51
|
Clostridioides difficile infection damages colonic stem cells via TcdB, impairing epithelial repair and recovery from disease. Proc Natl Acad Sci U S A 2020; 117:8064-8073. [PMID: 32198200 DOI: 10.1073/pnas.1915255117] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal infections often induce epithelial damage that must be repaired for optimal gut function. While intestinal stem cells are critical for this regeneration process [R. C. van der Wath, B. S. Gardiner, A. W. Burgess, D. W. Smith, PLoS One 8, e73204 (2013); S. Kozar et al., Cell Stem Cell 13, 626-633 (2013)], how they are impacted by enteric infections remains poorly defined. Here, we investigate infection-mediated damage to the colonic stem cell compartment and how this affects epithelial repair and recovery from infection. Using the pathogen Clostridioides difficile, we show that infection disrupts murine intestinal cellular organization and integrity deep into the epithelium, to expose the otherwise protected stem cell compartment, in a TcdB-mediated process. Exposure and susceptibility of colonic stem cells to intoxication compromises their function during infection, which diminishes their ability to repair the injured epithelium, shown by altered stem cell signaling and a reduction in the growth of colonic organoids from stem cells isolated from infected mice. We also show, using both mouse and human colonic organoids, that TcdB from epidemic ribotype 027 strains does not require Frizzled 1/2/7 binding to elicit this dysfunctional stem cell state. This stem cell dysfunction induces a significant delay in recovery and repair of the intestinal epithelium of up to 2 wk post the infection peak. Our results uncover a mechanism by which an enteric pathogen subverts repair processes by targeting stem cells during infection and preventing epithelial regeneration, which prolongs epithelial barrier impairment and creates an environment in which disease recurrence is likely.
Collapse
|
52
|
McCarthy N, Manieri E, Storm EE, Saadatpour A, Luoma AM, Kapoor VN, Madha S, Gaynor LT, Cox C, Keerthivasan S, Wucherpfennig K, Yuan GC, de Sauvage FJ, Turley SJ, Shivdasani RA. Distinct Mesenchymal Cell Populations Generate the Essential Intestinal BMP Signaling Gradient. Cell Stem Cell 2020; 26:391-402.e5. [PMID: 32084389 DOI: 10.1016/j.stem.2020.01.008] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/27/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022]
Abstract
Intestinal stem cells (ISCs) are confined to crypt bottoms and their progeny differentiate near crypt-villus junctions. Wnt and bone morphogenic protein (BMP) gradients drive this polarity, and colorectal cancer fundamentally reflects disruption of this homeostatic signaling. However, sub-epithelial sources of crucial agonists and antagonists that organize this BMP gradient remain obscure. Here, we couple whole-mount high-resolution microscopy with ensemble and single-cell RNA sequencing (RNA-seq) to identify three distinct PDGFRA+ mesenchymal cell types. PDGFRA(hi) telocytes are especially abundant at the villus base and provide a BMP reservoir, and we identified a CD81+ PDGFRA(lo) population present just below crypts that secretes the BMP antagonist Gremlin1. These cells, referred to as trophocytes, are sufficient to expand ISCs in vitro without additional trophic support and contribute to ISC maintenance in vivo. This study reveals intestinal mesenchymal structure at fine anatomic, molecular, and functional detail and the cellular basis for a signaling gradient necessary for tissue self-renewal.
Collapse
Affiliation(s)
- Neil McCarthy
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Elisa Manieri
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Elaine E Storm
- Department of Molecular Oncology, Genentech, South San Francisco, CA 94080, USA
| | - Assieh Saadatpour
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Adrienne M Luoma
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Varun N Kapoor
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA
| | - Shariq Madha
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Liam T Gaynor
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Christian Cox
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA
| | - Shilpa Keerthivasan
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA
| | - Kai Wucherpfennig
- Department of Molecular Oncology, Genentech, South San Francisco, CA 94080, USA; Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Guo-Cheng Yuan
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | | | - Shannon J Turley
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA
| | - Ramesh A Shivdasani
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA.
| |
Collapse
|
53
|
Murata K, Jadhav U, Madha S, van Es J, Dean J, Cavazza A, Wucherpfennig K, Michor F, Clevers H, Shivdasani RA. Ascl2-Dependent Cell Dedifferentiation Drives Regeneration of Ablated Intestinal Stem Cells. Cell Stem Cell 2020; 26:377-390.e6. [PMID: 32084390 DOI: 10.1016/j.stem.2019.12.011] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/07/2019] [Accepted: 12/23/2019] [Indexed: 12/28/2022]
Abstract
Ablation of LGR5+ intestinal stem cells (ISCs) is associated with rapid restoration of the ISC compartment. Different intestinal crypt populations dedifferentiate to provide new ISCs, but the transcriptional and signaling trajectories that guide this process are unclear, and a large body of work suggests that quiescent "reserve" ISCs contribute to regeneration. By timing the interval between LGR5+ lineage tracing and lethal injury, we show that ISC regeneration is explained nearly completely by dedifferentiation, with contributions from absorptive and secretory progenitors. The ISC-restricted transcription factor ASCL2 confers measurable competitive advantage to resting ISCs and is essential to restore the ISC compartment. Regenerating cells re-express Ascl2 days before Lgr5, and single-cell RNA sequencing (scRNA-seq) analyses reveal transcriptional paths underlying dedifferentiation. ASCL2 target genes include the interleukin-11 (IL-11) receptor Il11ra1, and recombinant IL-11 enhances crypt cell regenerative potential. These findings reveal cell dedifferentiation as the principal means for ISC restoration and highlight an ASCL2-regulated signal that enables this adaptive response.
Collapse
Affiliation(s)
- Kazutaka Murata
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Unmesh Jadhav
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Shariq Madha
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Johan van Es
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, 3584 CT Utrecht, the Netherlands
| | - Justin Dean
- Department of Cancer Data Sciences, Dana-Farber Cancer Institute, and Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alessia Cavazza
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Kai Wucherpfennig
- Department of Cancer Immunology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Franziska Michor
- Department of Cancer Data Sciences, Dana-Farber Cancer Institute, and Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, 3584 CT Utrecht, the Netherlands
| | - Ramesh A Shivdasani
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02215, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
54
|
Lang BM, Kuipers J, Misselwitz B, Beerenwinkel N. Predicting colorectal cancer risk from adenoma detection via a two-type branching process model. PLoS Comput Biol 2020; 16:e1007552. [PMID: 32023238 PMCID: PMC7001909 DOI: 10.1371/journal.pcbi.1007552] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 11/18/2019] [Indexed: 12/31/2022] Open
Abstract
Despite advances in the modeling and understanding of colorectal cancer development, the dynamics of the progression from benign adenomatous polyp to colorectal carcinoma are still not fully resolved. To take advantage of adenoma size and prevalence data in the National Endoscopic Database of the Clinical Outcomes Research Initiative (CORI) as well as colorectal cancer incidence and size data from the Surveillance Epidemiology and End Results (SEER) database, we construct a two-type branching process model with compartments representing adenoma and carcinoma cells. To perform parameter inference we present a new large-size approximation to the size distribution of the cancer compartment and validate our approach on simulated data. By fitting the model to the CORI and SEER data, we learn biologically relevant parameters, including the transition rate from adenoma to cancer. The inferred parameters allow us to predict the individualized risk of the presence of cancer cells for each screened patient. We provide a web application which allows the user to calculate these individual probabilities at https://ccrc-eth.shinyapps.io/CCRC/. For example, we find a 1 in 100 chance of cancer given the presence of an adenoma between 10 and 20mm size in an average risk patient at age 50. We show that our two-type branching process model recapitulates the early growth dynamics of colon adenomas and cancers and can recover epidemiological trends such as adenoma prevalence and cancer incidence while remaining mathematically and computationally tractable. Colorectal cancer is a major public health burden. The development of colorectal cancer starts with the mutational initiation of non-cancerous growths in the form of benign adenomatous polyps. These adenomas grow over time with the potential to develop into carcinomas. Many mathematical and simulation-based models have been used to gain insight into this process. We aimed to understand rates of adenoma growth and transition into carcinomas, to enable better planning of colorectal cancer screening strategies. To this end, we expand the two-type branching process model, and fit it on data describing the frequency of sizes of adenomas and carcinomas. The results provide new, data-based, estimates of the rates of development for colorectal cancer.
Collapse
Affiliation(s)
- Brian M. Lang
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Jack Kuipers
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Benjamin Misselwitz
- Department of Visceral Surgery and Medicine, Inselspital Bern and Bern University, Bern, Switzerland
- Department of Gastroenterology and Hepatology, University Hospital Zurich and Zurich University, Zurich, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
- * E-mail:
| |
Collapse
|
55
|
Ren B, Rose JB, Liu Y, Jaskular-Sztul R, Contreras C, Beck A, Chen H. Heterogeneity of Vascular Endothelial Cells, De Novo Arteriogenesis and Therapeutic Implications in Pancreatic Neuroendocrine Tumors. J Clin Med 2019; 8:jcm8111980. [PMID: 31739580 PMCID: PMC6912347 DOI: 10.3390/jcm8111980] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023] Open
Abstract
Arteriogenesis supplies oxygen and nutrients in the tumor microenvironment (TME), which may play an important role in tumor growth and metastasis. Pancreatic neuroendocrine tumors (pNETs) are the second most common pancreatic malignancy and are frequently metastatic on presentation. Nearly a third of pNETs secrete bioactive substances causing debilitating symptoms. Current treatment options for metastatic pNETs are limited. Importantly, these tumors are highly vascularized and heterogeneous neoplasms, in which the heterogeneity of vascular endothelial cells (ECs) and de novo arteriogenesis may be critical for their progression. Current anti-angiogenetic targeted treatments have not shown substantial clinical benefits, and they are poorly tolerated. This review article describes EC heterogeneity and heterogeneous tumor-associated ECs (TAECs) in the TME and emphasizes the concept of de novo arteriogenesis in the TME. The authors also emphasize the challenges of current antiangiogenic therapy in pNETs and discuss the potential of tumor arteriogenesis as a novel therapeutic target. Finally, the authors prospect the clinical potential of targeting the FoxO1-CD36-Notch pathway that is associated with both pNET progression and arteriogenesis and provide insights into the clinical implications of targeting plasticity of cancer stem cells (CSCs) and vascular niche, particularly the arteriolar niche within the TME in pNETs, which will also provide insights into other types of cancer, including breast cancer, lung cancer, and malignant melanoma.
Collapse
Affiliation(s)
- Bin Ren
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.B.R.); (R.J.-S.); (C.C.); (A.B.); (H.C.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Nutrition & Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Diabetes Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Graduate Biomedical Science Program of the Graduate School, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence:
| | - J. Bart Rose
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.B.R.); (R.J.-S.); (C.C.); (A.B.); (H.C.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yehe Liu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Renata Jaskular-Sztul
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.B.R.); (R.J.-S.); (C.C.); (A.B.); (H.C.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Carlo Contreras
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.B.R.); (R.J.-S.); (C.C.); (A.B.); (H.C.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Adam Beck
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.B.R.); (R.J.-S.); (C.C.); (A.B.); (H.C.)
| | - Herbert Chen
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.B.R.); (R.J.-S.); (C.C.); (A.B.); (H.C.)
