02435-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/18/2021] [Indexed: 01/22/2023]
Abstract
In ischemic stroke, there is only one approved drug, tissue plasminogen activator, to be used in clinical conditions for thrombolysis. New neuroprotective therapies for ischemic stroke are desperately needed. Several targets and pathways have been shown to confer neuroprotective effects in ischemic stroke. G-protein-coupled receptors (GPCRs) are one of the most frequently targeted receptors for developing novel therapeutics for central nervous system disorders. GPCRs are a large family of cell surface receptors that response to a wide variety of extracellular stimuli. GPCRs are involved in a wide range of physiological and pathological processes. More than 90% of the identified non-sensory GPCRs are expressed in the brain, where they play important roles in regulating mood, pain, vision, immune responses, cognition, and synaptic transmission. There is also good evidence that GPCRs are implicated in the pathogenesis of stroke. This review narrates the pathophysiological role and possible targeted therapy of GPCRs in ischemic stroke.
Collapse
|
80
|
Petrie GN, Nastase AS, Aukema RJ, Hill MN. Endocannabinoids, cannabinoids and the regulation of anxiety. Neuropharmacology 2021; 195:108626. [PMID: 34116110 DOI: 10.1016/j.neuropharm.2021.108626] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/11/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022]
Abstract
Cannabis has been used for hundreds of years, with its ability to dampen feelings of anxiety often reported as a primary reason for use. Only recently has the specific role cannabinoids play in anxiety been thoroughly investigated. Here we discuss the body of evidence describing how endocannabinoids and exogenous cannabinoids are capable of regulating the generation and termination of anxiety states. Disruption of the endogenous cannabinoid (eCB) system following genetic manipulation, pharmacological intervention or stress exposure reliably leads to the generation of an anxiety state. On the other hand, upregulation of eCB signaling is capable of alleviating anxiety-like behaviors in multiple paradigms. When considering exogenous cannabinoid administration, cannabinoid receptor 1 (CB1) agonists have a biphasic, dose-dependent effect on anxiety such that low doses are anxiolytic while high doses are anxiogenic, a phenomenon that is evident in both rodent models and humans. Translational studies investigating a loss of function mutation in the gene for fatty acid amide hydrolase, the enzyme responsible for metabolizing AEA, have also shown that AEA signaling regulates anxiety in humans. Taken together, evidence reviewed here has outlined a convincing argument for cannabinoids being powerful regulators of both the manifestation and amelioration of anxiety symptoms, and highlights the therapeutic potential of targeting the eCB system for the development of novel classes of anxiolytics. This article is part of the special issue on 'Cannabinoids'.
Collapse
Affiliation(s)
- Gavin N Petrie
- Hotchkiss Brain Institute and the Mathison Centre for Mental Health Education and Research, Departments of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Andrei S Nastase
- Hotchkiss Brain Institute and the Mathison Centre for Mental Health Education and Research, Departments of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Robert J Aukema
- Hotchkiss Brain Institute and the Mathison Centre for Mental Health Education and Research, Departments of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute and the Mathison Centre for Mental Health Education and Research, Departments of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
81
|
Sleep-wake cycle disturbances and NeuN-altered expression in adult rats after cannabidiol treatments during adolescence. Psychopharmacology (Berl) 2021; 238:1437-1447. [PMID: 33635384 DOI: 10.1007/s00213-021-05769-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/20/2021] [Indexed: 12/14/2022]
Abstract
RATIONALE The medical uses of cannabidiol (CBD), a constituent of the Cannabis sativa, have accelerated the legal and social acceptance for CBD-based medications but has also given the momentum for questioning whether the long-term use of CBD during the early years of life may induce adverse neurobiological effects in adulthood, including sleep disturbances. Given the critical window for neuroplasticity and neuro-functional changes that occur during stages of adolescence, we hypothesized that CBD might influence the sleep-wake cycle in adult rats after their exposure to CBD during the adolescence. OBJECTIVES Here, we investigated the effects upon behavior and neural activity in adulthood after long-term administrations of CBD in juvenile rats. METHODS We pre-treated juvenile rats with CBD (5 or 30 mg/Kg, daily) from post-natal day (PND) 30 and during 2 weeks. Following the treatments, the sleep-wake cycle and NeuN expression was analyzed at PND 80. RESULTS We found that systemic injections of CBD (5 or 30 mg/Kg, i.p.) given to adolescent rats (post-natal day 30) for 14 days increased in adulthood the wakefulness and decreased rapid eye movement sleep during the lights-on period whereas across the lights-off period, wakefulness was diminished and slow wave sleep was enhanced. In addition, we found that adult animals that received CBD during the adolescence displayed disruptions in sleep rebound period after total sleep deprivation. Finally, we determined how the chronic administrations of CBD during the adolescence affected in the adulthood the NeuN expression in the suprachiasmatic nucleus, a sleep-related brain region. CONCLUSIONS Our findings are relevant for interpreting results of adult rats that were chronically exposed to CBD during the adolescence and provide new insights into how CBD may impact the sleep-wake cycle and neuronal activity during developmental stages.
