51
|
Sbrissa D, Naisan G, Ikonomov OC, Shisheva A. Apilimod, a candidate anticancer therapeutic, arrests not only PtdIns(3,5)P2 but also PtdIns5P synthesis by PIKfyve and induces bafilomycin A1-reversible aberrant endomembrane dilation. PLoS One 2018; 13:e0204532. [PMID: 30240452 PMCID: PMC6150535 DOI: 10.1371/journal.pone.0204532] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 09/10/2018] [Indexed: 01/02/2023] Open
Abstract
PIKfyve, an evolutionarily conserved kinase synthesizing PtdIns5P and PtdIns(3,5)P2, is crucial for mammalian cell proliferation and viability. Accordingly, PIKfyve inhibitors are now in clinical trials as anti-cancer drugs. Among those, apilimod is the most promising, yet its potency to inhibit PIKfyve and affect endomembrane homeostasis is only partially characterized. We demonstrate here for the first time that apilimod powerfully inhibited in vitro synthesis of PtdIns5P along with that of PtdIns(3,5)P2. HPLC-based resolution of intracellular phosphoinositides (PIs) revealed that apilimod triggered a marked reduction of both lipids in the context of intact cells. Notably, there was also a profound rise in PtdIns3P resulting from arrested PtdIns3P consumption for PtdIns(3,5)P2 synthesis. As typical for PIKfyve inhibition and the concomitant PtdIns(3,5)P2 reduction, apilimod induced the appearance of dilated endomembrane structures in the form of large translucent cytoplasmic vacuoles. Remarkably, bafilomycin A1 (BafA1) fully reversed the aberrant cell phenotype back to normal and completely precluded the appearance of cytoplasmic vacuoles when added prior to apilimod. Inspection of the PI profiles ruled out restoration of the reduced PtdIns(3,5)P2 pool as a molecular mechanism underlying BafA1 rescue. Rather, we found that BafA1 markedly attenuated the PtdIns3P elevation under PIKfyve inhibition. This was accompanied by profoundly decreased endosomal recruitment of fusogenic EEA1. Together, our data demonstrate that apilimod inhibits not only PtdIns(3,5)P2 but also PtdIns5P synthesis and that the cytoplasmic vacuolization triggered by the inhibitor is precluded or reversed by BafA1 through a mechanism associated, in part, with reduction in both PtdIns3P levels and EEA1 membrane recruitment.
Collapse
Affiliation(s)
- Diego Sbrissa
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Ghassan Naisan
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Ognian C. Ikonomov
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Assia Shisheva
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
52
|
Mauthe M, Orhon I, Rocchi C, Zhou X, Luhr M, Hijlkema KJ, Coppes RP, Engedal N, Mari M, Reggiori F. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy 2018; 14:1435-1455. [PMID: 29940786 PMCID: PMC6103682 DOI: 10.1080/15548627.2018.1474314] [Citation(s) in RCA: 1279] [Impact Index Per Article: 213.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 02/08/2023] Open
Abstract
Macroautophagy/autophagy is a conserved transport pathway where targeted structures are sequestered by phagophores, which mature into autophagosomes, and then delivered into lysosomes for degradation. Autophagy is involved in the pathophysiology of numerous diseases and its modulation is beneficial for the outcome of numerous specific diseases. Several lysosomal inhibitors such as bafilomycin A1 (BafA1), protease inhibitors and chloroquine (CQ), have been used interchangeably to block autophagy in in vitro experiments assuming that they all primarily block lysosomal degradation. Among them, only CQ and its derivate hydroxychloroquine (HCQ) are FDA-approved drugs and are thus currently the principal compounds used in clinical trials aimed to treat tumors through autophagy inhibition. However, the precise mechanism of how CQ blocks autophagy remains to be firmly demonstrated. In this study, we focus on how CQ inhibits autophagy and directly compare its effects to those of BafA1. We show that CQ mainly inhibits autophagy by impairing autophagosome fusion with lysosomes rather than by affecting the acidity and/or degradative activity of this organelle. Furthermore, CQ induces an autophagy-independent severe disorganization of the Golgi and endo-lysosomal systems, which might contribute to the fusion impairment. Strikingly, HCQ-treated mice also show a Golgi disorganization in kidney and intestinal tissues. Altogether, our data reveal that CQ and HCQ are not bona fide surrogates for other types of late stage lysosomal inhibitors for in vivo experiments. Moreover, the multiple cellular alterations caused by CQ and HCQ call for caution when interpreting results obtained by blocking autophagy with this drug.
Collapse
Affiliation(s)
- Mario Mauthe
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Cell Biology, University Medical Center Utrecht, Center for Molecular Medicine, Utrecht, The Netherlands
| | - Idil Orhon
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Cecilia Rocchi
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Xingdong Zhou
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Morten Luhr
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership for Molecular Medicine, University of Oslo, Oslo, Norway
| | - Kerst-Jan Hijlkema
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert P. Coppes
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nikolai Engedal
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership for Molecular Medicine, University of Oslo, Oslo, Norway
| | - Muriel Mari
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Cell Biology, University Medical Center Utrecht, Center for Molecular Medicine, Utrecht, The Netherlands
| | - Fulvio Reggiori
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Cell Biology, University Medical Center Utrecht, Center for Molecular Medicine, Utrecht, The Netherlands
| |
Collapse
|
53
|
Wilden AR, Molina JA, Feuerborn M, Boyle D, Lee SY. Glutamine-dependent lysosome homeostatic changes induced by starvation and lysosome inhibition. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1356-1367. [PMID: 29966622 DOI: 10.1016/j.bbamcr.2018.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 10/28/2022]
Abstract
Lysosomes are a major organelle for degrading macromolecules. When deprived of nutrients, cells activate the autophagy and lysosome biogenesis pathways to recycle cytoplasmic materials and to increase lysosomal degradation capacity for survival, respectively. We have identified a condition in which cells accumulated enlarged lysosomes upon starvation and lysosome inhibition. Selective autophagy and inhibition of the mechanistic target of rapamycin (mTOR) in combination with lysosome inhibition were not able to induce this phenomenon. Conversely, knocking out autophagy genes, ATG5 or ATG7, had no effects on the enlarged lysosome formation. This suggests that the enlarged lysosome formation is an autophagy independent process. Remarkably, adding glutamine to the treatment can prevent formation of the enlarged lysosomes and dissipate the pre-existing ones. Furthermore, the nucleus/cytoplasm translocation of the transcription factor EB (TFEB), but not mTOR activity, correlates with the formation/dissipation of enlarged lysosomes. Knockdown of TFEB, however, suggests that TFEB-mediated lysosome biogenesis is not directly involved in the process. These results indicate that there is a novel mechanism by which lysosome homeostasis can be regulated under certain stress conditions.
Collapse
Affiliation(s)
- Alexa R Wilden
- Molecular, Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Joshua A Molina
- Molecular, Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Melissa Feuerborn
- Molecular, Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Daniel Boyle
- Molecular, Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Stella Y Lee
- Molecular, Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
54
|
Abstract
PURPOSE To investigate the blood-to-retina verapamil transport at the blood-retinal barrier (BRB). METHODS EverFluor FL Verapamil (EFV) was adopted as the fluorescent probe of verapamil, and its transport across the BRB was investigated with common carotid artery infusion in rats. EFV transport at the inner and outer BRB was investigated with TR-iBRB2 cells and RPE-J cells, respectively. RESULTS The signal of EFV was detected in the retinal tissue during the weak signal of cell impermeable compound. In TR-iBRB2 cells, the localization of EFV differed from that of LysoTracker® Red, a lysosomotropic agent, and was not altered by acute treatment with NH4Cl. In RPE-J cells, the punctate distribution of EFV was partially observed, and this was reduced by acute treatment with NH4Cl. EFV uptake by TR-iBRB2 cells was temperature-dependent and membrane potential- and pH-independent, and was significantly reduced by NH4Cl treatment during no significant effect obtained by different extracellular pH and V-ATPase inhibitor. The EFV uptake by TR-iBRB2 cells was inhibited by cationic drugs, and inhibited by verapamil in a concentration-dependent manner with an IC50 of 98.0 μM. CONCLUSIONS Our findings provide visual evidence to support the significance of carrier-mediated transport in the blood-to-retina verapamil transport at the BRB.
Collapse
|
55
|
Zhang W, Tung CH. Lysosome Enlargement Enhanced Photochemotherapy Using a Multifunctional Nanogel. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4343-4348. [PMID: 29356498 DOI: 10.1021/acsami.7b16575] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Large lysosomes are susceptible toward rupture because of an increased membrane tension. Here we report a strategy to first enlarge and weaken the lysosome and then destroy it to boost the efficiency of photochemotherapy using a hyaluronan nanogel, carrying chloroquine as a lysosomal expander, rhodamine B as a photosensitive lysosomal destroyer, and cisplatin as a chemotherapeutic. This all-in-one nanogel provides a facile approach and new insight into improve the photochemotherapy, by making use of lysosome's size, as a risk factor in lysosomal destabilization.
