51
|
Oburoglu L, Mansell E, Canals I, Sigurdsson V, Guibentif C, Soneji S, Woods N. Pyruvate metabolism guides definitive lineage specification during hematopoietic emergence. EMBO Rep 2022; 23:e54384. [PMID: 34914165 PMCID: PMC8811648 DOI: 10.15252/embr.202154384] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 01/07/2023] Open
Abstract
During embryonic development, hematopoiesis occurs through primitive and definitive waves, giving rise to distinct blood lineages. Hematopoietic stem cells (HSCs) emerge from hemogenic endothelial (HE) cells, through endothelial-to-hematopoietic transition (EHT). In the adult, HSC quiescence, maintenance, and differentiation are closely linked to changes in metabolism. However, metabolic processes underlying the emergence of HSCs from HE cells remain unclear. Here, we show that the emergence of blood is regulated by multiple metabolic pathways that induce or modulate the differentiation toward specific hematopoietic lineages during human EHT. In both in vitro and in vivo settings, steering pyruvate use toward glycolysis or OXPHOS differentially skews the hematopoietic output of HE cells toward either an erythroid fate with primitive phenotype, or a definitive lymphoid fate, respectively. We demonstrate that glycolysis-mediated differentiation of HE toward primitive erythroid hematopoiesis is dependent on the epigenetic regulator LSD1. In contrast, OXPHOS-mediated differentiation of HE toward definitive hematopoiesis is dependent on cholesterol metabolism. Our findings reveal that during EHT, metabolism is a major regulator of primitive versus definitive hematopoietic differentiation.
Collapse
Affiliation(s)
- Leal Oburoglu
- Molecular Medicine and Gene TherapyLund Stem Cell CenterLund UniversityLundSweden
| | - Els Mansell
- Molecular Medicine and Gene TherapyLund Stem Cell CenterLund UniversityLundSweden
| | - Isaac Canals
- NeurologyLund Stem Cell CenterLund UniversityLundSweden
| | - Valgardur Sigurdsson
- Molecular Medicine and Gene TherapyLund Stem Cell CenterLund UniversityLundSweden
| | - Carolina Guibentif
- Molecular Medicine and Gene TherapyLund Stem Cell CenterLund UniversityLundSweden
- Present address:
Sahlgrenska Center for Cancer ResearchDepartment of Microbiology and ImmunologyInstitute of BiomedicineUniversity of GothenburgGothenburgSweden
| | - Shamit Soneji
- Molecular HematologyLund Stem Cell CenterLund UniversityLundSweden
| | - Niels‐Bjarne Woods
- Molecular Medicine and Gene TherapyLund Stem Cell CenterLund UniversityLundSweden
| |
Collapse
|
52
|
OUP accepted manuscript. Stem Cells 2022; 40:332-345. [DOI: 10.1093/stmcls/sxac001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 12/17/2021] [Indexed: 11/12/2022]
|
53
|
Atkins MH, Scarfò R, McGrath KE, Yang D, Palis J, Ditadi A, Keller GM. Modeling human yolk sac hematopoiesis with pluripotent stem cells. J Exp Med 2021; 219:212927. [PMID: 34928315 PMCID: PMC8693237 DOI: 10.1084/jem.20211924] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/31/2021] [Accepted: 11/30/2021] [Indexed: 11/04/2022] Open
Abstract
In the mouse, the first hematopoietic cells are generated in the yolk sac from the primitive, erythro-myeloid progenitor (EMP) and lymphoid programs that are specified before the emergence of hematopoietic stem cells. While many of the yolk sac-derived populations are transient, specific immune cell progeny seed developing tissues, where they function into adult life. To access the human equivalent of these lineages, we modeled yolk sac hematopoietic development using pluripotent stem cell differentiation. Here, we show that the combination of Activin A, BMP4, and FGF2 induces a population of KDR+CD235a/b+ mesoderm that gives rise to the spectrum of erythroid, myeloid, and T lymphoid lineages characteristic of the mouse yolk sac hematopoietic programs, including the Vδ2+ subset of γ/δ T cells that develops early in the human embryo. Through clonal analyses, we identified a multipotent hematopoietic progenitor with erythroid, myeloid, and T lymphoid potential, suggesting that the yolk sac EMP and lymphoid lineages may develop from a common progenitor.
Collapse
Affiliation(s)
- Michael H. Atkins
- McEwen Stem Cell Institute, University Health Network, Toronto, Ontario, Canada,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Rebecca Scarfò
- San Raffaele Telethon Institute for Gene Therapy, Scientific Institute for Research, Hospitalization and Healthcare, San Raffaele Scientific Institute, Milan, Italy
| | - Kathleen E. McGrath
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY
| | - Donghe Yang
- McEwen Stem Cell Institute, University Health Network, Toronto, Ontario, Canada,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - James Palis
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY
| | - Andrea Ditadi
- San Raffaele Telethon Institute for Gene Therapy, Scientific Institute for Research, Hospitalization and Healthcare, San Raffaele Scientific Institute, Milan, Italy
| | - Gordon M. Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, Ontario, Canada,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada,Correspondence to Gordon M. Keller:
| |
Collapse
|
54
|
Chen J, Li G, Lian J, Ma N, Huang Z, Li J, Wen Z, Zhang W, Zhang Y. Slc20a1b is essential for hematopoietic stem/progenitor cell expansion in zebrafish. SCIENCE CHINA. LIFE SCIENCES 2021; 64:2186-2201. [PMID: 33751369 DOI: 10.1007/s11427-020-1878-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/05/2021] [Indexed: 10/21/2022]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are able to self-renew and can give rise to all blood lineages throughout their lifetime, yet the mechanisms regulating HSPC development have yet to be discovered. In this study, we characterized a hematopoiesis defective zebrafish mutant line named smu07, which was obtained from our previous forward genetic screening, and found the HSPC expansion deficiency in the mutant. Positional cloning identified that slc20a1b, which encodes a sodium phosphate cotransporter, contributed to the smu07 blood phenotype. Further analysis demonstrated that mutation of slc20a1b affects HSPC expansion through cell cycle arrest at G2/M phases in a cell-autonomous manner. Our study shows that slc20a1b is a vital regulator for HSPC proliferation in zebrafish early hematopoiesis and provides valuable insights into HSPC development.
Collapse
Affiliation(s)
- Jiakui Chen
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Gaofei Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Junwei Lian
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Ning Ma
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhibin Huang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jianchao Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Zilong Wen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| | - Yiyue Zhang
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
55
|
Weijts B, Yvernogeau L, Robin C. Recent Advances in Developmental Hematopoiesis: Diving Deeper With New Technologies. Front Immunol 2021; 12:790379. [PMID: 34899758 PMCID: PMC8652083 DOI: 10.3389/fimmu.2021.790379] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
The journey of a hematopoietic stem cell (HSC) involves the passage through successive anatomical sites where HSCs are in direct contact with their surrounding microenvironment, also known as niche. These spatial and temporal cellular interactions throughout development are required for the acquisition of stem cell properties, and for maintaining the HSC pool through balancing self-renewal, quiescence and lineage commitment. Understanding the context and consequences of these interactions will be imperative for our understanding of HSC biology and will lead to the improvement of in vitro production of HSCs for clinical purposes. The aorta-gonad-mesonephros (AGM) region is in this light of particular interest since this is the cradle of HSC emergence during the embryonic development of all vertebrate species. In this review, we will focus on the developmental origin of HSCs and will discuss the novel technological approaches and recent progress made to identify the cellular composition of the HSC supportive niche and the underlying molecular events occurring in the AGM region.
Collapse
Affiliation(s)
- Bart Weijts
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) & University Medical Center Utrecht, Utrecht, Netherlands
| | - Laurent Yvernogeau
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) & University Medical Center Utrecht, Utrecht, Netherlands
| | - Catherine Robin
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) & University Medical Center Utrecht, Utrecht, Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
56
|
Sugden WW, North TE. Making Blood from the Vessel: Extrinsic and Environmental Cues Guiding the Endothelial-to-Hematopoietic Transition. Life (Basel) 2021; 11:life11101027. [PMID: 34685398 PMCID: PMC8539454 DOI: 10.3390/life11101027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 01/10/2023] Open
Abstract
It is increasingly recognized that specialized subsets of endothelial cells carry out unique functions in specific organs and regions of the vascular tree. Perhaps the most striking example of this specialization is the ability to contribute to the generation of the blood system, in which a distinct population of “hemogenic” endothelial cells in the embryo transforms irreversibly into hematopoietic stem and progenitor cells that produce circulating erythroid, myeloid and lymphoid cells for the lifetime of an animal. This review will focus on recent advances made in the zebrafish model organism uncovering the extrinsic and environmental factors that facilitate hemogenic commitment and the process of endothelial-to-hematopoietic transition that produces blood stem cells. We highlight in particular biomechanical influences of hemodynamic forces and the extracellular matrix, metabolic and sterile inflammatory cues present during this developmental stage, and outline new avenues opened by transcriptomic-based approaches to decipher cell–cell communication mechanisms as examples of key signals in the embryonic niche that regulate hematopoiesis.
Collapse
Affiliation(s)
- Wade W. Sugden
- Stem Cell Program, Department of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA;
- Developmental and Regenerative Biology Program, Harvard Medical School, Boston, MA 02115, USA
| | - Trista E. North
- Stem Cell Program, Department of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA;
- Developmental and Regenerative Biology Program, Harvard Medical School, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
57
|
Dignum T, Varnum-Finney B, Srivatsan SR, Dozono S, Waltner O, Heck AM, Ishida T, Nourigat-McKay C, Jackson DL, Rafii S, Trapnell C, Bernstein ID, Hadland B. Multipotent progenitors and hematopoietic stem cells arise independently from hemogenic endothelium in the mouse embryo. Cell Rep 2021; 36:109675. [PMID: 34525376 PMCID: PMC8478150 DOI: 10.1016/j.celrep.2021.109675] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/28/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
During embryogenesis, waves of hematopoietic progenitors develop from hemogenic endothelium (HE) prior to the emergence of self-renewing hematopoietic stem cells (HSCs). Although previous studies have shown that yolk-sac-derived erythromyeloid progenitors and HSCs emerge from distinct populations of HE, it remains unknown whether the earliest lymphoid-competent progenitors, multipotent progenitors, and HSCs originate from common HE. In this study, we demonstrate by clonal assays and single-cell transcriptomics that rare HE with functional HSC potential in the early murine embryo are distinct from more abundant HE with multilineage hematopoietic potential that fail to generate HSCs. Specifically, HSC-competent HE are characterized by expression of CXCR4 surface marker and by higher expression of genes tied to arterial programs regulating HSC dormancy and self-renewal. Taken together, these findings suggest a revised model of developmental hematopoiesis in which the initial populations of multipotent progenitors and HSCs arise independently from HE with distinct phenotypic and transcriptional properties.
