51
|
Onaolapo OJ, Ademakinwa OQ, Olalekan TO, Onaolapo AY. Ketamine-induced behavioural and brain oxidative changes in mice: an assessment of possible beneficial effects of zinc as mono- or adjunct therapy. Psychopharmacology (Berl) 2017; 234:2707-2725. [PMID: 28612134 DOI: 10.1007/s00213-017-4666-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/29/2017] [Indexed: 12/14/2022]
Abstract
RATIONALE We studied the influence of zinc, haloperidol or olanzapine on neurobehaviour (open-field, radial arm maze and elevated plus maze) and brain antioxidant status in vehicle- or ketamine-treated mice, with the aim of ascertaining the potentials of zinc in counteracting ketamine's effects. OBJECTIVES Experiment 1 assessed the effects of zinc in healthy animals and the relative degrees of modulation of ketamine's effects by zinc, haloperidol or olanzapine, respectively. Experiment 2 assessed the modulation of ketamine's effects following co-administration of zinc with haloperidol or olanzapine. METHODS Male mice weighing 18-20 g each were used. Animals were pretreated with ketamine (except vehicle, zinc, haloperidol and olanzapine controls) for 10 days before commencement of 14-day treatment (day 11-24) with vehicle, zinc, haloperidol or olanzapine (alone or in combination). Ketamine injection also continued alongside zinc and/or standard drugs in the ketamine-treated groups. Zinc, haloperidol and olanzapine were administered by gavage. Treatments were given daily and behaviours assessed on days 11 and 24. On day 24, animals were sacrificed and whole brain homogenates used for estimation of glutathione, nitric oxide and malondialdehyde (MDA) levels. RESULTS Ketamine increased open-field behaviours, nitric oxide and MDA levels, while it decreased working memory, social interaction and glutathione. Administration of zinc alone or in combination with haloperidol or olanzapine was associated with variable degrees of reversal of these effects. CONCLUSION Zinc may have the potential of a possible therapeutic agent and/or adjunct in the reversal of schizophrenia-like changes in behaviour and brain oxidative status.
Collapse
Affiliation(s)
- Olakunle James Onaolapo
- Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria.
| | | | | | | |
Collapse
|
52
|
Nijs J, Loggia ML, Polli A, Moens M, Huysmans E, Goudman L, Meeus M, Vanderweeën L, Ickmans K, Clauw D. Sleep disturbances and severe stress as glial activators: key targets for treating central sensitization in chronic pain patients? Expert Opin Ther Targets 2017; 21:817-826. [DOI: 10.1080/14728222.2017.1353603] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jo Nijs
- Department of physiotherapy, human physiology and anatomy, Pain in Motion International Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium
| | - Marco L. Loggia
- MGH/HST A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Andrea Polli
- Department of physiotherapy, human physiology and anatomy, Pain in Motion International Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Maarten Moens
- Department of Neurosurgery and Radiology, University Hospital Brussels, Brussels, Belgium
- Department of Manual Therapy, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eva Huysmans
- Department of physiotherapy, human physiology and anatomy, Pain in Motion International Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lisa Goudman
- Department of physiotherapy, human physiology and anatomy, Pain in Motion International Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Neurosurgery and Radiology, University Hospital Brussels, Brussels, Belgium
| | - Mira Meeus
- Department of physiotherapy, human physiology and anatomy, Pain in Motion International Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent, Belgium
- Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, Antwerp, Belgium
| | - Luc Vanderweeën
- Department of physiotherapy, human physiology and anatomy, Pain in Motion International Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Private Practice for Spinal Manual Therapy, Schepdaal-Dilbeek, Belgium
| | - Kelly Ickmans
- Department of physiotherapy, human physiology and anatomy, Pain in Motion International Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium
| | - Daniel Clauw
- Chronic Pain and Fatigue Research Center, University of Michigan, Ann Arbor, USA
| |
Collapse
|
53
|
Kanchanatawan B, Sirivichayakul S, Ruxrungtham K, Carvalho AF, Geffard M, Anderson G, Maes M. Deficit Schizophrenia Is Characterized by Defects in IgM-Mediated Responses to Tryptophan Catabolites (TRYCATs): a Paradigm Shift Towards Defects in Natural Self-Regulatory Immune Responses Coupled with Mucosa-Derived TRYCAT Pathway Activation. Mol Neurobiol 2017; 55:2214-2226. [PMID: 28290151 DOI: 10.1007/s12035-017-0465-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 02/17/2017] [Indexed: 11/29/2022]
Abstract
Deficit schizophrenia is accompanied by mucosa-associated activation of the tryptophan catabolite (TRYCAT) pathway, as indicated by increased IgA responses to noxious (NOX) TRYCATs, but not regulatory or protective (PRO) TRYCATs, suggesting increased neurotoxic, excitotoxic, inflammatory, and oxidative potential. No previous studies examined IgM-mediated autoimmune responses to the TRYCAT pathway in deficit versus nondeficit schizophrenia. We measured IgM responses to NOX TRYCATs, namely, quinolinic acid (QA), 3-OH-kynurenine (3HK), picolinic acid (PA), and xanthurenic (XA) acid, and PRO TRYCATs, including kynurenic acid (KA) and anthranilic acid (AA), in 40 healthy controls and 40 deficit and 40 nondeficit schizophrenic patients. We computed the IgM responses to NOX (QA + PA + 3HK + XA)/PRO (AA + KA) ratio and ∆ differences in IgA - IgM TRYCAT values and NOX/PRO ratio. Deficit schizophrenia is characterized by significantly attenuated IgM responses to all TRYCATs and NOX/PRO ratio and highly increased ∆IgA - IgM NOX/PRO ratio as compared to nondeficit schizophrenia and healthy controls. The negative symptoms of schizophrenia are significantly and positively associated with increased IgM responses directed against the KA/3HK ratio and ∆IgA - IgM NOX/PRO ratio. The findings support the view that deficit schizophrenia is a distinct subtype of schizophrenia that may be significantly discriminated from nondeficit schizophrenia. Deficit schizophrenia is accompanied by a highly specific defect in IgM isotype-mediated regulatory responses directed to the TRYCAT pathway. Lowered IgM regulatory responses together with mucosa-derived activation of the TRYCAT pathway may contribute to neuroprogression, negative symptoms, and deficit schizophrenia. All in all, a highly specific defect in the compensatory (anti-)inflammatory reflex system (CIRS), namely, natural IgM-mediated regulatory responses, may underpin deficit schizophrenia.
Collapse
Affiliation(s)
- Buranee Kanchanatawan
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Kiat Ruxrungtham
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - André F Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Michel Geffard
- IDRPHT, Research Department, Talence, France.,GEMAC, Saint Jean d'Illac, France
| | | | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand. .,IMPACT Strategic Research Center, Deakin University, Geelong, Australia. .,Department of Psychiatry, Faculty of Medicine, State University of Londrina, Londrina, Brazil. .,Revitalis, Waalre, The Netherlands. .,Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
54
|
Correlations of Kynurenic Acid, 3-Hydroxykynurenine, sIL-2R, IFN-α, and IL-4 with Clinical Symptoms During Acute Relapse of Schizophrenia. Neurotox Res 2017; 32:17-26. [DOI: 10.1007/s12640-017-9714-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/09/2017] [Accepted: 02/24/2017] [Indexed: 12/13/2022]
|
55
|
Kanchanatawan B, Sirivichayakul S, Ruxrungtham K, Carvalho AF, Geffard M, Ormstad H, Anderson G, Maes M. Deficit, but Not Nondeficit, Schizophrenia Is Characterized by Mucosa-Associated Activation of the Tryptophan Catabolite (TRYCAT) Pathway with Highly Specific Increases in IgA Responses Directed to Picolinic, Xanthurenic, and Quinolinic Acid. Mol Neurobiol 2017; 55:1524-1536. [PMID: 28181189 DOI: 10.1007/s12035-017-0417-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/24/2017] [Indexed: 11/26/2022]
Abstract
Evidence suggests that activation of the tryptophan catabolite (TRYCAT) pathway is involved in the pathophysiology of schizophrenia. However, no previous study examined whether TRYCAT pathway activation is associated with deficit schizophrenia. We measured IgA responses to TRYCATs, namely quinolinic acid, picolinic acid, kynurenic acid, xanthurenic acid, and anthranilic acid and 3-OH-kynurenine, in 40 healthy controls and in schizophrenic patients with (n = 40) and without (n = 40) deficit, defined according to the Schedule for the Deficit Syndrome (SDS). Primary deficit schizophrenia is accompanied by an activated TRYCAT pathway as compared to controls and nondeficit schizophrenia. Participants with deficit schizophrenia show increased IgA responses to xanthurenic acid, picolinic acid, and quinolinic acid and relatively lowered IgA responses to kynurenic and anthranilic acids, as compared to patients with nondeficit schizophrenia. Both schizophrenia subgroups show increased IgA responses to 3-OH-kynurenine as compared to controls. The IgA responses to noxious TRYCATs, namely xanthurenic acid, picolinic acid, quinolinic acid, and 3-OH-kynurenine, but not protective TRYCATS, namely anthranilic acid and kunyrenic acid, are significantly higher in deficit schizophrenia than in controls. The negative symptoms of schizophrenia are significantly and positively associated with increased IgA responses directed against picolinic acid and inversely with anthranilic acid, whereas no significant associations between positive symptoms and IgA responses to TRYCATs were found. In conclusion, primary deficit schizophrenia is characterized by TRYCAT pathway activation and differs from nondeficit schizophrenia by a highly specific TRYCAT pattern suggesting increased excitotoxicity, cytotoxicity, and neurotoxicity, as well as inflammation and oxidative stress. The specific alterations in IgA responses to TRYCATs provide further insight for the biological delineation of deficit versus nondeficit schizophrenia.
Collapse
Affiliation(s)
- Buranee Kanchanatawan
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Kiat Ruxrungtham
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - André F Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Michel Geffard
- IDRPHT, Research Department, Talence, France
- GEMAC, Saint Jean d'Illac, France
| | - Heidi Ormstad
- Faculty of Health Sciences, University College of Southeast Norway, Drammen, Norway
| | | | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- IMPACT Strategic Research Center, Deakin University, Geelong, Australia.
- Department of Psychiatry, Faculty of Medicine, State University of Londrina, Londrina, Brazil.
- Revitalis, Waalre, the Netherlands.