Collapse
|
82
|
Navarrete F, García-Gutiérrez MS, Gasparyan A, Austrich-Olivares A, Manzanares J. Role of Cannabidiol in the Therapeutic Intervention for Substance Use Disorders. Front Pharmacol 2021; 12:626010. [PMID: 34093179 PMCID: PMC8173061 DOI: 10.3389/fphar.2021.626010] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/04/2021] [Indexed: 01/04/2023] Open
Abstract
Drug treatments available for the management of substance use disorders (SUD) present multiple limitations in efficacy, lack of approved treatments or alarming relapse rates. These facts hamper the clinical outcome and the quality of life of the patients supporting the importance to develop new pharmacological agents. Lately, several reports suggest that cannabidiol (CBD) presents beneficial effects relevant for the management of neurological disorders such as epilepsy, multiple sclerosis, Parkinson's, or Alzheimer's diseases. Furthermore, there is a large body of evidence pointing out that CBD improves cognition, neurogenesis and presents anxiolytic, antidepressant, antipsychotic, and neuroprotective effects suggesting potential usefulness for the treatment of neuropsychiatric diseases and SUD. Here we review preclinical and clinical reports regarding the effects of CBD on the regulation of the reinforcing, motivational and withdrawal-related effects of different drugs of abuse such as alcohol, opioids (morphine, heroin), cannabinoids, nicotine, and psychostimulants (cocaine, amphetamine). Furthermore, a special section of the review is focused on the neurobiological mechanisms that might be underlying the 'anti-addictive' action of CBD through the regulation of dopaminergic, opioidergic, serotonergic, and endocannabinoid systems as well as hippocampal neurogenesis. The multimodal pharmacological profile described for CBD and the specific regulation of addictive behavior-related targets explains, at least in part, its therapeutic effects on the regulation of the reinforcing and motivational properties of different drugs of abuse. Moreover, the remarkable safety profile of CBD, its lack of reinforcing properties and the existence of approved medications containing this compound (Sativex®, Epidiolex®) increased the number of studies suggesting the potential of CBD as a therapeutic intervention for SUD. The rising number of publications with substantial results on the valuable therapeutic innovation of CBD for treating SUD, the undeniable need of new therapeutic agents to improve the clinical outcome of patients with SUD, and the upcoming clinical trials involving CBD endorse the relevance of this review.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | | | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| |
Collapse
|
83
|
Chaves YC, Genaro K, Crippa JA, da Cunha JM, Zanoveli JM. Cannabidiol induces antidepressant and anxiolytic-like effects in experimental type-1 diabetic animals by multiple sites of action. Metab Brain Dis 2021; 36:639-652. [PMID: 33464458 DOI: 10.1007/s11011-020-00667-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022]
Abstract
Cannabidiol (CBD), a phytocannabinoid compound, presents antidepressant and anxiolytic-like effects in the type-1 diabetes mellitus(DM1) animal model. Although the underlying mechanism remains unknown, the type-1A serotonin receptor (5-HT1A) and cannabinoids type-1 (CB1) and type-2 (CB2) receptors seem to play a central role in mediating the beneficial effects on emotional responses. We aimed to study the involvement of these receptors on an antidepressant- and anxiolytic-like effects of CBD and on some parameters of the diabetic condition itself. After 2 weeks of the DM1 induction in male Wistar rats by streptozotocin (60 mg/kg; i.p.), animals were treated continuously for 2-weeks with the 5-HT1A receptor antagonist WAY100635 (0.1 mg/kg, i.p.), CB1 antagonist AM251 (1 mg/kg i.p.) or CB2 antagonist AM630 (1 mg/kg i.p.) before the injection of CBD (30 mg/kg, i.p.) or vehicle (VEH, i.p.) and then, they were submitted to the elevated plus-maze and forced swimming tests. Our findings show the continuous treatment with CBD improved all parameters evaluated in these diabetic animals. The previous treatment with the antagonists - 5-HT1A, CB1, or CB2 - blocked the CBD-induced antidepressant-like effect whereas only the blockade of 5-HT1A or CB1 receptors was able to inhibit the CBD-induced anxiolytic-like effect. Regarding glycemic control, only the blockade of CB2 was able to inhibit the beneficial effect of CBD in reducing the glycemia of diabetic animals. These findings indicated a therapeutic potential for CBD in the treatment of depression/anxiety associated with diabetes pointing out a complex intrinsic mechanism in which 5-HT1A, CB1, and/or CB2 receptors are differently recruited.
Collapse
MESH Headings
- Animals
- Anti-Anxiety Agents/pharmacology
- Anti-Anxiety Agents/therapeutic use
- Antidepressive Agents/pharmacology
- Antidepressive Agents/therapeutic use
- Cannabidiol/pharmacology
- Cannabidiol/therapeutic use
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/psychology
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/psychology
- Male
- Maze Learning/drug effects
- Maze Learning/physiology
- Rats
- Rats, Wistar
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Serotonin, 5-HT1A/metabolism
Collapse
Affiliation(s)
- Yane Costa Chaves
- Department of Pharmacology, Biological Science Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Karina Genaro
- Institute of Neurosciences and Behavior (INeC), University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - José Alexandre Crippa
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- National Institute of Science and Technology for Translational Medicine (INCT-TM- CNPq), Ribeirão Preto, São Paulo, Brazil
| | - Joice Maria da Cunha
- Department of Pharmacology, Biological Science Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
- Institute of Neurosciences and Behavior (INeC), University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Janaína Menezes Zanoveli
- Department of Pharmacology, Biological Science Sector, Federal University of Paraná, Curitiba, Paraná, Brazil.
- Institute of Neurosciences and Behavior (INeC), University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil.
| |
Collapse
|
84
|
Zhang XB, Li J, Gu J, Zeng YQ. Roles of Cannabidiol in the treatment and prevention of Alzheimer's disease by multi-target actions. Mini Rev Med Chem 2021; 22:43-51. [PMID: 33797364 DOI: 10.2174/1389557521666210331162857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/03/2020] [Accepted: 01/04/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases with chronic, progressive, and irreversible characteristics, affecting nearly 50 million older adults worldwide. The pathogenesis of AD includes the formation of senile plaques, the abnormal aggregation of tau protein and the gradual degeneration and death of cerebral cortical cells. The main symptoms are memory loss, cognitive decline and behavioral disorders. Studies indicate that cannabidiol(CBD) possesses various pharmacological activities including anti-inflammatory, anti-oxidation and neuroprotective activities. It has been suggested as a potential multi-target medicine for treatment of AD. In this review, we aim to summarize the underlying mechanisms and protective effects of CBD on signaling pathways and central receptors involved in the pathogenesis of AD, including the endocannabinoid system(eCBs), the Transient receptor potential vanilloid type 1(TRPV1) receptor, and the Peroxisome proliferator-activated receptor (PPAR) receptor.
Collapse
Affiliation(s)
- Xiao-Bei Zhang
- Yunnan Key Laboratory of Stem Cells and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500. China
| | - Jintao Li
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500. China
| | - Juanhua Gu
- Yunnan Key Laboratory of Stem Cells and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500. China
| | - Yue-Qin Zeng
- Yunnan Key Laboratory of Stem Cells and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500. China
| |
Collapse
|
85
|
O'Neill A, Wilson R, Blest-Hopley G, Annibale L, Colizzi M, Brammer M, Giampietro V, Bhattacharyya S. Normalization of mediotemporal and prefrontal activity, and mediotemporal-striatal connectivity, may underlie antipsychotic effects of cannabidiol in psychosis. Psychol Med 2021; 51:596-606. [PMID: 31994476 DOI: 10.1017/s0033291719003519] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Recent evidence suggests that cannabidiol (CBD), a non-intoxicating ingredient present in cannabis extract, has an antipsychotic effect in people with established psychosis. However, the effect of CBD on the neurocognitive mechanisms underlying psychosis is unknown. METHODS Patients with established psychosis on standard antipsychotic treatment were studied on separate days at least one week apart, to investigate the effects of a single dose of orally administered CBD (600 mg) compared to a matched placebo (PLB), using a double-blind, randomized, PLB-controlled, repeated-measures, within-subject cross-over design. Three hours after taking the study drug participants were scanned using a block design functional magnetic resonance imaging (fMRI) paradigm, while performing a verbal paired associate learning task. Fifteen psychosis patients completed both study days, 13 completed both scanning sessions. Nineteen healthy controls (HC) were also scanned using the same fMRI paradigm under identical conditions, but without any drug administration. Effects of CBD on brain activation measured using the blood oxygen level-dependent hemodynamic response fMRI signal were studied in the mediotemporal, prefrontal, and striatal regions of interest. RESULTS Compared to HC, psychosis patients under PLB had altered prefrontal activation during verbal encoding, as well as altered mediotemporal and prefrontal activation and greater mediotemporal-striatal functional connectivity during verbal recall. CBD attenuated dysfunction in these regions such that activation under its influence was intermediate between the PLB condition and HC. CBD also attenuated hippocampal-striatal functional connectivity and caused trend-level symptom reduction in psychosis patients. CONCLUSIONS This suggests that normalization of mediotemporal and prefrontal dysfunction and mediotemporal-striatal functional connectivity may underlie the antipsychotic effects of CBD.
