51
|
Liu L, Aljathelah NM, Hassan H, Giraldes BW, Leitão A, Bayen S. Targeted and suspect screening of contaminants in coastal water and sediment samples in Qatar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145043. [PMID: 33609843 DOI: 10.1016/j.scitotenv.2021.145043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
In recent years, high resolution mass spectrometry (HRMS) combined with separation techniques has allowed comprehensive analysis of contaminants of emerging concern (CECs) as well as their metabolites and transformation products in various environmental samples via retrospective screening. However, to date, only a few suspect or non-targeted studies on the occurrence of CECs in marine aquatic system are reported. In this study, two methods, based on direct injection for seawater, or ultrasound-assisted extraction for sediments, followed by LC-Q-TOF-MS analysis were developed and applied for the simultaneous targeted and screening of contaminants in coastal samples (seawater, particulates and sediment) from Qatar collected in 2017-2018. Among the twenty-one target analytes (pesticides, PPCPs and a plasticizer), two compounds only were detected in seawater. Caffeine was detected in seawater samples at all sampling sites, and cotinine was detected in seawater samples collected in Umm Bab in 2018 and seawaters receiving stormwater. Traces of trimethoprim and carbamazepine were detected in sediment samples collected at four sites in 2017. These results suggest some inputs of domestic wastewater in the coastal waters in Qatar. In total, twelve molecular features were tentatively identified from suspect screening at concentration levels significantly higher than that in procedure blanks. The presence of four plasticizers and one pesticide were further confirmed using reference standards: diethyl phthalate (DEP), dibutyl phthalate (DBP), and tributyl phosphate (TBP) in seawater samples; bis(2-ethylhexyl) phthalate (DEHP) in sediment and particulate samples; and dinoterb in seawater after storm event and particulate samples. Overall, this study demonstrated the potential of high resolution LC-Q-TOF-MS/MS for combined targeted and non-targeted analyses of trace contaminants in marine systems over a broad range of log P values.
Collapse
Affiliation(s)
- Lan Liu
- Department of Food Science and Agricultural Chemistry, McGill University, Canada
| | | | - Hassan Hassan
- Environmental Science Center, Qatar University, Qatar
| | | | | | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, Canada.
| |
Collapse
|
52
|
Abstract
In the present study, the removal of valsartan (VLS), an antihypertensive agent, under simulated solar radiation with the use of molybdenum sulfide-bismuth oxychloride composites (MoS2/BiOCl), of variable MoS2 content (0.1–10.0 wt.%) was investigated. The physicochemical properties of the photocatalysts were examined by XRD, DRS, BET and TEM/HRTEM. Preliminary tests were conducted to examine the photocatalytic efficiency of the synthesized MoS2/BiOCl composites towards VLS degradation in ultrapure water (UPW). It was found that the activity of pure BiOCl is improved with the addition of MoS2. The degradation rate was maximized with the use of the catalyst containing 0.25 wt.% MoS2. It was also found that the increase in catalyst concentration (50–1000 mg/L) enhances VLS degradation. It was found that VLS removal decreased by increasing VLS concentration. The effect of the water matrix on VLS removal was studied by carrying out experiments in real and synthetic water matrices. VLS degradation in UPW was faster than in bottled water (BW) and wastewater (WW), mainly due to the existence of organic matter in real aqueous media. Lastly, 0.25 wt.% MoS2/BiOCl showed great stability after 360 min of irradiation, serving as a promising catalyst for water remediation of emerging contaminants under solar irradiation.
Collapse
|
53
|
Petras D, Minich JJ, Cancelada LB, Torres RR, Kunselman E, Wang M, White ME, Allen EE, Prather KA, Aluwihare LI, Dorrestein PC. Non-targeted tandem mass spectrometry enables the visualization of organic matter chemotype shifts in coastal seawater. CHEMOSPHERE 2021; 271:129450. [PMID: 33460888 PMCID: PMC7969459 DOI: 10.1016/j.chemosphere.2020.129450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 05/31/2023]
Abstract
Urbanization along coastlines alters marine ecosystems including contributing molecules of anthropogenic origin to the coastal dissolved organic matter (DOM) pool. A broad assessment of the nature and extent of anthropogenic impacts on coastal ecosystems is urgently needed to inform regulatory guidelines and ecosystem management. Recently, non-targeted tandem mass spectrometry approaches are gaining momentum for the analysis of global organic matter composition (chemotypes) including a wide array of natural and anthropogenic compounds. In line with these efforts, we developed a non-targeted liquid chromatography tandem mass spectrometry (LC-MS/MS) workflow that utilizes advanced data analysis approaches such as feature-based molecular networking and repository-scale spectrum searches. This workflow allows the scalable comparison and mapping of seawater chemotypes from large-scale spatial surveys as well as molecular family level annotation of unknown compounds. As a case study, we visualized organic matter chemotype shifts in coastal environments in northern San Diego, USA, after notable rain fall in winter 2017/2018 and highlight potential anthropogenic impacts. The observed seawater chemotype, consisting of 4384 LC-MS/MS features, shifted significantly after a major rain event. Molecular drivers of this shift could be attributed to multiple anthropogenic compounds, including pesticides (Imazapyr and Isoxaben), cleaning products (Benzyl-tetradecyl-dimethylammonium) and chemical additives (Hexa (methoxymethyl)melamine) and potential degradation products. By expanding the search of identified xenobiotics to other public tandem mass spectrometry datasets, we further contextualized their possible origin and show their importance in other ecosystems. The mass spectrometry and data analysis pipelines applied here offer a scalable framework for future molecular mapping and monitoring of marine ecosystems, which will contribute to a deliberate assessment of how chemical pollution impacts our oceans.
Collapse
Affiliation(s)
- Daniel Petras
- University of California San Diego, Collaborative Mass Spectrometry Innovation Center, 9500, Gilman Drive, La Jolla, USA; University of California San Diego, Scripps Institution of Oceanography, 8622 Kennel Way, La Jolla, USA.
| | - Jeremiah J Minich
- University of California San Diego, Scripps Institution of Oceanography, 8622 Kennel Way, La Jolla, USA
| | - Lucia B Cancelada
- University of California San Diego, Department of Chemistry, 9500, Gilman Drive, La Jolla, USA
| | - Ralph R Torres
- University of California San Diego, Scripps Institution of Oceanography, 8622 Kennel Way, La Jolla, USA
| | - Emily Kunselman
- University of California San Diego, Scripps Institution of Oceanography, 8622 Kennel Way, La Jolla, USA
| | - Mingxun Wang
- University of California San Diego, Collaborative Mass Spectrometry Innovation Center, 9500, Gilman Drive, La Jolla, USA
| | - Margot E White
- University of California San Diego, Scripps Institution of Oceanography, 8622 Kennel Way, La Jolla, USA
| | - Eric E Allen
- University of California San Diego, Scripps Institution of Oceanography, 8622 Kennel Way, La Jolla, USA; University of California San Diego, Center for Microbiome Innovation, 9500, Gilman Drive, La Jolla, USA
| | - Kimberly A Prather
- University of California San Diego, Scripps Institution of Oceanography, 8622 Kennel Way, La Jolla, USA; University of California San Diego, Department of Chemistry, 9500, Gilman Drive, La Jolla, USA
| | - Lihini I Aluwihare
- University of California San Diego, Scripps Institution of Oceanography, 8622 Kennel Way, La Jolla, USA
| | - Pieter C Dorrestein
- University of California San Diego, Collaborative Mass Spectrometry Innovation Center, 9500, Gilman Drive, La Jolla, USA; University of California San Diego, Department of Chemistry, 9500, Gilman Drive, La Jolla, USA
| |
Collapse
|
54
|
Martini GDA, Montagner CC, Viveiros W, Quinaglia GA, França DD, Munin NCG, Lopes-Ferreira M, Rogero SO, Rogero JR. Emerging contaminant occurrence and toxic effects on zebrafish embryos to assess the adverse effects caused by mixtures of substances in the environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:20313-20329. [PMID: 33405144 DOI: 10.1007/s11356-020-11963-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
The contaminants of emerging concern (CECs) have been receiving global attention due to their worldwide presence in water bodies. The CECs could be originated from synthetic or natural sources, and they are not commonly monitored, although these substances are continuously reaching the aquatic environment. The main goal of this study was to determine the occurrence of some target CECs in São Paulo state surface water, once there is practically no information on the presence and concentration range of these substances at the studied sites. In addition, the present study aimed to assess adverse effects in the non-target fish embryo of Danio rerio (zebrafish) after exposure to surface water organic extract samples during 96 h using FET test. The CECs in surface water samples were determined by solid-phase extraction and liquid chromatography coupled by mass spectrometry. A 2-year study was assessed in 7 rivers and 3 reservoirs at São Paulo state, where 25 of the 30 analyzed substances were quantified, being caffeine the substance with the highest concentration range (5.5 ng L-1 to 69 μg L-1) and detected in 95% of analyzed samples, followed by bisphenol A (6.5-1300 ng L-1) and carbendazim (4.7-285 ng L-1), found in 50% and 85% of the analyzed samples, respectively. The chemical analysis and biological test were not performed in order to show a direct relationship between concentrations and observed effects on embryos; however, the combined approach can provide a better understanding of the adverse effects caused by mixtures of substances at relevant environmental concentrations. Regarding the adverse effects, it was observed that in the samples from sites with higher anthropogenic activity in the surroundings, there was also a higher mortality rate in organisms. At the Ribeirão Pires River and Sapucaí-Guaçu River, the mortality rate during the 2-year study was 21.6% and 9.3%, respectively. The morphological abnormality rates were higher at Ribeirão Grande (21.4%) and Ribeirão Pires (29.5%) Rivers. The obtained results aim to show that even in low concentrations (ng-μg L-1) the CECs can cause adverse effects on non-target species, and because of that, new chemical indicators would be important to monitor the water quality and protect the aquatic biota.
Collapse
Affiliation(s)
- Gisela de Assis Martini
- Centro de Química e Meio Ambiente, Instituto de Pesquisas Energéticas e Nucleares, São Paulo, Brazil.
| | | | | | | | | | - Nívea Cristina Guedes Munin
- Instituto de Química, Universidade Estadual de Campinas, São Paulo, Brazil
- Universidade Federal do Amazonas, Manaus, Brazil
| | | | - Sizue Ota Rogero
- Centro de Química e Meio Ambiente, Instituto de Pesquisas Energéticas e Nucleares, São Paulo, Brazil
| | - José Roberto Rogero
- Centro de Química e Meio Ambiente, Instituto de Pesquisas Energéticas e Nucleares, São Paulo, Brazil
| |
Collapse
|
55
|
de Souza RC, Godoy AA, Kummrow F, Dos Santos TL, Brandão CJ, Pinto E. Occurrence of caffeine, fluoxetine, bezafibrate and levothyroxine in surface freshwater of São Paulo State (Brazil) and risk assessment for aquatic life protection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:20751-20761. [PMID: 33410054 DOI: 10.1007/s11356-020-11799-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
The prioritization of active pharmaceutical ingredients (APIs) for monitoring programmes and/or environmental risk assessment (ERA) purposes is based on several criteria, including environmental occurrence data. However, data on API occurrence in Brazilian surface freshwaters are still scarce. The Brazilian Unified Health System (SUS) provides several medicines free-of-charge, including medications that have bezafibrate, fluoxetine and levothyroxine as the API. Thus, our objective was to investigate the occurrence of bezafibrate, fluoxetine and levothyroxine in samples collected at sampling sites included in the surface freshwater monitoring program of the São Paulo State Environmental Agency (CETESB); caffeine was also included in the analysis because it is commonly used as an anthropogenic marker of aquatic environment contamination. Monitoring results showed that levothyroxine was not found in any of the analysed samples. Caffeine was ubiquitous in the analysed samples, thus indicating anthropic contamination in the studied water bodies. Caffeine and bezafibrate presented risk quotient (RQ) < 1 for all the sampling sites and periods evaluated in this study. For fluoxetine, RQs > 1 were found in all water samples in which this API was found, indicating a potential risk for freshwater pelagic biota. Thus, fluoxetine should be regulated in São Paulo State in order to protect the aquatic biota. Additional occurrence studies in other Brazilian states are still needed to evaluate if fluoxetine is a nationwide pollutant.
Collapse
Affiliation(s)
- Raquel Cardoso de Souza
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), Avenida Professor Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil
| | - Aline Andrade Godoy
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), Avenida Professor Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil
- Science and Technology Institute, Federal University of Alfenas (Unifal-MG), Rodovia José Aurélio Vilela, 11999, Poços de Caldas, MG, 37715-400, Brazil
| | - Fábio Kummrow
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (Unifesp), Rua São Nicolau, 210, Diadema, SP, 09972-270, Brazil.
| | - Thyago Leandro Dos Santos
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), Avenida Professor Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil
| | - Carlos Jesus Brandão
- Environmental Company of State of São Paulo (CETESB), Av. Professor Frederico Hermann Júnior, 345, Alto de Pinheiros, São Paulo, SP, 05459-900, Brazil
| | - Ernani Pinto
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), Avenida Professor Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil
| |
Collapse
|
56
|
Roveri V, Guimarães LL, Toma W, Correia AT. Occurrence and risk assessment of pharmaceuticals and cocaine around the coastal submarine sewage outfall in Guarujá, São Paulo State, Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11384-11400. [PMID: 33123891 DOI: 10.1007/s11356-020-11320-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to screen and quantify 23 pharmaceutical compounds (including illicit drugs), at two sampling points near the diffusers of the Guarujá submarine outfall, State of São Paulo, Brazil. Samples were collected in triplicate during the high (January 2018) and low (April 2018) seasons at two different water column depths (surface and bottom). A total of 10 compounds were detected using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Caffeine (42.3-141.0 ng/L), diclofenac (3.6-85.7 ng/L), valsartan (4.7-14.3 ng/L), benzoylecgonine (0.3-1.7 ng/L), and cocaine (0.3-0.6 ng/L) were frequently detected (75% occurrence). Orphenadrine (0.6-3.0 ng/L) and atenolol (0.1-0.3 ng/L), and acetaminophen (1.2-1.4 ng/L) and losartan (0.7-3.4 ng/L), were detected in 50% and 25% of the samples, respectively. Only one sample (12.5%) detected the presence of carbamazepine (< 0.001-0.1 ng/L). Unexpectedly a lower frequency of occurrence and concentration of these compounds occurred during the summer season, suggesting that other factors, such as the oceanographic and hydrodynamic regimes of the study area, besides the population rise, should be taken into account. Caffeine presented concentrations above the surface water safety limits (0.01 μg/L). For almost all compounds, the observed concentrations indicate nonenvironmental risk for the aquatic biota, except for caffeine, diclofenac, and acetaminophen that showed low to moderate ecological risk for the three trophic levels tested.