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
56
|
da Silva Araújo T, Maia Chaves Filho AJ, Monte AS, Isabelle de Góis Queiroz A, Cordeiro RC, de Jesus Souza Machado M, de Freitas Lima R, Freitas de Lucena D, Maes M, Macêdo D. Reversal of schizophrenia-like symptoms and immune alterations in mice by immunomodulatory drugs. J Psychiatr Res 2017; 84:49-58. [PMID: 27697587 DOI: 10.1016/j.jpsychires.2016.09.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 08/16/2016] [Accepted: 09/20/2016] [Indexed: 01/12/2023]
Abstract
Immune dysregulation observed in schizophrenia alters tryptophan metabolism. Tryptophan metabolism is triggered by indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO). Tryptophan is converted to quinolinic acid, a potent neurotoxin, and to kynurenic acid, an NMDA antagonist. 1-Methyl-D-tryptophan (MDT) inhibits IDO. Melatonin is metabolized by IDO while inhibiting TDO. We evaluated the reversal of ketamine-induced schizophrenia-like behavioral and neurochemical alterations in mice by the administration of MDT (20 or 40 mg/kg, i.p.) or melatonin (15 mg/kg, per os). Oxidative stress and inflammatory alterations, i.e. myeloperoxidase activity (MPO), reduced glutathione (GSH), lipid peroxidation (LPO) and interleukin (IL)-4 and IL-6 were measured in the prefrontal cortex (PFC), hippocampus and striatum. Risperidone was used as standard antipsychotic. Ketamine triggered positive- (PPI deficits and hyperlocomotion), cognitive- (working memory deficits) and negative (social interaction deficits) schizophrenia-like symptoms. These symptoms were accompanied by increased MPO activity, decreased GSH and increased LPO in all brain areas and increments in hippocampal IL-4 and IL-6. MDT and melatonin reversed all ketamine-induced behavioral alterations. Risperidone did not reverse working memory deficits. MDT and melatonin reversed alterations in MPO activity and GSH levels. LP was reversed only by melatonin and risperidone. Risperidone could not reverse MPO alterations in the PFC and striatum. All drugs reversed the alterations in IL-4 and IL-6. The hippocampus and striatum of ketamine+melatonin-treated animals had lower levels of IL-6. Our findings provide further preclinical evidence that immune-inflammatory and oxidative pathways are involved in schizophrenia and that targeting these pathways is a valid treatment option in schizophrenia.
Collapse
Affiliation(s)
- Tatiane da Silva Araújo
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Adriano Jose Maia Chaves Filho
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Aline Santos Monte
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Ana Isabelle de Góis Queiroz
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Rafaela Carneiro Cordeiro
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Michel de Jesus Souza Machado
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Ricardo de Freitas Lima
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - David Freitas de Lucena
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Michael Maes
- Impact Strategic Research Center, Deakin University, Geelong, Australia; Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, Brazil
| | - Danielle Macêdo
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
57
|
Epilepsy-related psychoses and psychotic symptoms are significantly reduced by resective epilepsy surgery and are not associated with surgery outcome or epilepsy characteristics: A cohort study. Psychiatry Res 2016; 245:333-339. [PMID: 27573056 DOI: 10.1016/j.psychres.2016.08.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 07/04/2016] [Accepted: 08/06/2016] [Indexed: 11/23/2022]
Abstract
We examine epilepsy-related psychoses and psychotic symptoms (ERPs) and the effects of epilepsy surgery on inter-ictal, aura, ictal and peri-ictal (pre- and post-ictal) psychoses. We included 189 patients with refractory epilepsy both before and 24 months after surgery. Engel's classification was the primary outcome measurement. Epilepsy surgery reduced the prevalence of ERPs from 17.5% to 4.2%, psychotic aura from 7.9% to 0.5%, ictal psychoses from 3.7% to 1.1% and peri-ictal psychoses from 4.2% to 0.5%. The prevalence of inter-ictal psychoses decreased from 5.3% to 0.5%, but 4 new cases of inter-ictal psychoses were found following surgery. Interictal dysphoric disorder significantly predicted surgery outcome. In patients with and without ERPs, epilepsy surgery induced seizure reduction in more than 90% of the cases, showing that both groups benefit equally from surgery. No associations between ERPs and epileptic characteristics were found, including laterality, type of lesion, type of epilepsy, number of seizures, duration of illness or age at onset. Epilepsy surgery significantly improves ERPs particularly psychotic aura and peri-ictal psychoses. Although inter-ictal psychoses are successfully treated, new inter-ictal psychoses appear in a few cases either as alternative psychoses or a possible switch from pre-surgery episodic into inter-ictal psychoses.
Collapse
|
58
|
Hadzic M, Jack A, Wahle P. Ionotropic glutamate receptors: Which ones, when, and where in the mammalian neocortex. J Comp Neurol 2016; 525:976-1033. [PMID: 27560295 DOI: 10.1002/cne.24103] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/09/2016] [Accepted: 08/15/2016] [Indexed: 12/14/2022]
Abstract
A multitude of 18 iGluR receptor subunits, many of which are diversified by splicing and RNA editing, localize to >20 excitatory and inhibitory neocortical neuron types defined by physiology, morphology, and transcriptome in addition to various types of glial, endothelial, and blood cells. Here we have compiled the published expression of iGluR subunits in the areas and cell types of developing and adult cortex of rat, mouse, carnivore, bovine, monkey, and human as determined with antibody- and mRNA-based techniques. iGluRs are differentially expressed in the cortical areas and in the species, and all have a unique developmental pattern. Differences are quantitative rather than a mere absence/presence of expression. iGluR are too ubiquitously expressed and of limited use as markers for areas or layers. A focus has been the iGluR profile of cortical interneuron types. For instance, GluK1 and GluN3A are enriched in, but not specific for, interneurons; moreover, the interneurons expressing these subunits belong to different types. Adressing the types is still a major hurdle because type-specific markers are lacking, and the frequently used neuropeptide/CaBP signatures are subject to regulation by age and activity and vary as well between species and areas. RNA-seq reveals almost all subunits in the two morphofunctionally characterized interneuron types of adult cortical layer I, suggesting a fairly broad expression at the RNA level. It remains to be determined whether all proteins are synthesized, to which pre- or postsynaptic subdomains in a given neuron type they localize, and whether all are involved in synaptic transmission. J. Comp. Neurol. 525:976-1033, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Minela Hadzic
- Developmental Neurobiology, Faculty for Biology and Biotechnology ND 6/72, Ruhr University Bochum, 44801, Bochum, Germany
| | - Alexander Jack
- Developmental Neurobiology, Faculty for Biology and Biotechnology ND 6/72, Ruhr University Bochum, 44801, Bochum, Germany
| | - Petra Wahle
- Developmental Neurobiology, Faculty for Biology and Biotechnology ND 6/72, Ruhr University Bochum, 44801, Bochum, Germany
| |
Collapse
|
59
|
Effects of Electroconvulsive Therapy on Some Inflammatory Factors in Patients With Treatment-Resistant Schizophrenia. J ECT 2016; 32:174-9. [PMID: 26886746 DOI: 10.1097/yct.0000000000000303] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Electroconvulsive therapy (ECT) is the most effective option for several psychiatric conditions, including treatment-resistant schizophrenia. However, little is known about the molecular mechanism of action of ECT. The link between inflammatory system and schizophrenia is the focus of recent studies. However, the impact of ECT on inflammatory functioning in this disorder remains elusive. Whether ECT could modulate inflammatory factors in patients with schizophrenia was examined. METHODS Plasma levels of interleukin-4 (IL-4), transforming growth factor-β (TGF-β), myeloperoxidase (MPO), and nuclear factor-κB (NF-κB) activation were analyzed in 20 schizophrenic patients, mainly with resistant to antipsychotic medication disorders, and in 20 sex- and age-matched healthy controls. Disease severity was evaluated using the Brief Psychiatric Rating Scale. All patients were followed with measurement of the inflammatory factors before and after ECT treatment and compared with the controls. RESULTS Patients with schizophrenia had markedly raised NF-κB and but decreased TGF-β levels compared with healthy controls. On the other hand, no significant differences were found for the levels of IL-4 and MPO levels. The clinical improvement during repeated ECT was accompanied by a gradual and significant increase in IL-4 and TGF-β level, but MPO and NF-κB activation were left unaffected. Increases in TGF-β were negatively correlated with the change in Brief Psychiatric Rating Scale scores after ECT. CONCLUSIONS It is shown that ECT, while increasing the anti-inflammatory response such as the levels of IL-4 and TGF-β, it did not affect the levels of MPO and NF-κB activation in this study.
Collapse
|
60
|
Zhang XY, Tan YL, Chen DC, Tan SP, Malouta MZ, Bernard JD, Combs JL, Bhatti S, Davis MC, Kosten TR, Soares JC. Serum IL-18 level, clinical symptoms and IL-18-607A/C polymorphism among chronic patients with schizophrenia in a Chinese Han population. Psychoneuroendocrinology 2016; 68:140-7. [PMID: 26974498 DOI: 10.1016/j.psyneuen.2016.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 02/22/2016] [Accepted: 03/02/2016] [Indexed: 11/29/2022]
Abstract
Literature suggests that alterations in the inflammatory and immune systems are involved in the pathogenesis of schizophrenia. Specifically, patients diagnosed with schizophrenia exhibit increased IL-18, a pleiotropic proinflammatory cytokine in type 1 T-helper (Th1) responses. The functional 607A/C promoter polymorphism of the IL-18 gene is also associated with the psychopathology of this disorder. However, no current study has explored its role in the clinical symptoms of schizophrenia as mediated through IL-18 levels. We recruited 772 inpatients with schizophrenia and 775 healthy controls in a Han Chinese population and genotyped the IL-18-607A/C polymorphism. Patient psychopathology was assessed using the Positive and Negative Syndrome Scale (PANSS). Serum IL-18 levels were measured in 80 patients and 93 healthy controls. Our results showed that there were no significant differences in the distribution of the allele and genotype frequencies between the patients and controls. Both increased IL-18 serum level and the IL-18-607A/C polymorphism were positively associated with the PANSS general psychopathology subscore and the PANSS total score. Moreover, interaction of increased IL-18 serum level and the IL-18-607A/C polymorphism influenced the clinical psychopathological symptoms, indicating that association of IL-18 level with the PANSS general psychopathology subscale or the total scores was present only among patients carrying the C allele. We demonstrate an association between the IL-18-607A/C variant and clinical psychopathological symptoms in schizophrenia. Findings suggest that the association between higher IL-18 levels and clinical symptoms in schizophrenia is dependent on the IL-18-607A/C polymorphism.
Collapse
Affiliation(s)
- Xiang Yang Zhang
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China; Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Yun-Long Tan
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Da-Chun Chen
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Shu-Ping Tan
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Michelle Z Malouta
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jared D Bernard
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Jessica L Combs
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Sarai Bhatti
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Michael C Davis
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Thomas R Kosten
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Jair C Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
61
|
Pasternak O, Kubicki M, Shenton ME. In vivo imaging of neuroinflammation in schizophrenia. Schizophr Res 2016; 173:200-212. [PMID: 26048294 PMCID: PMC4668243 DOI: 10.1016/j.schres.2015.05.034] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 12/18/2022]
Abstract
In recent years evidence has accumulated to suggest that neuroinflammation might be an early pathology of schizophrenia that later leads to neurodegeneration, yet the exact role in the etiology, as well as the source of neuroinflammation, are still not known. The hypothesis of neuroinflammation involvement in schizophrenia is quickly gaining popularity, and thus it is imperative that we have reliable and reproducible tools and measures that are both sensitive, and, most importantly, specific to neuroinflammation. The development and use of appropriate human in vivo imaging methods can help in our understanding of the location and extent of neuroinflammation in different stages of the disorder, its natural time-course, and its relation to neurodegeneration. Thus far, there is little in vivo evidence derived from neuroimaging methods. This is likely the case because the methods that are specific and sensitive to neuroinflammation are relatively new or only just being developed. This paper provides a methodological review of both existing and emerging positron emission tomography and magnetic resonance imaging techniques that identify and characterize neuroinflammation. We describe \how these methods have been used in schizophrenia research. We also outline the shortcomings of existing methods, and we highlight promising future techniques that will likely improve state-of-the-art neuroimaging as a more refined approach for investigating neuroinflammation in schizophrenia.