Collapse
Affiliation(s)
- Tessa Dignum
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Barbara Varnum-Finney
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Sanjay R Srivatsan
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Stacey Dozono
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Olivia Waltner
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Adam M Heck
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Takashi Ishida
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Cynthia Nourigat-McKay
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Dana L Jackson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Shahin Rafii
- Department of Genetic Medicine, Ansary Stem Cell Institute, Howard Hughes Medical Institute, Weill Cornell Medical College, New York, NY 10021, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Irwin D Bernstein
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Brandon Hadland
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA.
| |
Collapse
|
58
|
Murine AGM single-cell profiling identifies a continuum of hemogenic endothelium differentiation marked by ACE. Blood 2021; 139:343-356. [PMID: 34517413 DOI: 10.1182/blood.2020007885] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/19/2021] [Indexed: 11/20/2022] Open
Abstract
In vitro generation and expansion of hematopoietic stem cells (HSCs) holds great promise for the treatment of any ailment that relies on bone marrow or blood transplantation. To achieve this, it is essential to resolve the molecular and cellular pathways that govern HSC formation in the embryo. HSCs first emerge in the aorta-gonad-mesonephros region (AGM) where a rare subset of endothelial cells, hemogenic endothelium (HE), undergoes an endothelial-to-hematopoietic transition (EHT). Here, we present full-length single-cell-RNA-sequencing of the EHT process with a focus on HE and dorsal aorta niche cells. By using Runx1b and Gfi1/1b transgenic reporter mouse models to isolate HE, we uncovered that the pre-HE to HE continuum is specifically marked by Angiotensin-I converting enzyme (ACE) expression. We established that HE cells begin to enter the cell cycle near the time of EHT initiation when their morphology still resembles endothelial cells. We further demonstrated that RUNX1 AGM niche cells consist of vascular smooth muscle cells and PDGFRa+ mesenchymal cells and can functionally support hematopoiesis. Overall, our study provides new insights into HE differentiation towards HSC and the role of AGM RUNX1+ niche cells in this process. Our expansive scRNA-seq datasets represents a powerful resource to investigate these processes further.
Collapse
|
59
|
Shen J, Xu Y, Zhang S, Lyu S, Huo Y, Zhu Y, Tang K, Mou J, Li X, Hoyle DL, Wang M, Wang J, Li X, Wang ZZ, Cheng T. Single-cell transcriptome of early hematopoiesis guides arterial endothelial-enhanced functional T cell generation from human PSCs. SCIENCE ADVANCES 2021; 7:eabi9787. [PMID: 34516916 PMCID: PMC8442917 DOI: 10.1126/sciadv.abi9787] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/14/2021] [Indexed: 05/10/2023]
Abstract
Hematopoietic differentiation of human pluripotent stem cells (hPSCs) requires orchestration of dynamic cell and gene regulatory networks but often generates blood cells that lack natural function. Here, we performed extensive single-cell transcriptomic analyses to map fate choices and gene expression patterns during hematopoietic differentiation of hPSCs and showed that oxidative metabolism was dysregulated during in vitro directed differentiation. Applying hypoxic conditions at the stage of endothelial-to-hematopoietic transition in vitro effectively promoted the development of arterial specification programs that governed the generation of hematopoietic progenitor cells (HPCs) with functional T cell potential. Following engineered expression of the anti-CD19 chimeric antigen receptor, the T cells generated from arterial endothelium-primed HPCs inhibited tumor growth both in vitro and in vivo. Collectively, our study provides benchmark datasets as a resource to further understand the origins of human hematopoiesis and represents an advance in guiding in vitro generation of functional T cells for clinical applications.
Collapse
Affiliation(s)
- Jun Shen
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Yingxi Xu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Key Laboratory of Blood Disease Cell Therapy, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Shuo Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Shuzhen Lyu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Yingying Huo
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Yaoyao Zhu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Department of Laboratory, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Kejing Tang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Key Laboratory of Blood Disease Cell Therapy, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Junli Mou
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Key Laboratory of Blood Disease Cell Therapy, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Xinjie Li
- School of Medicine, Sun Yat-sen University, Guangzhou 510006, China
| | - Dixie L. Hoyle
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Min Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Key Laboratory of Blood Disease Cell Therapy, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300020, China
| | - Xin Li
- School of Medicine, Sun Yat-sen University, Guangzhou 510006, China
| | - Zack Z. Wang
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin 300020, China
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
60
|
Glutamine metabolism regulates endothelial to hematopoietic transition and hematopoietic lineage specification. Sci Rep 2021; 11:17589. [PMID: 34475502 PMCID: PMC8413451 DOI: 10.1038/s41598-021-97194-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/20/2021] [Indexed: 12/16/2022] Open
Abstract
During hematopoietic development, definitive hematopoietic cells are derived from hemogenic endothelial (HE) cells through a process known as endothelial to hematopoietic transition (EHT). During EHT, transitioning cells proliferate and undergo progressive changes in gene expression culminating in the new cell identity with corresponding changes in function, phenotype and morphology. However, the metabolic pathways fueling this transition remain unclear. We show here that glutamine is a crucial regulator of EHT and a rate limiting metabolite in the hematopoietic differentiation of HE cells. Intriguingly, different hematopoietic lineages require distinct derivatives of glutamine. While both derivatives, α-ketoglutarate and nucleotides, are required for early erythroid differentiation of HE during glutamine deprivation, lymphoid differentiation relies on α-ketoglutarate alone. Furthermore, treatment of HE cells with α-ketoglutarate in glutamine-free conditions pushes their differentiation towards lymphoid lineages both in vitro and in vivo, following transplantation into NSG mice. Thus, we report an essential role for glutamine metabolism during EHT, regulating both the emergence and the specification of hematopoietic cells through its various derivatives.
Collapse
|
61
|
Li Y, Magee JA. Transcriptional reprogramming in neonatal hematopoietic stem and progenitor cells. Exp Hematol 2021; 101-102:25-33. [PMID: 34303776 PMCID: PMC8557639 DOI: 10.1016/j.exphem.2021.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 02/04/2023]
Abstract
Hematopoietic stem cells (HSCs) and lineage-committed hematopoietic progenitor cells (HPCs) undergo profound shifts in gene expression during the neonatal and juvenile stages of life. Temporal changes in HSC/HPC gene expression underlie concomitant changes in self-renewal capacity, lineage biases, and hematopoietic output. Moreover, they can modify disease phenotypes. For example, childhood leukemias have distinct driver mutation profiles relative to adult leukemias, and they may arise from distinct cells of origin. The putative relationship between neonatal HSC/HPC ontogeny and childhood blood disorders highlights the importance of understanding how, at a mechanistic level, HSCs transition from fetal to adult transcriptional states. In this perspective piece, we summarize recent work indicating that the transition is uncoordinated and imprecisely timed. We discuss implications of these findings, including mechanisms that might enable neonatal HSCs and HPCs to acquire adultlike properties over a drawn-out period, in lieu of precise gene regulatory networks. The transition from fetal to adult transcriptional programs coincides with a pulse of type I interferon signaling that activates many genes associated with the adultlike state. This pulse may sensitize HSCs/HPCs to mutations that drive leukemogenesis shortly after birth. If we can understand how developmental switches modulate HSC and HPC fate after birth-both under normal circumstances and in the setting of disease-causing mutations-we can potentially reprogram these switches to treat or prevent childhood leukemias.
Collapse
|
62
|
Mack R, Zhang L, Breslin Sj P, Zhang J. The Fetal-to-Adult Hematopoietic Stem Cell Transition and its Role in Childhood Hematopoietic Malignancies. Stem Cell Rev Rep 2021; 17:2059-2080. [PMID: 34424480 DOI: 10.1007/s12015-021-10230-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 01/07/2023]
Abstract
As with most organ systems that undergo continuous generation and maturation during the transition from fetal to adult life, the hematopoietic and immune systems also experience dynamic changes. Such changes lead to many unique features in blood cell function and immune responses in early childhood. The blood cells and immune cells in neonates are a mixture of fetal and adult origin due to the co-existence of both fetal and adult types of hematopoietic stem cells (HSCs) and progenitor cells (HPCs). Fetal blood and immune cells gradually diminish during maturation of the infant and are almost completely replaced by adult types of cells by 3 to 4 weeks after birth in mice. Such features in early childhood are associated with unique features of hematopoietic and immune diseases, such as leukemia, at these developmental stages. Therefore, understanding the cellular and molecular mechanisms by which hematopoietic and immune changes occur throughout ontogeny will provide useful information for the study and treatment of pediatric blood and immune diseases. In this review, we summarize the most recent studies on hematopoietic initiation during early embryonic development, the expansion of both fetal and adult types of HSCs and HPCs in the fetal liver and fetal bone marrow stages, and the shift from fetal to adult hematopoiesis/immunity during neonatal/infant development. We also discuss the contributions of fetal types of HSCs/HPCs to childhood leukemias.
Collapse
Affiliation(s)
- Ryan Mack
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Lei Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Peter Breslin Sj
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
63
|
Zhang Y, McGrath KE, Ayoub E, Kingsley PD, Yu H, Fegan K, McGlynn KA, Rudzinskas S, Palis J, Perkins AS. Mds1 CreERT2, an inducible Cre allele specific to adult-repopulating hematopoietic stem cells. Cell Rep 2021; 36:109562. [PMID: 34407416 PMCID: PMC8428393 DOI: 10.1016/j.celrep.2021.109562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/24/2021] [Accepted: 07/28/2021] [Indexed: 12/16/2022] Open
Abstract
Hematopoietic ontogeny consists of two broad programs: an initial hematopoietic stem cell (HSC)-independent program followed by HSC-dependent hematopoiesis that sequentially seed the fetal liver and generate blood cells. However, the transition from HSC-independent to HSC-derived hematopoiesis remains poorly characterized. To help resolve this question, we developed Mds1CreERT2 mice, which inducibly express Cre-recombinase in emerging HSCs in the aorta and label long-term adult HSCs, but not HSC-independent yolk-sac-derived primitive or definitive erythromyeloid (EMP) hematopoiesis. Our lineage-tracing studies indicate that HSC-derived erythroid, myeloid, and lymphoid progeny significantly expand in the liver and blood stream between E14.5 and E16.5. Additionally, we find that HSCs contribute the majority of F4/80+ macrophages in adult spleen and marrow, in contrast to their limited contribution to macrophage populations in brain, liver, and lungs. The Mds1CreERT2 mouse model will be useful to deconvolute the complexity of hematopoiesis as it unfolds in the embryo and functions postnatally.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Kathleen E McGrath
- Center for Pediatric Biomedical Research and Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Edward Ayoub
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Paul D Kingsley
- Center for Pediatric Biomedical Research and Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hongbo Yu
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Kate Fegan
- Center for Pediatric Biomedical Research and Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Kelly A McGlynn
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Sarah Rudzinskas
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - James Palis
- Center for Pediatric Biomedical Research and Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Archibald S Perkins
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
64
|
Liao W, Kohler ME, Fry T, Ernst P. Does lineage plasticity enable escape from CAR-T cell therapy? Lessons from MLL-r leukemia. Exp Hematol 2021; 100:1-11. [PMID: 34298117 PMCID: PMC8611617 DOI: 10.1016/j.exphem.2021.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 01/20/2023]
Abstract
The clinical success of engineered, CD19-directed chimeric antigen receptor (CAR) T cells in relapsed, refractory B-cell acute lymphoblastic leukemia (B-ALL) has generated great enthusiasm for the use of CAR T cells in patients with cytogenetics that portend a poor prognosis with conventional cytotoxic therapies. One such group includes infants and children with mixed lineage leukemia (MLL1, KMT2A) rearrangements (MLL-r), who fare much worse than patients with low- or standard-risk B-ALL. Although early clinical trials using CD19 CAR T cells for MLL-r B-ALL produced complete remission in most patients, relapse with CD19-negative disease was a common mechanism of treatment failure. Whereas CD19neg relapse has been observed across a broad spectrum of B-ALL patients treated with CD19-directed therapy, patients with MLL-r have manifested the emergence of AML, often clonally related to the B-ALL, suggesting that the inherent heterogeneity or lineage plasticity of MLL-r B-ALL may predispose patients to a myeloid relapse. Understanding the factors that enable and drive myeloid relapse may be important to devise strategies to improve durability of remissions. In this review, we summarize clinical observations to date with MLL-r B-ALL and generally discuss lineage plasticity as a mechanism of escape from immunotherapy.