Collapse
Affiliation(s)
- Vinicius Roveri
- Faculdade de Ciência e Tecnologia (FCT), Universidade Fernando Pessoa (UFP), Praça 9 de Abril 349, 4249-004, Porto, Portugal
- Universidade Metropolitana de Santos (UNIMES), Avenida Conselheiro Nébias, 536, Encruzilhada, Santos, São Paulo, 11045-002, Brazil
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Luciana Lopes Guimarães
- Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília (UNISANTA), Rua Cesário Mota 8, F83A, Santos, São Paulo, 11045-040, Brazil
| | - Walber Toma
- Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília (UNISANTA), Rua Cesário Mota 8, F83A, Santos, São Paulo, 11045-040, Brazil
| | - Alberto Teodorico Correia
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal.
- Faculdade de Ciências da Saúde (FCS), Universidade Fernando Pessoa (UFP), Rua Carlos da Maia 296, 4200-150, Porto, Portugal.
- Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP), Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
57
|
Fontes MK, de Campos BG, Cortez FS, Pusceddu FH, Nobre CR, Moreno BB, Lebre DT, Maranho LA, Pereira CDS. Mussels get higher: A study on the occurrence of cocaine and benzoylecgonine in seawater, sediment and mussels from a subtropical ecosystem (Santos Bay, Brazil). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143808. [PMID: 33288268 DOI: 10.1016/j.scitotenv.2020.143808] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 06/12/2023]
Abstract
Data on the occurrence of cocaine (COC) and benzoylecgonine (BE) in marine environmental compartments are still limited, with few studies reporting superficial water contamination, mainly in tropical zones. In this sense, environmental data of these substances are essential to identify potential polluting sources, as well as their impact in costal ecosystems. The aim of this study was to evaluate the occurrence of COC and BE in seawater, sediment and mussels from a subtropical coastal zone (Santos Bay, São Paulo, Brazil), as well as to determine a field measured Bioaccumulation Factor (BAF). COC and BE were detected in all water samples in concentrations ranging from 1.91 ng·L-1 to 12.52 ng·L-1 and 9.88 ng·L-1 to 28.53 ng·L-1, respectively. In sediments, only COC was quantified in concentrations ranging from 0.94 ng·g-1 to 46.85 ng·g-1. Similarly, only COC was detected in tissues of mussels 0.914 μg·kg-1 to 4.58 μg·kg-1 (ww). The field-measured BAF ranged from 163 to 1454 (L·kg-1). Our results pointed out a widespread contamination by cocaine and its main human metabolite benzoylecgonine in Santos Bay. Mussels were able to accumulate COC in areas used by residents and tourists for bathing, fishing, and harvest, denoting concern to human health. Therefore, our data can be considered a preliminary assessment, which indicates the need to evaluate drugs (including illicit as COC) in environmental and seafood monitoring programs, in order to understand their risks on the ecosystem and human health.
Collapse
Affiliation(s)
- Mayana Karoline Fontes
- Instituto de Biociências, Campus do Litoral Paulista, Universidade Estadual Paulista Júlio de Mesquita Filho, Praça Infante Dom Henrique s/n, 11330-900 São Vicente, Brazil
| | - Bruno Galvão de Campos
- Instituto de Biociências, Campus do Litoral Paulista, Universidade Estadual Paulista Júlio de Mesquita Filho, Praça Infante Dom Henrique s/n, 11330-900 São Vicente, Brazil
| | - Fernando Sanzi Cortez
- Laboratório de Ecotoxicologia, Universidade Santa Cecília, Rua Oswaldo Cruz 266, 11045-907 Santos, Brazil
| | - Fabio Hermes Pusceddu
- Laboratório de Ecotoxicologia, Universidade Santa Cecília, Rua Oswaldo Cruz 266, 11045-907 Santos, Brazil
| | - Caio Rodrigues Nobre
- Instituto de Biociências, Campus do Litoral Paulista, Universidade Estadual Paulista Júlio de Mesquita Filho, Praça Infante Dom Henrique s/n, 11330-900 São Vicente, Brazil
| | - Beatriz Barbosa Moreno
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Rua Maria Máximo, 168, 11030-100 Santos, Brazil
| | - Daniel Temponi Lebre
- CEMSA - Centro de Espectrometria de Massas Aplicada, CIETEC/IPEN, Av. Prof. Lineu Prestes, 2242, 05508-000 São Paulo, Brazil
| | - Luciane Alves Maranho
- Laboratório de Ecotoxicologia, Universidade Santa Cecília, Rua Oswaldo Cruz 266, 11045-907 Santos, Brazil
| | - Camilo Dias Seabra Pereira
- Laboratório de Ecotoxicologia, Universidade Santa Cecília, Rua Oswaldo Cruz 266, 11045-907 Santos, Brazil; Departamento de Ciências do Mar, Universidade Federal de São Paulo, Rua Maria Máximo, 168, 11030-100 Santos, Brazil.
| |
Collapse
|
58
|
Dos Anjos Rosário B, de Fátima Santana de Nazaré M, Lemes JA, de Andrade JS, da Silva RB, Pereira CDS, Ribeiro DA, de Barros Viana M. Repeated crack cocaine administration alters panic-related responses and delta FosB immunoreactivity in panic-modulating brain regions. Exp Brain Res 2021; 239:1179-1191. [PMID: 33569614 DOI: 10.1007/s00221-020-06031-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/30/2020] [Indexed: 01/09/2023]
Abstract
Crack cocaine is the crystal form of cocaine, produced by adding sodium bicarbonate to cocaine base paste. Brazil is the largest consumer of crack cocaine in the world. Users of crack cocaine show important physiological and behavioral alterations, including neuropsychiatric symptoms, such as anxiety-related symptoms. Nevertheless, few pre-clinical studies have been previously performed to understand the neurobiological effects of crack cocaine. The purpose of the present study was to investigate effects of the subchronic treatment (5 days, IP) of rats with crack cocaine in an animal model of anxiety/panic, the elevated T-maze (ETM). The ETM model allows the measurement of two behavioral defensive responses, avoidance and escape, in clinical terms, respectively, associated to generalized anxiety and panic disorder, the two main psychiatric conditions that accompany substance use disorders. Immediately after the ETM model, animals were tested in an open field for locomotor activity assessment. Analysis of delta FosB protein immunoreactivity was used to map areas activated by crack cocaine exposure. Results showed that crack treatment selectively altered escape displayed by rats in the ETM test, inducing either a panicolytic (18 mg/kg IP) or a panicogenic-like effect (25 and 36 mg/kg IP). These effects were followed by the altered functioning of panic-modulating brain regions, i.e., the periaqueductal gray and the dorsal region and lateral wings of the dorsal raphe nucleus. Treatment with 36 mg/kg of crack cocaine also increased locomotor activity. These are the first observations performed with crack cocaine in a rodent model of anxiety/panic and contribute to a better understanding of the behavioral and neurobiological effects of crack cocaine.
Collapse
Affiliation(s)
| | | | - Jéssica Alves Lemes
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos, SP, Brazil
| | - José Simões de Andrade
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos, SP, Brazil
| | - Regina Barbosa da Silva
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos, SP, Brazil
| | | | - Daniel Araki Ribeiro
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos, SP, Brazil
| | - Milena de Barros Viana
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos, SP, Brazil.
| |
Collapse
|
59
|
Wang J, Li S, Zhu Y, Guo J, Liu J, He B. Targeted eco-pharmacovigilance as an optimized management strategy for adverse effects of pharmaceuticals in the environment. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 82:103565. [PMID: 33321209 DOI: 10.1016/j.etap.2020.103565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/25/2020] [Accepted: 12/09/2020] [Indexed: 05/21/2023]
Abstract
From a perspective of drug administration, eco-pharmacovigilance (EPV) has been proposed as a new approach to prevent the environmental risks posed by pharmaceutical emerging contaminants. However, it is impracticable to practice unitary and rigor EPV process for all the pharmaceutical substances with complex and diversified chemical, biological or toxicological properties. We proposed the "targeted EPV" that is the science and activities associated with the targeted detection, evaluation, understanding, and prevention of adverse effects of high-priority hazardous pharmaceuticals in the environment, especially focusing on the control of main anthropogenic sources of pharmaceutical emission among key stakeholders in high-risk areas could be used as an optimized management strategy for pharmaceutical pollution. "Targeted EPV" implementation should focus on the targeted monitoring of the occurrence of high-priority pharmaceuticals in environmental samples, the targeted reporting of over-standard discharge, the targeted management for main emission sources, the targeted legislation and researches on high-priority pharmaceutical pollutants, as well as the targeted educational strategies for specific key populations.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacology, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Shulan Li
- Department of Pharmacology, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Yujie Zhu
- Department of Pharmacology, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Jie Guo
- Department of Pharmacology, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Juan Liu
- Department of Pharmacology, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Bingshu He
- Hubei Province Women and Children Hospital, Wuhan, China.
| |
Collapse
|
60
|
Silva LK, Rangel JHG, Brito NM, Sousa ER, Sousa ÉML, Lima DLD, Esteves VI, Freitas AS, Silva GS. Solidified floating organic drop microextraction (SFODME) for the simultaneous analysis of three non-steroidal anti-inflammatory drugs in aqueous samples by HPLC. Anal Bioanal Chem 2021; 413:1851-1859. [PMID: 33469709 DOI: 10.1007/s00216-021-03153-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/09/2020] [Accepted: 01/04/2021] [Indexed: 02/08/2023]
Abstract
In this work, a liquid-liquid microextraction methodology using solidified floating organic drop (SFODME) was combined with liquid chromatography and UV/Vis detection to determine non-steroidal anti-inflammatory drugs (NSAIDs) naproxen (NPX), diclofenac (DCF), and mefenamic acid (MFN) in tap water, surface water, and seawater samples. Parameters that can influence the efficiency of the process were evaluated, such as the type and volume of the extractor and dispersive solvents, effect of pH, agitation type, and ionic strength. The optimized method showed low detection limits (0.09 to 0.25 μg L-1), satisfactory recovery rates (90 to 116%), and enrichment factors in the range between 149 and 199. SFODME showed simplicity, low cost, speed, and high concentration capacity of the analytes under study. Its use in real samples did not demonstrate a matrix effect that would compromise the effectiveness of the method, being possible to apply it successfully in water samples with different characteristics.
Collapse
Affiliation(s)
- Lanna K Silva
- Department of Chemistry, Federal Institute of Education, Science and Technology of Maranhão, Monte Castelo Campus, Getúlio Vargas Avenue, São Luis, 65030-005, Brazil.
| | - José H G Rangel
- Department of Chemistry, Federal Institute of Education, Science and Technology of Maranhão, Monte Castelo Campus, Getúlio Vargas Avenue, São Luis, 65030-005, Brazil
| | - Natilene M Brito
- Department of Chemistry, Federal Institute of Education, Science and Technology of Maranhão, Monte Castelo Campus, Getúlio Vargas Avenue, São Luis, 65030-005, Brazil
| | - Eliane R Sousa
- Department of Chemistry, Federal Institute of Education, Science and Technology of Maranhao, Maracanã Campus, Av. dos Curiós, Vila Esperança, São Luis, 65095-460, Brazil
| | - Érika M L Sousa
- CESAM, Department of Chemistry, University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Diana L D Lima
- CESAM, Department of Chemistry, University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Valdemar I Esteves
- CESAM, Department of Chemistry, University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Arlan S Freitas
- Department of Chemistry, Federal Institute of Education, Science and Technology of Maranhão, Monte Castelo Campus, Getúlio Vargas Avenue, São Luis, 65030-005, Brazil
| | - Gilmar S Silva
- Department of Chemistry, Federal Institute of Education, Science and Technology of Maranhão, Monte Castelo Campus, Getúlio Vargas Avenue, São Luis, 65030-005, Brazil
| |
Collapse
|
61
|
Capaldo A, Gay F, Caputo I, Lionetti L, Paolella G, Di Gregorio I, Martucciello S, Di Lorenzo M, Rosati L, Laforgia V. Effects of environmental cocaine concentrations on COX and caspase-3 activity, GRP-78, ALT, CRP and blood glucose levels in the liver and kidney of the European eel (Anguilla anguilla). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111475. [PMID: 33068975 DOI: 10.1016/j.ecoenv.2020.111475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/18/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Cocaine is one of the most widely used illicit drugs in the world, and as a result of incomplete removal by sewage treatment plants it is found in surface waters, where it represents a new potential risk for aquatic organisms. In this study we evaluated the influence of environmental concentrations of cocaine on the liver and the kidney of the European eel (Anguilla anguilla). The eels were exposed to 20 ng L-1 of cocaine for fifty days, after which, three and ten days after the interruption of cocaine exposure their livers and kidneys were compared to controls. The general morphology of the two organs was evaluated, as well as the following parameters: cytochrome oxidase (COX) and caspase-3 activities, as markers of oxidative metabolism and apoptosis activation, respectively; glucose-regulated protein (GRP)78 levels, as a marker of endoplasmic reticulum (ER)-stress; blood glucose level, as stress marker; serum levels of alanine aminotransferase (ALT), as a marker of liver injury and serum levels of C-reactive protein (CRP), as a marker of the inflammatory process. The liver showed morphologic alterations such as necrotic areas, karyolysis and pyknotic nuclei, while the kidneys had dilated glomeruli and the renal tubules showed pyknotic nuclei and karyolysis. In the kidney, the alterations persisted after the interruption of cocaine exposure. In the liver, COX and caspase-3 activities increased (COX: P = 0.01; caspase-3: P = 0.032); ten days after the interruption of cocaine exposure, COX activity returned to control levels (P = 0.06) whereas caspase-3 activity decreased further (P = 0.012); GRP78 expression increased only in post-exposure recovery specimens (three days: P = 0.007 and ten days: P = 0.008 after the interruption of cocaine exposure, respectively). In the kidney, COX and caspase-3 activities increased (COX: P = 0.02; caspase-3: P = 0.019); after the interruption of cocaine exposure, COX activity remained high (three days: P = 0.02 and ten days: P = 0.029 after the interruption of cocaine exposure, respectively) whereas caspase-3 activity returned to control values (three days: P = 0.69 and ten days: P = 0.67 after the interruption of cocaine exposure, respectively). Blood glucose and serum ALT and CRP levels increased (blood glucose: P = 0.01; ALT: P = 0.001; CRP: 0.015) and remained high also ten days after the interruption of cocaine exposure (blood glucose: P = 0.009; ALT: P = 0.0031; CRP: 0.036). These results suggest that environmental cocaine concentrations adversely affected liver and kidney of this species.