Collapse
Affiliation(s)
- Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Applied Mathematics, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; VA Boston Healthcare System, Brockton, MA, USA
| |
Collapse
|
62
|
Wu JQ, Chen DC, Tan YL, Tan SP, Xiu MH, Wang ZR, Yang FD, Soares JC, Zhang XY. Altered interleukin-18 levels are associated with cognitive impairment in chronic schizophrenia. J Psychiatr Res 2016; 76:9-15. [PMID: 26866662 DOI: 10.1016/j.jpsychires.2016.01.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 12/29/2015] [Accepted: 01/21/2016] [Indexed: 12/18/2022]
Abstract
The pathophysiology of cognitive deficits in schizophrenia may involve the neuroinflammation mediated by cytokines. This study examined the IL-18 levels, the cognitive function, and their association in schizophrenia. We recruited 70 chronic patients and 75 normal controls and examined the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and IL-18 levels. Positive and Negative Syndrome Scale (PANSS) was assessed in chronic patients. IL-18 levels were increased in chronic patients as compared to normal controls (p < 0.01). RBANS total score and the subscales of immediate memory and delayed memory were lower in patients than controls (all p < 0.001). In patients, IL-18 levels were positively associated with RBANS total score and the subscales of immediate and delayed memory (all p < 0.05). Multiple regression analysis further confirmed that IL-18 was an independent contributor to RBANS total score and the aforementioned two indexes (all p < 0.05). Our data demonstrate that immune responses may play an important role in cognitive deficits in schizophrenia and the abnormal levels of IL-18 reflecting the disturbed balance of proinflammatory and anti-inflammatory mechanisms may be relevant to cognitive deficits of this disorder.
Collapse
Affiliation(s)
- Jing Qin Wu
- School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia; Schizophrenia Research Institute, Sydney, Australia; Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Da Chun Chen
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Yun Long Tan
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Shu Ping Tan
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Mei Hong Xiu
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Zhi Ren Wang
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Fu De Yang
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Jair C Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xiang Yang Zhang
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China; Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
63
|
Fryar-Williams S, Strobel JE. Biomarker Case-Detection and Prediction with Potential for Functional Psychosis Screening: Development and Validation of a Model Related to Biochemistry, Sensory Neural Timing and End Organ Performance. Front Psychiatry 2016; 7:48. [PMID: 27148083 PMCID: PMC4830821 DOI: 10.3389/fpsyt.2016.00048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 03/14/2016] [Indexed: 01/17/2023] Open
Abstract
The Mental Health Biomarker Project aimed to discover case-predictive biomarkers for functional psychosis. In a retrospective, cross-sectional study, candidate marker results from 67 highly characterized symptomatic participants were compared with results from 67 gender- and age-matched controls. Urine samples were analyzed for catecholamines, their metabolites, and hydroxylpyrolline-2-one, an oxidative stress marker. Blood samples were analyzed for vitamin and trace element cofactors of enzymes in catecholamine synthesis and metabolism pathways. Cognitive, auditory, and visual processing measures were assessed using a simple 45-min, office-based procedure. Receiver operating curve (ROC) and odds ratio analysis discovered biomarkers for deficits in folate, vitamin D and B6 and elevations in free copper to zinc ratio, catecholamines and the oxidative stress marker. Deficits were discovered in peripheral visual and auditory end-organ function, intracerebral auditory and visual processing speed and dichotic listening performance. Fifteen ROC biomarker variables were divided into five functional domains. Through a repeated ROC process, individual ROC variables, followed by domains and finally the overall 15 set model, were dichotomously scored and tallied for abnormal results upon which it was found that ≥3 out of 5 abnormal domains achieved an area under the ROC curve of 0.952 with a sensitivity of 84% and a specificity of 90%. Six additional middle ear biomarkers in a 21 biomarker set increased sensitivity to 94%. Fivefold cross-validation yielded a mean sensitivity of 85% for the 15 biomarker set. Non-parametric regression analysis confirmed that ≥3 out of 5 abnormally scored domains predicted >50% risk of caseness while 4 abnormally scored domains predicted 88% risk of caseness; 100% diagnostic certainty was reached when all 5 domains were abnormally scored. These findings require validation in prospective cohorts and other mental illness states. They have potential for case-detection, -screening, -monitoring, and -targeted personalized management. The findings unmask unmet needs within the functional psychosis condition and suggest new biological understandings of psychosis phenomenology.
Collapse
Affiliation(s)
- Stephanie Fryar-Williams
- The University of Adelaide, Adelaide, SA, Australia
- Youth in Mind Research Institute, Norwood, SA, Australia
- The Queen Elizabeth Hospital, Woodville, SA, Australia
- Basil Hetzel Institute for Translational Health Research, Woodville, SA, Australia
| | | |
Collapse
|
64
|
Allswede DM, Buka SL, Yolken RH, Torrey EF, Cannon TD. Elevated maternal cytokine levels at birth and risk for psychosis in adult offspring. Schizophr Res 2016; 172:41-5. [PMID: 26897476 DOI: 10.1016/j.schres.2016.02.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Pregnancy and birth complications, particularly those associated with maternal inflammation and fetal hypoxia, are associated with increased risk for schizophrenia later in life. However, the molecular mechanisms underlying these associations are not fully delineated. This study sought to examine the effect of exposure to maternal inflammation on risk of developing psychosis in adulthood. Maternal serum levels of pro-inflammatory Th1 cytokines (IL-2, interferon gamma [IFN-γ], IL-12) and Th17 cytokines (IL-1b, IL-6, IL-8, tumor necrosis factor alpha [TNF-α], granulocyte macrophage colony stimulating factor [gm-csf]) and anti-inflammatory Th2 cytokines (IL-4, IL-5, and IL-13) and Treg cytokines (IL-10) were evaluated for association with later psychosis in the offspring. METHODS Subjects were 43 adults with psychoses and 43 matched controls followed from gestation as part of the Philadelphia cohort of the National Collaborative Perinatal Project. Adult symptoms of psychosis were assessed via medical records review and confirmed with a validation study. Archived maternal serum samples collected at the time of birth were analyzed for cytokine levels using a multiplex bead assay. RESULTS Individuals exposed to elevated maternal levels of anti-inflammatory Th2 cytokines (≥75th percentile) were significantly less likely to develop psychosis in adulthood. CONCLUSIONS These results may suggest that increased maternal levels of anti-inflammatory cytokines during the perinatal period could protect against the development of psychosis.
Collapse
Affiliation(s)
- Dana M Allswede
- Department of Psychology, Yale University, New Haven, CT, USA.
| | - Stephen L Buka
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, USA.
| | - Robert H Yolken
- The Stanley Medical Research Institute, Chevy Chase, MD, USA.
| | - E Fuller Torrey
- The Stanley Medical Research Institute, Chevy Chase, MD, USA.
| | - Tyrone D Cannon
- Department of Psychology, Yale University, New Haven, CT, USA; Department of Psychiatry, Yale University, New Haven, CT, USA.
| |
Collapse
|
65
|
Kosten L, Verhaeghe J, Verkerk R, Thomae D, De Picker L, Wyffels L, Van Eetveldt A, Dedeurwaerdere S, Stroobants S, Staelens S. Multiprobe molecular imaging of an NMDA receptor hypofunction rat model for glutamatergic dysfunction. Psychiatry Res Neuroimaging 2016; 248:1-11. [PMID: 26803479 DOI: 10.1016/j.pscychresns.2016.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 12/23/2015] [Accepted: 01/07/2016] [Indexed: 12/21/2022]
Abstract
There are many indications of a connection between abnormal glutamate transmission through N-methyl-d-aspartate (NMDA) receptor hypofunction and the occurrence of schizophrenia. The importance of metabotropic glutamate receptor subtype 5 (mGluR5) became generally recognized due to its physical link through anchor proteins with NMDAR. Neuroinflammation as well as the kynurenine (tryptophan catabolite; TRYCAT) pathway are equally considered as major contributors to the pathology. We aimed to investigate this interplay between glutamate release, neuronal activation and inflammatory markers, by using small-animal positron emission tomography (PET) in a rat model known to induce schizophrenia-like symptoms. Daily intraperitoneal injection of MK801 or saline were administered to induce the model together with N-Acetyl-cysteine (NAc) or saline as the treatment in 24 male Sprague Dawley rats for one month. Biweekly in vivo [(11)C]-ABP688 microPET was performed together with mGluR5 immunohistochemistry. Simultaneously, weekly in vivo [(18)F]-FDG microPET imaging data for glucose metabolism was acquired and microglial activation was investigated with biweekly in vivo [(18)F]-PBR111 scans versus OX42 immunohistochemistry. Finally, plasma samples were analyzed for TRYCAT metabolites. We show that chronic MK801 administration (and thus elevated endogenous glutamate) causes significant tissue loss in rat brain, enhances neuroinflammatory pathways and may upregulate mGluR5 expression.
Collapse
Affiliation(s)
- Lauren Kosten
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Jeroen Verhaeghe
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium
| | - Robert Verkerk
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - David Thomae
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium; Department of Nuclear Medicine, University Hospital Antwerp, Antwerp, Belgium
| | - Livia De Picker
- Collaborative Antwerp Psychiatric Research Institute, University of Antwerp, Antwerp, Belgium
| | - Leonie Wyffels
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium; Department of Nuclear Medicine, University Hospital Antwerp, Antwerp, Belgium
| | | | | | - Sigrid Stroobants
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium; Department of Nuclear Medicine, University Hospital Antwerp, Antwerp, Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
66
|
Wilhelm CJ, Guizzetti M. Fetal Alcohol Spectrum Disorders: An Overview from the Glia Perspective. Front Integr Neurosci 2016; 9:65. [PMID: 26793073 PMCID: PMC4707276 DOI: 10.3389/fnint.2015.00065] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/10/2015] [Indexed: 01/30/2023] Open
Abstract
Alcohol consumption during pregnancy can produce a variety of central nervous system (CNS) abnormalities in the offspring resulting in a broad spectrum of cognitive and behavioral impairments that constitute the most severe and long-lasting effects observed in fetal alcohol spectrum disorders (FASD). Alcohol-induced abnormalities in glial cells have been suspected of contributing to the adverse effects of alcohol on the developing brain for several years, although much research still needs to be done to causally link the effects of alcohol on specific brain structures and behavior to alterations in glial cell development and function. Damage to radial glia due to prenatal alcohol exposure may underlie observations of abnormal neuronal and glial migration in humans with Fetal Alcohol Syndrome (FAS), as well as primate and rodent models of FAS. A reduction in cell number and altered development has been reported for several glial cell types in animal models of FAS. In utero alcohol exposure can cause microencephaly when alcohol exposure occurs during the brain growth spurt a period characterized by rapid astrocyte proliferation and maturation; since astrocytes are the most abundant cells in the brain, microenchephaly may be caused by reduced astrocyte proliferation or survival, as observed in in vitro and in vivo studies. Delayed oligodendrocyte development and increased oligodendrocyte precursor apoptosis has also been reported in experimental models of FASD, which may be linked to altered myelination/white matter integrity found in FASD children. Children with FAS exhibit hypoplasia of the corpus callosum and anterior commissure, two areas requiring guidance from glial cells and proper maturation of oligodendrocytes. Finally, developmental alcohol exposure disrupts microglial function and induces microglial apoptosis; given the role of microglia in synaptic pruning during brain development, the effects of alcohol on microglia may be involved in the abnormal brain plasticity reported in FASD. The consequences of prenatal alcohol exposure on glial cells, including radial glia and other transient glial structures present in the developing brain, astrocytes, oligodendrocytes and their precursors, and microglia contributes to abnormal neuronal development, reduced neuron survival and disrupted brain architecture and connectivity. This review highlights the CNS structural abnormalities caused by in utero alcohol exposure and outlines which abnormalities are likely mediated by alcohol effects on glial cell development and function.
