51
|
Li PL, Liu H, Chen GP, Li L, Shi HJ, Nie HY, Liu Z, Hu YF, Yang J, Zhang P, Zhang XJ, She ZG, Li H, Huang Z, Zhu L. STEAP3 (Six-Transmembrane Epithelial Antigen of Prostate 3) Inhibits Pathological Cardiac Hypertrophy. Hypertension 2020; 76:1219-1230. [PMID: 32862709 DOI: 10.1161/hypertensionaha.120.14752] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pathological cardiac hypertrophy is one of the major predictors and inducers of heart failure, the end stage of various cardiovascular diseases. However, the molecular mechanisms underlying pathogenesis of pathological cardiac hypertrophy remain largely unknown. Here, we provided the first evidence that STEAP3 (Six-Transmembrane Epithelial Antigen of Prostate 3) is a key negative regulator of this disease. We found that the expression of STEAP3 was reduced in pressure overload-induced hypertrophic hearts and phenylephrine-induced hypertrophic cardiomyocytes. In a transverse aortic constriction-triggered mouse cardiac hypertrophy model, STEAP3 deficiency remarkably deteriorated cardiac hypertrophy and fibrosis, whereas the opposite phenotype was observed in the cardiomyocyte-specific STEAP3 overexpressing mice. Accordingly, STEAP3 significantly mitigated phenylephrine-induced cell enlargement in primary neonatal rat cardiomyocytes. Mechanistically, via RNA-seq and immunoprecipitation-mass screening, we demonstrated that STEAP3 directly bond to Rho family small GTPase 1 and suppressed the activation of downstream mitogen-activated protein kinase-extracellular signal-regulated kinase signaling cascade. Remarkably, the antihypertrophic effect of STEAP3 was largely blocked by overexpression of constitutively active mutant Rac1 (G12V). Our study indicates that STEAP3 serves as a novel negative regulator of pathological cardiac hypertrophy by blocking the activation of the Rac1-dependent signaling cascade and may contribute to exploring effective therapeutic strategies of pathological cardiac hypertrophy treatment.
Collapse
Affiliation(s)
- Peng-Long Li
- From the College of Life Sciences (P.-L.L., H. Liu, L.L., Z.H.), Wuhan University, China.,Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China
| | - Hui Liu
- From the College of Life Sciences (P.-L.L., H. Liu, L.L., Z.H.), Wuhan University, China.,Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China
| | - Guo-Peng Chen
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China.,School of Basic Medical Sciences (G.-P.C., H.-Y.N., H. Li), Wuhan University, China
| | - Ling Li
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China.,Department of Cardiology, Renmin Hospital of Wuhan University, China (J.Y., X.-J.Z., Z.-G.S., H. Li, L. Z.)
| | - Hong-Jie Shi
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China
| | - Hong-Yu Nie
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China.,School of Basic Medical Sciences (G.-P.C., H.-Y.N., H. Li), Wuhan University, China
| | - Zhen Liu
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China
| | - Yu-Feng Hu
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, China (Y.-F.H., P.Z.)
| | - Juan Yang
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China.,Department of Cardiology, Renmin Hospital of Wuhan University, China (J.Y., X.-J.Z., Z.-G.S., H. Li, L. Z.)
| | - Peng Zhang
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, China (Y.-F.H., P.Z.)
| | - Xiao-Jing Zhang
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China.,Department of Cardiology, Renmin Hospital of Wuhan University, China (J.Y., X.-J.Z., Z.-G.S., H. Li, L. Z.)
| | - Zhi-Gang She
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China.,Department of Cardiology, Renmin Hospital of Wuhan University, China (J.Y., X.-J.Z., Z.-G.S., H. Li, L. Z.)
| | - Hongliang Li
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China.,School of Basic Medical Sciences (G.-P.C., H.-Y.N., H. Li), Wuhan University, China.,Department of Cardiology, Renmin Hospital of Wuhan University, China (J.Y., X.-J.Z., Z.-G.S., H. Li, L. Z.)
| | - Zan Huang
- From the College of Life Sciences (P.-L.L., H. Liu, L.L., Z.H.), Wuhan University, China
| | - Lihua Zhu
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China.,School of Basic Medical Sciences (G.-P.C., H.-Y.N., H. Li), Wuhan University, China
| |
Collapse
|
52
|
Liu FY, Fang BQ, Sun LM, Zhang XZ, Liu JL, Yang Y, Zhang WH, Wang XL, Ding YC. The Role of the NOD1/Rip2 Signaling Pathway in Myocardial Remodeling in Spontaneously Hypertensive Rats. Med Sci Monit 2020; 26:e924748. [PMID: 32855380 PMCID: PMC7477929 DOI: 10.12659/msm.924748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/20/2020] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Chronic hypertension changes the function and structure of the heart and blood vessels. This study aimed to explore the role of the NOD1/Rip2 (nucleotide-binding oligomerization domain 1/receptor-interacting protein 2) signaling pathway in myocardial remodeling in spontaneously hypertensive rats (SHRs). MATERIAL AND METHODS Blood pressure was measured using a tail cuff. The cardiac structure was observed using echocardiography. Slices of the myocardium were stained with hematoxylin and eosin. The expression of NOD1 and Rip2 was detected using real-time polymerase chain reaction, western blot, and immunohistochemistry. The content and distribution of collagen in the myocardium were observed using Van Gieson staining. Enzyme-linked immunosorbent assay was used to detect the interleukin-1 (IL-1) concentrations. SHRs were treated with the NOD1 agonist iE-DAP and NOD1 inhibitor ML130. RESULTS The NOD1 agonist increased blood pressure in SHRs, and the NOD1 inhibitor decreased blood pressure; the interventricular septum thickness (IVST) and left ventricular posterior wall thickness (LVPWT) of the agonist-treated group were thicker than those of the control group, and the antagonist exerted the opposite effects. The levels of the NOD1 and Rip2 mRNAs and proteins, serum IL-1 concentration, and myocardial collagen volume fraction (CVF%) increased in SHRs in the NOD1 agonist group, but the levels of NOD1 and Rip2, serum IL-1 concentration, and myocardial collagen volume fraction (CVF%) decreased in SHRs in the NOD1 inhibitor group. CONCLUSIONS NOD1/Rip2 expression increased during the progression of myocardial remodeling in SHRs. The NOD1 agonist increased NOD1 expression and promoted myocardial remodeling, while the NOD1 antagonist reduced NOD1/Rip2 expression and protected against myocardial remodeling.
Collapse
Affiliation(s)
- Feng-Yi Liu
- Department of Cardiology V, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Bing-Qian Fang
- Department of Cardiology V, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
- Department of Internal Medicine, Shaoxing Central Hospital, Shaoxing, Zhejiang, P.R. China
| | - Ling-Min Sun
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Xiu-Zhen Zhang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Jin-Li Liu
- Department of Cardiology V, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Yun Yang
- Department of Ultrasound, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Wen-Hua Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Xiu-Li Wang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Yan-Chun Ding
- Department of Cardiology V, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| |
Collapse
|
53
|
Junho CVC, Panico K, Nakama KK, Sonoda MT, Christoffolete MA, Beserra SS, Roman-Campos D, Carneiro-Ramos MS. Time Course of Gene Expression Profile in Renal Ischemia and Reperfusion Injury in Mice. Transplant Proc 2020; 52:2970-2976. [PMID: 32763007 DOI: 10.1016/j.transproceed.2020.06.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/05/2020] [Accepted: 06/29/2020] [Indexed: 11/17/2022]
Abstract
Ischemic renal failure is an inflammatory disease that can affect various organs, including the heart. The organ responds to the stimulus and undergoes tissue remodeling that can result in cardiac hypertrophy. This study aimed to characterize the cardiac global gene expression profile in renal ischemia/reperfusion (IR) model using microarray technology. To do that, left kidney ischemia was induced in male C57BL/6 mice for 60 minutes, followed by reperfusion (IR) for 5, 8, 15, or 20 days post ischemia (dpi). Total cardiac tissue RNA was extracted and hybridized to chips with 35,000 mouse genes. The GeneChip Mouse Genome 430 2.0 Array Expression chip (Affymetrix) was used, and CEL files generated were processed with DNA-Chip-Analyzer (dCHIP) software. Subsequent analysis considered only differences among groups of at least 1.2-fold (up or down) expression changes. Analyses of the samples indicated positive modulation of 17,413 genes and 405 pathways and negative modulation of 18,287 genes and 300 pathways. A narrower analysis of genes related to inflammation, metabolism, apoptosis, oxidative stress, and channels/ion transport was performance, and it was correlated with IR injury, corroborating previous data from literature. Renal IR induced a global shift in cardiac tissue gene expression; in particular, genes related to the inflammatory system and cardiomyocyte function were changed. The in-depth study of the cell signaling in the present study could stimulate the development of new therapeutic option to ameliorate the outcome of renal-IR-induced heart damage.
Collapse
Affiliation(s)
| | - Karine Panico
- Human and Natural Sciences Center (CCNH), Federal University of ABC, Santo André, SP, Brazil
| | - Karina Kaori Nakama
- Human and Natural Sciences Center (CCNH), Federal University of ABC, Santo André, SP, Brazil
| | - Mayra Trentin Sonoda
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Samuel Santos Beserra
- Cardiobiology Laboratory, Department of Biophysic, Paulista School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Danilo Roman-Campos
- Cardiobiology Laboratory, Department of Biophysic, Paulista School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
54
|
Gao W, Guo N, Zhao S, Chen Z, Zhang W, Yan F, Liao H, Chi K. Carboxypeptidase A4 promotes cardiomyocyte hypertrophy through activating PI3K-AKT-mTOR signaling. Biosci Rep 2020; 40:BSR20200669. [PMID: 32347291 PMCID: PMC7214395 DOI: 10.1042/bsr20200669] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 11/28/2022] Open
Abstract
Carboxypeptidase A4 (CPA4) is a member of the metallocarboxypeptidase family. Current studies have identified the roles of CPA4 in cancer biology and insulin sensitivity. However, the roles of CPA4 in other diseases are not known. In the present study, we investigated the roles of CPA4 in cardiac hypertrophy. The expression of CPA4 was significantly increased in the hypertrophic heart tissues of human patients and isoproterenol (ISO)-induced hypertrophic heart tissues of mice. We next knocked down Cpa4 with shRNA or overexpressed Cpa4 using adenovirus in neonatal rat cardiomyocytes and induced cardiomyocyte hypertrophy with ISO. We observed that Cpa4 overexpression promoted whereas Cpa4 knockdown reduced ISO-induced growth of cardiomyocyte size and overexpression of hypertrophy marker genes, such as myosin heavy chain β (β-Mhc), atrial natriuretic peptide (Anp), and brain natriuretic peptide (Bnp). Our further mechanism study revealed that the mammalian target of rapamycin (mTOR) signaling was activated by Cpa4 in cardiomyocytes, which depended on the phosphoinositide 3-kinase (PI3K)-AKT signaling. Besides, we showed that the PI3K-AKT-mTOR signaling was critically involved in the roles of Cpa4 during cardiomyocyte hypertrophy. Collectively, these results demonstrated that CPA4 is a regulator of cardiac hypertrophy by activating the PI3K-AKT-mTOR signaling, and CPA4 may serve as a promising target for the treatment of hypertrophic cardiac diseases.
Collapse
Affiliation(s)
- Weinian Gao
- Department of Cardiac Macrovascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Na Guo
- Department of Cardiology, Shijiazhuang Translational Chinese Medicine Hospital, Shijiazhuang 050000, China
| | - Shuguang Zhao
- Department of Cardiac Macrovascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Ziying Chen
- Department of Cardiac Macrovascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Wenli Zhang
- Department of Cardiac Macrovascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Fang Yan
- Department of Cardiac Macrovascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Hongjuan Liao
- Department of Cardiac Macrovascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Kui Chi
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| |
Collapse
|
55
|
Jansen HJ, Bohne LJ, Gillis AM, Rose RA. Atrial remodeling and atrial fibrillation in acquired forms of cardiovascular disease. Heart Rhythm O2 2020; 1:147-159. [PMID: 34113869 PMCID: PMC8183954 DOI: 10.1016/j.hroo.2020.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Atrial fibrillation (AF) is prevalent in common conditions and acquired forms of heart disease, including diabetes mellitus (DM), hypertension, cardiac hypertrophy, and heart failure. AF is also prevalent in aging. Although acquired heart disease is common in aging individuals, age is also an independent risk factor for AF. Importantly, not all individuals age at the same rate. Rather, individuals of the same chronological age can vary in health status from fit to frail. Frailty can be quantified using a frailty index, which can be used to assess heterogeneity in individuals of the same chronological age. AF is thought to occur in association with electrical remodeling due to changes in ion channel expression or function as well as structural remodeling due to fibrosis, myocyte hypertrophy, or adiposity. These forms of remodeling can lead to triggered activity and electrical re-entry, which are fundamental mechanisms of AF initiation and maintenance. Nevertheless, the underlying determinants of electrical and structural remodeling are distinct in different conditions and disease states. In this focused review, we consider the factors leading to atrial electrical and structural remodeling in human patients and animal models of acquired cardiovascular disease or associated risk factors. Our goal is to identify similarities and differences in the cellular and molecular bases for atrial electrical and structural remodeling in conditions including DM, hypertension, hypertrophy, heart failure, aging, and frailty.