Collapse
Affiliation(s)
- Anna Capaldo
- Department of Biology, University of Naples Federico II, Via Cinthia, Edificio 7, 80126 Naples, Italy.
| | - Flaminia Gay
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Ivana Caputo
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy; ELFID (European Laboratory for Food-Induced Diseases), University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Lillà Lionetti
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy; ELFID (European Laboratory for Food-Induced Diseases), University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Gaetana Paolella
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Ilaria Di Gregorio
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Stefania Martucciello
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Mariana Di Lorenzo
- Department of Biology, University of Naples Federico II, Via Cinthia, Edificio 7, 80126 Naples, Italy
| | - Luigi Rosati
- Department of Biology, University of Naples Federico II, Via Cinthia, Edificio 7, 80126 Naples, Italy
| | - Vincenza Laforgia
- Department of Biology, University of Naples Federico II, Via Cinthia, Edificio 7, 80126 Naples, Italy
| |
Collapse
|
62
|
Roveri V, Guimarães LL, Toma W, Correia AT. Occurrence and ecological risk assessment of pharmaceuticals and cocaine in a beach area of Guarujá, São Paulo State, Brazil, under the influence of urban surface runoff. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:45063-45075. [PMID: 32779066 DOI: 10.1007/s11356-020-10316-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
The occurrence of pharmaceuticals and illicit drugs in water resources is widely documented in Europe, North America and Asia. However, in South America, these studies are still incipient. The objective of this study was to screen and identify the presence of pharmaceuticals of various therapeutic classes, including illicit drugs such as cocaine and its metabolite benzoylecgonine, in urban drainage channels that flow into the bathing waters of Guarujá city, State of São Paulo, Brazil. Moreover, the ecological potential risks to the aquatic biota were also assessed. The water samples were collected from four beaches of Guarujá in two different points: in the urban drainage channels and in the nearby coast line. A total of 16 compounds were detected using liquid chromatography coupled with tandem mass spectrometry: carbamazepine (0.1-8.0 ng/L), caffeine (33.5-6550.0 ng/L), cocaine (0.2-30.3 ng/L), benzoylecgonine (0.9-278.0 ng/L), citalopram (0.2-0.4 ng/L), acetaminophen (18.3-391.0 ng/L), diclofenac (0.9-79.8 ng/L), orphenadrine (0.2-1.5 ng/L), atenolol (0.1-140.0 ng/L), propranolol (limit of detection: LOD-0.9 ng/L), enalapril (2.2-3.8 ng/L), losartan (3.6-548.0 ng/L), valsartan (19.8-798.0 ng/L), rosuvastatin (2.5-38.5 ng/L), chlortalidone (0.1-0.4 ng/L) and clopidogrel (0.1-0.2 ng/L). The hereby data also showed that five of these compounds, namely caffeine, acetaminophen, diclofenac, losartan and valsartan, could raise moderate to severe risks to aquatic organisms (algae, crustaceans and fishes). This study is the first report of the occurrence of several pharmaceuticals and illicit drugs in urban drainage channels that flow to the bathing waters in South America, and it is the first quantification of rosuvastatin, chlortalidone and clopidogrel in environmental marine waters of Latin America.
Collapse
Affiliation(s)
- Vinicius Roveri
- Faculdade de Ciência e Tecnologia da Universidade Fernando Pessoa (FCT-UFP), Praça 9 de Abril 349, 4249-004, Porto, Portugal
- Universidade Metropolitana de Santos (UNIMES), Avenida Conselheiro Nébias, 536 - Encruzilhada, Santos, São Paulo, 11045-002, Brasil
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Luciana Lopes Guimarães
- Universidade Santa Cecília (UNISANTA), Rua Cesário Mota 8, F83A, Santos, São Paulo, 11045-040, Brasil
| | - Walber Toma
- Universidade Santa Cecília (UNISANTA), Rua Cesário Mota 8, F83A, Santos, São Paulo, 11045-040, Brasil
| | - Alberto Teodorico Correia
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal.
- Faculdade de Ciências da Saúde da Universidade Fernando Pessoa (FCS-UFP), Rua Carlos da Maia 296, 4200-150, Porto, Portugal.
| |
Collapse
|
63
|
Valdez-Carrillo M, Abrell L, Ramírez-Hernández J, Reyes-López JA, Carreón-Diazconti C. Pharmaceuticals as emerging contaminants in the aquatic environment of Latin America: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44863-44891. [PMID: 32986197 DOI: 10.1007/s11356-020-10842-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 09/13/2020] [Indexed: 05/20/2023]
Abstract
Pharmaceutical active compounds (PhACs) are environmentally ubiquitous around the world, and the countries of Latin America (LATAM) are not the exception; however there is still little knowledge of the magnitude and conditions of their occurrence in LATAM and of the environmental consequences of their presence. The present work reviews 79 documents published from 2007 to 2019 on the occurrence, concentrations, and sources of PhACs and hormones in surface water (SW), wastewater (WW), and treated wastewater (TWW) in LATAM and on the circumstances of their release to the environment. Research efforts are reported in only ten countries and confirm the presence of 159 PhACs, mainly analgesics and anti-inflammatories, although extraordinarily high concentrations of carbamazepine (830 μg/L) and ethinylestradiol (6.8 μg/L) were found in Ecuador and Brazil, respectively. The analysis of maximum concentrations and the ecotoxicological risk assessment corroborate that (1) these values exceed the environmental concentrations found in other parts of the world, (2) the environmental risk posed by these concentrations is remarkably high, and (3) there is no statistically significant difference between the maximum concentrations found in WW and those found in TWW. The main source of PhACs in LATAM's aquatic environment is WW; hence, these countries should direct substantial efforts to develop efficient and cost-effective treatment technologies and plan and apply WW management strategies and regulations. This analysis presents the current states of occurrence, concentrations, and sources of PhACs in the aquatic environment of LATAM and outlines the magnitude of the environmental problem in that part of the world.
Collapse
Affiliation(s)
- Melissa Valdez-Carrillo
- Universidad Autonoma de Baja California, Instituto de Ingeniería, Calle de la Normal y Blvd. Benito Juarez s/n, Col. Insurgentes Sur, 21377, Mexicali, BC, Mexico
| | - Leif Abrell
- Arizona Laboratory for Emerging Contaminants, Departments of Soil, Water & Environmental Science and Chemistry & Biochemistry, University of Arizona, 1040 E. 4th St., Room 606/611, Tucson, AZ, 85721, USA
| | - Jorge Ramírez-Hernández
- Universidad Autonoma de Baja California, Instituto de Ingeniería, Calle de la Normal y Blvd. Benito Juarez s/n, Col. Insurgentes Sur, 21377, Mexicali, BC, Mexico
| | - Jaime A Reyes-López
- Universidad Autonoma de Baja California, Instituto de Ingeniería, Calle de la Normal y Blvd. Benito Juarez s/n, Col. Insurgentes Sur, 21377, Mexicali, BC, Mexico
| | - Concepción Carreón-Diazconti
- Universidad Autonoma de Baja California, Instituto de Ingeniería, Calle de la Normal y Blvd. Benito Juarez s/n, Col. Insurgentes Sur, 21377, Mexicali, BC, Mexico.
| |
Collapse
|
64
|
Santos AV, Couto CF, Lebron YAR, Moreira VR, Foureaux AFS, Reis EO, Santos LVDS, de Andrade LH, Amaral MCS, Lange LC. Occurrence and risk assessment of pharmaceutically active compounds in water supply systems in Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141011. [PMID: 32763601 DOI: 10.1016/j.scitotenv.2020.141011] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 05/06/2023]
Abstract
The presence of pharmaceutically active compounds (PhACs) in water supply systems has been generating great concern about their effects on the environment and human health. Twenty-eight PhACs were monitored during one year in four Brazilian water sources, aiming to understand the factors that influence their occurrence and removal in conventional drinking water treatment plants (DWTPs) and to assess the environmental and human health risks. Trace levels of PhACs were detected in surface and drinking water in all assessed water sources. Effects of seasonality and socioeconomic aspects were observed in PhACs occurrence, like their higher concentrations during winter and in locales with higher values of gross domestic product per capita and human development index. Betamethasone, prednisone, and fluconazole were the most commonly detected PhACs, and also presented the highest concentrations. However, they were not related to toxicological risks. Nonetheless, all surface waters were subject to toxicological risk owing to at least one PhAC. PhACs related to the highest toxicological risks were loratadine, atorvastatin, norfloxacin, caffeine, and ranitidine, however, all these PhACs presented low quantification frequency. DWTPs capacity to remove PhACs was only partial, so treated water was still contaminated with these compounds. Furthermore, atorvastatin presented a margin of exposure below 100, indicating possible risk for public health. Thus, additional advanced treatment steps should be considered to improve PhACs removal during drinking water treatment.
Collapse
Affiliation(s)
- Amanda Vitória Santos
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, 31.270-901 Belo Horizonte, MG, Brazil.
| | - Carolina Fonseca Couto
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, 31.270-901 Belo Horizonte, MG, Brazil
| | - Yuri Abner Rocha Lebron
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, 31.270-901 Belo Horizonte, MG, Brazil
| | - Victor Rezende Moreira
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, 31.270-901 Belo Horizonte, MG, Brazil
| | - Ana Flávia Souza Foureaux
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, 31.270-901 Belo Horizonte, MG, Brazil
| | - Eduarda Oliveira Reis
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, 31.270-901 Belo Horizonte, MG, Brazil
| | - Lucilaine Valeria de Souza Santos
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, 31.270-901 Belo Horizonte, MG, Brazil; Department of Chemical Engineering, Pontifical Catholic University of Minas Gerais, P.O. Box 1.686, 30535-901 Belo Horizonte, MG, Brazil
| | - Laura Hamdan de Andrade
- Department of Chemical Engineering, Pontifical Catholic University of Minas Gerais, P.O. Box 1.686, 30535-901 Belo Horizonte, MG, Brazil
| | - Míriam Cristina Santos Amaral
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, 31.270-901 Belo Horizonte, MG, Brazil
| | - Liséte Celina Lange
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, 31.270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
65
|
Aragão RBDA, Semensatto D, Calixto LA, Labuto G. Pharmaceutical market, environmental public policies and water quality: the case of the São Paulo Metropolitan Region, Brazil. CAD SAUDE PUBLICA 2020; 36:e00192319. [PMID: 33237204 DOI: 10.1590/0102-311x00192319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 04/27/2020] [Indexed: 11/22/2022] Open
Abstract
Water pollution has been an increasing concern for the authorities responsible for planning and executing public policies. In this qualitative research, we have discussed the most sold pharmaceuticals in the São Paulo Metropolitan Region, Brazil, and compared public policies focused on pharmaceuticals and environmental issues among countries/regions. For that, data provided by Close-Up International related to the sales of medicines in the São Paulo Metropolitan Region between April/2016 and April/2017 were collected and processed to identify and quantify the pharmaceutical products. The 300 most sold medicines in the São Paulo Metropolitan Region fall in 26 therapeutic classes, which include 159 drugs. The most sold pharmaceutical products group is nonsteroidal anti-inflammatory drugs (NSAIDs) representing approximately 44.3% of the total. The ten most sold pharmaceuticals sum up 1200 tons. Dipyrone is the first place in mass representing around 488 tons, followed by metformin with around 310 tons commercialized. Public policies focused on pharmaceuticals in the environment still need adjustments to improve reinforcement, even in developed countries. There is no international standard on how to conduct the issue, each country adopting the public policy that best matches to the local. Brazil, despite having some legislation that approaches the theme, still lacks effective public policies and stakeholder awareness. In this aspect, the need for improvement of the reverse logistics system, consumer orientation to the adequate disposal of unused/expired medicines, and the adoption of the unit-dose system as a therapeutic strategy is evident.
Collapse
Affiliation(s)
| | - Décio Semensatto
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brasil
| | - Leandro Augusto Calixto
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brasil
| | - Geórgia Labuto
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brasil
| |
Collapse
|
66
|
De Felice B, Parolini M. Effects of single and combined exposure to cocaine and benzoylecgonine on the oxidative status of Mytilus galloprovincialis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103475. [PMID: 32827719 DOI: 10.1016/j.etap.2020.103475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
The information concerning the effects of single and combined exposure to cocaine (COC) and its main metabolite, the benzoylecgonine (BE), towards marine organisms is still scant. Thus, the aim of this work was to compare the effects induced by 96 -hs exposure to a concentration of COC (500 ng/L) or BE (20 ng/L) and their mixture (500 ng/L of COC and 20 ng/L of BE) on Mytilus galloprovincialis. Oxidative stress biomarkers were applied on mussel gills and digestive gland, investigating changes in the amount of reactive oxygen species, activity of antioxidant (SOD, CAT and GPx) and detoxifying (GST) enzymes and lipid peroxidation. Independent exposure to COC and BE slightly altered mussel oxidative status in both the organs, while the mixture induced more marked responses compared to single molecules. Our results suggest the necessity to explore the toxicity of illicit drug mixtures to shed light on the risk of these molecules to marine organisms.
Collapse
Affiliation(s)
- Beatrice De Felice
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy.
| | - Marco Parolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy
| |
Collapse
|
67
|
Świacka K, Michnowska A, Maculewicz J, Caban M, Smolarz K. Toxic effects of NSAIDs in non-target species: A review from the perspective of the aquatic environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 273:115891. [PMID: 33497943 DOI: 10.1016/j.envpol.2020.115891] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/20/2020] [Accepted: 10/15/2020] [Indexed: 05/14/2023]
Abstract
The presence of pharmaceuticals in the aquatic environment, both in marine and freshwater reservoirs, is a major concern of global environmental protection. Among the drugs that are most commonly used, NSAIDs tend to dominate. Currently, being aware of the problem caused by drug contamination, it is extremely important to evaluate the scale and the full spectrum of its consequences, from short-term to long-term effects. The influence on non-target aquatic animals can take place at many levels, and the effects can be seen both in behaviour and physiology, but also in genetic alterations or reproduction disorders, affecting the development of entire populations. This review summarises all the advances made to estimate the impact of NSAIDs on aquatic animals. Multicellular animals from all trophic levels, inhabiting both inland waters, seas and oceans, have been considered. Particular attention has been paid to chronic studies, conducted at low, environmentally-relevant concentrations, to estimate the real effects of the present pollution. The number of such studies has indeed increased in recent years, allowing for a better insight into the possible consequences of pharmaceutical pollution. It should be stressed, however, that our knowledge is still limited to a few model species, while there are many groups of organisms completely unexplored regarding the effects of drugs. Therefore, the main aim of this paper was to summarise the current state of knowledge on the toxicity of NSAIDs in aquatic animals, also identifying important gaps and major issues requiring further analysis.