Collapse
Affiliation(s)
- Aisling O'Neill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Robin Wilson
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Grace Blest-Hopley
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Luciano Annibale
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Marco Colizzi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Mick Brammer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Vincent Giampietro
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
86
|
Giacobbe J, Marrocu A, Di Benedetto MG, Pariante CM, Borsini A. A systematic, integrative review of the effects of the endocannabinoid system on inflammation and neurogenesis in animal models of affective disorders. Brain Behav Immun 2021; 93:353-367. [PMID: 33383145 DOI: 10.1016/j.bbi.2020.12.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/09/2022] Open
Abstract
The endocannabinoid (eCB) system is considered relevant in the pathophysiology of affective disorders, and a potential therapeutic target, as its hypoactivity is considered an important risk factor of depression. However, the biological mechanisms whereby the eCB system affects mood remain elusive. Through a systematic review, thirty-seven articles were obtained from the PubMed/Medline, Web of Science, Embase, PsychInfo, and CINAHL databases, investigating the role of the eCB system on the immune system and neurogenesis, as well as resulting behavioural effects in rodent models of affective disorders. Overall, activation of the eCB system appears to decrease depressive-like behaviour and to be anti-inflammatory, while promoting neuro- and synaptogenesis in various models. Activation of cannabinoid receptors (CBRs) is shown to be crucial in improving depressive-like and anxiety-like behaviour, although cannabidiol administration suggests a role of additional mechanisms. CB1R signalling, as well as fatty acid amide hydrolase (FAAH) inhibition, are associated with decreased pro-inflammatory cytokines. Moreover, activation of CBRs is required for neurogenesis, which is also upregulated by FAAH inhibitors. This review is the first to assess the association between the eCB system, immune system and neurogenesis, alongside behavioural outcomes, across rodent models of affective disorders. We confirm the therapeutic potential of eCB system activation in depression and anxiety, highlighting immunoregulation as an important mechanism whereby dysfunctional behaviour and neurogenesis can be improved.
Collapse
Affiliation(s)
- Juliette Giacobbe
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Alessia Marrocu
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Maria Grazia Di Benedetto
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom; Biological Psychiatry Unit, IRCCS Fatebenefratelli S. Giovanni di Dio, Brescia, Italy
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Alessandra Borsini
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom.
| |
Collapse
|
87
|
Mori MA, Meyer E, da Silva FF, Milani H, Guimarães FS, Oliveira RMW. Differential contribution of CB1, CB2, 5-HT1A, and PPAR-γ receptors to cannabidiol effects on ischemia-induced emotional and cognitive impairments. Eur J Neurosci 2021; 53:1738-1751. [PMID: 33522084 DOI: 10.1111/ejn.15134] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/03/2020] [Accepted: 01/17/2021] [Indexed: 01/08/2023]
Abstract
An ever-increasing body of preclinical studies has shown the multifaceted neuroprotective profile of cannabidiol (CBD) against impairments caused by cerebral ischemia. In this study, we have explored the neuropharmacological mechanisms of CBD action and its impact on functional recovery using a model of transient global cerebral ischemia in mice. C57BL/6J mice were subjected to bilateral common carotid artery occlusion (BCCAO) for 20 min and received vehicle or CBD (10 mg/Kg) 0.5 hr before and 3, 24, and 48 hr after reperfusion. To investigate the neuropharmacological mechanisms of CBD, the animals were injected with CB1 (AM251, 1 mg/kg), CB2 (AM630, 1 mg/kg), 5-HT1A (WAY-100635, 10 mg/kg), or PPAR-γ (GW9662, 3 mg/kg) receptor antagonists 0.5 hr prior to each injection of CBD. The animals were evaluated using a multi-task testing battery that included the open field, elevated zero maze, Y-maze (YM), and forced swim test. CBD prevented anxiety-like behavior, memory impairments, and despair-like behaviors induced by BCCAO in mice. The anxiolytic-like effects of CBD in BCCAO mice were attenuated by CB1 , CB2 , 5-HT1A , and PPAR-γ receptor antagonists. In the YM, both CBD and the CB1 receptor antagonist AM251 increased the exploration of the novel arm in ischemic animals, indicating beneficial effects of these treatments in the spatial memory performance. Together, these findings indicate the involvement of CB1 , CB2 , 5-HT1A, and PPAR-γ receptors in the functional recovery induced by CBD in BCCAO mice.
Collapse
Affiliation(s)
- Marco Aurélio Mori
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | - Erika Meyer
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | - Francielly F da Silva
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | | | | |
Collapse
|
88
|
Villas-Boas GR, Lavorato SN, Paes MM, de Carvalho PMG, Rescia VC, Cunha MS, de Magalhães-Filho MF, Ponsoni LF, de Carvalho AAV, de Lacerda RB, da S. Leite L, da S. Tavares-Henriques M, Lopes LAF, Oliveira LGR, Silva-Filho SE, da Silveira APS, Cuman RKN, de S. Silva-Comar FM, Comar JF, do A. Brasileiro L, dos Santos JN, de Freitas WR, Leão KV, da Silva JG, Klein RC, Klein MHF, da S. Ramos BH, Fernandes CKC, de L. Ribas DG, Oesterreich SA. Modulation of the Serotonergic Receptosome in the Treatment of Anxiety and Depression: A Narrative Review of the Experimental Evidence. Pharmaceuticals (Basel) 2021; 14:ph14020148. [PMID: 33673205 PMCID: PMC7918669 DOI: 10.3390/ph14020148] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Serotonin (5-HT) receptors are found throughout central and peripheral nervous systems, mainly in brain regions involved in the neurobiology of anxiety and depression. 5-HT receptors are currently promising targets for discovering new drugs for treating disorders ranging from migraine to neuropsychiatric upsets, such as anxiety and depression. It is well described in the current literature that the brain expresses seven types of 5-HT receptors comprising eighteen distinct subtypes. In this article, we comprehensively reviewed 5-HT1-7 receptors. Of the eighteen 5-HT receptors known today, thirteen are G protein-coupled receptors (GPCRs) and represent targets for approximately 40% of drugs used in humans. Signaling pathways related to these receptors play a crucial role in neurodevelopment and can be modulated to develop effective therapies to treat anxiety and depression. This review presents the experimental evidence of the modulation of the “serotonergic receptosome” in the treatment of anxiety and depression, as well as demonstrating state-of-the-art research related to phytochemicals and these disorders. In addition, detailed aspects of the pharmacological mechanism of action of all currently known 5-HT receptor families were reviewed. From this review, it will be possible to direct the rational design of drugs towards new therapies that involve signaling via 5-HT receptors.