Collapse
Affiliation(s)
- Hailey J Jansen
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Loryn J Bohne
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anne M Gillis
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robert A Rose
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
56
|
Li W, Yang J, Lyu Q, Wu G, Lin S, Yang Q, Hu J. Taurine attenuates isoproterenol-induced H9c2 cardiomyocytes hypertrophy by improving antioxidative ability and inhibiting calpain-1-mediated apoptosis. Mol Cell Biochem 2020; 469:119-132. [PMID: 32304004 DOI: 10.1007/s11010-020-03733-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/08/2020] [Indexed: 12/18/2022]
Abstract
Pathological cardiac hypertrophy is ultimately accompanied by cardiomyocyte apoptosis. Apoptosis mainly related to calpain-1-mediated apoptotic pathways. Studies had proved that taurine can maintain heart health through antioxidation and antiapoptotic functions, but the effect of taurine on cardiac hypertrophy is still unclear. This study aimed to determine whether taurine could inhibit calpain-1-mediated mitochondria-dependent apoptotic pathways in isoproterenol (ISO)-induced hypertrophic cardiomyocytes. We found that taurine could inhibit the increase in cell surface area and reduce the protein expression levels of the hypertrophic markers atrial natriuretic peptide, brain natriuretic polypeptide, and β-myosin heavy chain. Taurine also reduced ROS, intracellular Ca2+ overload and mitochondrial membrane potential. Moreover, taurine inhibited cardiomyocyte apoptosis by decreasing the protein expression of calpain-1, Bax, t-Bid, cytosolic cytochrome c, Apaf-1, cleaved caspase-9 and cleaved caspase-3 and by enhancing calpastatin and Bcl-2 protein expression. Calpain-1 small interfering RNA transfection results showed similar antiapoptotic effects as the taurine prevention group. However, compared with the two treatments, taurine inhibited the expression of cleaved caspase-9 more significantly. Therefore, we believe that taurine prevents ISO-induced H9c2 cardiomyocyte hypertrophy by inhibiting oxidative stress, intracellular Ca2+ overload, the calpain-1-mediated mitochondria-dependent apoptotic pathway and cleaved caspase-9 levels.
Collapse
Affiliation(s)
- Weiwei Li
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
| | - Jiancheng Yang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
| | - Qiufeng Lyu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
| | - Gaofeng Wu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
| | - Shumei Lin
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
| | - Qunhui Yang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China.
| | - Jianmin Hu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China.
| |
Collapse
|
57
|
Establishing a new human hypertrophic cardiomyopathy-specific model using human embryonic stem cells. Exp Cell Res 2020; 387:111736. [PMID: 31759053 DOI: 10.1016/j.yexcr.2019.111736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/21/2019] [Accepted: 11/16/2019] [Indexed: 11/24/2022]
Abstract
Symptom of ventricular hypertrophy caused by cardiac troponin T (TNNT2) mutations is mild, while patients often showed high incidence of sudden cardiac death. The 92nd arginine to glutamine mutation (R92Q) of cTnT was one of the mutant hotspots in hypertrophic cardiomyopathy (HCM). However, there are no such human disease models yet. To solve this problem, we generated TNNT2 R92Q mutant hESC cell lines (heterozygote or homozygote) using TALEN mediated homologous recombination in this study. After directed cardiac differentiation, we found a relative larger cell size in both heterozygous and homozygous TNNT2 R92Q hESC-cardiomyocytes. Expression of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and sarcoplasmic reticulum Ca2+-ATPase2a (SERCA2a) were downregulated, while myocyte specific enhancer factor 2c (MEF2c) and the ratio of beta myosin to alpha myosin heavy chain (MYH7/MYH6) were increased in heterozygous TNNT2 R92Q hESC-cardiomyocytes. TNNT2 R92Q mutant cardiomyocytes exhibited efficient responses to heart-related pharmaceutical agents. We also found TNNT2 R92Q heterozygous mutant cardiomyocytes showed increased calcium sensitivity and contractility. Further, engineered heart tissues (EHTs) prepared by combining rat decellularized heart extracellular matrices with heterozygous R92Q mutant cardiomyocytes showed similar drug responses as to HCM patients and increased sensitivity to caspofungin-induced cardiotoxicity. Using RNA-sequencing of TNNT2 R92Q heterozygous mutant cardiomyocytes, we found dysregulation of calcium might participated in the early development of hypertrophy. Our hESC-derived TNNT2 R92Q mutant cardiomyocytes and EHTs are good in vitro human disease models for future disease studies and drug screening.
Collapse
|
58
|
Liu F, Su H, Liu B, Mei Y, Ke Q, Sun X, Tan W. STVNa Attenuates Isoproterenol-Induced Cardiac Hypertrophy Response through the HDAC4 and Prdx2/ROS/Trx1 Pathways. Int J Mol Sci 2020; 21:ijms21020682. [PMID: 31968660 PMCID: PMC7014432 DOI: 10.3390/ijms21020682] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/13/2022] Open
Abstract
Recent data show that cardiac hypertrophy contributes substantially to the overall heart failure burden. Mitochondrial dysfunction is a common feature of cardiac hypertrophy. Recent studies have reported that isosteviol inhibits myocardial ischemia-reperfusion injury in guinea pigs and H9c2 cells. This work investigated the protective mechanisms of isosteviol sodium (STVNa) against isoproterenol (Iso)-induced cardiac hypertrophy. We found that STVNa significantly inhibited H9c2 cell and rat primary cardiomyocyte cell surface, restored mitochondrial membrane potential (MMP) and morphological integrity, and decreased the expression of mitochondrial function-related proteins Fis1 and Drp1. Furthermore, STVNa decreased reactive oxygen species (ROS) levels and upregulated the expression of antioxidant factors, Thioredoxin 1 (Trx1) and Peroxiredoxin 2 (Prdx2). Moreover, STVNa restored the activity of histone deacetylase 4 (HDAC4) in the nucleus. Together, our data show that STVNa confers protection against Iso-induced myocardial hypertrophy primarily through the Prdx2/ROS/Trx1 signaling pathway. Thus, STVNA is a potentially effective treatment for cardiac hypertrophy in humans.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoou Sun
- Correspondence: (X.S.); (W.T.); Tel.: +86-13539850005 (X.S.); +86-13928954505 (W.T.)
| | - Wen Tan
- Correspondence: (X.S.); (W.T.); Tel.: +86-13539850005 (X.S.); +86-13928954505 (W.T.)
| |
Collapse
|
59
|
Cheng H, Li J, Wu Q, Zheng X, Gao Y, Yang Q, Sun N, He M, Zhou Y. Effect of SKF‑96365 on cardiomyocyte hypertrophy induced by angiotensin II. Mol Med Rep 2019; 21:806-814. [PMID: 31974621 PMCID: PMC6947876 DOI: 10.3892/mmr.2019.10877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/06/2019] [Indexed: 02/02/2023] Open
Abstract
Angiotensin II (Ang II) is an important bioactive peptide in the renin-angiotensin system, and it can contribute to cell proliferation and cardiac hypertrophy. Dysfunctions in transient receptor potential canonical (TRPC) channels are involved in many types of cardiovascular diseases. The aim of the present study was to investigate the role of the TRPC channel inhibitor SKF-96365 in cardiomyocyte hypertrophy induced by Ang II and the potential mechanisms of SKF-96365. H9c2 cells were treated with different concentrations of Ang II. The expression levels of cardiomyocyte hypertrophy markers and TRPC channel-related proteins were also determined. The morphology and surface area of the H9c2 cells, the expression of hypertrophic markers and TRPC channel-related proteins and the [3H] leucine incorporation rate were detected in the Ang II-treated H9c2 cells following treatment with the TRPC channel inhibitor SKF-96365. The intracellular Ca2+ concentration was tested by flow cytometry. The present results suggested that the surface area of H9c2 cells treated with Ang II was significantly increased compared with untreated H9c2 cells. The fluorescence intensity of α-actinin, the expression of hypertrophic markers and TRPC-related proteins, the [3H] leucine incorporation rate and the intracellular Ca2+ concentration were all markedly increased in the Ang II-treated H9c2 cells but decreased following SKF-96365 treatment. The present results suggested that Ang II induced cardiomyocyte hypertrophy in H9c2 cells and that the TRPC pathway may be involved in this process. Therefore, SKF-96365 can inhibit cardiomyocyte hypertrophy induced by Ang II by suppressing the TRPC pathway. The present results indicated that TRPC may be a therapeutic target for the development of novel drugs to treat cardiac hypertrophy.
Collapse
Affiliation(s)
- Huijun Cheng
- Nuclear Medicine Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Jiaoxia Li
- Nuclear Medicine Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Qiyan Wu
- Nuclear Medicine Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Xiaodong Zheng
- Nuclear Medicine Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Yongqiang Gao
- Nuclear Medicine Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Qiaofen Yang
- Nuclear Medicine Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Ningxi Sun
- Nuclear Medicine Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Meiqiong He
- Nuclear Medicine Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Youjun Zhou
- Nuclear Medicine Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| |
Collapse
|
60
|
Effects of Spaceflight on Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Structure and Function. Stem Cell Reports 2019; 13:960-969. [PMID: 31708475 PMCID: PMC6915842 DOI: 10.1016/j.stemcr.2019.10.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/21/2022] Open
Abstract
With extended stays aboard the International Space Station (ISS) becoming commonplace, there is a need to better understand the effects of microgravity on cardiac function. We utilized human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to study the effects of microgravity on cell-level cardiac function and gene expression. The hiPSC-CMs were cultured aboard the ISS for 5.5 weeks and their gene expression, structure, and functions were compared with ground control hiPSC-CMs. Exposure to microgravity on the ISS caused alterations in hiPSC-CM calcium handling. RNA-sequencing analysis demonstrated that 2,635 genes were differentially expressed among flight, post-flight, and ground control samples, including genes involved in mitochondrial metabolism. This study represents the first use of hiPSC technology to model the effects of spaceflight on human cardiomyocyte structure and function.
Collapse
|
61
|
Otani K, Tokudome T, Kamiya CA, Mao Y, Nishimura H, Hasegawa T, Arai Y, Kaneko M, Shioi G, Ishida J, Fukamizu A, Osaki T, Nagai-Okatani C, Minamino N, Ensho T, Hino J, Murata S, Takegami M, Nishimura K, Kishimoto I, Miyazato M, Harada-Shiba M, Yoshimatsu J, Nakao K, Ikeda T, Kangawa K. Deficiency of Cardiac Natriuretic Peptide Signaling Promotes Peripartum Cardiomyopathy-Like Remodeling in the Mouse Heart. Circulation 2019; 141:571-588. [PMID: 31665900 DOI: 10.1161/circulationaha.119.039761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The maternal circulatory system and hormone balance both change dynamically during pregnancy, delivery, and the postpartum period. Although atrial natriuretic peptides and brain natriuretic peptides produced in the heart control circulatory homeostasis through their common receptor, NPR1, the physiologic and pathophysiologic roles of endogenous atrial natriuretic peptide/brain natriuretic peptide in the perinatal period are not fully understood. METHODS To clarify the physiologic and pathophysiologic roles of the endogenous atrial natriuretic peptide/brain natriuretic peptide-NPR1 system during the perinatal period, the phenotype of female wild-type and conventional or tissue-specific Npr1-knockout mice during the perinatal period was examined, especially focusing on maternal heart weight, blood pressure, and cardiac function. RESULTS In wild-type mice, lactation but not pregnancy induced reversible cardiac hypertrophy accompanied by increases in fetal cardiac gene mRNAs and ERK1/2 (extracellular signaling-regulated kinase) phosphorylation. Npr1-knockout mice exhibited significantly higher plasma aldosterone level than did wild-type mice, severe cardiac hypertrophy accompanied by fibrosis, and left ventricular dysfunction in the lactation period. Npr1-knockout mice showed a high mortality rate over consecutive pregnancy-lactation cycles. In the hearts of Npr1-knockout mice during or after the lactation period, an increase in interleukin-6 mRNA expression, phosphorylation of signal transducer and activator of transcription 3, and activation of the calcineurin-nuclear factor of the activated T cells pathway were observed. Pharmacologic inhibition of the mineralocorticoid receptor or neuron-specific deletion of the mineralocorticoid receptor gene significantly ameliorated cardiac hypertrophy in lactating Npr1-knockout mice. Anti-interleukin-6 receptor antibody administration tended to reduce cardiac hypertrophy in lactating Npr1-knockout mice. CONCLUSIONS These results suggest that the characteristics of lactation-induced cardiac hypertrophy in wild-type mice are different from exercise-induced cardiac hypertrophy, and that the endogenous atrial natriuretic peptide/brain natriuretic peptide-NPR1 system plays an important role in protecting the maternal heart from interleukin-6-induced inflammation and remodeling in the lactation period, a condition mimicking peripartum cardiomyopathy.