Collapse
Affiliation(s)
- Klaudia Świacka
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Alicja Michnowska
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Jakub Maculewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Katarzyna Smolarz
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378, Gdynia, Poland
| |
Collapse
|
68
|
Alkimin GD, Soares AMVM, Barata C, Nunes B. Can salicylic acid modulate biochemical, physiological and population alterations in a macrophyte species under chemical stress by diclofenac? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139715. [PMID: 32534307 DOI: 10.1016/j.scitotenv.2020.139715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/23/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Salicylic acid (SA) is a pharmaceutical drug that may exert toxic effects by its own; however, simultaneous exposure of plants to SA and to other substances, often results in the significant changes in the patterns of toxic response/resistance to these other sources of chemical stress. Thus, the aim of this work was to investigate the capacity of SA of modulating Lemna minor responses co-exposed to the pharmaceutical drug, diclofenac - DCF. To attain this objective, L. minor was exposed for 7 days, to DCF alone, and to combinations of DCF with SA. After exposure, biochemical, physiological and population endpoints were analyzed as follows: catalase (CAT) and glutathione S-transferases (GSTs) activities, pigments content (chlorophyll a (Chl a), b (Chl b) and total (TChl), carotenoids (Car) and [Chl a]/[Chl b] and [TChl]/[Car] ratios), and growth specific rate, fresh weight and root length. Single exposures to DCF were capable of causing effects in all analyzed endpoints. However, co-exposure of DCF with SA partially reverted these effects. Finally, we may suggest that SA is capable to prevent the toxicity of DCF in macrophytes, by modulating the toxic response of exposed plants.
Collapse
Affiliation(s)
- G D Alkimin
- Centre for Environmental and Marine Studies (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - A M V M Soares
- Centre for Environmental and Marine Studies (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - C Barata
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | - B Nunes
- Centre for Environmental and Marine Studies (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
69
|
Mello LC, da Fonseca TG, Denis Moledode de Souza A. Ecotoxicological assessment of chemotherapeutic agents using toxicity tests with embryos of Mellita quinquiesperforata. MARINE POLLUTION BULLETIN 2020; 159:111493. [PMID: 32736201 DOI: 10.1016/j.marpolbul.2020.111493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/09/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
The consumption of anticancer agents has increased in the recent decades, and these substances may be present in sewage. Consequently, they may reach the environment when sanitation infrastructure is ineffective. This study evaluated the toxicity of three anticancer agents-Tamoxifen (TAM), Cisplatin (CisPt), and Cyclophosphamide (CP)-on the development of embryos of the sand-dollar Mellita quinquiesperforata. Adult individuals were collected in sandy beaches, and gametes were obtained. Freshly-fertilized eggs were exposed to increasing sets of concentrations of each compound, and the effective concentrations needed to cause a 50% effect in the organisms (EC50) were calculated. The three compounds were toxic, and their EC50 values were 16.78 ± 2.42 ng·L-1 (TAM), 27.20 ± 38.26 ng·L-1 (CisPt), and 101.82 ± 70.96 ng·L-1 (CP). There is no information on the environmental levels of these compounds in Brazil, but as they were already detected in ng·L-1 levels worldwide, it can be expected that these substances pose environmental risks to the marine biota.
Collapse
Affiliation(s)
- Luiza Costa Mello
- Center of Studies on Aquatic Pollution and Ecoxicology (NEPEA), São Paulo State University - UNESP, São Vicente, SP 11330-900, Brazil
| | - Taina Garcia da Fonseca
- Center of Studies on Aquatic Pollution and Ecoxicology (NEPEA), São Paulo State University - UNESP, São Vicente, SP 11330-900, Brazil; Centre for Marine and Environmental Research (CIMA), Universidade do Algarve, Campus de Gambelas, 8000-139 Faro, Portugal
| | - Abessa Denis Moledode de Souza
- Center of Studies on Aquatic Pollution and Ecoxicology (NEPEA), São Paulo State University - UNESP, São Vicente, SP 11330-900, Brazil.
| |
Collapse
|
70
|
Martins MF, Costa PG, Bianchini A. Contaminant screening and tissue distribution in the critically endangered Brazilian guitarfish Pseudobatos horkelii. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114923. [PMID: 32531624 DOI: 10.1016/j.envpol.2020.114923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/04/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
Elasmobranchs are particularly prone to accumulating contaminants due to their life history patterns and relatively high trophic position. However, several compounds, especially contaminants of emerging concern, have still not been well studied in this group. Here, we aimed to determine the occurrence and concentrations of several inorganic and organic contaminants in different tissues of the Brazilian guitarfish Pseudobatos horkelii. This species is a critically endangered species, endemic from the Southwest Atlantic which uses southern Brazilian waters as a nursery habitat. Polycyclic aromatic hydrocarbons (PAHs), emerging pesticides, pharmaceutical and personal care products (PPCPs) and trace metals were determined in five biological tissues in order to assess the accumulation and organotropism of these compounds. Except for chlorothalonil and triclosan, all compounds were detected in, at least, one tissue, mostly in liver samples. All compounds differed among tissues, with liver presenting the higher concentrations of several contaminants, followed by muscle and gills. PAHs and PPCPs were the most detected analytes and presented the highest concentrations among tissues. Diclofenac levels were determined, for the first time in elasmobranchs, and were relatively high, when compared to other fishes. Finally, relatively high concentrations of PAHs, dichlofluanid and octocrylene in muscle might be suggestive of chronic exposure, presenting also human health implications. Regarding trace metals, contrary to most elasmobranch studies, Hg levels were low in all tissues, whereas Cd and Pb here higher in liver, and gills and blood samples, respectively. Our results indicate that P. horkelii is exposed to several organic and inorganic which might affect this species in a long-term scale. Concerning the determination of emerging contaminants, it is likely that other elasmobranchs are also exposed to these compounds and special attention should be given to this issue in order to predict future effects on this group.
Collapse
Affiliation(s)
- Mariana F Martins
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Av Itália, Km 8 96203-900, Rio Grande, Brazil.
| | - Patrícia G Costa
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Av Itália, Km 8 96203-900, Rio Grande, Brazil
| | - Adalto Bianchini
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Av Itália, Km 8 96203-900, Rio Grande, Brazil
| |
Collapse
|
71
|
Chaves MDJS, Barbosa SC, Malinowski MDM, Volpato D, Castro ÍB, Franco TCRDS, Primel EG. Pharmaceuticals and personal care products in a Brazilian wetland of international importance: Occurrence and environmental risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139374. [PMID: 32460076 DOI: 10.1016/j.scitotenv.2020.139374] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 05/06/2023]
Abstract
Despite the fact that the occurrence of emerging contaminants in the environment has become frequent in recent decades, the seasonal dynamics of contaminants in different environmental compartments are little studied in protected areas influenced by effluent discharges. In this study, the seasonal and spatial occurrence of 33 pharmaceuticals and personal care products (PPCPs) was investigated in surface waters and sediments from Anil and Bacanga rivers (northeast of Brazil). The studied area is located within a Wetland of International Importance by Ramsar Convention (Amazon Estuary and its Mangroves). Sample preparation was carried out using solid-phase extraction and QuEChERS, for water and sediment samples, respectively and all determinations were performed by liquid chromatography tandem mass spectrometry. Eleven PPCPs were detected in water samples and 14 in sediments. In aqueous samples, caffeine was the most occurring compound reaching 13,798 ng L-1. In addition, high levels of acetaminophen, ibuprofen, sulfamethoxazole, carbamazepine and diclofenac were also observed. In the sediment samples, triclocarban, benzophenone-3, ketoconazole and methylparaben were also detected. The spatial and temporal distribution of the assessed molecules indicates urbanization and anthropic activities as relevant sources of PPCPs in the region. Moreover, the levels of acetaminophen, caffeine, diclofenac, ibuprofen, benzophenone-3, triclosan and triclocarban measured within the Ramsar site pose a high risk to aquatic and terrestrial organisms. These findings indicate potential threats to the allegedly protected biodiversity and, therefore, urgent actions are needed to effectively protect this unique and vulnerable area.
Collapse
Affiliation(s)
- Marisa de Jesus Silva Chaves
- Post-Graduate Program in Technological and Environmental Chemistry, Escola de Química e Alimentos, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Universidade Federal do Rio Grande, Av Itália, km 8, Rio Grande, RS 96201-900, Brazil
| | - Sergiane Caldas Barbosa
- Post-Graduate Program in Technological and Environmental Chemistry, Escola de Química e Alimentos, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Universidade Federal do Rio Grande, Av Itália, km 8, Rio Grande, RS 96201-900, Brazil
| | - Maiara de Melo Malinowski
- Post-Graduate Program in Technological and Environmental Chemistry, Escola de Química e Alimentos, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Universidade Federal do Rio Grande, Av Itália, km 8, Rio Grande, RS 96201-900, Brazil
| | - Duane Volpato
- Post-Graduate Program in Technological and Environmental Chemistry, Escola de Química e Alimentos, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Universidade Federal do Rio Grande, Av Itália, km 8, Rio Grande, RS 96201-900, Brazil
| | - Ítalo Braga Castro
- Instituto do Mar, Universidade Federal de São Paulo, Campus Baixada Santista, Brazil
| | - Teresa Cristina Rodrigues Dos Santos Franco
- Departamento de Tecnologia Química, Laboratório de Química Analítica e Ecotoxicologia, Universidade Federal do Maranhão, Av dos Portugueses, 1966, Bacanga, São Luís, MA 65080805, Brazil
| | - Ednei Gilberto Primel
- Post-Graduate Program in Technological and Environmental Chemistry, Escola de Química e Alimentos, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Universidade Federal do Rio Grande, Av Itália, km 8, Rio Grande, RS 96201-900, Brazil.
| |
Collapse
|
72
|
Koagouw W, Ciocan C. Effects of short-term exposure of paracetamol in the gonads of blue mussels Mytilus edulis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:30933-30944. [PMID: 31749003 DOI: 10.1007/s11356-019-06861-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
A growing body of literature suggests that pharmaceutical contamination poses an increasing risk to marine ecosystems. Paracetamol or acetaminophen is the most widely used medicine in the world and has recently been detected in seawater. Here, we present the results of 7 days' exposure of blue mussel adults to 40 ng/L, 250 ng/L and 100 μg/L of paracetamol. Histopathology shows that haemocytic infiltration is the most observed condition in the exposed mussels. The mRNA expression of VTG, V9, ER2, HSP70, CASP8, BCL2 and FAS in mussel gonads present different patterns of downregulation. VTG and CASP8 mRNA expression show downregulation in all exposed mussels, irrespective of sex. The V9, HSP70, BCL2 and FAS transcripts follow a concentration-dependent variation in gene expression and may therefore be considered good biomarker candidates. ER2 mRNA expression shows a downregulated trend, with a clearer dose-response relationship in males. In conclusion, this study suggests that paracetamol has the potential to alter the expression of several genes related to processes occurring in the reproductive system and may therefore impair reproduction in blue mussels.
Collapse
Affiliation(s)
- Wulan Koagouw
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton, BN2 4AT, UK
- Bitung Marine Life Conservation Unit, Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Tandurusa, Aertembaga, Bitung, North Sulawesi, Indonesia
| | - Corina Ciocan
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Lewes Road, Brighton, BN2 4AT, UK.
| |
Collapse
|
73
|
Fontes MK, Maranho LA, Pereira CDS. Review on the occurrence and biological effects of illicit drugs in aquatic ecosystems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:30998-31034. [PMID: 32361972 DOI: 10.1007/s11356-020-08375-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
Illicit drugs (IDs) and their metabolites are recognized as contaminants of emerging concern. After consumption, illicit drugs are partially metabolized and excreted unchanged in urine and feces or as active metabolites reaching wastewater treatment plants (WWTPs). Furthermore, most WWTPs are insufficient in the treatment of effluents containing IDs, which may be released into aquatic ecosystems. Once in the water or sediment, these substances may interact and affect non-target organisms and some evidences suggest that illicit drugs may exhibit pseudo-persistence because of a continuous environmental input, resulting in long-term exposure to aquatic organisms that may be negatively affected by these biologically active compounds. We reviewed the literature on origin and consumption, human metabolism after consumption, aquatic occurrences, and toxicity of the major groups of illicit drugs (opioids, cannabis, synthetic drugs, and cocaine). As a result, it could be concluded that illicit drugs and their metabolites are widespread in diverse aquatic ecosystems in levels able to trigger sublethal effects to non-target organisms, besides to concentrate in seafood. This class of emerging contaminants represents a new environmental concern to academics, managers, and policymakers, whose would be able to assess risks and identify proper responses to reduce environmental impacts.
Collapse
Affiliation(s)
| | | | - Camilo Dias Seabra Pereira
- Department of Ecotoxicology, Santa Cecília University, Santos, São Paulo, Brazil.
- Department of Marine Sciences, Federal University of São Paulo, Santos, São Paulo, Brazil.
| |
Collapse
|
74
|
Nobre CR, Moreno BB, Alves AV, de Lima Rosa J, da Rosa Franco H, Abessa DMDS, Maranho LA, Choueri RB, Gusso-Choueri PK, Pereira CDS. Effects of Microplastics Associated with Triclosan on the Oyster Crassostrea brasiliana: An Integrated Biomarker Approach. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 79:101-110. [PMID: 32279094 DOI: 10.1007/s00244-020-00729-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Urban waste is a complex mixture of different substances, including microplastics and pharmaceuticals and personal care products. Microplastics have a high affinity for hydrophobic substances. One of these substances is triclosan, a bactericide used in a variety of hygiene products. Therefore, microplastics (MPs) may serve as a vector between triclosan and aquatic organisms. The current study sought to evaluate the effects of the interaction between microplastics and triclosan based on a mechanistic approach in which the oyster Crassostrea brasiliana was used as a model. The organisms were exposed to three conditions: the control, microplastic (MP), and microplastic contaminated with triclosan (MPT). The organisms were exposed for 3 or 7 days. After the exposure time, hemolymph was sampled for performing the neutral red retention time assay and, subsequently, the gills, digestive glands, and adductor muscles were dissected for measuring biomarkers responses (EROD, DBF, GST, GPx, GSH, lipid peroxidation, DNA strand breaks, and AChE). Our results demonstrate combined effects of MPs associated with triclosan on oyster physiology and biochemistry, as well as on lysosomal membrane stability. These results contribute to understanding the effects of contaminants of emerging concern and microplastics on aquatic organisms.