Collapse
Affiliation(s)
- Clare J Wilhelm
- Research Service, VA Portland Health Care SystemPortland, OR, USA; Department of Psychiatry, Oregon Health and Science UniversityPortland, OR, USA
| | - Marina Guizzetti
- Research Service, VA Portland Health Care SystemPortland, OR, USA; Department of Behavioral Neuroscience, Oregon Health and Science UniversityPortland, OR, USA
| |
Collapse
|
67
|
van de Kerkhof NW, Fekkes D, van der Heijden FM, Hoogendijk WJ, Stöber G, Egger JI, Verhoeven WM. Cycloid psychoses in the psychosis spectrum: evidence for biochemical differences with schizophrenia. Neuropsychiatr Dis Treat 2016; 12:1927-33. [PMID: 27536115 PMCID: PMC4977096 DOI: 10.2147/ndt.s101317] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cycloid psychoses (CP) differ from schizophrenia regarding symptom profile, course, and prognosis and over many decades they were thought to be a separate entity within the psychosis spectrum. As to schizophrenia, research into the pathophysiology has focused on dopamine, brain-derived neurotrophic factor, and glutamate signaling in which, concerning the latter, the N-methyl-d-aspartate receptor plays a crucial role. The present study aims to determine whether CP can biochemically be delineated from schizophrenia. Eighty patients referred for psychotic disorders were assessed with the Comprehensive Assessment of Symptoms and History, and (both at inclusion and after 6 weeks of antipsychotic treatment) with the Positive and Negative Syndrome Scale and Clinical Global Impression. From 58 completers, 33 patients were diagnosed with schizophrenia and ten with CP according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, and Leonhard criteria, respectively. Fifteen patients were diagnosed with other disorders within the psychosis spectrum. At both time points, blood levels of the dopamine metabolite homovanillic acid, brain-derived neurotrophic factor, and amino acids related to glutamate neurotransmission were measured and compared with a matched control sample. Patients with CP showed a significantly better response to antipsychotic treatment as compared to patients with schizophrenia. In CP, glycine levels were elevated and tryptophan levels were lowered as compared to schizophrenia. Glutamate levels were increased in both patient groups as compared to controls. These results, showing marked differences in both treatment outcome and glutamate-related variable parameters, may point at better neuroplasticity in CP, necessitating demarcation of this subgroup within the psychosis spectrum.
Collapse
Affiliation(s)
- Nora Wa van de Kerkhof
- Vincent van Gogh Institute for Psychiatry, Centre of Excellence for Neuropsychiatry, Venray; Department of Psychiatry
| | - Durk Fekkes
- Department of Psychiatry; Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | - Gerald Stöber
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Jos Im Egger
- Vincent van Gogh Institute for Psychiatry, Centre of Excellence for Neuropsychiatry, Venray; Behavioural Science Institute; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Willem Ma Verhoeven
- Vincent van Gogh Institute for Psychiatry, Centre of Excellence for Neuropsychiatry, Venray; Department of Psychiatry
| |
Collapse
|
68
|
Flinkkilä E, Keski-Rahkonen A, Marttunen M, Raevuori A. Prenatal Inflammation, Infections and Mental Disorders. Psychopathology 2016; 49:317-333. [PMID: 27529630 DOI: 10.1159/000448054] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/25/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND The objective of this descriptive review is to summarize the current scientific evidence on the effect of prenatal exposure to maternal infection and immune response on the offspring's risk for mental disorders (schizophrenia spectrum disorders, autism spectrum disorders, attention-deficit hyperactivity disorder, anorexia nervosa, and mood disorders). SAMPLING AND METHODS Studies were searched from PubMed and Ovid MEDLINE (R) databases with the following keywords: 'prenatal exposure delayed effects' and 'infection', and 'inflammation' and 'mental disorders'. A comprehensive manual search, including a search from the reference list of included articles, was also performed. RESULTS Prenatal exposure to maternal influenza appears to increase the offspring's risk for schizophrenia spectrum disorders, although studies are not fully consistent. Prenatal exposure to maternal fever and elevated cytokine levels seems to be related to the elevated risk for autism spectrum disorders in the offspring. No replicated findings of an association between prenatal infectious exposure and other mental disorders exist. CONCLUSIONS Evidence for the effect of prenatal exposure to maternal infection on risk for mental disorders exists for several different infections, suggesting that common factors occurring in infections (e.g. elevated cytokine levels and fever), rather than the infectious agent itself, might be the underlying factor in increasing the risk for mental disorders. Additionally, it is likely that genetic liability to these disorders operates in conjunction with the exposure. Therefore, genetically sensitive study designs are needed in future studies.
Collapse
Affiliation(s)
- Eerika Flinkkilä
- Clinicum, Department of Public Health, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
69
|
Zhang XY, Tan YL, Chen DC, Tan SP, Yang FD, Wu HE, Zunta-Soares GB, Huang XF, Kosten TR, Soares JC. Interaction of BDNF with cytokines in chronic schizophrenia. Brain Behav Immun 2016; 51:169-175. [PMID: 26407757 DOI: 10.1016/j.bbi.2015.09.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 02/08/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) interacts with cytokines. Although both BDNF and cytokines occur at abnormal levels in schizophrenia patients, their interactions have not yet been examined. We therefore compared serum BDNF, TNF-α, interleukin (IL)-2, IL-6, and IL-8 levels in 92 chronically medicated schizophrenia patients and 60 healthy controls. We correlated these serum levels within these subject groups with each other and with clinical symptoms assessed according to the Positive and Negative Syndrome Scale (PANSS). Compared to the control group, the schizophrenia patients had significantly lower BDNF and TNF-α levels, and higher IL-2, IL-6, and IL-8 levels. The patients also showed a significant positive correlation between BDNF and both IL-2 and IL-8 levels, and low BDNF and TNF-α levels together were associated with poor performance on the PANSS cognitive factor. Thus, an interaction between cytokines and neurotrophic factors may be implicated in the pathophysiology of chronic schizophrenia. In particular, the cytokine TNF-α may interact with BNDF causing cognitive impairment.
Collapse
Affiliation(s)
- Xiang Yang Zhang
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China; Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Yun-Long Tan
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Da-Chun Chen
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Shu-Ping Tan
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Fu-De Yang
- Psychiatry Research Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Hanjing Emily Wu
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Giovana B Zunta-Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xu-Feng Huang
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong, and Illawarra Health and Medical Research Institute, NSW, Australia
| | - Thomas R Kosten
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Jair C Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
70
|
Sutterland AL, Fond G, Kuin A, Koeter MWJ, Lutter R, van Gool T, Yolken R, Szoke A, Leboyer M, de Haan L. Beyond the association. Toxoplasma gondii in schizophrenia, bipolar disorder, and addiction: systematic review and meta-analysis. Acta Psychiatr Scand 2015; 132:161-79. [PMID: 25877655 DOI: 10.1111/acps.12423] [Citation(s) in RCA: 294] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To perform a meta-analysis on studies reporting prevalence of Toxoplasma gondii (T. gondii) infection in any psychiatric disorder compared with healthy controls. Our secondary objective was to analyze factors possibly moderating heterogeneity. METHOD A systematic search was performed to identify studies into T. gondii infection for all major psychiatric disorders versus healthy controls. Methodological quality, publication bias, and possible moderators were assessed. RESULTS A total of 2866 citations were retrieved and 50 studies finally included. Significant odds ratios (ORs) with IgG antibodies were found in schizophrenia (OR 1.81, P < 0.00001), bipolar disorder (OR 1.52, P = 0.02), obsessive-compulsive disorder (OR 3.4, P < 0.001), and addiction (OR 1.91, P < 0.00001), but not for major depression (OR 1.21, P = 0.28). Exploration of the association between T. gondii and schizophrenia yielded a significant effect of seropositivity before onset and serointensity, but not IgM antibodies or gender. The amplitude of the OR was influenced by region and general seroprevalence. Moderators together accounted for 56% of the observed variance in study effects. After controlling for publication bias, the adjusted OR (1.43) in schizophrenia remained significant. CONCLUSION These findings suggest that T. gondii infection is associated with several psychiatric disorders and that in schizophrenia reactivation of latent T. gondii infection may occur.
Collapse
Affiliation(s)
- A L Sutterland
- Department of Psychiatry, Academic Medical Centre (AMC), Amsterdam, the Netherlands
| | - G Fond
- AP-HP, DHU Pe-PSY, Pôle de Psychiatrie et d'addictologie des Hôpitaux Universitaires H Mondor, INSERM U955, Eq 15 Psychiatrie Translationnelle, Université Paris Est-Créteil, Créteil, France.,Fondation Fondamental, Créteil, France
| | - A Kuin
- Department of Psychiatry, Academic Medical Centre (AMC), Amsterdam, the Netherlands
| | - M W J Koeter
- Department of Psychiatry, Academic Medical Centre (AMC), Amsterdam, the Netherlands
| | - R Lutter
- Departments of Experimental Immunology and Respiratory Medicine, Academic Medical Centre (AMC), Amsterdam, the Netherlands
| | - T van Gool
- Department of Parasitology, Academic Medical Centre (AMC), Amsterdam, the Netherlands
| | - R Yolken
- Stanley Neurovirology Laboratory, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - A Szoke
- AP-HP, DHU Pe-PSY, Pôle de Psychiatrie et d'addictologie des Hôpitaux Universitaires H Mondor, INSERM U955, Eq 15 Psychiatrie Translationnelle, Université Paris Est-Créteil, Créteil, France.,Fondation Fondamental, Créteil, France
| | - M Leboyer
- AP-HP, DHU Pe-PSY, Pôle de Psychiatrie et d'addictologie des Hôpitaux Universitaires H Mondor, INSERM U955, Eq 15 Psychiatrie Translationnelle, Université Paris Est-Créteil, Créteil, France.,Fondation Fondamental, Créteil, France
| | - L de Haan
- Department of Psychiatry, Academic Medical Centre (AMC), Amsterdam, the Netherlands
| |
Collapse
|
71
|
Adaptive Immunity in Schizophrenia: Functional Implications of T Cells in the Etiology, Course and Treatment. J Neuroimmune Pharmacol 2015; 10:610-9. [PMID: 26162591 DOI: 10.1007/s11481-015-9626-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/03/2015] [Indexed: 12/21/2022]
Abstract
Schizophrenia is a severe and highly complex neurodevelopmental disorder with an unknown etiopathology. Recently, immunopathogenesis has emerged as one of the most compelling etiological models of schizophrenia. Over the past few years considerable research has been devoted to the role of innate immune responses in schizophrenia. The findings of such studies have helped to conceptualize schizophrenia as a chronic low-grade inflammatory disorder. Although the contribution of adaptive immune responses has also been emphasized, however, the precise role of T cells in the underlying neurobiological pathways of schizophrenia is yet to be ascertained comprehensively. T cells have the ability to infiltrate brain and mediate neuro-immune cross-talk. Conversely, the central nervous system and the neurotransmitters are capable of regulating the immune system. Neurotransmitter like dopamine, implicated widely in schizophrenia risk and progression can modulate the proliferation, trafficking and functions of T cells. Within brain, T cells activate microglia, induce production of pro-inflammatory cytokines as well as reactive oxygen species and subsequently lead to neuroinflammation. Importantly, such processes contribute to neuronal injury/death and are gradually being implicated as mediators of neuroprogressive changes in schizophrenia. Antipsychotic drugs, commonly used to treat schizophrenia are also known to affect adaptive immune system; interfere with the differentiation and functions of T cells. This understanding suggests a pivotal role of T cells in the etiology, course and treatment of schizophrenia and forms the basis of this review.