Collapse
Affiliation(s)
- Kentaro Otani
- Departments of Regenerative Medicine and Tissue Engineering (K.O., M.H.-S., T.I.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Takeshi Tokudome
- Biochemistry (T.T., Y.M., H.N., T.E., J.H., I.K., M.M.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Chizuko A Kamiya
- Division of Perinatology and Gynecology (C.A.K., J.Y.), Osaka, Japan
| | - Yuanjie Mao
- Biochemistry (T.T., Y.M., H.N., T.E., J.H., I.K., M.M.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan.,Diabetes Institute, Ohio University, Athens (Y.M.)
| | - Hirohito Nishimura
- Biochemistry (T.T., Y.M., H.N., T.E., J.H., I.K., M.M.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Takeshi Hasegawa
- Exploratory Research Section II, Exploratory Research Laboratories, TOA EIYO Ltd, Fukushima, Japan (T.H.)
| | - Yuji Arai
- Bioscience and Genetics (Y.A.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Mari Kaneko
- Animal Resource Development Unit (M.K.), RIKEN Center for Life Science Technologies, Hyogo, Japan.,Genetic Engineering Team (M.K., G.S.), RIKEN Center for Life Science Technologies, Hyogo, Japan
| | - Go Shioi
- Genetic Engineering Team (M.K., G.S.), RIKEN Center for Life Science Technologies, Hyogo, Japan
| | - Junji Ishida
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (J.I., A.F.)
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (J.I., A.F.)
| | - Tsukasa Osaki
- Molecular Pharmacology (T.O., C.N.-O., N.M.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Chiaki Nagai-Okatani
- Molecular Pharmacology (T.O., C.N.-O., N.M.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Naoto Minamino
- Molecular Pharmacology (T.O., C.N.-O., N.M.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Takuya Ensho
- Biochemistry (T.T., Y.M., H.N., T.E., J.H., I.K., M.M.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Jun Hino
- Biochemistry (T.T., Y.M., H.N., T.E., J.H., I.K., M.M.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Shunsuke Murata
- Preventive Medicine and Epidemiology (S.M., M.T., K.N.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Misa Takegami
- Preventive Medicine and Epidemiology (S.M., M.T., K.N.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Kunihiro Nishimura
- Preventive Medicine and Epidemiology (S.M., M.T., K.N.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Ichiro Kishimoto
- Biochemistry (T.T., Y.M., H.N., T.E., J.H., I.K., M.M.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Mikiya Miyazato
- Biochemistry (T.T., Y.M., H.N., T.E., J.H., I.K., M.M.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Mariko Harada-Shiba
- Departments of Regenerative Medicine and Tissue Engineering (K.O., M.H.-S., T.I.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan.,Molecular Innovation in Lipidology (M.H.-S.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Jun Yoshimatsu
- Division of Perinatology and Gynecology (C.A.K., J.Y.), Osaka, Japan
| | - Kazuwa Nakao
- Kyoto University Graduate School of Medicine Medical Innovation Center, Kyoto, Japan (K.N.)
| | - Tomoaki Ikeda
- Departments of Regenerative Medicine and Tissue Engineering (K.O., M.H.-S., T.I.), National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan.,Department of Obstetrics and Gynecology, Mie University Graduate School of Medicine, Japan (T.I.)
| | - Kenji Kangawa
- National Cerebral and Cardiovascular Center (K.K.), Osaka, Japan
| |
Collapse
|
62
|
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited heart disease and defined by unexplained isolated progressive myocardial hypertrophy, systolic and diastolic ventricular dysfunction, arrhythmias, sudden cardiac death and histopathologic changes, such as myocyte disarray and myocardial fibrosis. Mutations in genes encoding for proteins of the contractile apparatus of the cardiomyocyte, such as β-myosin heavy chain and myosin binding protein C, have been identified as cause of the disease. Disease is caused by altered biophysical properties of the cardiomyocyte, disturbed calcium handling, and abnormal cellular metabolism. Mutations in sarcomere genes can also activate other signaling pathways via transcriptional activation and can influence non-cardiac cells, such as fibroblasts. Additional environmental, genetic and epigenetic factors result in heterogeneous disease expression. The clinical course of the disease varies greatly with some patients presenting during childhood while others remain asymptomatic until late in life. Patients can present with either heart failure symptoms or the first symptom can be sudden death due to malignant ventricular arrhythmias. The morphological and pathological heterogeneity results in prognosis uncertainty and makes patient management challenging. Current standard therapeutic measures include the prevention of sudden death by prohibition of competitive sport participation and the implantation of cardioverter-defibrillators if indicated, as well as symptomatic heart failure therapies or cardiac transplantation. There exists no causal therapy for this monogenic autosomal-dominant inherited disorder, so that the focus of current management is on early identification of asymptomatic patients at risk through molecular diagnostic and clinical cascade screening of family members, optimal sudden death risk stratification, and timely initiation of preventative therapies to avoid disease progression to the irreversible adverse myocardial remodeling stage. Genetic diagnosis allowing identification of asymptomatic affected patients prior to clinical disease onset, new imaging technologies, and the establishment of international guidelines have optimized treatment and sudden death risk stratification lowering mortality dramatically within the last decade. However, a thorough understanding of underlying disease pathogenesis, regular clinical follow-up, family counseling, and preventative treatment is required to minimize morbidity and mortality of affected patients. This review summarizes current knowledge about molecular genetics and pathogenesis of HCM secondary to mutations in the sarcomere and provides an overview about current evidence and guidelines in clinical patient management. The overview will focus on clinical staging based on disease mechanism allowing timely initiation of preventative measures. An outlook about so far experimental treatments and potential for future therapies will be provided.
Collapse
Affiliation(s)
- Cordula Maria Wolf
- Department of Pediatric Cardiology and Congenital Heart Disease, German Heart Center Munich, Technical University Munich, Munich, Germany
| |
Collapse
|
63
|
Wu J, Dai F, Li C, Zou Y. Gender Differences in Cardiac Hypertrophy. J Cardiovasc Transl Res 2019; 13:73-84. [PMID: 31418109 DOI: 10.1007/s12265-019-09907-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022]
Abstract
Cardiac hypertrophy is an adaptive response to abnormal physiological and pathological stimuli, which can be classified into concentric and eccentric hypertrophy, induced by pressure overload or volume overload, respectively. In both physiological and pathological scenarios, females generally show a more favorable form of hypertrophy compared with their male counterparts. However once established, cardiac hypertrophy is a stronger risk factor for heart failure in females. Pre-menopausal women are better protected against cardiac hypertrophy compared with men, but this protection is abolished following menopause and is partially restored after estrogen replacement therapy. Estrogen exerts its protection by counteracting pro-hypertrophy signaling pathways, whereas androgen mostly plays an opposite role in cardiac hypertrophy. We here summarize the progress in the understanding of sexual dimorphisms in cardiac hypertrophy and highlight recent breakthroughs in the regulatory role of sex hormones and their intricate molecular networks, in order to shed light on gender-oriented therapeutic efficacy for pathological hypertrophy.
Collapse
Affiliation(s)
- Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China.
| | - Fangjie Dai
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Chang Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China.
| |
Collapse
|
64
|
Sárközy M, Gáspár R, Zvara Á, Kiscsatári L, Varga Z, Kővári B, Kovács MG, Szűcs G, Fábián G, Diószegi P, Cserni G, Puskás LG, Thum T, Kahán Z, Csont T, Bátkai S. Selective Heart Irradiation Induces Cardiac Overexpression of the Pro-hypertrophic miR-212. Front Oncol 2019; 9:598. [PMID: 31380269 PMCID: PMC6646706 DOI: 10.3389/fonc.2019.00598] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022] Open
Abstract
Background: A deleterious, late-onset side effect of thoracic radiotherapy is the development of radiation-induced heart disease (RIHD). It covers a spectrum of cardiac pathology including also heart failure with preserved ejection fraction (HFpEF) characterized by left ventricular hypertrophy (LVH) and diastolic dysfunction. MicroRNA-212 (miR-212) is a crucial regulator of pathologic LVH via FOXO3-mediated pathways in pressure-overload-induced heart failure. We aimed to investigate whether miR-212 and its selected hypertrophy-associated targets play a role in the development of RIHD. Methods: RIHD was induced by selective heart irradiation (50 Gy) in a clinically relevant rat model. One, three, and nineteen weeks after selective heart irradiation, transthoracic echocardiography was performed to monitor cardiac morphology and function. Cardiomyocyte hypertrophy and fibrosis were assessed by histology at week 19. qRT-PCR was performed to measure the gene expression changes of miR-212 and forkhead box O3 (FOXO3) in all follow-up time points. The cardiac transcript level of other selected hypertrophy-associated targets of miR-212 including extracellular signal-regulated kinase 2 (ERK2), myocyte enhancer factor 2a (MEF2a), AMP-activated protein kinase, (AMPK), heat shock protein 40 (HSP40), sirtuin 1, (SIRT1), calcineurin A-alpha and phosphatase and tensin homolog (PTEN) were also measured at week 19. Cardiac expression of FOXO3 and phospho-FOXO3 were investigated at the protein level by Western blot at week 19. Results: In RIHD, diastolic dysfunction was present at every time point. Septal hypertrophy developed at week 3 and a marked LVH with interstitial fibrosis developed at week 19 in the irradiated hearts. In RIHD, cardiac miR-212 was overexpressed at week 3 and 19, and FOXO3 was repressed at the mRNA level only at week 19. In contrast, the total FOXO3 protein level failed to decrease in response to heart irradiation at week 19. Other selected hypertrophy-associated target genes failed to change at the mRNA level in RIHD at week 19. Conclusions: LVH in RIHD was associated with cardiac overexpression of miR-212. However, miR-212 seems to play a role in the development of LVH via FOXO3-independent mechanisms in RIHD. As a central regulator of pathologic remodeling, miR-212 might become a novel target for RIHD-induced LVH and heart failure.
Collapse
Affiliation(s)
- Márta Sárközy
- Metabolic Diseases and Cell Signaling Group, Department of Biochemistry, Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Renáta Gáspár
- Metabolic Diseases and Cell Signaling Group, Department of Biochemistry, Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Ágnes Zvara
- Laboratory for Functional Genomics, Biological Research Center of the Hungarian Academy of Sciences, Institute of Genetics, Szeged, Hungary
| | - Laura Kiscsatári
- Department of Oncotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zoltán Varga
- Department of Oncotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Bence Kővári
- Department of Pathology, University of Szeged, Szeged, Hungary
| | - Mónika G Kovács
- Metabolic Diseases and Cell Signaling Group, Department of Biochemistry, Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Gergő Szűcs
- Metabolic Diseases and Cell Signaling Group, Department of Biochemistry, Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Gabriella Fábián
- Department of Oncotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Petra Diószegi
- Metabolic Diseases and Cell Signaling Group, Department of Biochemistry, Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Gábor Cserni
- Department of Pathology, University of Szeged, Szeged, Hungary
| | - László G Puskás
- Laboratory for Functional Genomics, Biological Research Center of the Hungarian Academy of Sciences, Institute of Genetics, Szeged, Hungary
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hanover Medical School, Hanover, Germany
| | - Zsuzsanna Kahán
- Department of Oncotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Tamás Csont
- Metabolic Diseases and Cell Signaling Group, Department of Biochemistry, Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Sándor Bátkai
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hanover Medical School, Hanover, Germany
| |
Collapse
|
65
|
Shang L, Pin L, Zhu S, Zhong X, Zhang Y, Shun M, Liu Y, Hou M. Plantamajoside attenuates isoproterenol-induced cardiac hypertrophy associated with the HDAC2 and AKT/ GSK-3β signaling pathway. Chem Biol Interact 2019; 307:21-28. [DOI: 10.1016/j.cbi.2019.04.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/05/2019] [Accepted: 04/17/2019] [Indexed: 01/01/2023]
|
66
|
Saucerman JJ, Tan PM, Buchholz KS, McCulloch AD, Omens JH. Mechanical regulation of gene expression in cardiac myocytes and fibroblasts. Nat Rev Cardiol 2019; 16:361-378. [PMID: 30683889 PMCID: PMC6525041 DOI: 10.1038/s41569-019-0155-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The intact heart undergoes complex and multiscale remodelling processes in response to altered mechanical cues. Remodelling of the myocardium is regulated by a combination of myocyte and non-myocyte responses to mechanosensitive pathways, which can alter gene expression and therefore function in these cells. Cellular mechanotransduction and its downstream effects on gene expression are initially compensatory mechanisms during adaptations to the altered mechanical environment, but under prolonged and abnormal loading conditions, they can become maladaptive, leading to impaired function and cardiac pathologies. In this Review, we summarize mechanoregulated pathways in cardiac myocytes and fibroblasts that lead to altered gene expression and cell remodelling under physiological and pathophysiological conditions. Developments in systems modelling of the networks that regulate gene expression in response to mechanical stimuli should improve integrative understanding of their roles in vivo and help to discover new combinations of drugs and device therapies targeting mechanosignalling in heart disease.
