51
|
Zhang M, Liu J, Zhou MM, Wu H, Hou Y, Li YF, Yin Y, Zheng L, Liu FY, Yi M, Wan Y. Elevated Neurosteroids in the Lateral Thalamus Relieve Neuropathic Pain in Rats with Spared Nerve Injury. Neurosci Bull 2016; 32:311-22. [PMID: 27325509 DOI: 10.1007/s12264-016-0044-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/11/2016] [Indexed: 01/01/2023] Open
Abstract
Neurosteroids are synthesized in the nervous system from cholesterol or steroidal precursors imported from peripheral sources. These compounds are important allosteric modulators of γ-aminobutyric acid A receptors (GABAARs), which play a vital role in pain modulation in the lateral thalamus, a main gate where somatosensory information enters the cerebral cortex. Using high-performance liquid chromatography/tandem mass spectrometry, we found increased levels of neurosteroids (pregnenolone, progesterone, deoxycorticosterone, allopregnanolone, and tetrahydrodeoxycorticosterone) in the chronic stage of neuropathic pain (28 days after spared nerve injury) in rats. The expression of the translocator protein TSPO, the upstream steroidogenesis rate-limiting enzyme, increased at the same time. In vivo stereotaxic microinjection of neurosteroids or the TSPO activator AC-5216 into the lateral thalamus (AP -3.0 mm, ML ±3.0 mm, DV 6.0 mm) alleviated the mechanical allodynia in neuropathic pain, while the TSPO inhibitor PK 11195 exacerbated it. The analgesic effects of AC-5216 and neurosteroids were significantly attenuated by the GABAAR antagonist bicuculline. These results suggested that elevated neurosteroids in the lateral thalamus play a protective role in the chronic stage of neuropathic pain.
Collapse
Affiliation(s)
- Meng Zhang
- Neuroscience Research Institute, Peking University, Beijing, 100191, China
| | - Jia Liu
- Institute of Systems Biomedicine, Peking University, Beijing, 100191, China
| | - Meng-Meng Zhou
- Neuroscience Research Institute, Peking University, Beijing, 100191, China
| | - Honghai Wu
- Department of Pharmacy, Bethune International Peace Hospital Shijiazhuang, Shijiazhuang, 050082, China
| | - Yanning Hou
- Department of Pharmacy, Bethune International Peace Hospital Shijiazhuang, Shijiazhuang, 050082, China
| | - Yun-Feng Li
- Department of New Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, Beijing, 100007, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Peking University, Beijing, 100191, China
| | - Lemin Zheng
- Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, and Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Peking University, Beijing, 100191, China
| | - Feng-Yu Liu
- Neuroscience Research Institute, Peking University, Beijing, 100191, China
| | - Ming Yi
- Neuroscience Research Institute, Peking University, Beijing, 100191, China.
| | - You Wan
- Neuroscience Research Institute, Peking University, Beijing, 100191, China.
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
52
|
Li XB, Guo HL, Shi TY, Yang L, Wang M, Zhang K, Guo YY, Wu YM, Liu SB, Zhao MG. Neuroprotective effects of a novel translocator protein (18 kDa) ligand, ZBD-2, against focal cerebral ischemia and NMDA-induced neurotoxicity. Clin Exp Pharmacol Physiol 2016; 42:1068-74. [PMID: 26174423 DOI: 10.1111/1440-1681.12460] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 12/01/2022]
Abstract
Ligands of the translocator protein (18 kDa) (TSPO) have demonstrated rapid anxiolytic efficacy in stress responses and stress-related disorders. This protein is involved in the synthesis of endogenous neurosteroids including pregnenolone, dehydroepiandrosterone, and progesterone. These neurosteroids promote γ-aminobutyric acid-mediated neurotransmission in the central neural system (CNS). A TSPO ligand, N-benzyl-N-ethyl-2-(7,8-dihydro-7-benzyl-8-oxo-2-phenyl-9H-purin-9-yl) acetamide (ZBD-2) was recently synthesized. The purpose of the present study was to investigate the neuroprotective effects of ZBD-2 and. In cultured cortical neurons, treatment with ZBD-2 attenuated excitotoxicity induced by N-methyl-d-aspartate (NMDA) exposure. It significantly decreased the number of apoptotic cells by downregulating GluN2B-containing NMDA receptors (NMDARs), the ratio of Bax/Bcl-2, and levels of pro-caspase-3. Systemic treatment of ZBD-2 provided significant neuroprotection in mice subjected to middle cerebral artery occlusion. These findings provide direct evidence that neuroprotection by ZBD-2 is partially mediated by inhibiting GluN2B-containing NMDA receptor-mediated excitotoxicity.
Collapse
Affiliation(s)
- Xu-Bo Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Hong-Liang Guo
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Tian-Yao Shi
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Le Yang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Min Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yan-Yan Guo
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yu-Mei Wu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Ming-Gao Zhao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
53
|
Zhang LM, Qiu ZK, Chen XF, Zhao N, Chen HX, Xue R, Zhang YZ, Yang RF, Li YF. Involvement of allopregnanolone in the anti-PTSD-like effects of AC-5216. J Psychopharmacol 2016; 30:474-81. [PMID: 26783231 DOI: 10.1177/0269881115625115] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cholesterol import into mitochondria through the translocator protein (18 KDa) (TSPO) is the starting point and an important rate-limiting step in neurosteroidogenesis. For this reason TSPO has received increased attention in the pathophysiology of post-traumatic stress disorder (PTSD). In an effort to explore the role of TSPO in mediating the anti-PTSD effect, we first assessed the effects of the TSPO ligand AC-5216 in alleviating the enhanced anxiety and fear response in a time-dependent sensitization (TDS) procedure, a rat PTSD animal model. In the present study, we showed that chronic treatment with AC-5216 caused significant suppression of the enhanced anxiety and contextual fear induced in post-TDS rats; these effects were blocked by PK11195. Furthermore, AC-5216 treatment increased the levels of allopregnanolone in the serum, prefrontal cortex, and hippocampus of post-TDS rats, and these effects were antagonized by PK11195. These results demonstrate that AC-5216 has a clear anti-PTSD-like effect, which might be partially mediated by binding to TSPO and the subsequent synthesis of allopregnanolone.
Collapse
Affiliation(s)
- Li-Ming Zhang
- Department of New Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhi-Kun Qiu
- Department of New Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, Beijing, China Department of Pharmacology, the First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiao-Fei Chen
- Department of Pharmacology, the 309 Hospital of PLA, Beijing, China
| | - Nan Zhao
- Department of New Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Hong-Xia Chen
- Department of New Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Rui- Xue
- Department of New Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - You-Zhi Zhang
- Department of New Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ri-Fang Yang
- Department of Medicinal Chemistry, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yun-Feng Li
- Department of New Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
54
|
Veerasakul S, Thanoi S, Watiktinkorn P, Reynolds GP, Nudmamud-Thanoi S. Does elevated peripheral benzodiazepine receptor gene expression relate to cognitive deficits in methamphetamine dependence? Hum Psychopharmacol 2016; 31:243-6. [PMID: 26913858 DOI: 10.1002/hup.2523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 12/19/2015] [Accepted: 01/13/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Methamphetamine (METH) is a neurotoxin and psychostimulant drug with potent effects on the central nervous system. With chronic METH administration, an inflammatory glial response is observed as a result of METH-induced neurotoxicity. One inflammatory marker is the peripheral benzodiazepine receptor (PBR). OBJECTIVE The purpose of the present study was to determine whether PBR expression is changed in METH dependence and whether the changes relate to cognitive deficits. METHODS Reverse transcriptase-polymerase chain reaction was used to investigate PBR gene expression in blood samples taken from 14 male subjects with METH dependence and 14 controls. RESULTS The results showed a significant increase in PBR gene expression in METH dependence, suggestive of a systemic inflammatory response. The increase remained elevated for more than 1 year following abstinence from METH use, but eventually returned to normal. Subjects with elevated PBR also exhibited a deficit in one domain of the Wisconsin Card Sorting Test. CONCLUSION The results suggest that systemic inflammatory effects can be associated with chronic METH abuse, and this may relate to the cognitive deficits seen in METH dependence. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Siriluk Veerasakul
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.,Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Samur Thanoi
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.,Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | | | - Gavin P Reynolds
- Biomedical Research Centre, Sheffield Hallam University, Sheffield, UK.,Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Sutisa Nudmamud-Thanoi
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.,Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
55
|
Guilarte TR, Loth MK, Guariglia SR. TSPO Finds NOX2 in Microglia for Redox Homeostasis. Trends Pharmacol Sci 2016; 37:334-343. [PMID: 27113160 DOI: 10.1016/j.tips.2016.02.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/22/2016] [Accepted: 02/25/2016] [Indexed: 10/21/2022]
Abstract
During the past decade, translocator protein 18 kDa (TSPO), previously named peripheral benzodiazepine receptor, has gained a great deal of attention based on its use as a clinical biomarker of neuroinflammation with therapeutic potential. However, there is a paucity of knowledge on the function(s) of TSPO in glial cells. Here, we identify a novel function of TSPO in microglia that is not associated with steroidogenesis. We propose that a TSPO interaction with NADPH oxidase (NOX2) links the generation of reactive oxygen species (ROS) to the induction of an antioxidant response to maintain redox homeostasis. This line of investigation may provide a greater understanding of TSPO glial cell biology, and the knowledge gained may prove beneficial in devising therapeutic strategies.
Collapse
Affiliation(s)
- Tomás R Guilarte
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Meredith K Loth
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Sara R Guariglia
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
56
|
Santoro A, Mattace Raso G, Taliani S, Da Pozzo E, Simorini F, Costa B, Martini C, Laneri S, Sacchi A, Cosimelli B, Calignano A, Da Settimo F, Meli R. TSPO-ligands prevent oxidative damage and inflammatory response in C6 glioma cells by neurosteroid synthesis. Eur J Pharm Sci 2016; 88:124-31. [PMID: 27094781 DOI: 10.1016/j.ejps.2016.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 11/30/2022]
Abstract
Translocator protein 18kDa (TSPO) is predominantly located in the mitochondrial outer membrane, playing an important role in steroidogenesis, inflammation, cell survival and proliferation. Its expression in central nervous system, mainly in glial cells, has been found to be upregulated in neuropathology, and brain injury. In this study, we investigated the anti-oxidative and anti-inflammatory effects of a group of TSPO ligands from the N,N-dialkyl-2-phenylindol-3-ylglyoxylamide class (PIGAs), highlighting the involvement of neurosteroids in their pharmacological effects. To this aim we used a well-known in vitro model of neurosteroidogenesis: the astrocytic C6 glioma cell line, where TSPO expression and localization, as well as cell response to TSPO ligand treatment, have been established. All PIGAs reduced l-buthionine-(S,R)-sulfoximine (BSO)-driven cell cytotoxicity and lipid peroxidation. Moreover, an anti-inflammatory effect was observed due to the reduction of inducible nitric oxide synthase and cyclooxygenase-2 induction in LPS/IFNγ challenged cells. Both effects were blunted by aminoglutethimide (AMG), an inhibitor of pregnenolone synthesis, suggesting neurosteroids' involvement in PIGA protective mechanism. Finally, pregnenolone evaluation in PIGA exposed cells revealed an increase in its synthesis, which was prevented by AMG pre-treatment. These findings indicate that these TSPO ligands reduce oxidative stress and pro-inflammatory enzymes in glial cells through the de novo synthesis of neurosteroids, suggesting that these compounds could be potential new therapeutic tools for the treatment of inflammatory-based neuropathologies with beneficial effects possibly comparable to steroids, but potentially avoiding the negative side effects of long-term therapies with steroid hormones.