Collapse
Affiliation(s)
- Gustavo R. Villas-Boas
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
- Correspondence: ; Tel.: +55-(77)-3614-3152
| | - Stefânia N. Lavorato
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Marina M. Paes
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Pablinny M. G. de Carvalho
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Vanessa C. Rescia
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Mila S. Cunha
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Manoel F. de Magalhães-Filho
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Luis F. Ponsoni
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Adryano Augustto Valladao de Carvalho
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Roseli B. de Lacerda
- Department of Pharmacology, Center for Biological Sciences, Federal University of Paraná, Jardim das Américas, Caixa. postal 19031, Curitiba CEP 81531-990, PR, Brazil;
| | - Lais da S. Leite
- Collegiate Biomedicine, SulAmérica College, Rua Gláuber Rocha, 66, Jardim Paraíso, Luís Eduardo Magalhães CEP 47850-000, BA, Brazil;
| | - Matheus da S. Tavares-Henriques
- Laboratory of Pharmacology of Toxins (LabTox), Graduate Program in Pharmacology and Medicinal Chemistry (PPGFQM), Institute of Biomedical Sciences (ICB) Federal Universityof Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro CEP 21941-590, RJ, Brazil;
| | - Luiz A. F. Lopes
- Teaching and Research Manager at the University Hospital—Federal University of Grande Dourados (HU/EBSERH-UFGD), Federal University of Grande Dourados, Rua Ivo Alves da Rocha, 558, Altos do Indaiá, Dourados CEP 79823-501, MS, Brazil;
| | - Luiz G. R. Oliveira
- Nucleus of Studies on Infectious Agents and Vectors (Naive), Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil;
| | - Saulo E. Silva-Filho
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Avenida Costa e Silva, s/n°, Bairro Universitário, Campo Grande CEP 79070-900, MS, Brazil;
| | - Ana P. S. da Silveira
- Faculty of Biological and Health Sciences, Unigran Capital University Center, RuaBalbina de Matos, 2121, Jarddim Universitário, Dourados CEP 79.824-900, MS, Brazil;
| | - Roberto K. N. Cuman
- Department of Pharmacology and Therapeutics, State University of Maringá, Avenida Colombo, n° 5790, Jardim Universitário, Maringá CEP 87020-900, PR, Brazil; (R.K.N.C.); (F.M.d.S.S.-C.)
| | - Francielli M. de S. Silva-Comar
- Department of Pharmacology and Therapeutics, State University of Maringá, Avenida Colombo, n° 5790, Jardim Universitário, Maringá CEP 87020-900, PR, Brazil; (R.K.N.C.); (F.M.d.S.S.-C.)
| | - Jurandir F. Comar
- Department of Biochemistry, State Universityof Maringá, Avenida Colombo, n° 5790, Jardim Universitário, Maringá CEP 87020-900, PR, Brazil;
| | - Luana do A. Brasileiro
- Nacional Cancer Institute (INCA), Rua Visconde de Santa Isabel, 274, Rio de Janeiro CEP 20560-121, RJ, Brazil;
| | | | - William R. de Freitas
- Research Group on Biodiversity and Health (BIOSA), Center for Training in Health Sciences, Federal University of Southern Bahia, Praça Joana Angélica, 58, São José, Teixeira de Freitas CEP 45988-058, BA, Brazil;
| | - Katyuscya V. Leão
- Pharmacy Department, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (K.V.L.); (J.G.d.S.); (R.C.K.); (M.H.F.K.)
| | - Jonatas G. da Silva
- Pharmacy Department, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (K.V.L.); (J.G.d.S.); (R.C.K.); (M.H.F.K.)
| | - Raphael C. Klein
- Pharmacy Department, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (K.V.L.); (J.G.d.S.); (R.C.K.); (M.H.F.K.)
| | - Mary H. F. Klein
- Pharmacy Department, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (K.V.L.); (J.G.d.S.); (R.C.K.); (M.H.F.K.)