Collapse
|
72
|
Guo J, Liu C, Wang Y, Feng B, Zhang X. Role of T helper lymphokines in the immune-inflammatory pathophysiology of schizophrenia: Systematic review and meta-analysis. Nord J Psychiatry 2015; 69:364-72. [PMID: 25529895 DOI: 10.3109/08039488.2014.986761] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Schizophrenia is highly complex multifactorial psychiatric disorder with poorly defined etiopathophysiology, which also has manifestations in the immune system. AIMS The aim of this review is to meta-analyze the available evidence regarding the role of immune activation indicated by the T helper cells in order to evaluate etiopathophysiological links between the immune system and schizophrenia. METHODS A literature search was performed in multiple electronic databases for relevant research papers published between 1990 and May 2014. Meta-analyses were conducted under both random- (REM) and fixed-effect models (FEM) by calculating weighted mean differences with 95% confidence intervals. Heterogeneity was assessed with the I(2) index. RESULTS Twenty-one studies were selected after observing inclusion and exclusion criteria. In vitro interferon-gamma (INF-γ) and interleukin (IL)-2 production was significantly lower in the schizophrenic patients compared with non-schizophrenic control individuals under both FEM and REM. Serum levels of IL-2 and serum/in vitro IL-4 were not significantly different in both groups under both FEM and REM. Overall Th1:Th2 ratio (INF-γ:IL-4 and IL-2:IL-4) in the serum samples was significantly deflected towards Th2 under both models in the serum samples (- 0.33 [- 0.59 to - 0.06]; P < 0.03, FEM and - 2.44 [- 4.27 to - 0.60]; P < 0.009, REM) but in vitro production Th1:Th2 ratio (INF-γ:IL-4 and IL-2:IL-4) was deflected towards Th1 under both the models (1.11 [0.45-1.78]; P < 0.002, FEM and 6.68 [0.72-12.64]; P < 0.03, REM). CONCLUSIONS Whereas the Th1:Th2 ratio in the serum samples deflected towards T2, in vitro Th1:Th2 ratio favored Th1 when the individual study data were meta-analyzed.
Collapse
Affiliation(s)
- Jing Guo
- Jing Guo, M.D., Clinical Laboratory, The 261st Hospital of The People's Liberation Army , Beijing , China
| | | | | | | | | |
Collapse
|
73
|
Anderson G, Maes M. The gut–brain axis: The role of melatonin in linking psychiatric, inflammatory and neurodegenerative conditions. ADVANCES IN INTEGRATIVE MEDICINE 2015. [DOI: 10.1016/j.aimed.2014.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
74
|
Abnormal immune system development and function in schizophrenia helps reconcile diverse findings and suggests new treatment and prevention strategies. Brain Res 2015; 1617:93-112. [PMID: 25736181 DOI: 10.1016/j.brainres.2015.02.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 02/20/2015] [Accepted: 02/21/2015] [Indexed: 12/20/2022]
Abstract
Extensive research implicates disturbed immune function and development in the etiology and pathology of schizophrenia. In addition to reviewing evidence for immunological factors in schizophrenia, this paper discusses how an emerging model of atypical immune function and development helps explain a wide variety of well-established - but puzzling - findings about schizophrenia. A number of theorists have presented hypotheses that early immune system programming, disrupted by pre- and perinatal adversity, often combines with abnormal brain development to produce schizophrenia. The present paper focuses on the hypothesis that disruption of early immune system development produces a latent immune vulnerability that manifests more fully after puberty, when changes in immune function and the thymus leave individuals more susceptible to infections and immune dysfunctions that contribute to schizophrenia. Complementing neurodevelopmental models, this hypothesis integrates findings on many contributing factors to schizophrenia, including prenatal adversity, genes, climate, migration, infections, and stress, among others. It helps explain, for example, why (a) schizophrenia onset is typically delayed until years after prenatal adversity, (b) individual risk factors alone often do not lead to schizophrenia, and (c) schizophrenia prevalence rates actually tend to be higher in economically advantaged countries. Here we discuss how the hypothesis explains 10 key findings, and suggests new, potentially highly cost-effective, strategies for treatment and prevention of schizophrenia. Moreover, while most human research linking immune factors to schizophrenia has been correlational, these strategies provide ethical ways to experimentally test in humans theories about immune function and schizophrenia. This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease.
Collapse
|
75
|
Prenatal administration of lipopolysaccharide induces sex-dependent changes in glutamic acid decarboxylase and parvalbumin in the adult rat brain. Neuroscience 2015; 287:78-92. [DOI: 10.1016/j.neuroscience.2014.12.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/02/2014] [Accepted: 12/09/2014] [Indexed: 11/19/2022]
|
76
|
Mancuso SG, Morgan VA, Mitchell PB, Berk M, Young A, Castle DJ. A comparison of schizophrenia, schizoaffective disorder, and bipolar disorder: Results from the Second Australian national psychosis survey. J Affect Disord 2015; 172:30-7. [PMID: 25451392 DOI: 10.1016/j.jad.2014.09.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/18/2014] [Accepted: 09/21/2014] [Indexed: 10/24/2022]
Abstract
INTRODUCTION It remains uncertain whether schizoaffective disorder (SAD) is a discrete diagnostic entity, is a variant of either a psychotic mood disorder such as bipolar disorder (BDP) or schizophrenia (SCZ), or exists on a spectral continuum between these disorders. The present study examined whether SCZ, SAD, and BDP differed qualitatively on demographic and clinical variables based on a large Australian dataset. METHODS This study examined data from the Australian Survey of High Impact Psychosis (SHIP), in which 1469 of the 1825 participants in who had an ICD-10 diagnosis of SCZ (n=857), SAD (n=293), and BDP (n=319) were assessed across a broad range of variables. RESULTS When compared to patients with SCZ, those with SAD reported more current delusional and thought disorder symptoms, a greater number of lifetime depression, mania, and positive symptoms, and fewer negative symptoms. Relative to the BPD group, the SAD group were younger, endorsed more current positive, delusional, and thought disorder symptoms, fewer lifetime mania symptoms, more lifetime psychotic, hallucination, and delusional symptoms, and recorded lower premorbid IQ scores. Compared to patients with BPD, those with SCZ were significantly younger, endorsed more current psychotic and hallucination symptoms, fewer lifetime depression and mania symptoms, more lifetime psychotic, hallucination, and delusional symptoms, reported more negative symptoms and had lower premorbid IQ and psychosocial functioning scores. LIMITATIONS Validated psychometric measures of psychotic or mood symptoms were not used. CONCLUSION This pattern of results is consistent with the conceptualisation of a spectrum of disorders, ranging from BDP at one end, to SAD in the middle, and SCZ at the other end.
Collapse
Affiliation(s)
- Serafino G Mancuso
- St Vincent׳s Mental Health, Fitzroy, VIC, Australia; Department of Psychiatry, the University of Melbourne, Parkville, VIC, Australia.
| | - Vera A Morgan
- Neuropsychiatric Epidemiology Research Unit, School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Crawley, WA, Australia
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia; Black Dog Institute, Sydney, NSW, Australia
| | - Michael Berk
- St Vincent׳s Mental Health, Fitzroy, VIC, Australia; IMPACT Strategic Research Centre, Deakin University, School of Medicine, Barwon Health, Geelong, VIC, Australia; Orygen Youth Health Research Centre, Parkville, VIC, Australia; Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Allan Young
- Centre for Affective Disorders, Institute of Psychiatry, King׳s College London, London, United Kingdom
| | - David J Castle
- St Vincent׳s Mental Health, Fitzroy, VIC, Australia; Department of Psychiatry, the University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
77
|
Predictors of treatment response in young people at ultra-high risk for psychosis who received long-chain omega-3 fatty acids. Transl Psychiatry 2015; 5:e495. [PMID: 25585167 PMCID: PMC4312828 DOI: 10.1038/tp.2014.134] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 10/19/2014] [Accepted: 10/26/2014] [Indexed: 12/18/2022] Open
Abstract
Previous efforts in the prospective evaluation of individuals who experience attenuated psychotic symptoms have attempted to isolate mechanisms underlying the onset of full-threshold psychotic illness. In contrast, there has been little research investigating specific predictors of positive outcomes. In this study, we sought to determine biological and clinical factors associated with treatment response, here indexed by functional improvement in a pre-post examination of a 12-week randomized controlled intervention in individuals at ultra-high risk (UHR) for psychosis. Participants received either long-chain omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) or placebo. To allow the determination of factors specifically relevant to each intervention, and to be able to contrast them, both treatment groups were investigated in parallel. Univariate linear regression analysis indicated that higher levels of erythrocyte membrane α-linolenic acid (ALA; the parent fatty acid of the ω-3 family) and more severe negative symptoms at baseline predicted subsequent functional improvement in the treatment group, whereas less severe positive symptoms and lower functioning at baseline were predictive in the placebo group. A multivariate machine learning analysis, known as Gaussian Process Classification (GPC), confirmed that baseline fatty acids predicted response to treatment in the ω-3 PUFA group with high levels of sensitivity, specificity and accuracy. In addition, GPC revealed that baseline fatty acids were predictive in the placebo group. In conclusion, our investigation indicates that UHR patients with higher levels of ALA may specifically benefit from ω-3 PUFA supplementation. In addition, multivariate machine learning analysis suggests that fatty acids could potentially be used to inform prognostic evaluations and treatment decisions at the level of the individual. Notably, multiple statistical analyses were conducted in a relatively small sample, limiting the conclusions that can be drawn from what we believe to be a first-of-its-kind study. Additional studies with larger samples are therefore needed to evaluate the generalizability of these findings.