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Graduate Biomedical Science Program of the Graduate School, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
56
|
Baker AM, Gabbutt C, Williams MJ, Cereser B, Jawad N, Rodriguez-Justo M, Jansen M, Barnes CP, Simons BD, McDonald SA, Graham TA, Wright NA. Crypt fusion as a homeostatic mechanism in the human colon. Gut 2019; 68:1986-1993. [PMID: 30872394 PMCID: PMC6839731 DOI: 10.1136/gutjnl-2018-317540] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/24/2019] [Accepted: 02/22/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The crypt population in the human intestine is dynamic: crypts can divide to produce two new daughter crypts through a process termed crypt fission, but whether this is balanced by a second process to remove crypts, as recently shown in mouse models, is uncertain. We examined whether crypt fusion (the process of two neighbouring crypts fusing into a single daughter crypt) occurs in the human colon. DESIGN We used somatic alterations in the gene cytochrome c oxidase (CCO) as lineage tracing markers to assess the clonality of bifurcating colon crypts (n=309 bifurcating crypts from 13 patients). Mathematical modelling was used to determine whether the existence of crypt fusion can explain the experimental data, and how the process of fusion influences the rate of crypt fission. RESULTS In 55% (21/38) of bifurcating crypts in which clonality could be assessed, we observed perfect segregation of clonal lineages to the respective crypt arms. Mathematical modelling showed that this frequency of perfect segregation could not be explained by fission alone (p<10-20). With the rates of fission and fusion taken to be approximately equal, we then used the distribution of CCO-deficient patch size to estimate the rate of crypt fission, finding a value of around 0.011 divisions/crypt/year. CONCLUSIONS We have provided the evidence that human colonic crypts undergo fusion, a potential homeostatic process to regulate total crypt number. The existence of crypt fusion in the human colon adds a new facet to our understanding of the highly dynamic and plastic phenotype of the colonic epithelium.
Collapse
Affiliation(s)
- Ann-Marie Baker
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Calum Gabbutt
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Marc J Williams
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Biancastella Cereser
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Noor Jawad
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Marnix Jansen
- Histopathology, University College London, London, UK
| | - Chris P Barnes
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Benjamin D Simons
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Stuart Ac McDonald
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Trevor A Graham
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Nicholas A Wright
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
57
|
Abstract
Regenerative processes that maintain the function of the gastrointestinal (GI) epithelium are critical for health and survival of multicellular organisms. In insects and vertebrates, intestinal stem cells (ISCs) regenerate the GI epithelium. ISC function is regulated by intrinsic, local, and systemic stimuli to adjust regeneration to tissue demands. These control mechanisms decline with age, resulting in significant perturbation of intestinal homeostasis. Processes that lead to this decline have been explored intensively in Drosophila melanogaster in recent years and are now starting to be characterized in mammalian models. This review presents a model for age-related regenerative decline in the fly intestine and discusses recent findings that start to establish molecular mechanisms of age-related decline of mammalian ISC function.
Collapse
Affiliation(s)
- Heinrich Jasper
- Immunology Discovery, Genentech, Inc., South San Francisco, California 94080, USA;
| |
Collapse
|
58
|
Lee-Six H, Olafsson S, Ellis P, Osborne RJ, Sanders MA, Moore L, Georgakopoulos N, Torrente F, Noorani A, Goddard M, Robinson P, Coorens THH, O'Neill L, Alder C, Wang J, Fitzgerald RC, Zilbauer M, Coleman N, Saeb-Parsy K, Martincorena I, Campbell PJ, Stratton MR. The landscape of somatic mutation in normal colorectal epithelial cells. Nature 2019; 574:532-537. [PMID: 31645730 DOI: 10.1038/s41586-019-1672-7] [Citation(s) in RCA: 422] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 09/11/2019] [Indexed: 02/06/2023]
Abstract
The colorectal adenoma-carcinoma sequence has provided a paradigmatic framework for understanding the successive somatic genetic changes and consequent clonal expansions that lead to cancer1. However, our understanding of the earliest phases of colorectal neoplastic changes-which may occur in morphologically normal tissue-is comparatively limited, as for most cancer types. Here we use whole-genome sequencing to analyse hundreds of normal crypts from 42 individuals. Signatures of multiple mutational processes were revealed; some of these were ubiquitous and continuous, whereas others were only found in some individuals, in some crypts or during certain periods of life. Probable driver mutations were present in around 1% of normal colorectal crypts in middle-aged individuals, indicating that adenomas and carcinomas are rare outcomes of a pervasive process of neoplastic change across morphologically normal colorectal epithelium. Colorectal cancers exhibit substantially increased mutational burdens relative to normal cells. Sequencing normal colorectal cells provides quantitative insights into the genomic and clonal evolution of cancer.
Collapse
Affiliation(s)
| | | | | | | | - Mathijs A Sanders
- Wellcome Sanger Institute, Hinxton, UK
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Nikitas Georgakopoulos
- Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge NIHR Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Franco Torrente
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Addenbrooke's Hospital, Cambridge, UK
| | - Ayesha Noorani
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Martin Goddard
- Department of Pathology, Papworth Hospital NHS Trust, Cambridge, UK
| | | | | | | | | | | | - Rebecca C Fitzgerald
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Matthias Zilbauer
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Addenbrooke's Hospital, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Nicholas Coleman
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge NIHR Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| | | | | | | |
Collapse
|
59
|
Wang X. Stem cells in tissues, organoids, and cancers. Cell Mol Life Sci 2019; 76:4043-4070. [PMID: 31317205 PMCID: PMC6785598 DOI: 10.1007/s00018-019-03199-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/22/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022]
Abstract
Stem cells give rise to all cells and build the tissue structures in our body, and heterogeneity and plasticity are the hallmarks of stem cells. Epigenetic modification, which is associated with niche signals, determines stem cell differentiation and somatic cell reprogramming. Stem cells play a critical role in the development of tumors and are capable of generating 3D organoids. Understanding the properties of stem cells will improve our capacity to maintain tissue homeostasis. Dissecting epigenetic regulation could be helpful for achieving efficient cell reprograming and for developing new drugs for cancer treatment. Stem cell-derived organoids open up new avenues for modeling human diseases and for regenerative medicine. Nevertheless, in addition to the achievements in stem cell research, many challenges still need to be overcome for stem cells to have versatile application in clinics.
Collapse
Affiliation(s)
- Xusheng Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
60
|
Fu NY, Nolan E, Lindeman GJ, Visvader JE. Stem Cells and the Differentiation Hierarchy in Mammary Gland Development. Physiol Rev 2019; 100:489-523. [PMID: 31539305 DOI: 10.1152/physrev.00040.2018] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mammary gland is a highly dynamic organ that undergoes profound changes within its epithelium during puberty and the reproductive cycle. These changes are fueled by dedicated stem and progenitor cells. Both short- and long-lived lineage-restricted progenitors have been identified in adult tissue as well as a small pool of multipotent mammary stem cells (MaSCs), reflecting intrinsic complexity within the epithelial hierarchy. While unipotent progenitor cells predominantly execute day-to-day homeostasis and postnatal morphogenesis during puberty and pregnancy, multipotent MaSCs have been implicated in coordinating alveologenesis and long-term ductal maintenance. Nonetheless, the multipotency of stem cells in the adult remains controversial. The advent of large-scale single-cell molecular profiling has revealed striking changes in the gene expression landscape through ontogeny and the presence of transient intermediate populations. An increasing number of lineage cell-fate determination factors and potential niche regulators have now been mapped along the hierarchy, with many implicated in breast carcinogenesis. The emerging diversity among stem and progenitor populations of the mammary epithelium is likely to underpin the heterogeneity that characterizes breast cancer.
Collapse
Affiliation(s)
- Nai Yang Fu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore; Tumour-Host Interaction Laboratory, Francis Crick Institute, London, United Kingdom; Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia; Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Emma Nolan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore; Tumour-Host Interaction Laboratory, Francis Crick Institute, London, United Kingdom; Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia; Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Geoffrey J Lindeman
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore; Tumour-Host Interaction Laboratory, Francis Crick Institute, London, United Kingdom; Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia; Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jane E Visvader
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore; Tumour-Host Interaction Laboratory, Francis Crick Institute, London, United Kingdom; Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia; Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
61
|
Fasting Activates Fatty Acid Oxidation to Enhance Intestinal Stem Cell Function during Homeostasis and Aging. Cell Stem Cell 2019; 22:769-778.e4. [PMID: 29727683 DOI: 10.1016/j.stem.2018.04.001] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 12/19/2017] [Accepted: 03/30/2018] [Indexed: 12/12/2022]
Abstract
Diet has a profound effect on tissue regeneration in diverse organisms, and low caloric states such as intermittent fasting have beneficial effects on organismal health and age-associated loss of tissue function. The role of adult stem and progenitor cells in responding to short-term fasting and whether such responses improve regeneration are not well studied. Here we show that a 24 hr fast augments intestinal stem cell (ISC) function in young and aged mice by inducing a fatty acid oxidation (FAO) program and that pharmacological activation of this program mimics many effects of fasting. Acute genetic disruption of Cpt1a, the rate-limiting enzyme in FAO, abrogates ISC-enhancing effects of fasting, but long-term Cpt1a deletion decreases ISC numbers and function, implicating a role for FAO in ISC maintenance. These findings highlight a role for FAO in mediating pro-regenerative effects of fasting in intestinal biology, and they may represent a viable strategy for enhancing intestinal regeneration.
Collapse
|
62
|
Pentinmikko N, Iqbal S, Mana M, Andersson S, Cognetta AB, Suciu RM, Roper J, Luopajärvi K, Markelin E, Gopalakrishnan S, Smolander OP, Naranjo S, Saarinen T, Juuti A, Pietiläinen K, Auvinen P, Ristimäki A, Gupta N, Tammela T, Jacks T, Sabatini DM, Cravatt BF, Yilmaz ÖH, Katajisto P. Notum produced by Paneth cells attenuates regeneration of aged intestinal epithelium. Nature 2019; 571:398-402. [PMID: 31292548 DOI: 10.1038/s41586-019-1383-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/10/2019] [Indexed: 12/12/2022]
Abstract
A decline in stem cell function impairs tissue regeneration during ageing, but the role of the stem-cell-supporting niche in ageing is not well understood. The small intestine is maintained by actively cycling intestinal stem cells that are regulated by the Paneth cell niche1,2. Here we show that the regenerative potential of human and mouse intestinal epithelium diminishes with age owing to defects in both stem cells and their niche. The functional decline was caused by a decrease in stemness-maintaining Wnt signalling due to production of Notum, an extracellular Wnt inhibitor, in aged Paneth cells. Mechanistically, high activity of mammalian target of rapamycin complex 1 (mTORC1) in aged Paneth cells inhibits activity of peroxisome proliferator activated receptor α (PPAR-α)3, and lowered PPAR-α activity increased Notum expression. Genetic targeting of Notum or Wnt supplementation restored function of aged intestinal organoids. Moreover, pharmacological inhibition of Notum in mice enhanced the regenerative capacity of aged stem cells and promoted recovery from chemotherapy-induced damage. Our results reveal a role of the stem cell niche in ageing and demonstrate that targeting of Notum can promote regeneration of aged tissues.