Collapse
Affiliation(s)
- Anna Santoro
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, University of Pisa, 56126 Pisa, Italy
| | - Giuseppina Mattace Raso
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, University of Pisa, 56126 Pisa, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | | | | | - Barbara Costa
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Sonia Laneri
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, University of Pisa, 56126 Pisa, Italy
| | - Antonia Sacchi
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, University of Pisa, 56126 Pisa, Italy
| | - Barbara Cosimelli
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, University of Pisa, 56126 Pisa, Italy
| | - Antonio Calignano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, University of Pisa, 56126 Pisa, Italy
| | | | - Rosaria Meli
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, University of Pisa, 56126 Pisa, Italy.
| |
Collapse
|
57
|
Declercq LD, Vandenberghe R, Van Laere K, Verbruggen A, Bormans G. Drug Development in Alzheimer's Disease: The Contribution of PET and SPECT. Front Pharmacol 2016; 7:88. [PMID: 27065872 PMCID: PMC4814730 DOI: 10.3389/fphar.2016.00088] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/16/2016] [Indexed: 12/13/2022] Open
Abstract
Clinical trials aiming to develop disease-altering drugs for Alzheimer’s disease (AD), a neurodegenerative disorder with devastating consequences, are failing at an alarming rate. Poorly defined inclusion-and outcome criteria, due to a limited amount of objective biomarkers, is one of the major concerns. Non-invasive molecular imaging techniques, positron emission tomography and single photon emission (computed) tomography (PET and SPE(C)T), allow visualization and quantification of a wide variety of (patho)physiological processes and allow early (differential) diagnosis in many disorders. PET and SPECT have the ability to provide biomarkers that permit spatial assessment of pathophysiological molecular changes and therefore objectively evaluate and follow up therapeutic response, especially in the brain. A number of specific PET/SPECT biomarkers used in support of emerging clinical therapies in AD are discussed in this review.
Collapse
Affiliation(s)
- Lieven D Declercq
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven Leuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven Leuven, Belgium
| | - Alfons Verbruggen
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven Leuven, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven Leuven, Belgium
| |
Collapse
|
58
|
Ravikumar B, Crawford D, Dellovade T, Savinainen A, Graham D, Liere P, Oudinet JP, Webb M, Hering H. Differential efficacy of the TSPO ligands etifoxine and XBD-173 in two rodent models of Multiple Sclerosis. Neuropharmacology 2016; 108:229-37. [PMID: 27039042 DOI: 10.1016/j.neuropharm.2016.03.053] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/24/2016] [Accepted: 03/29/2016] [Indexed: 12/25/2022]
Abstract
Neurosteroids such as progesterone and allopregnanolone have been shown to exert neuroprotective effects under a variety of pathological or insult conditions, and there is evidence that the neurosteroid system is perturbed in Multiple Sclerosis (MS) patients. Neurosteroids are synthesized in the central nervous system (CNS) through a series of metabolic transformations, beginning with a rate-limiting step of cholesterol transport through the outer mitochondrial membrane via the transporter translocator protein (TSPO). We examined the effects of etifoxine and XBD-173, two different brain penetrant TSPO agonists, for their ability to ameliorate clinical signs in two different experimental autoimmune encephalitis (EAE) models. Etifoxine, as previously reported, was efficacious in EAE, while XBD-173 was not. Surprisingly, XBD-173, but not etifoxine elevated relevant neurosteroids in brain of female rats and differed in its ability to exert anti-inflammatory and direct neuroprotective effects in vitro as compared to etifoxine. We conclude that the neurosteroid elevations produced in brain by XBD-173 are not sufficient to ameliorate EAE and suggest that etifoxine may have additional mechanisms of action that provide therapeutic benefit in this model system.
Collapse
Affiliation(s)
- Brinda Ravikumar
- EMD Serono Research and Development Institute, Billerica, MA 01821, USA
| | - Dan Crawford
- EMD Serono Research and Development Institute, Billerica, MA 01821, USA
| | - Tammy Dellovade
- EMD Serono Research and Development Institute, Billerica, MA 01821, USA
| | - Anneli Savinainen
- EMD Serono Research and Development Institute, Billerica, MA 01821, USA
| | - Danielle Graham
- EMD Serono Research and Development Institute, Billerica, MA 01821, USA
| | - Philippe Liere
- U1195 Inserm & University Paris-Sud, 80, rue du Général Leclerc, 94276 Kremlin-Bicetre, France
| | - Jean-Paul Oudinet
- U1195 Inserm & University Paris-Sud, 80, rue du Général Leclerc, 94276 Kremlin-Bicetre, France
| | - Mike Webb
- EMD Serono Research and Development Institute, Billerica, MA 01821, USA
| | - Heike Hering
- EMD Serono Research and Development Institute, Billerica, MA 01821, USA.
| |
Collapse
|
59
|
|
60
|
Design, synthesis and anxiolytic-like activity of 1-arylpyrrolo[1,2-a]pyrazine-3-carboxamides. Bioorg Med Chem 2015; 23:3368-78. [DOI: 10.1016/j.bmc.2015.04.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/13/2015] [Accepted: 04/17/2015] [Indexed: 11/19/2022]
|
61
|
Solingapuram Sai KK, Gage D, Nader M, Mach RH, Mintz A. Improved Automated Radiosynthesis of [(11)C]PBR28. Sci Pharm 2015; 83:413-27. [PMID: 26839827 PMCID: PMC4727796 DOI: 10.3797/scipharm.1505-06] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/19/2015] [Indexed: 11/22/2022] Open
Abstract
Microglial activation is commonly identified by elevated levels of the 18 kDa translocator protein (TSPO) in response to several inflammatory processes. [(11)C]PBR28 is one of the most promising PET tracers to image TSPO in both human and non-human primates. In this study, we optimized the radiolabeling procedure of [(11)C]PBR28 for higher radiochemical yield, radiochemical purity, and specific activity, which can be easily translated to any automated module for clinical trials. Time-activity curves (TACs) derived from the dynamic PET imaging of male rhesus monkey brains demonstrated that [(11)C]PBR28 had suitable kinetics with radiotracer accumulation observed in the caudate, putamen, cerebellum, and frontal cortex region.
Collapse
Affiliation(s)
| | - Don Gage
- Department of Radiology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA
| | - Mike Nader
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA
| | - Robert H Mach
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Akiva Mintz
- Department of Radiology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA
| |
Collapse
|
62
|
Kaga M, Nakamoto Y, Nakamura K, Ikeda K, Yoshii M, Kawana S. Stress sensitivity in patients with atopic dermatitis in relation to the translocator protein 18 kDa (TSPO). J NIPPON MED SCH 2015; 81:148-56. [PMID: 24998961 DOI: 10.1272/jnms.81.148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease, characterized by pruritic and eczematous skin lesions and dermatitis that worsens under stressful conditions. However, the relation of these symptoms to an individual's stress sensitivity is not well understood. On the other hand, expression of the translocator protein (18 kDa) (TSPO), formerly known as the peripheral-type benzodiazepine receptor, has been used as a biological marker of trait anxiety and stress sensitivity. The present study was designed to address this issue by examining TSPO in patients with AD. Fifty-two patients with AD (30 male and 22 female) and 163 healthy volunteers (89 male and 74 female) participated in this study. State-Trait Anxiety Inventory (STAI) scores were significantly higher in patients with AD, especially male patients, than in healthy subjects. The expression of platelet TSPO, as determined with a binding assay with [(3)H] PK11195, was also significantly higher in patients with AD, indicating that AD is a stress-responsive disease. In genomic analysis using lymphocytes, a single-nucleotide polymorphism of the human TSPO gene at exon 4 (485G>A), which is presumably associated with an individual's stress sensitivity, showed significantly lower frequencies of G/G and higher frequencies of G/A in patients with AD than in healthy subjects. The severity of AD, as determined with the Scoring of Atopic Dermatitis index, was correlated with TSPO expression in male patients with the G/A phenotype. In conclusion, the present study provides new evidence that variation in the TSPO gene affects susceptibility to AD.
Collapse
Affiliation(s)
- Mio Kaga
- Department of Dermatology, Nippon Medical School
| | | | | | | | | | | |
Collapse
|
63
|
Li F, Liu J, Garavito RM, Ferguson-Miller S. Evolving understanding of translocator protein 18 kDa (TSPO). Pharmacol Res 2015; 99:404-9. [PMID: 25882248 DOI: 10.1016/j.phrs.2015.03.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 02/01/2023]
Abstract
The translocator protein 18 kDa (TSPO) has been the focus of intense research by the biomedical community and the pharmaceutical industry because of its apparent involvement in many disease-related processes. These include steroidogenesis, apoptosis, inflammation, neurological disease and cancer, resulting in the use of TSPO as a biomarker and its potential as a drug target. Despite more than 30 years of study, the precise function of TSPO remains elusive. A recent breakthrough in determining the high-resolution crystal structures of bacterial homologs of mitochondrial TSPO provides new insight into the structural and functional properties at a molecular level and new opportunities for investigating the significance of this ancient and highly conserved protein family. The availability of atomic level structural information from different species also provides a platform for structure-based drug development. Here we briefly review current knowledge regarding TSPO and the implications of the new structures with respect to hypotheses and controversies in the field.
Collapse
Affiliation(s)
- Fei Li
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Jian Liu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - R Michael Garavito
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
64
|
Mitochondrial biology, targets, and drug delivery. J Control Release 2015; 207:40-58. [PMID: 25841699 DOI: 10.1016/j.jconrel.2015.03.036] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 02/07/2023]
Abstract
In recent years, mitochondrial medicine has emerged as a new discipline resting at the intersection of mitochondrial biology, pathology, and pharmaceutics. The central role of mitochondria in critical cellular processes such as metabolism and apoptosis has placed mitochondria at the forefront of cell science. Advances in mitochondrial biology have revealed that these organelles continually undergo fusion and fission while functioning independently and in complex cellular networks, establishing direct membrane contacts with each other and with other organelles. Understanding the diverse cellular functions of mitochondria has contributed to understanding mitochondrial dysfunction in disease states. Polyplasmy and heteroplasmy contribute to mitochondrial phenotypes and associated dysfunction. Residing at the center of cell biology, cellular functions, and disease pathology and being laden with receptors and targets, mitochondria are beacons for pharmaceutical modification. This review presents the current state of mitochondrial medicine with a focus on mitochondrial function, dysfunction, and common disease; mitochondrial receptors, targets, and substrates; and mitochondrial drug design and drug delivery with a focus on the application of nanotechnology to mitochondrial medicine. Mitochondrial medicine is at the precipice of clinical translation; the objective of this review is to aid in the advancement of mitochondrial medicine from infancy to application.