Collapse
Affiliation(s)
- Wenjuan Liao
- Department of Pediatrics, Section of Hematology/Oncology/BMT, Center for Cancer and Blood Disorders, Children's Hospital Colorado, University of Colorado, Denver/Anschutz Medical Campus. Aurora, CO
| | - M Eric Kohler
- Department of Pediatrics, Section of Hematology/Oncology/BMT, Center for Cancer and Blood Disorders, Children's Hospital Colorado, University of Colorado, Denver/Anschutz Medical Campus. Aurora, CO
| | - Terry Fry
- Department of Pediatrics, Section of Hematology/Oncology/BMT, Center for Cancer and Blood Disorders, Children's Hospital Colorado, University of Colorado, Denver/Anschutz Medical Campus. Aurora, CO; Immunology Department and HI3 Initiative, University of Colorado, Denver/Anschutz Medical Campus. Aurora, CO
| | - Patricia Ernst
- Department of Pediatrics, Section of Hematology/Oncology/BMT, Center for Cancer and Blood Disorders, Children's Hospital Colorado, University of Colorado, Denver/Anschutz Medical Campus. Aurora, CO; Pharmacology Department, University of Colorado, Denver/Anschutz Medical Campus. Aurora, CO.
| |
Collapse
|
65
|
Choudhuri A, Han T, Zon LI. From development toward therapeutics, a collaborative effort on blood progenitors. Stem Cell Reports 2021; 16:1674-1685. [PMID: 34115985 PMCID: PMC8486953 DOI: 10.1016/j.stemcr.2021.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 01/02/2023] Open
Abstract
The National Heart, Lung, and Blood Institute Progenitor Cell Translational Consortium Blood Progenitor Meeting was hosted virtually on November 5, 2020, with 93 attendees across 20 research groups. The purpose of this meeting was to exchange recent findings, discuss current efforts, and identify prospective opportunities in the field of hematopoietic stem and progenitor cell research and therapeutic discovery.
Collapse
Affiliation(s)
- Avik Choudhuri
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Tianxiao Han
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Leonard I Zon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Stem Cell Institute, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
66
|
|
67
|
Wang C, Gong Y, Wei A, Huang T, Hou S, Du J, Li Z, Wang J, Liu B, Lan Y. Adult-repopulating lymphoid potential of yolk sac blood vessels is not confined to arterial endothelial cells. SCIENCE CHINA-LIFE SCIENCES 2021; 64:2073-2087. [PMID: 34181164 DOI: 10.1007/s11427-021-1935-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/22/2021] [Indexed: 10/21/2022]
Abstract
During embryogenesis, hematopoietic stem progenitor cells (HSPCs) are believed to be derived from hemogenic endothelial cells (HECs). Moreover, arterial feature is proposed to be a prerequisite for HECs to generate HSPCs with lymphoid potential. Although the molecular basis of hematopoietic stem cell-competent HECs has been delicately elucidated within the embryo proper, the functional and molecular characteristics of HECs in the extraembryonic yolk sac (YS) remain largely unresolved. In this study, we initially identified six molecularly different endothelial populations in the midgestational YS through integrated analysis of several single-cell RNA sequencing (scRNA-seq) datasets and validated the arterial vasculature distribution of Gja5+ ECs using a Gja5-EGFP reporter mouse model. Further, we explored the hemogenic potential of different EC populations based on their Gja5-EGFP and CD44 expression levels. The hemogenic potential was ubiquitously detected in spatiotemporally different vascular beds on embryonic days (E)8.5-E9.5 and gradually concentrated in CD44-positive ECs from E10.0. Unexpectedly, B-lymphoid potential was detected in the YS ECs as early as E8.5 regardless of their arterial features. Furthermore, the capacity for generating hematopoietic progenitors with in vivo lymphoid potential was found in nonarterial as well as arterial YS ECs on E10.0-E10.5. Importantly, the distinct identities of E10.0-E10.5 HECs between YS and intraembryonic caudal region were revealed by further scRNA-seq analysis. Cumulatively, these findings extend our knowledge regarding the hemogenic potential of ECs from anatomically and molecularly different vascular beds, providing a theoretical basis for better understanding the sources of HSPCs during mammalian development.
Collapse
Affiliation(s)
- Chaojie Wang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yandong Gong
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Anbang Wei
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100850, China
| | - Tao Huang
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100850, China
| | - Siyuan Hou
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Junjie Du
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100850, China
| | - Zongcheng Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Junliang Wang
- Department of radiotherapy, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Bing Liu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China. .,State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China.
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
68
|
In vitro expansion of fetal liver hematopoietic stem cells. Sci Rep 2021; 11:11879. [PMID: 34088934 PMCID: PMC8178329 DOI: 10.1038/s41598-021-91272-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/15/2021] [Indexed: 11/29/2022] Open
Abstract
Fetal liver hematopoietic stem and progenitor cells (HSPCs) have been considered appropriate for the management of aplastic anemia owing to their proliferative potential. Bone marrow recovery was possible in some cases; the engraftment potential of these cells, however was unsatisfactory, possibly due to the availability of a smaller number of these cells from a single fetus. The present study explores how we can expand fetal liver hematopoietic stem cells under in vitro conditions. We isolated mononuclear cells from fetal liver and hematopoietic stem cells were identified and analyzed by cell surface marker CD34. CD34+ fetal liver HSPCs cells were separated by magnetic cell sorting positive selection method. HSPCs (CD34+) were cultured by using 5 cytokines, stem cell factor (SCF), granulocyte macrophages-colony stimulating factor (GM-CSF), interleukin-6 (IL-6), Fms-related tyrosine kinase 3 (FLT-3) and erythropoietin (EPO), in 4 different combinations along with supplements, in serum-free culture media for 21 days. Cell viability continued to be greater than 90% throughout 21 days of culture. The cells expanded best in a combination of media, supplements and 5 cytokines, namely SCF, FLT-3, IL6, EPO and GM-CSF to yield a large number of total (CD34+ & CD34-) cells. Even though the total number of nucleated cells increased in culture significantly, levels of CD34 antigen expression declined steadily over this period.
Collapse
|
69
|
Karlsson G, Sommarin MNE, Böiers C. Defining the Emerging Blood System During Development at Single-Cell Resolution. Front Cell Dev Biol 2021; 9:660350. [PMID: 34055791 PMCID: PMC8158578 DOI: 10.3389/fcell.2021.660350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/26/2021] [Indexed: 12/20/2022] Open
Abstract
Developmental hematopoiesis differs from adult and is far less described. In the developing embryo, waves of lineage-restricted blood precede the ultimate emergence of definitive hematopoietic stem cells (dHSCs) capable of maintaining hematopoiesis throughout life. During the last two decades, the advent of single-cell genomics has provided tools to circumvent previously impeding characteristics of embryonic hematopoiesis, such as cell heterogeneity and rare cell states, allowing for definition of lineage trajectories, cellular hierarchies, and cell-type specification. The field has rapidly advanced from microfluidic platforms and targeted gene expression analysis, to high throughput unbiased single-cell transcriptomic profiling, single-cell chromatin analysis, and cell tracing-offering a plethora of tools to resolve important questions within hematopoietic development. Here, we describe how these technologies have been implemented to address a wide range of aspects of embryonic hematopoiesis ranging from the gene regulatory network of dHSC formation via endothelial to hematopoietic transition (EHT) and how EHT can be recapitulated in vitro, to hematopoietic trajectories and cell fate decisions. Together, these studies have important relevance for regenerative medicine and for our understanding of genetic blood disorders and childhood leukemias.
Collapse
Affiliation(s)
| | | | - Charlotta Böiers
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
70
|
Canu G, Ruhrberg C. First blood: the endothelial origins of hematopoietic progenitors. Angiogenesis 2021; 24:199-211. [PMID: 33783643 PMCID: PMC8205888 DOI: 10.1007/s10456-021-09783-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/10/2021] [Indexed: 12/20/2022]
Abstract
Hematopoiesis in vertebrate embryos occurs in temporally and spatially overlapping waves in close proximity to blood vascular endothelial cells. Initially, yolk sac hematopoiesis produces primitive erythrocytes, megakaryocytes, and macrophages. Thereafter, sequential waves of definitive hematopoiesis arise from yolk sac and intraembryonic hemogenic endothelia through an endothelial-to-hematopoietic transition (EHT). During EHT, the endothelial and hematopoietic transcriptional programs are tightly co-regulated to orchestrate a shift in cell identity. In the yolk sac, EHT generates erythro-myeloid progenitors, which upon migration to the liver differentiate into fetal blood cells, including erythrocytes and tissue-resident macrophages. In the dorsal aorta, EHT produces hematopoietic stem cells, which engraft the fetal liver and then the bone marrow to sustain adult hematopoiesis. Recent studies have defined the relationship between the developing vascular and hematopoietic systems in animal models, including molecular mechanisms that drive the hemato-endothelial transcription program for EHT. Moreover, human pluripotent stem cells have enabled modeling of fetal human hematopoiesis and have begun to generate cell types of clinical interest for regenerative medicine.
Collapse
Affiliation(s)
- Giovanni Canu
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| |
Collapse
|
71
|
Gu X, Li SY, DeFalco T. Immune and vascular contributions to organogenesis of the testis and ovary. FEBS J 2021; 289:2386-2408. [PMID: 33774913 PMCID: PMC8476657 DOI: 10.1111/febs.15848] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/07/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023]
Abstract
Gonad development is a highly regulated process that coordinates cell specification and morphogenesis to produce sex-specific organ structures that are required for fertility, such as testicular seminiferous tubules and ovarian follicles. While sex determination occurs within specialized gonadal supporting cells, sexual differentiation is evident throughout the entire organ, including within the interstitial compartment, which contains immune cells and vasculature. While immune and vascular cells have been traditionally appreciated for their supporting roles during tissue growth and homeostasis, an increasing body of evidence supports the idea that these cell types are critical drivers of sexually dimorphic morphogenesis of the gonad. Myeloid immune cells, such as macrophages, are essential for multiple aspects of gonadogenesis and fertility, including for forming and maintaining gonadal vasculature in both sexes at varying stages of life. While vasculature is long known for supporting organ growth and serving as an export mechanism for gonadal sex steroids in utero, it is also an important component of fetal testicular morphogenesis and differentiation; additionally, it is vital for ovarian corpus luteal function and maintenance of pregnancy. These findings point toward a new paradigm in which immune cells and blood vessels are integral components of sexual differentiation and organogenesis. In this review, we discuss the state of the field regarding the diverse roles of immune and vascular cells during organogenesis of the testis and ovary and highlight outstanding questions in the field that could stimulate new research into these previously underappreciated constituents of the gonad.