Collapse
Affiliation(s)
- Jeffrey J Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Philip M Tan
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Kyle S Buchholz
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrew D McCulloch
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Jeffrey H Omens
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
67
|
Dowrick JM, Tran K, Loiselle DS, Nielsen PMF, Taberner AJ, Han J, Ward M. The slow force response to stretch: Controversy and contradictions. Acta Physiol (Oxf) 2019; 226:e13250. [PMID: 30614655 DOI: 10.1111/apha.13250] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/20/2018] [Accepted: 01/02/2019] [Indexed: 12/19/2022]
Abstract
When exposed to an abrupt stretch, cardiac muscle exhibits biphasic active force enhancement. The initial, instantaneous, force enhancement is well explained by the Frank-Starling mechanism. However, the cellular mechanisms associated with the second, slower phase remain contentious. This review explores hypotheses regarding this "slow force response" with the intention of clarifying some apparent contradictions in the literature. The review is partitioned into three sections. The first section considers pathways that modify the intracellular calcium handling to address the role of the sarcoplasmic reticulum in the mechanism underlying the slow force response. The second section focuses on extracellular calcium fluxes and explores the identity and contribution of the stretch-activated, non-specific, cation channels as well as signalling cascades associated with G-protein coupled receptors. The final section introduces promising candidates for the mechanosensor(s) responsible for detecting the stretch perturbation.
Collapse
Affiliation(s)
- Jarrah M. Dowrick
- Auckland Bioengineering Institute University of Auckland Auckland New Zealand
| | - Kenneth Tran
- Auckland Bioengineering Institute University of Auckland Auckland New Zealand
| | - Denis S. Loiselle
- Auckland Bioengineering Institute University of Auckland Auckland New Zealand
- Department of Physiology University of Auckland Auckland New Zealand
| | - Poul M. F. Nielsen
- Auckland Bioengineering Institute University of Auckland Auckland New Zealand
- Department of Engineering Science University of Auckland Auckland New Zealand
| | - Andrew J. Taberner
- Auckland Bioengineering Institute University of Auckland Auckland New Zealand
- Department of Engineering Science University of Auckland Auckland New Zealand
| | - June‐Chiew Han
- Auckland Bioengineering Institute University of Auckland Auckland New Zealand
| | - Marie‐Louise Ward
- Department of Physiology University of Auckland Auckland New Zealand
| |
Collapse
|
68
|
A severe clinical phenotype of Noonan syndrome with neonatal hypertrophic cardiomyopathy in the second case worldwide with RAF1 S259Y neomutation. Genet Res (Camb) 2019; 101:e6. [PMID: 31030682 PMCID: PMC7045029 DOI: 10.1017/s0016672319000041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Noonan syndrome and related disorders are a group of clinically and genetically heterogeneous conditions caused by mutations in genes of the RAS/MAPK pathway. Noonan syndrome causes multiple congenital anomalies, which are frequently accompanied by hypertrophic cardiomyopathy (HCM). We report here a Tunisian patient with a severe phenotype of Noonan syndrome including neonatal HCM, facial dysmorphism, severe failure to thrive, cutaneous abnormalities, pectus excavatum and severe stunted growth, who died in her eighth month of life. Using whole exome sequencing, we identified a de novo mutation in exon 7 of the RAF1 gene: c.776C > A (p.Ser259Tyr). This mutation affects a highly conserved serine residue, a main mediator of Raf-1 inhibition via phosphorylation. To our knowledge the c.776C > A mutation has been previously reported in only one case with prenatally diagnosed Noonan syndrome. Our study further supports the striking correlation of RAF1 mutations with HCM and highlights the clinical severity of Noonan syndrome associated with a RAF1 p.Ser259Tyr mutation.
Collapse
|
69
|
Eltobshy SAG, Hussein AM, Elmileegy AA, Askar MH, Khater Y, Metias EF, Helal GM. Effects of heme oxygenase-1 upregulation on isoproterenol-induced myocardial infarction. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:203-217. [PMID: 31080351 PMCID: PMC6488703 DOI: 10.4196/kjpp.2019.23.3.203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/23/2018] [Accepted: 12/31/2018] [Indexed: 12/18/2022]
Abstract
The present study was designed to examine the effect of heme oxygenase-1 (HO-1) induction by cobalt protoporphyrin (CoPP) on the cardiac functions and morphology, electrocardiogram (ECG) changes, myocardial antioxidants (superoxide dismutase [SOD] and glutathione [GSH]), and expression of heat shock protein (Hsp) 70 and connexin 43 (Cx-43) in myocardial muscles in isoproterenol (ISO) induced myocardial infarction (MI). Thirty two adult male Sprague Dawely rats were divided into 4 groups (each 8 rats): normal control (NC) group, ISO group: received ISO at dose of 150 mg/kg body weight intraperitoneally (i.p.) for 2 successive days; ISO + Trizma group: received (ISO) and Trizma (solvent of CoPP) at dose of 5 mg/kg i.p. injection 2 days before injection of ISO, with ISO at day 0 and at day 2 after ISO injections; and ISO + CoPP group: received ISO and CoPP at a dose of 5 mg/kg dissolved in Trizma i.p. injection as Trizma. We found that, administration of ISO caused significant increase in heart rate, corrected QT interval, ST segment, cardiac enzymes (lactate dehydrogenase, creatine kinase-muscle/brain), cardiac HO-1, Hsp70 with significant attenuation in myocardial GSH, SOD, and Cx-43. On the other hand, administration of CoPP caused significant improvement in ECG parameters, cardiac enzymes, cardiac morphology; antioxidants induced by ISO with significant increase in HO-1, Cx-43, and Hsp70 expression in myocardium. In conclusions, we concluded that induction of HO-1 by CoPP ameliorates ISO-induced myocardial injury, which might be due to up-regulation of Hsp70 and gap junction protein (Cx-43).
Collapse
Affiliation(s)
- Somaia A G Eltobshy
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Abdelaziz M Hussein
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Asaad A Elmileegy
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mona H Askar
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Yomna Khater
- Medical Experimental Research Center, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Emile F Metias
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ghada M Helal
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
70
|
Sun X, Wang Y, Xia B, Li Z, Dai J, Qiu P, Ma A, Lin Z, Huang J, Wang J, Xie WB, Wang J. Methamphetamine produces cardiac damage and apoptosis by decreasing melusin. Toxicol Appl Pharmacol 2019; 378:114543. [PMID: 30904475 DOI: 10.1016/j.taap.2019.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/17/2022]
Abstract
Methamphetamine (METH) is an amphetamine-type drug that is highly addictive and widely abused. Many studies have shown that METH exposure causes severe damage not only to the nervous system but also to the cardiovascular system. Melusin protein is a mechanotransducer that plays an important role in maintaining normal heart function. However, the role of melusin in METH-induced cardiotoxicity has not yet been reported. We hypothesized that methamphetamine can produce cardiac damage and apoptosis by decreasing the quantity of melusin. To test this hypothesis, we determined the protein expression of melusin and apoptosis markers in METH-treated rats and primary rat cardiomyocytes. We also established a melusin-overexpressing cell model to assess the importance of melusin in maintaining antiapoptotic pathways. To confirm our findings from the in vitro and animal models, we also evaluated the apoptotic index of cardiomyocytes and the protein expression of apoptotic markers in postmortem heart tissues from deceased METH abusers and age-matched control subjects. The results showed that the apoptosis of cardiomyocytes was increased significantly and that the protein expression of melusin was decreased after exposure to METH in primary rat cardiomyocytes, in rats and in humans. METH treatment also decreased the expression of the downstream proteins FAK, IQGAP1, p-AKT, p-GSK3β, and p-ERK in primary rat cardiomyocytes and in vivo. After overexpression of melusin, the above effects were partially reversed in primary rat cardiomyocytes. We conclude that METH can produce cardiac damage and apoptosis by decreasing melusin, while melusin-activated signaling by phosphorylated AKT, phosphorylated GSK3β, and ERK may be resistant to methamphetamine-induced myocardial apoptosis.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Yu Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Bing Xia
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Zhu Li
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Jialin Dai
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Pingming Qiu
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Ande Ma
- Department of Hygiene Inspection & Quarantine Science, Guangdong Province Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine and Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Jiang Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Jiawen Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Wei-Bing Xie
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Jie Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, China.
| |
Collapse
|
71
|
Wang Y, Cao R, Yang W, Qi B. SP1-SYNE1-AS1-miR-525-5p feedback loop regulates Ang-II-induced cardiac hypertrophy. J Cell Physiol 2019; 234:14319-14329. [PMID: 30652310 DOI: 10.1002/jcp.28131] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022]
Abstract
Cardiac hypertrophy (CH) has become a huge threat to human health. Recent years, long noncoding RNAs (lncRNAs) have been studied in human diseases, including CH. According to bioinformatics analysis, 10 lncRNAs possibly involved in the progression of CH were screened out. Among which, lncRNA SYNE1 antisense RNA 1 (SYNE1-AS1) could be upregulated by Angiotensin II (Ang-II) in cardiomyocytes. Thus, we chose SYNE1-AS1 to do further study. To identify the biological function of SYNE1-AS1 in CH, SYNE1-AS1 was silenced in Ang-II-induced cardiomyocytes. Results of immunofluorescence staining demonstrated that increased cell surface area in Ang-II-induced cardiomyocytes was reduced by SYNE1-AS1 knockdown. Moreover, the hypertrophic responses were attenuated by SYNE1-AS1 knockdown. Mechanically, SYNE1-AS1 positively regulated Sp1 transcription factor (SP1) by sponging microRNA-525-5p (miR-525-5p). On the basis of previous reports, SP1 can transcriptionally activate lncRNAs. Therefore, we investigated the interaction between SP1 and SYNE1-AS1 promoter. Intriguingly, SYNE1-AS1 was activated by SP1. At last, rescue assays demonstrated the function of SP1-SYNE1-AS1 axis in CH. In conclusion, SP1-induced upregulation of lncRNA SYNE1-AS1 promoted CH via miR-525-5p/SP1 axis.
Collapse
Affiliation(s)
- Ye Wang
- Internal Medicine-Cardiovascular Department, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rongyi Cao
- Blood Transfusion Department, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenwen Yang
- Nursing Training Center, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bangruo Qi
- Geneme Biotechnology (Shanghai) Co., Ltd, Shanghai, China
| |
Collapse
|
72
|
Li Z, Zhang X, Guo Z, Zhong Y, Wang P, Li J, Li Z, Liu P. SIRT6 Suppresses NFATc4 Expression and Activation in Cardiomyocyte Hypertrophy. Front Pharmacol 2019; 9:1519. [PMID: 30670969 PMCID: PMC6331469 DOI: 10.3389/fphar.2018.01519] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/11/2018] [Indexed: 12/15/2022] Open
Abstract
NFATc4, a member from the Nuclear Factor of Activated T cells (NFATs) transcription factor family, plays a pivotal role in the development of cardiac hypertrophy. NFATc4 is dephosphorylated by calcineurin and translocated from the cytoplasm to the nucleus to regulate the expression of hypertrophic genes, like brain natriuretic polypeptide (BNP). The present study identified SIRT6, an important subtype of NAD+ dependent class III histone deacetylase, to be a negative regulator of NFATc4 in cardiomyocyte hypertrophy. In phenylephrine (PE)-induced hypertrophic cardiomyocyte model, overexpression of SIRT6 by adenovirus infection or by plasmid transfection repressed the protein and mRNA expressions of NFATc4, elevated its phosphorylation level, prevented its nuclear accumulation, subsequently suppressed its transcriptional activity and downregulated its target gene BNP. By contrast, mutant of SIRT6 without deacetylase activity (H133Y) did not demonstrate these effects, suggesting that the inhibitory effect of SIRT6 on NFATc4 was dependent on its deacetylase activity. Moreover, the effect of SIRT6 overexpression on repressing BNP expression was reversed by NFATc4 replenishment, whereas the effect of SIRT6 deficiency on upregulating BNP was recovered by NFATc4 silencing. Mechanistically, interactions between SIRT6 and NFATc4 might possibly facilitate the deacetylation of NFATc4 by SIRT6, thereby preventing the activation of NFATc4. In conclusion, the present study reveals that SIRT6 suppresses the expression and activation of NFATc4. These findings provide more evidences of the anti-hypertrophic effect of SIRT6 and suggest SIRT6 as a potential therapeutic target for cardiac hypertrophy.