| | - Bruno H. da S. Ramos
- Institute of the Spine and Pain Clinic, Rua Dr. Renato Gonçalves, 108, Renato Gonçalves, Barreiras CEP 47806-021, BA, Brazil;
| | - Cristiane K. C. Fernandes
- University Center of Montes Belos, Av. Hermógenes Coelho s/n, Setor Universitário, São Luís de Montes Belos CEP 76100-000, GO, Brazil;
| | - Dayane G. de L. Ribas
- Gaus College and Course, Rua Severino Vieira, 60, Centro, Barreiras CEP 47800-160, BA, Brazil;
| | - Silvia A. Oesterreich
- Faculty of Health Sciences, Federal University of Grande Dourados, Dourados Rodovia Dourados, Itahum Km 12, Cidade Universitaria, Caixa postal 364, Dourados CEP 79804-970, MS, Brazil;
| |
Collapse
|
89
|
Bitencourt RM, Takahashi RN, Carlini EA. From an Alternative Medicine to a New Treatment for Refractory Epilepsies: Can Cannabidiol Follow the Same Path to Treat Neuropsychiatric Disorders? Front Psychiatry 2021; 12:638032. [PMID: 33643100 PMCID: PMC7905048 DOI: 10.3389/fpsyt.2021.638032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/12/2021] [Indexed: 12/25/2022] Open
Abstract
Although cannabis has been known for ages as an "alternative medicine" to provide relief from seizures, pain, anxiety, and inflammation, there had always been a limited scientific review to prove and establish its use in clinics. Early studies carried out by Carlini's group in Brazil suggested that cannabidiol (CBD), a non-psychotropic phytocannabinoid present in Cannabis sativa, has anticonvulsant properties in animal models and reduced seizure frequency in limited human trials. Over the past few years, the potential use of cannabis extract in refractory epilepsy, including childhood epilepsies such as Dravet's syndrome and Lennox-Gastaut Syndrome, has opened a new era of treating epileptic patients. Thus, a considerable number of pre-clinical and clinical studies have provided strong evidence that phytocannabinoids has anticonvulsant properties, as well as being promising in the treatment of different neuropsychiatric disorders, such as depression, anxiety, post-traumatic stress disorder (PTSD), addiction, neurodegenerative disorders and autism spectrum disorder (ASD). Given the advances of cannabinoids, especially CBD, in the treatment of epilepsy, would the same expectation regarding the treatment of other neuropsychiatric disorders be possible? The present review highlights some contributions from Brazilian researchers and other studies reported elsewhere on the history, pre-clinical and clinical data underlying the use of cannabinoids for the already widespread treatment of refractory epilepsies and the possibility of use in the treatment of some neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rafael M. Bitencourt
- Laboratory of Behavioral Neuroscience, Graduate Program in Health Sciences, University of Southern Santa Catarina, University of Southern Santa Catarina (UNISUL), Tubarão, Brazil
| | - Reinaldo N. Takahashi
- Post Graduate Program in Pharmacology, Department of Pharmacology, Federal University of Santa Catarina, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Elisaldo A. Carlini
- Centro Brasileiro de Informações Sobre Drogas Psicotrópicas (CEBRID), Department of Preventive Medicine, Federal University of São Paulo, UNIFESP, São Paulo, Brazil
| |
Collapse
|
90
|
Ma H, Li C, Wang J, Zhang X, Li M, Zhang R, Huang Z, Zhang Y. Amygdala-hippocampal innervation modulates stress-induced depressive-like behaviors through AMPA receptors. Proc Natl Acad Sci U S A 2021; 118:e2019409118. [PMID: 33526688 PMCID: PMC8017726 DOI: 10.1073/pnas.2019409118] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Indexed: 01/09/2023] Open
Abstract
Chronic stress is one of the most critical factors in the onset of depressive disorders; hence, environmental factors such as psychosocial stress are commonly used to induce depressive-like traits in animal models of depression. Ventral CA1 (vCA1) in hippocampus and basal lateral amygdala (BLA) are critical sites during chronic stress-induced alterations in depressive subjects; however, the underlying neural mechanisms remain unclear. Here we employed chronic unpredictable mild stress (CUMS) to model depression in mice and found that the activity of the posterior BLA to vCA1 (pBLA-vCA1) innervation was markedly reduced. Mice subjected to CUMS showed reduction in dendritic complexity, spine density, and synaptosomal AMPA receptors (AMPARs). Stimulation of pBLA-vCA1 innervation via chemogenetics or administration of cannabidiol (CBD) could reverse CUMS-induced synaptosomal AMPAR decrease and efficiently alleviate depressive-like behaviors in mice. These findings demonstrate a critical role for AMPARs and CBD modulation of pBLA-vCA1 innervation in CUMS-induced depressive-like behaviors.
Collapse
Affiliation(s)
- Hui Ma
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of People's Republic of China, IDG/McGovern Institute for Brain Research at Peking University, 100083 Beijing, People's Republic of China
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Chenyang Li
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of People's Republic of China, IDG/McGovern Institute for Brain Research at Peking University, 100083 Beijing, People's Republic of China
| | - Jinpeng Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of People's Republic of China, IDG/McGovern Institute for Brain Research at Peking University, 100083 Beijing, People's Republic of China
| | - Xiaochen Zhang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of People's Republic of China, IDG/McGovern Institute for Brain Research at Peking University, 100083 Beijing, People's Republic of China
| | - Mingyue Li
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 100083 Beijing, People's Republic of China
| | - Rong Zhang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of People's Republic of China, IDG/McGovern Institute for Brain Research at Peking University, 100083 Beijing, People's Republic of China
| | - Zhuo Huang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Yong Zhang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of People's Republic of China, IDG/McGovern Institute for Brain Research at Peking University, 100083 Beijing, People's Republic of China;
| |
Collapse
|
91
|
Scarante FF, Ribeiro MA, Almeida-Santos AF, Guimarães FS, Campos AC. Glial Cells and Their Contribution to the Mechanisms of Action of Cannabidiol in Neuropsychiatric Disorders. Front Pharmacol 2021; 11:618065. [PMID: 33613284 PMCID: PMC7890128 DOI: 10.3389/fphar.2020.618065] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022] Open
Abstract
Cannabidiol (CBD) is a phytocannabinoid with a broad-range of therapeutic potential in several conditions, including neurological (epilepsy, neurodegenerative diseases, traumatic and ischemic brain injuries) and psychiatric disorders (schizophrenia, addiction, major depressive disorder, and anxiety). The pharmacological mechanisms responsible for these effects are still unclear, and more than 60 potential molecular targets have been described. Regarding neuropsychiatric disorders, most studies investigating these mechanisms have focused on neuronal cells. However, glial cells (astrocytes, oligodendrocytes, microglia) also play a crucial role in keeping the homeostasis of the central nervous system. Changes in glial functions have been associated with neuropathological conditions, including those for which CBD is proposed to be useful. Mostly in vitro studies have indicated that CBD modulate the activation of proinflammatory pathways, energy metabolism, calcium homeostasis, and the proliferative rate of glial cells. Likewise, some of the molecular targets proposed for CBD actions are f expressed in glial cells, including pharmacological receptors such as CB1, CB2, PPAR-γ, and 5-HT1A. In the present review, we discuss the currently available evidence suggesting that part of the CBD effects are mediated by interference with glial cell function. We also propose additional studies that need to be performed to unveil the contribution of glial cells to CBD effects in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Franciele F. Scarante
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Melissa A. Ribeiro
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ana F. Almeida-Santos
- Department of Physiology and Biophysics, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Francisco S. Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Alline C. Campos
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
92
|
Colangeli R, Teskey GC, Di Giovanni G. Endocannabinoid-serotonin systems interaction in health and disease. PROGRESS IN BRAIN RESEARCH 2021; 259:83-134. [PMID: 33541682 DOI: 10.1016/bs.pbr.2021.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endocannabinoid (eCB) and serotonin (5-HT) neuromodulatory systems work both independently and together to finely orchestrate neuronal activity throughout the brain to strongly sculpt behavioral functions. Surprising parallelism between the behavioral effects of 5-HT and eCB activity has been widely reported, including the regulation of emotional states, stress homeostasis, cognitive functions, food intake and sleep. The distribution pattern of the 5-HT system and the eCB molecular elements in the brain display a strong overlap and several studies report a functional interplay and even a tight interdependence between eCB/5-HT signaling. In this review, we examine the available evidence of the interaction between the eCB and 5-HT systems. We first introduce the eCB system, then we describe the eCB/5-HT crosstalk at the neuronal and synaptic levels. Finally, we explore the potential eCB/5-HT interaction at the behavioral level with the implication for psychiatric and neurological disorders. The precise elucidation of how this neuromodulatory interaction dynamically regulates biological functions may lead to the development of more targeted therapeutic strategies for the treatment of depressive and anxiety disorders, psychosis and epilepsy.