Collapse
Affiliation(s)
- Nalle Pentinmikko
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sharif Iqbal
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Miyeko Mana
- The David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology, MIT, Cambridge, MA, USA
| | - Simon Andersson
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Armand B Cognetta
- The Skaggs Institute for Chemical Biology, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Radu M Suciu
- The Skaggs Institute for Chemical Biology, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jatin Roper
- Department of Medicine, Division of Gastroenterology, Duke University, Durham, NC, USA
| | - Kalle Luopajärvi
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Eino Markelin
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | | | | | - Santiago Naranjo
- The David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology, MIT, Cambridge, MA, USA
| | - Tuure Saarinen
- Obesity Research Unit, Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland.,Abdominal Center, Department of Gastrointestinal Surgery, Helsinki University Hospital, Helsinki, Finland
| | - Anne Juuti
- Abdominal Center, Department of Gastrointestinal Surgery, Helsinki University Hospital, Helsinki, Finland
| | - Kirsi Pietiläinen
- Obesity Research Unit, Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ari Ristimäki
- Department of Pathology, Research Programs Unit and HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Nitin Gupta
- Atlanta Gastroenterology Associates, Atlanta, GA, USA
| | - Tuomas Tammela
- Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tyler Jacks
- The David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology, MIT, Cambridge, MA, USA.,Howard Hughes Medical Institute, MIT, Cambridge, MA, USA
| | - David M Sabatini
- The David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology, MIT, Cambridge, MA, USA.,Howard Hughes Medical Institute, MIT, Cambridge, MA, USA.,Whitehead Institute for Biomedical Research, Howard Hughes Medical Institute, Department of Biology, MIT, Cambridge, MA, USA
| | - Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ömer H Yilmaz
- The David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology, MIT, Cambridge, MA, USA
| | - Pekka Katajisto
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland. .,Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland. .,Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
63
|
Seishima R, Barker N. A contemporary snapshot of intestinal stem cells and their regulation. Differentiation 2019; 108:3-7. [DOI: 10.1016/j.diff.2019.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/15/2019] [Accepted: 01/24/2019] [Indexed: 01/10/2023]
|
64
|
Christopher J, Thorsen AS, Abujudeh S, Lourenço FC, Kemp R, Potter PK, Morrissey E, Hazelwood L, Winton DJ. Quantifying Microsatellite Mutation Rates from Intestinal Stem Cell Dynamics in Msh2-Deficient Murine Epithelium. Genetics 2019; 212:655-665. [PMID: 31126976 PMCID: PMC6614890 DOI: 10.1534/genetics.119.302268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022] Open
Abstract
Microsatellite sequences have an enhanced susceptibility to mutation, and can act as sentinels indicating elevated mutation rates and increased risk of cancer. The probability of mutant fixation within the intestinal epithelium is dictated by a combination of stem cell dynamics and mutation rate. Here, we exploit this relationship to infer microsatellite mutation rates. First a sensitive, multiplexed, and quantitative method for detecting somatic changes in microsatellite length was developed that allowed the parallel detection of mutant [CA]n sequences from hundreds of low-input tissue samples at up to 14 loci. The method was applied to colonic crypts in Mus musculus, and enabled detection of mutant subclones down to 20% of the cellularity of the crypt (∼50 of 250 cells). By quantifying age-related increases in clone frequencies for multiple loci, microsatellite mutation rates in wild-type and Msh2-deficient epithelium were established. An average 388-fold increase in mutation per mitosis rate was observed in Msh2-deficient epithelium (2.4 × 10-2) compared to wild-type epithelium (6.2 × 10-5).
Collapse
Affiliation(s)
- Joseph Christopher
- Li Ka Shing Centre, Cancer Research UK Cambridge Institute, University of Cambridge, CB2 0RE, United Kingdom
| | - Ann-Sofie Thorsen
- Li Ka Shing Centre, Cancer Research UK Cambridge Institute, University of Cambridge, CB2 0RE, United Kingdom
| | - Sam Abujudeh
- Li Ka Shing Centre, Cancer Research UK Cambridge Institute, University of Cambridge, CB2 0RE, United Kingdom
| | - Filipe C Lourenço
- Li Ka Shing Centre, Cancer Research UK Cambridge Institute, University of Cambridge, CB2 0RE, United Kingdom
| | - Richard Kemp
- Li Ka Shing Centre, Cancer Research UK Cambridge Institute, University of Cambridge, CB2 0RE, United Kingdom
| | - Paul K Potter
- Department Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, OX3 0BP, United Kingdom
| | - Edward Morrissey
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS, United Kingdom
| | - Lee Hazelwood
- Li Ka Shing Centre, Cancer Research UK Cambridge Institute, University of Cambridge, CB2 0RE, United Kingdom
| | - Douglas J Winton
- Li Ka Shing Centre, Cancer Research UK Cambridge Institute, University of Cambridge, CB2 0RE, United Kingdom
| |
Collapse
|
65
|
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer cells with self-renewal capacity, that fuel tumor growth and contribute to the heterogeneous nature of tumors. First identified in hematological malignancies, CSC populations have to date been proposed in solid tumors in various organs. In vitro and in vivo assays, mouse genetic models, and more recently single-cell sequencing technologies and other '-omics' methodologies have not only facilitated the identification of novel CSC populations but also revealed and clarified novel properties of CSCs. Increasingly, both cell-autonomous and CSC niche factors are recognized as important contributors of CSC properties. The deepened understanding of CSC properties and characteristics would enable and facilitate the rational design of CSC-specific therapeutics that would, ideally, have high selectivity for cancer cells, eliminate tumor bulk, and prevent tumor recurrence. Addressing these issues would form some of the key challenges of the CSC research field in the coming years.
Collapse
|
66
|
van der Heijden M, Vermeulen L. Stem cells in homeostasis and cancer of the gut. Mol Cancer 2019; 18:66. [PMID: 30927915 PMCID: PMC6441158 DOI: 10.1186/s12943-019-0962-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
The intestinal epithelial lining is one of the most rapidly renewing cell populations in the body. As a result, the gut has been an attractive model to resolve key mechanisms in epithelial homeostasis. In particular the role of intestinal stem cells (ISCs) in the renewal process has been intensely studied. Interestingly, as opposed to the traditional stem cell theory, the ISC is not a static population but displays significant plasticity and in situations of tissue regeneration more differentiated cells can revert back to a stem cell state upon exposure to extracellular signals. Importantly, normal intestinal homeostasis provides important insight into mechanisms that drive colorectal cancer (CRC) development and growth. Specifically, the dynamics of cancer stem cells bear important resemblance to ISC functionality. In this review we present an overview of the current knowledge on ISCs in homeostasis and their role in malignant transformation. Also, we discuss the existence of stem cells in intestinal adenomas and CRC and how these cells contribute to (pre-)malignant growth. Furthermore, we will focus on new paradigms in the field of dynamical cellular hierarchies in CRC and the intimate relationship between tumor cells and their niche.
Collapse
Affiliation(s)
- Maartje van der Heijden
- Amsterdam UMC, University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Meibergdreef 9, 1105, Amsterdam, AZ, Netherlands
| | - Louis Vermeulen
- Amsterdam UMC, University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Meibergdreef 9, 1105, Amsterdam, AZ, Netherlands.
| |
Collapse
|
67
|
Michels BE, Mosa MH, Grebbin BM, Yepes D, Darvishi T, Hausmann J, Urlaub H, Zeuzem S, Kvasnicka HM, Oellerich T, Farin HF. Human colon organoids reveal distinct physiologic and oncogenic Wnt responses. J Exp Med 2019; 216:704-720. [PMID: 30792186 PMCID: PMC6400532 DOI: 10.1084/jem.20180823] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 11/28/2018] [Accepted: 01/18/2019] [Indexed: 12/17/2022] Open
Abstract
Constitutive Wnt activation upon loss of Adenoma polyposis coli (APC) acts as main driver of colorectal cancer (CRC). Targeting Wnt signaling has proven difficult because the pathway is crucial for homeostasis and stem cell renewal. To distinguish oncogenic from physiological Wnt activity, we have performed transcriptome and proteome profiling in isogenic human colon organoids. Culture in the presence or absence of exogenous ligand allowed us to discriminate receptor-mediated signaling from the effects of CRISPR/Cas9-induced APC loss. We could catalog two nonoverlapping molecular signatures that were stable at distinct levels of stimulation. Newly identified markers for normal stem/progenitor cells and adenomas were validated by immunohistochemistry and flow cytometry. We found that oncogenic Wnt signals are associated with good prognosis in tumors of the consensus molecular subtype 2 (CMS2). In contrast, receptor-mediated signaling was linked to CMS4 tumors and poor prognosis. Together, our data represent a valuable resource for biomarkers that allow more precise stratification of Wnt responses in CRC.
Collapse
Affiliation(s)
- Birgitta E Michels
- German Cancer Consortium, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- German Cancer Research Center, Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
- Faculty of Biological Sciences, Goethe University, Frankfurt am Main, Germany
| | - Mohammed H Mosa
- German Cancer Consortium, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- German Cancer Research Center, Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Britta M Grebbin
- German Cancer Consortium, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- German Cancer Research Center, Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Diego Yepes
- German Cancer Consortium, Germany
- German Cancer Research Center, Heidelberg, Germany
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt am Main, Germany
| | - Tahmineh Darvishi
- German Cancer Consortium, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- German Cancer Research Center, Heidelberg, Germany
| | - Johannes Hausmann
- Department of Internal Medicine I, Gastroenterology, Goethe University, Frankfurt am Main, Germany
| | - Henning Urlaub
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Zeuzem
- Department of Internal Medicine I, Gastroenterology, Goethe University, Frankfurt am Main, Germany
| | - Hans M Kvasnicka
- Senckenberg Institute of Pathology, Goethe University, Frankfurt am Main, Germany
| | - Thomas Oellerich
- German Cancer Consortium, Germany
- German Cancer Research Center, Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt am Main, Germany
| | - Henner F Farin
- German Cancer Consortium, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- German Cancer Research Center, Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
68
|
Mantovani G, Giardino E, Treppiedi D, Catalano R, Mangili F, Spada A, Arosio M, Peverelli E. Stem Cells in Pituitary Tumors: Experimental Evidence Supporting Their Existence and Their Role in Tumor Clinical Behavior. Front Endocrinol (Lausanne) 2019; 10:745. [PMID: 31708878 PMCID: PMC6823178 DOI: 10.3389/fendo.2019.00745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/14/2019] [Indexed: 11/13/2022] Open
Abstract
Although generally benign, pituitary tumors frequently show local invasiveness and resistance to pharmacological therapy. After the demonstration of the existence of pituitary gland stem cells, over the past decade, the presence of a stem cell subpopulation in pituitary tumors has been investigated, analogous to the cancer stem cell model developed for malignant tumors. This review recapitulates the experimental evidence supporting the existence of a population of stem-like cells in pituitary tumors, focusing on their potential role in tumor initiation, progression, recurrence and resistance to pharmacological therapy.
Collapse
Affiliation(s)
- Giovanna Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- *Correspondence: Giovanna Mantovani
| | - Elena Giardino
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Donatella Treppiedi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Rosa Catalano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- PhD Program in Endocrinological Sciences, Sapienza University of Rome, Rome, Italy
| | - Federica Mangili
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Anna Spada
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Maura Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Erika Peverelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
69
|
Lodestijn SC, Lenos KJ, Miedema DM, Bijlsma MF, Vermeulen L. Cancer stem cells: here, there, and everywhere. Mol Cell Oncol 2018; 6:1540235. [PMID: 30788417 PMCID: PMC6370381 DOI: 10.1080/23723556.2018.1540235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 11/21/2022]
Abstract
By using marker-free lineage tracing in combination with quantitative analysis, we recently revealed cancer stem cell functionality in established human colon cancer is not intrinsically defined, but fully spatiotemporally regulated.