Collapse
|
65
|
Wang DS, Tian Z, Guo YY, Guo HL, Kang WB, Li S, Den YT, Li XB, Feng B, Feng D, Zhao JN, Liu G, Zhao MG. Anxiolytic-like effects of translocator protein (TSPO) ligand ZBD-2 in an animal model of chronic pain. Mol Pain 2015; 11:16. [PMID: 25889665 PMCID: PMC4393609 DOI: 10.1186/s12990-015-0013-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/15/2015] [Indexed: 12/28/2022] Open
Abstract
The activation of Translocator protein (18 kDa) (TSPO) has been demonstrated to mediate rapid anxiolytic efficacy in stress response and stress-related disorders. This protein is involved in the synthesis of endogenous neurosteroids that promote γ-aminobutyric acid (GABA)-mediated neurotransmission in the central neural system. However, little is known about the functions and the underlying mechanisms of TSPO in chronic pain-induced anxiety-like behaviors. The novel TSPO ligand N-benzyl-N-ethyl-2-(7,8-dihydro-7-benzyl-8-oxo-2-phenyl-9H-purin-9-yl) acetamide (ZBD-2) was used in the present study. We found that ZBD-2 (0.15 or 1.5 mg/kg) significantly attenuated anxiety-like behaviors in mice with chronic inflammatory pain induced by hindpaw injection of complete Freund’s adjuvant (CFA). However, the treatment did not alter the nociceptive threshold or inflammation in the hindpaw. Hindpaw injection of CFA induced the upregulation of TSPO, GluR1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, and NR2B-containing N-methyl-d-aspartate (NMDA) receptors in the basolateral amygdala (BLA). ZBD-2 administration reversed the alterations of the abovementioned proteins in the BLA of the CFA-injected mice. Electrophysiological recording revealed that ZBD-2 could prevent an imbalance between excitatory and inhibitory transmissions in the BLA synapses of CFA-injected mice. Therefore, as the novel ligand of TSPO, ZBD-2 induced anxiolytic effects, but did not affect the nociceptive threshold of mice under chronic pain. The anxiolytic effects of ZBD-2 were related to the regulation of the balance between excitatory and inhibitory transmissions in the BLA.
Collapse
Affiliation(s)
- Dong-Sheng Wang
- Department of Orthopedics, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing, 210002, China.
| | - Zhen Tian
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
| | - Yan-Yan Guo
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
| | - Hong-Liang Guo
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
| | - Wen-Bo Kang
- Department of Orthopedics, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing, 210002, China.
| | - Shuo Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
| | - Ya-Ting Den
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
| | - Xu-Bo Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
| | - Bing Feng
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
| | - Dan Feng
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jian-Ning Zhao
- Department of Orthopedics, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing, 210002, China.
| | - Gang Liu
- Department of Orthopedics, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing, 210002, China.
| | - Ming-Gao Zhao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
66
|
do Rego JL, Vaudry D, Vaudry H. The non-benzodiazepine anxiolytic drug etifoxine causes a rapid, receptor-independent stimulation of neurosteroid biosynthesis. PLoS One 2015; 10:e0120473. [PMID: 25785994 PMCID: PMC4364751 DOI: 10.1371/journal.pone.0120473] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/23/2015] [Indexed: 11/19/2022] Open
Abstract
Neurosteroids can modulate the activity of the GABAA receptors, and thus affect anxiety-like behaviors. The non-benzodiazepine anxiolytic compound etifoxine has been shown to increase neurosteroid concentrations in brain tissue but the mode of action of etifoxine on neurosteroid formation has not yet been elucidated. In the present study, we have thus investigated the effect and the mechanism of action of etifoxine on neurosteroid biosynthesis using the frog hypothalamus as an experimental model. Exposure of frog hypothalamic explants to graded concentrations of etifoxine produced a dose-dependent increase in the biosynthesis of 17-hydroxypregnenolone, dehydroepiandrosterone, progesterone and tetrahydroprogesterone, associated with a decrease in the production of dihydroprogesterone. Time-course experiments revealed that a 15-min incubation of hypothalamic explants with etifoxine was sufficient to induce a robust increase in neurosteroid synthesis, suggesting that etifoxine activates steroidogenic enzymes at a post-translational level. Etifoxine-evoked neurosteroid biosynthesis was not affected by the central-type benzodiazepine (CBR) receptor antagonist flumazenil, the translocator protein (TSPO) antagonist PK11195 or the GABAA receptor antagonist bicuculline. In addition, the stimulatory effects of etifoxine and the triakontatetraneuropeptide TTN, a TSPO agonist, were additive, indicating that these two compounds act through distinct mechanisms. Etifoxine also induced a rapid stimulation of neurosteroid biosynthesis from frog hypothalamus homogenates, a preparation in which membrane receptor signalling is disrupted. In conclusion, the present study demonstrates that etifoxine stimulates neurosteroid production through a membrane receptor-independent mechanism.
Collapse
Affiliation(s)
- Jean Luc do Rego
- Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Mont-Saint-Aignan, France
- Regional Platform for Cell Imaging (PRIMACEN), International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France
| | - David Vaudry
- Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Mont-Saint-Aignan, France
- Regional Platform for Cell Imaging (PRIMACEN), International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France
- Neurotrophic Factors and Neuronal Differentiation team, Inserm U982, University of Rouen, Mont-Saint-Aignan, France
| | - Hubert Vaudry
- Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Mont-Saint-Aignan, France
- Regional Platform for Cell Imaging (PRIMACEN), International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France
- Neurotrophic Factors and Neuronal Differentiation team, Inserm U982, University of Rouen, Mont-Saint-Aignan, France
| |
Collapse
|
67
|
Vállez Garcia D, de Vries EFJ, Toyohara J, Ishiwata K, Hatano K, Dierckx RAJO, Doorduin J. Evaluation of [(11)C]CB184 for imaging and quantification of TSPO overexpression in a rat model of herpes encephalitis. Eur J Nucl Med Mol Imaging 2015; 42:1106-18. [PMID: 25771904 PMCID: PMC4424274 DOI: 10.1007/s00259-015-3021-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/16/2015] [Indexed: 02/04/2023]
Abstract
Purpose Evaluation of translocator protein (TSPO) overexpression is considered an attractive research tool for monitoring neuroinflammation in several neurological and psychiatric disorders. [11C]PK11195 PET imaging has been widely used for this purpose. However, it has a low sensitivity and a poor signal-to-noise ratio. For these reasons, [11C]CB184 was evaluated as a potentially more sensitive PET tracer. Methods A model of herpes simplex encephalitis (HSE) was induced in male Wistar rats. On day 6 or 7 after virus inoculation, [11C]CB184 PET scans were acquired followed by ex vivo evaluation of biodistribution. In addition, [11C]CB184 and [11C]PK11195 PET scans with arterial blood sampling were acquired to generate input for pharmacokinetic modelling. Differences between the saline-treated control group and the virus-treated HSE group were explored using volumes of interest and voxel-based analysis. Results The biodistribution study showed significantly higher [11C]CB184 uptake in the amygdala, olfactory bulb, medulla, pons and striatum (p < 0.05) in HSE rats than in control rats, and the voxel-based analysis showed higher bilateral uptake in the pons and medulla (p < 0.05, corrected at the cluster level). A high correlation was found between tracer uptake in the biodistribution study and on the PET scans (p < 0.001, r2 = 0.71). Pretreatment with 5 mg/kg of unlabelled PK11195 effectively reduced (p < 0.001) [11C]CB184 uptake in the whole brain. Both, [11C]CB184 and [11C]PK11195, showed similar amounts of metabolites in plasma, and the binding potential (BPND) was not significantly different between the HSE rats and the control rats. In HSE rats BPND for [11C]CB184 was significantly higher (p < 0.05) in the amygdala, hypothalamus, medulla, pons and septum than in control rats, whereas higher uptake of [11C]PK11195 was only detected in the medulla. Conclusion [11C]CB184 showed nonspecific binding to healthy tissue comparable to that observed for [11C]PK11195, but it displayed significantly higher specific binding in those brain regions affected by the HSE. Our results suggest that [11C]CB184 PET is a good alternative for imaging of neuroinflammatory processes.
Collapse
Affiliation(s)
- David Vállez Garcia
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands,
| | | | | | | | | | | | | |
Collapse
|
68
|
Li F, Liu J, Valls L, Hiser C, Ferguson-Miller S. Identification of a key cholesterol binding enhancement motif in translocator protein 18 kDa. Biochemistry 2015; 54:1441-3. [PMID: 25635829 PMCID: PMC5125615 DOI: 10.1021/bi5015453] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Translocator protein 18 kDa (TSPO) in the mitochondrial outer membrane has been implicated in cholesterol transport regulating steroidogenesis. A human single polymorphism associated with anxiety disorders (A147T) and reduced pregnenolone production is adjacent to TSPO's cholesterol binding motif. In a mutant mimicking this polymorphism, we observe a lower level of binding of cholesterol. Further, three residues preceding A147 are more hydrophilic in a bacterial TSPO that has an affinity for cholesterol 1000-fold lower than that of the human form. Converting these residues to the human form in the bacterial homologue strikingly increases the affinity for cholesterol. An important role for this extended motif is further supported by covariance analysis.
Collapse
Affiliation(s)
- Fei Li
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jian Liu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Lance Valls
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Carrie Hiser
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
69
|
Gachet MS, Rhyn P, Bosch OG, Quednow BB, Gertsch J. A quantitiative LC-MS/MS method for the measurement of arachidonic acid, prostanoids, endocannabinoids, N-acylethanolamines and steroids in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 976-977:6-18. [PMID: 25436483 DOI: 10.1016/j.jchromb.2014.11.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/24/2014] [Accepted: 11/02/2014] [Indexed: 11/16/2022]
Abstract
Free arachidonic acid is functionally interlinked with different lipid signaling networks including those involving prostanoid pathways, the endocannabinoid system, N-acylethanolamines, as well as steroids. A sensitive and specific LC-MS/MS method for the quantification of arachidonic acid, prostaglandin E2, thromboxane B2, anandamide, 2-arachidonoylglycerol, noladin ether, lineoyl ethanolamide, oleoyl ethanolamide, palmitoyl ethanolamide, steroyl ethanolamide, aldosterone, cortisol, dehydroepiandrosterone, progesterone, and testosterone in human plasma was developed and validated. Analytes were extracted using acetonitrile precipitation followed by solid phase extraction. Separations were performed by UFLC using a C18 column and analyzed on a triple quadrupole MS with electron spray ionization. Analytes were run first in negative mode and, subsequently, in positive mode in two independent LC-MS/MS runs. For each analyte, two MRM transitions were collected in order to confirm identity. All analytes showed good linearity over the investigated concentration range (r>0.98). Validated LLOQs ranged from 0.1 to 190ng/mL and LODs ranged from 0.04 to 12.3ng/mL. Our data show that this LC-MS/MS method is suitable for the quantification of a diverse set of bioactive lipids in plasma from human donors (n=32). The determined plasma levels are in agreement with the literature, thus providing a versatile method to explore pathophysiological processes in which changes of these lipids are implicated.