Collapse
Affiliation(s)
- Zhenzhen Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaoying Zhang
- Department of Pharmacology, School of Medicine, Xizang Minzu University, Shaanxi, China
| | - Zhen Guo
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yao Zhong
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Department of Cardiology, Third People's Hospital of Dongguan, Dongguan, China
| | - Panxia Wang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jingyan Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhuoming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
73
|
Xiao L, Gu Y, Sun Y, Chen J, Wang X, Zhang Y, Gao L, Li L. The long noncoding RNA XIST regulates cardiac hypertrophy by targeting miR-101. J Cell Physiol 2019; 234:13680-13692. [PMID: 30605239 DOI: 10.1002/jcp.28047] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/30/2018] [Indexed: 12/27/2022]
Abstract
Cardiac hypertrophy and its resultant heart failure are among the most common causes of mortality, worldwide. Long noncoding RNAs (lncRNAs) are involved in diverse biological processes, and their vital role in the regulation of cardiac hypertrophy is increasingly being discovered. Nevertheless, the biological roles of lncRNA X-inactive specific transcript (XIST) in cardiac hypertrophy are scarcely reported, and the current study was designed to determine whether cardiac hypertrophy can be regulated by XIST and to elucidate the related mechanism. The animals were randomized to receive either an adeno-associated virus expressing XIST or control plasmid via a single bolus-tail vein injection. Two weeks later, hypertrophy was established by transverse aortic constriction (TAC) surgery. In vitro, H9c2 cells were used to explore the potential molecular mechanism of XIST in the regulation of phenylephrine (PE)-induced cardiomyocyte hypertrophy. A luciferase reporter assay and RNA immunoprecipitation were performed to explore the relationships among XIST, microRNA (miR)-101, and toll-like receptor 2 (TLR2). In this study, we demonstrated that the expression of XIST was significantly upregulated in hypertrophic mouse hearts and PE-treated cardiomyocytes. Then, we observed that knockdown of XIST attenuated PE-induced cardiomyocyte hypertrophy. Conversely, overexpression of XIST aggravated TAC-induced cardiac hypertrophy. Finally, we demonstrated that miR-101 was a direct target of XIST, whereas TLR2 was a target of miR-101. Rescue assays further confirmed that XIST promoted the progression of cardiac hypertrophy through competitively binding with miR-101 to enhance the expression of TLR2. Collectively, these in vivo and in vitro findings identify XIST as a necessary regulator of cardiac hypertrophy due to its regulation of the miR-101/TLR2 axis, suggesting that XIST might act as a therapeutic target for the treatment of cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Lili Xiao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yulei Gu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yunlong Sun
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun Chen
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaofang Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanzhou Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lu Gao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ling Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
74
|
Chen P, Long B, Xu Y, Wu W, Zhang S. Identification of Crucial Genes and Pathways in Human Arrhythmogenic Right Ventricular Cardiomyopathy by Coexpression Analysis. Front Physiol 2018; 9:1778. [PMID: 30574098 PMCID: PMC6291487 DOI: 10.3389/fphys.2018.01778] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/23/2018] [Indexed: 12/19/2022] Open
Abstract
As one common disease causing young people to die suddenly due to cardiac arrest, arrhythmogenic right ventricular cardiomyopathy (ARVC) is a disorder of heart muscle whose progression covers one complicated gene interaction network that influence the diagnosis and prognosis of it. In our research, differentially expressed genes (DEGs) were screened, and we established a weighted gene coexpression network analysis (WGCNA) and gene set net correlations analysis (GSNCA) for identifying crucial genes as well as pathways related to ARVC pathogenic mechanism (n = 12). In the research, the results demonstrated that there were 619 DEGs in total between non-failing donor myocardial samples and ARVC tissues (FDR < 0.05). WGCNA analysis identified the two gene modules (brown and turquoise) as being most significantly associated with ARVC state. Then the ARVC-related four key biological pathways (cytokine–cytokine receptor interaction, chemokine signaling pathway, neuroactive ligand receptor interaction, and JAK-STAT signaling pathway) and four hub genes (CXCL2, TNFRSF11B, LIFR, and C5AR1) in ARVC samples were further identified by GSNCA method. Finally, we used t-test and receiver operating characteristic (ROC) curves for validating hub genes, results showed significant differences in t-test and their AUC areas all greater than 0.8. Together, these results revealed that the new four hub genes as well as key pathways that might be involved into ARVC diagnosis. Even though further experimental validation is required for the implication by association, our findings demonstrate that the computational methods based on systems biology might complement the traditional gene-wide approaches, as such, might offer a new insight in therapeutic intervention within rare diseases of people like ARVC.
Collapse
Affiliation(s)
- Peipei Chen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Long
- Central Research Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Xu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Wu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuyang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
75
|
Cui S, Cui Y, Li Y, Zhang Y, Wang H, Qin W, Chen X, Ding S, Wu D, Guo H. Inhibition of cardiac hypertrophy by aromadendrin through down-regulating NFAT and MAPKs pathways. Biochem Biophys Res Commun 2018; 506:805-811. [PMID: 30389139 DOI: 10.1016/j.bbrc.2018.10.143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 10/23/2018] [Indexed: 11/26/2022]
Abstract
Cardiac hypertrophy is a maladaptive response to pressure overload and it's an important risk factor for heart failure and other adverse cardiovascular events. Aromadendrin (ARO) has remarkable anti-lipid peroxidation efficacy and is a potential therapeutic medicine for the management of diabetes and cardiovascular diseases. In this study, we established the cardiac hypertrophy cell model in rat neonatal ventricular cardiomyocytes (RNVMs) with phenylephrine. The cell model was characterized by the increased protein synthesis and cardiomyocyte size, which can be normalized by ARO treatment in both concentration- and time-dependent manner. In transverse aortic constriction (TAC) induced cardiac hypertrophy model, ARO administration improved the impairment of cardiac function and alleviated the cardiac hypertrophy indicators, like ventricular mass/body weight, myocyte cross-sectional area, and the expression of ANP, BNP and Myh7. ARO treatment also suppressed the cardiac fibrosis and the correlated fibrogenic genes. Our further investigation revealed ARO could down-regulate pressure overload-induced Malondialdehyde (MDA) and 4-HNE expression, restore the decrease of GSH/GSSG ratio, meanwhile prevent nuclear translocation of NFAT and the activation of MAPKs pathways. Collectively, ARO has a protective effect against experimental cardiac hypertrophy in mice, suggesting its potential as a novel therapeutic drug for pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Sumei Cui
- Department of Emergency, Qilu Hospital of Shandong University, Jinan, China; Institute of Emergency and Critical Care Medicine, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, China
| | - Yuqian Cui
- Center for Reproductive Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yuan Li
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, China; Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yongtao Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hao Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, China; Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Weidong Qin
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, China; Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaomei Chen
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, China; Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Shifang Ding
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, China; Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Dawei Wu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, China; Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Haipeng Guo
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, China; Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
76
|
Zhao C, Shen Q. Overexpression of small ubiquitin‑like modifier 2 ameliorates high glucose‑induced reductions in cardiomyocyte proliferation via the transforming growth factor‑β/Smad pathway. Mol Med Rep 2018; 18:4877-4885. [PMID: 30280191 PMCID: PMC6236294 DOI: 10.3892/mmr.2018.9522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/12/2017] [Indexed: 12/16/2022] Open
Abstract
Hyperglycemia may induce diabetic cardiomyopathy (DC). In the current study, the mechanism underlying the alleviation of high glucose (HG)-induced impairments in the proliferation of H9c2 embryo cardiomyocyte proliferation by small ubiquitin-like modifier 2 (SUMO2) overexpression was investigated. H9c2 cell morphology was identified as classical long shuttle type by optical microscopy. The viability of HG-injured H9c2 cells was evaluated by a Cell Counting Kit-8 assay and the results indicated that viability was inhibited in a dose-dependent (5.6, 10, 20 and 30 mmol/l) and time-dependent (6, 12 and 24 h) manner. H9c2 cells treated with 20 mmol/l HG for 24 h were selected for subsequent experiments due to the extent of injury caused at a low density. Flow cytometry was conducted to confirm cell cycle arrest between G1/S phases and apoptosis promotion in HG-injured H9c2 cells, and the subsequent alleviating effect of SUMO2 overexpression on these HG-induced effects. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis were performed to detect mRNA and protein expression levels of cell cycle-and apoptosis-associated factors. The results indicated that the expression ofthe cell cycle-associated factors CyclinA2 and C-Myc was upregulated, and cyclin-dependent kinase inhibitor 1a was downregulated. The expression of the apoptosis-associated factor Bcl-2 was upregulated, while Bcl-2-associated X and caspase-3 expression was downregulated, by SUMO2 overexpression. Furthermore, the effect of SUMO2 overexpression on the transforming growth factor (TGF)-β/Smad pathway was also determined using RT-qPCR and western blot analysis. The results indicated the mRNA and protein levels of TGF-β1 and Smad3 in HG-injured H9c2 cells were significantly decreased following SUMO2 overexpression. Thus, the results demonstrated that overexpression of SUMO2 may alleviate H9c2 cardiomyocyte cell cycle arrest and apoptosis promotion induced by HG via regulation of cell cycle- and apoptosis-associated factors, as well as inhibition of the TGF-β/Smad pathway. These results may therefore provide a novel strategy for the protection of cardiomyocytes and may aid the diagnosis and prognosis of patients with DC.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Geriatric, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200336, P.R. China
| | - Qile Shen
- Department of Geriatric, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200336, P.R. China
| |
Collapse
|
77
|
Mohseni Z, Spaanderman MEA, Oben J, Calore M, Derksen E, Al-Nasiry S, de Windt LJ, Ghossein-Doha C. Cardiac remodeling and pre-eclampsia: an overview of microRNA expression patterns. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2018; 52:310-317. [PMID: 28466998 DOI: 10.1002/uog.17516] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 03/13/2017] [Accepted: 03/31/2017] [Indexed: 06/07/2023]
Abstract
Pre-eclampsia (PE) is strongly associated with heart failure (HF) later in life. During PE pregnancy, the left ventricle undergoes concentric remodeling which often persists after delivery. This aberrant remodeling can induce a molecular signature that can be evaluated in terms of microRNAs (miRNAs) and which may help to explain the associated increased risk of HF. For this review, we performed a literature search of PubMed (National Center for Biotechnology Information), identifying studies on miRNA expression in concentric remodeling and on miRNA expression in PE. The miRNA data were stratified based on origin (isolated from humans or animals and from tissue or the circulation) and both datasets compared in order to generate a list of miRNA expression patterns in concentric remodeling and in PE. The nine miRNAs identified in both concentric remodeling and PE-complicated pregnancy were: miR-1, miR-18, miR-21, miR-29b, miR-30, miR-125b, miR-181b, miR-195 and miR-499-5p. We found five of these miRNAs (miR-18, miR-21, miR-125b, miR-195 and miR-499-5p) to be upregulated in both PE pregnancy and cardiac remodeling and two (miR-1 and miR-30) to be downregulated in both; the remaining two miRNAs (miR-29b and miR-181b) showed upregulation during PE but downregulation in cardiac remodeling. This innovative approach may be a step towards finding relevant biomarkers for complicated pregnancy and elucidating their relationship with remote cardiovascular disease. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Z Mohseni
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - M E A Spaanderman
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - J Oben
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - M Calore
- Department of Cardiology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - E Derksen
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - S Al-Nasiry
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - L J de Windt
- Department of Cardiology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - C Ghossein-Doha
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| |
Collapse
|
78
|
Fang X, Liu Y, Lu J, Hong H, Yuan J, Zhang Y, Wang P, Liu P, Ye J. Protocatechuic aldehyde protects against isoproterenol-induced cardiac hypertrophy via inhibition of the JAK2/STAT3 signaling pathway. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:1373-1385. [PMID: 30132020 DOI: 10.1007/s00210-018-1556-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/15/2018] [Indexed: 01/01/2023]
Abstract
Protocatechuic aldehyde (PCA) is a natural compound found in the Chinese herb Salvia miltiorrhiza. It has been shown to possess multiple biological activities and to protect the cardiovascular system against oxidative stress, inflammation, and atherosclerosis. However, the potential effects of PCA on cardiac hypertrophy remain to be investigated. In this study, we showed that isoproterenol treatment (ISO, 10 μM for 24 h) induced significant hypertrophy in cultured neonatal rat cardiomyocytes, as manifested by enlargement of cell surface area (1.74-fold greater than that of the control, p < 0.05) and upregulation of hypertrophic gene markers (2.44- to 2.75-fold increase in ANF and β-MHC protein expression, p < 0.05). These ISO-induced hypertrophic responses were attenuated by PCA (50-200 μM, p < 0.05). Furthermore, intragastric administration of PCA (10-100 mg/kg/day) ameliorated cardiac hypertrophy in ISO-treated rats (1.5 mg/kg/day, s.c., for 7 days). PCA inhibited the abnormal changes in echocardiographic parameters and suppressed ISO-induced increase in cardiomyocyte cross-sectional area and collagen content (p < 0.05). It also ameliorated ISO-mediated elevation of HW/BW, LVW/BW, and HW/TL ratios (p < 0.05). Mechanistically, ISO facilitated JAK2 and STAT3 phosphorylation, increased STAT3 nuclear translocation, and enhanced STAT3 transcriptional activity. All these changes were attenuated by PCA. Taken together, these findings showed that PCA could protect against cardiac hypertrophy induced by ISO possibly via inhibition of the JAK2/STAT3 signaling pathway, suggesting the potential of PCA as a therapeutic candidate for hypertrophy-associated heart diseases.