Collapse
Affiliation(s)
- Weiqi Zhang
- Molecular Imaging Innovations Institute, Department of Radiology , Weill Cornell Medicine, New York, New York 10065, United States
| | - Ching-Hsuan Tung
- Molecular Imaging Innovations Institute, Department of Radiology , Weill Cornell Medicine, New York, New York 10065, United States
| |
Collapse
|
56
|
Shubin AV, Demidyuk IV, Komissarov AA, Rafieva LM, Kostrov SV. Cytoplasmic vacuolization in cell death and survival. Oncotarget 2018; 7:55863-55889. [PMID: 27331412 PMCID: PMC5342458 DOI: 10.18632/oncotarget.10150] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 06/06/2016] [Indexed: 12/15/2022] Open
Abstract
Cytoplasmic vacuolization (also called cytoplasmic vacuolation) is a well-known morphological phenomenon observed in mammalian cells after exposure to bacterial or viral pathogens as well as to various natural and artificial low-molecular-weight compounds. Vacuolization often accompanies cell death; however, its role in cell death processes remains unclear. This can be attributed to studying vacuolization at the level of morphology for many years. At the same time, new data on the molecular mechanisms of the vacuole formation and structure have become available. In addition, numerous examples of the association between vacuolization and previously unknown cell death types have been reported. Here, we review these data to make a deeper insight into the role of cytoplasmic vacuolization in cell death and survival.
Collapse
Affiliation(s)
- Andrey V Shubin
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia.,Laboratory of Chemical Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia.,Laboratory of Biologically Active Nanostructures, N.F. Gamaleya Institute of Epidemiology and Microbiology, Moscow, Russia
| | - Ilya V Demidyuk
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia
| | - Alexey A Komissarov
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia
| | - Lola M Rafieva
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia
| | - Sergey V Kostrov
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia
| |
Collapse
|
57
|
Zhang WL, Meng HZ, Yang RF, Yang MW, Sun GH, Liu JH, Shi PX, Liu F, Yang B. Melatonin suppresses autophagy in type 2 diabetic osteoporosis. Oncotarget 2018; 7:52179-52194. [PMID: 27438148 PMCID: PMC5239543 DOI: 10.18632/oncotarget.10538] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/30/2016] [Indexed: 11/29/2022] Open
Abstract
Type 2 diabetes mellitus is often complicated by osteoporosis, a process which may involve osteoblast autophagy. As melatonin suppresses autophagy under certain conditions, we its investigated the effects on bone autophagy during diabetes. We first assessed different body parameters in a diabetic rat model treated with various concentrations of melatonin. Dynamic biomechanicalmeasurements, bone organization hard slice dyeing and micro-CT were used to observe the rat bone microstructure, and immunohistochemistry was used to determine levels of autophagy biomarkers. We also performed in vitro experiments on human fetal osteoblastic (hFOB1.19) cells cultured with high glucose, different concentrations of melatonin, and ERK pathway inhibitors. And we used Western blotting and immunofluorescence to measure the extent of osteogenesis and autophagy. We found that melatonin improved the bone microstructure in our rat diabetes model and reduced the level of autophagy(50 mg/kg was better than 100 mg/kg). Melatonin also enhanced osteogenesis and suppressed autophagy in osteoblasts cultured at high glucose levels (10 μM was better than 1 mM). This suggests melatonin may reduce the level of autophagy in osteoblasts and delay diabetes-induced osteoporosis by inhibiting the ERK signaling pathway.
Collapse
Affiliation(s)
- Wei-Lin Zhang
- Department of Orthopedics, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hong-Zheng Meng
- Department of Orthopedics, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Rui-Fei Yang
- School of Medical Applied Technology, Shenyang Medical College, Shenyang, Liaoning, China
| | - Mao-Wei Yang
- Department of Orthopedics, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guang-Hong Sun
- Department of Orthopedics, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jun-Hua Liu
- Department of Orthopedics, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Peng-Xu Shi
- Department of Orthopedics, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fei Liu
- Department of Orthopedics, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bo Yang
- Department of Orthopedics, the First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
58
|
Gulde R, Anliker S, Kohler HPE, Fenner K. Ion Trapping of Amines in Protozoa: A Novel Removal Mechanism for Micropollutants in Activated Sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:52-60. [PMID: 29182849 DOI: 10.1021/acs.est.7b03556] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
To optimize removal of organic micropollutants from the water cycle, understanding the processes during activated sludge treatment is essential. In this study, we hypothesize that aliphatic amines, which are highly abundant among organic micropollutants, are partly removed from the water phase in activated sludge through ion trapping in protozoa. In ion trapping, which has been extensively investigated in medical research, the neutral species of amine-containing compounds diffuse through the cell membrane and further into acidic vesicles present in eukaryotic cells such as protozoa. There they become trapped because diffusion of the positively charged species formed in the acidic vesicles is strongly hindered. We tested our hypothesis with two experiments. First, we studied the distribution of the fluorescent amine acridine orange in activated sludge by confocal fluorescence imaging. We observed intense fluorescence in distinct compartments of the protozoa, but not in the bacterial biomass. Second, we investigated the distribution of 12 amine-containing and eight control micropollutants in both regular activated sludge and sludge where the protozoa had been inactivated. In contrast to most control compounds, the amine-containing micropollutants displayed a distinctly different behavior in the noninhibited sludge compared to the inhibited one: (i) more removal from the liquid phase; (ii) deviation from first-order kinetics for the removal from the liquid phase; and (iii) higher amounts in the solid phase. These results provide strong evidence that ion trapping in protozoa occurs and that it is an important removal mechanism for amine-containing micropollutants in batch experiments with activated sludge that has so far gone unnoticed. We expect that our findings will trigger further investigations on the importance of this process in full-scale wastewater treatment systems, including its relevance for accumulation of ammonium.
Collapse
Affiliation(s)
- Rebekka Gulde
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf, Switzerland
| | - Sabine Anliker
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich , 8092 Zürich, Switzerland
| | - Hans-Peter E Kohler
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich , 8092 Zürich, Switzerland
| | - Kathrin Fenner
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich , 8092 Zürich, Switzerland
- Department of Chemistry, University of Zürich , 8057 Zürich, Switzerland
| |
Collapse
|
59
|
Loryan I, Hoppe E, Hansen K, Held F, Kless A, Linz K, Marossek V, Nolte B, Ratcliffe P, Saunders D, Terlinden R, Wegert A, Welbers A, Will O, Hammarlund-Udenaes M. Quantitative Assessment of Drug Delivery to Tissues and Association with Phospholipidosis: A Case Study with Two Structurally Related Diamines in Development. Mol Pharm 2017; 14:4362-4373. [PMID: 29099189 DOI: 10.1021/acs.molpharmaceut.7b00480] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Drug induced phospholipidosis (PLD) may be observed in the preclinical phase of drug development and pose strategic questions. As lysosomes have a central role in pathogenesis of PLD, assessment of lysosomal concentrations is important for understanding the pharmacokinetic basis of PLD manifestation and forecast of potential clinical appearance. Herein we present a systematic approach to provide insight into tissue-specific PLD by evaluation of unbound intracellular and lysosomal (reflecting acidic organelles) concentrations of two structurally related diprotic amines, GRT1 and GRT2. Their intratissue distribution was assessed using brain and lung slice assays. GRT1 induced PLD both in vitro and in vivo. GRT1 showed a high intracellular accumulation that was more pronounced in the lung, but did not cause cerebral PLD due to its effective efflux at the blood-brain barrier. Compared to GRT1, GRT2 revealed higher interstitial fluid concentrations in lung and brain, but more than 30-fold lower lysosomal trapping capacity. No signs of PLD were seen with GRT2. The different profile of GRT2 relative to GRT1 is due to a structural change resulting in a reduced basicity of one amino group. Hence, by distinct chemical modifications, undesired lysosomal trapping can be separated from desired drug delivery into different organs. In summary, assessment of intracellular unbound concentrations was instrumental in delineating the intercompound and intertissue differences in PLD induction in vivo and could be applied for identification of potential lysosomotropic compounds in drug development.
Collapse
Affiliation(s)
- Irena Loryan
- Translational PKPD Group, Department of Pharmaceutical Biosciences, Associate member of SciLifeLab, Uppsala University , 751 24 Uppsala, Sweden
| | | | | | - Felix Held
- Fraunhofer-Chalmers Centre, Chalmers Science Park , 412 88 Gothenburg, Sweden.,Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg , 412 96 Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | | - Olaf Will
- Grünenthal GmbH , 52099 Aachen, Germany
| | - Margareta Hammarlund-Udenaes
- Translational PKPD Group, Department of Pharmaceutical Biosciences, Associate member of SciLifeLab, Uppsala University , 751 24 Uppsala, Sweden
| |
Collapse
|
60
|
Ferroquine, the next generation antimalarial drug, has antitumor activity. Sci Rep 2017; 7:15896. [PMID: 29162859 PMCID: PMC5698296 DOI: 10.1038/s41598-017-16154-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 11/02/2017] [Indexed: 01/08/2023] Open
Abstract
Despite the tremendous progress in medicine, cancer remains one of the most serious global health problems awaiting new effective therapies. Here we present ferroquine (FQ), the next generation antimalarial drug, as a promising candidate for repositioning as cancer therapeutics. We report that FQ potently inhibits autophagy, perturbs lysosomal function and impairs prostate tumor growth in vivo. We demonstrate that FQ negatively regulates Akt kinase and hypoxia-inducible factor-1α (HIF-1α) and is particularly effective in starved and hypoxic conditions frequently observed in advanced solid cancers. FQ enhances the anticancer activity of several chemotherapeutics suggesting its potential application as an adjuvant to existing anticancer therapy. Alike its parent compound chloroquine (CQ), FQ accumulates within and deacidifies lysosomes. Further, FQ induces lysosomal membrane permeabilization, mitochondrial depolarization and caspase-independent cancer cell death. Overall, our work identifies ferroquine as a promising new drug with a potent anticancer activity.