Collapse
Affiliation(s)
- María Salomé Gachet
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Peter Rhyn
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Oliver G Bosch
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Lenggstr. 31, CH-8032 Zürich, Switzerland
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Lenggstr. 31, CH-8032 Zürich, Switzerland
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| |
Collapse
|
70
|
Abstract
Human adults produce around 1000 mmol of ammonia daily. Some is reutilized in biosynthesis. The remainder is waste and neurotoxic. Eventually most is excreted in urine as urea, together with ammonia used as a buffer. In extrahepatic tissues, ammonia is incorporated into nontoxic glutamine and released into blood. Large amounts are metabolized by the kidneys and small intestine. In the intestine, this yields ammonia, which is sequestered in portal blood and transported to the liver for ureagenesis, and citrulline, which is converted to arginine by the kidneys. The amazing developments in NMR imaging and spectroscopy and molecular biology have confirmed concepts derived from early studies in animals and cell cultures. The processes involved are exquisitely tuned. When they are faulty, ammonia accumulates. Severe acute hyperammonemia causes a rapidly progressive, often fatal, encephalopathy with brain edema. Chronic milder hyperammonemia causes a neuropsychiatric illness. Survivors of severe neonatal hyperammonemia have structural brain damage. Proposed explanations for brain edema are an increase in astrocyte osmolality, generally attributed to glutamine accumulation, and cytotoxic oxidative/nitrosative damage. However, ammonia neurotoxicity is multifactorial, with disturbances also in neurotransmitters, energy production, anaplerosis, cerebral blood flow, potassium, and sodium. Around 90% of hyperammonemic patients have liver disease. Inherited defects are rare. They are being recognized increasingly in adults. Deficiencies of urea cycle enzymes, citrin, and pyruvate carboxylase demonstrate the roles of isolated pathways in ammonia metabolism. Phenylbutyrate is used routinely to treat inherited urea cycle disorders, and its use for hepatic encephalopathy is under investigation.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.
| |
Collapse
|
71
|
Zanotti-Fregonara P, Zhang Y, Jenko KJ, Gladding RL, Zoghbi SS, Fujita M, Sbardella G, Castellano S, Taliani S, Martini C, Innis RB, Da Settimo F, Pike VW. Synthesis and evaluation of translocator 18 kDa protein (TSPO) positron emission tomography (PET) radioligands with low binding sensitivity to human single nucleotide polymorphism rs6971. ACS Chem Neurosci 2014; 5:963-71. [PMID: 25123416 PMCID: PMC4210126 DOI: 10.1021/cn500138n] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
![]()
The imaging of translocator 18 kDa
protein (TSPO) in living human
brain with radioligands by positron emission tomography (PET) has
become an important means for the study of neuroinflammatory conditions
occurring in several neuropsychiatric disorders. The widely used prototypical
PET radioligand [11C](R)-PK 11195 ([11C](R)-1; [N-methyl-11C](R)-N-sec-butyl-1-(2-chlorophenyl)-N-methylisoquinoline-3-carboxamide) gives a low PET signal and is
difficult to quantify, whereas later generation radioligands have
binding sensitivity to a human single nucleotide polymorphism (SNP)
rs6971, which imposes limitations on their utility for comparative
quantitative PET studies of normal and diseased subjects. Recently,
azaisosteres of 1 have been developed with improved drug-like
properties, including enhanced TSPO affinity accompanied by moderated
lipophilicity. Here we selected three of these new ligands (7–9) for labeling with carbon-11 and for
evaluation in monkey as candidate PET radioligands for imaging brain
TSPO. Each radioligand was readily prepared by 11C-methylation
of an N-desmethyl precursor and was found to give
a high proportion of TSPO-specific binding in monkey brain. One of
these radioligands, [11C]7, the direct 4-azaisostere
of 1, presents many radioligand properties that are superior
to those reported for [11C]1, including higher
affinity, lower lipophilicity, and stable quantifiable PET signal.
Importantly, 7 was also found to show very low sensitivity
to the human SNP rs6971 in vitro. Therefore, [11C]7 now warrants evaluation in human subjects with PET to assess
its utility for imaging TSPO in human brain, irrespective of subject
genotype.
Collapse
Affiliation(s)
- Paolo Zanotti-Fregonara
- Molecular
Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-0001, United States
| | - Yi Zhang
- Molecular
Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-0001, United States
| | - Kimberly J. Jenko
- Molecular
Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-0001, United States
| | - Robert L. Gladding
- Molecular
Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-0001, United States
| | - Sami S. Zoghbi
- Molecular
Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-0001, United States
| | - Masahiro Fujita
- Molecular
Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-0001, United States
| | - Gianluca Sbardella
- Department
of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy
| | - Sabrina Castellano
- Department
of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy
| | - Sabrina Taliani
- Department
of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Claudia Martini
- Department
of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Robert B. Innis
- Molecular
Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-0001, United States
| | - Federico Da Settimo
- Department
of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Victor W. Pike
- Molecular
Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-0001, United States
| |
Collapse
|
72
|
Anxiolytic-like effects of YL-IPA08, a potent ligand for the translocator protein (18 kDa) in animal models of post-traumatic stress disorder. Int J Neuropsychopharmacol 2014; 17:1659-69. [PMID: 24763106 DOI: 10.1017/s1461145714000479] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, the translocator protein (18 kDa) (TSPO), previously called peripheral benzodiazepine receptor (PBR) and both the starting point and an important rate-limiting step in neurosteroidogenesis, has received increased attention in the pathophysiology of post-traumatic stress disorder (PTSD) because it affects the production of neurosteroids, reinforcing the hypothesis that selective TSPO ligands could potentially be used as anti-PTSD drugs. As expected, we showed that chronic treatment with YL-IPA08 [N-ethyl-N-(2-pyridinylmethyl)-2-(3,4-ichlorophenyl)-7-methylimidazo [1,2-a] pyridine-3-acetamide hydrochloride], a potent and selective TSPO ligand synthesized by our institute, caused significant suppression of enhanced anxiety and contextual fear induced in the inescapable electric foot-shock-induced mouse model of PTSD and the time-dependent sensitization (TDS) procedure. These effects were completely blocked by the TSPO antagonist PK11195. Furthermore, YL-IPA08 could increase the level of allopregnanolone in the prefrontal cortex and serum of post-TDS rats, and these effects were antagonized by PK11195. In summary, the findings from the current study showed that YL-IPA08, a potent and selective TSPO ligand, had a clear anti-PTSD-like effect, which might be partially mediated by binding to TSPO and the subsequent synthesis of allopregnanolone.
Collapse
|
73
|
Midzak A, Papadopoulos V. Binding domain-driven intracellular trafficking of sterols for synthesis of steroid hormones, bile acids and oxysterols. Traffic 2014; 15:895-914. [PMID: 24890942 DOI: 10.1111/tra.12177] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 12/16/2022]
Abstract
Steroid hormones, bioactive oxysterols and bile acids are all derived from the biological metabolism of lipid cholesterol. The enzymatic pathways generating these compounds have been an area of intense research for almost a century, as cholesterol and its metabolites have substantial impacts on human health. Owing to its high degree of hydrophobicity and the chemical properties that it confers to biological membranes, the distribution of cholesterol in cells is tightly controlled, with subcellular organelles exhibiting highly divergent levels of cholesterol. The manners in which cells maintain such sterol distributions are of great interest in the study of steroid and bile acid synthesis, as limiting cholesterol substrate to the enzymatic pathways is the principal mechanism by which production of steroids and bile acids is regulated. The mechanisms by which cholesterol moves within cells, however, remain poorly understood. In this review, we examine the subcellular machinery involved in cholesterol metabolism to steroid hormones and bile acid, relating it to both lipid- and protein-based mechanisms facilitating intracellular and intraorganellar cholesterol movement and delivery to these pathways. In particular, we examine evidence for the involvement of specific protein domains involved in cholesterol binding, which impact cholesterol movement and metabolism in steroidogenesis and bile acid synthesis. A better understanding of the physical mechanisms by which these protein- and lipid-based systems function is of fundamental importance to understanding physiological homeostasis and its perturbation.
Collapse
Affiliation(s)
- Andrew Midzak
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
74
|
Brouwer C, Jenko K, Zoghbi SS, Innis RB, Pike VW. Development of N-methyl-(2-arylquinolin-4-yl)oxypropanamides as leads to PET radioligands for translocator protein (18 kDa). J Med Chem 2014; 57:6240-51. [PMID: 24949670 PMCID: PMC4216211 DOI: 10.1021/jm5007947] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Translocator protein (18 kDa), known
as TSPO, is a recognized biomarker
of neuroinflammation. Radioligands with PET accurately quantify TSPO
in neuroinflammatory conditions. However, the existence of three human
TSPO genotypes that show differential affinity to almost all useful
TSPO PET radioligands hampers such studies. There is an unmet need
for genotype-insensitive, high-affinity, and moderately lipophilic
TSPO ligands that may serve as leads for PET radioligand development.
To address this need, we varied the known high-affinity TSPO ligand
(l)-N,N-diethyl-2-methyl-3-(2-phenylquinolin-4-yl)propanamide
in its aryl scaffold, side chain tether, and pendant substituted amido
group while retaining an N-methyl group as a site
for labeling with carbon-11. From this effort, oxygen-tethered N-methyl-aryloxypropanamides emerged as new high-affinity
TSPO ligands with attenuated lipophilicity, including one example
with attractive properties for PET radioligand development, namely N-methyl-N-phenyl-2-{[2-(pyridin-2-yl)quinolin-4-yl]oxy}propanamide
(22a; rat Ki = 0.10 nM; human
TSPO genotypes Ki = 1.4 nM; clogD = 4.18).
Collapse
Affiliation(s)
- Chad Brouwer
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health , Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892, United States
| | | | | | | | | |
Collapse
|
75
|
Guerin GF, Schmoutz CD, Goeders NE. The extra-adrenal effects of metyrapone and oxazepam on ongoing cocaine self-administration. Brain Res 2014; 1575:45-54. [PMID: 24887642 DOI: 10.1016/j.brainres.2014.05.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 05/20/2014] [Accepted: 05/25/2014] [Indexed: 11/30/2022]
Abstract
Investigation of the role of stress in cocaine addiction has yielded an efficacious combination of metyrapone and oxazepam, hypothesized to decrease relapse to cocaine use by reducing stress-induced craving. However, recent data suggest an extra-adrenal role for metyrapone in mediating stress- and addiction-related behaviors. The interactions between the physiological stress response and cocaine self-administration were characterized in rodents utilizing surgical adrenalectomy and pharmacological treatment. Male Wistar rats were trained to self-administer cocaine (0.25mg/kg/infusion) and food pellets under a concurrent alternating fixed-ratio schedule of reinforcement. Surgical removal of the adrenal glands resulted in a significant decrease in plasma corticosterone and a consequent increase in ACTH, as expected. However, adrenalectomy did not significantly affect ongoing cocaine self-administration. Pretreatment with metyrapone, oxazepam and their combinations in intact rats resulted in a significant decrease in cocaine-reinforced responses. These same pharmacological treatments were still effective in reducing cocaine- and food-reinforced responding in adrenalectomized rats. The results of these experiments demonstrate that adrenally-derived steroids are not necessary to maintain cocaine-reinforced responding in cocaine-experienced rats. These results also demonstrate that metyrapone may produce effects outside of the adrenal gland, presumably in the central nervous system, to affect cocaine-related behaviors.