Collapse
Affiliation(s)
- Xiaowei Gu
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Shu-Yun Li
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Tony DeFalco
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, OH, USA
| |
Collapse
|
72
|
Rothenberg EV. Single-cell insights into the hematopoietic generation of T-lymphocyte precursors in mouse and human. Exp Hematol 2021; 95:1-12. [PMID: 33454362 PMCID: PMC8018899 DOI: 10.1016/j.exphem.2020.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 01/29/2023]
Abstract
T-Cell development is a major branch of lymphoid development and a key output of hematopoiesis, especially in early life, but the molecular requirements for T-cell potential have remained obscure. Considerable advances have now been made toward solving this problem through single-cell transcriptome studies, interfaced with in vitro differentiation assays that monitor potential efficiently at the single-cell level. This review focuses on a series of recent reports studying mouse and human early T-cell precursors, both in the developing fetus and in stringently purified postnatal samples of intrathymic and prethymic T-lineage precursors. Cross-comparison of results reveals a robustly conserved core program in mouse and human, but with some informative and provocative variations between species and between ontogenic states. Repeated findings are the multipotent progenitor regulatory signature of thymus-seeding cells and the proximity of the T-cell program to dendritic cell programs, especially to plasmacytoid dendritic cells in humans.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA.
| |
Collapse
|
73
|
Elsaid R, Meunier S, Burlen-Defranoux O, Soares-da-Silva F, Perchet T, Iturri L, Freyer L, Vieira P, Pereira P, Golub R, Bandeira A, Perdiguero EG, Cumano A. A wave of bipotent T/ILC-restricted progenitors shapes the embryonic thymus microenvironment in a time-dependent manner. Blood 2021; 137:1024-1036. [PMID: 33025012 PMCID: PMC8065239 DOI: 10.1182/blood.2020006779] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/10/2020] [Indexed: 12/16/2022] Open
Abstract
During embryonic development, multiple waves of hematopoietic progenitors with distinct lineage potential are differentially regulated in time and space. Two different waves of thymic progenitors colonize the fetal thymus where they contribute to thymic organogenesis and homeostasis. The origin, the lineage differentiation potential of the first wave, and their relative contribution in shaping the thymus architecture, remained, however, unclear. Here, we show that the first wave of thymic progenitors comprises a unique population of bipotent T and innatel lymphoid cells (T/ILC), generating a lymphoid tissue inducer cells (LTi's), in addition to invariant Vγ5+ T cells. Transcriptional analysis revealed that innate lymphoid gene signatures and, more precisely, the LTi-associated transcripts were expressed in the first, but not in the second, wave of thymic progenitors. Depletion of early thymic progenitors in a temporally controlled manner showed that the progeny of the first wave is indispensable for the differentiation of autoimmune regulator-expressing medullary thymic epithelial cells (mTECs). We further show that these progenitors are of strict hematopoietic stem cell origin, despite the overlap between lymphopoiesis initiation and the transient expression of lymphoid-associated transcripts in yolk sac (YS) erythromyeloid-restricted precursors. Our work highlights the relevance of the developmental timing on the emergence of different lymphoid subsets, required for the establishment of a functionally diverse immune system.
Collapse
Affiliation(s)
- Ramy Elsaid
- Unit of Lymphopoiesis, Immunology Department, Institut Pasteur, Paris, France
- Unité 1223, INSERM, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Sylvain Meunier
- Unit of Lymphopoiesis, Immunology Department, Institut Pasteur, Paris, France
- Unité 1223, INSERM, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Odile Burlen-Defranoux
- Unit of Lymphopoiesis, Immunology Department, Institut Pasteur, Paris, France
- Unité 1223, INSERM, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Francisca Soares-da-Silva
- Unit of Lymphopoiesis, Immunology Department, Institut Pasteur, Paris, France
- Unité 1223, INSERM, Paris, France
- Instituto de Investigação e Inovação em Saúde (I3S) and
- Instituto Nacional de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Thibaut Perchet
- Unit of Lymphopoiesis, Immunology Department, Institut Pasteur, Paris, France
- Unité 1223, INSERM, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Lorea Iturri
- Macrophages and Endothelial Cells Group, Development and Stem Cell Biology Department, Institut Pasteur, Paris, France; and
- Cellule Pasteur, University Pierre et Marie Curie (UPMC), Paris, France
| | - Laina Freyer
- Macrophages and Endothelial Cells Group, Development and Stem Cell Biology Department, Institut Pasteur, Paris, France; and
| | - Paulo Vieira
- Unit of Lymphopoiesis, Immunology Department, Institut Pasteur, Paris, France
- Unité 1223, INSERM, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Pablo Pereira
- Unit of Lymphopoiesis, Immunology Department, Institut Pasteur, Paris, France
- Unité 1223, INSERM, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Rachel Golub
- Unit of Lymphopoiesis, Immunology Department, Institut Pasteur, Paris, France
- Unité 1223, INSERM, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Antonio Bandeira
- Unit of Lymphopoiesis, Immunology Department, Institut Pasteur, Paris, France
- Unité 1223, INSERM, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Elisa Gomez Perdiguero
- Macrophages and Endothelial Cells Group, Development and Stem Cell Biology Department, Institut Pasteur, Paris, France; and
| | - Ana Cumano
- Unit of Lymphopoiesis, Immunology Department, Institut Pasteur, Paris, France
- Unité 1223, INSERM, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
74
|
Mass E, Gentek R. Fetal-Derived Immune Cells at the Roots of Lifelong Pathophysiology. Front Cell Dev Biol 2021; 9:648313. [PMID: 33708774 PMCID: PMC7940384 DOI: 10.3389/fcell.2021.648313] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Tissue-resident innate immune cells exert a wide range of functions in both adult homeostasis and pathology. Our understanding of when and how these cellular networks are established has dramatically changed with the recognition that many lineages originate at least in part from fetal sources and self-maintain independently from hematopoietic stem cells. Indeed, fetal-derived immune cells are found in most organs and serous cavities of our body, where they reside throughout the entire lifespan. At the same time, there is a growing appreciation that pathologies manifesting in adulthood may be caused by adverse early life events, a concept known as “developmental origins of health and disease” (DOHaD). Yet, whether fetal-derived immune cells are mechanistically involved in DOHaD remains elusive. In this review, we summarize our knowledge of fetal hematopoiesis and its contribution to adult immune compartments, which results in a “layered immune system.” Based on their ontogeny, we argue that fetal-derived immune cells are prime transmitters of long-term consequences of prenatal adversities. In addition to increasing disease susceptibility, these may also directly cause inflammatory, degenerative, and metabolic disorders. We explore this notion for cells generated from erythro-myeloid progenitors (EMP) produced in the extra-embryonic yolk sac. Focusing on macrophages and mast cells, we present emerging evidence implicating them in lifelong disease by either somatic mutations or developmental programming events resulting from maternal and early environmental perturbations.
Collapse
Affiliation(s)
- Elvira Mass
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Rebecca Gentek
- Centre for Inflammation Research & Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
75
|
Neo WH, Lie-A-Ling M, Fadlullah MZH, Lacaud G. Contributions of Embryonic HSC-Independent Hematopoiesis to Organogenesis and the Adult Hematopoietic System. Front Cell Dev Biol 2021; 9:631699. [PMID: 33681211 PMCID: PMC7930747 DOI: 10.3389/fcell.2021.631699] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/22/2021] [Indexed: 12/17/2022] Open
Abstract
During ontogeny, the establishment of the hematopoietic system takes place in several phases, separated both in time and location. The process is initiated extra-embryonically in the yolk sac (YS) and concludes in the main arteries of the embryo with the formation of hematopoietic stem cells (HSC). Initially, it was thought that HSC-independent hematopoietic YS cells were transient, and only required to bridge the gap to HSC activity. However, in recent years it has become clear that these cells also contribute to embryonic organogenesis, including the emergence of HSCs. Furthermore, some of these early HSC-independent YS cells persist into adulthood as distinct hematopoietic populations. These previously unrecognized abilities of embryonic HSC-independent hematopoietic cells constitute a new field of interest. Here, we aim to provide a succinct overview of the current knowledge regarding the contribution of YS-derived hematopoietic cells to the development of the embryo and the adult hematopoietic system.
Collapse
Affiliation(s)
- Wen Hao Neo
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, United Kingdom
| | - Michael Lie-A-Ling
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, United Kingdom
| | | | - Georges Lacaud
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, United Kingdom
| |
Collapse
|
76
|
Jackson TR, Ling RE, Roy A. The Origin of B-cells: Human Fetal B Cell Development and Implications for the Pathogenesis of Childhood Acute Lymphoblastic Leukemia. Front Immunol 2021; 12:637975. [PMID: 33679795 PMCID: PMC7928347 DOI: 10.3389/fimmu.2021.637975] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/28/2021] [Indexed: 12/27/2022] Open
Abstract
Human B-lymphopoiesis is a dynamic life-long process that starts in utero by around six post-conception weeks. A detailed understanding of human fetal B-lymphopoiesis and how it changes in postnatal life is vital for building a complete picture of normal B-lymphoid development through ontogeny, and its relevance in disease. B-cell acute lymphoblastic leukemia (B-ALL) is one of the most common cancers in children, with many of the leukemia-initiating events originating in utero. It is likely that the biology of B-ALL, including leukemia initiation, maintenance and progression depends on the developmental stage and type of B-lymphoid cell in which it originates. This is particularly important for early life leukemias, where specific characteristics of fetal B-cells might be key to determining how the disease behaves, including response to treatment. These cellular, molecular and/or epigenetic features are likely to change with age in a cell intrinsic and/or microenvironment directed manner. Most of our understanding of fetal B-lymphopoiesis has been based on murine data, but many recent studies have focussed on characterizing human fetal B-cell development, including functional and molecular assays at a single cell level. In this mini-review we will give a short overview of the recent advances in the understanding of human fetal B-lymphopoiesis, including its relevance to infant/childhood leukemia, and highlight future questions in the field.
Collapse
Affiliation(s)
- Thomas R Jackson
- Department of Paediatrics and MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Rebecca E Ling
- Department of Paediatrics and MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Anindita Roy
- Department of Paediatrics and MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
77
|
Environmental signals rather than layered ontogeny imprint the function of type 2 conventional dendritic cells in young and adult mice. Nat Commun 2021; 12:464. [PMID: 33469015 PMCID: PMC7815729 DOI: 10.1038/s41467-020-20659-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 12/13/2020] [Indexed: 01/29/2023] Open
Abstract
Conventional dendritic cells (cDC) are key activators of naive T cells, and can be targeted in adults to induce adaptive immunity, but in early life are considered under-developed or functionally immature. Here we show that, in early life, when the immune system develops, cDC2 exhibit a dual hematopoietic origin and, like other myeloid and lymphoid cells, develop in waves. Developmentally distinct cDC2 in early life, despite being distinguishable by fate mapping, are transcriptionally and functionally similar. cDC2 in early and adult life, however, are exposed to distinct cytokine environments that shape their transcriptional profile and alter their ability to sense pathogens, secrete cytokines and polarize T cells. We further show that cDC2 in early life, despite being distinct from cDC2 in adult life, are functionally competent and can induce T cell responses. Our results thus highlight the potential of harnessing cDC2 for boosting immunity in early life.