Collapse
|
78
|
Dietrich-Muszalska A. Oxidative Stress in Schizophrenia. OXIDATIVE STRESS IN APPLIED BASIC RESEARCH AND CLINICAL PRACTICE 2015. [DOI: 10.1007/978-1-4939-0440-2_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
79
|
Refining and integrating schizophrenia pathophysiology – Relevance of the allostatic load concept. Neurosci Biobehav Rev 2014; 45:183-201. [DOI: 10.1016/j.neubiorev.2014.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 04/02/2014] [Accepted: 06/09/2014] [Indexed: 12/20/2022]
|
80
|
Luo X, He W, Hu X, Yan R. Reversible overexpression of bace1-cleaved neuregulin-1 N-terminal fragment induces schizophrenia-like phenotypes in mice. Biol Psychiatry 2014; 76:120-7. [PMID: 24210810 PMCID: PMC3976896 DOI: 10.1016/j.biopsych.2013.09.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/30/2013] [Accepted: 09/26/2013] [Indexed: 02/01/2023]
Abstract
BACKGROUND Neuregulin-1 (Nrg1) is a pleiotropic signaling molecule that regulates neural development, and mutation of Nrg1 is a risk factor for schizophrenia. Cleavage of type I β1 Nrg1 isoform by Bace1 releases a secreted N-terminal fragment (Nrg1-ntfβ), which can bind to a cognate ErbB receptor to activate the specific signaling cascade. This study aimed to determine whether increased expression of Nrg1 is beneficial for brain development and functions. METHODS We generated transgenic mice overexpressing this fragment under the control of a tetracycline-inducible promoter and examined functional and behavioral changes in mice upon reversible expression of the transgene. RESULTS Increased expression of full-length Nrg1 in mouse neurons has been previously shown to enhance myelination in the central nervous system. Overexpressing Nrg1-ntfβ enhanced the expression of myelin proteins, consistent with the expected activation of the Nrg1 signaling pathway by Nrg1-ntfβ. Contrary to expectations, overexpressing Nrg1-ntfβ transgene caused schizophrenia-like behaviors in transgenic mice, and these abnormal behaviors were reversible if the expression of the Nrg1-ntfβ transgene was turned off. Our molecular assay suggests that protein levels of N-methyl-D-aspartate receptors are reduced in this transgenic mouse model, which might underlie the observed social and cognitive behavioral impairments. CONCLUSIONS Our results indicate that overexpressing the secreted form of Nrg1 is sufficient to cause schizophrenia-like behaviors in a mouse model, meaning the effect is independent of the transmembrane and C-terminal domains of Nrg1. Hence, genetic gain-of-function mutations of Nrg1 are also risk factors for schizophrenia.
Collapse
Affiliation(s)
- Xiaoyang Luo
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Wanxia He
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Xiangyou Hu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio.
| |
Collapse
|
81
|
Gupta-Agarwal S, Jarome TJ, Fernandez J, Lubin FD. NMDA receptor- and ERK-dependent histone methylation changes in the lateral amygdala bidirectionally regulate fear memory formation. Learn Mem 2014; 21:351-62. [PMID: 24939839 PMCID: PMC4061426 DOI: 10.1101/lm.035105.114] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
It is well established that fear memory formation requires de novo gene transcription in the amygdala. We provide evidence that epigenetic mechanisms in the form of histone lysine methylation in the lateral amygdala (LA) are regulated by NMDA receptor (NMDAR) signaling and involved in gene transcription changes necessary for fear memory consolidation. Here we found increases in histone H3 lysine 9 dimethylation (H3K9me2) levels in the LA at 1 h following auditory fear conditioning, which continued to be temporally regulated up to 25 h following behavioral training. Additionally, we demonstrate that inhibiting the H3K9me2 histone lysine methyltransferase G9a (H/KMTs-G9a) in the LA impaired fear memory, while blocking the H3K9me2 histone lysine demethylase LSD1 (H/KDM-LSD1) enhanced fear memory, suggesting that H3K9me2 in the LA can bidirectionally regulate fear memory formation. Furthermore, we show that NMDAR activity differentially regulated the recruitment of H/KMT-G9a, H/KDM-LSD1, and subsequent H3K9me2 levels at a target gene promoter. This was largely regulated by GluN2B- but not GluN2A-containing NMDARs via ERK activation. Moreover, fear memory deficits associated with NMDAR or ERK blockade were successfully rescued through pharmacologically inhibiting LSD1, suggesting that enhancements of H3K9me2 levels within the LA can rescue fear memory impairments that result from hypofunctioning NMDARs or loss of ERK signaling. Together, the present study suggests that histone lysine methylation regulation in the LA via NMDAR-ERK-dependent signaling is involved in fear memory formation.
Collapse
Affiliation(s)
- Swati Gupta-Agarwal
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Timothy J Jarome
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Jordan Fernandez
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Farah D Lubin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| |
Collapse
|
82
|
Davis J, Moylan S, Harvey BH, Maes M, Berk M. Neuroprogression in schizophrenia: Pathways underpinning clinical staging and therapeutic corollaries. Aust N Z J Psychiatry 2014; 48:512-29. [PMID: 24803587 DOI: 10.1177/0004867414533012] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Whilst dopaminergic dysfunction remains a necessary component involved in the pathogenesis of schizophrenia, our current pharmacological armoury of dopamine antagonists does little to control the negative symptoms of schizophrenia. This suggests other pathological processes must be implicated. This paper aims to elaborate on such theories. METHODS Data for this review were sourced from the electronic database PUBMED, and was not limited by language or date of publication. RESULTS It has been suggested that multiple 'hits' may be required to unveil the clinical syndrome in susceptible individuals. Such hits potentially first occur in utero, leading to neuronal disruption, epigenetic changes and the establishment of an abnormal inflammatory response. The development of schizophrenia may therefore potentially be viewed as a neuroprogressive response to these early stressors, driven on by changes in tryptophan catabolite (TRYCAT) metabolism, reactive oxygen species handling and N-methyl d-aspartate (NMDA) circuitry. Given the potential for such progression over time, it is prudent to explore the new treatment strategies which may be implemented before such changes become established. CONCLUSIONS Outside of the dopaminergic model, the potential pathogenesis of schizophrenia has yet to be fully elucidated, but common themes include neuropil shrinkage, the development of abnormal neuronal circuitry, and a chronic inflammatory state which further disrupts neuronal function. Whilst some early non-dopaminergic treatments show promise, none have yet to be fully studied in appropriately structured randomized controlled trials and they remain little more than potential attractive targets.
Collapse
Affiliation(s)
- Justin Davis
- IMPACT Strategic Research Centre, Deakin University, School of Medicine, Barwon Health, Geelong, Australia
| | - Steven Moylan
- IMPACT Strategic Research Centre, Deakin University, School of Medicine, Barwon Health, Geelong, Australia
| | - Brian H Harvey
- Division of Pharmacology, and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North West University, Potchefstroom, South Africa
| | - Michael Maes
- IMPACT Strategic Research Centre, Deakin University, School of Medicine, Barwon Health, Geelong, Australia Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | - Michael Berk
- IMPACT Strategic Research Centre, Deakin University, School of Medicine, Barwon Health, Geelong, Australia Orygen Youth Health Research Centre, Parkville, Australia Centre of Youth Mental Health, University of Melbourne, Parkville, Australia Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Australia University of Melbourne, Department of Psychiatry, Royal Melbourne Hospital, Parkville, Australia
| |
Collapse
|
83
|
Ahmed AO, Bhat IA. Psychopharmacological treatment of neurocognitive deficits in people with schizophrenia: a review of old and new targets. CNS Drugs 2014; 28:301-18. [PMID: 24526625 DOI: 10.1007/s40263-014-0146-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurocognitive impairments significantly contribute to disability and the overall clinical picture in schizophrenia spectrum disorders. There has therefore been a concerted effort, guided by the discovery of neurotransmitter and synaptic systems in the central nervous system, to develop and test compounds that may ameliorate neurocognitive deficits. The current article summarizes the results of efforts to test neurocognitive-enhancing agents in schizophrenia. Overall, existing clinical trials provide little reason to be enthusiastic about the benefits of psychopharmacological agents at enhancing neurocognition in schizophrenia-a state of affairs that may reflect the inadequacy of single neurotransmitter or receptor models. The etiologic and phenomenological complexity of neurocognitive deficits in schizophrenia may be better served by psychopharmacological agents that (i) target neurotransmitter systems proximal in the causal chain to neurocognitive deficits; (ii) enhance distal survival processes in the central nervous system-neurogenesis, neuronal growth, synaptogenesis, and connectivity; and (iii) counteract the negative effects of aberrant neurodevelopment in schizophrenia, such as neuroinflammation and oxidative stress. Future efforts to develop psychopharmacological agents for neurocognitive impairment in schizophrenia should reflect the knowledge of its complex etiology by addressing aberrations along its causal chain. Clinical trials may benefit methodologically from (i) an appreciation of the phenomenological heterogeneity of neurocognitive deficits in schizophrenia; (ii) a characterization of the predictors of treatment response; and (iii) a recognition of issues of sample size, statistical power, treatment duration, and dosing.
Collapse
Affiliation(s)
- Anthony O Ahmed
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Georgia Regents University, 997 Saint Sebastian Way, Augusta, GA, 30912, USA,
| | | |
Collapse
|
84
|
Abstract
OBJECTIVES The purpose of this review is to analyse, sum up and discuss the available literature on the role of inflammation and inflammatory cytokines in the pathogenesis of schizophrenia. METHODS An electronic literature search of peer-reviewed English language articles using Pubmed was undertaken. These articles together with those published by us provided the background for the present review. RESULTS An overview of the available literature on this issue clearly demonstrated the alterations in mRNA and protein expression levels of several proinflammatory and chemotactic cytokines in patients with schizophrenia. Importantly, some of these changes are genetically determined. It was noteworthy that, depending on the study population, some variations of the data obtained are detected. CONCLUSIONS Altered inflammatory cytokine production, both genetically and environmentally determined, is implicated in schizophrenia and contributes to disease-associated low-grade systemic inflammation. Proinflammatory and chemotactic cytokines and their receptors may represent additional therapeutic targets for treatment of schizophrenia.
Collapse
|
85
|
Anderson G, Maes M. Redox Regulation and the Autistic Spectrum: Role of Tryptophan Catabolites, Immuno-inflammation, Autoimmunity and the Amygdala. Curr Neuropharmacol 2014; 12:148-67. [PMID: 24669209 PMCID: PMC3964746 DOI: 10.2174/1570159x11666131120223757] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 08/18/2013] [Accepted: 11/02/2013] [Indexed: 12/12/2022] Open
Abstract
The autistic spectrum disorders (ASD) form a set of multi-faceted disorders with significant genetic, epigenetic and environmental determinants. Oxidative and nitrosative stress (O&NS), immuno-inflammatory pathways, mitochondrial dysfunction and dysregulation of the tryptophan catabolite (TRYCATs) pathway play significant interactive roles in driving the early developmental etiology and course of ASD. O&NS interactions with immuno-inflammatory pathways mediate their effects centrally via the regulation of astrocyte and microglia responses, including regional variations in TRYCATs produced. Here we review the nature of these interactions and propose an early developmental model whereby different ASD genetic susceptibilities interact with environmental and epigenetic processes, resulting in glia biasing the patterning of central interarea interactions. A role for decreased local melatonin and N-acetylserotonin production by immune and glia cells may be a significant treatment target.
Collapse
Affiliation(s)
| | - Michael Maes
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Deakin University, Geelong, Australia
| |
Collapse
|
86
|
Feigenson KA, Kusnecov AW, Silverstein SM. Inflammation and the two-hit hypothesis of schizophrenia. Neurosci Biobehav Rev 2014; 38:72-93. [PMID: 24247023 PMCID: PMC3896922 DOI: 10.1016/j.neubiorev.2013.11.006] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/26/2013] [Accepted: 11/07/2013] [Indexed: 12/12/2022]
Abstract
The high societal and individual cost of schizophrenia necessitates finding better, more effective treatment, diagnosis, and prevention strategies. One of the obstacles in this endeavor is the diverse set of etiologies that comprises schizophrenia. A substantial body of evidence has grown over the last few decades to suggest that schizophrenia is a heterogeneous syndrome with overlapping symptoms and etiologies. At the same time, an increasing number of clinical, epidemiological, and experimental studies have shown links between schizophrenia and inflammatory conditions. In this review, we analyze the literature on inflammation and schizophrenia, with a particular focus on comorbidity, biomarkers, and environmental insults. We then identify several mechanisms by which inflammation could influence the development of schizophrenia via the two-hit hypothesis. Lastly, we note the relevance of these findings to clinical applications in the diagnosis, prevention, and treatment of schizophrenia.