Collapse
Affiliation(s)
- Sophie C Lodestijn
- Amsterdam UMC, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology & Metabolism, University of Amsterdam, Amsterdam, Netherlands
| | - Kristiaan J Lenos
- Amsterdam UMC, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology & Metabolism, University of Amsterdam, Amsterdam, Netherlands
| | - Daniël M Miedema
- Amsterdam UMC, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology & Metabolism, University of Amsterdam, Amsterdam, Netherlands
| | - Maarten F Bijlsma
- Amsterdam UMC, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology & Metabolism, University of Amsterdam, Amsterdam, Netherlands
| | - Louis Vermeulen
- Amsterdam UMC, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology & Metabolism, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
70
|
Lee JS, Kim WG. Potential protective effect of ALDH-1 stromal expression against early recurrence of operable breast cancers. Stem Cell Investig 2018; 5:43. [PMID: 30596083 DOI: 10.21037/sci.2018.11.03] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 09/29/2018] [Indexed: 01/16/2023]
Abstract
Background The emerging cancer stem cell (CSC) model proposes that the stem cell niche plays a major role in the risk of cancer recurrence. Enzymatic activity of aldehydes, including aldehyde dehydrogenase 1 (ALDH-1), has been used as a marker of normal and malignant breast stem cells (BSCs). However, the clinical implications of the expression of stem cell markers in the stroma have not yet been investigated. Methods To determine the relationships of ALDH-1 expression, the currently reliable BSCs marker, with clinical characteristics and survival, we used immunohistochemical staining of tissue microarrays from 180 stroma and epithelial cancer tissues in patients diagnosed with operable early breast cancer (stage 0-III). Results ALDH-1 expression was observed in 93.4% of the stromal cells and in 37.2% of the epithelial cells, and the expression levels between the two cell types were significantly correlated (P=0.001). The stromal expression of ALDH-1 was not correlated with any clinical factors, whereas epithelial expression was significantly correlated with a negative estrogen-receptor status (P<0.001), high proliferation based on Ki-67 expression (P<0.001), and younger age (P=0.04). After 27.8 months of follow up, negative stromal expression of ALDH-1 was significantly correlated with shorter overall survival (positive, 56.9±3.0 months vs. negative, 30.5±3.0 months; P=0.01). Conclusions Stromal ALDH-1 expression was not directly correlated with known clinical factors, but its expression may play a protective role against early recurrence. Further observation and large-scale studies are needed to validate the clinical implications of ALDH-1 in breast cancer.
Collapse
Affiliation(s)
- Jung Sun Lee
- Department of Surgery, Haeundae Paik Hospital, College of Medicine, Inje University, Busan 48108, Korea
| | - Woo Gyeong Kim
- Department of Pathology, Haeundae Paik Hospital, College of Medicine, Inje University, Busan 48108, Korea
| |
Collapse
|
71
|
Bankaitis ED, Ha A, Kuo CJ, Magness ST. Reserve Stem Cells in Intestinal Homeostasis and Injury. Gastroenterology 2018; 155:1348-1361. [PMID: 30118745 PMCID: PMC7493459 DOI: 10.1053/j.gastro.2018.08.016] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/17/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023]
Abstract
Renewal of the intestinal epithelium occurs approximately every week and requires a careful balance between cell proliferation and differentiation to maintain proper lineage ratios and support absorptive, secretory, and barrier functions. We review models used to study the mechanisms by which intestinal stem cells (ISCs) fuel the rapid turnover of the epithelium during homeostasis and might support epithelial regeneration after injury. In anatomically defined zones of the crypt stem cell niche, phenotypically distinct active and reserve ISC populations are believed to support homeostatic epithelial renewal and injury-induced regeneration, respectively. However, other cell types previously thought to be committed to differentiated states might also have ISC activity and participate in regeneration. Efforts are underway to reconcile the proposed relatively strict hierarchical relationships between reserve and active ISC pools and their differentiated progeny; findings from models provide evidence for phenotypic plasticity that is common among many if not all crypt-resident intestinal epithelial cells. We discuss the challenges to consensus on ISC nomenclature, technical considerations, and limitations inherent to methodologies used to define reserve ISCs, and the need for standardized metrics to quantify and compare the relative contributions of different epithelial cell types to homeostatic turnover and post-injury regeneration. Increasing our understanding of the high-resolution genetic and epigenetic mechanisms that regulate reserve ISC function and cell plasticity will help refine these models and could affect approaches to promote tissue regeneration after intestinal injury.
Collapse
Affiliation(s)
- Eric D. Bankaitis
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC,Center for Gastrointestinal Biology & Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Andrew Ha
- Department of Medicine, Hematology Division, and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305,Department of Biology, Stanford University, Stanford, CA 94305
| | - Calvin J. Kuo
- Department of Medicine, Hematology Division, and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305,Co-Corresponding Authors: Calvin J. Kuo: , Scott T. Magness: , Calvin J. Kuo: Stanford University School of Medicine, Lokey Stem Cell Research Building G2034A, 265 Campus Drive, Stanford, CA 94305; Scott T. Magness, University of North Carolina at Chapel Hill, 111 Mason Farm Rd. CB# 7032, MBRB Rm 4337, Chapel Hill, NC, 27599
| | - Scott T. Magness
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC,Joint Departments of Biomedical Engineering, University of North Carolina at Chapel Hill/North Carolina State University, Chapel Hill, NC,Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC,Center for Gastrointestinal Biology & Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC,Co-Corresponding Authors: Calvin J. Kuo: , Scott T. Magness: , Calvin J. Kuo: Stanford University School of Medicine, Lokey Stem Cell Research Building G2034A, 265 Campus Drive, Stanford, CA 94305; Scott T. Magness, University of North Carolina at Chapel Hill, 111 Mason Farm Rd. CB# 7032, MBRB Rm 4337, Chapel Hill, NC, 27599
| |
Collapse
|
72
|
Al Bakir I, Curtius K, Graham TA. From Colitis to Cancer: An Evolutionary Trajectory That Merges Maths and Biology. Front Immunol 2018; 9:2368. [PMID: 30386335 PMCID: PMC6198656 DOI: 10.3389/fimmu.2018.02368] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/24/2018] [Indexed: 12/25/2022] Open
Abstract
Patients with inflammatory bowel disease have an increased risk of developing colorectal cancer, and this risk is related to disease duration, extent, and cumulative inflammation burden. Carcinogenesis follows the principles of Darwinian evolution, whereby somatic cells acquire genomic alterations that provide them with a survival and/or growth advantage. Colitis represents a unique situation whereby routine surveillance endoscopy provides a serendipitous opportunity to observe somatic evolution over space and time in vivo in a human organ. Moreover, somatic evolution in colitis is evolution in the ‘fast lane': the repeated rounds of inflammation and mucosal healing that are characteristic of the disease accelerate the evolutionary process and likely provide a strong selective pressure for inflammation-adapted phenotypic traits. In this review, we discuss the evolutionary dynamics of pre-neoplastic clones in colitis with a focus on how measuring their evolutionary trajectories could deliver a powerful way to predict future cancer occurrence. Measurements of somatic evolution require an interdisciplinary approach that combines quantitative measurement of the genotype, phenotype and the microenvironment of somatic cells–paying particular attention to spatial heterogeneity across the colon–together with mathematical modeling to interpret these data within an evolutionary framework. Here we take a practical approach in discussing how and why the different “evolutionary ingredients” can and should be measured, together with our viewpoint on subsequent translation into clinical practice. We highlight the open questions in the evolution of colitis-associated cancer as a stimulus for future work.
Collapse
Affiliation(s)
- Ibrahim Al Bakir
- Evolution and Cancer Laboratory, Centre for Tumour Biology, Barts Cancer Institute, London, United Kingdom.,Inflammatory Bowel Disease Unit, St Mark's Hospital, Harrow, United Kingdom
| | - Kit Curtius
- Evolution and Cancer Laboratory, Centre for Tumour Biology, Barts Cancer Institute, London, United Kingdom
| | - Trevor A Graham
- Evolution and Cancer Laboratory, Centre for Tumour Biology, Barts Cancer Institute, London, United Kingdom
| |
Collapse
|
73
|
Affiliation(s)
- D J Flanagan
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, Scotland, UK
| | - M C Hodder
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, Scotland, UK
| | - O J Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, Scotland, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK.
| |
Collapse
|
74
|
Lenos KJ, Miedema DM, Lodestijn SC, Nijman LE, van den Bosch T, Romero Ros X, Lourenço FC, Lecca MC, van der Heijden M, van Neerven SM, van Oort A, Leveille N, Adam RS, de Sousa E Melo F, Otten J, Veerman P, Hypolite G, Koens L, Lyons SK, Stassi G, Winton DJ, Medema JP, Morrissey E, Bijlsma MF, Vermeulen L. Stem cell functionality is microenvironmentally defined during tumour expansion and therapy response in colon cancer. Nat Cell Biol 2018; 20:1193-1202. [PMID: 30177776 PMCID: PMC6163039 DOI: 10.1038/s41556-018-0179-z] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 07/26/2018] [Indexed: 12/24/2022]
Abstract
Solid malignancies have been speculated to depend on cancer stem cells (CSCs) for expansion and relapse after therapy. Here we report on quantitative analyses of lineage tracing data from primary colon cancer xenograft tissue to assess CSC functionality in a human solid malignancy. The temporally obtained clone size distribution data support a model in which stem cell function in established cancers is not intrinsically, but is entirely spatiotemporally orchestrated. Functional stem cells that drive tumour expansion predominantly reside at the tumour edge, close to cancer-associated fibroblasts. Hence, stem cell properties change in time depending on the cell location. Furthermore, although chemotherapy enriches for cells with a CSC phenotype, in this context functional stem cell properties are also fully defined by the microenvironment. To conclude, we identified osteopontin as a key cancer-associated fibroblast-produced factor that drives in situ clonogenicity in colon cancer.
Collapse
Affiliation(s)
- Kristiaan J Lenos
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands
| | - Daniël M Miedema
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands
| | - Sophie C Lodestijn
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands
| | - Lisanne E Nijman
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands
| | - Tom van den Bosch
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands
| | - Xavier Romero Ros
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands
| | - Filipe C Lourenço
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Maria C Lecca
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands
| | - Maartje van der Heijden
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands
| | - Sanne M van Neerven
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands
| | - Anita van Oort
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands
| | - Nicolas Leveille
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands
| | - Ronja S Adam
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands
| | | | - Joy Otten
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands
| | - Patrick Veerman
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands
| | - Guillaume Hypolite
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands
| | - Lianne Koens
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Scott K Lyons
- Preclinical Imaging, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Giorgio Stassi
- Cellular & Molecular Pathophysiology Laboratory, Department of Surgical & Oncological Sciences, University of Palermo, Palermo, Italy
| | - Douglas J Winton
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Jan Paul Medema
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands
| | - Edward Morrissey
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
| | - Maarten F Bijlsma
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands
| | - Louis Vermeulen
- Amsterdam UMC, University of Amsterdam, LEXOR, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology & Metabolism, Amsterdam, The Netherlands.
| |
Collapse
|
75
|
Tomic G, Morrissey E, Kozar S, Ben-Moshe S, Hoyle A, Azzarelli R, Kemp R, Chilamakuri CSR, Itzkovitz S, Philpott A, Winton DJ. Phospho-regulation of ATOH1 Is Required for Plasticity of Secretory Progenitors and Tissue Regeneration. Cell Stem Cell 2018; 23:436-443.e7. [PMID: 30100168 PMCID: PMC6138952 DOI: 10.1016/j.stem.2018.07.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/25/2018] [Accepted: 07/06/2018] [Indexed: 01/07/2023]
Abstract
The intestinal epithelium is largely maintained by self-renewing stem cells but with apparently committed progenitors also contributing, particularly following tissue damage. However, the mechanism of, and requirement for, progenitor plasticity in mediating pathological response remain unknown. Here we show that phosphorylation of the transcription factor Atoh1 is required for both the contribution of secretory progenitors to the stem cell pool and for a robust regenerative response. As confirmed by lineage tracing, Atoh1+ cells (Atoh1(WT)CreERT2 mice) give rise to multilineage intestinal clones both in the steady state and after tissue damage. In a phosphomutant Atoh1(9S/T-A)CreERT2 line, preventing phosphorylation of ATOH1 protein acts to promote secretory differentiation and inhibit the contribution of progenitors to self-renewal. Following chemical colitis, Atoh1+ cells of Atoh1(9S/T-A)CreERT2 mice have reduced clonogenicity that affects overall regeneration. Progenitor plasticity maintains robust self-renewal in the intestinal epithelium, and the balance between stem and progenitor fate is directly coordinated by ATOH1 multisite phosphorylation.