Collapse
|
78
|
Deng Y, Chen H, Zeng Y, Wang K, Zhang H, Hu H. Leaving no one behind: tracing every human thymocyte by single-cell RNA-sequencing. Semin Immunopathol 2021; 43:29-43. [PMID: 33449155 DOI: 10.1007/s00281-020-00834-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 12/22/2020] [Indexed: 02/05/2023]
Abstract
The thymus is the primary organ for T-cell development, providing an essential microenvironment consisting of the appropriate cytokine milieu and specialized stromal cells. Thymus-seeding progenitors from circulation immigrate into the thymus and undergo the stepwise T-cell specification, commitment, and selection processes. The transcriptional factors, epigenetic regulators, and signaling pathways involved in the T-cell development have been intensively studied using mouse models. Despite our growing knowledge of T-cell development, major questions remain unanswered regarding the ontogeny and early events of T-cell development at the fetal stage, especially in humans. The recently developed single-cell RNA-sequencing technique provides an ideal tool to investigate the heterogeneity of T-cell precursors and the molecular mechanisms underlying the divergent fates of certain T-cell precursors at the single-cell level. In this review, we aim to summarize the current progress of the study on human thymus organogenesis and thymocyte and thymic epithelial cell development, which is to shed new lights on developing novel strategies for in vitro T-cell regeneration and thymus rejuvenation.
Collapse
Affiliation(s)
- Yujun Deng
- Department of Rheumatology and Immunology and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Hong Chen
- Department of Rheumatology and Immunology and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yang Zeng
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China.,State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100071, China
| | - Keyue Wang
- Department of Rheumatology and Immunology and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Huiyuan Zhang
- Department of Rheumatology and Immunology and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| | - Hongbo Hu
- Department of Rheumatology and Immunology and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
79
|
Cazzola A, Cazzaniga G, Biondi A, Meneveri R, Brunelli S, Azzoni E. Prenatal Origin of Pediatric Leukemia: Lessons From Hematopoietic Development. Front Cell Dev Biol 2021; 8:618164. [PMID: 33511126 PMCID: PMC7835397 DOI: 10.3389/fcell.2020.618164] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022] Open
Abstract
Several lines of evidence suggest that childhood leukemia, the most common cancer in young age, originates during in utero development. However, our knowledge of the cellular origin of this large and heterogeneous group of malignancies is still incomplete. The identification and characterization of their cell of origin is of crucial importance in order to define the processes that initiate and sustain disease progression, to refine faithful animal models and to identify novel therapeutic approaches. During embryogenesis, hematopoiesis takes place at different anatomical sites in sequential waves, and occurs in both a hematopoietic stem cell (HSC)-dependent and a HSC-independent fashion. Despite the recently described relevance and complexity of HSC-independent hematopoiesis, few studies have so far investigated its potential involvement in leukemogenesis. Here, we review the current knowledge on prenatal origin of leukemias in the context of recent insights in developmental hematopoiesis.
Collapse
Affiliation(s)
- Anna Cazzola
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Giovanni Cazzaniga
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Centro Ricerca Tettamanti, University of Milano-Bicocca, Milan, Italy
| | - Andrea Biondi
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Centro Ricerca Tettamanti, University of Milano-Bicocca, Milan, Italy.,Pediatrics, Fondazione MBBM/Ospedale San Gerardo, University of Milano-Bicocca, Milan, Italy
| | - Raffaella Meneveri
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Silvia Brunelli
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Emanuele Azzoni
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
80
|
Fantin A, Tacconi C, Villa E, Ceccacci E, Denti L, Ruhrberg C. KIT Is Required for Fetal Liver Hematopoiesis. Front Cell Dev Biol 2021; 9:648630. [PMID: 34395414 PMCID: PMC8358609 DOI: 10.3389/fcell.2021.648630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 06/23/2021] [Indexed: 01/22/2023] Open
Abstract
In the mouse embryo, endothelial cell (EC) progenitors almost concomitantly give rise to the first blood vessels in the yolk sac and the large vessels of the embryo proper. Although the first blood cells form in the yolk sac before blood vessels have assembled, consecutive waves of hematopoietic progenitors subsequently bud from hemogenic endothelium located within the wall of yolk sac and large intraembryonic vessels in a process termed endothelial-to-hematopoietic transition (endoHT). The receptor tyrosine kinase KIT is required for late embryonic erythropoiesis, but KIT is also expressed in hematopoietic progenitors that arise via endoHT from yolk sac hemogenic endothelium to generate early, transient hematopoietic waves. However, it remains unclear whether KIT has essential roles in early hematopoiesis. Here, we have combined single-cell expression studies with the analysis of knockout mice to show that KIT is dispensable for yolk sac endoHT but required for transient definitive hematopoiesis in the fetal liver.
Collapse
Affiliation(s)
- Alessandro Fantin
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
- Department of Biosciences, University of Milan, Milan, Italy
- *Correspondence: Alessandro Fantin,
| | | | - Emanuela Villa
- Department of Biosciences, University of Milan, Milan, Italy
| | - Elena Ceccacci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Laura Denti
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
- Christiana Ruhrberg,
| |
Collapse
|
81
|
Elsaid R, Soares-da-Silva F, Peixoto M, Amiri D, Mackowski N, Pereira P, Bandeira A, Cumano A. Hematopoiesis: A Layered Organization Across Chordate Species. Front Cell Dev Biol 2020; 8:606642. [PMID: 33392196 PMCID: PMC7772317 DOI: 10.3389/fcell.2020.606642] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
The identification of distinct waves of progenitors during development, each corresponding to a specific time, space, and function, provided the basis for the concept of a "layered" organization in development. The concept of a layered hematopoiesis was established by classical embryology studies in birds and amphibians. Recent progress in generating reliable lineage tracing models together with transcriptional and proteomic analyses in single cells revealed that, also in mammals, the hematopoietic system evolves in successive waves of progenitors with distinct properties and fate. During embryogenesis, sequential waves of hematopoietic progenitors emerge at different anatomic sites, generating specific cell types with distinct functions and tissue homing capacities. The first progenitors originate in the yolk sac before the emergence of hematopoietic stem cells, some giving rise to progenies that persist throughout life. Hematopoietic stem cell-derived cells that protect organisms against environmental pathogens follow the same sequential strategy, with subsets of lymphoid cells being only produced during embryonic development. Growing evidence indicates that fetal immune cells contribute to the proper development of the organs they seed and later ensure life-long tissue homeostasis and immune protection. They include macrophages, mast cells, some γδ T cells, B-1 B cells, and innate lymphoid cells, which have "non-redundant" functions, and early perturbations in their development or function affect immunity in the adult. These observations challenged the view that all hematopoietic cells found in the adult result from constant and monotonous production from bone marrow-resident hematopoietic stem cells. In this review, we evaluate evidence for a layered hematopoietic system across species. We discuss mechanisms and selective pressures leading to the temporal generation of different cell types. We elaborate on the consequences of disturbing fetal immune cells on tissue homeostasis and immune development later in life.
Collapse
Affiliation(s)
- Ramy Elsaid
- Unit of Lymphocytes and Immunity, Immunology Department, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université de Paris, Céllule Pasteur, Paris, France
| | - Francisca Soares-da-Silva
- Unit of Lymphocytes and Immunity, Immunology Department, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université de Paris, Céllule Pasteur, Paris, France
- I3S—Instituto de Investigação e Inovação em Saúde and INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciências Biomeìdicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Marcia Peixoto
- Unit of Lymphocytes and Immunity, Immunology Department, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université de Paris, Céllule Pasteur, Paris, France
- I3S—Instituto de Investigação e Inovação em Saúde and INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Dali Amiri
- Unit of Lymphocytes and Immunity, Immunology Department, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université de Paris, Céllule Pasteur, Paris, France
| | - Nathan Mackowski
- Unit of Lymphocytes and Immunity, Immunology Department, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université de Paris, Céllule Pasteur, Paris, France
| | - Pablo Pereira
- Unit of Lymphocytes and Immunity, Immunology Department, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université de Paris, Céllule Pasteur, Paris, France
| | - Antonio Bandeira
- Unit of Lymphocytes and Immunity, Immunology Department, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université de Paris, Céllule Pasteur, Paris, France
| | - Ana Cumano
- Unit of Lymphocytes and Immunity, Immunology Department, Institut Pasteur, Paris, France
- INSERM U1223, Paris, France
- Université de Paris, Céllule Pasteur, Paris, France
| |
Collapse
|
82
|
Cellular Basis of Embryonic Hematopoiesis and Its Implications in Prenatal Erythropoiesis. Int J Mol Sci 2020; 21:ijms21249346. [PMID: 33302450 PMCID: PMC7763178 DOI: 10.3390/ijms21249346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 01/02/2023] Open
Abstract
Primitive erythrocytes are the first hematopoietic cells observed during ontogeny and are produced specifically in the yolk sac. Primitive erythrocytes express distinct hemoglobins compared with adult erythrocytes and circulate in the blood in the nucleated form. Hematopoietic stem cells produce adult-type (so-called definitive) erythrocytes. However, hematopoietic stem cells do not appear until the late embryonic/early fetal stage. Recent studies have shown that diverse types of hematopoietic progenitors are present in the yolk sac as well as primitive erythroblasts. Multipotent hematopoietic progenitors that arose in the yolk sac before hematopoietic stem cells emerged likely fill the gap between primitive erythropoiesis and hematopoietic stem-cell-originated definitive erythropoiesis and hematopoiesis. In this review, we discuss the cellular origin of primitive erythropoiesis in the yolk sac and definitive hematopoiesis in the fetal liver. We also describe mechanisms for developmental switches that occur during embryonic and fetal erythropoiesis and hematopoiesis, particularly focusing on recent studies performed in mice.
Collapse
|
83
|
Heck AM, Ishida T, Hadland B. Location, Location, Location: How Vascular Specialization Influences Hematopoietic Fates During Development. Front Cell Dev Biol 2020; 8:602617. [PMID: 33282876 PMCID: PMC7691428 DOI: 10.3389/fcell.2020.602617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/30/2020] [Indexed: 01/22/2023] Open
Abstract
During embryonic development, sequential waves of hematopoiesis give rise to blood-forming cells with diverse lineage potentials and self-renewal properties. This process must accomplish two important yet divergent goals: the rapid generation of differentiated blood cells to meet the needs of the developing embryo and the production of a reservoir of hematopoietic stem cells to provide for life-long hematopoiesis in the adult. Vascular beds in distinct anatomical sites of extraembryonic tissues and the embryo proper provide the necessary conditions to support these divergent objectives, suggesting a critical role for specialized vascular niche cells in regulating disparate blood cell fates during development. In this review, we will examine the current understanding of how organ- and stage-specific vascular niche specialization contributes to the development of the hematopoietic system.