Collapse
|
61
|
Sirci F, Napolitano F, Pisonero-Vaquero S, Carrella D, Medina DL, di Bernardo D. Comparing structural and transcriptional drug networks reveals signatures of drug activity and toxicity in transcriptional responses. NPJ Syst Biol Appl 2017; 3:23. [PMID: 28861278 PMCID: PMC5572457 DOI: 10.1038/s41540-017-0022-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/27/2017] [Accepted: 07/07/2017] [Indexed: 02/07/2023] Open
Abstract
We performed an integrated analysis of drug chemical structures and drug-induced transcriptional responses. We demonstrated that a network representing three-dimensional structural similarities among 5452 compounds can be used to automatically group together drugs with similar scaffolds, physicochemical parameters and mode-of-action. We compared the structural network to a network representing transcriptional similarities among a subset of 1309 drugs for which transcriptional response were available in the Connectivity Map data set. Analysis of structurally similar, but transcriptionally different drugs sharing the same MOA enabled us to detect and remove weak and noisy transcriptional responses, greatly enhancing the reliability of transcription-based approaches to drug discovery and drug repositioning. Cardiac glycosides exhibited the strongest transcriptional responses with a significant induction of pathways related to epigenetic regulation, which suggests an epigenetic mechanism of action for these drugs. Drug classes with the weakest transcriptional responses tended to induce expression of cytochrome P450 enzymes, hinting at drug-induced drug resistance. Analysis of transcriptionally similar, but structurally different drugs with unrelated MOA, led us to the identification of a 'toxic' transcriptional signature indicative of lysosomal stress (lysosomotropism) and lipid accumulation (phospholipidosis) partially masking the target-specific transcriptional effects of these drugs. We found that this transcriptional signature is shared by 258 compounds and it is associated to the activation of the transcription factor TFEB, a master regulator of lysosomal biogenesis and autophagy. Finally, we built a predictive Random Forest model of these 258 compounds based on 128 physicochemical parameters, which should help in the early identification of potentially toxic drug candidates. Transcriptional responses to drug treatment can reveal mechanism of action and off-target effects thus enabling drug repositioning, but only if measured in the appropriate cells at clinically relevant concentrations. A team led by Diego di Bernardo and Diego Medina generated a network representing structural similarities among compounds to automatically group together drugs with similar scaffolds and MOA. By comparing the structural drug network with a transcriptional drug network based on similarities in transcriptional response, the team observed broad differences between the two. This observation led to the identification of a transcriptional signature related lysosomal stress and phospholipidosis, and a physicochemical model to identify such compounds. These results provide general guidelines to prevent erroneous conclusion when using transcriptional responses of small molecules for drug discovery and drug repositioning
Collapse
Affiliation(s)
- Francesco Sirci
- Telethon Institute of Genetics and Medicine (TIGEM), System Biology and Bioinformatics lab. and High Content Screening facility, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Francesco Napolitano
- Telethon Institute of Genetics and Medicine (TIGEM), System Biology and Bioinformatics lab. and High Content Screening facility, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Sandra Pisonero-Vaquero
- Telethon Institute of Genetics and Medicine (TIGEM), System Biology and Bioinformatics lab. and High Content Screening facility, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Diego Carrella
- Telethon Institute of Genetics and Medicine (TIGEM), System Biology and Bioinformatics lab. and High Content Screening facility, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine (TIGEM), System Biology and Bioinformatics lab. and High Content Screening facility, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Diego di Bernardo
- Telethon Institute of Genetics and Medicine (TIGEM), System Biology and Bioinformatics lab. and High Content Screening facility, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy.,Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
62
|
Kuzu OF, Gowda R, Noory MA, Robertson GP. Modulating cancer cell survival by targeting intracellular cholesterol transport. Br J Cancer 2017; 117:513-524. [PMID: 28697173 PMCID: PMC5558686 DOI: 10.1038/bjc.2017.200] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 05/11/2017] [Accepted: 06/05/2017] [Indexed: 12/14/2022] Open
Abstract
Background: Demand for cholesterol is high in certain cancers making them potentially sensitive to therapeutic strategies targeting cellular cholesterol homoeostasis. A potential approach involves disruption of intracellular cholesterol transport, which occurs in Niemann–Pick disease as a result of acid sphingomyelinase (ASM) deficiency. Hence, a class of lysosomotropic compounds that were identified as functional ASM inhibitors (FIASMAs) might exhibit chemotherapeutic activity by disrupting cancer cell cholesterol homoeostasis. Methods: Here, the chemotherapeutic utility of ASM inhibition was investigated. The effect of FIASMAs on intracellular cholesterol levels, cholesterol homoeostasis, cellular endocytosis and signalling cascades were investigated. The in vivo efficacy of ASM inhibition was demonstrated using melanoma xenografts and a nanoparticle formulation was developed to overcome dose-limiting CNS-associated side effects of certain FIASMAs. Results: Functional ASM inhibitors inhibited intracellular cholesterol transport leading to disruption of autophagic flux, cellular endocytosis and receptor tyrosine kinase signalling. Consequently, major oncogenic signalling cascades on which cancer cells were reliant for survival were inhibited. Two tested ASM inhibitors, perphenazine and fluphenazine that are also clinically used as antipsychotics, were effective in inhibiting xenografted tumour growth. Nanoliposomal encapsulation of the perphenazine enhanced its chemotherapeutic efficacy while decreasing CNS-associated side effects. Conclusions: This study suggests that disruption of intracellular cholesterol transport by targeting ASM could be utilised as a potential chemotherapeutic approach for treating cancer.
Collapse
Affiliation(s)
- Omer F Kuzu
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Raghavendra Gowda
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Penn State Hershey Melanoma Center, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Mohammad A Noory
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Gavin P Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Penn State Hershey Melanoma Center, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Department of Dermatology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
63
|
Nanovaccines for remodeling the suppressive tumor microenvironment: New horizons in cancer immunotherapy. Front Chem Sci Eng 2017. [DOI: 10.1007/s11705-017-1640-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
64
|
Jacquin E, Leclerc-Mercier S, Judon C, Blanchard E, Fraitag S, Florey O. Pharmacological modulators of autophagy activate a parallel noncanonical pathway driving unconventional LC3 lipidation. Autophagy 2017; 13:854-867. [PMID: 28296541 PMCID: PMC5446083 DOI: 10.1080/15548627.2017.1287653] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 01/09/2017] [Accepted: 01/23/2017] [Indexed: 11/24/2022] Open
Abstract
The modulation of canonical macroautophagy/autophagy for therapeutic benefit is an emerging strategy of medical and pharmaceutical interest. Many drugs act to inhibit autophagic flux by targeting lysosome function, while others were developed to activate the pathway. Here, we report the surprising finding that many therapeutically relevant autophagy modulators with lysosomotropic and ionophore properties, classified as inhibitors of canonical autophagy, are also capable of activating a parallel noncanonical autophagy pathway that drives MAP1LC3/LC3 lipidation on endolysosomal membranes. Further, we provide the first evidence supporting drug-induced noncanonical autophagy in vivo using the local anesthetic lidocaine and human skin biopsies. In addition, we find that several published inducers of autophagy and mitophagy are also potent activators of noncanonical autophagy. Together, our data raise important issues regarding the interpretation of LC3 lipidation data and the use of autophagy modulators, and highlight the need for a greater understanding of the functional consequences of noncanonical autophagy.
Collapse
Affiliation(s)
- Elise Jacquin
- Signalling Programme, The Babraham Institute, Babraham, UK
| | | | | | - Emmanuelle Blanchard
- Centre Hospitalier Régional Universitaire, University François-Rabelais, Faculty of Medicine, Tours, France
- INSERM, U966, Tours, France
| | - Sylvie Fraitag
- Department of Pathology, Necker-Enfants Malades Hospital, MAGEC-Necker Team, Paris, France
| | - Oliver Florey
- Signalling Programme, The Babraham Institute, Babraham, UK
| |
Collapse
|
65
|
Schulze U, Vollenbröker B, Kühnl A, Granado D, Bayraktar S, Rescher U, Pavenstädt H, Weide T. Cellular vacuolization caused by overexpression of the PIKfyve-binding deficient Vac14L156R is rescued by starvation and inhibition of vacuolar-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:749-759. [DOI: 10.1016/j.bbamcr.2017.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 02/09/2017] [Accepted: 02/15/2017] [Indexed: 12/28/2022]
|
66
|
New insights into the intracellular distribution pattern of cationic amphiphilic drugs. Sci Rep 2017; 7:44277. [PMID: 28281674 PMCID: PMC5345070 DOI: 10.1038/srep44277] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 02/06/2017] [Indexed: 12/28/2022] Open
Abstract
Cationic amphiphilic drugs (CADs) comprise a wide variety of different substance classes such as antidepressants, antipsychotics, and antiarrhythmics. It is well recognized that CADs accumulate in certain intracellular compartments leading to specific morphological changes of cells. So far, no adequate technique exists allowing for ultrastructural analysis of CAD in intact cells. Azidobupramine, a recently described multifunctional antidepressant analogue, allows for the first time to perform high-resolution studies of CADs on distribution pattern and morphological changes in intact cells. We showed here that the intracellular distribution pattern of azidobupramine strongly depends on drug concentration and exposure time. The mitochondrial compartment (mDsRed) and the late endo-lysosomal compartment (CD63-GFP) were the preferred localization sites at low to intermediate concentrations (i.e. 1 μM, 5 μM). In contrast, the autophagosomal compartment (LC3-GFP) can only be reached at high concentrations (10 μM) and long exposure times (72 hrs). At the morphological level, LC3-clustering became only prominent at high concentrations (10 μM), while changes in CD63 pattern already occurred at intermediate concentrations (5 μM). To our knowledge, this is the first study that establishes a link between intracellular CAD distribution pattern and morphological changes. Therewith, our results allow for gaining deeper understanding of intracellular effects of CADs.