Collapse
Affiliation(s)
- Caio Rodrigues Nobre
- Biosciences Institute, São Paulo State University, São Vicente, São Paulo, Brazil
| | - Beatriz Barbosa Moreno
- Department of Marine Sciences, Federal University of São Paulo, Santos, São Paulo, Brazil
| | - Aline Vecchio Alves
- Department of Marine Sciences, Federal University of São Paulo, Santos, São Paulo, Brazil
| | - Jonas de Lima Rosa
- Department of Ecotoxicology, Santa Cecília University, Santos, São Paulo, Brazil
| | | | | | | | - Rodrigo Brasil Choueri
- Department of Marine Sciences, Federal University of São Paulo, Santos, São Paulo, Brazil
| | - Paloma Kachel Gusso-Choueri
- Biosciences Institute, São Paulo State University, São Vicente, São Paulo, Brazil
- Department of Ecotoxicology, Santa Cecília University, Santos, São Paulo, Brazil
| | - Camilo Dias Seabra Pereira
- Department of Marine Sciences, Federal University of São Paulo, Santos, São Paulo, Brazil.
- Department of Ecotoxicology, Santa Cecília University, Santos, São Paulo, Brazil.
| |
Collapse
|
75
|
Monitoring pharmaceuticals and personal care products in water and fish from the Gulf of Urabá, Colombia. Heliyon 2020; 6:e04215. [PMID: 32613110 PMCID: PMC7317696 DOI: 10.1016/j.heliyon.2020.e04215] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 02/03/2023] Open
Abstract
Gulf of Urabá is considered a tourist zone of Antioquia Department attracts a large number of visitors to explore the aquatic ecosystem and beaches thus offering a large economic benefit. However, this region has been affected by various anthropogenic effects thus generating an environmental problematic that affect aquatic ecosystem. Over the years, several research has been evaluated pollutant such as pesticides, metals and physicochemical parameters, even our laboratory had found several toxic metals in fish from this same area. The presence of emerging pollutant in matrices such as seawater and fish from Gulf of Urabá have not been reported, and to the best of our knowledge, this is the first study. This work presents important aspects relating to sampling, monitoring and surveillance of seawater and several fish species caught in the area in order to determinate the content of emerging pollutant (triclosan, ibuprofen, diclofenac) using UPLC-QqQ/MS. In general, all three pharmaceuticals in different sampling sites were detected and total concentrations ranged from 0.10 to 1.54 μg/L in surface water. However, emerging pollutants content in fish muscle was not detected. In addition, a high variability in triclosan, ibuprofen and diclofenac concentrations according to the season of sampling was found. Regarding to seasonal variations, most emerging pollutant in the surface water had variation in levels both dry and wet season. Better removal was presented in the dry season, due to stronger irradiation and greater activity of microorganisms.
Collapse
|
76
|
Jones NS, Comparin JH. Interpol review of controlled substances 2016-2019. Forensic Sci Int Synerg 2020; 2:608-669. [PMID: 33385148 PMCID: PMC7770462 DOI: 10.1016/j.fsisyn.2020.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022]
Abstract
This review paper covers the forensic-relevant literature in controlled substances from 2016 to 2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/content/download/14458/file/Interpol%20Review%20Papers%202019.pdf.
Collapse
Affiliation(s)
- Nicole S. Jones
- RTI International, Applied Justice Research Division, Center for Forensic Sciences, 3040 E. Cornwallis Road, Research Triangle Park, NC, 22709-2194, USA
| | - Jeffrey H. Comparin
- United States Drug Enforcement Administration, Special Testing and Research Laboratory, USA
| |
Collapse
|
77
|
Godoi FGA, Muñoz-Peñuela M, Gomes ADO, Tolussi CE, Brambila-Souza G, Branco GS, Lo Nostro FL, Moreira RG. Endocrine disruptive action of diclofenac and caffeine on Astyanax altiparanae males (Teleostei: Characiformes: Characidae). Comp Biochem Physiol C Toxicol Pharmacol 2020; 231:108720. [PMID: 32004750 DOI: 10.1016/j.cbpc.2020.108720] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/10/2020] [Accepted: 01/25/2020] [Indexed: 12/15/2022]
Abstract
Diclofenac (DCF) and caffeine (CAF) are persistent pharmaceuticals that occur in mixtures in the aquatic ecosystems causing effects in the reproductive physiology of aquatic organisms. This study evaluated the physiological reproductive responses of Astyanax altiparanae males exposed to nominal concentrations of DCF (3.08 mg L-1) and CAF (9.59 mg L-1) separately and combined, for 96 h. The steroids profile, estrogenic biomarker vitellogenin (vtgA), testes and liver morphology, and also mortality of males were assessed. DCF and CAF degradation was 5% of the initial concentration for 24 h. The LC50 of the DCF and CAF were 30.8 mg L-1 and 95.9 mg L-1, respectively. Males exposed to DCF and CAF exhibited a reduction of 17β-Estradiol (E2) concentration compared to control (CTL). Similarly, testosterone (T) was also reduced in the DCF treatment, but this response was not observed in 11-Ketotestosterone (11-KT). Males exposed to DCF + CAF combined did not exhibit differences in T, E2 and 11-KT steroids. The vtgA gene expression and the sperm concentration did not change among the treatments. Moreover, acute exposure revealed a hypertrophy of hepatocytes cells in the DCF and DCF + CAF treatments. In conclusion, DCF and CAF, isolated, exhibit an endocrine disruptive activity in A. altiparanae male, an opposite response observed with the mixture of both compounds that abolishes the endocrine disruptive effects. DCF seems to be more toxic for this species, altering also hepatocytes morphology.
Collapse
Affiliation(s)
- Filipe G A Godoi
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav.14, n° 321, 05508-090 São Paulo, SP, Brazil
| | - Marcela Muñoz-Peñuela
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav.14, n° 321, 05508-090 São Paulo, SP, Brazil
| | - Aline D Olio Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav.14, n° 321, 05508-090 São Paulo, SP, Brazil
| | - Carlos E Tolussi
- Universidade Anhembi-Morumbi, Campus Mooca, São Paulo, SP, Brazil
| | - Gabriela Brambila-Souza
- UNESP - Universidade Estadual Paulista - Centro de Aquicultura (CAUNESP), Jaboticabal, SP, Brazil
| | - Giovana S Branco
- UNESP - Universidade Estadual Paulista - Centro de Aquicultura (CAUNESP), Jaboticabal, SP, Brazil
| | - Fabiana L Lo Nostro
- Lab. de Ecotoxicología Acuática, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires & IBBEA, CONICET-UBA, Ciudad Universitaria C1428EHA, Buenos Aires, Argentina
| | - Renata G Moreira
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav.14, n° 321, 05508-090 São Paulo, SP, Brazil.
| |
Collapse
|
78
|
Yang L, Zhou Y, Shi B, Meng J, He B, Yang H, Yoon SJ, Kim T, Kwon BO, Khim JS, Wang T. Anthropogenic impacts on the contamination of pharmaceuticals and personal care products (PPCPs) in the coastal environments of the Yellow and Bohai seas. ENVIRONMENT INTERNATIONAL 2020; 135:105306. [PMID: 31881428 DOI: 10.1016/j.envint.2019.105306] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/02/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are recognized as one emerging group of environmental contaminants, capturing worldwide attention. These chemicals, closely connected to anthropogenic activities, are mainly transported through aquatic environments and reach coastal areas, eventually entering ocean offshore. Thus, this study concentrated on the 30 PPCPs in coastal waters of the Yellow and Bohai seas (77 sites), a fast-growing area with intensive anthropogenic activities. In general, the total concentrations of PPCPs in Chinese coastal waters (0.880-1194 ng L-1) greatly varied and were relatively greater than those (9.91-442 ng L-1) in Korean coastal waters. Sulfamethoxazole, sulfamethazine, oxytetracycline, ofloxacin, roxithromycin, anhydro-erythromycin, and caffeine were the seven predominant PPCPs in the coastal waters of study area. Further, we established the Predicted PPCPs Contamination Indicator (PPCI) to address potential anthropogenic activities being associated with site-specific PPCPs contamination. Three anthropogenic factors to PPCPs contamination were proven as the most influential, including (1) quantity of wastewater discharge, (2) gross product of meat, poultry, eggs and milk, and (3) gross aquatic product. The relatively high PPCI values appeared in Tianjin, Dalian, Tangshan, Yantai, and Qingdao in China and Gyeonggi and Jeonbuk in South Korea, which exhibited fairly good consistency with the corresponding PPCPs concentrations. A mini-review of the global PPCPs distributions revealed that seven priority PPCPs found in this study distributed widely in Asia rather than Europe, North America, and Australia. In general, global PPCPs contamination also reflected site- and region-specific distributions, suggesting varying usages and sources cross the region and/or country. Finally, the risk assessment suggested that ofloxacin and anhydro-erythromycin, with 36.4% and 23.4% sites higher than medium risks respectively, posed relatively high risks to sensitive algal species, Microcystis aeruginosa and Selenastrum capricornutum. Overall, the ecological risks of exposure of PPCPs in the Yellow and Bohai seas were higher compared to other regions of the world, thus the bilateral management of PPCPs between China and South Korea needs an immediate attention.
Collapse
Affiliation(s)
- Lu Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunqiao Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Shi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Meng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo He
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongfa Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Seo Joon Yoon
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Taewoo Kim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Bong-Oh Kwon
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| | - Tieyu Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
79
|
Fernandes MR, Sellera FP, Moura Q, Esposito F, Sabino CP, Lincopan N. Identification and genomic features of halotolerant extended-spectrum-β-lactamase (CTX-M)-producing Escherichia coli in urban-impacted coastal waters, Southeast Brazil. MARINE POLLUTION BULLETIN 2020; 150:110689. [PMID: 31733900 DOI: 10.1016/j.marpolbul.2019.110689] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/17/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
We report the occurrence and genomic analysis of extended-spectrum β-lactamase (CTX-M)-producing Escherichia coli in anthropogenically polluted coastal waters of Southeast Brazil. E. coli strains belonging to sequence types (STs) ST10, ST38, ST155 and ST1284 exhibited a wide resistome, with genes conferring resistance to medically relevant antimicrobials and heavy metals, and a halophilic behavior (tolerance to 9-10% NaCl). These findings suggest a heavy contamination in this area by critical priority bacteria adapted to marine environments, which might have negative impacts on human and ocean health.
Collapse
Affiliation(s)
- Miriam R Fernandes
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fábio P Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Quézia Moura
- Faculty of Health Sciences, Federal University of Grande Dourados, Mato Grosso do Sul, Brazil
| | - Fernanda Esposito
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Caetano P Sabino
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
80
|
Sathishkumar P, Meena RAA, Palanisami T, Ashokkumar V, Palvannan T, Gu FL. Occurrence, interactive effects and ecological risk of diclofenac in environmental compartments and biota - a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134057. [PMID: 31783460 DOI: 10.1016/j.scitotenv.2019.134057] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/17/2019] [Accepted: 08/21/2019] [Indexed: 05/17/2023]
Abstract
Diclofenac, a nonsteroidal anti-inflammatory drug has turned into a contaminant of emerging concern; hence, it was included in the previous Watch List of the EU Water Framework Directive. This review paper aims to highlight the metabolism of diclofenac at different trophic levels, its occurrence, ecological risks, and interactive effects in the water cycle and biota over the past two decades. Increased exposure to diclofenac not only raises health concerns for vultures, aquatic organisms, and higher plants but also causes serious threats to mammals. The ubiquitous nature of diclofenac in surface water (river, lake canal, estuary, and sea) is compared with drinking water, groundwater, and wastewater effluent in the environment. This comprehensive survey from previous studies suggests the fate of diclofenac in wastewater treatment plants (WWTPs) and may predict its persistence in the environment. This review offers evidence of fragmentary available data for the water environment, soil, sediment, and biota worldwide and supports the need for further data to address the risks associated with the presence of diclofenac in the environment. Finally, we suggest that the presence of diclofenac and its metabolites in the environment may represent a high risk because of their synergistic interactions with existing contaminants, leading to the development of drug-resistant strains and the formation of newly emerging pollutants.
Collapse
Affiliation(s)
- Palanivel Sathishkumar
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry and Environment, South China Normal University, Guangzhou 510006, PR China
| | | | - Thavamani Palanisami
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Veeramuthu Ashokkumar
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thayumanavan Palvannan
- Laboratory of Bioprocess and Engineering, Department of Biochemistry, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Feng Long Gu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry and Environment, South China Normal University, Guangzhou 510006, PR China.
| |
Collapse
|
81
|
Wang J, Zhang MY, Liu J, Hu XM, He BS. Using a targeted ecopharmacovigilance intervention to control antibiotic pollution in a rural aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:134007. [PMID: 31465919 DOI: 10.1016/j.scitotenv.2019.134007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
The "targeted ecopharmacovigilance (EPV)" strategy emphasizes the control of environmental pollution by high-priority hazardous pharmaceuticals from principal pollution sources especially in areas that are high risk as a result of drug administration. We conducted a prospective empirical study to explore the possibility of using a targeted EPV intervention as an optimized management tool for the control of aquatic pollution by antibiotics, a common type of pharmaceutical residue, in a rural area in China. Because of the notably high levels of ofloxacin in the studied aquatic environment and the well-accepted environmental risks posed by fluoroquinolone residues, ofloxacin was selected as the targeted high-priority antibiotic pollutant. Based on the main sources of antibiotic pollution in the studied rural aquatic environment, which had been traced previously, a five-step targeted EPV intervention was designed and conducted from Feb 2018 to Jan 2019. The results showed that the residual levels of ofloxacin in the studied Chinese rural aquatic environment significantly decreased during the targeted EPV intervention. Importantly, the EPV measures targeting ofloxacin were found to effectively reduce the environmental pollution by other non-targeted antibiotics. The data from a survey of 45 participants (42 residents and 3 clinicians) and 12 program committee members revealed that the targeted EPV intervention was acceptable to both participants and organizers and could be used as an economical and feasible solution for addressing antibiotic pollution in aquatic environments.
Collapse
Affiliation(s)
- Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Meng-Ya Zhang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Juan Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xian-Min Hu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Bing-Shu He
- Hubei Woman and Child Hospital, Wuhan 430070, China.
| |
Collapse
|
82
|
Reichert G, Hilgert S, Fuchs S, Azevedo JCR. Emerging contaminants and antibiotic resistance in the different environmental matrices of Latin America. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113140. [PMID: 31541833 DOI: 10.1016/j.envpol.2019.113140] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/14/2019] [Accepted: 08/29/2019] [Indexed: 05/24/2023]
Abstract
This review aims to gather and summarize information about the occurrence of emerging contaminants and antibiotic resistance genes in environmental matrices in Latin America. We aim to contribute to future research by compiling a list of priority pollutants adjusted to the needs and characteristics of Latin America, according to the data presented in this study. In order to perform a comprehensive research and secure a representative and unbiased amount of quality data concerning emerging contaminants in Latin America, the research was performed within the Scopus® database in a time frame from 2000 to July 2019. The countries with higher numbers of published articles were Brazil and México, while most studies were performed in the surroundings of Mexico City and in Southern and Southeastern Brazil. The main investigated environmental matrices were drinking water and surface water. The presence of antibiotic resistance was frequently reported, mainly in Brazil. Monitoring efforts should be performed in other countries in Latin America, as well as in other regions of Brazil and México. The suggested priority list for monitoring of emerging contaminants in Latin America covers: di(2-ethylhexyl) phthalate (DEHP), bisphenol-A (BP-A), 4-nonylphenol (4-NP), triclosan (TCS), estrone (E1), estradiol (E2), ethinylestradiol (EE2), tetracycline (TC), amoxicillin (AMOX), norfloxacin (NOR), ampicillin (AMP) and imipenem (IMP). We hope this list serves as a basis for the orientation of the future research and monitoring projects to better understand the distribution and concentration of the listed emerging substances.