Collapse
Affiliation(s)
- Roberto Colangeli
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - G Campbell Teskey
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
93
|
Ibarra-Lecue I, Diez-Alarcia R, Urigüen L. Serotonin 2A receptors and cannabinoids. PROGRESS IN BRAIN RESEARCH 2021; 259:135-175. [PMID: 33541675 DOI: 10.1016/bs.pbr.2021.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Accumulating evidence has proven that both exogenous cannabinoids as well as imbalances in the endocannabinoid system are involved in the onset and development of mental disorders such as anxiety, depression, or schizophrenia. Extensive recent research in this topic has mainly focused on the molecular mechanisms by which cannabinoid agonists may contribute to the pathophysiology of these disorders. Initially, serotonin neurotransmitter garnered most attention due to its relationship to mood disorders and mental diseases, with little attention to specific receptors. To date, the focus has redirected toward the understanding of different serotonin receptors, through a demonstration of its versatile pharmacology and synergy with different modulators. Serotonin 2A receptors are a good example of this phenomenon, and the complex signaling that they trigger appears of high relevance in the context of mental disorders, especially in schizophrenia. This chapter will analyze most relevant attributes of serotonin 2A receptors and the endocannabinoid system, and will highlight the evidence toward the functional bidirectional interaction between these elements in the brain as well as the impact of the endocannabinoid system dysregulation on serotonin 2A receptors functionality.
Collapse
Affiliation(s)
- Inés Ibarra-Lecue
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain; Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Madrid, Spain
| | - Rebeca Diez-Alarcia
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain; Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Madrid, Spain; Biocruces Bizkaia Health Research Institute, Bizkaia, Spain
| | - Leyre Urigüen
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain; Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Madrid, Spain; Biocruces Bizkaia Health Research Institute, Bizkaia, Spain.
| |
Collapse
|
94
|
Wanner NM, Colwell M, Drown C, Faulk C. Developmental cannabidiol exposure increases anxiety and modifies genome-wide brain DNA methylation in adult female mice. Clin Epigenetics 2021; 13:4. [PMID: 33407853 PMCID: PMC7789000 DOI: 10.1186/s13148-020-00993-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/16/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Use of cannabidiol (CBD), the primary non-psychoactive compound found in cannabis, has recently risen dramatically, while relatively little is known about the underlying molecular mechanisms of its effects. Previous work indicates that direct CBD exposure strongly impacts the brain, with anxiolytic, antidepressant, antipsychotic, and other effects being observed in animal and human studies. The epigenome, particularly DNA methylation, is responsive to environmental input and can direct persistent patterns of gene regulation impacting phenotype. Epigenetic perturbation is particularly impactful during embryogenesis, when exogenous exposures can disrupt critical resetting of epigenetic marks and impart phenotypic effects lasting into adulthood. The impact of prenatal CBD exposure has not been evaluated; however, studies using the psychomimetic cannabinoid Δ9-tetrahydrocannabinol (THC) have identified detrimental effects on psychological outcomes in developmentally exposed adult offspring. We hypothesized that developmental CBD exposure would have similar negative effects on behavior mediated in part by the epigenome. Nulliparous female wild-type Agouti viable yellow (Avy) mice were exposed to 20 mg/kg CBD or vehicle daily from two weeks prior to mating through gestation and lactation. Coat color shifts, a readout of DNA methylation at the Agouti locus in this strain, were measured in F1 Avy/a offspring. Young adult F1 a/a offspring were then subjected to tests of working spatial memory and anxiety/compulsive behavior. Reduced-representation bisulfite sequencing was performed on both F0 and F1 cerebral cortex and F1 hippocampus to identify genome-wide changes in DNA methylation for direct and developmental exposure, respectively. RESULTS F1 offspring exposed to CBD during development exhibited increased anxiety and improved memory behavior in a sex-specific manner. Further, while no significant coat color shift was observed in Avy/a offspring, thousands of differentially methylated loci (DMLs) were identified in both brain regions with functional enrichment for neurogenesis, substance use phenotypes, and other psychologically relevant terms. CONCLUSIONS These findings demonstrate for the first time that despite positive effects of direct exposure, developmental CBD is associated with mixed behavioral outcomes and perturbation of the brain epigenome.
Collapse
Affiliation(s)
- Nicole M Wanner
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN, USA
| | - Mathia Colwell
- Department of Animal Science, University of Minnesota, 1334 Eckles Avenue, 225 Food Science, St. Paul, MN, 55018, USA
| | - Chelsea Drown
- Department of Animal Science, University of Minnesota, 1334 Eckles Avenue, 225 Food Science, St. Paul, MN, 55018, USA
| | - Christopher Faulk
- Department of Animal Science, University of Minnesota, 1334 Eckles Avenue, 225 Food Science, St. Paul, MN, 55018, USA.
| |
Collapse
|
95
|
Murillo-Rodríguez E, Machado S, Imperatori C, Yamamoto T, Budde H. Natural Cannabinoids as Templates for Sleep Disturbances Treatments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1297:133-141. [PMID: 33537941 DOI: 10.1007/978-3-030-61663-2_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The sleep-wake cycle is a complex composition of specific physiological and behavioral characteristics. In addition, neuroanatomical, neurochemical and molecular systems exerts influences in the modulation of the sleep-wake cycle. Moreover, homeostatic and circadian mechanisms interact to control the waking or sleeping states. As many other behaviors, sleep also develops pathological features that include several signs and symptoms corresponding to medical conditions known as sleep disorders.In addition to the neurobiological mechanisms modulating sleep, external elements also influence the sleep-wake cycle, including the use of Cannabis sativa (C. sativa). In this regard, and over the last decades, the interest of studying the pharmacology of Δ9-tetrahydrocannabinol (Δ9-THC), the principal psychoactive constituent of C. sativa, has been addressed. Moreover, in recent years, the focus of scientific interest has moved on to studying the second plant constituent with non-psychotropic pharmacological properties: Cannabidiol (CBD).The pharmacological and pharmaceutical interest of CBD has been focus of attention due to the accumulating body of evidence regarding the positive outcomes of using CBD for the treatment of several health issues, such as psychiatric and neurodegenerative disorders, epilepsy, etc. Since the most prominent sleep disruptions include excessive daytime sleepiness (EDS), current treatments include the use of drugs such as stimulants of antidepressants. Notwithstanding, side effects are commonly reported among the patients under prescription of these compounds. Thus, the search of novelty therapeutical approaches aimed to treat ESD may consider the use of cannabinoid-derived compounds, such as CBD. In this chapter, we will show experimental evidence regarding the potential role of CBD as a wake-inducing compound aimed to manage EDS.