Collapse
|
67
|
Kuzu OF, Toprak M, Noory MA, Robertson GP. Effect of lysosomotropic molecules on cellular homeostasis. Pharmacol Res 2017; 117:177-184. [DOI: 10.1016/j.phrs.2016.12.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/13/2016] [Indexed: 01/01/2023]
|
68
|
Eriksson I, Nath S, Bornefall P, Giraldo AMV, Öllinger K. Impact of high cholesterol in a Parkinson's disease model: Prevention of lysosomal leakage versus stimulation of α-synuclein aggregation. Eur J Cell Biol 2017; 96:99-109. [PMID: 28109635 DOI: 10.1016/j.ejcb.2017.01.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 01/04/2017] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease is characterized by accumulation of intraneuronal cytoplasmic inclusions, Lewy bodies, which mainly consist of aggregated α-synuclein. Controversies exist as to whether high blood cholesterol is a risk factor for the development of the disease and whether statin treatment could have a protective effect. Using a model system of BE(2)-M17 neuroblastoma cells treated with the neurotoxin 1-methyl-4-phenylpyridinium (MPP+), we found that MPP+-induced cell death was accompanied by cholesterol accumulation in a lysosomal-like pattern in pre-apoptotic cells. To study the effects of lysosomal cholesterol accumulation, we increased lysosomal cholesterol through pre-treatment with U18666A and found delayed leakage of lysosomal contents into the cytosol, which reduced cell death. This suggests that increased lysosomal cholesterol is a stress response mechanism to protect lysosomal membrane integrity in response to early apoptotic stress. However, high cholesterol also stimulated the accumulation of α-synuclein. Treatment with the cholesterol-lowering drug lovastatin reduced MPP+-induced cell death by inhibiting the production of reactive oxygen species, but did not prevent lysosomal cholesterol increase nor affect α-synuclein accumulation. Our study indicates a dual role of high cholesterol in Parkinson's disease, in which it acts both as a protector against lysosomal membrane permeabilization and as a stimulator of α-synuclein accumulation.
Collapse
Affiliation(s)
- Ida Eriksson
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| | - Sangeeta Nath
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| | - Per Bornefall
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| | - Ana Maria Villamil Giraldo
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| | - Karin Öllinger
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
69
|
Petibone DM, Majeed W, Casciano DA. Autophagy function and its relationship to pathology, clinical applications, drug metabolism and toxicity. J Appl Toxicol 2016; 37:23-37. [PMID: 27682190 DOI: 10.1002/jat.3393] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 12/19/2022]
Abstract
Autophagy is a cellular process that facilitates nutrient turnover and removal of expended macromolecules and organelles to maintain homeostasis. The recycling of cytosolic macromolecules and damaged organelles by autophagosomes occurs through the lysosomal degradation pathway. Autophagy can also be upregulated as a prosurvival pathway in response to stress stimuli such as starvation, hypoxia or cell damage. Over the last two decades, there has been a surge in research revealing the basic molecular mechanisms of autophagy in mammalian cells. A corollary of an advanced understanding of autophagy has been a concurrent expansion of research into understanding autophagic function and dysfunction in pathology. Recent studies have revealed a pivotal role for autophagy in drug toxicity, and for utilizing autophagic components as diagnostic markers and therapeutic targets in treating disease and cancer. In this review, advances in understanding the molecular basis of mammalian autophagy, methods used to induce and evaluate autophagy, and the diverse interactions between autophagy and drug toxicity, disease progression and carcinogenesis are discussed. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Dayton M Petibone
- National Center for Toxicological Research, US FDA, Division of Genetic and Molecular Toxicology, Jefferson, AR, 72079, USA
| | - Waqar Majeed
- Center of Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, 72204, USA
| | - Daniel A Casciano
- Center of Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, 72204, USA
| |
Collapse
|
70
|
Parks A, Marceau F. Lysosomotropic cationic drugs induce cytostatic and cytotoxic effects: Role of liposolubility and autophagic flux and antagonism by cholesterol ablation. Toxicol Appl Pharmacol 2016; 305:55-65. [DOI: 10.1016/j.taap.2016.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 12/16/2022]
|
71
|
Orienti I, Falconi M, Teti G, Currier MA, Wang J, Phelps M, Cripe TP. Preparation and Evaluation of a Novel Class of Amphiphilic Amines as Antitumor Agents and Nanocarriers for Bioactive Molecules. Pharm Res 2016; 33:2722-35. [PMID: 27457066 PMCID: PMC5040747 DOI: 10.1007/s11095-016-1999-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/11/2016] [Indexed: 12/15/2022]
Abstract
Purpose We describe a novel class of antitumor amphiphilic amines (RCn) based on a tricyclic amine hydrophilic head and a hydrophobic linear alkyl tail of variable length. Methods We tested the lead compound, RC16, for cytotoxicity and mechanism of cell death in several cancer cell lines, anti tumor efficacy in mouse tumor models, and ability to encapsulate chemotherapy drugs. Results These compounds displayed strong cytotoxic activity against cell lines derived from both pediatric and adult cancers. The IC50 of the lead compound, RC16, for normal cells including human keratinocytes, human fibroblasts and human umbilical vein endothelial cells was tenfold higher than for tumor cells. RC16 exhibited significant antitumor effects in vivo using several human xenografts and a metastatic model of murine neuroblastoma by both intravenous and oral administration routes. The amphiphilic character of RC16 triggered a spontaneous molecular self-assembling in water with formation of micelles allowing complexation of Doxorubicin, Etoposide and Paclitaxel. These micelles significantly improved the in vitro antitumor activity of these drugs as the enhancement of their aqueous solubility also improved their biologic availability. Conclusions RC16 and related amphiphilic amines may be useful as a novel cancer treatment. Electronic supplementary material The online version of this article (doi:10.1007/s11095-016-1999-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Isabella Orienti
- Department of Pharmacy and Biotechnology, University of Bologna, Via S. Donato 19/2, Bologna, Italy
| | - Mirella Falconi
- Department for Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, via Irnerio 48, Bologna, Italy
| | - Gabriella Teti
- Department for Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, via Irnerio 48, Bologna, Italy
| | - Mark A Currier
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jiang Wang
- College of Pharmacy and Division of Pharmaceutics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, 43210, USA
| | - Mitch Phelps
- College of Pharmacy and Division of Pharmaceutics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, 43210, USA
| | - Timothy P Cripe
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, Ohio, USA.
- Division of Hematology/Oncology/Blood and Marrow Transplant, Nationwide Children's Hospital, 700 Children's Dr, Columbus, Ohio, 43205, USA.
| |
Collapse
|
72
|
Compton LM, Ikonomov OC, Sbrissa D, Garg P, Shisheva A. Active vacuolar H+ ATPase and functional cycle of Rab5 are required for the vacuolation defect triggered by PtdIns(3,5)P2 loss under PIKfyve or Vps34 deficiency. Am J Physiol Cell Physiol 2016; 311:C366-77. [PMID: 27335171 DOI: 10.1152/ajpcell.00104.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/17/2016] [Indexed: 01/12/2023]
Abstract
The two evolutionarily conserved mammalian lipid kinases Vps34 and PIKfyve are involved in an important physiological relationship, whereby the former produces phosphatidylinositol (PtdIns) 3P that is used as a substrate for PtdIns(3,5)P2 synthesis by the latter. Reduced production of PtdIns(3,5)P2 in proliferating mammalian cells is phenotypically manifested by the formation of multiple translucent cytoplasmic vacuoles, readily rescued upon exogenous delivery of PtdIns(3,5)P2 or overproduction of PIKfyve. Although the aberrant vacuolation phenomenon has been frequently used as a sensitive functional measure of localized PtdIns(3,5)P2 reduction, cellular factors governing the appearance of cytoplasmic vacuoles under PtdIns3P-PtdIns(3,5)P2 loss remain elusive. To gain further mechanistic insight about the vacuolation process following PtdIns(3,5)P2 reduction, in this study we sought for cellular mechanisms required for manifestation of the aberrant endomembrane vacuoles triggered by PIKfyve or Vps34 dysfunction. The latter was achieved by various means such as pharmacological inhibition, gene disruption, or dominant-interference in several proliferating mammalian cell types. We report here that inhibition of V-ATPase with bafilomycin A1 as well as inactivation of the GTP-GDP cycle of Rab5a GTPase phenotypically rescued or completely precluded the cytoplasmic vacuolization despite the continued presence of inactivated PIKfyve or Vps34. Bafilomycin A1 also restored the aberrant EEA1-positive endosomes, enlarged upon short PIKfyve inhibition with YM201636. Together, our work identifies for the first time that factors such as active V-ATPase or functional Rab5a cycle are acting coincidentally with the PtdIns(3,5)P2 reduction in triggering formation of aberrant cytoplasmic vacuoles under PIKfyve or Vps34 dysfunction.