Collapse
Affiliation(s)
- Goran Tomic
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Edward Morrissey
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Sarah Kozar
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Shani Ben-Moshe
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Alice Hoyle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Roberta Azzarelli
- Department of Oncology, Hutchison/Medical Research Council (MRC) Research Centre, University of Cambridge, Cambridge CB2 0XZ, UK; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Richard Kemp
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | | | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Anna Philpott
- Department of Oncology, Hutchison/Medical Research Council (MRC) Research Centre, University of Cambridge, Cambridge CB2 0XZ, UK; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK.
| | - Douglas J Winton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK.
| |
Collapse
|
76
|
Lloyd-Lewis B, Davis FM, Harris OB, Hitchcock JR, Watson CJ. Neutral lineage tracing of proliferative embryonic and adult mammary stem/progenitor cells. Development 2018; 145:145/14/dev164079. [PMID: 30045917 PMCID: PMC6078330 DOI: 10.1242/dev.164079] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 06/19/2018] [Indexed: 01/08/2023]
Abstract
Mammary gland development occurs over multiple phases, beginning in the mammalian embryo and continuing throughout reproductive life. The remarkable morphogenetic capacity of the mammary gland at each stage of development is attributed to the activities of distinct populations of mammary stem cells (MaSCs) and progenitor cells. However, the relationship between embryonic and adult MaSCs, and their fate during different waves of mammary gland morphogenesis, remains unclear. By employing a neutral, low-density genetic labelling strategy, we characterised the contribution of proliferative stem/progenitor cells to embryonic, pubertal and reproductive mammary gland development. Our findings further support a model of lineage restriction of MaSCs in the postnatal mammary gland, and highlight extensive redundancy and heterogeneity within the adult stem/progenitor cell pool. Furthermore, our data suggest extensive multiplicity in their foetal precursors that give rise to the primordial mammary epithelium before birth. In addition, using a single-cell labelling approach, we revealed the extraordinary capacity of a single embryonic MaSC to contribute to postnatal ductal development. Together, these findings provide tantalising new insights into the disparate and stage-specific contribution of distinct stem/progenitor cells to mammary gland development. Summary: Neutral, low-density lineage tracing of proliferative mammary stem and progenitor cells during embryonic, pubertal and reproductive mammary gland development reveal the disparate and stage-specific contribution of distinct stem/progenitor cells.
Collapse
Affiliation(s)
| | - Felicity M Davis
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Olivia B Harris
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK.,Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | | | - Christine J Watson
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK .,Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| |
Collapse
|
77
|
Mahdipour-Shirayeh A, Shahriyari L. Modeling Cell Dynamics in Colon and Intestinal Crypts: The Significance of Central Stem Cells in Tumorigenesis. Bull Math Biol 2018; 80:2273-2305. [PMID: 29978308 DOI: 10.1007/s11538-018-0457-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 06/18/2018] [Indexed: 01/14/2023]
Abstract
Colon and intestinal crypts have been widely chosen to study cell dynamics because of their fairly simple structures. In the colon and intestinal crypts, stem cells (SCs) are located at very bottom of the crypt, fully differentiated cells (FDs) are located in the top of the crypt, and transit-amplifying cells (TAs) are in the middle of the crypt between FDs and SCs. Recently, it has been discovered that there are two types of stem cells in the intestinal crypts: central stem cells (CeSCs) and border stem cells. To investigate dynamics of mutants in colon and intestinal crypts, we develop a four-compartmental stochastic model, which includes two SC compartments, and TAs and FDs compartments. We calculate the probability of the progeny of marked or mutant cells located at each of these compartments taking over the entire crypt or being washed out from the crypt. We found that the progeny of CeSCs will take over the entire crypt with a probability close to one. Interestingly, the progeny of advantageous mutant TAs and FDs will be washed out faster than disadvantageous mutants. Saliently, the model predicts that the time that the progeny of wild-type central stem cells will take over the mouse intestinal crypt is around 60 days, which is in perfect agreement with an experimental observation.
Collapse
Affiliation(s)
- Ali Mahdipour-Shirayeh
- Biomedical Research Group, Applied Mathematics Department, University of Waterloo, Waterloo, ON, Canada. .,Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| | - Leili Shahriyari
- Mathematical Biosciences Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
78
|
Abstract
Cancer stem cells are a subpopulation of cells within a tumour believed to confer resistance to standard cancer therapies. Although many studies have addressed the specific mechanisms of tumour recurrence driven by cancer stem cells, cellular metabolism is an often-neglected attribute. The metabolic features of cancer stem cells are still poorly understood, and they thus constitute a promising field in cancer research. The findings published so far point to a distinct metabolic phenotype in cancer stem cells, which might depend on the cancer type, the model system used or even the experimental design, and several controversies still need to be tackled. This Review describes the metabolic phenotype of cancer stem cells by addressing the main metabolic traits in different tumours, including glycolysis and oxidative, glutamine, fatty acid and amino acid metabolism. In the context of these pathways, we also mention the specific alterations in metabolic enzymes and metabolite levels that have a role in the regulation of cancer stemness. Determining the role of metabolism in supporting resistance to therapy driven by cancer stem cells can raise the opportunity for novel therapeutic targets, which might not only eliminate this resistant population, but, more importantly, eradicate the whole tumour in a relapse-free scenario. Summary: The intrinsic mechanisms that define cancer stem cells, specifically their metabolic properties, are summarized in this Review, in an attempt to point out the benefit of targeting metabolism as a novel therapeutic approach.
Collapse
Affiliation(s)
- Joana Peixoto
- Cancer Signalling and Metabolism Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, 4200-135 Porto, Portugal.,Cancer Signalling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-465 Porto, Portugal.,Medical Faculty of the University of Porto, 4200-319 Porto, Portugal.,Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, 97074 Würzburg, Germany
| | - Jorge Lima
- Cancer Signalling and Metabolism Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, 4200-135 Porto, Portugal .,Cancer Signalling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-465 Porto, Portugal.,Medical Faculty of the University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
79
|
Abstract
Stem cell dynamics define the probability of accumulating mutations within the intestinal epithelium. In this issue of Cell Stem Cell, Nicholson et al. (2018) report that human intestinal stem cell dynamics differ significantly from those of mice and establish that oncogenic mutations are more likely to expand; therefore, "normal" epithelium may carry multiple mutations.
Collapse
Affiliation(s)
| | | | - Owen J Sansom
- CRUK Beatson Institute, Glasgow G61 1BD, UK; Institute of Cancer Sciences (ICS), University of Glasgow, Glasgow G61 1QH, UK.
| |
Collapse
|
80
|
Nicholson AM, Olpe C, Hoyle A, Thorsen AS, Rus T, Colombé M, Brunton-Sim R, Kemp R, Marks K, Quirke P, Malhotra S, Ten Hoopen R, Ibrahim A, Lindskog C, Myers MB, Parsons B, Tavaré S, Wilkinson M, Morrissey E, Winton DJ. Fixation and Spread of Somatic Mutations in Adult Human Colonic Epithelium. Cell Stem Cell 2018; 22:909-918.e8. [PMID: 29779891 PMCID: PMC5989058 DOI: 10.1016/j.stem.2018.04.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 02/16/2018] [Accepted: 04/23/2018] [Indexed: 12/21/2022]
Abstract
We investigated the means and timing by which mutations become fixed in the human colonic epithelium by visualizing somatic clones and mathematical inference. Fixation requires two sequential steps. First, one of approximately seven active stem cells residing within each colonic crypt has to be mutated. Second, the mutated stem cell has to replace neighbors to populate the entire crypt in a process that takes several years. Subsequent clonal expansion due to crypt fission is infrequent for neutral mutations (around 0.7% of all crypts undergo fission in a single year). Pro-oncogenic mutations subvert both stem cell replacement to accelerate fixation and clonal expansion by crypt fission to achieve high mutant allele frequencies with age. The benchmarking of these behaviors allows the advantage associated with different gene-specific mutations to be compared irrespective of the cellular mechanisms by which they are conferred.
Collapse
Affiliation(s)
- Anna M Nicholson
- Cancer Research-UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Cora Olpe
- Cancer Research-UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; Wellcome Trust-Medical Research Council, Cambridge Stem Cell Institute, Cambridge, UK
| | - Alice Hoyle
- Cancer Research-UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Ann-Sofie Thorsen
- Cancer Research-UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Teja Rus
- Cancer Research-UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Mathilde Colombé
- Cancer Research-UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | | | - Richard Kemp
- Cancer Research-UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Kate Marks
- Pathology and Tumour Biology, Level 4, Wellcome Trust Brenner Building, St. James University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Phil Quirke
- Pathology and Tumour Biology, Level 4, Wellcome Trust Brenner Building, St. James University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | | | | | - Ashraf Ibrahim
- Department of Histopathology, Box 235, CUHFT, Cambridge, UK
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala 751 85, Sweden
| | - Meagan B Myers
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, HFT-120, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Barbara Parsons
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, HFT-120, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Simon Tavaré
- Cancer Research-UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Mark Wilkinson
- Norwich Research Park BioRepository, James Watson Road, Norwich NR4 7UQ, UK
| | - Edward Morrissey
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK.
| | - Douglas J Winton
- Cancer Research-UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK.
| |
Collapse
|
81
|
West JD, Mort RL, Hill RE, Morley SD, Collinson JM. Computer simulation of neutral drift among limbal epithelial stem cells of mosaic mice. Stem Cell Res 2018; 30:1-11. [PMID: 29777801 PMCID: PMC6049397 DOI: 10.1016/j.scr.2018.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 02/08/2023] Open
Abstract
The use of mice that are mosaic for reporter gene expression underlies many lineage-tracing studies in stem cell biology. For example, using mosaic LacZ reporter mice, it was shown that limbal epithelial stem cells (LESCs) around the periphery of the cornea maintain radial sectors of the corneal epithelium and that radial stripe numbers declined with age. Originally, the corneal results were interpreted as progressive, age-related loss or irreversible inactivation of some LESC clones. In this study we used computer simulations to show that these results could also be explained by stochastic replacement of LESCs by neighbouring LESCs, leading to neutral drift of LESC populations. This was shown to reduce the number of coherent clones of LESCs and hence would coarsen the mosaic pattern in the corneal epithelium without reducing the absolute number of LESCs. Simulations also showed that corrected stripe numbers declined more slowly when LESCs were grouped non-randomly and that mosaicism was rarely lost unless simulated LESC numbers were unrealistically low. Possible reasons why age-related changes differ between mosaic corneal epithelia and other systems, such as adrenal cortices and intestinal crypts, are discussed. Age-related reduction of corneal stripes in mosaic mice was simulated. Stem cell loss and/or stem cell replacement reduced simulated stripe numbers. Stem cell replacement, without reducing stem cell numbers, caused neutral drift. Clumping of stem cells into larger groups caused slower decline in stripe numbers. Replacement rarely caused loss of mosaicism unless there were few stem cells.