Collapse
Affiliation(s)
- Adam M. Heck
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Takashi Ishida
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Brandon Hadland
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
84
|
Wittamer V, Bertrand JY. Yolk sac hematopoiesis: does it contribute to the adult hematopoietic system? Cell Mol Life Sci 2020; 77:4081-4091. [PMID: 32405721 PMCID: PMC11104818 DOI: 10.1007/s00018-020-03527-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/10/2020] [Accepted: 04/13/2020] [Indexed: 12/24/2022]
Abstract
In most vertebrates, the yolk sac (YS) represents the very first tissue where blood cells are detected. Therefore, it was thought for a long time that it generated all the blood cells present in the embryo. This model was challenged using different animal models, and we now know that YS hematopoietic precursors are mostly transient although their contribution to the adult system cannot be excluded. In this review, we aim at properly define the different waves of blood progenitors that are produced by the YS and address the fate of each of them. Indeed, in the last decade, many evidences have emphasized the role of the YS in the emergence of several myeloid tissue-resident adult subsets. We will focus on the development of microglia, the resident macrophages in the central nervous system, and try to untangle the recent controversy about their origin.
Collapse
Affiliation(s)
- Valerie Wittamer
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Brussels, Belgium
- ULB Institute of Neuroscience (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO, Brussels, Belgium
| | - Julien Y Bertrand
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, Geneva 4, 1211, Geneva, Switzerland.
| |
Collapse
|
85
|
Frame JM, Kubaczka C, Long TL, Esain V, Soto RA, Hachimi M, Jing R, Shwartz A, Goessling W, Daley GQ, North TE. Metabolic Regulation of Inflammasome Activity Controls Embryonic Hematopoietic Stem and Progenitor Cell Production. Dev Cell 2020; 55:133-149.e6. [PMID: 32810442 DOI: 10.1016/j.devcel.2020.07.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 05/26/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022]
Abstract
Embryonic hematopoietic stem and progenitor cells (HSPCs) robustly proliferate while maintaining multilineage potential in vivo; however, an incomplete understanding of spatiotemporal cues governing their generation has impeded robust production from human induced pluripotent stem cells (iPSCs) in vitro. Using the zebrafish model, we demonstrate that NLRP3 inflammasome-mediated interleukin-1-beta (IL1β) signaling drives HSPC production in response to metabolic activity. Genetic induction of active IL1β or pharmacologic inflammasome stimulation increased HSPC number as assessed by in situ hybridization for runx1/cmyb and flow cytometry. Loss of inflammasome components, including il1b, reduced CD41+ HSPCs and prevented their expansion in response to metabolic cues. Cell ablation studies indicated that macrophages were essential for initial inflammasome stimulation of Il1rl1+ HSPCs. Significantly, in human iPSC-derived hemogenic precursors, transient inflammasome stimulation increased multilineage hematopoietic colony-forming units and T cell progenitors. This work establishes the inflammasome as a conserved metabolic sensor that expands HSPC production in vivo and in vitro.
Collapse
Affiliation(s)
- Jenna M Frame
- Stem Cell Program, Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Caroline Kubaczka
- Stem Cell Program, Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Timothy L Long
- Stem Cell Program, Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Virginie Esain
- Stem Cell Program, Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Rebecca A Soto
- Stem Cell Program, Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Developmental and Regenerative Biology Program, Harvard Medical School, Boston, MA 02115, USA
| | - Mariam Hachimi
- Stem Cell Program, Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Ran Jing
- Stem Cell Program, Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Arkadi Shwartz
- Genetics Division, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Wolfram Goessling
- Developmental and Regenerative Biology Program, Harvard Medical School, Boston, MA 02115, USA; Genetics Division, Brigham & Women's Hospital, Boston, MA 02115, USA; Gastroenterology Division, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - George Q Daley
- Stem Cell Program, Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Developmental and Regenerative Biology Program, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Trista E North
- Stem Cell Program, Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Developmental and Regenerative Biology Program, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
86
|
Feng T, Gao Z, Kou S, Huang X, Jiang Z, Lu Z, Meng J, Lin CP, Zhang H. No Evidence for Erythro-Myeloid Progenitor-Derived Vascular Endothelial Cells in Multiple Organs. Circ Res 2020; 127:1221-1232. [PMID: 32791884 DOI: 10.1161/circresaha.120.317442] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RATIONALE Endothelial cells are thought to emerge de novo from the mesoderm to form the entire circulatory system. Recently, erythro-myeloid progenitors (EMPs) have been proposed to be another remarkable developmental origin for blood vessels in multiple organs, including the hindbrain, liver, lung, and heart, as demonstrated by lineage tracing studies using different genetic tools. These observations challenge the current consensus that intraembryonic vessels are thought to expand solely by the proliferation of preexisting endothelial cells. Resolution of this controversy over the developmental origin of endothelial cells is crucial for developing future therapeutics for vessel-dependent organ repair and regeneration. OBJECTIVE To examine the contribution of EMPs to intraembryonic endothelial cells. METHODS AND RESULTS We first used a transgenic mouse expressing a tamoxifen-inducible Mer-iCre fusion protein driven by the Csf1r (colony stimulating factor 1 receptor) promoter. Genetic lineage tracing based on Csf1r-Mer-iCre-Mer showed no contribution of EMPs to brain endothelial cells identified by several markers. We also generated a knock-in mouse line by inserting an internal ribosome entry site-iCre cassette into the 3' untranslated region of Csf1r gene to further investigate the cellular fates of EMPs. Similarly, we did not find any Csf1r-ires-iCre traced endothelial cells in brain, liver, lung, or heart in development either. Additionally, we found that Kit (KIT proto-oncogene receptor tyrosine kinase) was expressed not only in EMPs but also in embryonic hindbrain endothelial cells. Therefore, Kit promoter-driven recombinase, such as Kit-CreER, is a flawed tool for lineage tracing when examining the contribution of EMPs to hindbrain endothelial cells. We also traced CD45 (protein tyrosine phosphatase receptor type C; Ptprc)+ circulating EMPs and did not find any CD45 lineage-derived endothelial cells during development. CONCLUSIONS Our study suggested that EMPs are not the origin of intraembryonic endothelial cells.
Collapse
Affiliation(s)
- Teng Feng
- School of Life Science and Technology, ShanghaiTech University, China (T.F., Z.G., S.K., X.H., Z.J., Z.L., J.M., C.-P.L., H.Z.).,University of Chinese Academy of Sciences, Beijing (T.F., Z.G., S.K., X.H., Z.J., Z.L.)
| | - Zibei Gao
- School of Life Science and Technology, ShanghaiTech University, China (T.F., Z.G., S.K., X.H., Z.J., Z.L., J.M., C.-P.L., H.Z.).,University of Chinese Academy of Sciences, Beijing (T.F., Z.G., S.K., X.H., Z.J., Z.L.)
| | - Shan Kou
- School of Life Science and Technology, ShanghaiTech University, China (T.F., Z.G., S.K., X.H., Z.J., Z.L., J.M., C.-P.L., H.Z.).,University of Chinese Academy of Sciences, Beijing (T.F., Z.G., S.K., X.H., Z.J., Z.L.)
| | - Xinyan Huang
- School of Life Science and Technology, ShanghaiTech University, China (T.F., Z.G., S.K., X.H., Z.J., Z.L., J.M., C.-P.L., H.Z.).,University of Chinese Academy of Sciences, Beijing (T.F., Z.G., S.K., X.H., Z.J., Z.L.)
| | - Zhen Jiang
- School of Life Science and Technology, ShanghaiTech University, China (T.F., Z.G., S.K., X.H., Z.J., Z.L., J.M., C.-P.L., H.Z.).,University of Chinese Academy of Sciences, Beijing (T.F., Z.G., S.K., X.H., Z.J., Z.L.)
| | - Zhengkai Lu
- School of Life Science and Technology, ShanghaiTech University, China (T.F., Z.G., S.K., X.H., Z.J., Z.L., J.M., C.-P.L., H.Z.).,University of Chinese Academy of Sciences, Beijing (T.F., Z.G., S.K., X.H., Z.J., Z.L.)
| | - Jufeng Meng
- School of Life Science and Technology, ShanghaiTech University, China (T.F., Z.G., S.K., X.H., Z.J., Z.L., J.M., C.-P.L., H.Z.)
| | - Chao-Po Lin
- School of Life Science and Technology, ShanghaiTech University, China (T.F., Z.G., S.K., X.H., Z.J., Z.L., J.M., C.-P.L., H.Z.)
| | - Hui Zhang
- School of Life Science and Technology, ShanghaiTech University, China (T.F., Z.G., S.K., X.H., Z.J., Z.L., J.M., C.-P.L., H.Z.)
| |
Collapse
|
87
|
Heterogeneous origins and functions of mouse skeletal muscle-resident macrophages. Proc Natl Acad Sci U S A 2020; 117:20729-20740. [PMID: 32796104 DOI: 10.1073/pnas.1915950117] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Tissue-resident macrophages can originate from embryonic or adult hematopoiesis. They play important roles in a wide range of biological processes including tissue remodeling during organogenesis, organ homeostasis, repair following injury, and immune response to pathogens. Although the origins and tissue-specific functions of resident macrophages have been extensively studied in many other tissues, they are not well characterized in skeletal muscle. In the present study, we have characterized the ontogeny of skeletal muscle-resident macrophages by lineage tracing and bone marrow transplant experiments. We demonstrate that skeletal muscle-resident macrophages originate from both embryonic hematopoietic progenitors located within the yolk sac and fetal liver as well as definitive hematopoietic stem cells located within the bone marrow of adult mice. Single-cell-based transcriptome analyses revealed that skeletal muscle-resident macrophages are distinctive from resident macrophages in other tissues as they express a distinct complement of transcription factors and are composed of functionally diverse subsets correlating to their origins. Functionally, skeletal muscle-resident macrophages appear to maintain tissue homeostasis and promote muscle growth and regeneration.
Collapse
|
88
|
Zhu Q, Gao P, Tober J, Bennett L, Chen C, Uzun Y, Li Y, Howell ED, Mumau M, Yu W, He B, Speck NA, Tan K. Developmental trajectory of prehematopoietic stem cell formation from endothelium. Blood 2020; 136:845-856. [PMID: 32392346 PMCID: PMC7426642 DOI: 10.1182/blood.2020004801] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/22/2020] [Indexed: 01/01/2023] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) in the bone marrow are derived from a small population of hemogenic endothelial (HE) cells located in the major arteries of the mammalian embryo. HE cells undergo an endothelial to hematopoietic cell transition, giving rise to HSPCs that accumulate in intra-arterial clusters (IAC) before colonizing the fetal liver. To examine the cell and molecular transitions between endothelial (E), HE, and IAC cells, and the heterogeneity of HSPCs within IACs, we profiled ∼40 000 cells from the caudal arteries (dorsal aorta, umbilical, vitelline) of 9.5 days post coitus (dpc) to 11.5 dpc mouse embryos by single-cell RNA sequencing and single-cell assay for transposase-accessible chromatin sequencing. We identified a continuous developmental trajectory from E to HE to IAC cells, with identifiable intermediate stages. The intermediate stage most proximal to HE, which we term pre-HE, is characterized by increased accessibility of chromatin enriched for SOX, FOX, GATA, and SMAD motifs. A developmental bottleneck separates pre-HE from HE, with RUNX1 dosage regulating the efficiency of the pre-HE to HE transition. A distal candidate Runx1 enhancer exhibits high chromatin accessibility specifically in pre-HE cells at the bottleneck, but loses accessibility thereafter. Distinct developmental trajectories within IAC cells result in 2 populations of CD45+ HSPCs; an initial wave of lymphomyeloid-biased progenitors, followed by precursors of hematopoietic stem cells (pre-HSCs). This multiomics single-cell atlas significantly expands our understanding of pre-HSC ontogeny.