Collapse
Affiliation(s)
- Lauren M Compton
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan; and
| | - Ognian C Ikonomov
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan; and
| | - Diego Sbrissa
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan; and
| | - Puneet Garg
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Assia Shisheva
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan; and
| |
Collapse
|
73
|
Parks A, Charest-Morin X, Boivin-Welch M, Bouthillier J, Marceau F. Autophagic flux inhibition and lysosomogenesis ensuing cellular capture and retention of the cationic drug quinacrine in murine models. PeerJ 2015; 3:e1314. [PMID: 26500823 PMCID: PMC4614855 DOI: 10.7717/peerj.1314] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/21/2015] [Indexed: 11/23/2022] Open
Abstract
The proton pump vacuolar (V)-ATPase is the driving force that mediates the concentration of cationic drugs (weak bases) in the late endosome-lysosome continuum; secondary cell reactions include the protracted transformation of enlarged vacuoles into autophagosomes. We used the inherently fluorescent tertiary amine quinacrine in murine models to further assess the accumulation and signaling associated with cation trapping. Primary fibroblasts concentrate quinacrine ∼5,000-fold from their culture medium (KM 9.8 µM; transport studies). The drug is present in perinuclear granules that are mostly positive for Rab7 and LAMP1 (microscopy). Both drug uptake and retention are extensively inhibited by treatments with the V-ATPase inhibitor bafilomycin A1. The H+ ionophore monensin also prevented quinacrine concentration by fibroblasts. However, inhibition of plasma membrane transporters or of the autophagic process with spautin-1 did not alter quinacrine transport parameters. Ancillary experiments did not support that low micromolar concentrations of quinacrine are substrates for organic cation transporters-1 to -3 or P-glycoprotein. The secondary autophagy induced by quinacrine in cells may derive from the accumulation of incompetent autophagolysosomes, as judged from the accumulation of p62/SQSTM1 and LC3 II (immunoblots). Accordingly, protracted lysosomogenesis is evidenced by increased expression of LAMP1 and LAMP2 in quinacrine-treated fibroblasts (48 h, immunoblots), a response that follows the nuclear translocation of the lysosomal genesis transcription factor TFEB and upregulation of LAMP1 and −2 mRNAs (24 h). Quinacrine administration to live mice evidenced variable distribution to various organs and heterogeneous accumulation within the lung (stereo-microscopy, extraction). Dose-dependent in vivo autophagic and lysosomal accumulation was observed in the lung (immunoblots). No evidence has been found for transport or extrusion mechanisms modulating the cellular uptake of micromolar quinacrine at the plasma membrane level. As shown in vitro and in vivo, V-ATPase-mediated cation sequestration is associated, above a certain threshold, to autophagic flux inhibition and feed-back lysosomogenesis.
Collapse
Affiliation(s)
- Alexandre Parks
- Research Center CHU de Québec, Université Laval , Quebec City QC , Canada
| | | | | | | | - Francois Marceau
- Research Center CHU de Québec, Université Laval , Quebec City QC , Canada
| |
Collapse
|
74
|
Lai CY, Yeh DW, Lu CH, Liu YL, Huang LR, Kao CY, Chen HY, Huang CYF, Chang CH, Luo Y, Xiang R, Chuang TH. Identification of Thiostrepton as a Novel Inhibitor for Psoriasis-like Inflammation Induced by TLR7–9. THE JOURNAL OF IMMUNOLOGY 2015; 195:3912-21. [DOI: 10.4049/jimmunol.1500194] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 08/11/2015] [Indexed: 01/07/2023]
|
75
|
Londino JD, Lazrak A, Noah JW, Aggarwal S, Bali V, Woodworth BA, Bebok Z, Matalon S. Influenza virus M2 targets cystic fibrosis transmembrane conductance regulator for lysosomal degradation during viral infection. FASEB J 2015; 29:2712-25. [PMID: 25795456 PMCID: PMC4478808 DOI: 10.1096/fj.14-268755] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/26/2015] [Indexed: 12/24/2022]
Abstract
We sought to determine the mechanisms by which influenza infection of human epithelial cells decreases cystic fibrosis transmembrane conductance regulator (CFTR) expression and function. We infected human bronchial epithelial (NHBE) cells and murine nasal epithelial (MNE) cells with various strains of influenza A virus. Influenza infection significantly reduced CFTR short circuit currents (Isc) and protein levels at 8 hours postinfection. We then infected CFTR expressing human embryonic kidney (HEK)-293 cells (HEK-293 CFTRwt) with influenza virus encoding a green fluorescent protein (GFP) tag and performed whole-cell and cell-attached patch clamp recordings. Forskolin-stimulated, GlyH-101-sensitive CFTR conductances, and CFTR open probabilities were reduced by 80% in GFP-positive cells; Western blots also showed significant reduction in total and plasma membrane CFTR levels. Knockdown of the influenza matrix protein 2 (M2) with siRNA, or inhibition of its activity by amantadine, prevented the decrease in CFTR expression and function. Lysosome inhibition (bafilomycin-A1), but not proteasome inhibition (lactacystin), prevented the reduction in CFTR levels. Western blots of immunoprecipitated CFTR from influenza-infected cells, treated with BafA1, and probed with antibodies against lysine 63-linked (K-63) or lysine 48-linked (K-48) polyubiquitin chains supported lysosomal targeting. These results highlight CFTR damage, leading to early degradation as an important contributing factor to influenza infection-associated ion transport defects.
Collapse
Affiliation(s)
- James David Londino
- *Department of Anesthesiology, Pulmonary Injury and Repair Center, and Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Southern Research Institute, Birmingham, Alabama, USA; and Department of Surgery, Division of Otolaryngology, School of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Ahmed Lazrak
- *Department of Anesthesiology, Pulmonary Injury and Repair Center, and Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Southern Research Institute, Birmingham, Alabama, USA; and Department of Surgery, Division of Otolaryngology, School of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - James W Noah
- *Department of Anesthesiology, Pulmonary Injury and Repair Center, and Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Southern Research Institute, Birmingham, Alabama, USA; and Department of Surgery, Division of Otolaryngology, School of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Saurabh Aggarwal
- *Department of Anesthesiology, Pulmonary Injury and Repair Center, and Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Southern Research Institute, Birmingham, Alabama, USA; and Department of Surgery, Division of Otolaryngology, School of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Vedrana Bali
- *Department of Anesthesiology, Pulmonary Injury and Repair Center, and Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Southern Research Institute, Birmingham, Alabama, USA; and Department of Surgery, Division of Otolaryngology, School of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Bradford A Woodworth
- *Department of Anesthesiology, Pulmonary Injury and Repair Center, and Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Southern Research Institute, Birmingham, Alabama, USA; and Department of Surgery, Division of Otolaryngology, School of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Zsuzsanna Bebok
- *Department of Anesthesiology, Pulmonary Injury and Repair Center, and Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Southern Research Institute, Birmingham, Alabama, USA; and Department of Surgery, Division of Otolaryngology, School of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Sadis Matalon
- *Department of Anesthesiology, Pulmonary Injury and Repair Center, and Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Southern Research Institute, Birmingham, Alabama, USA; and Department of Surgery, Division of Otolaryngology, School of Medicine, University of Alabama, Birmingham, Alabama, USA
| |
Collapse
|
76
|
|
77
|
Florey O, Gammoh N, Kim SE, Jiang X, Overholtzer M. V-ATPase and osmotic imbalances activate endolysosomal LC3 lipidation. Autophagy 2015; 11:88-99. [PMID: 25484071 PMCID: PMC4502810 DOI: 10.4161/15548627.2014.984277] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/25/2014] [Accepted: 07/08/2014] [Indexed: 02/01/2023] Open
Abstract
Recently a noncanonical activity of autophagy proteins has been discovered that targets lipidation of microtubule-associated protein 1 light chain 3 (LC3) onto macroendocytic vacuoles, including macropinosomes, phagosomes, and entotic vacuoles. While this pathway is distinct from canonical autophagy, the mechanism of how these nonautophagic membranes are targeted for LC3 lipidation remains unclear. Here we present evidence that this pathway requires activity of the vacuolar-type H(+)-ATPase (V-ATPase) and is induced by osmotic imbalances within endolysosomal compartments. LC3 lipidation by this mechanism is induced by treatment of cells with the lysosomotropic agent chloroquine, and through exposure to the Heliobacter pylori pore-forming toxin VacA. These data add novel mechanistic insights into the regulation of noncanonical LC3 lipidation and its associated processes, including LC3-associated phagocytosis (LAP), and demonstrate that the widely and therapeutically used drug chloroquine, which is conventionally used to inhibit autophagy flux, is an inducer of LC3 lipidation.