Collapse
Affiliation(s)
- Gabriela Reichert
- Department of Hydraulics and Sanitation, Federal University of Parana, Av. Coronel Francisco Heráclito dos Santos, 210, 81531-980, Curitiba PR, Brazil; Capes Foundation, Ministry of Education of Brazil, Brasilia, 70040-020, DF, Brazil.
| | - Stephan Hilgert
- Institute for Water and River Basin Management, Department of Aquatic Environmental Engineering, Karlsruhe Institute of Technology, Gotthard-Franz-Str. 3, Building 50.31, 3rd Floor, 76131 Karlsruhe, Germany
| | - Stephan Fuchs
- Institute for Water and River Basin Management, Department of Aquatic Environmental Engineering, Karlsruhe Institute of Technology, Gotthard-Franz-Str. 3, Building 50.31, 3rd Floor, 76131 Karlsruhe, Germany
| | - Júlio César Rodrigues Azevedo
- Department of Hydraulics and Sanitation, Federal University of Parana, Av. Coronel Francisco Heráclito dos Santos, 210, 81531-980, Curitiba PR, Brazil; Capes Foundation, Ministry of Education of Brazil, Brasilia, 70040-020, DF, Brazil; Department of Chemistry and Biology, Federal Technology University of Paraná, Rua Deputado Heitor Alencar Furtado, 5000, 81280-340, Curitiba PR, Brazil
| |
Collapse
|
83
|
da Silva Souza L, Pusceddu FH, Cortez FS, de Orte MR, Seabra AA, Cesar A, Ribeiro DA, Del Valls Casillas TA, Pereira CDS. Harmful effects of cocaine byproduct in the reproduction of sea urchin in different ocean acidification scenarios. CHEMOSPHERE 2019; 236:124284. [PMID: 31310985 DOI: 10.1016/j.chemosphere.2019.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/18/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
This study has as main objective assessing the toxicity of crack-cocaine combined with different scenarios of ocean acidification on fertilization rate and embryo-larval development of Echinometra lucunter sea urchin. Effects on early life stages were assessed at five different concentrations (6,25 mg.L-1; 12,5 mg.L-1; 25 mg.L-1; 50 mg.L-1 and 100 mg.L-1) of crack-cocaine at four different pH values (8.5; 8.0; 7.5; 7.0). The pH values were achieved using two different methodologies: adding hydrochloric acid (HCl) and injecting carbon dioxide (CO2). The fertilization test did not show significant differences (p ≤ 0.05) compared with control sample at pH values 8.5; 8.0 and 7.5. Results of embryo-larval assays showed a half maximal effective concentration (EC50) of crack-cocaine at pH values tested (8.5, 8.0, 7.5) as 58.83, 10.67 and 11.58 mg/L-1 for HCl acidification and 58.83, 23.28 and 12.57 mg/L-1 for CO2 enrichment. At pH 7.0 the effects observed in fertilization rate and embryo development were associated with the acidification. This study is the first ecotoxicological assessment of illicit drug toxicity in aquatic ecosystems at different ocean acidification scenarios.
Collapse
Affiliation(s)
- Lorena da Silva Souza
- Department of Physico-Chemistry, Aquatic Systems Research Group, UNESCO/UNITWIN WiCop, Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain.
| | - Fabio Hermes Pusceddu
- Department of Ecotoxicology, Santa Cecília University (UNISANTA), Santos, São Paulo, Brazil
| | - Fernando Sanzi Cortez
- Department of Ecotoxicology, Santa Cecília University (UNISANTA), Santos, São Paulo, Brazil
| | - Manoela Romano de Orte
- Department of Marine Sciences, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | | | - Augusto Cesar
- Department of Ecotoxicology, Santa Cecília University (UNISANTA), Santos, São Paulo, Brazil; Department of Marine Sciences, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Daniel Araki Ribeiro
- Department of Marine Sciences, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | | | - Camilo Dias Seabra Pereira
- Department of Ecotoxicology, Santa Cecília University (UNISANTA), Santos, São Paulo, Brazil; Department of Marine Sciences, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil
| |
Collapse
|
84
|
Fontes MK, de Campos BG, Cortez FS, Pusceddu FH, Moreno BB, Maranho LA, Lebre DT, Guimarães LL, Pereira CDS. Seasonal monitoring of cocaine and benzoylecgonine in a subtropical coastal zone (Santos Bay, Brazil). MARINE POLLUTION BULLETIN 2019; 149:110545. [PMID: 31543485 DOI: 10.1016/j.marpolbul.2019.110545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/13/2019] [Accepted: 08/23/2019] [Indexed: 05/20/2023]
Abstract
Illicit drugs and their metabolites represent a new class of emerging contaminants. These substances are continuously discharged into wastewater which have been detected in the aquatic environment in concentrations ranging from ng.L-1 to μg.L-1. Our study detected the occurrence of cocaine (COC) and benzoylecgonine (BE) in a subtropical coastal zone (Santos Bay, SP, Brazil) within one year. Water samples (surface and bottom) were collected from the Santos Submarine Sewage Outfall (SSOS) area. COC and BE were measured in the samples using ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-ESI-MS/MS). Concentrations ranged from 12.18 to 203.6 ng.L-1 (COC) and 8.20 to 38.59 ng.L-1 (BE). Higher concentrations of COC were observed during the end of spring, following the population increase at summer season. COC and its metabolite occurrence in this coastal zone represent a threat to coastal organisms.
Collapse
Affiliation(s)
- Mayana Karoline Fontes
- Instituto de Biociências, Campus do Litoral Paulista, Universidade Estadual Paulista Júlio de Mesquita Filho, Infante Dom Henrique s/n, 11330-900 São Vicente, Brazil
| | - Bruno Galvão de Campos
- Instituto de Biociências, Campus do Litoral Paulista, Universidade Estadual Paulista Júlio de Mesquita Filho, Infante Dom Henrique s/n, 11330-900 São Vicente, Brazil
| | - Fernando Sanzi Cortez
- Instituto de Biociências, Campus do Litoral Paulista, Universidade Estadual Paulista Júlio de Mesquita Filho, Infante Dom Henrique s/n, 11330-900 São Vicente, Brazil; Laboratório de Ecotoxicologia, Universidade Santa Cecília, Rua Oswaldo Cruz 266, 11045-907 Santos, Brazil
| | - Fabio Hermes Pusceddu
- Laboratório de Ecotoxicologia, Universidade Santa Cecília, Rua Oswaldo Cruz 266, 11045-907 Santos, Brazil
| | - Beatriz Barbosa Moreno
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Rua Maria Máximo, 168, 11030-100 Santos, Brazil
| | - Luciane Alves Maranho
- Instituto de Biociências, Campus do Litoral Paulista, Universidade Estadual Paulista Júlio de Mesquita Filho, Infante Dom Henrique s/n, 11330-900 São Vicente, Brazil; Laboratório de Ecotoxicologia, Universidade Santa Cecília, Rua Oswaldo Cruz 266, 11045-907 Santos, Brazil
| | - Daniel Temponi Lebre
- CEMSA - Centro de Espectrometria de Massas Aplicada, CIETEC/IPEN, Av. Prof. Lineu Prestes, 2242, Salas 112 e 113, 05508-000 São Paulo, Brazil
| | - Luciana Lopes Guimarães
- Laboratório de Ecotoxicologia, Universidade Santa Cecília, Rua Oswaldo Cruz 266, 11045-907 Santos, Brazil
| | - Camilo Dias Seabra Pereira
- Laboratório de Ecotoxicologia, Universidade Santa Cecília, Rua Oswaldo Cruz 266, 11045-907 Santos, Brazil; Departamento de Ciências do Mar, Universidade Federal de São Paulo, Rua Maria Máximo, 168, 11030-100 Santos, Brazil.
| |
Collapse
|
85
|
Gonçalves ARN, Marinsek GP, de Souza Abessa DM, de Britto Mari R. Adaptative responses of myenteric neurons of Sphoeroides testudineus to environmental pollution. Neurotoxicology 2019; 76:84-92. [PMID: 31669307 DOI: 10.1016/j.neuro.2019.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 10/11/2019] [Accepted: 10/22/2019] [Indexed: 01/13/2023]
Abstract
Contamination in estuarine regions affects the local biota damaging the ecosystems and reaching humans. The gastrointestinal tract is a dynamic environment capable of obtaining nutrients and energy from food while it protects the host against harmful toxins and pathogens from the external environment. These functions are modulated by the enteric nervous system and changes in its structure can result in gastrointestinal disorders. The objective of this study was to evaluate if the environmental contaminants have effects on the myenteric neuronal plasticity of pufferfish Sphoeroides testudineus. Animals were collected in Barra do Una River, located at Jureia-Itatins Mosaic of Protected Areas (reference area - RA) and in the Santos Estuarine System (impacted area - IA). Morpho-quantitative analyses of the general and metabolically active myenteric neuronal populations of the proximal and distal intestine were made. Disarrangement was observed in the general organization of the myenteric plexus, with an expressive reduction of the neuronal groups (nodes) in the animals of IA. The vulnerability of the myenteric plexus was evidenced by a decrease in density and cellular profile of the general neuronal population, followed by an increase of the metabolism of the remaining neurons, which in turn was verified by a growth of the area of the cellular and nuclear profiles of the metabolically active neuronal population. Through these analyses, we concluded that animals inhabiting polluted regions present alterations in the myenteric neuronal plasticity, as a way of maintaining the functions of the gastrointestinal tract.
Collapse
Affiliation(s)
| | - Gabriela Pustiglione Marinsek
- São Paulo State University - Coastal Campus, Laboratório de Morfofisiologia Animal (LABMA), Sao Vicente, Sao Paulo, Brazil
| | - Denis Moledo de Souza Abessa
- São Paulo State University - Coastal Campus, Núcleo de Estudos em Poluição e Ecotoxcologia Aquática (NEPEA), Sao Vicente, Sao Paulo, Brazil
| | - Renata de Britto Mari
- São Paulo State University - Coastal Campus, Laboratório de Morfofisiologia Animal (LABMA), Sao Vicente, Sao Paulo, Brazil
| |
Collapse
|
86
|
De Felice B, Salgueiro-González N, Castiglioni S, Saino N, Parolini M. Biochemical and behavioral effects induced by cocaine exposure to Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:141-148. [PMID: 31271983 DOI: 10.1016/j.scitotenv.2019.06.383] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/17/2019] [Accepted: 06/23/2019] [Indexed: 06/09/2023]
Abstract
Illicit drugs and their metabolites have been identified as emerging aquatic pollutants. Cocaine (COC) is one of the most used illicit drug worldwide. After human consumption, COC enters the aquatic ecosystems, where it is commonly detected in ng L-1 concentration range. Although a number of studies have shown that the exposure to environmental concentrations of COC can induce diverse biochemical, molecular and histological effects on aquatic organisms, the information of COC-induced behavioral alterations is scant. Thus, the present study aimed at exploring both biochemical and behavioral effects induced by the exposure to two environmental concentrations (50 ng L-1 and 500 ng L-1) of COC on the freshwater cladoceran Daphnia magna. Specimens were exposed to selected COC concentrations for 21 days and the effects on the oxidative status, including the amount of reactive oxygen species and the activity of antioxidant (SOD, CAT and GPx) and detoxifying (GST) enzymes, and swimming activity were investigated after 7, 14 and 21 days of treatment, while effects on reproductive success was assessed after 21-days only.. Exposure to COC induced an overproduction of reactive oxygen species and a modulation of the activity of defense enzymes. Moreover, COC affected the swimming behavior and altered the reproductive success of treated specimens. Our results highlighted that environmental concentrations of COC can cause adverse effects at different levels of the biological hierarchy in a zooplanktonic species, confirming the potential threat due to this illicit drug for the aquatic community.
Collapse
Affiliation(s)
- Beatrice De Felice
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Noelia Salgueiro-González
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Health Sciences, Via Giuseppe La Masa 19, 20156 Milan, Italy
| | - Sara Castiglioni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Health Sciences, Via Giuseppe La Masa 19, 20156 Milan, Italy
| | - Nicola Saino
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Marco Parolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy.
| |
Collapse
|
87
|
Świacka K, Maculewicz J, Smolarz K, Szaniawska A, Caban M. Mytilidae as model organisms in the marine ecotoxicology of pharmaceuticals - A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113082. [PMID: 31472454 DOI: 10.1016/j.envpol.2019.113082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Growing production and consumption of pharmaceuticals is a global problem. Due to insufficient data on the concentration and distribution of pharmaceuticals in the marine environment, there are no appropriate legal regulations concerning their emission. In order to understand all aspects of the fate of pharmaceuticals in the marine environment and their effect on marine biota, it is necessary to find the most appropriate model organism for this purpose. This paper presents an overview of the ecotoxicological studies of pharmaceuticals, regarding the assessment of Mytilidae as suitable organisms for biomonitoring programs and toxicity tests. The use of mussels in the monitoring of pharmaceuticals allows the observation of changes in the concentration and distribution of these compounds. This in turn gives valuable information on the amount of pharmaceutical pollutants released into the environment in different areas. In this context, information necessary for the assessment of risks related to pharmaceuticals in the marine environment are provided based on what effective management procedures can be developed. However, the accumulation capacity of individual Mytilidae species, the bioavailability of pharmaceuticals and their biological effects should be further scrutinized.