Collapse
Affiliation(s)
- Keith A Feigenson
- Robert Wood Johnson Medical School at Rutgers, The State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| | - Alex W Kusnecov
- Department of Psychology, Behavioral and Systems Neuroscience Program and Joint Graduate Program in Toxicology, Rutgers University, 52 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA.
| | - Steven M Silverstein
- Robert Wood Johnson Medical School at Rutgers, The State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA; University Behavioral Health Care at Rutgers, The State University of New Jersey, 671 Hoes Lane, Piscataway, NJ 08855, USA.
| |
Collapse
|
87
|
Guizzetti M, Zhang X, Goeke C, Gavin DP. Glia and neurodevelopment: focus on fetal alcohol spectrum disorders. Front Pediatr 2014; 2:123. [PMID: 25426477 PMCID: PMC4227495 DOI: 10.3389/fped.2014.00123] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 10/24/2014] [Indexed: 12/03/2022] Open
Abstract
During the last 20 years, new and exciting roles for glial cells in brain development have been described. Moreover, several recent studies implicated glial cells in the pathogenesis of neurodevelopmental disorders including Down syndrome, Fragile X syndrome, Rett Syndrome, Autism Spectrum Disorders, and Fetal Alcohol Spectrum Disorders (FASD). Abnormalities in glial cell development and proliferation and increased glial cell apoptosis contribute to the adverse effects of ethanol on the developing brain and it is becoming apparent that the effects of fetal alcohol are due, at least in part, to effects on glial cells affecting their ability to modulate neuronal development and function. The three major classes of glial cells, astrocytes, oligodendrocytes, and microglia as well as their precursors are affected by ethanol during brain development. Alterations in glial cell functions by ethanol dramatically affect neuronal development, survival, and function and ultimately impair the development of the proper brain architecture and connectivity. For instance, ethanol inhibits astrocyte-mediated neuritogenesis and oligodendrocyte development, survival and myelination; furthermore, ethanol induces microglia activation and oxidative stress leading to the exacerbation of ethanol-induced neuronal cell death. This review article describes the most significant recent findings pertaining the effects of ethanol on glial cells and their significance in the pathophysiology of FASD and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Marina Guizzetti
- Department of Psychiatry, University of Illinois at Chicago , Chicago, IL , USA ; Jesse Brown VA Medical Center, U.S. Department of Veterans Affairs , Chicago, IL , USA ; Department of Environmental and Occupational Health Sciences, University of Washington , Seattle, WA , USA
| | - Xiaolu Zhang
- Department of Psychiatry, University of Illinois at Chicago , Chicago, IL , USA ; Jesse Brown VA Medical Center, U.S. Department of Veterans Affairs , Chicago, IL , USA
| | - Calla Goeke
- Department of Psychiatry, University of Illinois at Chicago , Chicago, IL , USA ; Jesse Brown VA Medical Center, U.S. Department of Veterans Affairs , Chicago, IL , USA
| | - David P Gavin
- Department of Psychiatry, University of Illinois at Chicago , Chicago, IL , USA ; Jesse Brown VA Medical Center, U.S. Department of Veterans Affairs , Chicago, IL , USA
| |
Collapse
|
88
|
Al-Amin MM, Nasir Uddin MM, Mahmud Reza H. Effects of antipsychotics on the inflammatory response system of patients with schizophrenia in peripheral blood mononuclear cell cultures. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2013; 11:144-51. [PMID: 24465251 PMCID: PMC3897763 DOI: 10.9758/cpn.2013.11.3.144] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/24/2013] [Accepted: 08/01/2013] [Indexed: 01/13/2023]
Abstract
OBJECTIVE We investigated the effects of antipsychotics on immune-challenged peripheral blood mononuclear cell (PBMC) cultures. METHODS Blood samples were collected from twelve patients with first-episode schizophrenia. The PBMCs were separated and cultures were prepared and stimulated with lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid (poly[I:C]), and then separately treated with a typical antipsychotic (haloperidol) or atypical antipsychotic (clozapine, quetiapine, or risperidone). Pro-inflammatory (interferon gamma [IFN-γ]) and anti-inflammatory (interleukin [IL]-4 and IL-10) cytokine levels were measured in the LPS- or poly(I:C)-stimulated PBMC cultures treated with antipsychotics. RESULTS Haloperidol and quetiapine significantly increased the IL-4 levels (p<0.05) in LPS-stimulated PBMC cultures, while clozapine and quetiapine significantly enhanced the IL-4 levels (p<0.05) in poly(I:C)-stimulated PBMC cultures. Only treatment with haloperidol resulted in a significant increase in IL-10 production (p<0.05) in LPS-stimulated PBMC cultures, whereas clozapine, quetiapine, and risperidone treatment significantly increased IL-10 production (p<0.05) in poly(I:C)-stimulated PBMC cultures. All of the antipsychotics reduced the IFN-γ level significantly (p<0.05) in LPS- and poly(I:C)-stimulated PBMC cultures. CONCLUSION Antipsychotic treatment altered immune function by raising the levels of anti-inflammatory cytokines (IL-4 and IL-10) and suppressing the levels of pro-inflammatory cytokines (IFN-γ).
Collapse
Affiliation(s)
- Md Mamun Al-Amin
- Department of Pharmacy, North South University, Dhaka, Bangladesh
| | | | | |
Collapse
|
89
|
Van den Eynde K, Missault S, Fransen E, Raeymaekers L, Willems R, Drinkenburg W, Timmermans JP, Kumar-Singh S, Dedeurwaerdere S. Hypolocomotive behaviour associated with increased microglia in a prenatal immune activation model with relevance to schizophrenia. Behav Brain Res 2013; 258:179-86. [PMID: 24129217 DOI: 10.1016/j.bbr.2013.10.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/01/2013] [Accepted: 10/05/2013] [Indexed: 01/06/2023]
Abstract
Over the past decade a neurodevelopmental animal model with high validity for schizophrenia has been developed based on the environmental risk factor known as maternal immune activation (MIA). The immunological basis of this model, together with extensive data from clinical and preclinical context, suggests the involvement of an aberrant neuro-immune system in the pathophysiology of schizophrenia. The goal of this study was to examine microglia activation in adult behaviourally phenotyped MIA offspring. MIA was induced in pregnant rats using viral mimetic Poly I:C at gestational day 15. Adult offspring were behaviourally phenotyped at postnatal days (PND) 56, 90 and 180 through the evaluation of prepulse inhibition (PPI) of the acoustic startle and spontaneous locomotion. Finally, the presence of activated microglia in brain regions associated with schizophrenia was evaluated using post-mortem immunohistochemistry against OX-42 (CD11b) and ED-1 (CD68). Although a deficit in PPI could not be replicated despite the high number of animals tested, we found an overall decrease in basal startle response and spontaneous locomotion in offspring born to Poly I:C- compared to saline-treated dams, accompanied by increased microglial density with characteristics of non-reactive activation in the chronic stage of the model. These findings provide additional evidence for a role played by microglial activation in schizophrenia-related pathology in general and psychomotor slowing in particular, and warrant extensive research on the underlying mechanism in order to establish new drug targets for the treatment of schizophrenia patients with an inflammatory component.
Collapse
Affiliation(s)
- Karlien Van den Eynde
- Experimental Laboratory of Translational Neuroscience and Otolaryngology, University of Antwerp, Campus Drie Eiken, D.T.420, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Berk M, Williams LJ, Jacka FN, O'Neil A, Pasco JA, Moylan S, Allen NB, Stuart AL, Hayley AC, Byrne ML, Maes M. So depression is an inflammatory disease, but where does the inflammation come from? BMC Med 2013; 11:200. [PMID: 24228900 PMCID: PMC3846682 DOI: 10.1186/1741-7015-11-200] [Citation(s) in RCA: 896] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/31/2013] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND We now know that depression is associated with a chronic, low-grade inflammatory response and activation of cell-mediated immunity, as well as activation of the compensatory anti-inflammatory reflex system. It is similarly accompanied by increased oxidative and nitrosative stress (O&NS), which contribute to neuroprogression in the disorder. The obvious question this poses is 'what is the source of this chronic low-grade inflammation?' DISCUSSION This review explores the role of inflammation and oxidative and nitrosative stress as possible mediators of known environmental risk factors in depression, and discusses potential implications of these findings. A range of factors appear to increase the risk for the development of depression, and seem to be associated with systemic inflammation; these include psychosocial stressors, poor diet, physical inactivity, obesity, smoking, altered gut permeability, atopy, dental cares, sleep and vitamin D deficiency. SUMMARY The identification of known sources of inflammation provides support for inflammation as a mediating pathway to both risk and neuroprogression in depression. Critically, most of these factors are plastic, and potentially amenable to therapeutic and preventative interventions. Most, but not all, of the above mentioned sources of inflammation may play a role in other psychiatric disorders, such as bipolar disorder, schizophrenia, autism and post-traumatic stress disorder.
Collapse
Affiliation(s)
- Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, VIC, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Abstract
PURPOSE OF REVIEW Immunological understanding of neurological and cognitive alterations of schizophrenia has made a significant breakthrough in unfolding the pathophysiological mechanisms of schizophrenia, at least in a group of patients. Such psychoneuroimmunological aberrations essentially argue for an alternative treatment approach based on immunomodulation in schizophrenia. RECENT FINDINGS Recent findings in schizophrenia have shown exaggerated immuno-inflammatory responses due to persistent systemic inflammation and neuroinflammation involving microglia activation. The existing antipsychotic drugs have shown substantial benefits in the control of positive symptoms, but they have not demonstrated adequate immuno-dampening effects specifically and effectively. However, a group of emerging nonsteroidal as well as other anti-inflammatory drugs currently being used as an adjunct therapy seem to exhibit increased target specificity and effectiveness in reducing symptom severity to some extent. SUMMARY The anti-inflammatory drugs that have been shown to reduce the levels of pro-inflammatory mediators and inhibit microglia activation have paved the way for better outcomes of schizophrenia treatment. However, many of the currently tested anti-inflammatory drugs often lack methodological robustness. The identification of novel target(s) that will integrate the processes evoked by various risk determinants into a common signalling pathway is urgently required, and this may take immunomodulation into a new therapeutic domain in schizophrenia.