Collapse
Key Words
- ATG, autophagy-related
- Baf, bafilomycin A1
- CALCOCO2/NDP52, calcium binding and coiled-coil domain 2
- CQ, chloroquine
- ConA, concanamycin A
- FYCO1, FYVE and coiled-coil domain containing 1
- GFP, green fluorescent protein
- Helicobacter pylori
- LAMP1, lysosomal-associated membrane protein 1
- LAP
- LAP, LC3-associated phagocytosis
- LC3
- MAP1LC3/LC3, microtubule-associated protein 1 light chain 3
- MTOR, mechanistic target of rapamycin
- PIK3C3/VPS34, phosphatidylinositol 3-kinase
- PtdIns3K, phosphatidylinositol 3-kinase
- PtdIns3P, phosphatidylinositol 3-phosphate
- RB1CC1/FIP200, RB1-inducible coiled-coil 1
- SQSTM1/p62, sequestosome 1
- TEM, transmission electron microscopy
- TLR, toll-like receptor
- ULK1/2, unc-51 like autophagy activating kinase 1/2
- V-ATPase
- V-ATPase, vacuolar-type H+-ATPase
- VacA, vacuolating toxin A
- autophagy
- catalytic subunit type 3
- chloroquine
- entosis
- lysosome
- phagocytosis
Collapse
Affiliation(s)
- Oliver Florey
- Cell Biology Program; Memorial Sloan-Kettering Cancer Center; New York, NY USA
- Signalling Program; The Babraham Institute; Cambridge, UK
| | - Noor Gammoh
- Cell Biology Program; Memorial Sloan-Kettering Cancer Center; New York, NY USA
- Edinburgh Cancer Research UK Center; Institute of Genetics and Molecular Medicine; University of Edinburgh; Edinburgh, UK
| | - Sung Eun Kim
- Cell Biology Program; Memorial Sloan-Kettering Cancer Center; New York, NY USA
- BCMB Allied Program; Weill Cornell Medical College; New York, NY USA
| | - Xuejun Jiang
- Cell Biology Program; Memorial Sloan-Kettering Cancer Center; New York, NY USA
| | - Michael Overholtzer
- Cell Biology Program; Memorial Sloan-Kettering Cancer Center; New York, NY USA
- BCMB Allied Program; Weill Cornell Medical College; New York, NY USA
| |
Collapse
|
78
|
Logan R, Kong AC, Krise JP. Time-dependent effects of hydrophobic amine-containing drugs on lysosome structure and biogenesis in cultured human fibroblasts. J Pharm Sci 2014; 103:3287-96. [PMID: 25042198 DOI: 10.1002/jps.24087] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/13/2014] [Accepted: 06/16/2014] [Indexed: 01/20/2023]
Abstract
Many weakly basic amine-containing drugs are known to be extensively sequestered in acidic lysosomes by an ion trapping-type mechanism. The entrapment of drugs in lysosomes has been shown to influence drug activity, cancer cell selectivity, and pharmacokinetics and can cause the hyperaccumulation of various lipids associated with lysosomes. In this work, we have investigated the prolonged time-dependent effects of drugs on lysosomal properties. We have evaluated two amine-containing drugs with intermediate (propranolol) and high (halofantrine) relative degrees of lipophilicity. Interestingly, the cellular accumulation kinetics of these drugs exhibited a biphasic characteristic at therapeutically relevant exposure levels with an initial apparent steady-state occurring at 2 days followed by a second stage of enhanced accumulation. We provide evidence that this secondary drug accumulation coincides with the nuclear localization of transcription factor EB, a master regulator of lysosome biogenesis, and the appearance of an increased number of smaller and lipid-laden lysosomes. Collectively, these results show that hydrophobic lysosomotropic drugs can induce their own cellular accumulation in a time-dependent fashion and that this is associated with an expanded lysosomal volume. These results have important therapeutic implications and may help to explain sources of variability in drug pharmacokinetic distribution and elimination properties observed in vivo.
Collapse
Affiliation(s)
- Randall Logan
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas
| | | | | |
Collapse
|
79
|
Logan R, Kong AC, Axcell E, Krise JP. Amine-Containing Molecules and the Induction of an Expanded Lysosomal Volume Phenotype: A Structure–Activity Relationship Study. J Pharm Sci 2014; 103:1572-80. [DOI: 10.1002/jps.23949] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 02/26/2014] [Accepted: 02/28/2014] [Indexed: 12/19/2022]
|
80
|
da Silva-Souza HA, Lira MND, Costa-Junior HM, da Cruz CM, Vasconcellos JSS, Mendes AN, Pimenta-Reis G, Alvarez CL, Faccioli LH, Serezani CH, Schachter J, Persechini PM. Inhibitors of the 5-lipoxygenase arachidonic acid pathway induce ATP release and ATP-dependent organic cation transport in macrophages. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1967-77. [PMID: 24743022 DOI: 10.1016/j.bbamem.2014.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/18/2014] [Accepted: 04/07/2014] [Indexed: 02/06/2023]
Abstract
We have previously described that arachidonic acid (AA)-5-lipoxygenase (5-LO) metabolism inhibitors such as NDGA and MK886, inhibit cell death by apoptosis, but not by necrosis, induced by extracellular ATP (ATPe) binding to P2X7 receptors in macrophages. ATPe binding to P2X7 also induces large cationic and anionic organic molecules uptake in these cells, a process that involves at least two distinct transport mechanisms: one for cations and another for anions. Here we show that inhibitors of the AA-5-LO pathway do not inhibit P2X7 receptors, as judged by the maintenance of the ATPe-induced uptake of fluorescent anionic dyes. In addition, we describe two new transport phenomena induced by these inhibitors in macrophages: a cation-selective uptake of fluorescent dyes and the release of ATP. The cation uptake requires secreted ATPe, but, differently from the P2X7/ATPe-induced phenomena, it is also present in macrophages derived from mice deficient in the P2X7 gene. Inhibitors of phospholipase A2 and of the AA-cyclooxygenase pathway did not induce the cation uptake. The uptake of non-organic cations was investigated by measuring the free intracellular Ca(2+) concentration ([Ca(2+)]i) by Fura-2 fluorescence. NDGA, but not MK886, induced an increase in [Ca(2+)]i. Chelating Ca(2+) ions in the extracellular medium suppressed the intracellular Ca(2+) signal without interfering in the uptake of cationic dyes. We conclude that inhibitors of the AA-5-LO pathway do not block P2X7 receptors, trigger the release of ATP, and induce an ATP-dependent uptake of organic cations by a Ca(2+)- and P2X7-independent transport mechanism in macrophages.
Collapse
Affiliation(s)
- Hercules Antônio da Silva-Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia de Pesquisa Translacional em Saúde e ambiente da Região Amazônica - INPeTAm
| | - Maria Nathalia de Lira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia de Pesquisa Translacional em Saúde e ambiente da Região Amazônica - INPeTAm
| | - Helio Miranda Costa-Junior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Cristiane Monteiro da Cruz
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil
| | | | - Anderson Nogueira Mendes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Gabriela Pimenta-Reis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia de Pesquisa Translacional em Saúde e ambiente da Região Amazônica - INPeTAm
| | - Cora Lilia Alvarez
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia de Pesquisa Translacional em Saúde e ambiente da Região Amazônica - INPeTAm
| | - Lucia Helena Faccioli
- Departamento de Análises Clínicas Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903, Ribeirão Preto, SP, Brazil
| | - Carlos Henrique Serezani
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Julieta Schachter
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia de Pesquisa Translacional em Saúde e ambiente da Região Amazônica - INPeTAm
| | - Pedro Muanis Persechini
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia de Pesquisa Translacional em Saúde e ambiente da Região Amazônica - INPeTAm.
| |
Collapse
|
81
|
Kuzu OF, Gowda R, Sharma A, Robertson GP. Leelamine mediates cancer cell death through inhibition of intracellular cholesterol transport. Mol Cancer Ther 2014; 13:1690-703. [PMID: 24688051 DOI: 10.1158/1535-7163.mct-13-0868] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Leelamine is a promising compound for the treatment of cancer; however, the molecular mechanisms leading to leelamine-mediated cell death have not been identified. This report shows that leelamine is a weakly basic amine with lysosomotropic properties, leading to its accumulation inside acidic organelles such as lysosomes. This accumulation leads to homeostatic imbalance in the lysosomal endosomal cell compartments that disrupts autophagic flux and intracellular cholesterol trafficking as well as receptor-mediated endocytosis. Electron micrographs of leelamine-treated cancer cells displayed accumulation of autophagosomes, membrane whorls, and lipofuscin-like structures, indicating disruption of lysosomal cell compartments. Early in the process, leelamine-mediated killing was a caspase-independent event triggered by cholesterol accumulation, as depletion of cholesterol using β-cyclodextrin treatment attenuated the cell death and restored the subcellular structures identified by electron microscopy. Protein microarray-based analyses of the intracellular signaling cascades showed alterations in RTK-AKT/STAT/MAPK signaling cascades, which was subsequently confirmed by Western blotting. Inhibition of Akt, Erk, and Stat signaling, together with abnormal deregulation of receptor tyrosine kinases, was caused by the inhibition of receptor-mediated endocytosis. This study is the first report demonstrating that leelamine is a lysosomotropic, intracellular cholesterol transport inhibitor with potential chemotherapeutic properties leading to inhibition of autophagic flux and induction of cholesterol accumulation in lysosomal/endosomal cell compartments. Importantly, the findings of this study show the potential of leelamine to disrupt cholesterol homeostasis for treatment of advanced-stage cancers.