Collapse
Affiliation(s)
- Glenn F Guerin
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Box 33932, Shreveport, LA 71130, USA
| | - Christopher D Schmoutz
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Box 33932, Shreveport, LA 71130, USA.
| | - Nicholas E Goeders
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Box 33932, Shreveport, LA 71130, USA
| |
Collapse
|
76
|
Effect of meta-chlorobenzhydryl urea (m-ClBHU) on benzodiazepine receptor system in rat brain during experimental alcoholism. Bull Exp Biol Med 2014; 156:813-8. [PMID: 24824705 DOI: 10.1007/s10517-014-2458-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Indexed: 10/25/2022]
Abstract
Chronic alcohol intake induces neuroadaptive changes in benzodiazepine receptors modulating GABAA receptors that promote alcohol addiction. Analysis of benzodiazepine receptors in the brain of Wistar rats differing by alcohol preference has demonstrated that affinity of [(3)H]flunitrazepam and [(3)H]Ro5-4864 binding with membrane fraction was reduced, while the density of specific binding sites in the brain cortex of heavy drinking and low drinking rats was increased in comparison with rats nonpreferring alcohol. Administration of anticonvulsant meta-chlorobenzhydryl urea increased affinity of benzodiazepine receptors in the brain cortex of heavy drinking rats, which improved GABA neurotransmission in the brain of these animals and reduced alcohol consumption.
Collapse
|
77
|
Frye CA, Koonce CJ, Walf AA. Novel receptor targets for production and action of allopregnanolone in the central nervous system: a focus on pregnane xenobiotic receptor. Front Cell Neurosci 2014; 8:106. [PMID: 24782710 PMCID: PMC3988369 DOI: 10.3389/fncel.2014.00106] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/25/2014] [Indexed: 12/05/2022] Open
Abstract
Neurosteroids are cholesterol-based hormones that can be produced in the brain, independent of secretion from peripheral endocrine glands, such as the gonads and adrenals. A focus in our laboratory for over 25 years has been how production of the pregnane neurosteroid, allopregnanolone, is regulated and the novel (i.e., non steroid receptor) targets for steroid action for behavior. One endpoint of interest has been lordosis, the mating posture of female rodents. Allopregnanolone is necessary and sufficient for lordosis, and the brain circuitry underlying it, such as actions in the midbrain ventral tegmental area (VTA), has been well-characterized. Published and recent findings supporting a dynamic role of allopregnanolone are included in this review. First, contributions of ovarian and adrenal sources of precursors of allopregnanolone, and the requisite enzymatic actions for de novo production in the central nervous system will be discussed. Second, how allopregnanolone produced in the brain has actions on behavioral processes that are independent of binding to steroid receptors, but instead involve rapid modulatory actions via neurotransmitter targets (e.g., γ-amino butyric acid-GABA, N-methyl-D-aspartate- NMDA) will be reviewed. Third, a recent focus on characterizing the role of a promiscuous nuclear receptor, pregnane xenobiotic receptor (PXR), involved in cholesterol metabolism and expressed in the VTA, as a target for allopregnanolone and how this relates to both actions and production of allopregnanolone will be addressed. For example, allopregnanolone can bind PXR and knocking down expression of PXR in the midbrain VTA attenuates actions of allopregnanolone via NMDA and/or GABAA for lordosis. Our understanding of allopregnanolone’s actions in the VTA for lordosis has been extended to reveal the role of allopregnanolone for broader, clinically-relevant questions, such as neurodevelopmental processes, neuropsychiatric disorders, epilepsy, and aging.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, The University at Albany-SUNY Albany, NY, USA ; Department of Biological Sciences, The University at Albany-SUNY Albany, NY, USA ; The Centers for Neuroscience, The University at Albany-SUNY Albany, NY, USA ; Life Sciences Research, The University at Albany-SUNY Albany, NY, USA ; Department of Chemistry and Biochemistry, The University of Alaska-Fairbanks Fairbanks, AK, USA ; Institute of Arctic Biology, The University of Alaska-Fairbanks Fairbanks, AK, USA ; IDeA Network of Biomedical Excellence (INBRE), The University of Alaska-Fairbanks Fairbanks, AK, USA
| | - Carolyn J Koonce
- Department of Psychology, The University at Albany-SUNY Albany, NY, USA ; Institute of Arctic Biology, The University of Alaska-Fairbanks Fairbanks, AK, USA ; IDeA Network of Biomedical Excellence (INBRE), The University of Alaska-Fairbanks Fairbanks, AK, USA
| | - Alicia A Walf
- Department of Psychology, The University at Albany-SUNY Albany, NY, USA ; Institute of Arctic Biology, The University of Alaska-Fairbanks Fairbanks, AK, USA ; IDeA Network of Biomedical Excellence (INBRE), The University of Alaska-Fairbanks Fairbanks, AK, USA
| |
Collapse
|
78
|
Translocator protein 18 kDa negatively regulates inflammation in microglia. J Neuroimmune Pharmacol 2014; 9:424-37. [PMID: 24687172 DOI: 10.1007/s11481-014-9540-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 03/10/2014] [Indexed: 12/22/2022]
Abstract
Translocator protein 18 kDa (TSPO) is a mitochondrial outer membrane protein. Although TSPO expression is up-regulated during neuroinflammation, the role of TSPO and its signaling mechanisms in regulation of neuroinflammation remains to be elucidated at the molecular level. Here we demonstrate that TSPO is a negative regulator of neuroinflammation in microglia. Over-expression of TSPO decreased production of pro-inflammatory cytokines upon lipopolysaccharide treatment while TSPO knock-down had the opposite effect. Anti-inflammatory activity of TSPO is also supported by increased expression of alternatively activated M2 stage-related genes. These data suggest that up-regulation of TSPO level during neuroinflammation may be an adaptive response mechanism. We also provide the evidence that the repressive activity of TSPO is at least partially mediated by the attenuation of NF-κB activation. Neurodegenerative diseases are characterized by loss of specific subsets of neurons at the particular anatomical regions of the central nervous system. Cause of neuronal death is still largely unknown, but it is becoming clear that neuroinflammation plays a significant role in the pathophysiology of neurodegenerative diseases. Understanding the mechanisms underlying the inhibitory effects of TSPO on neuroinflammation can contribute to the therapeutic design for neurodegenerative diseases.
Collapse
|
79
|
Tiwari AK, Yui J, Fujinaga M, Kumata K, Shimoda Y, Yamasaki T, Xie L, Hatori A, Maeda J, Nengaki N, Zhang MR. Characterization of a novel acetamidobenzoxazolone-based PET ligand for translocator protein (18 kDa) imaging of neuroinflammation in the brain. J Neurochem 2014; 129:712-20. [PMID: 24484439 DOI: 10.1111/jnc.12670] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/11/2014] [Accepted: 01/29/2014] [Indexed: 01/20/2023]
Abstract
We developed the novel positron emission tomography (PET) ligand 2-[5-(4-[(11)C]methoxyphenyl)-2-oxo-1,3-benzoxazol-3(2H)-yl]-N-methyl-N-phenylacetamide ([(11)C]MBMP) for translocator protein (18 kDa, TSPO) imaging and evaluated its efficacy in ischemic rat brains. [(11)C]MBMP was synthesized by reacting desmethyl precursor (1) with [(11)C]CH3 I in radiochemical purity of ≥ 98% and specific activity of 85 ± 30 GBq/μmol (n = 18) at the end of synthesis. Biodistribution study on mice showed high accumulation of radioactivity in the TSPO-rich organs, e.g., the lungs, heart, kidneys, and adrenal glands. The metabolite analysis in mice brain homogenate showed 80.1 ± 2.7% intact [(11)C]MBMP at 60 min after injection. To determine the specific binding of [(11)C]MBMP with TSPO in the brain, in vitro autoradiography and PET studies were performed in an ischemic rat model. In vitro autoradiography indicated significantly increased binding on the ipsilateral side compared with that on the contralateral side of ischemic rat brains. This result was supported firmly by the contrast of radioactivity between the ipsilateral and contralateral sides in PET images. Displacement experiments with unlabelled MBMP or PK11195 minimized the difference in uptake between the two sides. In summary, [(11)C]MBMP is a potential PET imaging agent for TSPO and, consequently, for the up-regulation of microglia during neuroinflammation.
Collapse
Affiliation(s)
- Anjani K Tiwari
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan; Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Melcangi RC, Giatti S, Calabrese D, Pesaresi M, Cermenati G, Mitro N, Viviani B, Garcia-Segura LM, Caruso D. Levels and actions of progesterone and its metabolites in the nervous system during physiological and pathological conditions. Prog Neurobiol 2014; 113:56-69. [DOI: 10.1016/j.pneurobio.2013.07.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 07/17/2013] [Accepted: 07/31/2013] [Indexed: 12/12/2022]
|
81
|
Blood glutamate scavenging as a novel neuroprotective treatment for paraoxon intoxication. J Cereb Blood Flow Metab 2014; 34:221-7. [PMID: 24149933 PMCID: PMC3915200 DOI: 10.1038/jcbfm.2013.186] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/25/2013] [Accepted: 10/03/2013] [Indexed: 11/08/2022]
Abstract
Organophosphate-induced brain damage is an irreversible neuronal injury, likely because there is no pharmacological treatment to prevent or block secondary damage processes. The presence of free glutamate (Glu) in the brain has a substantial role in the propagation and maintenance of organophosphate-induced seizures, thus contributing to the secondary brain damage. This report describes for the first time the ability of blood glutamate scavengers (BGS) oxaloacetic acid in combination with glutamate oxaloacetate transaminase to reduce the neuronal damage in an animal model of paraoxon (PO) intoxication. Our method causes a rapid decrease of blood Glu levels and creates a gradient that leads to the efflux of the excess brain Glu into the blood, thus reducing neurotoxicity. We demonstrated that BGS treatment significantly prevented the peripheral benzodiazepine receptor (PBR) density elevation, after PO exposure. Furthermore, we showed that BGS was able to rescue neurons in the piriform cortex of the treated rats. In conclusion, these results suggest that treatment with BGS has a neuroprotective effect in the PO intoxication. This is the first time that this approach is used in PO intoxication and it may be of high clinical significance for the future treatment of the secondary neurologic damage post organophosphates exposure.
Collapse
|
82
|
Melcangi RC, Garcia-Segura LM. Therapeutic approaches to peripheral neuropathy based on neuroactive steroids. Expert Rev Neurother 2014; 6:1121-5. [PMID: 16893339 DOI: 10.1586/14737175.6.8.1121] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
'...a possible therapeutic approach for peripheral neuropathy might be represented by the treatment with neuroactive steroids themselves, with molecules able to induce their in situ synthesis or with molecules able to interact with their receptors.'