Collapse
Affiliation(s)
- Qin Zhu
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA
| | - Peng Gao
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA; and
| | - Joanna Tober
- Department of Cell and Developmental Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, and
| | - Laura Bennett
- Department of Cell and Developmental Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, and
| | - Changya Chen
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA; and
| | - Yasin Uzun
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA; and
| | - Yan Li
- Department of Cell and Developmental Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, and
| | - Elizabeth D Howell
- Department of Cell and Developmental Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, and
| | - Melanie Mumau
- Department of Cell and Developmental Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, and
| | - Wenbao Yu
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA; and
| | - Bing He
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA; and
| | - Nancy A Speck
- Department of Cell and Developmental Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, and
| | - Kai Tan
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA; and
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
89
|
Antunes ETB, Ottersbach K. The MLL/SET family and haematopoiesis. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2020; 1863:194579. [PMID: 32389825 PMCID: PMC7294230 DOI: 10.1016/j.bbagrm.2020.194579] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/08/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022]
Abstract
As demonstrated through early work in Drosophila, members of the MLL/SET family play essential roles during embryonic development through their participation in large protein complexes that are central to epigenetic regulation of gene expression. One of its members, MLL1, has additionally received a lot of attention as it is a potent oncogenic driver in different types of leukaemia when aberrantly fused to a large variety of partners as a result of chromosomal translocations. Its exclusive association with cancers of the haematopoietic system has prompted a large number of investigations into the role of MLL/SET proteins in haematopoiesis, a summary of which was attempted in this review. Interestingly, MLL-rearranged leukaemias are particularly prominent in infant and paediatric leukaemia, which commonly initiate in utero. This, together with the known function of MLL/SET proteins in embryonic development, has focussed research efforts in recent years on understanding the role of this protein family in developmental haematopoiesis and how this may be subverted by MLL oncofusions in infant leukaemia. A detailed understanding of these prenatal events is essential for the development of new treatments that improve the survival specifically of this very young patient group.
Collapse
Affiliation(s)
- Eric T B Antunes
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Katrin Ottersbach
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK.
| |
Collapse
|
90
|
Origin and function of the yolk sac in primate embryogenesis. Nat Commun 2020; 11:3760. [PMID: 32724077 PMCID: PMC7387521 DOI: 10.1038/s41467-020-17575-w] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Human embryogenesis is hallmarked by two phases of yolk sac development. The primate hypoblast gives rise to a transient primary yolk sac, which is rapidly superseded by a secondary yolk sac during gastrulation. Moreover, primate embryos form extraembryonic mesoderm prior to gastrulation, in contrast to mouse. The function of the primary yolk sac and the origin of extraembryonic mesoderm remain unclear. Here, we hypothesise that the hypoblast-derived primary yolk sac serves as a source for early extraembryonic mesoderm, which is supplemented with mesoderm from the gastrulating embryo. We discuss the intricate relationship between the yolk sac and the primate embryo and highlight the pivotal role of the yolk sac as a multifunctional hub for haematopoiesis, germ cell development and nutritional supply.
Collapse
|
91
|
Arroyo Hornero R, Georgiadis C, Hua P, Trzupek D, He LZ, Qasim W, Todd JA, Ferreira RC, Wood KJ, Issa F, Hester J. CD70 expression determines the therapeutic efficacy of expanded human regulatory T cells. Commun Biol 2020; 3:375. [PMID: 32665635 PMCID: PMC7360768 DOI: 10.1038/s42003-020-1097-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 06/17/2020] [Indexed: 12/27/2022] Open
Abstract
Regulatory T cells (Tregs) are critical mediators of immune homeostasis. The co-stimulatory molecule CD27 is a marker of highly suppressive Tregs, although the role of the CD27-CD70 receptor-ligand interaction in Tregs is not clear. Here we show that after prolonged in vitro stimulation, a significant proportion of human Tregs gain stable CD70 expression while losing CD27. The expression of CD70 in expanded Tregs is associated with a profound loss of regulatory function and an unusual ability to provide CD70-directed co-stimulation to TCR-activated conventional T cells. Genetic deletion of CD70 or its blockade prevents Tregs from delivering this co-stimulatory signal, thus maintaining their regulatory activity. High resolution targeted single-cell RNA sequencing of human peripheral blood confirms the presence of CD27-CD70+ Treg cells. These findings have important implications for Treg-based clinical studies where cells are expanded over extended periods in order to achieve sufficient treatment doses.
Collapse
Affiliation(s)
- Rebeca Arroyo Hornero
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Christos Georgiadis
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Peng Hua
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Dominik Trzupek
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, OX3 7BN, UK
| | - Li-Zhen He
- Celldex Therapeutics, Inc., Hampton, NJ, 08827, USA
| | - Waseem Qasim
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - John A Todd
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, OX3 7BN, UK
| | - Ricardo C Ferreira
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, OX3 7BN, UK
| | - Kathryn J Wood
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Fadi Issa
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Joanna Hester
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.
| |
Collapse
|
92
|
Cumano A, Berthault C, Ramond C, Petit M, Golub R, Bandeira A, Pereira P. New Molecular Insights into Immune Cell Development. Annu Rev Immunol 2020; 37:497-519. [PMID: 31026413 DOI: 10.1146/annurev-immunol-042718-041319] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During development innate lymphoid cells and specialized lymphocyte subsets colonize peripheral tissues, where they contribute to organogenesis and later constitute the first line of protection while maintaining tissue homeostasis. A few of these subsets are produced only during embryonic development and remain in the tissues throughout life. They are generated through a unique developmental program initiated in lympho-myeloid-primed progenitors, which lose myeloid and B cell potential. They either differentiate into innate lymphoid cells or migrate to the thymus to give rise to embryonic T cell receptor-invariant T cells. At later developmental stages, adaptive T lymphocytes are derived from lympho-myeloid progenitors that colonize the thymus, while lymphoid progenitors become specialized in the production of B cells. This sequence of events highlights the requirement for stratification in the establishment of immune functions that determine efficient seeding of peripheral tissues by a limited number of cells.
Collapse
Affiliation(s)
- Ana Cumano
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| | - Claire Berthault
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| | - Cyrille Ramond
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , ,
| | - Maxime Petit
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| | - Rachel Golub
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| | - Antonio Bandeira
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| | - Pablo Pereira
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| |
Collapse
|
93
|
Canu G, Athanasiadis E, Grandy RA, Garcia-Bernardo J, Strzelecka PM, Vallier L, Ortmann D, Cvejic A. Analysis of endothelial-to-haematopoietic transition at the single cell level identifies cell cycle regulation as a driver of differentiation. Genome Biol 2020; 21:157. [PMID: 32611441 PMCID: PMC7329542 DOI: 10.1186/s13059-020-02058-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Haematopoietic stem cells (HSCs) first arise during development in the aorta-gonad-mesonephros (AGM) region of the embryo from a population of haemogenic endothelial cells which undergo endothelial-to-haematopoietic transition (EHT). Despite the progress achieved in recent years, the molecular mechanisms driving EHT are still poorly understood, especially in human where the AGM region is not easily accessible. RESULTS In this study, we take advantage of a human pluripotent stem cell (hPSC) differentiation system and single-cell transcriptomics to recapitulate EHT in vitro and uncover mechanisms by which the haemogenic endothelium generates early haematopoietic cells. We show that most of the endothelial cells reside in a quiescent state and progress to the haematopoietic fate within a defined time window, within which they need to re-enter into the cell cycle. If cell cycle is blocked, haemogenic endothelial cells lose their EHT potential and adopt a non-haemogenic identity. Furthermore, we demonstrate that CDK4/6 and CDK1 play a key role not only in the transition but also in allowing haematopoietic progenitors to establish their full differentiation potential. CONCLUSION We propose a direct link between the molecular machineries that control cell cycle progression and EHT.
Collapse
Affiliation(s)
- Giovanni Canu
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Emmanouil Athanasiadis
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Rodrigo A Grandy
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | | | - Paulina M Strzelecka
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Ludovic Vallier
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK.
- Department of Surgery, University of Cambridge, Cambridge, UK.
| | - Daniel Ortmann
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK.
- Department of Surgery, University of Cambridge, Cambridge, UK.
| | - Ana Cvejic
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK.
| |
Collapse
|
94
|
Dege C, Fegan KH, Creamer JP, Berrien-Elliott MM, Luff SA, Kim D, Wagner JA, Kingsley PD, McGrath KE, Fehniger TA, Palis J, Sturgeon CM. Potently Cytotoxic Natural Killer Cells Initially Emerge from Erythro-Myeloid Progenitors during Mammalian Development. Dev Cell 2020; 53:229-239.e7. [PMID: 32197069 PMCID: PMC7185477 DOI: 10.1016/j.devcel.2020.02.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 12/31/2019] [Accepted: 02/21/2020] [Indexed: 12/21/2022]
Abstract
Natural killer (NK) cells are a critical component of the innate immune system. However, their ontogenic origin has remained unclear. Here, we report that NK cell potential first arises from Hoxaneg/low Kit+CD41+CD16/32+ hematopoietic-stem-cell (HSC)-independent erythro-myeloid progenitors (EMPs) present in the murine yolk sac. EMP-derived NK cells and primary fetal NK cells, unlike their adult counterparts, exhibit robust degranulation in response to stimulation. Parallel studies using human pluripotent stem cells (hPSCs) revealed that HOXAneg/low CD34+ progenitors give rise to NK cells that, similar to murine EMP-derived NK cells, harbor a potent cytotoxic degranulation bias. In contrast, hPSC-derived HOXA+ CD34+ progenitors, as well as human cord blood CD34+ cells, give rise to NK cells that exhibit an attenuated degranulation response but robustly produce inflammatory cytokines. Collectively, our studies identify an extra-embryonic origin of potently cytotoxic NK cells, suggesting that ontogenic origin is a relevant factor in designing hPSC-derived adoptive immunotherapies.