Collapse
Affiliation(s)
- Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina División Ciencias de la Salud, Universidad Anáhuac Mayab, Mérida, Yucatán, México. .,Intercontinental Neuroscience Research Group, Mérida, Yucatán, México.
| | - Sérgio Machado
- Intercontinental Neuroscience Research Group, Mérida, Yucatán, México.,Laboratory of Panic and Respiration, Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Salgado de Oliveira University, Rio de Janeiro, Brazil.,Physical Activity Neuroscience Laboratory, Physical Activity Sciences Postgraduate Program-Salgado de Oliveira University (UNIVERSO), Rio de Janeiro, Brazil
| | - Claudio Imperatori
- Intercontinental Neuroscience Research Group, Mérida, Yucatán, México.,Cognitive and Clinical Psychology Laboratory, Department of Human Science, European University of Rome, Rome, Italy
| | - Tetsuya Yamamoto
- Intercontinental Neuroscience Research Group, Mérida, Yucatán, México.,Graduate School of Technology, Industrial and Social Sciences, The University of Tokushima, Tokushima, Japan
| | - Henning Budde
- Intercontinental Neuroscience Research Group, Mérida, Yucatán, México.,Faculty of Human Sciences, Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
96
|
Morel A, Lebard P, Dereux A, Azuar J, Questel F, Bellivier F, Marie-Claire C, Fatséas M, Vorspan F, Bloch V. Clinical Trials of Cannabidiol for Substance Use Disorders: Outcome Measures, Surrogate Endpoints, and Biomarkers. Front Psychiatry 2021; 12:565617. [PMID: 33692705 PMCID: PMC7937926 DOI: 10.3389/fpsyt.2021.565617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Cannabidiol (CBD) is a cannabinoid of potential interest for the treatment of substance use disorders. Our aim was to review the outcome measures, surrogate endpoints, and biomarkers in published and ongoing randomized clinical trials. Methods: We conducted a search in PubMed, Web of Science, PMC, PsycINFO, EMBASE, CENTRAL Cochrane Library, "clinicalTrials.gov," "clinicaltrialsregister.eu," and "anzctr.org.au" for published and ongoing studies. Inclusion criteria were randomized clinical trials (RCTs) examining the use of CBD alone or in association with other cannabinoids, in all substance use disorders. The included studies were analyzed in detail and their qualities assessed by a standardized tool (CONSORT 2010). A short description of excluded studies, consisting in controlled short-term or single administration in non-treatment-seeking drug users, is provided. Findings: The screening retrieved 207 published studies, including only 3 RCTs in cannabis use disorder. Furthermore, 12 excluded studies in cannabis, tobacco, and opioid use disorders are described. Interpretation: Primary outcomes were validated withdrawal symptoms scales and drug use reduction in the three RCTs. In the short-term or crossover studies, the outcome measures were visual analog scales for subjective states; self-rated scales for withdrawal, craving, anxiety, or psychotomimetic symptoms; and laboratory tasks of drug-induced craving, effort expenditure, attentional bias for substance, impulsivity, or anxiety to serve as surrogate endpoints for treatment efficacy. Of note, ongoing studies are now adding peripheral biomarkers of the endocannabinoid system status to predict treatment response. Conclusion: The outcome measures and biomarkers assessed in the ongoing CBD trials for substance use disorders are improving.
Collapse
Affiliation(s)
- Alix Morel
- Département de Psychiatrie et de Médecine Addictologique, Hôpital Lariboisière-Fernand Widal, GHU NORD, Assistance Publique - Hôpitaux de Paris, 200 rue du Fg St Denis, Paris, France
| | - Pierre Lebard
- Département de Psychiatrie et de Médecine Addictologique, Hôpital Lariboisière-Fernand Widal, GHU NORD, Assistance Publique - Hôpitaux de Paris, 200 rue du Fg St Denis, Paris, France
| | - Alexandra Dereux
- Département de Psychiatrie et de Médecine Addictologique, Hôpital Lariboisière-Fernand Widal, GHU NORD, Assistance Publique - Hôpitaux de Paris, 200 rue du Fg St Denis, Paris, France.,INSERM UMRS1144, 4 avenue de l'Observatoire, Paris, France.,FHU NOR-SUD, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Julien Azuar
- Département de Psychiatrie et de Médecine Addictologique, Hôpital Lariboisière-Fernand Widal, GHU NORD, Assistance Publique - Hôpitaux de Paris, 200 rue du Fg St Denis, Paris, France.,INSERM UMRS1144, 4 avenue de l'Observatoire, Paris, France.,FHU NOR-SUD, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Frank Questel
- Département de Psychiatrie et de Médecine Addictologique, Hôpital Lariboisière-Fernand Widal, GHU NORD, Assistance Publique - Hôpitaux de Paris, 200 rue du Fg St Denis, Paris, France.,INSERM UMRS1144, 4 avenue de l'Observatoire, Paris, France.,FHU NOR-SUD, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Frank Bellivier
- Département de Psychiatrie et de Médecine Addictologique, Hôpital Lariboisière-Fernand Widal, GHU NORD, Assistance Publique - Hôpitaux de Paris, 200 rue du Fg St Denis, Paris, France.,INSERM UMRS1144, 4 avenue de l'Observatoire, Paris, France.,FHU NOR-SUD, Assistance Publique - Hôpitaux de Paris, Paris, France.,UFR Médecine, Université de Paris, 3 rue Thomas Mann, Paris, France
| | - Cynthia Marie-Claire
- INSERM UMRS1144, 4 avenue de l'Observatoire, Paris, France.,FHU NOR-SUD, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Mélina Fatséas
- University of Bordeaux, Bordeaux, France.,CNRS-UMR 5287- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Bordeaux, France.,Pôle d'addictologie, CHU de Bordeaux, Hôpital Haut-Lévêque, Avenue de Magellan, Pessac, France
| | - Florence Vorspan
- Département de Psychiatrie et de Médecine Addictologique, Hôpital Lariboisière-Fernand Widal, GHU NORD, Assistance Publique - Hôpitaux de Paris, 200 rue du Fg St Denis, Paris, France.,INSERM UMRS1144, 4 avenue de l'Observatoire, Paris, France.,FHU NOR-SUD, Assistance Publique - Hôpitaux de Paris, Paris, France.,UFR Médecine, Université de Paris, 3 rue Thomas Mann, Paris, France
| | - Vanessa Bloch
- INSERM UMRS1144, 4 avenue de l'Observatoire, Paris, France.,FHU NOR-SUD, Assistance Publique - Hôpitaux de Paris, Paris, France.,Service de Pharmacie, Hôpital Fernand Widal, GHU NORD, Assistance Publique - Hôpitaux de Paris, 200 rue du Fg St Denis, Paris, France
| |
Collapse
|
97
|