Collapse
Affiliation(s)
- Klaudia Świacka
- Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdansk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland.
| | - Jakub Maculewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Katarzyna Smolarz
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland
| | - Anna Szaniawska
- Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdansk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
88
|
Alkimin GD, Daniel D, Dionísio R, Soares AMVM, Barata C, Nunes B. Effects of diclofenac and salicylic acid exposure on Lemna minor: Is time a factor? ENVIRONMENTAL RESEARCH 2019; 177:108609. [PMID: 31376628 DOI: 10.1016/j.envres.2019.108609] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
The global occurrence of pharmaceuticals in the aquatic environment has been considered a particularly concerning problem with unknown consequences. Non-steroidal anti-inflammatory drugs (NSAIDs) including diclofenac (DCF) and salicylic acid (SA), are among the most frequently prescribed drugs in the world, being consequently commonly found in the aquatic environment. Prolonged experiments (with duration of exposure that surpass those recommended by already established testing guidelines) are important to obtain ecologically relevant data to address the issue of NSAIDs ecotoxicity, because by being more realistically (namely in terms of levels and durations of exposure), such tests may indicate realistic challenges posed to aquatic organisms. Among the most common test species that are used for assessing environmental quality, plants play a leading role. Lemna species are among the most important plants used for ecotoxicity testing. Therefore, the aim of this study was to evaluate the temporal effect of a prolonged exposure of DCF and SA on Lemna minor. To attain this purpose, L. minor plants were chronically exposed to 0, 4, 20, and 100 μg/L of both pharmaceuticals, and samplings were performed at 6, 10 and 14 days of exposure. The analyzed endpoints were: levels of chlorophyll a, b and total, carotenoids; and enzymatic biomarkers, such as catalase, ascorbate peroxidase and glutathione-S-transferases. Diclofenac was responsible for alterations in all analyzed parameters in different intervals of exposure. Salicylic acid exposure was not capable of causing alterations on pigment contents of L. minor, however, enzymatic biomarkers were altered at all sampling intervals. Thus, it is possible to conclude that both pharmaceuticals can cause damage on the tested macrophyte species, biochemical parameters being more sensitive than physiological ones. Additional prolonged experiments are required to understand the chronic effects of different pharmaceuticals in the aquatic environment, especially in plants.
Collapse
Affiliation(s)
- G D Alkimin
- Departamento de Biologia da Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - D Daniel
- Departamento de Biologia da Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - R Dionísio
- Departamento de Biologia da Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - A M V M Soares
- Departamento de Biologia da Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - C Barata
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - B Nunes
- Departamento de Biologia da Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
89
|
Kaewwonglom N, Oliver M, Cocovi-Solberg DJ, Zirngibl K, Knopp D, Jakmunee J, Miró M. Reliable Sensing Platform for Plasmonic Enzyme-Linked Immunosorbent Assays Based on Automatic Flow-Based Methodology. Anal Chem 2019; 91:13260-13267. [DOI: 10.1021/acs.analchem.9b03855] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Natcha Kaewwonglom
- Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Miquel Oliver
- FI-TRACE Group, Department of Chemistry, Faculty of Sciences, University of the Balearic Islands, E-07122 Palma de Mallorca, Illes Balears, Spain
| | - David J. Cocovi-Solberg
- FI-TRACE Group, Department of Chemistry, Faculty of Sciences, University of the Balearic Islands, E-07122 Palma de Mallorca, Illes Balears, Spain
| | - Katharina Zirngibl
- Institute of Hydrochemistry and Chemical Balneology, Chair of Analytical Chemistry and Water Chemistry, Technische Universität München, Marchioninistrasse 17, 81377 München, Germany
| | - Dietmar Knopp
- Institute of Hydrochemistry and Chemical Balneology, Chair of Analytical Chemistry and Water Chemistry, Technische Universität München, Marchioninistrasse 17, 81377 München, Germany
| | - Jaroon Jakmunee
- Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Manuel Miró
- FI-TRACE Group, Department of Chemistry, Faculty of Sciences, University of the Balearic Islands, E-07122 Palma de Mallorca, Illes Balears, Spain
| |
Collapse
|
90
|
Fang TH, Lin CW, Kao CH. Occurrence and distribution of pharmaceutical compounds in the Danshuei River Estuary and the Northern Taiwan Strait. MARINE POLLUTION BULLETIN 2019; 146:509-520. [PMID: 31426188 DOI: 10.1016/j.marpolbul.2019.06.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
Ten pharmaceutically active compounds (PhACs) were determined in northern Taiwan estuarine waters and Taiwan Strait (TS) seawater. The ecological risk of these PhACs was assessed using risk quotient (RQ), which is the ratio of the measured maximum concentration to the predicted no-effect concentration. Six PhACs were detected within the estuarine waters. Caffeine concentration (130-718 ng l-1) was the highest among the analyzed PhACs. The distribution of PhACs in the Danshuei River Estuary generally exhibited addition behavior, except that caffeine showed conservative behavior. Carbamazepine, gemfibrozil, caffeine, and ketoprofen were detected in TS seawaters. Their concentrations follow the sequence: gemfibrozil > ketoprofen > caffeine > carbamazepine. The caffeine concentrations in TS seawaters were 2-3 orders of magnitude lower than those in Danshuei estuarine waters. With few exceptions for caffeine, erythromycin, and sulfadiazine posing low risk in some estuarine waters, most of the RQ values were <0.01, suggesting no adverse effects on aquatic organisms.
Collapse
Affiliation(s)
- Tien-Hsi Fang
- Department of Marine Environmental Informatics, National Taiwan Ocean University, Keelung 202, Taiwan.
| | - Chen-Wei Lin
- Department of Marine Environmental Informatics, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Chih-Hsiang Kao
- Department of Marine Environmental Informatics, National Taiwan Ocean University, Keelung 202, Taiwan
| |
Collapse
|
91
|
Abessa DMS, Rachid BRF, Zaroni LP, Gasparro MR, Pinto YA, Bícego MC, Hortellan MA, Sarkis JES, Muniz P, Moreira LB, Sousa ECPM. Natural factors and chemical contamination control the structure of macrobenthic communities in the Santos Estuarine System (SP, Brazil). COMMUNITY ECOL 2019. [DOI: 10.1556/168.2019.20.2.3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- D. M. S. Abessa
- UNESP Campus do Litoral Paulista. Praça Infante Dom Henrique, s/n., São Vicente, SP, 11330-900, Brazil
- Instituto Oceanográfico da USP. Praça do Oceanográfico, 191. São Paulo, SP, 05508-900, Brazil
| | - B. R. F. Rachid
- Instituto Oceanográfico da USP. Praça do Oceanográfico, 191. São Paulo, SP, 05508-900, Brazil
- BR Ambiental. Rua Corinto, 739, sala 91-a, São Paulo, SP, 05586-069, Brazil
| | - L. P. Zaroni
- Instituto Oceanográfico da USP. Praça do Oceanográfico, 191. São Paulo, SP, 05508-900, Brazil
| | - M. R. Gasparro
- Instituto Oceanográfico da USP. Praça do Oceanográfico, 191. São Paulo, SP, 05508-900, Brazil
| | - Y. A. Pinto
- Instituto Oceanográfico da USP. Praça do Oceanográfico, 191. São Paulo, SP, 05508-900, Brazil
| | - M. C. Bícego
- Instituto Oceanográfico da USP. Praça do Oceanográfico, 191. São Paulo, SP, 05508-900, Brazil
| | - M. A. Hortellan
- Instituto de Pesquisas Energéticas Nucleares, Av. Prof. Lineu Prestes, 2242, 05508-900 São Paulo – SP, Brazil
| | - J. E. S. Sarkis
- Instituto de Pesquisas Energéticas Nucleares, Av. Prof. Lineu Prestes, 2242, 05508-900 São Paulo – SP, Brazil
| | - P. Muniz
- Sección Oceanología, Facultad de Ciencias – UdelaR, Iguá 4225, Montevideo, 11400, Uruguay
| | - L. B. Moreira
- UNESP Campus do Litoral Paulista. Praça Infante Dom Henrique, s/n., São Vicente, SP, 11330-900, Brazil
| | - E. C. P. M. Sousa
- Instituto Oceanográfico da USP. Praça do Oceanográfico, 191. São Paulo, SP, 05508-900, Brazil
| |
Collapse
|
92
|
Reis EO, Foureaux AFS, Rodrigues JS, Moreira VR, Lebron YAR, Santos LVS, Amaral MCS, Lange LC. Occurrence, removal and seasonal variation of pharmaceuticals in Brasilian drinking water treatment plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:773-781. [PMID: 31039472 DOI: 10.1016/j.envpol.2019.04.102] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/08/2019] [Accepted: 04/21/2019] [Indexed: 05/23/2023]
Abstract
The presence of pharmaceuticals in aquatic environments has become a major issue of concern for scientific community, since there is a lack of information about risks and impacts to the environment and public health. In the context of Brazil, many cities do not have Wastewater Treatment Plants (WWTPs) and domestic sewage is dumped directly into the water bodies, aggravating the problem. Thus, the present study aimed to evaluate the presence of 28 prescribed pharmaceuticals from different therapeutic classes in six full-scale Drinking Water Treatment Plants (DWTPs) in Minas Gerais state. Samples were collected in twelve field campaigns from August 2016 to August 2017 and water quality were monitored. Analytical methodology was based on solid phase extraction (C18 cartridge) followed by High Performance Liquid Chromatography (Prominence DGU/20A3 - Shimadzu) coupled to Mass Spectrometry (micrOTOF-QII - Bruker). Considering the 28 pharmaceuticals analyzed, 18 were detected in the surface water source at concentrations ranging from Method Quantification Limit (MQL) to 11,960 ng/L. In drinking water, the concentration of the 11 pharmaceuticals detected ranged from <MQL to 6323 ng/L. Betamethasone, Fluconazole, Atorvastatin and Prednisone were the most detected pharmaceuticals. The drinking water monitoring showed a decrease in the concentration of all detected pharmaceuticals, indicating some removal of these compounds by the water treatment processes. The removal efficiency assessed shows a great variation among different compounds, DWTPs and over the year, ranging from an average of 32% ± 6% (Prednisone -DWTP3) to 100% ± 0% for some pharmaceuticals. The highest total concentrations and the maximum concentration values for the most frequently detected pharmaceuticals were related to the winter due, presumably, to lower dilution and temperature. Trace levels of pharmaceuticals were detected in surface and drinking water in Brazil and conventional DWTPs were not able to remove the pharmaceuticals completely.
Collapse
Affiliation(s)
- Eduarda O Reis
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, 31.270-901, Belo Horizonte, MG, Brazil; Baiano Federal Institute, Xique-Xique, BA, Brazil.
| | - Ana Flávia S Foureaux
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, 31.270-901, Belo Horizonte, MG, Brazil
| | - Júlia S Rodrigues
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, 31.270-901, Belo Horizonte, MG, Brazil
| | - Victor R Moreira
- Department of Chemical Engineering, Pontifical Catholic University of Minas Gerais, P.O. Box 1.686, 30535-901, Belo Horizonte, MG, Brazil
| | - Yuri A R Lebron
- Department of Chemical Engineering, Pontifical Catholic University of Minas Gerais, P.O. Box 1.686, 30535-901, Belo Horizonte, MG, Brazil
| | - Lucilaine V S Santos
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, 31.270-901, Belo Horizonte, MG, Brazil; Department of Chemical Engineering, Pontifical Catholic University of Minas Gerais, P.O. Box 1.686, 30535-901, Belo Horizonte, MG, Brazil
| | - Miriam C S Amaral
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, 31.270-901, Belo Horizonte, MG, Brazil
| | - Liséte C Lange
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, 31.270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
93
|
Starling MCVM, Amorim CC, Leão MMD. Occurrence, control and fate of contaminants of emerging concern in environmental compartments in Brazil. JOURNAL OF HAZARDOUS MATERIALS 2019; 372:17-36. [PMID: 29728279 DOI: 10.1016/j.jhazmat.2018.04.043] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 05/25/2023]
Abstract
This is the first review to present data obtained in Brazil over the years regarding contaminants of emerging concern (CEC) and to contrast it with contamination in other countries. Data gathered indicated that caffeine, paracetamol, atenolol, ibuprofen, cephalexin and bisphenol A occur in the μg L-1 range in streams near urban areas. While endocrine disruptors are frequently detected in surface waters, highest concentrations account for 17α-ethynylestradiol and 17β-estradiol. Organochlorine pesticides are the most frequently found and persistent in sediments in agricultural regions. Moreover, in tropical agricultural fields, pesticide volatilization and its implications to ecosystem protection must be better investigated. The reality represented here for Brazil may be transposed to other developing countries due to similarities related to primitive basic sanitation infrastructure and economic and social contexts, which contribute to continuous environmental contamination by CEC. Municipal wastewater treatment facilities in Brazil, treat up to the secondary stage and lead to limited CEC removal. This is also true for other nations in Latin America, such as Argentina, Colombia and Mexico. Therefore, it is an urgent priority to improve sanitation infrastructure and, then, the implementation of tertiary treatment shall be imposed.
Collapse
Affiliation(s)
- Maria Clara V M Starling
- Department of Sanitary and Environmental Engineering, Research Group on Environmental Applications of Advanced Oxidation Processes, Universidade Federal de Minas Gerais. Av.Antônio Carlos, 6627, Belo Horizonte - MG, Brazil, 31270-901
| | - Camila C Amorim
- Department of Sanitary and Environmental Engineering, Research Group on Environmental Applications of Advanced Oxidation Processes, Universidade Federal de Minas Gerais. Av.Antônio Carlos, 6627, Belo Horizonte - MG, Brazil, 31270-901.
| | - Mônica Maria D Leão
- Department of Sanitary and Environmental Engineering, Research Group on Environmental Applications of Advanced Oxidation Processes, Universidade Federal de Minas Gerais. Av.Antônio Carlos, 6627, Belo Horizonte - MG, Brazil, 31270-901
| |
Collapse
|
94
|
Fernández-Rubio J, Rodríguez-Gil JL, Postigo C, Mastroianni N, López de Alda M, Barceló D, Valcárcel Y. Psychoactive pharmaceuticals and illicit drugs in coastal waters of North-Western Spain: Environmental exposure and risk assessment. CHEMOSPHERE 2019; 224:379-389. [PMID: 30826707 DOI: 10.1016/j.chemosphere.2019.02.041] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/01/2019] [Accepted: 02/09/2019] [Indexed: 06/09/2023]
Abstract
The knowledge on the presence of pharmaceutical compounds, and possible risks, in coastal and marine systems is still limited. This study represents the first attempt at monitoring psychoactive pharmaceuticals (PaPs) (benzodiazepines and anxiolytics) and illicit drugs (IDs) in the Rías Baixas coastal area of Northwestern Spain, an area of economic and ecological relevance, leader in shellfish production. Fourteen PaPs and 9 IDs were detected in the water samples with venlafaxine (59%), benzoylecgonine (40%), EDDP (40%), and citalopram (36%) showing the highest detection frequencies. The highest concentrations were measured for venlafaxine (291 ng L-1), benzoylecgonine (142 ng L-1), lorazepam (95.9 ng L-1), and citalopram (92.5 ng L-1). Risk assessment, based on hazard quotients suggested that venlafaxine, citalopram, sertraline, and EDDP were present in concentrations potentially able to cause chronic effects in exposed organisms. Based on the results obtained further monitoring of venlafaxine, citalopram, and EDDP in coastal waters is recommended.