Collapse
|
83
|
Samuelson LE, Anderson BM, Bai M, Dukes MJ, Hunt CR, Casey JD, Han Z, Papadopoulos V, Bornhop DJ. A self-internalizing mitochondrial TSPO targeting imaging probe for fluorescence, MRI and EM. RSC Adv 2014; 4:9003-9011. [PMID: 32051760 DOI: 10.1039/c3ra47161f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Advances in probes for cellular imaging have driven discoveries in biology and medicine. Primarily, antibodies and small molecules have been made for contrast enhancement of specific proteins. The development of new dendrimer-based tools offers opportunities to tune cellular internalization and targeting, image multiple modalities in the same molecule and explore therapeutics. The translocator protein (TSPO) offers an ideal target to develop dendrimer tools because it is well characterized and implicated in a number of disease states. The TSPO-targeted dendrimers reported here, primarily ClPhIQ-PAMAM-Gd-Liss, are cell membrane permeable nanoparticles that enable labeling of TSPO and provide contrast in fluorescence, electron microscopy and magnetic resonance imaging. The molecular binding affinity for TSPO was found to be 0.51 μM, 3 times greater than the monomeric agents previously demonstrated in our laboratory. The relaxivity per Gd3+ of the ClPhIQ23-PAMAM-Gd18 dendrimer was 7.7 and 8.0 mM-1 s-1 for r 1 and r 2 respectively, approximately double that of the clinically used monomeric Gd3+ chelates. In vitro studies confirmed molecular selectively for labeling TSPO in the mitochondria of C6 rat glioma and MDA-MB-231 cell lines. Fluorescence co-registration with Mitotracker Green® and increased contrast of osmium-staining in electron microscopy confirmed mitochondrial labeling of these TSPO-targeted agents. Taken collectively these experiments demonstrate the versatility of conjugation of our PAMAM dendrimeric chemistry to allow multi-modality agents to be prepared. These agents target organelles and use complementary imaging modalities in vitro, potentially allowing disease mechanism studies with high sensitivity and high resolution techniques.
Collapse
Affiliation(s)
- Lynn E Samuelson
- Department of Chemistry, The Vanderbilt Institute for Chemical Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University, VU Station B 351822 Nashville, Tennessee 37235-1822, USA
| | - Bernard M Anderson
- Department of Chemistry, The Vanderbilt Institute for Chemical Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University, VU Station B 351822 Nashville, Tennessee 37235-1822, USA
| | - Mingfeng Bai
- Department of Chemistry, The Vanderbilt Institute for Chemical Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University, VU Station B 351822 Nashville, Tennessee 37235-1822, USA
| | - Madeline J Dukes
- Department of Chemistry, The Vanderbilt Institute for Chemical Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University, VU Station B 351822 Nashville, Tennessee 37235-1822, USA
| | - Colette R Hunt
- Department of Chemistry, The Vanderbilt Institute for Chemical Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University, VU Station B 351822 Nashville, Tennessee 37235-1822, USA
| | - Jonathon D Casey
- Department of Chemistry, The Vanderbilt Institute for Chemical Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University, VU Station B 351822 Nashville, Tennessee 37235-1822, USA
| | - Zeqiu Han
- Department of Biochemistry &Molecular and Ceilular Biology, Georgetown University Medical Center, BSB Room 315, 3900 Reservoir Road NW, Washington, DC 20057, USA
| | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre, Departments of Medicine, Biochemistry, and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Darryl J Bornhop
- Department of Chemistry, The Vanderbilt Institute for Chemical Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University, VU Station B 351822 Nashville, Tennessee 37235-1822, USA
| |
Collapse
|
84
|
Frye CA, Koonce CJ, Walf AA. Pregnane xenobiotic receptors and membrane progestin receptors: role in neurosteroid-mediated motivated behaviours. J Neuroendocrinol 2013; 25:1002-11. [PMID: 24028379 PMCID: PMC3943623 DOI: 10.1111/jne.12105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 08/23/2013] [Accepted: 09/05/2013] [Indexed: 10/26/2022]
Abstract
Progestogens have actions in the midbrain ventral tegmental area (VTA) to mediate motivated behaviours, such as those involved in reproductive processes, among female rodents. In the VTA, the formation and actions of one progestogen, 5α-pregnan-3α-ol-20-one (3α,5α-THP), are necessary and sufficient to facilitate sexual responding (measured by lordosis) of female rodents. Although 3α,5α-THP can be produced after metabolism of ovarian progesterone, 3α,5α-THP is also a neurosteroid produced de novo in brain regions, such as the VTA. There can be dynamic changes in 3α,5α-THP production associated with behavioural experience, such as mating. Questions of interest are the sources and targets of 3α,5α-THP. Regarding sources, the pregnane xenobiotic receptor (PXR) may be a novel factor involved in 3α,5α-THP metabolism in the VTA (as well as a direct target of 3α,5α-THP). We have identified PXR in the midbrain of female rats, and manipulating PXR in this region reduces 3α,5α-THP synthesis and alters lordosis, as well as affective and social behaviours. Regarding targets, recent studies have focused on the role of membrane progestin receptors (mPRs). We have analysed the expression of two of the common forms of these receptors (mPRα/paqr7 and mPRβ/paqr8) in female rats. The expression of mPRα was observed in peripheral tissues and brain areas, including the hypothalamus and midbrain. The expression of mPRβ was only observed in brain tissues and was abundant in the midbrain and hypothalamus. To our knowledge, studies of these receptors in mammalian models have been limited to expression and regulation, instead of function. One question that was addressed was the functional effects of progestogens via mPRα and mPRβ in the midbrain of hormone-primed rats for lordosis. Studies to date suggest that mPRβ may be an important target of progestogens in the VTA for lordosis. Taken together, the result of these studies demonstrate that PXR is involved in the production of 3α,5α-THP in the midbrain VTA. Moreover, mPRs may be a target for the actions of progestogens in the VTA for lordosis.
Collapse
Affiliation(s)
- C A Frye
- Department of Chemistry, The University of Alaska-Fairbanks, Fairbanks, AK, USA; Institute of Artic Biology, The University of Alaska-Fairbanks, Fairbanks, AK, USA; IDeA Network of Biomedical Excellence (INBRE), The University of Alaska-Fairbanks, Fairbanks, AK, USA
| | | | | |
Collapse
|
85
|
Fukaya T, Ishiyama T, Baba S, Masumoto S. Identification of a Novel Benzoxazolone Derivative as a Selective, Orally Active 18 kDa Translocator Protein (TSPO) Ligand. J Med Chem 2013; 56:8191-5. [DOI: 10.1021/jm401325r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takayuki Fukaya
- Drug Research Division, Dainippon Sumitomo Pharma Co., Ltd., 33-94 Enoki-cho, Suita, Osaka 564-0053, Japan
| | - Takeo Ishiyama
- Drug Research Division, Dainippon Sumitomo Pharma Co., Ltd., 33-94 Enoki-cho, Suita, Osaka 564-0053, Japan
| | - Satoko Baba
- Drug Research Division, Dainippon Sumitomo Pharma Co., Ltd., 33-94 Enoki-cho, Suita, Osaka 564-0053, Japan
| | - Shuji Masumoto
- Drug Research Division, Dainippon Sumitomo Pharma Co., Ltd., 33-94 Enoki-cho, Suita, Osaka 564-0053, Japan
| |
Collapse
|
86
|
Zhang LM, Zhao N, Guo WZ, Jin ZL, Qiu ZK, Chen HX, Xue R, Zhang YZ, Yang RF, Li YF. Antidepressant-like and anxiolytic-like effects of YL-IPA08, a potent ligand for the translocator protein (18 kDa). Neuropharmacology 2013; 81:116-25. [PMID: 24067925 DOI: 10.1016/j.neuropharm.2013.09.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 09/04/2013] [Accepted: 09/09/2013] [Indexed: 11/16/2022]
Abstract
It has been demonstrated that the translocator protein (18 kDa) (TSPO) plays an important role in stress-response and stress-related disorders, such as anxiety and depression, by affecting the production of neurosteroids, supporting the potential use of selective TSPO ligands as antidepressant or anxiolytic drugs. N-ethyl-N-(2-pyridinylmethyl)- 2-(3,4-ichlorophenyl)- 7-methylimidazo [1,2-a] pyridine-3-acetamide hydrochloride (YL-IPA08), a novel TSPO ligand that has been synthesized at our institute, exerted a high affinity for TSPO in a crude mitochondrial fraction prepared from rat cerebellum but exhibited only a negligible affinity for the central benzodiazepine receptor. As expected, YL-IPA08 incubation with the cultured rat astrocyte cells increased the pregnenolone and progesterone concentration from the cultured medium. Moreover, YL-IPA08 produced significant antidepressant-like and anxiolytic-like effects in a series of mouse and rat behavior models. In addition, the antidepressant-like behavior of YL-IPA08 was totally blocked by the TSPO antagonist PK11195 in a tail suspension test, and the anxiolytic effect was blocked by PK11195 but not by a CBR antagonist in the elevated plus-maze test. Furthermore, compared with the CBR agonist diazepam, YL-IPA08 had no myorelaxant effects and did not affect the motor coordination, memory or hexobarbitone-induced sleep in mice. Overall, these results indicate that YL-IPA08 is a more potent and selective TSPO ligand, which exerts antidepressant-like and anxiolytic-like effects on behaviors that are mediated by TSPO but does not cause the side effects that are typically associated with conventional benzodiazepines.
Collapse
Affiliation(s)
- Li-Ming Zhang
- Department of New Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, PR China
| | - Nan Zhao
- Department of New Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, PR China
| | - Wen-Zhi Guo
- Department of Anesthesiology, General Hospital of Beijing Military Command, Beijing 100007, China
| | - Zeng-Liang Jin
- Department of New Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, PR China
| | - Zhi-Kun Qiu
- Department of New Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, PR China; Department of Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, 1023 Shatainan Road, Guangzhou, PR China
| | - Hong-Xia Chen
- Department of New Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, PR China
| | - Rui Xue
- Department of New Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, PR China
| | - You-Zhi Zhang
- Department of New Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, PR China
| | - Ri-Fang Yang
- Department of Medicinal Chemistry, Beijing Institute of Pharmacology and Toxicology, Beijing, PR China
| | - Yun-Feng Li
- Department of New Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, PR China.
| |
Collapse
|
87
|
Suridjan I, Rusjan PM, Voineskos AN, Selvanathan T, Setiawan E, Strafella AP, Wilson AA, Meyer JH, Houle S, Mizrahi R. Neuroinflammation in healthy aging: a PET study using a novel Translocator Protein 18kDa (TSPO) radioligand, [(18)F]-FEPPA. Neuroimage 2013; 84:868-75. [PMID: 24064066 DOI: 10.1016/j.neuroimage.2013.09.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/05/2013] [Accepted: 09/12/2013] [Indexed: 11/18/2022] Open
Abstract
One of the cellular markers of neuroinflammation is increased microglia activation, characterized by overexpression of mitochondrial 18kDa Translocator Protein (TSPO). TSPO expression can be quantified in-vivo using the positron emission tomography (PET) radioligand [(18)F]-FEPPA. This study examined microglial activation as measured with [(18)F]-FEPPA PET across the adult lifespan in a group of healthy volunteers. We performed genotyping for the rs6971 TS.PO gene polymorphism to control for the known variability in binding affinity. Thirty-three healthy volunteers (age range: 19-82years; 22 high affinity binders (HAB), 11 mixed affinity binders (MAB)) underwent [(18)F]-FEPPA PET scans, acquired on the High Resolution Research Tomograph (HRRT) and analyzed using a 2-tissue compartment model. Regression analyses were performed to examine the effect of age adjusting for genetic status on [(18)F]-FEPPA total distribution volumes (VT) in the hippocampus, temporal, and prefrontal cortex. We found no significant effect of age on [(18)F]-FEPPA VT (F (1,30)=0.918; p=0.346), and a significant effect of genetic polymorphism (F (1,30)=8.767; p=0.006). This is the first in-vivo study to evaluate age-related changes in TSPO binding, using the new generation TSPO radioligands. Increased neuroinflammation, as measured with [(18)F]-FEPPA PET was not associated with normal aging, suggesting that healthy elderly individuals may serve as useful benchmark against patients with neurodegenerative disorders where neuroinflammation may be present.