Collapse
Affiliation(s)
- Carissa Dege
- Department of Medicine, Division of Hematology, Washington University in St Louis, St. Louis, MO 63110, USA
| | - Katherine H Fegan
- Center for Pediatric Biomedical Research and Department of Pediatrics, University of Rochester, Rochester, NY 14642, USA
| | - J Philip Creamer
- Department of Medicine, Division of Hematology, Washington University in St Louis, St. Louis, MO 63110, USA
| | - Melissa M Berrien-Elliott
- Department of Medicine, Division of Oncology, Washington University in St Louis, St. Louis, MO 63110, USA
| | - Stephanie A Luff
- Department of Medicine, Division of Hematology, Washington University in St Louis, St. Louis, MO 63110, USA
| | - Darren Kim
- Department of Medicine, Division of Hematology, Washington University in St Louis, St. Louis, MO 63110, USA
| | - Julia A Wagner
- Department of Medicine, Division of Oncology, Washington University in St Louis, St. Louis, MO 63110, USA
| | - Paul D Kingsley
- Center for Pediatric Biomedical Research and Department of Pediatrics, University of Rochester, Rochester, NY 14642, USA
| | - Kathleen E McGrath
- Center for Pediatric Biomedical Research and Department of Pediatrics, University of Rochester, Rochester, NY 14642, USA
| | - Todd A Fehniger
- Department of Medicine, Division of Oncology, Washington University in St Louis, St. Louis, MO 63110, USA
| | - James Palis
- Center for Pediatric Biomedical Research and Department of Pediatrics, University of Rochester, Rochester, NY 14642, USA.
| | - Christopher M Sturgeon
- Department of Medicine, Division of Hematology, Washington University in St Louis, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University in St Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University in St Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
95
|
Apostol AC, Jensen KDC, Beaudin AE. Training the Fetal Immune System Through Maternal Inflammation-A Layered Hygiene Hypothesis. Front Immunol 2020; 11:123. [PMID: 32117273 PMCID: PMC7026678 DOI: 10.3389/fimmu.2020.00123] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
Over the last century, the alarming surge in allergy and autoimmune disease has led to the hypothesis that decreasing exposure to microbes, which has accompanied industrialization and modern life in the Western world, has fundamentally altered the immune response. In its current iteration, the “hygiene hypothesis” suggests that reduced microbial exposures during early life restricts the production and differentiation of immune cells suited for immune regulation. Although it is now well-appreciated that the increase in hypersensitivity disorders represents a “perfect storm” of many contributing factors, we argue here that two important considerations have rarely been explored. First, the window of microbial exposure that impacts immune development is not limited to early childhood, but likely extends into the womb. Second, restricted microbial interactions by an expectant mother will bias the fetal immune system toward hypersensitivity. Here, we extend this discussion to hypothesize that the cell types sensing microbial exposures include fetal hematopoietic stem cells, which drive long-lasting changes to immunity.
Collapse
Affiliation(s)
- April C Apostol
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, United States
| | - Kirk D C Jensen
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, United States
| | - Anna E Beaudin
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, United States
| |
Collapse
|
96
|
Abstract
The generation of hematopoietic stem cells (HSCs) from pluripotent stem cell (PSC) sources is a long-standing goal that will require a comprehensive understanding of the molecular and cellular factors that determine HSC fate during embryogenesis. A precise interplay between niche components, such as the vascular, mesenchymal, primitive myeloid cells, and the nervous system provides the unique signaling milieu for the emergence of functional HSCs in the aorta-gonad-mesonephros (AGM) region. Over the last several years, the interrogation of these aspects in the embryo model and in the PSC differentiation system has provided valuable knowledge that will continue educating the design of more efficient protocols to enable the differentiation of PSCs into
bona fide, functionally transplantable HSCs. Herein, we provide a synopsis of early hematopoietic development, with particular focus on the recent discoveries and remaining questions concerning AGM hematopoiesis. Moreover, we acknowledge the recent advances towards the generation of HSCs
in vitro and discuss possible approaches to achieve this goal in light of the current knowledge.
Collapse
Affiliation(s)
- Ana G Freire
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, USA
| | - Jason M Butler
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, USA.,Molecular Oncology Program, Georgetown University, Washington D.C., USA
| |
Collapse
|
97
|
Multipotent RAG1+ progenitors emerge directly from haemogenic endothelium in human pluripotent stem cell-derived haematopoietic organoids. Nat Cell Biol 2020; 22:60-73. [DOI: 10.1038/s41556-019-0445-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 11/27/2019] [Indexed: 01/01/2023]
|
98
|
He S, Tian Y, Feng S, Wu Y, Shen X, Chen K, He Y, Sun Q, Li X, Xu J, Wen Z, Qu JY. In vivo single-cell lineage tracing in zebrafish using high-resolution infrared laser-mediated gene induction microscopy. eLife 2020; 9:e52024. [PMID: 31904340 PMCID: PMC7018510 DOI: 10.7554/elife.52024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/04/2020] [Indexed: 12/15/2022] Open
Abstract
Heterogeneity broadly exists in various cell types both during development and at homeostasis. Investigating heterogeneity is crucial for comprehensively understanding the complexity of ontogeny, dynamics, and function of specific cell types. Traditional bulk-labeling techniques are incompetent to dissect heterogeneity within cell population, while the new single-cell lineage tracing methodologies invented in the last decade can hardly achieve high-fidelity single-cell labeling and long-term in-vivo observation simultaneously. In this work, we developed a high-precision infrared laser-evoked gene operator heat-shock system, which uses laser-induced CreERT2 combined with loxP-DsRedx-loxP-GFP reporter to achieve precise single-cell labeling and tracing. In vivo study indicated that this system can precisely label single cell in brain, muscle and hematopoietic system in zebrafish embryo. Using this system, we traced the hematopoietic potential of hemogenic endothelium (HE) in the posterior blood island (PBI) of zebrafish embryo and found that HEs in the PBI are heterogeneous, which contains at least myeloid unipotent and myeloid-lymphoid bipotent subtypes.
Collapse
Affiliation(s)
- Sicong He
- Department of Electronic and Computer EngineeringThe Hong Kong University of Science and TechnologyKowloonChina
- State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyKowloonChina
- Center of Systems Biology and Human HealthThe Hong Kong University of Science and TechnologyKowloonChina
| | - Ye Tian
- State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyKowloonChina
- Center of Systems Biology and Human HealthThe Hong Kong University of Science and TechnologyKowloonChina
- Division of Life ScienceThe Hong Kong University of Science and TechnologyKowloonChina
| | - Shachuan Feng
- State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyKowloonChina
- Center of Systems Biology and Human HealthThe Hong Kong University of Science and TechnologyKowloonChina
- Division of Life ScienceThe Hong Kong University of Science and TechnologyKowloonChina
| | - Yi Wu
- State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyKowloonChina
- Center of Systems Biology and Human HealthThe Hong Kong University of Science and TechnologyKowloonChina
- Division of Life ScienceThe Hong Kong University of Science and TechnologyKowloonChina
| | - Xinwei Shen
- Department of MathematicsThe Hong Kong University of Science and TechnologyKowloonChina
| | - Kani Chen
- Department of MathematicsThe Hong Kong University of Science and TechnologyKowloonChina
| | - Yingzhu He
- Department of Electronic and Computer EngineeringThe Hong Kong University of Science and TechnologyKowloonChina
- State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyKowloonChina
- Center of Systems Biology and Human HealthThe Hong Kong University of Science and TechnologyKowloonChina
| | - Qiqi Sun
- Department of Electronic and Computer EngineeringThe Hong Kong University of Science and TechnologyKowloonChina
- State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyKowloonChina
- Center of Systems Biology and Human HealthThe Hong Kong University of Science and TechnologyKowloonChina
| | - Xuesong Li
- Department of Electronic and Computer EngineeringThe Hong Kong University of Science and TechnologyKowloonChina
- State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyKowloonChina
- Center of Systems Biology and Human HealthThe Hong Kong University of Science and TechnologyKowloonChina
| | - Jin Xu
- Division of Cell, Developmental and Integrative Biology, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Zilong Wen
- State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyKowloonChina
- Center of Systems Biology and Human HealthThe Hong Kong University of Science and TechnologyKowloonChina
- Division of Life ScienceThe Hong Kong University of Science and TechnologyKowloonChina
| | - Jianan Y Qu
- Department of Electronic and Computer EngineeringThe Hong Kong University of Science and TechnologyKowloonChina
- State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyKowloonChina
- Center of Systems Biology and Human HealthThe Hong Kong University of Science and TechnologyKowloonChina
| |
Collapse
|
99
|
A role for macrophages in hematopoiesis in the embryonic head. Blood 2019; 134:1929-1940. [PMID: 31697805 DOI: 10.1182/blood.2018881243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 09/21/2019] [Indexed: 12/11/2022] Open
Abstract
Along with the aorta-gonad-mesonephros region, the head is a site of hematopoietic stem and progenitor cell (HS/PC) development in the mouse embryo. Macrophages are present in both these embryonic hemogenic sites, and recent studies indicate a functional interaction of macrophages with hematopoietic cells as they are generated in the aorta. Whereas brain macrophages or "microglia" are known to affect neuronal patterning and vascular circuitry in the embryonic brain, it is unknown whether macrophages play a role in head hematopoiesis. Here, we characterize head macrophages and examine whether they affect the HS/PC output of the hindbrain-branchial arch (HBA) region of the mouse embryo. We show that HBA macrophages are CD45+F4/80+CD11b+Gr1- and express the macrophage-specific Csf1r-GFP reporter. In the HBA of chemokine receptor-deficient (Cx3cr1-/-) embryos, a reduction in erythropoiesis is concomitant with a decrease in HBA macrophage percentages. In cocultures, we show that head macrophages boost hematopoietic progenitor cell numbers from HBA endothelial cells > twofold, and that the proinflammatory factor tumor necrosis factor-α is produced by head macrophages and influences HBA hematopoiesis in vitro. Taken together, head macrophages play a positive role in HBA erythropoiesis and HS/PC expansion and/or maturation, acting as microenvironmental cellular regulators in hematopoietic development.
Collapse
|
100
|
Toll-like receptor 2 expression on c-kit + cells tracks the emergence of embryonic definitive hematopoietic progenitors. Nat Commun 2019; 10:5176. [PMID: 31729371 PMCID: PMC6858454 DOI: 10.1038/s41467-019-13150-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 10/21/2019] [Indexed: 12/27/2022] Open
Abstract
Hematopoiesis in mammalian embryos proceeds through three successive waves of hematopoietic progenitors. Since their emergence spatially and temporally overlap and phenotypic markers are often shared, the specifics regarding their origin, development, lineage restriction and mutual relationships have not been fully determined. The identification of wave-specific markers would aid to resolve these uncertainties. Here, we show that toll-like receptors (TLRs) are expressed during early mouse embryogenesis. We provide phenotypic and functional evidence that the expression of TLR2 on E7.5 c-kit+ cells marks the emergence of precursors of erythro-myeloid progenitors (EMPs) and provides resolution for separate tracking of EMPs from primitive progenitors. Using in vivo fate mapping, we show that at E8.5 the Tlr2 locus is already active in emerging EMPs and in progenitors of adult hematopoietic stem cells (HSC). Together, this data demonstrates that the activation of the Tlr2 locus tracks the earliest events in the process of EMP and HSC specification. There is limited knowledge of markers to identify various waves of murine embryonic hematopoiesis. Here, the authors show that the expression of toll-like receptor 2 (TLR2) on E7.5 c-kit+ cells marks the emergence of erythro-myeloid progenitor precursors and that the Tlr2 locus is active in E8.5 precursors of adult HSCs.
Collapse
|