Collapse
Affiliation(s)
- Xiuli Fang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University (Higher Education Mega Center), 132# East Wai-huan Road, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Yajun Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University (Higher Education Mega Center), 132# East Wai-huan Road, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Jing Lu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University (Higher Education Mega Center), 132# East Wai-huan Road, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Huiqi Hong
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University (Higher Education Mega Center), 132# East Wai-huan Road, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Jing Yuan
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University (Higher Education Mega Center), 132# East Wai-huan Road, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Yuhong Zhang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University (Higher Education Mega Center), 132# East Wai-huan Road, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Panxia Wang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University (Higher Education Mega Center), 132# East Wai-huan Road, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University (Higher Education Mega Center), 132# East Wai-huan Road, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Jiantao Ye
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University (Higher Education Mega Center), 132# East Wai-huan Road, Guangzhou, 510006, Guangdong, People's Republic of China.
| |
Collapse
|
79
|
Li C, Zhou G, Feng J, Zhang J, Hou L, Cheng Z. Upregulation of lncRNA VDR/CASC15 induced by facilitates cardiac hypertrophy through modulating miR-432-5p/TLR4 axis. Biochem Biophys Res Commun 2018; 503:2407-2414. [PMID: 29966657 DOI: 10.1016/j.bbrc.2018.06.169] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 06/29/2018] [Indexed: 11/19/2022]
Abstract
Sustained cardiac hypertrophy has threatened human health. With the development of human genome project, non-coding RNAs (ncRNAs) have attracted more and more attentions of researchers. As a subgroup of ncRNAs, long non-coding RNAs (lncRNAs) has been widely studied in human diseases, including cardiac hypertrophy. According to search results of bioinformatics website, lncRNA CASC15 potentially participates in the course of cardiac hypertrophy. According to the result of qRT-PCR, CASC15 expression was upregulated when cardiomyocytes were treated with Ang-II. Moreover, CASC15 was highly expressed in cardiac hypertrophic model. Upregulation of CASC15 was accompanied with some hypertrophic responses. To explore the specific biological function of CASC15 in cardiac hypertrophy, loss-of-function experiments were conducted in Ang-II-induced cardiomyocytes. Results of immunofluorence staining revealed that cell surface area enlarged by Ang-II was decreased when CASC15 was silenced. The expression levels of hypertrophic factors were attenuated by knockdown of CASC15. To detect the molecular mechanism by which CASC15 regulates the progression of cardiac hypertrophy, mechanism experiments were designed and carried out. It was found that CASC15 was activated by the transcription factor VDR. Furthermore, CASC15 can upregulate TLR4 by competitively binding miR-432-5p. In conclusion, Upregulation of lncRNA CASC15 induced by VDR facilitates cardiac hypertrophy via miR-432-5p/TLR4 axis.
Collapse
Affiliation(s)
- Chao Li
- Department of Cardiology, The Second People's Hospital of Hefei, 230011, Hefei, Anhui Province, China
| | - Gaoliang Zhou
- Department of Cardiology, The Second People's Hospital of Hefei, 230011, Hefei, Anhui Province, China
| | - Jun Feng
- Department of Cardiology, The Second People's Hospital of Hefei, 230011, Hefei, Anhui Province, China.
| | - Jing Zhang
- Department of Cardiology, The Second People's Hospital of Hefei, 230011, Hefei, Anhui Province, China
| | - Linlin Hou
- Department of Cardiology, The Second People's Hospital of Hefei, 230011, Hefei, Anhui Province, China
| | - Ziping Cheng
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, Anhui Province, China
| |
Collapse
|
80
|
Hao L, Ren M, Rong B, Xie F, Lin MJ, Zhao YC, Yue X, Han WQ, Zhong JQ. TWEAK/Fn14 mediates atrial-derived HL-1 myocytes hypertrophy via JAK2/STAT3 signalling pathway. J Cell Mol Med 2018; 22:4344-4353. [PMID: 29971943 PMCID: PMC6111870 DOI: 10.1111/jcmm.13724] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 05/13/2018] [Indexed: 12/11/2022] Open
Abstract
Atrial myocyte hypertrophy is one of the most important substrates in the development of atrial fibrillation (AF). The TWEAK/Fn14 axis is a positive regulator of cardiac hypertrophy in cardiomyopathy. This study therefore investigated the effects of Fn14 on atrial hypertrophy and underlying cellular mechanisms using HL‐1 atrial myocytes. In patients with AF, Fn14 protein levels were higher in atrial myocytes from atrial appendages, and expression of TWEAK was increased in peripheral blood mononuclear cells, while TWEAK serum levels were decreased. In vitro, Fn14 expression was up‐regulated in response to TWEAK treatment in HL‐1 atrial myocytes. TWEAK increased the expression of ANP and Troponin T, and Fn14 knockdown counteracted the effect. Inhibition of JAK2, STAT3 by specific siRNA attenuated TWEAK‐induced HL‐1 atrial myocytes hypertrophy. In conclusion, TWEAK/Fn14 axis mediates HL‐1 atrial myocytes hypertrophy partly through activation of the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Li Hao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China
| | - Manyi Ren
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China.,Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Bing Rong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China
| | - Fei Xie
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China
| | - Ming-Jie Lin
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China
| | - Ya-Chao Zhao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China
| | - Xin Yue
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China
| | - Wen-Qiang Han
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China
| | - Jing-Quan Zhong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
81
|
Long non-coding RNA CHRF facilitates cardiac hypertrophy through regulating Akt3 via miR-93. Cardiovasc Pathol 2018; 35:29-36. [DOI: 10.1016/j.carpath.2018.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/09/2018] [Accepted: 04/09/2018] [Indexed: 12/21/2022] Open
|
82
|
Kumar S, Wang G, Liu W, Ding W, Dong M, Zheng N, Ye H, Liu J. Hypoxia-Induced Mitogenic Factor Promotes Cardiac Hypertrophy via Calcium-Dependent and Hypoxia-Inducible Factor-1α Mechanisms. Hypertension 2018; 72:331-342. [PMID: 29891648 DOI: 10.1161/hypertensionaha.118.10845] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/24/2018] [Accepted: 05/08/2018] [Indexed: 12/26/2022]
Abstract
HIMF (hypoxia-induced mitogenic factor/found in inflammatory zone 1/resistin like α) is a secretory and cytokine-like protein and serves as a critical stimulator of hypoxia-induced pulmonary hypertension. With a role for HIMF in heart disease unknown, we explored the possible roles for HIMF in cardiac hypertrophy by overexpressing and knocking down HIMF in cardiomyocytes and characterizing HIMF gene (himf) knockout mice. We found that HIMF mRNA and protein levels were upregulated in phenylephrine-stimulated cardiomyocyte hypertrophy and our mouse model of transverse aortic constriction-induced cardiac hypertrophy, as well as in human hearts with dilated cardiomyopathy. Furthermore, HIMF overexpression could induce cardiomyocyte hypertrophy, as characterized by elevated protein expression of hypertrophic biomarkers (ANP [atrial natriuretic peptide] and β-MHC [myosin heavy chain-β]) and increased cell-surface area compared with controls. Conversely, HIMF knockdown prevented phenylephrine-induced cardiomyocyte hypertrophy and himf ablation in knockout mice significantly attenuated transverse aortic constriction-induced hypertrophic remodeling and cardiac dysfunction. HIMF overexpression increased the cytosolic Ca2+ concentration and activated the CaN-NFAT (calcineurin-nuclear factor of activated T cell) and MAPK (mitogen-activated protein kinase) pathways; this effect could be prevented by reducing cytosolic Ca2+ concentration with L-type Ca2+ channel blocker nifedipine or inhibiting the CaSR (Ca2+ sensing receptor) with Calhex 231. Furthermore, HIMF overexpression increased HIF-1α (hypoxia-inducible factor) expression in neonatal rat ventricular myocytes, and HIMF knockout inhibited HIF-1α upregulation in transverse aortic constriction mice. Knockdown of HIF-1α attenuated HIMF-induced cardiomyocyte hypertrophy. In conclusion, HIMF has a critical role in the development of cardiac hypertrophy, and targeting HIMF may represent a potential therapeutic strategy.
Collapse
Affiliation(s)
- Santosh Kumar
- From the Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, China (S.K., G.W., W.L., M.D., N.Z., J.L.)
| | - Gang Wang
- From the Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, China (S.K., G.W., W.L., M.D., N.Z., J.L.)
| | - Wenjuan Liu
- From the Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, China (S.K., G.W., W.L., M.D., N.Z., J.L.)
| | - Wenwen Ding
- Institute for Cancer Prevention and Treatment, School of Medicine, Jingchu University of Technology, Jingmen, China (W.D.)
| | - Ming Dong
- From the Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, China (S.K., G.W., W.L., M.D., N.Z., J.L.)
| | - Na Zheng
- From the Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, China (S.K., G.W., W.L., M.D., N.Z., J.L.)
| | - Hongyu Ye
- Department of Cardiothoracic Surgery, Zhongshan People's Hospital, China (H.Y.)
| | - Jie Liu
- From the Department of Pathophysiology, Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, China (S.K., G.W., W.L., M.D., N.Z., J.L.)
| |
Collapse
|
83
|
Shoieb SM, El-Kadi AOS. S-Enantiomer of 19-Hydroxyeicosatetraenoic Acid Preferentially Protects Against Angiotensin II-Induced Cardiac Hypertrophy. Drug Metab Dispos 2018; 46:1157-1168. [DOI: 10.1124/dmd.118.082073] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/29/2018] [Indexed: 12/20/2022] Open
|
84
|
Chen CY, Lin HY, Chen YW, Ko YJ, Liu YJ, Chen YH, Walzem RL, Chen SE. Obesity-associated cardiac pathogenesis in broiler breeder hens: Pathological adaption of cardiac hypertrophy. Poult Sci 2018; 96:2428-2437. [PMID: 28339908 DOI: 10.3382/ps/pex015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/08/2017] [Indexed: 12/25/2022] Open
Abstract
Broiler hens consuming feed to appetite (ad libitum; AL) show increased mortality. Feed restriction (R) typically improves reproductive performance and livability of hens. Rapidly growing broilers can exhibit increased mortality due to cardiac insufficiency but it is unknown whether the increased mortality of non-R broiler hens is also due to cardiac compromise. To assess cardiac growth and physiology in fully mature birds, 45-week-old hens were either continued on R rations or assigned to AL feeding for 7 or 21 days. AL hens exhibited increased bodyweight, adiposity, absolute and relative heart weight, ventricular hypertrophy, and cardiac protein/DNA ratio by d 21 (P < 0.05). Increased heart weights due to hypertrophic growth was attributed to enhanced IGF-1-Akt-FoxO1 signaling and its downstream target, translation initiation factor 4E-BP1 in conjunction with down-regulation of ubiquitin ligase atrogin-1/MAFbx (P < 0.05). Reduced activation of cardiac AMPK and downstream activation of ACC-1 in parallel with increased cardiac nitric oxide levels, calcineurin activity, and MAPK activation in AL hens (P < 0.05) suggested that metabolic derangement develops along the cardiovascular remodeling. These indictors of cardiac maladaptive hypertrophic growth were further supported by uregulation of heart failure markers, BNP and MHC-β (P < 0.05). Hens allowed AL feeding for 70 d exhibited a higher incidence of mortality (40% vs. 10%) in association with ascites, pericardial effusion, and ventricle dilation. A higher incidence of irregular ECG patterns and rhythmicity consistent with persistently elevated systolic blood pressure and ventricle fibrosis were observed in AL hens (P < 0.05). These observations support the conclusion that AL feeding in broiler hens results in maladaptive cardiac hypertrophy that progresses to overt pathogenesis in contractility and thereby increases mortality. Feed restriction provides clear physiological benefit to heart function of adult broiler hens.
Collapse
Affiliation(s)
- C Y Chen
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - H Y Lin
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Y W Chen
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Y J Ko
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Y J Liu
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Y H Chen
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - R L Walzem
- Center for the Integrative and Evolutionary Galliformes Genomics, iEGG Center, National Chung Hsing University, Taiwan
| | - S E Chen
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan.,Department of Poultry Science, Texas A&M University, College Station.,Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
85
|
Li ZM, Xu SW, Liu PQ. Salvia miltiorrhizaBurge (Danshen): a golden herbal medicine in cardiovascular therapeutics. Acta Pharmacol Sin 2018; 39:802-824. [PMID: 29698387 PMCID: PMC5943903 DOI: 10.1038/aps.2017.193] [Citation(s) in RCA: 297] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/31/2017] [Indexed: 02/07/2023] Open
Abstract
Salvia miltiorrhiza Burge (Danshen) is an eminent medicinal herb that possesses broad cardiovascular and cerebrovascular protective actions and has been used in Asian countries for many centuries. Accumulating evidence suggests that Danshen and its components prevent vascular diseases, in particular, atherosclerosis and cardiac diseases, including myocardial infarction, myocardial ischemia/reperfusion injury, arrhythmia, cardiac hypertrophy and cardiac fibrosis. The published literature indicates that lipophilic constituents (tanshinone I, tanshinone IIa, tanshinone IIb, cryptotanshinone, dihydrotanshinone, etc) as well as hydrophilic constituents (danshensu, salvianolic acid A and B, protocatechuic aldehyde, etc) contribute to the cardiovascular protective actions of Danshen, suggesting a potential synergism among these constituents. Herein, we provide a systematic up-to-date review on the cardiovascular actions and therapeutic potential of major pharmacologically active constituents of Danshen. These bioactive compounds will serve as excellent drug candidates in small-molecule cardiovascular drug discovery. This article also provides a scientific rationale for understanding the traditional use of Danshen in cardiovascular therapeutics.