Collapse
|
92
|
Zhang XY, Tang W, Xiu MH, Chen DC, Yang FD, Tan YL, Wang ZR, Zhang F, Liu J, Liu L, Chen Y, Wen N, Kosten TR. Interleukin 18 and cognitive impairment in first episode and drug naïve schizophrenia versus healthy controls. Brain Behav Immun 2013; 32:105-11. [PMID: 23499732 DOI: 10.1016/j.bbi.2013.03.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/20/2013] [Accepted: 03/03/2013] [Indexed: 11/16/2022] Open
Abstract
Alterations in the inflammatory and immune systems have been documented to occur from the earliest stages of schizophrenia, and have been associated with neurodevelopmental changes. Cognitive impairment is a core feature in the pathology of schizophrenia, and recent studies showed a significant increase in serum IL-18 in schizophrenia, and a putative role of IL-18 in neuroprogression and thus neurocognitive defects. The purpose of this study was to examine the association of IL-18 with cognitive deficits in schizophrenia. We recruited 77 first episode and drug naïve schizophrenic patients and 75 healthy control subjects and examined the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and serum IL-18 in both groups. Schizophrenic symptoms were assessed using the positive and negative syndrome scale (PANSS). We found that IL-18 levels were non-significantly higher in patients than controls (206.0±92.9 pg/ml vs 193.2±41.8 pg/ml, p=0.28). Cognitive scores on the RBANS and nearly all of its five subscales (all p<0.05) except for the Visuospatial/Constructional index (p>0.05) were significantly lower in schizophrenic patients than normal controls. For the patients, IL-18 was positively associated with the Visuospatial/Constructional domain of cognitive deficits in schizophrenia. Our findings suggest that cognitive deficits occur during the acute stage of a schizophrenic episode, and IL-18 may be involved in Visuospatial/Constructional deficits of these patients.
Collapse
Affiliation(s)
- Xiang Yang Zhang
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, and Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Lopresti AL, Drummond PD. Obesity and psychiatric disorders: commonalities in dysregulated biological pathways and their implications for treatment. Prog Neuropsychopharmacol Biol Psychiatry 2013; 45:92-9. [PMID: 23685202 DOI: 10.1016/j.pnpbp.2013.05.005] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/28/2013] [Accepted: 05/07/2013] [Indexed: 11/25/2022]
Abstract
Rates of obesity are higher than normal across a range of psychiatric disorders, including major depressive disorder, bipolar disorder, schizophrenia and anxiety disorders. While the problem of obesity is generally acknowledged in mental health research and treatment, an understanding of their bi-directional relationship is still developing. In this review the association between obesity and psychiatric disorders is summarised, with a specific emphasis on similarities in their disturbed biological pathways; namely neurotransmitter imbalances, hypothalamus-pituitary-adrenal axis disturbances, dysregulated inflammatory pathways, increased oxidative and nitrosative stress, mitochondrial disturbances, and neuroprogression. The applicability and effectiveness of weight-loss interventions in psychiatric populations are reviewed along with their potential efficacy in ameliorating disturbed biological pathways, particularly those mediating inflammation and oxidative stress. It is proposed that weight loss may not only be an effective intervention to enhance physical health but may also improve mental health outcomes and slow the rate of neuroprogressive disturbances in psychiatric disorders. Areas of future research to help expand our understanding of the relationship between obesity and psychiatric disorders are also outlined.
Collapse
Affiliation(s)
- Adrian L Lopresti
- School of Psychology, Murdoch University, Perth, Western Australia 6150, Australia.
| | | |
Collapse
|
94
|
|
95
|
Microglial dysregulation in psychiatric disease. Clin Dev Immunol 2013; 2013:608654. [PMID: 23690824 PMCID: PMC3652125 DOI: 10.1155/2013/608654] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 03/26/2013] [Indexed: 12/17/2022]
Abstract
Microglia, the brain's resident immune cells, are phagocytes of the macrophage lineage that have a key role in responding to inflammation and immune challenge in the brain. More recently, they have been shown to have a number of important roles beyond immune surveillance and response, including synaptic pruning during development and the support of adult neurogenesis. Microglial abnormalities have been found in several neuropsychiatric conditions, though in most cases it remains unclear whether these are causative or are a reaction to some other underlying pathophysiology. Here we summarize postmortem, animal, neuroimaging, and other evidence for microglial pathology in major depression, schizophrenia, autism, obsessive-compulsive disorder, and Tourette syndrome. We identify gaps in the existing literature and important areas for future research. If microglial pathology proves to be an important causative factor in these or other neuropsychiatric diseases, modulators of microglial function may represent a novel therapeutic strategy.
Collapse
|
96
|
Anderson G, Maes M, Berk M. Schizophrenia is primed for an increased expression of depression through activation of immuno-inflammatory, oxidative and nitrosative stress, and tryptophan catabolite pathways. Prog Neuropsychopharmacol Biol Psychiatry 2013; 42:101-14. [PMID: 22930036 DOI: 10.1016/j.pnpbp.2012.07.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/25/2012] [Accepted: 07/26/2012] [Indexed: 02/08/2023]
Abstract
Schizophrenia and depression are two common and debilitating psychiatric conditions. Up to 61% of schizophrenic patients have comorbid clinical depression, often undiagnosed. Both share significant overlaps in underlying biological processes, which are relevant to the course and treatment of both conditions. Shared processes include changes in cell-mediated immune and inflammatory pathways, e.g. increased levels of pro-inflammatory cytokines and a Th1 response; activation of oxidative and nitrosative stress (O&NS) pathways, e.g. increased lipid peroxidation, damage to proteins and DNA; decreased antioxidant levels, e.g. lowered coenzyme Q10, vitamin E, glutathione and melatonin levels; autoimmune responses; and activation of the tryptophan catabolite (TRYCAT) pathway through induction of indoleamine-2,3-dioxygenase. Both show cognitive and neurostructural evidence of a neuroprogressive process. Here we review the interlinked nature of these biological processes, suggesting that schizophrenia is immunologically primed for an increased expression of depression. Such a conceptualization explains, and incorporates, many of the current perspectives on the nature of schizophrenia and depression, and has implications for the nature of classification and treatment of both disorders. An early developmental etiology to schizophrenia, driven by maternal infection, with subsequent impact on offspring immuno-inflammatory responses, creates alterations in the immune pathways, which although priming for depression, also differentiates the two disorders.
Collapse
|
97
|
Dodd S, Maes M, Anderson G, Dean OM, Moylan S, Berk M. Putative neuroprotective agents in neuropsychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2013. [PMID: 23178231 DOI: 10.1016/j.pnpbp.2012.11.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In many individuals with major neuropsychiatric disorders including depression, bipolar disorder and schizophrenia, their disease characteristics are consistent with a neuroprogressive illness. This includes progressive structural brain changes, cognitive and functional decline, poorer treatment response and an increasing vulnerability to relapse with chronicity. The underlying molecular mechanisms of neuroprogression are thought to include neurotrophins and regulation of neurogenesis and apoptosis, neurotransmitters, inflammatory, oxidative and nitrosative stress, mitochondrial dysfunction, cortisol and the hypothalamic-pituitary-adrenal axis, and epigenetic influences. Knowledge of the involvement of each of these pathways implies that specific agents that act on some or multiple of these pathways may thus block this cascade and have neuroprotective properties. This paper reviews the potential of the most promising of these agents, including lithium and other known psychotropics, aspirin, minocycline, statins, N-acetylcysteine, leptin and melatonin. These agents are putative neuroprotective agents for schizophrenia and mood disorders.
Collapse
Affiliation(s)
- Seetal Dodd
- School of Medicine, Deakin University, Geelong, Victoria, Australia; Department of Psychiatry, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
98
|
Anderson G, Berk M, Dodd S, Bechter K, Altamura AC, Dell'osso B, Kanba S, Monji A, Fatemi SH, Buckley P, Debnath M, Das UN, Meyer U, Müller N, Kanchanatawan B, Maes M. Immuno-inflammatory, oxidative and nitrosative stress, and neuroprogressive pathways in the etiology, course and treatment of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2013; 42:1-4. [PMID: 23085074 DOI: 10.1016/j.pnpbp.2012.10.008] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 10/11/2012] [Indexed: 01/07/2023]
|
99
|
Berk M, Dean O, Drexhage H, McNeil JJ, Moylan S, O'Neil A, Davey CG, Sanna L, Maes M. Aspirin: a review of its neurobiological properties and therapeutic potential for mental illness. BMC Med 2013; 11:74. [PMID: 23506529 PMCID: PMC3751197 DOI: 10.1186/1741-7015-11-74] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/18/2013] [Indexed: 12/27/2022] Open
Abstract
There is compelling evidence to support an aetiological role for inflammation, oxidative and nitrosative stress (O&NS), and mitochondrial dysfunction in the pathophysiology of major neuropsychiatric disorders, including depression, schizophrenia, bipolar disorder, and Alzheimer's disease (AD). These may represent new pathways for therapy. Aspirin is a non-steroidal anti-inflammatory drug that is an irreversible inhibitor of both cyclooxygenase (COX)-1 and COX-2, It stimulates endogenous production of anti-inflammatory regulatory 'braking signals', including lipoxins, which dampen the inflammatory response and reduce levels of inflammatory biomarkers, including C-reactive protein, tumor necrosis factor-α and interleukin (IL)--6, but not negative immunoregulatory cytokines, such as IL-4 and IL-10. Aspirin can reduce oxidative stress and protect against oxidative damage. Early evidence suggests there are beneficial effects of aspirin in preclinical and clinical studies in mood disorders and schizophrenia, and epidemiological data suggests that high-dose aspirin is associated with a reduced risk of AD. Aspirin, one of the oldest agents in medicine, is a potential new therapy for a range of neuropsychiatric disorders, and may provide proof-of-principle support for the role of inflammation and O&NS in the pathophysiology of this diverse group of disorders.
Collapse
Affiliation(s)
- Michael Berk
- School of Medicine, Deakin University, 75 Pigdon's Road, Waurn Ponds, Geelong, Victoria 3216, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Yang SA. Association between a Missense Polymorphism (rs3924999, Arg253Gln) of Neuregulin 1 and Schizophrenia in Korean Population. Exp Neurobiol 2013; 21:158-63. [PMID: 23319876 PMCID: PMC3538180 DOI: 10.5607/en.2012.21.4.158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/03/2012] [Indexed: 11/22/2022] Open
Abstract
Neuregulin 1 (NRG1) is associated with the pathogenesis of schizophrenia through controlling activation and signaling of neurotransmitter receptors. Influence to schizophrenia development by the NRG1 gene may differ in individuals, and genetic polymorphism is one of the factors affecting their differences. Association between three single nucleotide polymorphisms (SNPs) (rs7014762, -1174 A/T; rs11998176, -788 A/T; rs3924999, Arg253Gln) of NRG1 and the development of schizophrenia was analyzed in 221 schizophrneia and 359 control subjects. Polymerase chain reaction and direct sequencing were performed to obtain genotype data of NRG1 SNPs of the subjects. In analysis of genetic data, multiple logistic regression models (codominant1, codominant2, dominant, recessive, and log-additive model) were applied. SNPStats and SPSS 18.0 were used to calculate odds ratio (OR), 95% confidence interval (CI), and p-value of each model. The genotype distributions of rs3924999 were associated with schizophrenia development (OR=0.67, 95% CI=0.47-0.95, p=0.022 in the dominant model and OR=0.69, 95% CI=0.51-0.93, p=0.013 in the log-addtive model) and allelic distributions also showed significant association (OR=0.70, 95% CI=0.52-0.93, p=0.014). The results suggest that rs3924999 of the NRG1 gene may be associated with schizophrenia susceptibility.
Collapse
Affiliation(s)
- Seung-Ae Yang
- College of Nursing, Sungshin Women's University, Seoul 136-742, Korea
| |
Collapse
|