Collapse
Affiliation(s)
- I Suridjan
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, M5T 1R8, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Fujita M, Mahanty S, Zoghbi SS, Ferraris Araneta MD, Hong J, Pike VW, Innis RB, Nash TE. PET reveals inflammation around calcified Taenia solium granulomas with perilesional edema. PLoS One 2013; 8:e74052. [PMID: 24058514 PMCID: PMC3773048 DOI: 10.1371/journal.pone.0074052] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/25/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Neurocysticercosis, an infection with the larval form of the tapeworm, Taeniasolium, is the cause of 29% of epilepsy in endemic regions. Epilepsy in this population is mostly associated with calcified granulomas; at the time of seizure recurrence 50% of those with calcifications demonstrate transient surrounding perilesional edema. Whether edema is consequence of the seizure, or a result of host inflammation directed against parasite antigens or other processes is unknown. To investigate whether perilesional edema is due to inflammation, we imaged a marker of neuroinflammation, translocater protein (TSPO), using positron emission tomography (PET) and the selective ligand (11)C-PBR28. METHODS In nine patients with perilesional edema, degenerating cyst or both, PET findings were compared to the corresponding magnetic resonance images. Degenerating cysts were also studied because unlike perilesional edema, degenerating cysts are known to have inflammation. In three of the nine patients, changes in (11)C-PBR28 binding were also studied over time. (11)C-PBR28 binding was compared to the contralateral un-affected region. RESULTS (11)C-PBR28 binding increased by a mean of 13% in perilesional edema or degenerating cysts (P = 0.0005, n = 13 in nine patients). Among these 13 lesions, perilesional edema (n=10) showed a slightly smaller increase of 10% compared to the contralateral side (P = 0.005) than the three degenerating cysts. In five lesions with perilesional edema in which repeated measurements of (11)C-PBR28 binding were done, increased binding lasted for 2-9 months. CONCLUSIONS Increased TSPO in perilesional edema indicates an inflammatory etiology. The long duration of increased TSPO binding after resolution of the original perilesional edema and the pattern of periodic episodes is consistent with intermittent exacerbation from a continued baseline presence of low level inflammation. Novel anti-inflammatory measures may be useful in the prevention or treatment of seizures in this population.
Collapse
Affiliation(s)
- Masahiro Fujita
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health. Bethesda, Maryland, United States of America
- * E-mail:
| | - Siddhartha Mahanty
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sami S. Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health. Bethesda, Maryland, United States of America
| | - Maria Desiree Ferraris Araneta
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health. Bethesda, Maryland, United States of America
| | - Jinsoo Hong
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health. Bethesda, Maryland, United States of America
| | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health. Bethesda, Maryland, United States of America
| | - Robert B. Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health. Bethesda, Maryland, United States of America
| | - Theodore E. Nash
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
89
|
Abstract
Ligands of the translocator protein (TSPO) elicit pleiotropic neuroprotective effects that represent emerging treatment strategies for several neurodegenerative conditions. To investigate the potential of TSPO as a therapeutic target for Alzheimer's disease (AD), the current study assessed the effects of the TSPO ligand Ro5-4864 on the development of neuropathology in 3xTgAD mice. The effects of the TSPO ligand on neurosteroidogenesis and AD-related neuropathology, including β-amyloid accumulation, gliosis, and behavioral impairment, were examined under both early intervention (7-month-old young-adult male mice with low pathology) and treatment (24-month-old, aged male mice with advanced neuropathology) conditions. Ro5-4864 treatment not only effectively attenuated development of neuropathology and behavioral impairment in young-adult mice but also reversed these indices in aged 3xTgAD mice. Reduced levels of soluble β-amyloid were also observed by the combination of TSPO ligands Ro5-4864 and PK11195 in nontransgenic mice. These findings suggest that TSPO is a promising target for the development of pleiotropic treatment strategies for the management of AD.
Collapse
|
90
|
Joshi S, Rajasekaran K, Kapur J. GABAergic transmission in temporal lobe epilepsy: the role of neurosteroids. Exp Neurol 2013; 244:36-42. [PMID: 22101060 PMCID: PMC3319002 DOI: 10.1016/j.expneurol.2011.10.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 10/21/2011] [Accepted: 10/28/2011] [Indexed: 01/21/2023]
Abstract
Modification of GABAergic inhibition is an intensely investigated hypothesis guiding research into mechanisms underlying temporal lobe epilepsy (TLE). Seizures can be initiated by blocking γ amino butyric acid type A (GABAA receptors, GABARs), which mediate fast synaptic inhibition in the brain, and controlled by drugs that enhance their function. Derivatives of steroid hormones called neurosteroids are natural substances that physiologically enhance GABAR function and suppress seizures. GABAR structure, function, expression, assembly, and pharmacological properties are changed in the hippocampus of epileptic animals. These alterations render GABARs less sensitive to neurosteroid modulation, which may contribute to seizure susceptibility. Plasticity of GABARs could play a role in periodic exacerbation of seizures experienced by women with epilepsy, commonly referred to as catamenial epilepsy.
Collapse
Affiliation(s)
- Suchitra Joshi
- Department of Neurology, University of Virginia Health Sciences Center, Box 800394, Charlottesville, VA 22908-0394, USA
| | | | | |
Collapse
|
91
|
Zhang X, Paule MG, Wang C, Slikker W. Application of microPET imaging approaches in the study of pediatric anesthetic-induced neuronal toxicity. J Appl Toxicol 2013; 33:861-8. [DOI: 10.1002/jat.2857] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 12/14/2022]
Affiliation(s)
- Xuan Zhang
- Division of Neurotoxicology; National Center for Toxicological Research (NCTR)/FDA; Jefferson; AR; USA
| | - Merle G. Paule
- Division of Neurotoxicology; National Center for Toxicological Research (NCTR)/FDA; Jefferson; AR; USA
| | - Cheng Wang
- Division of Neurotoxicology; National Center for Toxicological Research (NCTR)/FDA; Jefferson; AR; USA
| | - William Slikker
- Office of the Director; National Center for Toxicological Research (NCTR)/FDA; Jefferson; AR; USA
| |
Collapse
|
92
|
Mattner F, Staykova M, Berghofer P, Wong HJ, Fordham S, Callaghan P, Jackson T, Pham T, Gregoire MC, Zahra D, Rahardjo G, Linares D, Katsifis A. Central nervous system expression and PET imaging of the translocator protein in relapsing-remitting experimental autoimmune encephalomyelitis. J Nucl Med 2013; 54:291-8. [PMID: 23321458 DOI: 10.2967/jnumed.112.108894] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Glial neuroinflammation is associated with the development and progression of multiple sclerosis. PET imaging offers a unique opportunity to evaluate neuroinflammatory processes longitudinally in a noninvasive and clinically translational manner. (18)F-PBR111 is a newly developed PET radiopharmaceutical with high affinity and selectivity for the translocator protein (TSPO), expressed on activated glia. This study aimed to investigate neuroinflammation at different phases of relapsing-remitting (RR) experimental autoimmune encephalomyelitis (EAE) in the brains of SJL/J mice by postmortem histologic analysis and in vivo by PET imaging with (18)F-PBR111. METHODS RR EAE was induced by immunization with PLP(139-151) peptide in complete Freund's adjuvant. Naive female SJL/J mice and mice immunized with saline-complete Freund's adjuvant were used as controls. The biodistribution of (18)F-PBR111 was measured in 13 areas of the central nervous system and compared with PET imaging results during different phases of RR EAE. The extents of TSPO expression and glial activation were assessed with immunohistochemistry, immunofluorescence, and a real-time polymerase chain reaction. RESULTS There was significant TSPO expression in all of the central nervous system areas studied at the peak of the first clinical episode and, importantly, at the preclinical stage. In contrast, only a few TSPO-positive cells were observed at the second episode. At the third episode, there was again an increase in TSPO expression. TSPO expression was associated with microglial cells or macrophages without obvious astrocyte labeling. The dynamics of (18)F-PBR111 uptake in the brain, as measured by in vivo PET imaging and biodistribution, followed the pattern of TSPO expression during RR EAE. CONCLUSION PET imaging with the TSPO ligand (18)F-PBR111 clearly reflected the dynamics of microglial activation in the SJL/J mouse model of RR EAE. The results are the first to highlight the discrepancy between the clinical symptoms of EAE and TSPO expression in the brain, as measured by PET imaging at the peaks of various EAE episodes. The results suggest a significant role for PET imaging investigations of neuroinflammation in multiple sclerosis and allow for in vivo follow-up of antiinflammatory treatment strategies.
Collapse
Affiliation(s)
- Filomena Mattner
- Life Sciences Division, Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Zhang X, Paule MG, Newport GD, Liu F, Callicott R, Liu S, Berridge MS, Apana SM, Slikker W, Wang C. MicroPET/CT Imaging of [18F]-FEPPA in the Nonhuman Primate: A Potential Biomarker of Pathogenic Processes Associated with Anesthetic-Induced Neurotoxicity. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/261640] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Background. The inhalation anesthetics nitrous oxide (N2O) and isoflurane (ISO) are used in surgical procedures for human infants. Injury to the central nervous system is often accompanied by localization of activated microglia or astrocytosis at the site of injury. The tracer that targets to the peripheral benzodiazepine receptor (PBR), [18F]N-2-(2-fluoroethoxy)benzyl)-N-(4-phenoxypyridin-3-yl)acetamide ([18F]-FEPPA), has been reported as a sensitive biomarker for the detection of neuronal damage/inflammation. Methods. On postnatal day (PND) 5 or 6 rhesus monkey neonates were exposed to a mixture of N2O/oxygen and ISO for 8 hours and control monkeys were exposed to room air. MicroPET/CT images with [18F]-FEPPA were obtained for each monkey 1 day, one week, three weeks, and 6 months after the anesthetic exposure. Results. The radiotracer quickly distributed into the brains of both treated and control monkeys on all scan days. One day after anesthetic exposure, the uptake of [18F]-FEPPA was significantly increased in the temporal lobe. One week after exposure, the uptake of [18F]-FEPPA in the frontal lobe of treated animals was significantly greater than that in controls. Conclusions. These findings suggest that microPET imaging is capable of dynamic detection of inhaled anesthetic-induced brain damage in different brain regions of the nonhuman primate.