Collapse
Affiliation(s)
- John D West
- Centre for Integrative Physiology, University of Edinburgh Medical School, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK.
| | - Richard L Mort
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Bailrigg, Lancaster LA1 4YG, UK
| | - Robert E Hill
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Steven D Morley
- Division of Health Sciences, University of Edinburgh Medical School, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - J Martin Collinson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
82
|
Carroll TD, Newton IP, Chen Y, Blow JJ, Näthke I. Lgr5 + intestinal stem cells reside in an unlicensed G 1 phase. J Cell Biol 2018; 217:1667-1685. [PMID: 29599208 PMCID: PMC5940300 DOI: 10.1083/jcb.201708023] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/23/2018] [Accepted: 02/27/2018] [Indexed: 12/21/2022] Open
Abstract
During late mitosis and the early G1 phase, the origins of replication are licensed by binding to double hexamers of MCM2-7. In this study, we investigated how licensing and proliferative commitment are coupled in the epithelium of the small intestine. We developed a method for identifying cells in intact tissue containing DNA-bound MCM2-7. Interphase cells above the transit-amplifying compartment had no DNA-bound MCM2-7, but still expressed the MCM2-7 protein, suggesting that licensing is inhibited immediately upon differentiation. Strikingly, we found most proliferative Lgr5+ stem cells are in an unlicensed state. This suggests that the elongated cell-cycle of intestinal stem cells is caused by an increased G1 length, characterized by dormant periods with unlicensed origins. Significantly, the unlicensed state is lost in Apc-mutant epithelium, which lacks a functional restriction point, causing licensing immediately upon G1 entry. We propose that the unlicensed G1 phase of intestinal stem cells creates a temporal window when proliferative fate decisions can be made.
Collapse
Affiliation(s)
- Thomas D Carroll
- Cell and Developmental Biology, University of Dundee, Dundee, Scotland, UK
| | - Ian P Newton
- Cell and Developmental Biology, University of Dundee, Dundee, Scotland, UK
| | - Yu Chen
- Cell and Developmental Biology, University of Dundee, Dundee, Scotland, UK
| | - J Julian Blow
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, Scotland, UK
| | - Inke Näthke
- Cell and Developmental Biology, University of Dundee, Dundee, Scotland, UK
| |
Collapse
|
83
|
Stamp C, Zupanic A, Sachdeva A, Stoll EA, Shanley DP, Mathers JC, Kirkwood TBL, Heer R, Simons BD, Turnbull DM, Greaves LC. Predominant Asymmetrical Stem Cell Fate Outcome Limits the Rate of Niche Succession in Human Colonic Crypts. EBioMedicine 2018; 31:166-173. [PMID: 29748033 PMCID: PMC6013780 DOI: 10.1016/j.ebiom.2018.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/20/2018] [Accepted: 04/19/2018] [Indexed: 01/10/2023] Open
Abstract
Stem cell (SC) dynamics within the human colorectal crypt SC niche remain poorly understood, with previous studies proposing divergent hypotheses on the predominant mode of SC self-renewal and the rate of SC replacement. Here we use age-related mitochondrial oxidative phosphorylation (OXPHOS) defects to trace clonal lineages within human colorectal crypts across the adult life-course. By resolving the frequency and size distribution of OXPHOS-deficient clones, quantitative analysis shows that, in common with mouse, long-term maintenance of the colonic epithelial crypt relies on stochastic SC loss and replacement mediated by competition for limited niche access. We find that the colonic crypt is maintained by ~5 effective SCs. However, with a SC loss/replacement rate estimated to be slower than once per year, our results indicate that the vast majority of individual SC divisions result in asymmetric fate outcome. These findings provide a quantitative platform to detect and study deviations from human colorectal crypt SC niche homeostasis during the process of colorectal carcinogenesis.
Collapse
Affiliation(s)
- Craig Stamp
- LLHW Centre for Ageing and Vitality, Newcastle University Institute for Ageing, The Medical School, Newcastle upon Tyne NE2 4HH, UK; Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Anze Zupanic
- Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf, Switzerland
| | - Ashwin Sachdeva
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE2 4AD, UK
| | - Elizabeth A Stoll
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Daryl P Shanley
- Institute of Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - John C Mathers
- LLHW Centre for Ageing and Vitality, Newcastle University Institute for Ageing, The Medical School, Newcastle upon Tyne NE2 4HH, UK; Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Thomas B L Kirkwood
- Institute of Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Rakesh Heer
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE2 4AD, UK
| | - Benjamin D Simons
- Cavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK; Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Wellcome Trust/Medical Research Council SC Institute, Cambridge CB2 1QR, UK
| | - Doug M Turnbull
- LLHW Centre for Ageing and Vitality, Newcastle University Institute for Ageing, The Medical School, Newcastle upon Tyne NE2 4HH, UK; Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Laura C Greaves
- LLHW Centre for Ageing and Vitality, Newcastle University Institute for Ageing, The Medical School, Newcastle upon Tyne NE2 4HH, UK; Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
84
|
Huels DJ, Bruens L, Hodder MC, Cammareri P, Campbell AD, Ridgway RA, Gay DM, Solar-Abboud M, Faller WJ, Nixon C, Zeiger LB, McLaughlin ME, Morrissey E, Winton DJ, Snippert HJ, van Rheenen J, Sansom OJ. Wnt ligands influence tumour initiation by controlling the number of intestinal stem cells. Nat Commun 2018; 9:1132. [PMID: 29556067 PMCID: PMC5859272 DOI: 10.1038/s41467-018-03426-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 02/13/2018] [Indexed: 01/08/2023] Open
Abstract
Many epithelial stem cell populations follow a pattern of stochastic stem cell divisions called 'neutral drift'. It is hypothesised that neutral competition between stem cells protects against the acquisition of deleterious mutations. Here we use a Porcupine inhibitor to reduce Wnt secretion at a dose where intestinal homoeostasis is maintained despite a reduction of Lgr5+ stem cells. Functionally, there is a marked acceleration in monoclonal conversion, so that crypts become rapidly derived from a single stem cell. Stem cells located further from the base are lost and the pool of competing stem cells is reduced. We tested whether this loss of stem cell competition would modify tumorigenesis. Reduction of Wnt ligand secretion accelerates fixation of Apc-deficient cells within the crypt leading to accelerated tumorigenesis. Therefore, ligand-based Wnt signalling influences the number of stem cells, fixation speed of Apc mutations and the speed and likelihood of adenoma formation.
Collapse
Affiliation(s)
- D J Huels
- CRUK Beatson Institute, Glasgow, G61 1BD, UK
| | - L Bruens
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT, Utrecht, The Netherlands
- Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands
- Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, 3584 CG, Utrecht, The Netherlands
| | - M C Hodder
- CRUK Beatson Institute, Glasgow, G61 1BD, UK
| | - P Cammareri
- CRUK Beatson Institute, Glasgow, G61 1BD, UK
| | | | - R A Ridgway
- CRUK Beatson Institute, Glasgow, G61 1BD, UK
| | - D M Gay
- CRUK Beatson Institute, Glasgow, G61 1BD, UK
| | | | - W J Faller
- CRUK Beatson Institute, Glasgow, G61 1BD, UK
| | - C Nixon
- CRUK Beatson Institute, Glasgow, G61 1BD, UK
| | - L B Zeiger
- CRUK Beatson Institute, Glasgow, G61 1BD, UK
| | - M E McLaughlin
- Oncology Translational Research, Novartis Institutes for Biomedical Research, Cambridge, MA, 02139, USA
| | - E Morrissey
- MRC Weatherall Institute of Molecular Medicine University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK
| | - D J Winton
- CRUK Cambridge Institute, Cambridge, CB2 0RE, UK
| | - H J Snippert
- Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, 3584 CG, Utrecht, The Netherlands
| | - J van Rheenen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT, Utrecht, The Netherlands
- Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands
| | - O J Sansom
- CRUK Beatson Institute, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences (ICS), University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
85
|
Cortina C, Turon G, Stork D, Hernando-Momblona X, Sevillano M, Aguilera M, Tosi S, Merlos-Suárez A, Stephan-Otto Attolini C, Sancho E, Batlle E. A genome editing approach to study cancer stem cells in human tumors. EMBO Mol Med 2018; 9:869-879. [PMID: 28468934 PMCID: PMC5494503 DOI: 10.15252/emmm.201707550] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The analysis of stem cell hierarchies in human cancers has been hampered by the impossibility of identifying or tracking tumor cell populations in an intact environment. To overcome this limitation, we devised a strategy based on editing the genomes of patient-derived tumor organoids using CRISPR/Cas9 technology to integrate reporter cassettes at desired marker genes. As proof of concept, we engineered human colorectal cancer (CRC) organoids that carry EGFP and lineage-tracing cassettes knocked in the LGR5 locus. Analysis of LGR5-EGFP+ cells isolated from organoid-derived xenografts demonstrated that these cells express a gene program similar to that of normal intestinal stem cells and that they propagate the disease to recipient mice very efficiently. Lineage-tracing experiments showed that LGR5+ CRC cells self-renew and generate progeny over long time periods that undergo differentiation toward mucosecreting- and absorptive-like phenotypes. These genetic experiments confirm that human CRCs adopt a hierarchical organization reminiscent of that of the normal colonic epithelium. The strategy described herein may have broad applications to study cell heterogeneity in human tumors.
Collapse
Affiliation(s)
- Carme Cortina
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Gemma Turon
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Diana Stork
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Xavier Hernando-Momblona
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marta Sevillano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mònica Aguilera
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sébastien Tosi
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anna Merlos-Suárez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Elena Sancho
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain .,Institució Catalana de Recerca i Estudis Avançats (ICREA) and CIBER-ONC, Barcelona, Spain
| |
Collapse
|
86
|
Renardy M, Jilkine A, Shahriyari L, Chou CS. Control of cell fraction and population recovery during tissue regeneration in stem cell lineages. J Theor Biol 2018; 445:33-50. [PMID: 29470992 DOI: 10.1016/j.jtbi.2018.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/24/2018] [Accepted: 02/19/2018] [Indexed: 12/20/2022]
Abstract
Multicellular tissues are continually turning over, and homeostasis is maintained through regulated proliferation and differentiation of stem cells and progenitors. Following tissue injury, a dramatic increase in cell proliferation is commonly observed, resulting in rapid restoration of tissue size. This regulation is thought to occur via multiple feedback loops acting on cell self-renewal or differentiation. Models of ordinary differential equations have been widely used to study the cell lineage system. Prior modeling studies have suggested that loss of homeostasis and initiation of tumorigenesis can be contributed to the loss of control of these processes, and the rate of symmetric versus asymmetric division of the stem cells may also be altered. While most of the previous works focused on analysis of stability, existence and uniqueness of steady states of multistage cell lineage models, in this work we attempt to understand the cell lineage model from a different perspective. We compare three variants of hierarchical stem cell lineage tissue models with different combinations of negative feedbacks and use sensitivity analysis to examine the possible strategies for the cells to achieve certain performance objectives. Our results suggest that multiple negative feedback loops must be present in the stem cell lineage to keep the fractions of stem cells to differentiated cells in the total population as robust as possible to variations in cell division parameters, and to minimize the time for tissue recovery in a non-oscillatory manner.