Morales P, Jagerovic N. Synthetic and Natural Derivatives of Cannabidiol. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1297:11-25. [PMID: 33537934 DOI: 10.1007/978-3-030-61663-2_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The non-psychoactive component of Cannabis Sativa, cannabidiol (CBD), has centered the attention of a large body of research in the last years. Recent clinical trials have led to the FDA approval of CBD for the treatment of children with drug-resistant epilepsy. Even though it is not yet in clinical phases, its use in sleep-wake pathological alterations has been widely demonstrated.Despite the outstanding current knowledge on CBD therapeutic effects in numerous in vitro and in vivo disease models, diverse questions still arise from its molecular pharmacology. CBD has been shown to modulate a wide variety of targets including the cannabinoid receptors, orphan GPCRs such as GPR55 and GPR18, serotonin, adenosine, and opioid receptors as well as ligand-gated ion channels among others. Its pharmacology is rather puzzling and needs to be further explored in the disease context.Also, the metabolism and interactions of this phytocannabinoid with other commercialized drugs need to be further considered to elucidate its clinical potential for the treatment of specific pathologies.Besides CBD, natural and synthetic derivatives of this chemotype have also been reported exhibiting diverse functional profiles and providing a deeper understanding of the potential of this scaffold.In this chapter, we analyze the knowledge gained so far on CBD and its analogs specially focusing on its molecular targets and metabolic implications. Phytogenic and synthetic CBD derivatives may provide novel approaches to improve the therapeutic prospects offered by this promising chemotype.
Collapse
|
98
|
Cannabidiol: A Potential New Alternative for the Treatment of Anxiety, Depression, and Psychotic Disorders. Biomolecules 2020; 10:biom10111575. [PMID: 33228239 PMCID: PMC7699613 DOI: 10.3390/biom10111575] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
The potential therapeutic use of some Cannabis sativa plant compounds has been attracting great interest, especially for managing neuropsychiatric disorders due to the relative lack of efficacy of the current treatments. Numerous studies have been carried out using the main phytocannabinoids, tetrahydrocannabinol (THC) and cannabidiol (CBD). CBD displays an interesting pharmacological profile without the potential for becoming a drug of abuse, unlike THC. In this review, we focused on the anxiolytic, antidepressant, and antipsychotic effects of CBD found in animal and human studies. In rodents, results suggest that the effects of CBD depend on the dose, the strain, the administration time course (acute vs. chronic), and the route of administration. In addition, certain key targets have been related with these CBD pharmacological actions, including cannabinoid receptors (CB1r and CB2r), 5-HT1A receptor and neurogenesis factors. Preliminary clinical trials also support the efficacy of CBD as an anxiolytic, antipsychotic, and antidepressant, and more importantly, a positive risk-benefit profile. These promising results support the development of large-scale studies to further evaluate CBD as a potential new drug for the treatment of these psychiatric disorders.
Collapse
|
99
|
Rodrigues LA, Caroba MES, Taba FK, Filev R, Gallassi AD. Evaluation of the potential use of cannabidiol in the treatment of cocaine use disorder: A systematic review. Pharmacol Biochem Behav 2020; 196:172982. [DOI: 10.1016/j.pbb.2020.172982] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/09/2022]
|
100
|
Luo H, Wu PF, Cao Y, Jin M, Shen TT, Wang J, Huang JG, Han QQ, He JG, Deng SL, Ni L, Hu ZL, Long LH, Wang F, Chen JG. Angiotensin-Converting Enzyme Inhibitor Rapidly Ameliorates Depressive-Type Behaviors via Bradykinin-Dependent Activation of Mammalian Target of Rapamycin Complex 1. Biol Psychiatry 2020; 88:415-425. [PMID: 32220499 DOI: 10.1016/j.biopsych.2020.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/22/2020] [Accepted: 02/03/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Angiotensin-converting enzyme inhibitors (ACEIs) are widely prescribed antihypertensive agents. Intriguingly, case reports and clinical trials have indicated that ACEIs, including captopril and lisinopril, may have a rapid mood-elevating effect in certain patients, but few experimental studies have investigated their value as fast-onset antidepressants. METHODS The present study consisted of a series of experiments using biochemical assays, immunohistochemistry, and behavioral techniques to examine the effect and mechanism of captopril on depressive-like behavior in 2 animal models, the chronic unpredictable stress model and the chronic social defeat stress model. RESULTS Captopril (19.5 or 39 mg/kg, intraperitoneal injection) exerted rapid antidepressant activity in mice treated under the chronic unpredictable stress model and mice treated under the chronic social defeat stress model. Pharmacokinetic analysis revealed that captopril crossed the blood-brain barrier and that lisinopril, another ACEI with better blood-brain barrier permeability, exerted a faster and longer-lasting effect at a same molar equivalent dose. This antidepressant effect seemed to be independent of the renin-angiotensin system, but dependent on the bradykinin (BK) system, since the decreased BK detected in the stressed mice could be reversed by captopril. The hypofunction of the downstream effector of BK, Cdc42 (cell division control protein 42) homolog, contributed to the stress-induced loss of dendritic spines, which was rapidly reversed by captopril via activating the mTORC1 (mammalian target of rapamycin complex 1) pathway. CONCLUSIONS Our findings indicate that the BK-dependent activation of mTORC1 may represent a promising mechanism underlying antidepressant pharmacology. Considering their affordability and availability, ACEIs may emerge as a novel fast-onset antidepressant, especially for patients with comorbid depression and hypertension.
Collapse
Affiliation(s)
- Han Luo
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peng-Fei Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Cao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Jin
- Department of Pharmaceutics, College of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tian-Tian Shen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ji Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian-Geng Huang
- Department of Pharmaceutics, College of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian-Qian Han
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jin-Gang He
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Si-Long Deng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lan Ni
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhuang-Li Hu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China
| | - Li-Hong Long
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China; The Collaborative-Innovation Center for Brain Science, Wuhan, Hubei, China.
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China; Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China; The Collaborative-Innovation Center for Brain Science, Wuhan, Hubei, China.
| |
Collapse
|