Collapse
Affiliation(s)
- Xuan Zhang
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Merle G. Paule
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Glenn D. Newport
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Fang Liu
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Ralph Callicott
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Shuliang Liu
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Marc S. Berridge
- 3D Imaging, LLC, Little Rock, AR 72113, USA
- University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Scott M. Apana
- 3D Imaging, LLC, Little Rock, AR 72113, USA
- University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - William Slikker
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Cheng Wang
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
94
|
Peyronneau MA, Saba W, Goutal S, Damont A, Dollé F, Kassiou M, Bottlaender M, Valette H. Metabolism and quantification of [(18)F]DPA-714, a new TSPO positron emission tomography radioligand. Drug Metab Dispos 2012; 41:122-31. [PMID: 23065531 DOI: 10.1124/dmd.112.046342] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
[(18)F]DPA-714 [N,N-diethyl-2-(2-(4-(2[(18)F]-fluoroethoxy)phenyl)5,7dimethylpyrazolo[1,5a]pyrimidin-3-yl)acetamide] is a new radioligand currently used for imaging the 18-kDa translocator protein in animal models of neuroinflammation and recently in humans. The biodistribution by positron emission tomography (PET) in baboons and the in vitro and in vivo metabolism of [(18)F]DPA-714 were investigated in rats, baboons, and humans. Whole-body PET experiments showed a high uptake of radioactivity in the kidneys, heart, liver, and gallbladder. The liver was a major route of elimination of [(18)F]DPA-714, and urine was a route of excretion for radiometabolites. In rat and baboon plasma, high-performance liquid chromatography (HPLC) metabolic profiles showed three major radiometabolites accounting for 85% and 89% of total radioactivity at 120 minutes after injection, respectively. Rat microsomal incubations and analyses by liquid chromatography-mass spectrometry (LC-MS) identified seven metabolites, characterized as O-deethyl, hydroxyl, and N-deethyl derivatives of nonradioactive DPA-714, two of them having the same retention times than those detected in rat and baboon plasma. The third plasma radiometabolite was suggested to be a carboxylic acid compound that accounted for 15% of the rat brain radioactivity. O-deethylation led to a nonradioactive compound and [(18)F]fluoroacetic acid. Human CYP3A4 and CYP2D6 were shown to be involved in the oxidation of the radioligand. Finally an easy, rapid, and accurate method--indispensable for PET quantitative clinical studies--for quantifying [(18)F]DPA-714 by solid-phase extraction was developed. In vivo, an extensive metabolism of [(18)F]DPA-714 was observed in rats and baboons, identified as [(18)F]deethyl, [(18)F]hydroxyl, and [(18)F]carboxylic acid derivatives of [(18)F]DPA-714. The main route of excretion of the unchanged radioligand in baboons was hepatobiliary while that of radiometabolites was the urinary system.
Collapse
Affiliation(s)
- Marie-Anne Peyronneau
- CEA, DSV, I2BM, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91406 Orsay, France.
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Abstract
Hepatic encephalopathy (HE) is a serious neuropsychiatric complication of both acute and chronic liver diseases. Symptoms of HE can include confusion, disorientation, poor coordination, and even coma. The pathogenesis of HE was thought to involve the increase in blood levels of ammonia, which increases the intracellular levels of glutamine, promotes calcium influx and initiates oxidative stress, destroys the function of mitochondria, disrupts energy metabolism and causes inflammation, destroys blood brain barrier, increases the water permeability of brain endothelial cells and astrocytes, and then induces brain edema. While, inflammation, in turn, raises the ammonia levels in the brain, which is toxic to the central nervous system. Manganese is an important component which participates in the above processes. A general consensus exists that the synergistic effects of excess ammonia and inflammation cause astrocyte swelling and cerebral edema; however, the precise molecular mechanisms that lead to these morphological changes in the brain are unclear. This article will summarize the research progress in understanding the pathogenesis of HE.
Collapse
|
96
|
Design, synthesis and structure–activity relationships of novel benzoxazolone derivatives as 18kDa translocator protein (TSPO) ligands. Bioorg Med Chem 2012; 20:5568-82. [DOI: 10.1016/j.bmc.2012.07.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 07/13/2012] [Accepted: 07/13/2012] [Indexed: 11/18/2022]
|
97
|
Alzheimer's disease, oestrogen and mitochondria: an ambiguous relationship. Mol Neurobiol 2012; 46:151-60. [PMID: 22678467 PMCID: PMC3443477 DOI: 10.1007/s12035-012-8281-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/21/2012] [Indexed: 11/02/2022]
Abstract
Hormonal deficit in post-menopausal women has been proposed to be one risk factor in Alzheimer's disease (AD) since two thirds of AD patients are women. However, large treatment trials showed negative effects of long-term treatment with oestrogens in older women. Thus, oestrogen treatment after menopause is still under debate, and several hypotheses trying to explain the failure in outcome are under discussion. Concurrently, it was shown that amyloid-beta (Aβ) peptide, the main constituent of senile plaques, as well as abnormally hyperphosphorylated tau protein, the main component of neurofibrillary tangles, can modulate the level of neurosteroids which notably represent neuroactive steroids synthetized within the nervous system, independently of peripheral endocrine glands. In this review, we summarize the role of neurosteroids especially that of oestrogen in AD and discuss their potentially neuroprotective effects with specific regard to the role of oestrogens on the maintenance and function of mitochondria, important organelles which are highly vulnerable to Aβ- and tau-induced toxicity. We also discuss the role of Aβ-binding alcohol dehydrogenase (ABAD), a mitochondrial enzyme able to bind Aβ peptide thereby modifying mitochondrial function as well as oestradiol levels suggesting possible modes of interaction between the three, and the potential therapeutic implication of inhibiting Aβ-ABAD interaction.
Collapse
|
98
|
Venneti S, Lopresti BJ, Wiley CA. Molecular imaging of microglia/macrophages in the brain. Glia 2012; 61:10-23. [PMID: 22615180 DOI: 10.1002/glia.22357] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 04/30/2012] [Indexed: 01/08/2023]
Abstract
Neuroinflammation perpetuates neuronal damage in many neurological disorders. Activation of resident microglia and infiltration of monocytes/macrophages contributes to neuronal injury and synaptic damage. Noninvasive imaging of these cells in vivo provides a means to monitor progression of disease as well as assess efficacies of potential therapeutics. This review provides an overview of positron emission tomography (PET) and magnetic resonance (MR) imaging of microglia/macrophages in the brain. We describe the rationale behind PET imaging of microglia/macrophages with ligands that bind to translocator protein-18 kDa (TSPO). We discuss the prototype TSPO radioligand [(11)C]PK11195, its limitations, and the development of newer TSPO ligands as PET imaging agents. PET imaging agents for targets other than TSPO are emerging, and we outline the potential of these agents for imaging brain microglia/macrophage activity in vivo. Finally, we briefly summarize advances in MR imaging of microglia/macrophages using iron oxide nanoparticles and ultra-small super paramagnetic particles that are phagocytosed. Despite many technical advances, more sensitive agents are required to be useful indicators of neuroinflammation in brain.
Collapse
Affiliation(s)
- Sriram Venneti
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.
| | | | | |
Collapse
|
99
|
Mitro N, Cermenati G, Giatti S, Abbiati F, Pesaresi M, Calabrese D, Garcia-Segura LM, Caruso D, Melcangi RC. LXR and TSPO as new therapeutic targets to increase the levels of neuroactive steroids in the central nervous system of diabetic animals. Neurochem Int 2012; 60:616-21. [PMID: 22406419 DOI: 10.1016/j.neuint.2012.02.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 01/18/2012] [Accepted: 02/21/2012] [Indexed: 01/21/2023]
Abstract
Neuroactive steroid levels are decreased in the central nervous system (CNS) of streptozotocin (STZ) diabetic rats. In agreement, they exert protective effects in this experimental model, counteracting degenerative events occurring in the CNS. Therefore, an interesting therapeutic strategy could be to increase their levels directly in the CNS. In this study we have evaluated whether activation of translocator protein-18kDa (TSPO) or liver X receptors (LXRs) may affect the levels of neuroactive steroids present in the CNS of diabetic and non-diabetic animals. We observed that the treatment with either Ro5-4864 (i.e., a ligand of TSPO) or with GW3965 (i.e., a ligand of LXRs) induced an increase of neuroactive steroids in the spinal cord, the cerebellum and the cerebral cortex of STZ-rats, but not in the CNS of non-pathological animals. Interestingly, the pattern of induction was different among the three CNS areas analyzed and between the two pharmacological tools. In particular, the activation of LXRs might represent a promising neuroprotective strategy, because the treatment with GW3965, at variance to Ro5-4864 treatment, did not induce significant changes in the plasma levels of neuroactive steroids. This suggests that activation of LXRs may selectively increase the CNS levels of neuroactive steroids avoiding possible endocrine side effects exerted by the systemic treatment with these molecules. Interestingly GW3965 treatment induced an increase of dihydroprogesterone in the spinal cord of diabetic animals in association with an increase of myelin basic protein expression. Thus we demonstrated that LXR activation was able to rescue CNS symptoms of diabetes.
Collapse
Affiliation(s)
- Nico Mitro
- Dept. of Pharmacological Sciences, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Girard C, Liu S, Adams D, Lacroix C, Sinéus M, Boucher C, Papadopoulos V, Rupprecht R, Schumacher M, Groyer G. Axonal regeneration and neuroinflammation: roles for the translocator protein 18 kDa. J Neuroendocrinol 2012; 24:71-81. [PMID: 21951109 DOI: 10.1111/j.1365-2826.2011.02215.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
After a traumatic injury of the nervous system or in the course of a neurodegenerative disease, the speed of axonal regeneration and the control of the inflammatory response are fundamental parameters of functional recovery. Spontaneous regeneration takes place in the peripheral nervous system, although the process is slow and often incomplete. There is currently no efficient treatment for enhancing axonal regeneration, including elongation speed and functional reinnervation. Ligands of the translocator protein 18 kDa (TSPO) are currently under investigation as therapeutic means for promoting neuroprotection, accelerating axonal regeneration and modulating inflammation. The mechanisms of action of TSPO ligands involve the regulation of mitochondrial activity and the stimulation of steroid biosynthesis. In the peripheral nervous system, TSPO expression is strongly up-regulated after injury, primarily in Schwann cells and macrophages, but also in neurones. Its levels return to low control values when nerve regeneration is completed, strongly supporting an important role in regenerative processes. We have demonstrated a role for the benzoxazine etifoxine in promoting axonal regeneration in the lesioned rat sciatic nerve, either after freeze-injury or complete transection. Etifoxine is already clinically approved for the treatment of anxiety disorders (Stresam(®) , Biocodex, Gentilly, France). Daily treatment with etifoxine resulted in a two-fold acceleration in axonal regeneration, as well as in a marked improvement of both the speed and quality of functional recovery. The neuroregenerative effects of etifoxine are likely to be mediated by TSPO, and they may involve an increased synthesis of pregnenolone and its metabolites, such as progesterone. After freeze-injury of the sciatic nerve, administration of etifoxine also strongly reduced the number of activated macrophages and decreased the production of the inflammatory cytokines tumour necrosis factor-α and interleukin-1β. Thus, this drug offers promise for the treatment of peripheral nerve injuries and axonal neuropathies. It may also be used as a lead compound in the development of new TSPO-based neuroprotective approaches.
Collapse
Affiliation(s)
- C Girard
- UMR788 Inserm and University Paris-Sud 11, Kremlin-Bicêtre, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|