Collapse
Affiliation(s)
- Omer F Kuzu
- Authors' Affiliations: Departments of Pharmacology, Penn State Hershey Melanoma Center
| | - Raghavendra Gowda
- Authors' Affiliations: Departments of Pharmacology, Penn State Hershey Melanoma Center
| | - Arati Sharma
- Authors' Affiliations: Departments of Pharmacology, Penn State Hershey Melanoma Center; Penn State Melanoma Therapeutics Program; and
| | - Gavin P Robertson
- Authors' Affiliations: Departments of Pharmacology, Pathology, Dermatology, and Surgery; Penn State Hershey Melanoma Center; Penn State Melanoma Therapeutics Program; and The Foreman Foundation for Melanoma Research, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
82
|
Talaber G, Miklossy G, Oaks Z, Liu Y, Tooze SA, Chudakov DM, Banki K, Perl A. HRES-1/Rab4 promotes the formation of LC3(+) autophagosomes and the accumulation of mitochondria during autophagy. PLoS One 2014; 9:e84392. [PMID: 24404161 PMCID: PMC3880286 DOI: 10.1371/journal.pone.0084392] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 11/22/2013] [Indexed: 02/07/2023] Open
Abstract
HRES-1/Rab4 is a small GTPase that regulates endocytic recycling. It has been colocalized to mitochondria and the mechanistic target of rapamycin (mTOR), a suppressor of autophagy. Since the autophagosomal membrane component microtubule-associated protein light chain 3 (LC3) is derived from mitochondria, we investigated the impact of HRES-1/Rab4 on the formation of LC3(+) autophagosomes, their colocalization with HRES-1/Rab4 and mitochondria, and the retention of mitochondria during autophagy induced by starvation and rapamycin. HRES-1/Rab4 exhibited minimal baseline colocalization with LC3, which was enhanced 22-fold upon starvation or 6-fold upon rapamycin treatment. Colocalization of HRES-1/Rab4 with mitochondria was increased >2-fold by starvation or rapamycin. HRES-1/Rab4 overexpression promoted the colocalization of mitochondria with LC3 upon starvation or rapamycin treatment. A dominant-negative mutant, HRES-1/Rab4(S27N) had reduced colocalization with LC3 and mitochondria upon starvation but not rapamycin treatment. A constitutively active mutant, HRES-1/Rab4(Q72L) showed diminished colocalization with LC3 but promoted the partitioning of mitochondria with LC3 upon starvation or rapamycin treatment. Phosphorylation-resistant mutant HRES-1/Rab4(S204Q) showed diminished colocalization with LC3 but increased partitioning to mitochondria. A newly discovered C-terminally truncated native isoform, HRES-1/Rab4(1-121), showed enhanced localization to LC3 and mitochondria without starvation or rapamycin treatment. HRES-1/Rab4(1-121) increased the formation of LC3(+) autophagosomes in resting cells, while other isoforms promoted autophagosome formation upon starvation. HRES-1/Rab4, HRES-1/Rab4(1-121), HRES-1/Rab4(Q72L) and HRES-1/Rab4(S204Q) promoted the accumulation of mitochondria during starvation. The specificity of HRES-1/Rab4-mediated mitochondrial accumulation is indicated by its abrogation by dominant-negative HRES-1/Rab4(S27N) mutation. The formation of interconnected mitochondrial tubular networks was markedly enhanced by HRES-1/Rab4(Q72L) upon starvation, which may contribute to the retention of mitochondria during autophagy. The present study thus indicates that HRES-1/Rab4 regulates autophagy through promoting the formation of LC3(+) autophagosomes and the preservation of mitochondria.
Collapse
Affiliation(s)
- Gergely Talaber
- Departments of Medicine, State University of New York, Upstate Medical University, Syracuse, New York, United States of America
| | - Gabriella Miklossy
- Departments of Medicine, State University of New York, Upstate Medical University, Syracuse, New York, United States of America
| | - Zachary Oaks
- Departments of Medicine, State University of New York, Upstate Medical University, Syracuse, New York, United States of America
- Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Syracuse, New York, United States of America
| | - Yuxin Liu
- Departments of Medicine, State University of New York, Upstate Medical University, Syracuse, New York, United States of America
| | - Sharon A. Tooze
- Cancer Research UK London Research Institute, London, England, United Kingdom
| | - Dmitriy M. Chudakov
- Shemiakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
| | - Katalin Banki
- Department of Pathology, State University of New York, Upstate Medical University, Syracuse, New York, United States of America
| | - Andras Perl
- Departments of Medicine, State University of New York, Upstate Medical University, Syracuse, New York, United States of America
- Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Syracuse, New York, United States of America
- Microbiology and Immunology, State University of New York, Upstate Medical University, Syracuse, New York, United States of America
| |
Collapse
|
83
|
Marceau F, Roy C, Bouthillier J. Assessment of Cation Trapping by Cellular Acidic Compartments. Methods Enzymol 2014; 534:119-31. [DOI: 10.1016/b978-0-12-397926-1.00007-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
84
|
Multiplex cytological profiling assay to measure diverse cellular states. PLoS One 2013; 8:e80999. [PMID: 24312513 PMCID: PMC3847047 DOI: 10.1371/journal.pone.0080999] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 10/08/2013] [Indexed: 01/18/2023] Open
Abstract
Computational methods for image-based profiling are under active development, but their success hinges on assays that can capture a wide range of phenotypes. We have developed a multiplex cytological profiling assay that “paints the cell” with as many fluorescent markers as possible without compromising our ability to extract rich, quantitative profiles in high throughput. The assay detects seven major cellular components. In a pilot screen of bioactive compounds, the assay detected a range of cellular phenotypes and it clustered compounds with similar annotated protein targets or chemical structure based on cytological profiles. The results demonstrate that the assay captures subtle patterns in the combination of morphological labels, thereby detecting the effects of chemical compounds even though their targets are not stained directly. This image-based assay provides an unbiased approach to characterize compound- and disease-associated cell states to support future probe discovery.
Collapse
|
85
|
Logan R, Kong A, Krise JP. Evaluating the Roles of Autophagy and Lysosomal Trafficking Defects in Intracellular Distribution-Based Drug-Drug Interactions Involving Lysosomes. J Pharm Sci 2013; 102:4173-80. [DOI: 10.1002/jps.23706] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/03/2013] [Accepted: 07/24/2013] [Indexed: 01/16/2023]
|
86
|
Qiao S, Tao S, Rojo de la Vega M, Park SL, Vonderfecht AA, Jacobs SL, Zhang DD, Wondrak GT. The antimalarial amodiaquine causes autophagic-lysosomal and proliferative blockade sensitizing human melanoma cells to starvation- and chemotherapy-induced cell death. Autophagy 2013; 9:2087-102. [PMID: 24113242 DOI: 10.4161/auto.26506] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Pharmacological inhibition of autophagic-lysosomal function has recently emerged as a promising strategy for chemotherapeutic intervention targeting cancer cells. Repurposing approved and abandoned non-oncological drugs is an alternative approach to the identification and development of anticancer therapeutics, and antimalarials that target autophagic-lysosomal functions have recently attracted considerable attention as candidates for oncological repurposing. Since cumulative research suggests that dependence on autophagy represents a specific vulnerability of malignant melanoma cells, we screened a focused compound library of antimalarials for antimelanoma activity. Here we report for the first time that amodiaquine (AQ), a clinical 4-aminoquinoline antimalarial with unexplored cancer-directed chemotherapeutic potential, causes autophagic-lysosomal and proliferative blockade in melanoma cells that surpasses that of its parent compound chloroquine. Monitoring an established set of protein markers (LAMP1, LC3-II, SQSTM1) and cell ultrastructural changes detected by electron microscopy, we observed that AQ treatment caused autophagic-lysosomal blockade in malignant A375 melanoma cells, a finding substantiated by detection of rapid inactivation of lysosomal cathepsins (CTSB, CTSL, CTSD). AQ-treatment was associated with early induction of energy crisis (ATP depletion) and sensitized melanoma cells to either starvation- or chemotherapeutic agent-induced cell death. AQ displayed potent antiproliferative effects, and gene expression array analysis revealed changes at the mRNA (CDKN1A, E2F1) and protein level (TP53, CDKN1A, CCND1, phospho-RB1 [Ser 780]/[Ser 807/811], E2F1) consistent with the observed proliferative blockade in S-phase. Taken together, our data suggest that the clinical antimalarial AQ is a promising candidate for repurposing efforts that aim at targeting autophagic-lysosomal function and proliferative control in malignant melanoma cells.