Collapse
Affiliation(s)
- Zhuo-ming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| | - Suo-wen Xu
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA
| | - Pei-qing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
86
|
Wasala NB, Shin JH, Lai Y, Yue Y, Montanaro F, Duan D. Cardiac-Specific Expression of ΔH2-R15 Mini-Dystrophin Normalized All Electrocardiogram Abnormalities and the End-Diastolic Volume in a 23-Month-Old Mouse Model of Duchenne Dilated Cardiomyopathy. Hum Gene Ther 2018; 29:737-748. [PMID: 29433343 DOI: 10.1089/hum.2017.144] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Heart disease is a major health threat for Duchenne/Becker muscular dystrophy patients and carriers. Expression of a 6-8 kb mini-dystrophin gene in the heart holds promise to change the disease course dramatically. However, the mini-dystrophin gene cannot be easily studied with adeno-associated virus (AAV) gene delivery because the size of the minigene exceeds AAV packaging capacity. Cardiac protection of the ΔH2-R19 minigene was previously studied using the cardiac-specific transgenic approach. Although this minigene fully normalized skeletal muscle force, it only partially corrected electrocardiogram and heart hemodynamics in dystrophin-null mdx mice that had moderate cardiomyopathy. This study evaluated the ΔH2-R15 minigene using the same transgenic approach in mdx mice that had more severe cardiomyopathy. In contrast to the ΔH2-R19 minigene, the ΔH2-R15 minigene carries dystrophin spectrin-like repeats 16 to 19 (R16-19), a region that has been suggested to protect the heart in clinical studies. Cardiac expression of the ΔH2-R15 minigene normalized all aberrant electrocardiogram changes and improved hemodynamics. Importantly, it corrected the end-diastolic volume, an important diastolic parameter not rescued by ΔH2-R19 mini-dystrophin. It is concluded that that ΔH2-R15 mini-dystrophin is a superior candidate gene for heart protection. This finding has important implications in the design of the mini/micro-dystrophin gene for Duchenne cardiomyopathy therapy.
Collapse
Affiliation(s)
- Nalinda B Wasala
- 1 Department of Molecular Microbiology and Immunology, The University of Missouri , Columbia, Missouri
| | - Jin-Hong Shin
- 1 Department of Molecular Microbiology and Immunology, The University of Missouri , Columbia, Missouri
| | - Yi Lai
- 1 Department of Molecular Microbiology and Immunology, The University of Missouri , Columbia, Missouri
| | - Yongping Yue
- 1 Department of Molecular Microbiology and Immunology, The University of Missouri , Columbia, Missouri
| | - Federica Montanaro
- 2 Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health , London, United Kingdom
| | - Dongsheng Duan
- 1 Department of Molecular Microbiology and Immunology, The University of Missouri , Columbia, Missouri.,3 Department of Neurology, School of Medicine, The University of Missouri , Columbia, Missouri.,4 Department of Bioengineering, The University of Missouri , Columbia, Missouri.,5 Department of Biomedical Sciences, College of Veterinary Medicine, The University of Missouri , Columbia, Missouri
| |
Collapse
|
87
|
Genetic ablation of TRPV1 exacerbates pressure overload-induced cardiac hypertrophy. Biomed Pharmacother 2018; 99:261-270. [DOI: 10.1016/j.biopha.2018.01.065] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/18/2017] [Accepted: 01/11/2018] [Indexed: 12/31/2022] Open
|
88
|
Chen J, Guo J, Cui X, Dai Y, Tang Z, Qu J, Raj JU, Hu Q, Gou D. The Long Noncoding RNA LnRPT Is Regulated by PDGF-BB and Modulates the Proliferation of Pulmonary Artery Smooth Muscle Cells. Am J Respir Cell Mol Biol 2018; 58:181-193. [DOI: 10.1165/rcmb.2017-0111oc] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Jidong Chen
- Shenzhen Key Laboratory of Microbial Genetic Engineering
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences, and
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Jiao Guo
- Shenzhen Key Laboratory of Microbial Genetic Engineering
| | - Xiaolei Cui
- Shenzhen Key Laboratory of Microbial Genetic Engineering
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences, and
| | - Yan Dai
- Key Laboratory of Systems Biology, Chinese Academy of Science, Shanghai Institute for Biological Sciences, Shanghai, China
| | - Zhixiong Tang
- Shenzhen Key Laboratory of Microbial Genetic Engineering
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences, and
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - J. Usha Raj
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois; and
| | - Qinghua Hu
- Department of Pathophysiology and
- Key Laboratory of Pulmonary Diseases of Ministry of Health, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences, and
| |
Collapse
|
89
|
van Eldik W, den Adel B, Monshouwer-Kloots J, Salvatori D, Maas S, van der Made I, Creemers EE, Frank D, Frey N, Boontje N, van der Velden J, Steendijk P, Mummery C, Passier R, Beqqali A. Z-disc protein CHAPb induces cardiomyopathy and contractile dysfunction in the postnatal heart. PLoS One 2017; 12:e0189139. [PMID: 29206857 PMCID: PMC5716575 DOI: 10.1371/journal.pone.0189139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 11/20/2017] [Indexed: 12/17/2022] Open
Abstract
Aims The Z-disc is a crucial structure of the sarcomere and is implicated in mechanosensation/transduction. Dysregulation of Z-disc proteins often result in cardiomyopathy. We have previously shown that the Z-disc protein Cytoskeletal Heart-enriched Actin-associated Protein (CHAP) is essential for cardiac and skeletal muscle development. Furthermore, the CHAP gene has been associated with atrial fibrillation in humans. Here, we studied the misregulated expression of CHAP isoforms in heart disease. Methods and results Mice that underwent transverse aortic constriction and calcineurin transgenic (Tg) mice, both models of experimental heart failure, displayed a significant increase in cardiac expression of fetal isoform CHAPb. To investigate whether increased expression of CHAPb postnatally is sufficient to induce cardiomyopathy, we generated CHAPb Tg mice under the control of the cardiac-specific αMHC promoter. CHAPb Tg mice displayed cardiac hypertrophy, interstitial fibrosis and enlargement of the left atrium at three months, which was more pronounced at the age of six months. Hypertrophy and fibrosis were confirmed by evidence of activation of the hypertrophic gene program (Nppa, Nppb, Myh7) and increased collagen expression, respectively. Connexin40 and 43 were downregulated in the left atrium, which was associated with delayed atrioventricular conduction. Tg hearts displayed both systolic and diastolic dysfunction partly caused by impaired sarcomere function evident from a reduced force generating capacity of single cardiomyocytes. This co-incided with activation of the actin signalling pathway leading to the formation of stress fibers. Conclusion This study demonstrated that the fetal isoform CHAPb initiates progression towards cardiac hypertrophy, which is accompanied by delayed atrioventricular conduction and diastolic dysfunction. Moreover, CHAP may be a novel therapeutic target or candidate gene for screening in cardiomyopathies and atrial fibrillation.
Collapse
Affiliation(s)
- Willemijn van Eldik
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands (ICIN), Utrecht, The Netherlands
| | - Brigit den Adel
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Daniela Salvatori
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- Central Laboratory Animal Facility, Leiden University Medical Center, Leiden, The Netherlands
| | - Saskia Maas
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- Central Laboratory Animal Facility, Leiden University Medical Center, Leiden, The Netherlands
| | - Ingeborg van der Made
- Department of Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Esther E. Creemers
- Department of Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Derk Frank
- Department of Cardiology and Angiology, Universitätsklinikum Schleswig-Holstein (UKSH), University of Kiel, Kiel, Germany
| | - Norbert Frey
- Department of Cardiology and Angiology, Universitätsklinikum Schleswig-Holstein (UKSH), University of Kiel, Kiel, Germany
| | - Nicky Boontje
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Jolanda van der Velden
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Paul Steendijk
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Christine Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert Passier
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Abdelaziz Beqqali
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
90
|
STAT3 Suppression Is Involved in the Protective Effect of SIRT6 Against Cardiomyocyte Hypertrophy. J Cardiovasc Pharmacol 2017; 68:204-14. [PMID: 27124607 DOI: 10.1097/fjc.0000000000000404] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The activation of signal transducer and activator of transcription 3 (STAT3) is critical for the development of cardiac hypertrophy and heart failure. Sirtuin 6 (SIRT6) protects cardiomyocytes from hypertrophy. This study focused on the association between SIRT6 and STAT3 in the regulation of cardiomyocyte hypertrophy. In the phenylephrine (PE)-induced hypertrophic cardiomyocyte model and in the hearts of isoprenaline-induced cardiac hypertrophic rat model, the mRNA and protein expressions of STAT3 and its phosphorylated level at tyrosine 705 (P-STAT3) were significantly increased. By contrast, the deacetylation activity of SIRT6 was weakened without altering its protein expression. In addition, the nuclear localization of STAT3 and P-STAT3 was enhanced by PE, suggesting that STAT3 was activated in cardiomyocyte hypertrophy. Adenovirus infection-induced SIRT6 overexpression repressed the activation of STAT3 by decreasing its mRNA and protein levels, by suppressing its transcriptional activity, and by hindering the expressions of its target genes. Moreover, the effect of SIRT6 overexpression on eliminating PE-induced expressions of hypertrophic biomarkers, such as atrial natriuretic factor and brain natriuretic peptide, was reversed by STAT3 overexpression. Likewise, SIRT6 knockdown-induced upregulation of atrial natriuretic factor and brain natriuretic peptide was reversed by STAT3 silencing. These observations suggest that the antihypertrophic effect of SIRT6 involves STAT3 suppression. In conclusion, SIRT6 prevents PE-induced activation of STAT3 in cardiomyocyte hypertrophy; the inhibitory effect of SIRT6 on STAT3 contributes to cardiac protection.
Collapse
|
91
|
Meng Y, Zhang Y, Ma Z, Zhou H, Ni J, Liao H, Tang Q. Genistein attenuates pathological cardiac hypertrophy in vivo and in vitro. Herz 2017; 44:247-256. [DOI: 10.1007/s00059-017-4635-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 09/01/2017] [Accepted: 09/29/2017] [Indexed: 12/31/2022]
|
92
|
Zhou N, Ma B, Stoll S, Hays TT, Qiu H. The valosin-containing protein is a novel repressor of cardiomyocyte hypertrophy induced by pressure overload. Aging Cell 2017; 16:1168-1179. [PMID: 28799247 PMCID: PMC5595673 DOI: 10.1111/acel.12653] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2017] [Indexed: 12/22/2022] Open
Abstract
Hypertension‐induced left ventricular hypertrophy (LVH) is an independent risk factor for heart failure. Regression of LVH has emerged as a major goal in the treatment of hypertensive patients. Here, we tested our hypothesis that the valosin‐containing protein (VCP), an ATPase associate protein, is a novel repressor of cardiomyocyte hypertrophy under the pressure overload stress. Left ventricular hypertrophy (LVH) was determined by echocardiography in 4‐month male spontaneously hypertensive rats (SHRs) vs. age‐matched normotensive Wistar Kyoto (WKY) rats. VCP expression was found to be significantly downregulated in the left ventricle (LV) tissues from SHRs vs. WKY rats. Pressure overload was induced by transverse aortic constriction (TAC) in wild‐type (WT) mice. At the end of 2 weeks, mice with TAC developed significant LVH whereas the cardiac function remained unchanged. A significant reduction of VCP at both the mRNA and protein levels in hypertrophic LV tissue was found in TAC WT mice compared to sham controls. Valosin‐containing protein VCP expression was also observed to be time‐ and dose‐dependently reduced in vitro in isolated neonatal rat cardiomyocytes upon the treatment of angiotensin II. Conversely, transgenic (TG) mice with cardiac‐specific overexpression of VCP showed a significant repression in TAC‐induced LVH vs. litter‐matched WT controls upon 2‐week TAC. TAC‐induced activation of the mechanistic target of rapamycin complex 1 (mTORC1) signaling observed in WT mice LVs was also significantly blunted in VCP TG mice. In conclusion, VCP acts as a novel repressor that is able to prevent cardiomyocyte hypertrophy from pressure overload by modulating the mTORC1 signaling pathway.
Collapse
Affiliation(s)
- Ning Zhou
- Division of Cardiology; Department of Internal Medicine; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
- Division of Physiology; Department of Basic Sciences; School of Medicine; Loma Linda University; Loma Linda CA USA
| | - Ben Ma
- Division of Physiology; Department of Basic Sciences; School of Medicine; Loma Linda University; Loma Linda CA USA
| | - Shaunrick Stoll
- Division of Physiology; Department of Basic Sciences; School of Medicine; Loma Linda University; Loma Linda CA USA
| | - Tristan T. Hays
- Division of Physiology; Department of Basic Sciences; School of Medicine; Loma Linda University; Loma Linda CA USA
| | - Hongyu Qiu
- Division of Physiology; Department of Basic Sciences; School of Medicine; Loma Linda University; Loma Linda CA USA
| |
Collapse
|
93
|
Pharaon LF, El-Orabi NF, Kunhi M, Al Yacoub N, Awad SM, Poizat C. Rosiglitazone promotes cardiac hypertrophy and alters chromatin remodeling in isolated cardiomyocytes. Toxicol Lett 2017; 280:151-158. [PMID: 28822817 DOI: 10.1016/j.toxlet.2017.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 11/17/2022]
Abstract
Rosiglitazone is an anti-diabetic agent that raised a major controversy over its cardiovascular adverse effects. There is in vivo evidence that Rosiglitazone promotes cardiac hypertrophy by PPAR-γ-independent mechanisms. However, whether Rosiglitazone directly alters hypertrophic growth in cardiac cells is unknown. Chromatin remodeling by histone post-translational modifications has emerged as critical for many cardiomyopathies. Based on these observations, this study was initiated to investigate the cardiac hypertrophic effect of Rosiglitazone in a cellular model of primary neonatal rat cardiomyocytes (NRCM). We assessed whether the drug alters cardiac hypertrophy and its relationship with histone H3 phosphorylation. Our study showed that Rosiglitazone is a mild pro-hypertrophic agent. Rosiglitazone caused a significant increase in the release of brain natriuretic peptide (BNP) into the cell media and also increased cardiomyocytes surface area and atrial natriuretic peptide (ANP) protein expression significantly. These changes correlated with increased cardiac phosphorylation of p38 MAPK and enhanced phosphorylation of H3 at serine 10 globally and at one cardiac hypertrophic gene locus. These results demonstrate that Rosiglitazone causes direct cardiac hypertrophy in NRCM and alters H3 phosphorylation status. They suggest a new mechanism of Rosiglitazone cardiotoxicity implicating chromatin remodeling secondary to H3 phosphorylation, which activate the fetal cardiac gene program.