Collapse
Affiliation(s)
- Marissa Renardy
- Department of Mathematics, Ohio State University, Columbus, OH, USA
| | - Alexandra Jilkine
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, USA
| | - Leili Shahriyari
- Mathematical Biosciences Institute, Ohio State University, Columbus, OH, USA
| | - Ching-Shan Chou
- Department of Mathematics, Ohio State University, Columbus, OH, USA; Mathematical Biosciences Institute, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
87
|
Iqbal W, Alkarim S, AlHejin A, Mukhtar H, Saini KS. Targeting signal transduction pathways of cancer stem cells for therapeutic opportunities of metastasis. Oncotarget 2018; 7:76337-76353. [PMID: 27486983 PMCID: PMC5342819 DOI: 10.18632/oncotarget.10942] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/13/2016] [Indexed: 12/11/2022] Open
Abstract
Tumor comprises of heterogeneous population of cells where not all the disseminated cancer cells have the prerogative and "in-build genetic cues" to form secondary tumors. Cells with stem like properties complemented by key signaling molecules clearly have shown to exhibit selective growth advantage to form tumors at distant metastatic sites. Thus, defining the role of cancer stem cells (CSC) in tumorigenesis and metastasis is emerging as a major thrust area for therapeutic intervention. Precise relationship and regulatory mechanisms operating in various signal transduction pathways during cancer dissemination, extravasation and angiogenesis still remain largely enigmatic. How the crosstalk amongst circulating tumor cells (CTC), epithelial mesenchymal transition (EMT) process and CSC is coordinated for initiating the metastasis at secondary tissues, and during cancer relapse could be of great therapeutic interest. The signal transduction mechanisms facilitating the dissemination, infiltration of CSC into blood stream, extravasations, progression of metastasis phenotype and angiogenesis, at distant organs, are the key pathologically important vulnerabilities being elucidated. Therefore, current new drug discovery focus has shifted towards finding "key driver genes" operating in parallel signaling pathways, during quiescence, survival and maintenance of stemness in CSC. Understanding these mechanisms could open new horizons for tackling the issue of cancer recurrence and metastasis-the cause of ~90% cancer associated mortality. To design futuristic & targeted therapies, we propose a multi-pronged strategy involving small molecules, RNA interference, vaccines, antibodies and other biotechnological modalities against CSC and the metastatic signal transduction cascade.
Collapse
Affiliation(s)
- Waqas Iqbal
- Embryonic and Cancer Stem Cell Research Group, Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saleh Alkarim
- Embryonic and Cancer Stem Cell Research Group, Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed AlHejin
- Embryonic and Cancer Stem Cell Research Group, Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hasan Mukhtar
- Embryonic and Cancer Stem Cell Research Group, Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Dermatology, University of Wisconsin Medical Sciences Center, Madison, WI, USA
| | - Kulvinder S Saini
- Embryonic and Cancer Stem Cell Research Group, Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,School of Biotechnology, Eternal University, Baru Sahib, Himachal Pradesh, India
| |
Collapse
|
88
|
Nalapareddy K, Nattamai KJ, Kumar RS, Karns R, Wikenheiser-Brokamp KA, Sampson LL, Mahe MM, Sundaram N, Yacyshyn MB, Yacyshyn B, Helmrath MA, Zheng Y, Geiger H. Canonical Wnt Signaling Ameliorates Aging of Intestinal Stem Cells. Cell Rep 2017; 18:2608-2621. [PMID: 28297666 PMCID: PMC5987258 DOI: 10.1016/j.celrep.2017.02.056] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/10/2017] [Accepted: 02/16/2017] [Indexed: 12/30/2022] Open
Abstract
Although intestinal homeostasis is maintained by intestinal stem cells (ISCs), regeneration is impaired upon aging. Here, we first uncover changes in intestinal architecture, cell number, and cell composition upon aging. Second, we identify a decline in the regenerative capacity of ISCs upon aging because of a decline in canonical Wnt signaling in ISCs. Changes in expression of Wnts are found in stem cells themselves and in their niche, including Paneth cells and mesenchyme. Third, reactivating canonical Wnt signaling enhances the function of both murine and human ISCs and, thus, ameliorates aging-associated phenotypes of ISCs in an organoid assay. Our data demonstrate a role for impaired Wnt signaling in physiological aging of ISCs and further identify potential therapeutic avenues to improve ISC regenerative potential upon aging.
Collapse
Affiliation(s)
- Kodandaramireddy Nalapareddy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA
| | - Kalpana J Nattamai
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA
| | - Rupali S Kumar
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA
| | - Rebekah Karns
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA
| | - Kathryn A Wikenheiser-Brokamp
- Divisions of Pathology and Laboratory Medicine and Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center and Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Leesa L Sampson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA
| | - Maxime M Mahe
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA
| | - Nambirajan Sundaram
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA
| | - Mary-Beth Yacyshyn
- Division of Digestive Diseases, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Bruce Yacyshyn
- Division of Digestive Diseases, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Michael A Helmrath
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA
| | - Hartmut Geiger
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA; Institute for Molecular Medicine, Stem Cells, and Aging and Aging Research Center, Ulm University, 89081 Ulm, Germany.
| |
Collapse
|
89
|
Keyes BE, Fuchs E. Stem cells: Aging and transcriptional fingerprints. J Cell Biol 2017; 217:79-92. [PMID: 29070608 PMCID: PMC5748991 DOI: 10.1083/jcb.201708099] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 12/31/2022] Open
Abstract
Keyes and Fuchs discuss the decline in stem cell renewal and function with aging and the ensuing consequences on tissue homeostasis and regeneration. Stem cells are imbued with unique qualities. They have the capacity to propagate themselves through symmetric divisions and to divide asymmetrically to engender new cells that can progress to differentiate into tissue-specific, terminal cell types. Armed with these qualities, stem cells in adult tissues are tasked with replacing decaying cells and regenerating tissue after injury to maintain optimal tissue function. With increasing age, stem cell functional abilities decline, resulting in reduced organ function and delays in tissue repair. Here, we review the effect of aging in five well-studied adult murine stem cell populations and explore age-related declines in stem cell function and their consequences for stem cell self-renewal, tissue homeostasis, and regeneration. Finally, we examine transcriptional changes that have been documented in aged stem cell populations and discuss new questions and future directions that this collection of data has uncovered.
Collapse
Affiliation(s)
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY
| |
Collapse
|
90
|
Thalheim T, Buske P, Przybilla J, Rother K, Loeffler M, Galle J. Stem cell competition in the gut: insights from multi-scale computational modelling. J R Soc Interface 2017; 13:rsif.2016.0218. [PMID: 27534699 PMCID: PMC5014057 DOI: 10.1098/rsif.2016.0218] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/21/2016] [Indexed: 12/14/2022] Open
Abstract
Three-dimensional (3D) computational tissue models can provide a comprehensive description of tissue dynamics at the molecular, cellular and tissue level. Moreover, they can support the development of hypotheses about cellular interactions and about synergies between major signalling pathways. We exemplify these capabilities by simulation of a 3D single-cell-based model of mouse small intestinal crypts. We analyse the impact of lineage specification, distribution and cellular lifespan on clonal competition and study effects of Notch- and Wnt activation on fixation of mutations within the tissue. Based on these results, we predict that experimentally observed synergistic effects between autonomous Notch- and Wnt signalling in triggering intestinal tumourigenesis originate in the suppression of Wnt-dependent secretory lineage specification by Notch, giving rise to an increased fixation probability of Wnt-activating mutations. Our study demonstrates that 3D computational tissue models can support a mechanistic understanding of long-term tissue dynamics under homeostasis and during transformation.
Collapse
Affiliation(s)
- Torsten Thalheim
- Interdisciplinary Center for Bioinformatics, Leipzig University, Haertelstr. 16-18, 04107 Leipzig, Germany
| | - Peter Buske
- Interdisciplinary Center for Bioinformatics, Leipzig University, Haertelstr. 16-18, 04107 Leipzig, Germany
| | - Jens Przybilla
- Interdisciplinary Center for Bioinformatics, Leipzig University, Haertelstr. 16-18, 04107 Leipzig, Germany
| | - Karen Rother
- Interdisciplinary Center for Bioinformatics, Leipzig University, Haertelstr. 16-18, 04107 Leipzig, Germany
| | - Markus Loeffler
- Interdisciplinary Center for Bioinformatics, Leipzig University, Haertelstr. 16-18, 04107 Leipzig, Germany Institute for Medical Informatics, Statistics and Epidemiology, Leipzig University, Haertelstr. 16-18, 04107 Leipzig, Germany
| | - Joerg Galle
- Interdisciplinary Center for Bioinformatics, Leipzig University, Haertelstr. 16-18, 04107 Leipzig, Germany
| |
Collapse
|
91
|
Batlle E, Clevers H. Cancer stem cells revisited. Nat Med 2017; 23:1124-1134. [PMID: 28985214 DOI: 10.1038/nm.4409] [Citation(s) in RCA: 1780] [Impact Index Per Article: 222.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/23/2017] [Indexed: 02/06/2023]
Abstract
The cancer stem cell (CSC) concept was proposed four decades ago, and states that tumor growth, analogous to the renewal of healthy tissues, is fueled by small numbers of dedicated stem cells. It has gradually become clear that many tumors harbor CSCs in dedicated niches, and yet their identification and eradication has not been as obvious as was initially hoped. Recently developed lineage-tracing and cell-ablation strategies have provided insights into CSC plasticity, quiescence, renewal, and therapeutic response. Here we discuss new developments in the CSC field in relationship to changing insights into how normal stem cells maintain healthy tissues. Expectations in the field have become more realistic, and now, the first successes of therapies based on the CSC concept are emerging.
Collapse
Affiliation(s)
- Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,CiberONC, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht and Princess Maxima Center, Utrecht, the Netherlands
| |
Collapse
|
92
|
Cancer stem cells revisited. Nat Med 2017. [DOI: 10.1038/nm.4409 order by 12749--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
93
|
Phesse TJ, Durban VM, Sansom OJ. Defining key concepts of intestinal and epithelial cancer biology through the use of mouse models. Carcinogenesis 2017; 38:953-965. [PMID: 28981588 PMCID: PMC5862284 DOI: 10.1093/carcin/bgx080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 07/12/2017] [Accepted: 08/01/2017] [Indexed: 12/18/2022] Open
Abstract
Over the past 20 years, huge advances have been made in modelling human diseases such as cancer using genetically modified mice. Accurate in vivo models are essential to examine the complex interaction between cancer cells, surrounding stromal cells, tumour-associated inflammatory cells, fibroblast and blood vessels, and to recapitulate all the steps involved in metastasis. Elucidating these interactions in vitro has inherent limitations, and thus animal models are a powerful tool to enable researchers to gain insight into the complex interactions between signalling pathways and different cells types. This review will focus on how advances in in vivo models have shed light on many aspects of cancer biology including the identification of oncogenes, tumour suppressors and stem cells, epigenetics, cell death and context dependent cell signalling.