Collapse
Affiliation(s)
- Shuxi Qiao
- Department of Pharmacology and Toxicology; College of Pharmacy and Arizona Cancer Center; University of Arizona; Tucson, AZ USA
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Côrte-Real L, Matos AP, Alho I, Morais TS, Tomaz AI, Garcia MH, Santos I, Bicho MP, Marques F. Cellular uptake mechanisms of an antitumor ruthenium compound: the endosomal/lysosomal system as a target for anticancer metal-based drugs. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:1122-30. [PMID: 23790186 DOI: 10.1017/s143192761300175x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Previous studies have described promising antitumor activity of an organometallic Ru(II) complex, η⁵-cyclopentadienyl(2,2'-bipyridyl)(triphenylphosphane) Ruthenium(II) triflate ([η⁵-C₅H₅)Ru(2,2'-bipyridyl)(PPh₃)][CF₃SO₃]) herein designated as TM34. Its broad spectrum of activity against a panel of human tumor cell lines and high antiproliferative efficiency prompted us to focus on its mode of action. We present herein results obtained with two human tumor cell lines A2780 and MDAMB231 on the compound distribution within the cell, the mechanism of its activity, and its cellular targets. The prospective metallodrug TM34 revealed: (a) fast antiproliferative effects even at short incubation times for both cell lines; (b) preferential localization at the cell membrane and cytosol; (c) cellular activity by a temperature-dependent process, probably macropinocytosis; (d) inhibition of a lysosomal enzyme, acid phosphatase, in a dose-dependent mode; and (e) disruption and vesiculation of the Golgi apparatus, which suggest the involvement of the endosomal/lysosomal system in its mode of action. These results are essential to elucidate the basis for the cytotoxic activity and mechanism of action of this Ru(II)(η⁵-cyclopentadienyl) complex.
Collapse
Affiliation(s)
- Leonor Côrte-Real
- Unidade de Ciências Químicas e Radiofarmacêuticas, Instituto Superior Técnico, Polo de Loures-Campus Tecnológico e Nuclear, Estrada Nacional 10, 2686-953 Sacavém, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Pazopanib and sunitinib trigger autophagic and non-autophagic death of bladder tumour cells. Br J Cancer 2013; 109:1040-50. [PMID: 23887605 PMCID: PMC3749583 DOI: 10.1038/bjc.2013.420] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/18/2013] [Accepted: 07/03/2013] [Indexed: 12/21/2022] Open
Abstract
Background: Tyrosine kinase inhibitors (TKI) such as sunitinib and pazopanib display their efficacy in a variety of solid tumours. However, their use in therapy is limited by the lack of evidence about the ability to induce cell death in cancer cells. Our aim was to evaluate cytotoxic effects induced by sunitinib and pazopanib in 5637 and J82 bladder cancer cell lines. Methods: Cell viability was tested by MTT assay. Autophagy was evaluated by western blot using anti-LC3 and anti-p62 antibodies, acridine orange staining and FACS analysis. Oxygen radical generation and necrosis were determined by FACS analysis using DCFDA and PI staining. Cathepsin B activation was evaluated by western blot and fluorogenic Z-Arg-Arg-AMC peptide. Finally, gene expression was performed using RT–PCR Profiler array. Results: We found that sunitinib treatment for 24 h triggers incomplete autophagy, impairs cathepsin B activation and stimulates a lysosomal-dependent necrosis. By contrast, treatment for 48 h with pazopanib induces cathepsin B activation and autophagic cell death, markedly reversed by CA074-Me and 3-MA, cathepsin B and autophagic inhibitors, respectively. Finally, pazopanib upregulates the α-glucosidase and downregulates the TP73 mRNA expression. Conclusion: Our results showing distinct cell death mechanisms activated by different TKIs, provide the biological basis for novel molecularly targeted approaches.
Collapse
|
89
|
Aki T, Funakoshi T, Unuma K, Uemura K. Impairment of autophagy: from hereditary disorder to drug intoxication. Toxicology 2013; 311:205-15. [PMID: 23851159 DOI: 10.1016/j.tox.2013.07.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 06/30/2013] [Accepted: 07/01/2013] [Indexed: 12/11/2022]
Abstract
At first, the molecular mechanism of autophagy was unveiled in a unicellular organism Saccharomyces cerevisiae (budding yeast), followed by the discovery that the basic mechanism of autophagy is conserved in multicellular organisms including mammals. Although autophagy was considered to be a non-selective bulk protein degradation system to recycle amino acids during periods of nutrient starvation, it is also believed to be an essential mechanism for the selective elimination of proteins/organelles that are damaged under pathological conditions. Research advances made using autophagy-deficient animals have revealed that impairments of autophagy often underlie the pathogenesis of hereditary disorders such as Danon, Parkinson's, Alzheimer's, and Huntington's diseases, and amyotrophic lateral sclerosis. On the other hand, there are many reports that drugs and toxicants, including arsenic, cadmium, paraquat, methamphetamine, and ethanol, induce autophagy during the development of their toxicity on many organs including heart, brain, lung, kidney, and liver. Although the question as to whether autophagic machinery is involved in the execution of cell death or not remains controversial, the current view of the role of autophagy during cell/tissue injury is that it is an important, often essential, cytoprotective reaction; disturbances in cytoprotective autophagy aggravate cell/tissue injuries. The purpose of this review is to provide (1) a gross summarization of autophagy processes, which are becoming more important in the field of toxicology, and (2) examples of important studies reporting the involvement of perturbations in autophagy in cell/tissue injuries caused by acute as well as chronic intoxication.
Collapse
Affiliation(s)
- Toshihiko Aki
- Section of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan.
| | | | | | | |
Collapse
|
90
|
Roy C, Gagné V, Fernandes MJ, Marceau F. High affinity capture and concentration of quinacrine in polymorphonuclear neutrophils via vacuolar ATPase-mediated ion trapping: Comparison with other peripheral blood leukocytes and implications for the distribution of cationic drugs. Toxicol Appl Pharmacol 2013; 270:77-86. [DOI: 10.1016/j.taap.2013.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 04/04/2013] [Accepted: 04/07/2013] [Indexed: 11/30/2022]
|
91
|
Craword SE, Fitchev P, Veliceasa D, Volpert OV. The many facets of PEDF in drug discovery and disease: a diamond in the rough or split personality disorder? Expert Opin Drug Discov 2013; 8:769-92. [PMID: 23642051 DOI: 10.1517/17460441.2013.794781] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Pigment epithelium-derived factor (PEDF) was discovered as a neurotrophic factor secreted by retinal pigment epithelial cells. A decade later, it re-emerged as a powerful angiogenesis inhibitor guarding ocular function. Since then, significant advances were made identifying PEDF's mechanisms, targets and biomedical applications. AREAS COVERED The authors review several methodologies that have generated significant new information about the potential of PEDF as a drug. Furthermore, the authors review and discuss mechanistic and structure-function analyses combined with the functional mapping of active fragments, which have yielded several short bioactive PEDF peptides. Additionally, the authors present functional studies in knockout animals and human correlates that have provided important information about conditions amenable to PEDF-based therapies. EXPERT OPINION Through its four known receptors, PEDF causes a wide range of cellular events vitally important for the organism, which include survival and differentiation, migration and invasion, lipid metabolism and stem cell maintenance. These processes are deregulated in multiple pathological conditions, including cancer, metabolic and cardiovascular disease. PEDF has been successfully used in countless preclinical models of these conditions and human correlates suggest a wide utility of PEDF-based drugs. The most significant clinical application of PEDF, to date, is its potential therapeutic use for age-related macular degeneration. Moreover, PEDF-based gene therapy has advanced to early stage clinical trials. PEDF active fragments have been mapped and used to design short peptide mimetics conferring distinct functions of PEDF, which may address specific clinical problems and become prototype drugs.
Collapse
Affiliation(s)
- Susan E Craword
- St. Louis University School of Medicine, Department of Pathology, St. Louis, Missouri, USA
| | | | | | | |
Collapse
|
92
|
Lysosome vacuolation disrupts the completion of autophagy during norephedrine exposure in SH-SY5Y human neuroblastoma cells. Brain Res 2012; 1490:9-22. [PMID: 23123211 DOI: 10.1016/j.brainres.2012.10.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 09/29/2012] [Accepted: 10/27/2012] [Indexed: 11/22/2022]
Abstract
In our current study, we examined the mechanism underlying neuronal cell injuries caused by norephedrine in SH-SY5Y human neuroblastoma cells. Norephedrine was found to induce cytoplasmic vacuolation and a resultant loss of cell viability. In the cells treated with norephedrine also, an autophagic marker LC3 was converted to its LC3-II activated form, suggesting the induction of autophagy. In cells transfected with RFP-LC3 and GFP-LAMP1, a punctate patterning of LC3 expression and colocalization of LAMP1 with the formed vacuoles were observed, highlighting the lysosomal nature of the vacuoles and their association with autophagosomes. An autophagic flux assay using tfLC3 (mRFP-GFP-LC3) indicated the formation of autophagosomes and autolysosomes by norephedrine stimulation at an early timepoint (∼3 h). However, at a later timepoint (∼6 h), both the dilation of autolysosomes/lysosomes and the neutralization of the vacuolar pH were also observed. These results thus indicate that norephedrine induces autophagy at an early timepoint and cell death with lysosomal dysfunction and autophagy disruption at a later timepoint.
Collapse
|
93
|
Krenc D, Wu B, Beitz E. Specific aquaporins increase the ammonia tolerance of aSaccharomyces cerevisiae mep1-3fps1deletion strain. Mol Membr Biol 2012; 30:43-51. [DOI: 10.3109/09687688.2012.733976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|