Collapse
Affiliation(s)
- Lama Fawaz Pharaon
- King Saud University, College of Pharmacy, Department of Pharmacology and Toxicology, PO Box 22452, Riyadh 11495, Saudi Arabia; Cardiovascular Research Program, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Riyadh 11211, Saudi Arabia
| | - Naglaa Fathi El-Orabi
- King Saud University, College of Pharmacy, Department of Pharmacology and Toxicology, PO Box 22452, Riyadh 11495, Saudi Arabia; Suez Canal University, Faculty of Pharmacy, Department of Pharmacology and Toxicology, Ismailia 41522, Egypt
| | - Muhammad Kunhi
- Cardiovascular Research Program, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Riyadh 11211, Saudi Arabia
| | - Nadya Al Yacoub
- Cardiovascular Research Program, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Riyadh 11211, Saudi Arabia
| | - Salma Mahmoud Awad
- Cardiovascular Research Program, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Riyadh 11211, Saudi Arabia
| | - Coralie Poizat
- Cardiovascular Research Program, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Riyadh 11211, Saudi Arabia; San Diego State University, Department of Biology, 5500 Campanile Drive, San Diego, CA 92182, USA.
| |
Collapse
|
94
|
Contribution of Interleukin-6 to the Pathogenesis of Systemic Sclerosis. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2017. [DOI: 10.5301/jsrd.5000258] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systemic sclerosis (SSc) is a connective tissue disease of unknown etiology, manifesting in patients as tissue fibrosis, endothelial dysfunction, and inflammation. The disease is characterized by autoantibodies, a hallmark of autoimmunity. Various cytokines and growth factors are elevated in the systemic circulation and fibrotic lesions of patients with SSc. In particular, several studies over the past 2 decades have shown that interleukin-6 (IL-6) appears to be involved in the pathogenesis of SSc. Based on the association between aberrant IL-6 production and tissue fibrosis in patients with SSc, the anti-IL-6 receptor antibody, tocilizumab, is being investigated in clinical trials. This article reviews the biological features of IL-6 and the IL-6 receptor; the role of IL-6 in the pathogenesis of SSc; and the potential for IL-6 inhibition to be used in the treatment of patients with SSc.
Collapse
|
95
|
GNAQ TT(-695/-694)GC Polymorphism Is Associated with Increased Gq Expression, Vascular Reactivity, and Myocardial Injury after Coronary Artery Bypass Surgery. Anesthesiology 2017; 127:70-77. [PMID: 28422819 DOI: 10.1097/aln.0000000000001642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Angiotensin II receptor type 1-mediated activation of the α-subunit of the heterotrimeric Gq protein evokes increased vasoconstriction and may promote hypertrophy-induced myocardial damage. The authors recently identified a TT(-695/-694)GC polymorphism in the human Gq promoter, the GC allele being associated with an increased prevalence of cardiac hypertrophy. In this article, the authors tested whether the TT(-695/-694)GC polymorphism is associated with differences in (1) myocardial Gq protein expression, (2) vascular reactivity, and (3) myocardial damage after coronary artery bypass grafting. METHODS Gq protein expression was measured in right atrial muscle from 55 patients undergoing coronary artery bypass grafting as were skin perfusion changes (n = 18; laser Doppler imaging), saphenous vein ring vascular reactivity (n = 50, organ bath) in response to angiotensin II, and myocardial damage (227 patients undergoing coronary artery bypass grafting), as assessed by postoperative cardiac troponin I concentration. RESULTS Myocardial Gq expression was greater in GC/GC genotypes (GC/GC vs. TT/TT 1.27-fold change; P = 0.006). Skin perfusion after intradermal angiotensin II injection decreased only in GC/GC genotypes (P = 0.0002). Saphenous vein rings exposed to increasing angiotensin II concentrations showed an almost doubled maximum contraction in GC/GC compared with individuals with the TT/TT genotype (P = 0.022). In patients undergoing coronary artery bypass grafting, baseline cardiac ejection fraction was different (GC/GC: 55 ± 13%; GC/TT: 54 ± 14%; TT/TT: 48 ± 15%; P = 0.037) and postoperative peak cardiac troponin I was greater in patients with the GC/GC (11.5 ± 13.8 ng/ml) than in patients with the GC/TT (9.2 ± 9.2 ng/ml) or patients with the TT/TT genotype (6.6 ± 4.8 ng/ml, P = 0.015). CONCLUSIONS The GC/GC genotype of the TT(-695/-694)GC polymorphism is associated with increased Gq protein expression, augmented angiotensin II receptor type 1-related vasoconstriction, and increased myocardial injury after coronary artery bypass grafting, highlighting the impact of Gq genotype variation.
Collapse
|
96
|
Ren W, Wang Z, Wu Z, Hu Z, Dai F, Chang J, Li B, Liu H, Ruan Y. JAK2/STAT3 Pathway Was Associated with the Protective Effects of IL-22 On Aortic Dissection with Acute Lung Injury. DISEASE MARKERS 2017; 2017:1917804. [PMID: 28827891 PMCID: PMC5554575 DOI: 10.1155/2017/1917804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/24/2017] [Accepted: 04/05/2017] [Indexed: 01/06/2023]
Abstract
Patients with aortic dissection (AD) may present acute lung injury (ALI) that may affect the prognosis. In this study, we aim to investigate the roles and mechanism of IL-22 in the pathogenesis of AD complicated with ALI. Six hundred and twenty-one AD patients were included, and the incidence of ALI and pulmonary CT findings were analyzed. Mouse ALI model was established through AngII, and then IL-22 injection and AG490 were given. The pathological changes, infiltration of inflammatory cells, and expression of STAT3 were determined. For the in vitro experiment, cultivated pulmonary microvascular endothelial cells (PMVECs) were treated by angiotensin II (AngII), followed by treating with IL-22 and/or AG490. The expression and migration of STAT3 was determined. Flow cytometry was carried out to evaluate the apoptosis. IL-22 contributed to the expression of STAT3 in lung tissues and attenuation of ALI. IL-22 obviously inhibited the apoptosis of PMVECs mediated by AngII and downregulated the expression and intranuclear transmission of STAT3. Such phenomenon was completely inhibited upon administration of AG490, an inhibitor of JAK2. Our data showed IL-22 contributed to the inhibition of PMVEC apoptosis mediated by AngII through activating the JAK2/STAT3 signaling pathway, which may attenuate the ALI induced by AngII.
Collapse
Affiliation(s)
- Wei Ren
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Zhiwei Wang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Zhiyong Wu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Zhipeng Hu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Feifeng Dai
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jinxing Chang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Bowen Li
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Huagang Liu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Yongle Ruan
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| |
Collapse
|
97
|
Thrombospondins: A Role in Cardiovascular Disease. Int J Mol Sci 2017; 18:ijms18071540. [PMID: 28714932 PMCID: PMC5536028 DOI: 10.3390/ijms18071540] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/05/2017] [Accepted: 07/13/2017] [Indexed: 12/16/2022] Open
Abstract
Thrombospondins (TSPs) represent extracellular matrix (ECM) proteins belonging to the TSP family that comprises five members. All TSPs have a complex multidomain structure that permits the interaction with various partners including other ECM proteins, cytokines, receptors, growth factors, etc. Among TSPs, TSP1, TSP2, and TSP4 are the most studied and functionally tested. TSP1 possesses anti-angiogenic activity and is able to activate transforming growth factor (TGF)-β, a potent profibrotic and anti-inflammatory factor. Both TSP2 and TSP4 are implicated in the control of ECM composition in hypertrophic hearts. TSP1, TSP2, and TSP4 also influence cardiac remodeling by affecting collagen production, activity of matrix metalloproteinases and TGF-β signaling, myofibroblast differentiation, cardiomyocyte apoptosis, and stretch-mediated enhancement of myocardial contraction. The development and evaluation of TSP-deficient animal models provided an option to assess the contribution of TSPs to cardiovascular pathology such as (myocardial infarction) MI, cardiac hypertrophy, heart failure, atherosclerosis, and aortic valve stenosis. Targeting of TSPs has a significant therapeutic value for treatment of cardiovascular disease. The activation of cardiac TSP signaling in stress and pressure overload may be therefore beneficial.
Collapse
|
98
|
Chu L, Li P, Song T, Han X, Zhang X, Song Q, Liu T, Zhang Y, Zhang J. Protective effects of tannic acid on pressure overload-induced cardiac hypertrophy and underlying mechanisms in rats. J Pharm Pharmacol 2017. [DOI: 10.1111/jphp.12763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Abstract
Objectives
The aim of this study was to examine the cardioprotective effects and latent mechanism of tannic acid (TA) on cardiac hypertrophy.
Methods
Abdominal aortic banding (AAB) was used to induce pressure overload-induced cardiac hypertrophy in male Wistar rats, sham-operated rats served as controls. AAB rats were treated with TA (20 and 40 mg/kg) or captoril.
Key findings
Abdominal aortic banding rats that received TA showed ameliorated pathological changes in cardiac morphology and coefficients, decreased cardiac hypertrophy and apoptosis, a reduction in over expressions of angiotensin type 1 receptor (AT1R), angiotensin type 2 receptor (AT2R), phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and transforming growth factor-β (TGF-β) mRNA, and modified expression of matrix metal proteinase-9 (MMP-9) mRNA in AAB rat hearts. Furthermore, TA treatment contributed to a decrease in malondialdehyde (MDA) and endothelin-1 (ET-1) activities and content, while it caused an increase in superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), nitric oxide (NO) and endothelial NO synthase (e-NOS). Furthermore, TA downregulated expression of tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β), bax, caspase-3 and upregulated expression of bcl-2.
Conclusions
Tannic acid displayed obvious suppression of AAB-induced cardiac hypertrophy in rats. The cardioprotective effects of TA may be attributed to multitargeted inhibition of oxidative stress, inflammation, fibrosis and apoptosis in addition to an increase in NO levels, decrease in ET-1 levels, and downregulation of angiotensin receptors and the phosphorylation of ERK1/2.
Collapse
Affiliation(s)
- Li Chu
- Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Pinya Li
- Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tao Song
- Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xue Han
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Xuan Zhang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Qiongtao Song
- Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tao Liu
- Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yuanyuan Zhang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Jianping Zhang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| |
Collapse
|
99
|
Cellular interplay via cytokine hierarchy causes pathological cardiac hypertrophy in RAF1-mutant Noonan syndrome. Nat Commun 2017; 8:15518. [PMID: 28548091 PMCID: PMC5458545 DOI: 10.1038/ncomms15518] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/05/2017] [Indexed: 01/08/2023] Open
Abstract
Noonan syndrome (NS) is caused by mutations in RAS/ERK pathway genes, and is characterized by craniofacial, growth, cognitive and cardiac defects. NS patients with kinase-activating RAF1 alleles typically develop pathological left ventricular hypertrophy (LVH), which is reproduced in Raf1L613V/+ knock-in mice. Here, using inducible Raf1L613V expression, we show that LVH results from the interplay of cardiac cell types. Cardiomyocyte Raf1L613V enhances Ca2+ sensitivity and cardiac contractility without causing hypertrophy. Raf1L613V expression in cardiomyocytes or activated fibroblasts exacerbates pressure overload-evoked fibrosis. Endothelial/endocardial (EC) Raf1L613V causes cardiac hypertrophy without affecting contractility. Co-culture and neutralizing antibody experiments reveal a cytokine (TNF/IL6) hierarchy in Raf1L613V-expressing ECs that drives cardiomyocyte hypertrophy in vitro. Furthermore, postnatal TNF inhibition normalizes the increased wall thickness and cardiomyocyte hypertrophy in vivo. We conclude that NS-cardiomyopathy involves cardiomyocytes, ECs and fibroblasts, TNF/IL6 signalling components represent potential therapeutic targets, and abnormal EC signalling might contribute to other forms of LVH. The human congenital disorder Noonan Syndrome (NS) is caused by germ-line mutations that hyperactivate the RAS/ERK signalling pathway, and can feature pathologic cardiac enlargement. Here, the authors find that a complex cellular and molecular interplay involving a cytokine hierarchy underlies cardiac hypertrophy caused by a NS-associated Raf allele.
Collapse
|
100
|
Qian ZQ, Wang YW, Li YL, Li YQ, Ling-Zhu, Yang DL. Icariin prevents hypertension-induced cardiomyocyte apoptosis through the mitochondrial apoptotic pathway. Biomed Pharmacother 2017; 88:823-831. [DOI: 10.1016/j.biopha.2017.01.147] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/23/2017] [Accepted: 01/26/2017] [Indexed: 12/17/2022] Open
|