Collapse
Affiliation(s)
| | | | - Cristina Postigo
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Nicola Mastroianni
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Miren López de Alda
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Damià Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Yolanda Valcárcel
- Department of Medicine and Surgery, Psychology, Preventive Medicine and Public Health, Immunology and Medical Microbiology, Nursery and Stomatology, Faculty of Health Sciences, Rey Juan Carlos University, 28922 Alcorcón (Madrid), Spain; Research and Teaching Group in Environmental Toxicology and Risk Assessment (TAyER), Rey Juan Carlos University, 28933 Móstoles (Madrid), Spain.
| |
Collapse
|
95
|
da Silva AQ, de Souza Abessa DM. Toxicity of three emerging contaminants to non-target marine organisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18354-18364. [PMID: 31044378 DOI: 10.1007/s11356-019-05151-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Coastal areas are continually impacted by anthropic activities because they shelter large urban conglomerates. Urban effluents directly or indirectly end up reaching the marine environment, releasing a large number of pollutants which include the so-called contaminants of emerging concern (CECs), since the conventional treatment plants are not effective in removing these compounds from the effluents. These substances include hormones, pharmaceuticals and personal care products, nanoparticles, biocides, among others. The aim of this study was to evaluate the toxicity of the 17α-ethinylestradiol (EE2), acetylsalicylic acid (ASA), and bisphenol-A (BPA) to two marine crustaceans and one echinoderm, evaluating the following parameters: survival (Artemia sp. and Mysidopsis juniae), embryo-larval development (Echinometra lucunter). The LC50 values calculated in the acute toxicity tests showed that the compounds were more toxic to M. juniae than to the Artemia sp. Among the three contaminants, EE2 was the most toxic (LC50-48h = 18.4 ± 2.7 mg L-1 to Artemia sp.; LC50-96h = 0.36 ± 0.07 mg L-1 to M. juniae). The three tested compounds affected significantly the embryonic development of the sea urchin in all tested concentrations, including ecologically relevant concentrations, indicating the potential risk that these contaminants may present to the marine biota.
Collapse
Affiliation(s)
- Allyson Q da Silva
- Instituto de Ciências do Mar (LABOMAR), Universidade Federal do Ceará, Av. da Abolição, 3207, Bairro Meireles, Fortaleza, Ceará, CEP 60165-081, Brazil.
| | - Denis Moledo de Souza Abessa
- Núcleo de Estudos em Poluição e Ecotoxicologia Aquática (NEPEA), Campus Experimental do Litoral Paulista (UNESP), Praça Infante Dom Henrique s/n, Parque Bitaru, São Vicente, SP, 11330-90, Brazil.
| |
Collapse
|
96
|
Peña-Guzmán C, Ulloa-Sánchez S, Mora K, Helena-Bustos R, Lopez-Barrera E, Alvarez J, Rodriguez-Pinzón M. Emerging pollutants in the urban water cycle in Latin America: A review of the current literature. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 237:408-423. [PMID: 30822645 DOI: 10.1016/j.jenvman.2019.02.100] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 05/12/2023]
Abstract
Emerging pollutants (EP) are increasingly studied and characterized worldwide to improve the understanding of their environmental and toxicological impacts and their occurrence and behaviors in different environmental systems. Latin America has been subject to both environmental and toxicological impacts due to EP. To better understand these impacts, studies concerning pollutants have increased for the last ten years. The current study presents a critical review on the occurrence of different emerging pollutants in various components of the urban water cycle (UWC) in Latin America. The review is based on studies performed in 11 different countries between 1999 and 2018. The countries where the higher number of investigations were conducted are Brazil (53%) and Mexico (15%). The EP most often studied within the literature are pharmaceuticals, followed by personal care products. The most common EP reported were 17β-estradiol, bisphenol A and estrone; The UWC component with the greatest number of measurements in the reported studies were effluents from wastewater treatment plants.
Collapse
Affiliation(s)
- Carlos Peña-Guzmán
- INAM-USTA Group, Program of Environmental Engineering, St. Thomas University, Bogotá, Colombia.
| | - Stefanie Ulloa-Sánchez
- INAM-USTA Group, Program of Environmental Engineering, St. Thomas University, Bogotá, Colombia
| | - Karen Mora
- Institute of Water and Environmental Sciences, University of Alicante, Alicante, Spain
| | - Rosa Helena-Bustos
- Evidence-Based Therapeutics Group, Clinical Pharmacology, Universidad de La Sabana, Chía, Colombia
| | - Ellie Lopez-Barrera
- Institute of Environmental Studies and Services, Program of Environmental Engineering, Sergio Arboleda University, Bogotá, Colombia
| | - Johan Alvarez
- INAM-USTA Group, Program of Environmental Engineering, St. Thomas University, Bogotá, Colombia
| | - Manuel Rodriguez-Pinzón
- École Supérieure D'aménagement Du Territoire et de Développement Régional, Université Laval, Québec, Canada
| |
Collapse
|
97
|
Pusceddu FH, Sugauara LE, de Marchi MR, Choueri RB, Castro ÍB. Estrogen levels in surface sediments from a multi-impacted Brazilian estuarine system. MARINE POLLUTION BULLETIN 2019; 142:576-580. [PMID: 31232341 DOI: 10.1016/j.marpolbul.2019.03.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 05/22/2023]
Abstract
Estrogen levels were assessed in surface sediments from one of the most industrialized and urbanized estuarine systems in Latin America (SSES, Santos and São Vicente estuarine system). Estriol (E3) presented quantifiable levels in all sampled sites, ranging from 20.9 ng g-1 to 694.2 ng g-1. 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) were also detected in almost all sampled sites. The highest concentration of E2 was 23.9 ng g-1, whereas high levels of EE2 86.3 ng g-1. The occurrence of estrogens in SSES was diffuse and partially related to a domestic sewage outfall. Estrogens were also found in areas with substantial contribution of sanitary effluents from domiciles not covered by sanitation services. Our results reinforce that studies on environmental contamination by estrogens should not be spatially limited to the vicinities of point sources. These results contribute to raise awareness on the need of a formal approach to assess ecological risks of estrogens in the SSES.
Collapse
Affiliation(s)
| | - Lucy Elaine Sugauara
- Departamento de Química Analítica, Instituto de Química, Univ. Estadual Paulista, Araraquara, Brazil
| | - Mary Rodrigues de Marchi
- Departamento de Química Analítica, Instituto de Química, Univ. Estadual Paulista, Araraquara, Brazil
| | | | - Ítalo Braga Castro
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Santos, Brazil
| |
Collapse
|
98
|
Cortez FS, Souza LDS, Guimarães LL, Pusceddu FH, Maranho LA, Fontes MK, Moreno BB, Nobre CR, Abessa DMDS, Cesar A, Pereira CDS. Marine contamination and cytogenotoxic effects of fluoxetine in the tropical brown mussel Perna perna. MARINE POLLUTION BULLETIN 2019; 141:366-372. [PMID: 30955746 DOI: 10.1016/j.marpolbul.2019.02.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Concerns are growing about the presence of fluoxetine (FLX) in environmental matrices, as well as its harmful effects on non-target organisms. FLX in aquatic ecosystems has been detected in a range varying from pg/L to ng/L, while adverse effects have been reported in several organisms inhabiting freshwater and marine environments. The present study quantifies FLX concentrations in seawater samples from Santos Bay, Brazil and assesses metabolic responses and sublethal effects on the tropical brown mussel Perna perna. Levels of ethoxyresorufin‑O‑deethylase, dibenzylfluorescein dealkylase, glutathione S-transferase, glutathione peroxidase, cholinesterase, lipoperoxidation, and DNA damage were assessed in the gills and digestive gland of these animals, and lysosomal membrane stability was also assessed in hemocytes. FLX altered phase I and II enzyme activities, caused cytogenotoxic effects, and negatively impacted the overall health of mussels exposed to environmentally relevant concentrations. These findings contribute to characterize the risks of introducing this drug into the marine environment.
Collapse
Affiliation(s)
- Fernando Sanzi Cortez
- Universidade Santa Cecília, Rua Oswaldo Cruz 266, Santos, SP CEP:11045-907, Brazil; Universidade Estadual Paulista Júlio de Mesquita, Pr. Infante Dom Henrique, s/n, São Vicente CEP: 11330-900, Brazil
| | | | | | | | | | - Mayana Karoline Fontes
- Universidade Estadual Paulista Júlio de Mesquita, Pr. Infante Dom Henrique, s/n, São Vicente CEP: 11330-900, Brazil
| | - Beatriz Barbosa Moreno
- Universidade Federal de São Paulo, Rua Maria Máximo 168, Santos, SP CEP 11030-100, Brazil
| | - Caio Rodrigues Nobre
- Universidade Estadual Paulista Júlio de Mesquita, Pr. Infante Dom Henrique, s/n, São Vicente CEP: 11330-900, Brazil
| | - Denis Moledo de Souza Abessa
- Universidade Estadual Paulista Júlio de Mesquita, Pr. Infante Dom Henrique, s/n, São Vicente CEP: 11330-900, Brazil
| | - Augusto Cesar
- Universidade Santa Cecília, Rua Oswaldo Cruz 266, Santos, SP CEP:11045-907, Brazil; Universidade Federal de São Paulo, Rua Maria Máximo 168, Santos, SP CEP 11030-100, Brazil
| | - Camilo Dias Seabra Pereira
- Universidade Santa Cecília, Rua Oswaldo Cruz 266, Santos, SP CEP:11045-907, Brazil; Universidade Federal de São Paulo, Rua Maria Máximo 168, Santos, SP CEP 11030-100, Brazil.
| |
Collapse
|
99
|
Capaldo A, Gay F, Laforgia V. Changes in the gills of the European eel (Anguilla anguilla) after chronic exposure to environmental cocaine concentration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:112-119. [PMID: 30445241 DOI: 10.1016/j.ecoenv.2018.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 05/20/2023]
Abstract
The recent discovery of illicit drugs in the aquatic environment has raised concerns about the possible effects on the aquatic fauna, because of the pharmacological activity of these substances. Cocaine is an illicit drug widespread in surface waters since it is the third most widely used drug in North America, Western and Central Europe, and the second in Latin America and the Caribbean. The aim of this study was to evaluate the influence of environmental concentrations of cocaine on the gills of the European eel (Anguilla anguilla). The gills of male silver eels exposed to 20 ng L-1 of cocaine for fifty days were compared to control, vehicle control and post-exposure recovery ten days groups. The following parameters were evaluated: the thickness of the interlamellar epithelium (TIE), the length of the secondary lamellae (LSL) and the fraction of the interlamellar epithelium and the secondary lamellae occupied by the mucous cells (MC(IE-SL)FA) 3) the plasma cortisol and prolactin levels. After cocaine exposure, the gill epithelium appeared hyperplastic. The following changes were observed: proliferation in the interlamellar epithelium; partial and total fusion of the secondary lamellae, that appeared shortened and dilated; epithelial lifting and aneurism in the secondary lamellae. Moreover, in cocaine exposed eels, an increase in TIE and MC(IE-SL)FA and a decrease in LSL were observed. These changes were still present ten days after the interruption of cocaine exposure. Plasma levels of both cortisol and prolactin increased after cocaine exposure; ten days after the interruption of cocaine exposure, the plasma cortisol levels were still higher, whereas the plasma prolactin levels were lower, than control values. Our results show that even a chronic exposure to low environmental cocaine concentrations severely harms the eel gills, suggesting damages to their functions, and potentially affecting the survival of this species.
Collapse
Affiliation(s)
- Anna Capaldo
- Department of Biology, University of Naples Federico II, Via Cinthia, Edificio 7, 80126 Naples, Italy.
| | - Flaminia Gay
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132 - 84084 Fisciano, Salerno, Italy.
| | - Vincenza Laforgia
- Department of Biology, University of Naples Federico II, Via Cinthia, Edificio 7, 80126 Naples, Italy.
| |
Collapse
|
100
|
Moreira LB, de Camargo JBDA, Belletato Marques B, Martins CC, de Souza Abessa DM. Multiple lines of evidence of sediment quality in an urban Marine Protected Area (Xixová-Japuí State Park, SP, Brazil). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:4605-4617. [PMID: 30560531 DOI: 10.1007/s11356-018-3941-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
Marine Protected Areas (MPAs) aim to protect habitats, biodiversity, and ecological processes as a conservation tool. These areas have been affected by contamination, which threats the biodiversity and ecological functioning. In this study, we evaluated the sediment quality of Xixová-Japuí State Park (XJSP), an MPA located in an urbanized Bay (Santos, Southeast Brazil) by integrating multiple lines-of-evidence. Six sites were selected within the XJSP and analyzed for sediment chemistry, toxicity, and benthic community descriptors using Sediment Quality Triad approach (SQT). Whole-sediment Toxicity Identification Evaluation (TIE) was employed as a complementary line of evidence to confirm the presence of domestic effluent discharges as a potential stressor. The SQT showed that sediments collected within XJSP are impacted by contaminants, exhibiting chronic toxicity and changes in benthic community. TIE results indicated that trace metals, organic contaminants, and ammonia contributed to the observed effects. Our results also indicate a lack of effectiveness of MPA in protecting the biodiversity due to the contamination sources, which requires efforts to pollution control in order to ensure the environmental conservation and management plan goals.
Collapse
Affiliation(s)
- Lucas Buruaem Moreira
- Núcleo de Estudos em Poluição e Ecotoxicologia Aquática, Universidade Estadual Paulista (UNESP), Pça. Infante D. Henrique s/n°, São Vicente, SP, 11330-900, Brazil.
| | - Júlia Beatriz Duarte Alves de Camargo
- Núcleo de Estudos em Poluição e Ecotoxicologia Aquática, Universidade Estadual Paulista (UNESP), Pça. Infante D. Henrique s/n°, São Vicente, SP, 11330-900, Brazil
| | - Bruna Belletato Marques
- Núcleo de Estudos em Poluição e Ecotoxicologia Aquática, Universidade Estadual Paulista (UNESP), Pça. Infante D. Henrique s/n°, São Vicente, SP, 11330-900, Brazil
| | - César C Martins
- Centro de Estudos do Mar, Universidade Federal do Paraná, Av. Beira Mar, s/n°, Pontal do Paraná, PR, 83255-976, Brazil
| | - Denis Moledo de Souza Abessa
- Núcleo de Estudos em Poluição e Ecotoxicologia Aquática, Universidade Estadual Paulista (UNESP), Pça. Infante D. Henrique s/n°, São Vicente, SP, 11330-900, Brazil
| |
Collapse
|