Collapse
Affiliation(s)
- Toby J Phesse
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, South Glamorgan, CF24 4HQ, UK
| | - Victoria Marsh Durban
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff, South Glamorgan, CF24 4HQ, UK
- ReNeuron, Pencoed Business Park, Pencoed, Bridgend, CF35 5HY, UK and
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, Glasgow, G61 1BD, UK
| |
Collapse
|
94
|
|
95
|
Mammary Stem Cells: Premise, Properties, and Perspectives. Trends Cell Biol 2017; 27:556-567. [DOI: 10.1016/j.tcb.2017.04.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/01/2017] [Accepted: 04/03/2017] [Indexed: 12/14/2022]
|
96
|
Yan KS, Gevaert O, Zheng GXY, Anchang B, Probert CS, Larkin KA, Davies PS, Cheng ZF, Kaddis JS, Han A, Roelf K, Calderon RI, Cynn E, Hu X, Mandleywala K, Wilhelmy J, Grimes SM, Corney DC, Boutet SC, Terry JM, Belgrader P, Ziraldo SB, Mikkelsen TS, Wang F, von Furstenberg RJ, Smith NR, Chandrakesan P, May R, Chrissy MAS, Jain R, Cartwright CA, Niland JC, Hong YK, Carrington J, Breault DT, Epstein J, Houchen CW, Lynch JP, Martin MG, Plevritis SK, Curtis C, Ji HP, Li L, Henning SJ, Wong MH, Kuo CJ. Intestinal Enteroendocrine Lineage Cells Possess Homeostatic and Injury-Inducible Stem Cell Activity. Cell Stem Cell 2017; 21:78-90.e6. [PMID: 28686870 PMCID: PMC5642297 DOI: 10.1016/j.stem.2017.06.014] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 04/17/2017] [Accepted: 06/20/2017] [Indexed: 12/22/2022]
Abstract
Several cell populations have been reported to possess intestinal stem cell (ISC) activity during homeostasis and injury-induced regeneration. Here, we explored inter-relationships between putative mouse ISC populations by comparative RNA-sequencing (RNA-seq). The transcriptomes of multiple cycling ISC populations closely resembled Lgr5+ ISCs, the most well-defined ISC pool, but Bmi1-GFP+ cells were distinct and enriched for enteroendocrine (EE) markers, including Prox1. Prox1-GFP+ cells exhibited sustained clonogenic growth in vitro, and lineage-tracing of Prox1+ cells revealed long-lived clones during homeostasis and after radiation-induced injury in vivo. Single-cell mRNA-seq revealed two subsets of Prox1-GFP+ cells, one of which resembled mature EE cells while the other displayed low-level EE gene expression but co-expressed tuft cell markers, Lgr5 and Ascl2, reminiscent of label-retaining secretory progenitors. Our data suggest that the EE lineage, including mature EE cells, comprises a reservoir of homeostatic and injury-inducible ISCs, extending our understanding of cellular plasticity and stemness.
Collapse
Affiliation(s)
- Kelley S Yan
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Columbia Center for Human Development, Columbia Stem Cell Initiative, Department of Medicine, Division of Digestive and Liver Diseases, Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Olivier Gevaert
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Benedict Anchang
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christopher S Probert
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kathryn A Larkin
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Paige S Davies
- Oregon Health & Science University, Department of Cell, Developmental and Cancer Biology, Portland, OR 97239, USA
| | - Zhuan-Fen Cheng
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John S Kaddis
- Department of Diabetes and Cancer Discovery Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Arnold Han
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Columbia Center for Translational Immunology, Department of Medicine, Division of Digestive and Liver Diseases, Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Kelly Roelf
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruben I Calderon
- Columbia Center for Human Development, Columbia Stem Cell Initiative, Department of Medicine, Division of Digestive and Liver Diseases, Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Esther Cynn
- Columbia Center for Human Development, Columbia Stem Cell Initiative, Department of Medicine, Division of Digestive and Liver Diseases, Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Xiaoyi Hu
- Columbia Center for Human Development, Columbia Stem Cell Initiative, Department of Medicine, Division of Digestive and Liver Diseases, Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Komal Mandleywala
- Columbia Center for Human Development, Columbia Stem Cell Initiative, Department of Medicine, Division of Digestive and Liver Diseases, Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Julie Wilhelmy
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sue M Grimes
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David C Corney
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | - Fengchao Wang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Nicholas R Smith
- Oregon Health & Science University, Department of Cell, Developmental and Cancer Biology, Portland, OR 97239, USA
| | - Parthasarathy Chandrakesan
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Randal May
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Mary Ann S Chrissy
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rajan Jain
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Joyce C Niland
- Department of Diabetes and Cancer Discovery Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Young-Kwon Hong
- Departments of Surgery and of Biochemistry & Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jill Carrington
- National Institutes of Health, Division of Digestive Diseases and Nutrition, NIDDK, Bethesda, MD 20892, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jonathan Epstein
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Courtney W Houchen
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - John P Lynch
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Martin G Martin
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sylvia K Plevritis
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christina Curtis
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hanlee P Ji
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Linheng Li
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Susan J Henning
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Melissa H Wong
- Oregon Health & Science University, Department of Cell, Developmental and Cancer Biology, Portland, OR 97239, USA
| | - Calvin J Kuo
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
97
|
Maclaren OJ, Parker A, Pin C, Carding SR, Watson AJM, Fletcher AG, Byrne HM, Maini PK. A hierarchical Bayesian model for understanding the spatiotemporal dynamics of the intestinal epithelium. PLoS Comput Biol 2017; 13:e1005688. [PMID: 28753601 PMCID: PMC5550005 DOI: 10.1371/journal.pcbi.1005688] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 08/09/2017] [Accepted: 07/18/2017] [Indexed: 01/13/2023] Open
Abstract
Our work addresses two key challenges, one biological and one methodological. First, we aim to understand how proliferation and cell migration rates in the intestinal epithelium are related under healthy, damaged (Ara-C treated) and recovering conditions, and how these relations can be used to identify mechanisms of repair and regeneration. We analyse new data, presented in more detail in a companion paper, in which BrdU/IdU cell-labelling experiments were performed under these respective conditions. Second, in considering how to more rigorously process these data and interpret them using mathematical models, we use a probabilistic, hierarchical approach. This provides a best-practice approach for systematically modelling and understanding the uncertainties that can otherwise undermine the generation of reliable conclusions-uncertainties in experimental measurement and treatment, difficult-to-compare mathematical models of underlying mechanisms, and unknown or unobserved parameters. Both spatially discrete and continuous mechanistic models are considered and related via hierarchical conditional probability assumptions. We perform model checks on both in-sample and out-of-sample datasets and use them to show how to test possible model improvements and assess the robustness of our conclusions. We conclude, for the present set of experiments, that a primarily proliferation-driven model suffices to predict labelled cell dynamics over most time-scales.
Collapse
Affiliation(s)
- Oliver J. Maclaren
- Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | - Aimée Parker
- Gut Health and Food Safety Research Programme, Institute of Food Research, Norwich, United Kingdom
| | - Carmen Pin
- Gut Health and Food Safety Research Programme, Institute of Food Research, Norwich, United Kingdom
| | - Simon R. Carding
- Gut Health and Food Safety Research Programme, Institute of Food Research, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Alastair J. M. Watson
- Gut Health and Food Safety Research Programme, Institute of Food Research, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Alexander G. Fletcher
- School of Mathematics and Statistics, University of Sheffield, Sheffield, United Kingdom
- Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Helen M. Byrne
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Philip K. Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
98
|
The Induction of Selected Wnt Target Genes by Tcf1 Mediates Generation of Tumorigenic Colon Stem Cells. Cell Rep 2017; 19:981-994. [DOI: 10.1016/j.celrep.2017.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 02/28/2017] [Accepted: 04/05/2017] [Indexed: 12/26/2022] Open
|
99
|
Cannataro VL, McKinley SA, St Mary CM. The evolutionary trade-off between stem cell niche size, aging, and tumorigenesis. Evol Appl 2017; 10:590-602. [PMID: 28616066 PMCID: PMC5469181 DOI: 10.1111/eva.12476] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 02/28/2017] [Indexed: 12/18/2022] Open
Abstract
Many epithelial tissues within multicellular organisms are continually replenished by small independent populations of stem cells largely responsible for maintaining tissue homeostasis. These continually dividing populations are subject to mutations that can lead to tumorigenesis but also contribute to aging. Mutations accumulate in stem cell niches and change the rate of cell division and differentiation; the pace of this process and the fate of specific mutations depend strongly on niche population size. Here, we create a mathematical model of the intestinal stem cell niche, crypt system, and epithelium. We calculate the expected effect of fixed mutations in stem cell niches and their effect on tissue homeostasis throughout the intestinal epithelium over organismal lifetime. We find that, due to the small population size of stem cell niches, mutations predominantly fix via genetic drift and decrease stem cell fitness, leading to niche and tissue attrition, and contributing to organismal aging. We also explore mutation accumulation at various stem cell niche sizes and demonstrate that an evolutionary trade-off exists between niche size, tissue aging, and the risk of tumorigenesis. Further, mouse and human niches exist at a size that minimizes the probability of tumorigenesis, at the expense of accumulating deleterious mutations due to genetic drift. Finally, we show that the trade-off between the probability of tumorigenesis and the extent of aging depends on whether or not mutational effects confer a selective advantage in the stem cell niche.
Collapse
Affiliation(s)
- Vincent L Cannataro
- Department of Biostatistics Yale School of Public Health Yale University New Haven CT USA.,Department of Biology University of Florida Gainesville FL USA
| | | | | |
Collapse
|
100
|
Kechele DO, Blue RE, Zwarycz B, Espenschied ST, Mah AT, Siegel MB, Perou CM, Ding S, Magness ST, Lund PK, Caron KM. Orphan Gpr182 suppresses ERK-mediated intestinal proliferation during regeneration and adenoma formation. J Clin Invest 2017; 127:593-607. [PMID: 28094771 DOI: 10.1172/jci87588] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 11/22/2016] [Indexed: 12/16/2022] Open
Abstract
Orphan GPCRs provide an opportunity to identify potential pharmacological targets, yet their expression patterns and physiological functions remain challenging to elucidate. Here, we have used a genetically engineered knockin reporter mouse to map the expression pattern of the Gpr182 during development and adulthood. We observed that Gpr182 is expressed at the crypt base throughout the small intestine, where it is enriched in crypt base columnar stem cells, one of the most active stem cell populations in the body. Gpr182 knockdown had no effect on homeostatic intestinal proliferation in vivo, but led to marked increases in proliferation during intestinal regeneration following irradiation-induced injury. In the ApcMin mouse model, which forms spontaneous intestinal adenomas, reductions in Gpr182 led to more adenomas and decreased survival. Loss of Gpr182 enhanced organoid growth efficiency ex vivo in an EGF-dependent manner. Gpr182 reduction led to increased activation of ERK1/2 in basal and challenge models, demonstrating a potential role for this orphan GPCR in regulating the proliferative capacity of the intestine. Importantly, GPR182 expression was profoundly reduced in numerous human carcinomas, including colon adenocarcinoma. Together, these results implicate Gpr182 as a negative regulator of intestinal MAPK signaling-induced proliferation, particularly during regeneration and adenoma formation.
Collapse
|